Science.gov

Sample records for exoplanet survey satellite

  1. Transiting Exoplanet Survey Satellite (TESS)

    NASA Technical Reports Server (NTRS)

    Ricker, G. R.; Clampin, M.; Latham, D. W.; Seager, S.; Vanderspek, R. K.; Villasenor, J. S.; Winn, J. N.

    2012-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey, TESS will monitor more than 500,000 stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. No ground-based survey can achieve this feat. A large fraction of TESS target stars will be 30-100 times brighter than those observed by Kepler satellite, and therefore TESS . planets will be far easier to characterize with follow-up observations. TESS will make it possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. TESS will provide prime targets for observation with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS data will be released with minimal delay (no proprietary period), inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the very nearest and brightest main-sequence stars hosting transiting exoplanets, thus providing future observers with the most favorable targets for detailed investigations.

  2. The Transiting Exoplanet Survey Satellite Mission

    NASA Astrophysics Data System (ADS)

    Ricker, G. R.

    2014-03-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey of the solar neighborhood, TESS will monitor more than 500,000 stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. TESS stars will typically be 30-100 times brighter than those surveyed by the Kepler satellite; thus, TESS planets will be far easier to characterize with follow-up observations. For the first time it will be possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. Full frame images with a cadence of 30 minutes or less will provide precise photometric information for several million stars during observation sessions of several weeks. The brighter TESS stars will potentially yield valuable asteroseismic information as a result of monitoring at a rapid cadence of 1 minute or less. An extended survey by TESS of the Ecliptic caps will provide prime exoplanet targets for characterization with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS will serve as the "People's Telescope," with data releases every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest main-sequence stars hosting transiting exoplanets, which will endure as the most favorable targets for detailed future investigations. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission.

  3. The Transiting Exoplanet Survey Satellite: Mission Status

    NASA Astrophysics Data System (ADS)

    Ricker, George R.; TESS Team

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey of the solar neighborhood, TESS will monitor more than 200,000 bright stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances.TESS stars will typically be 30-100 times brighter than those surveyed by the Kepler satellite; thus, TESS planets will be far easier to characterize with follow-up observations. For the first time it will be possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. Full frame images with a cadence of 30 minutes or less will provide precise photometric information for more than 20 million stars during observation sessions of several weeks. The brighter TESS stars will potentially yield valuable asteroseismic information as a result of monitoring at a rapid cadence of 2 minute or less. An extended survey by TESS of regions surrounding the North and South Ecliptic Poles will provide prime exoplanet targets for characterization with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future.TESS will issue data releases every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest main-sequence stars hosting transiting exoplanets, which will endure as the most favorable targets for detailed future investigations.TESS has a planned launch date in 2017 as a NASA Astrophysics Explorer mission.

  4. The Transiting Exoplanet Survey Satellite Mission

    NASA Astrophysics Data System (ADS)

    Ricker, George R.; Vanderspek, Roland Kraft; Latham, David W.; Winn, Joshua N.

    2014-06-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey of the solar neighborhood, TESS will monitor more than 200,000 stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. TESS stars will typically be 30-100 times brighter than those surveyed by the Kepler satellite; thus, TESS planets will be far easier to characterize with follow-up observations. For the first time it will be possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. Full frame images with a cadence of 30 minutes or less will provide precise photometric information for several million stars during observation sessions of several weeks. The brighter TESS stars will potentially yield valuable asteroseismic information as a result of monitoring at a rapid cadence of 1 minute or less. An extended survey by TESS of regions surrounding the North and South Ecliptic Poles will provide prime exoplanet targets for characterization with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS will serve as the “People’s Telescope,” with data releases every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest main-sequence stars hosting transiting exoplanets, which will endure as the most favorable targets for detailed future investigations.TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission.

  5. The Transiting Exoplanet Survey Satellite Mission

    NASA Astrophysics Data System (ADS)

    Ricker, G. R.

    2014-06-01

    (Abstract only) The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey of the solar neighborhood, TESS will monitor more than 500,000 stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. TESS stars will typically be 30 to 100 times brighter than those surveyed by the Kepler satellite; thus,TESS planets will be far easier to characterize with follow-up observations. For the first time it will be possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. All of the half-million plus TESS targets will be observed at a rapid cadence (1 minute or less). Hence, the brighter TESS stars will potentially yield valuable asteroseismic information. TESS will provide prime exoplanet targets for characterization with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS will serve as the "People's Telescope," with data releases every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest main-sequence stars hosting transiting exoplanets, which will endure as the most favorable targets for detailed future investigations. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission.

  6. Trajectory Design for the Transiting Exoplanet Survey Satellite

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Parker, Joel J. K.; Williams, Trevor W.; Mendelsohn, Chad R.

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission, scheduled to be launched in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the Schematics Window Methodology (SWM76) launch window analysis tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements. Keywords: resonant orbit, stability, lunar flyby, phasing loops, trajectory optimization

  7. Trajectory Design for the Transiting Exoplanet Survey Satellite (TESS)

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Parker, Joel; Williams, Trevor; Mendelsohn, Chad

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission launching in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the SWM76 launch window tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements.

  8. Scientific, Back-Illuminated CCD Development for the Transiting Exoplanet Survey Satellite

    NASA Technical Reports Server (NTRS)

    Suntharalingam, V.; Ciampi, J.; Cooper, M. J.; Lambert, R. D.; O'Mara, D. M.; Prigozhin, I.; Young, D. J.; Warner, K.; Burke, B. E.

    2015-01-01

    We describe the development of the fully depleted, back illuminated charge coupled devices for the Transiting Exoplanet Survey Satellite, which includes a set of four wide angle telescopes, each having a 2x2 array of CCDs. The devices are fabricated on the newly upgraded 200-mm wafer line at Lincoln Laboratory. We discuss methods used to produce the devices and present early performance results from the 100- micron thick, 15x15-microns, 2k x 4k pixel frame transfer CCDs.

  9. The Guest Investigator Program for the Transiting Exoplanet Survey Satellite (TESS)

    NASA Astrophysics Data System (ADS)

    Rinehart, Stephen; Ricker, George R.; Seager, Sara; Latham, David W.; Kraft Vanderspek, Roland; Winn, Joshua N.

    2016-01-01

    Over the summer of 2015, NASA HQ approved the establishment of a Guest Investigator (GI) Program for the Transiting Exoplanet Survey Satellite (TESS). This office, being established at NASA's Goddard Space Flight Center, will provide support to the Astronomical Community for working with data from the TESS mission. In this presentation, we discuss the overall structure and plan for the GI program, and show the schedule for Community involvement.

  10. Trajectory Design Enhancements to Mitigate Risk for the Transiting Exoplanet Survey Satellite (TESS)

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald; Parker, Joel; Nickel, Craig; Lutz, Stephen

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, which will be reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several constraints on the science orbit and on the phasing loops. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V (DV) and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and optimal nominal trajectories; to check constraint satisfaction; and finally to model the effects of maneuver errors to identify trajectories that best meet the mission requirements.

  11. The Transiting Exoplanet Survey Satellite (TESS): Discovering New Earths and Super-Earths in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Ricker, George R.

    2015-12-01

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In its two-year prime survey mission, TESS will monitor more than 200,000 bright stars in the solar neighborhood for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances.TESS stars will typically be 30-100 times brighter than those surveyed by the Kepler satellite; thus, TESS planets will be far easier to characterize with follow-up observations. For the first time it will be possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars.An additional data product from the TESS mission will be full frame images (FFI) with a cadence of 30 minutes or less. These FFI will provide precise photometric information for every object within the 2300 square degree instantaneous field of view of the TESS cameras. These objects will include more than 1 million stars and bright galaxies observed during sessions of several weeks. In total, more than 30 million objects brighter than I=16 will be precisely photometered during the two-year prime mission. In principle, the lunar-resonant TESS orbit could provide opportunities for an extended mission lasting more than a decade, with data rates in excess of 100 Mbits/s.An extended survey by TESS of regions surrounding the North and South Ecliptic Poles will provide prime exoplanet targets for characterization with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future.TESS will issue data releases every 4 months, inviting immediate community-wide efforts to study the new planets, as well as commensal survey candidates from the FFI. A NASA Guest

  12. Thermal Design of the Instrument for the Transiting Exoplanet Survey Satellite

    NASA Technical Reports Server (NTRS)

    Allen, Gregory D.

    2016-01-01

    TESS observatory is a two year NASA Explorer mission which will use a set of four cameras to discover exoplanets. It will be placed in a high-earth orbit with a period of 13.7 days and will be unaffected by temperature disturbances caused by environmental heating from the Earth. The cameras use their stray-light baffles to passively cool the cameras and in turn the CCD's in order to maintain operational temperatures. The design has been well thought out and analyzed to maximize temperature stability. The analysis shows that the design keeps the cameras and their components within their temperature ranges which will help make it a successful mission. It will also meet its survival requirement of sustaining exposure to a five hour eclipse. Official validation and verification planning is underway and will be performed as the system is built up. It is slated for launch in 2017.

  13. CHEOPS: CHaracterising ExOPlanet Satellite

    NASA Astrophysics Data System (ADS)

    Isaak, K. G.

    2015-10-01

    CHEOPS (CHaracterising ExOPlanet Satellite) is the first exoplanet mission dedicated to the search for transits of exoplanets by means of ultrahigh precision photometry of bright stars already known to host planets. CHEOPS will provide the unique capability of determining radii to ~10% accuracy for a subset of those planets in the super-Earth to Neptune mass range. The high photometric precision of CHEOPS will be achieved using a photometer covering the 0.4 - 1.1um waveband and designed around a single frame-transfer CCD which is mounted in the focal plane of a 30 cm equivalent aperture diameter, f/5 on-axis Ritchey-Chretien telescope. Key to reaching the required performance is rejection of straylight from the Earth that is achieved using a specially designed optical baffle. CHEOPS is the first S-class mission in ESA's Cosmic Vision 2015-2025, and is currently planned to be launch-ready by the end of 2017. The mission is a partnership between Switzerland and ESA's science programme, with important contributions from Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, Sweden and the United Kingdom. In this presentation I will give a scientific and technical overview of the mission, as well as an update on the status of the project.

  14. Transiting Exoplanet Survey Satellite (TESS) Community Observer Program including the Science Enhancement Option Box (SEO Box) - 12 TB On-board Flash Memory for Serendipitous Science

    NASA Astrophysics Data System (ADS)

    Schingler, Robert; Villasenor, J. N.; Ricker, G. R.; Latham, D. W.; Vanderspek, R. K.; Ennico, K. A.; Lewis, B. S.; Bakos, G.; Brown, T. M.; Burgasser, A. J.; Charbonneau, D.; Clampin, M.; Deming, L. D.; Doty, J. P.; Dunham, E. W.; Elliot, J. L.; Holman, M. J.; Ida, S.; Jenkins, J. M.; Jernigan, J. G.; Kawai, N.; Laughlin, G. P.; Lissauer, J. J.; Martel, F.; Sasselov, D. D.; Seager, S.; Torres, G.; Udry, S.; Winn, J. N.; Worden, S. P.

    2010-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will perform an all-sky survey in a low-inclination, low-Earth orbit. TESS's 144 GB of raw data collected each orbit will be stacked, cleaned, cut, compressed and downloaded. The Community Observer Program is a Science Enhancement Option (SEO) that takes advantage of the low-radiation environment, technology advances in flash memory, and the vast amount of astronomical data collected by TESS. The Community Observer Program requires the addition of a 12 TB "SEO Box” inside the TESS Bus. The hardware can be built using low-cost Commercial Off-The-Shelf (COTS) components and fits within TESS's margins while accommodating GSFC gold rules. The SEO Box collects and stores a duplicate of the TESS camera data at a "raw” stage ( 4.3 GB/orbit, after stacking and cleaning) and makes them available for on-board processing. The sheer amount of onboard storage provided by the SEO Box allows the stacking and storing of several months of data, allowing the investigator to probe deeper in time prior to a given event. Additionally, with computation power and data in standard formats, investigators can utilize data-mining techniques to investigate serendipitous phenomenon, including pulsating stars, eclipsing binaries, supernovae or other transient phenomena. The Community Observer Program enables ad-hoc teams of citizen scientists to propose, test, refine and rank algorithms for on-board analysis to support serendipitous science. Combining "best practices” of online collaboration, with careful moderation and community management, enables this `crowd sourced’ participatory exploration with a minimal risk and impact on the core TESS Team. This system provides a powerful and independent tool opening a wide range of opportunity for science enhancement and secondary science. Support for this work has been provided by NASA, the Kavli Foundation, Google, and the Smithsonian Institution.

  15. TMT and Exoplanet Radial Velocity Surveys

    NASA Astrophysics Data System (ADS)

    Tanner, Angelle; Crossfield, Ian

    2014-07-01

    With echelle spectrometers on the verge of crossing over the 0.1 m/s radial velocity (RV) measurement precision threshold needed to detect habitable Earth mass planets around Sun-like stars, conducing such surveys on state-of-the-art telescopes is an imperative. RV exoplanets surveys conducted with the optical and infrared echelle spectrometers being built for the TMT have the potential to complete a census of the population of Earth-mass planets in our local stellar neighborhood. The detection of such systems will provide a valuable stellar sample for follow-up exoplanet studies which would characterize the atmospheres of these or additional planets found in these nearby solar systems. Here, we will further discuss the impact of the TMT on radial velocity exoplanet surveys.

  16. Exoplanets in the M2K Survey

    NASA Astrophysics Data System (ADS)

    Boyajian, Tabetha; Fischer, Debra; Gaidos, Eric; Giguere, Matt

    2013-07-01

    Late type stars are ideal targets for the detection of low-mass planets residing in habitable zones. In such systems, not only is the stellar noise a minimum, but the lower stellar mass affords larger reflex velocities and the lower stellar luminosity moves the habitable zone inward. The M2K program is a high precision Doppler survey monitoring a couple hundred late-type stars over the past few years in search for such important exoplanetary systems. We present updated orbits of known exoplanet systems and newly detected exoplanet systems that have resulted from this program. We also advertise the Planethunters.org "Guest Scientist" program as well as our survey to measure stellar diameters and temperatures with long baseline optical interferometry.

  17. The Gemini Planet Imager Exoplanet Survey

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce

    The Gemini Planet Imager (GPI) is a next-generation coronagraph constructed for the Gemini Observatory. GPI will see first light this fall. It will be the most advanced planet-imaging system in operation - an order of magnitude more sensitive than any current instrument, capable of detecting and spectroscopically characterizing young Jovian planets 107 times fainter than their parent star at separations of 0.2 arcseconds. GPI was built from the beginning as a facility-class survey instrument, and the observatory will employ it that way. Our team has been selected by Gemini Observatory to carry out an 890-hour program - the GPI Exoplanet Survey (GPIES) campaign from 2014-2017. We will observe 600 stars spanning spectral types A-M. We will use published young association catalogs and a proprietary list in preparation that adds several hundred new young (<100 Myr, <75 pc) and adolescent (<300 Myr, <35 pc) stars. The range of separations studied by GPI is completely inaccessible to Doppler and transit techniques (even with Kepler or TESS)— GPI offers a new window into planet formation. We will use GPI to produce the first-ever robust census of giant planet populations in the 5-50 AU range, allowing us to: 1) illuminate the formation pathways of Jovian planets; 2) reconstruct the early dynamical evolution of systems, including migration mechanisms and the interaction with disks and belts of debris; and 3) bridge the gap between Jupiter and the brown dwarfs with the first examples of cool low- gravity planetary atmospheres. Simulations predict this survey will discover approximately 50 exoplanets, increasing the number of exoplanet images by an order of magnitude, enough for statistical investigation. This Origins of Solar Systems proposal will support the execution of the GPI Exoplanet Survey campaign. We will develop tools needed to execute the survey efficiently. We will refine the existing GPI data pipeline to a final version that robustly removes residual speckle

  18. Exoplanets

    NASA Astrophysics Data System (ADS)

    Seager, S.

    2010-12-01

    This is a unique time in human history - for the first time, we are on the technological brink of being able to answer questions that have been around for thousands of years: Are there other planets like Earth? Are they common? Do any have signs of life? The field of exoplanets is rapidly moving toward answering these questions with the discovery of hundreds of exoplanets now pushing toward lower and lower masses; the Kepler Space Telescope with its yield of small planets; plans to use the James Webb Space Telescope (launch date 2014) to study atmospheres of a subset of super Earths; and ongoing development for technology to directly image true Earth analogs. Theoretical studies in dynamics, planet formation, and physical characteristics provide the needed framework for prediction and interpretation. People working outside of exoplanets often ask if the field of exoplanets is like a dot.com bubble that will burst, deflating excitement and progress. In my opinion, exciting discoveries and theoretical advances will continue indefinitely in the years ahead, albeit at a slower pace than in the first decade. The reason is that observations uncover new kinds and new populations of exoplanets -- and these observations rely on technological development that usually takes over a decade to mature. For example, in the early 2000s all but one exoplanet was discovered by the radial velocity technique. At that time, many groups around the world were working on wide-field transit surveys. But it was not until recently, a decade into the twenty-first century, that the transit technique is responsible for almost one-quarter of known exoplanets. The planet discovery techniques astrometry (as yet to find a planet) and direct imaging have not yet matured; when they do, they will uncover planets within a new parameter space of planet mass and orbital characteristics. In addition, people are working hard to improve the precision for existing planet discovery techniques to detect lower

  19. Exoplanets

    NASA Astrophysics Data System (ADS)

    Seager, S.

    2010-12-01

    This is a unique time in human history - for the first time, we are on the technological brink of being able to answer questions that have been around for thousands of years: Are there other planets like Earth? Are they common? Do any have signs of life? The field of exoplanets is rapidly moving toward answering these questions with the discovery of hundreds of exoplanets now pushing toward lower and lower masses; the Kepler Space Telescope with its yield of small planets; plans to use the James Webb Space Telescope (launch date 2014) to study atmospheres of a subset of super Earths; and ongoing development for technology to directly image true Earth analogs. Theoretical studies in dynamics, planet formation, and physical characteristics provide the needed framework for prediction and interpretation. People working outside of exoplanets often ask if the field of exoplanets is like a dot.com bubble that will burst, deflating excitement and progress. In my opinion, exciting discoveries and theoretical advances will continue indefinitely in the years ahead, albeit at a slower pace than in the first decade. The reason is that observations uncover new kinds and new populations of exoplanets -- and these observations rely on technological development that usually takes over a decade to mature. For example, in the early 2000s all but one exoplanet was discovered by the radial velocity technique. At that time, many groups around the world were working on wide-field transit surveys. But it was not until recently, a decade into the twenty-first century, that the transit technique is responsible for almost one-quarter of known exoplanets. The planet discovery techniques astrometry (as yet to find a planet) and direct imaging have not yet matured; when they do, they will uncover planets within a new parameter space of planet mass and orbital characteristics. In addition, people are working hard to improve the precision for existing planet discovery techniques to detect lower

  20. Subaru SEEDS Survey of Exoplanets and Disks

    NASA Technical Reports Server (NTRS)

    McElwain, Michael W.

    2012-01-01

    The Strategic Exploration of Exoplanets and Disks at Subaru (SEEDS) is the first strategic observing program (SSOPs) awarded by the National Astronomical Observatory of Japan (NAOJ). SEEDS targets a broad sample of stars that span a wide range of masses and ages to explore the formation and evolution of planetary systems. This survey has been awarded 120 nights over five years time to observe nearly 500 stars. Currently in the second year, SEEDS has already produced exciting new results for the protoplanetary disk AB Aur, transitional disk LkCa15, and nearby companion to GJ 758. We present the survey architecture, performance, recent results, and the projected sample. Finally, we will discuss planned upgrades to the high contrast instrumentation at the Subaru Telescope

  1. COMPLETENESS OF IMAGING SURVEYS FOR ECCENTRIC EXOPLANETS

    SciTech Connect

    Kane, Stephen R.

    2013-03-20

    The detection of exoplanets through direct imaging has produced numerous new positive identifications in recent years. The technique is biased toward planets at wide separations due to the difficulty in removing the stellar signature at small angular separations. Planets in eccentric orbits will thus move in and out of the detectable region around a star as a function of time. Here we use the known diversity of orbital eccentricities to determine the range of orbits that may lie beneath the detection threshold of current surveys. We quantify the percentage of the orbit that yields a detectable signature as a function of semimajor axis, eccentricity, and orbital inclination and estimate the fraction of planets which likely remain hidden by the flux of the host star.

  2. MASSIVE SATELLITES OF CLOSE-IN GAS GIANT EXOPLANETS

    SciTech Connect

    Cassidy, Timothy A.; Johnson, Robert E.; Mendez, Rolando; Arras, Phil; Skrutskie, Michael F. E-mail: rem5d@cms.mail.virginia.ed E-mail: rej@virginia.ed

    2009-10-20

    We study the orbits, tidal heating and mass loss from satellites around close-in gas giant exoplanets. The focus is on large satellites which are potentially observable by their transit signature. We argue that even Earth-size satellites around hot Jupiters can be immune to destruction by orbital decay; detection of such a massive satellite would strongly constrain theories of tidal dissipation in gas giants, in a manner complementary to orbital circularization. The star's gravity induces significant periodic eccentricity in the satellite's orbit. The resulting tidal heating rates, per unit mass, are far in excess of Io's and dominate radioactive heating out to planet orbital periods of months for reasonable satellite tidal Q. Inside planet orbital periods of about a week, tidal heating can completely melt the satellite. Lastly, we compute an upper limit to the satellite mass loss rate due to thermal evaporation from the surface, valid if the satellite's atmosphere is thin and vapor pressure is negligible. Using this upper limit, we find that although rocky satellites around hot Jupiters with orbital periods less than a few days can be significantly evaporated in their lifetimes, detectable satellites suffer negligible mass loss at longer orbital periods.

  3. Astrometric exoplanet surveys in practice: challenges, opportunities, and results

    NASA Astrophysics Data System (ADS)

    Sahlmann, Johannes

    2015-08-01

    Conversely to the transit photometry and radial velocity methods, the astrometric discovery of exoplanets is still limited by the sensitivity of available instruments. Furthermore, the signature of a planet (described by 7 free parameters) is orders of magnitude smaller than the standard motion of a star (5 free parameters), which has to be solved for first. This has important implications in the design and implementation of astrometric planet search surveys and the large parameter space to be explored calls for efficient fitting algorithms. I will present results of the so-far most precise astrometric planet search from the ground, targeting 20 very low-mass stars and brown dwarfs with an accuracy of 100 micro-arcseconds, which include the discovery of binaries with components in the planetary mass regime and several planet candidates with Neptune-to-Jupiter masses. The employed genetic and MCMC algorithms were shown to be efficient in constraining all astrometric parameters, which makes them important tools for the exploitation of the data currently collected by the Gaia satellite. Gaia is expected to astrometrically discover thousands of giant exoplanets and I will report on several ongoing projects in preparation of this unique harvest, including the expected yield of circumbinary planets.

  4. The Orbital Design of Alpha Centauri Exoplanet Satellite (ACESat)

    NASA Technical Reports Server (NTRS)

    Weston, Sasha; Belikov, Rus; Bendek, Eduardo

    2015-01-01

    Exoplanet candidates discovered by Kepler are too distant for biomarkers to be detected with foreseeable technology. Alpha Centauri has high separation from other stars and is of close proximity to Earth, which makes the binary star system 'low hanging fruit' for scientists. Alpha Centauri Exoplanet Satellite (ACESat) is a mission proposed to Small Explorer Program (SMEX) that will use a coronagraph to search for an orbiting planet around one of the stars of Alpha Centauri. The trajectory design for this mission is presented here where three different trajectories are considered: Low Earth Orbit (LEO), Geosynchronous Orbit (GEO) and a Heliocentric Orbit. Uninterrupted stare time to Alpha Centauri is desirable for meeting science requirements, or an orbit that provides 90% stare time to the science target. The instrument thermal stability also has stringent requirements for proper function, influencing trajectory design.

  5. Follow The Water: The Ultimate WFC3 Exoplanet Atmosphere Survey

    NASA Astrophysics Data System (ADS)

    Bean, Jacob

    2013-10-01

    Recent surveys have revealed an amazing, and yet unexplained, diversity of planets orbiting other stars. Studying the atmospheres of representative exoplanets is the key next step in leveraging these detections to further transform our understanding of planet formation and planetary physics. This is because a planet's atmosphere is a fossil record of its primordial origins and controls its size and appearance.We propose an intensive and comprehensive exoplanet atmosphere Large Treasury survey using the unrivaled capabilities of the WFC3 IR instrument to measure high-precision transmission, dayside emission, and phase-resolved emission spectra over a broad wavelength range for eight planetary Rosetta Stones. These data will yield unprecedented constraints on the abundances of water, elemental abundance ratios, thermal profiles, chemistries, presence of clouds and hazes, and dynamics of exoplanet atmospheres. Just detecting the atmospheres of these planets is not enough anymore. Revealing the fundamental properties of exoplanet atmospheres to investigate their nature and origins requires high-precision spectroscopy that is sensitive to spectral features from multiple chemical species and altitudes, and such data can only be obtained with an intensive HST program. A survey is mandatory to put the individual objects in a broader context, and to get at the underlying physics that results in a diverse array of emergent properties. This Treasury program will have no proprietary period in order to accelerate the progress of the field. This program is urgently needed to prepare for the future characterization of habitable exoplanets using JWST.

  6. Statistical Signatures of Panspermia in Exoplanet Surveys

    NASA Astrophysics Data System (ADS)

    Lin, Henry W.; Loeb, Abraham

    2015-09-01

    A fundamental astrobiological question is whether life can be transported between extrasolar systems. We propose a new strategy to answer this question based on the principle that life which arose via spreading will exhibit more clustering than life which arose spontaneously. We develop simple statistical models of panspermia to illustrate observable consequences of these excess correlations. Future searches for biosignatures in the atmospheres of exoplanets could test these predictions: a smoking gun signature of panspermia would be the detection of large regions in the Milky Way where life saturates its environment interspersed with voids where life is very uncommon. In a favorable scenario, detection of as few as ∼25 biologically active exoplanets could yield a 5σ detection of panspermia. Detectability of position-space correlations is possible unless the timescale for life to become observable once seeded is longer than the timescale for stars to redistribute in the Milky Way.

  7. The exoplanet microlensing survey by the proposed WFIRST Observatory

    NASA Astrophysics Data System (ADS)

    Barry, Richard; Kruk, Jeffery; Anderson, Jay; Beaulieu, Jean-Philippe; Bennett, David P.; Catanzarite, Joseph; Cheng, Ed; Gaudi, Scott; Gehrels, Neil; Kane, Stephen; Lunine, Jonathan; Sumi, Takahiro; Tanner, Angelle; Traub, Wesley

    2011-10-01

    The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010 listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the coming decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing, measure the expansion history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be selected through a guest observer program. A Science Definition Team has been established to assist NASA in the development of a Design Reference Mission that accomplishes this diverse array of science programs with a single observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet detection. The observatory, with science goals that are complimentary to the Kepler exoplanet transit mission, is designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the masses for most detected exoplanets down to 0.1 Earth masses.

  8. The Exoplanet Microlensing Survey by the Proposed WFIRST Observatory

    NASA Technical Reports Server (NTRS)

    Barry, Richard; Kruk, Jeffrey; Anderson, Jay; Beaulieu, Jean-Philippe; Bennett, David P.; Catanzarite, Joseph; Cheng, Ed; Gaudi, Scott; Gehrels, Neil; Kane, Stephen; Lunine, Jonathan; Sumi, Takahiro; Tanner, Angelle; Traub, Wesley

    2012-01-01

    The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010 listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the . coming decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing. measure the expansion history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be selected through a guest observer program. A Science Definition Team has been established to assist NASA in the development of a Design Reference Mission that accomplishes this diverse array of science programs with a single observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet detection. The observatory. with science goals that are complimentary to the Kepler exoplanet transit mission, is designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the masses for most detected exoplanets down to 0.1 Earth masses.

  9. Scheduling the EChO survey with known exoplanets

    NASA Astrophysics Data System (ADS)

    Morales, J. C.; Beaulieu, J.-P.; Coudé du Foresto, V.; Ollivier, M.; Castello, I. Ortega; Clédassou, R.; Jaubert, J.; Van-Troostenberghe, P.; Varley, R.; Waldmann, I. P.; Pascale, E.; Tessenyi, M.

    2015-12-01

    The Exoplanet Characterization Observatory ( EChO) is a concept of a dedicated space telescope optimized for low-resolution transit and occultation spectroscopy to study the exoplanet diversity through the composition of their atmospheres. The scope of this paper is to answer the following question: Can we schedule a nominal EChO mission, with targets known today (in mid 2013), given the science requirements, realistic performances and operational constraints? We examine this issue from the point of view of duration of the mission and the scheduling restrictions with a sample of exoplanet systems known nowadays. We choose different scheduling algorithms taking into account the science and operational constraints and we verified that it is fairly straightforward to schedule a mission scenario over the lifetime of EChO compliant with the science requirements. We identified agility as a critical constraint that reduces significantly the efficiency of the survey. We conclude that even with known targets today the EChO science objectives can be reached in the 4.5 years duration of the mission. We also show that it is possible to use gaps between exoplanet observations, to fit the required calibration observations, data downlinks and station keeping operations or even to observe more exoplanet targets to be discovered in the coming years.

  10. ACCESS: The Arizona-CfA-Catolica Exoplanet Spectroscopy Survey

    NASA Astrophysics Data System (ADS)

    Lopez-Morales, Mercedes; Apai, Daniel; Jordan, Andres; Espinoza, Nestor; Rackham, Benjamin; Fraine, Jonathan D.; Rodler, Florian; Lewis, Nikole; Fortney, Jonathan J.; Osip, David J.

    2014-06-01

    The Arizona-CfA-Catolica Exoplanet Spectroscopy Survey (ACCESS) is an international, multi-institutional consortium with members from the Harvard-Smithsonian CfA, the University of Arizona, Pontificia Universidad Catolica in Chile, MIT and UC Santa Cruz and the Carnegie Institution. ACCESS' goal is to observe about two dozen planets covering a wide range of mass, radius, atmospheric temperatures and energy irradiation levels, with two main scientific goals: 1) to obtain, for the first time, a uniform sample of visible transmission spectra of exoplanets, allowing the study of their atmospheric characteristics as a statistically significant sample, and 2) to mature the technique of ground-based observations of exoplanetary atmospheres for future observations of small planets. Here we describe ACCESS and its first science results.

  11. Faint detection of exoplanets in microlensing surveys

    SciTech Connect

    Brown, Robert A.

    2014-06-20

    We propose a new approach to discovering faint microlensing signals below traditional thresholds, and for estimating the binary-lens mass ratio and the apparent separation from such signals. The events found will be helpful in accurately estimating the true distribution of planetary semimajor axes, which is an important goal of space microlensing surveys.

  12. Design Considerations: Falcon M Dwarf Habitable Exoplanet Survey

    NASA Astrophysics Data System (ADS)

    Polsgrove, Daniel; Novotny, Steven; Della-Rose, Devin J.; Chun, Francis; Tippets, Roger; O'Shea, Patrick; Miller, Matthew

    2016-01-01

    The Falcon Telescope Network (FTN) is an assemblage of twelve automated 20-inch telescopes positioned around the globe, controlled from the Cadet Space Operations Center (CSOC) at the US Air Force Academy (USAFA) in Colorado Springs, Colorado. Five of the 12 sites are currently installed, with full operational capability expected by the end of 2016. Though optimized for studying near-earth objects to accomplish its primary mission of Space Situational Awareness (SSA), the Falcon telescopes are in many ways similar to those used by ongoing and planned exoplanet transit surveys targeting individual M dwarf stars (e.g., MEarth, APACHE, SPECULOOS). The network's worldwide geographic distribution provides additional potential advantages. We have performed analytical and empirical studies exploring the viability of employing the FTN for a future survey of nearby late-type M dwarfs tailored to detect transits of 1-2REarth exoplanets in habitable-zone orbits . We present empirical results on photometric precision derived from data collected with multiple Falcon telescopes on a set of nearby (< 25 pc) M dwarfs using infrared filters and a range of exposure times, as well as sample light curves created from images gathered during known transits of varying transit depths. An investigation of survey design parameters is also described, including an analysis of site-specific weather data, anticipated telescope time allocation and the percentage of nearby M dwarfs with sufficient check stars within the Falcons' 11' x 11' field-of-view required to perform effective differential photometry. The results of this ongoing effort will inform the likelihood of discovering one (or more) habitable-zone exoplanets given current occurrence rate estimates over a nominal five-year campaign, and will dictate specific survey design features in preparation for initiating project execution when the FTN begins full-scale automated operations.

  13. CELESTA: A Catalog of Earth-Like Exoplanet Survey Targets

    NASA Astrophysics Data System (ADS)

    Chandler, Colin Orion; McDonald, Iain; Kane, Stephen R.

    2016-01-01

    Locating planets in circumstellar Habitable Zones is a priority for many exoplanet surveys. Space-based and ground-based surveys alike require robust toolsets to aid in target selection and mission planning. We present the Catalog of Earth-Like Exoplanet Survey Targets (CELESTA), a database of Habitable Zones around 36,000 nearby stars. We calculated stellar parameters, including effective temperatures, masses, and radii, and we quantified the orbital distances and periods corresponding to the circumstellar Habitable Zones. We gauged the accuracy of our predictions by contrasting CELESTA's computed parameters to observational data. We ascertain a potential return on investment by computing the number of Habitable Zones probed for a given survey duration. A versatile framework for extending the functionality of CELESTA into the future enables ongoing comparisons to new observations, and recalculations when updates to Habitable Zone models, stellar temperatures, or parallax data become available. We expect to upgrade and expand CELESTA using data from the Gaia mission as the data becomes available.

  14. A 100-Night Exoplanet Imaging Survey at the LBT

    NASA Astrophysics Data System (ADS)

    Zimmerman, Neil; Skemer, Andrew; Apai, Daniel; Bailey, Vanessa; Biller, Beth; Bonnefoy, Mickael; Brandner, Wolfgang; Buenzli, Esther; Close, Laird; Crepp, Justin; Defrere, Denis; Desidera, Silvano; Eisner, Josh; Esposito, Simone; Fortney, Jonathan; Henning, Thomas; Hinz, Phil; Hofmann, Karl-Heinz; Leisenring, Jarron; Males, Jared; Millan-Gabet, Rafael; Morzinski, Katie; Pascucci, Ilaria; Patience, Jenny; Rieke, George; Schertl, Dieter; Schlieder, Joshua; Skrutskie, Michael; Su, Kate; Woodward, Chick; Weigelt, Gerd

    2013-07-01

    In February 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its 100-night campaign from the Large Binocular Telescope atop Mount Graham in Arizona. LEECH neatly complements other high-contrast planet imaging efforts by observing stars in L' band (3.8 microns) as opposed to the shorter wavelength near-infrared bands (1-2.3 microns). This part of the spectrum offers deeper mass sensitivity for intermediate age (several hundred Myr-old) systems, since their Jovian-mass planets radiate predominantly in the mid-infrared. We present the science goals for LEECH and a preliminary contrast curve from some early data.

  15. LEECH: A 100 Night Exoplanet Imaging Survey at the LBT

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew; Apai, Daniel; Bailey, Vanessa; Biller, Beth; Bonnefoy, Mickael; Brandner, Wolfgang; Buenzli, Esther; Close, Laird; Crepp, Justin; Defrere, Denis; Desidera, Silvano; Eisner, Josh; Esposito, Simone; Fortney, Jonathan; Henning, Thomas; Hinz, Phil; Hofmann, Karl-Heinz; Leisenring, Jarron; Males, Jared; Millan-Gabet, Rafael; Morzinski, Katie; Oza, Apurva; Pascucci, Ilaria; Patience, Jenny; Rieke, George; Schertl, Dieter; Schlieder, Joshua; Skrutskie, Mike; Su, Kate; Weigelt, Gerd; Woodward, Charles E.; Zimmerman, Neil

    2014-01-01

    In February 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its 100-night campaign from the Large Binocular Telescope atop Mount Graham in Arizona. LEECH neatly complements other high-contrast planet imaging efforts by observing stars in L' band (3.8 microns) as opposed to the shorter wavelength near-infrared bands (1-2.3 microns). This part of the spectrum offers deeper mass sensitivity for intermediate age (several hundred Myr-old) systems, since their Jovian-mass planets radiate predominantly in the mid-infrared. In this proceedings, we present the science goals for LEECH and a preliminary contrast curve from some early data.

  16. Exploring the diversity of exoplanet atmospheres from the ground with the ACCESS Survey

    NASA Astrophysics Data System (ADS)

    Espinoza, Nestor; Jordan, Andres; Apai, Daniel; Lopez-Morales, Mercedes; Rackham, Benjamin; Lewis, Nikole K.; Fraine, Jonathan; Diaz-Pérez, Ryan; Rodler, Florian; Wells, Robert; Osip, David

    2015-12-01

    One of the most exciting possibilities enabled by transiting exoplanets is to measure their atmospheric properties through the technique of transmission spectroscopy: the variation of the transit depth as a function of wavelength due to starlight interacting with the atmosphere of the exoplanet. Motivated by the need of optical transmission spectra of exoplanets, we recently launched the Arizona-CfA-Católica Exoplanet Spectroscopy Survey (ACCESS), which aims at studying the atmospheres of ~20 exoplanets ranging from super-Earths to hot-Jupiters in the entire optical atmospheric window using ground-based facilities from both northern and southern hemispheres. In this talk, I will present the survey and its first results using Magellan/IMACS data, focusing on the lessons learned and future prospects of the survey.

  17. The Gemini Planet Imager Exoplanet Survey (GPIES) Campaign Initial Results

    NASA Astrophysics Data System (ADS)

    Patience, Jennifer; Macintosh, Bruce; Graham, James R.; Barman, Travis; De Rosa, Robert; Konopacky, Quinn; Marley, Mark; Marois, Christian; Nielsen, Eric Ludwig; Pueyo, Laurent; Rajan, Abhijith; Rameau, Julien; Saumon, Didier; Wang, Jason

    2015-12-01

    The Gemini Planet Imager (GPI) is a next-generation coronagraphic integral field unit with the sensitivity and resolution to detect planetary companions with separations of 0”.2 to 1”.0 around a large set of stars. An 890-hour GPI survey of 600 young, nearby stars commenced in late-2014, and approximately 100 stars have been observed thus far. The central aims of the program are: (1) the discovery of a population of giant planets with orbital radii of 5-50 AU comparable to Solar System gas giant orbits, (2) the characterization of the atmospheric properties of young planetary companions, and (3) the exploration of planet-disk interactions. Initial results from GPI exoplanet observations include the discovery of a new planetary companion to a young F-star; the planet spectrum shows a strong signature of methane absorption, indicating a cooler temperature than previously imaged young planets. An overview of the survey scope, current detection limits, and initial results will be presented.

  18. HST hot-Jupiter transmission spectral survey: from clear to cloudy exoplanets

    NASA Astrophysics Data System (ADS)

    Sing, David K.; Fortney, Jonathan J.; Nikolov, Nikolay; Wakeford, Hannah; Kataria, Tiffany; Evans, Tom M.; Aigrain, Suzanne; Ballester, Gilda E.; Burrows, Adam Seth; Deming, Drake; Desert, Jean-Michel; Gibson, Neale; Henry, Gregory W.; Huitson, Catherine; Knutson, Heather; Lecavelier des Etangs, Alain; Pont, Frederic; Showman, Adam P.; Vidal-Madjar, Alfred; Williamson, Michael W.; Wilson, Paul A.

    2016-01-01

    The large number of transiting exoplanets has prompted a new era of atmospheric studies, with comparative exoplanetology now possible. Here we present the comprehensive results from a Large program with the Hubble Space Telecope, which has recently obtained optical and near-IR transmission spectra for eight hot-Jupiter exoplanets in conjunction with warm Spitzer transit photometry. The spectra show a wide range of spectral behavior, which indicates diverse cloud and haze properties in their atmospheres. We will discuss the overall findings from the survey, comment on common trends observed in the exoplanet spectra, and remark on their theoretical implications.

  19. 20 Years of Exoplanets: From Surveys Towards Characterization

    NASA Astrophysics Data System (ADS)

    Rauscher, Emily

    2015-11-01

    Twenty years ago the discovery of the first planet outside of our solar system ushered in a new subfield of exoplanet study. In the years since, the number of known planets has skyrocketed into the thousands, due to an ever-expanding pool of detection methods, projects and missions, and substantial improvements in technique. These remarkable discoveries have revealed an exoplanet population that is highly diverse, in many cases breaking expectations set by the single example of our own solar system, and providing us with the opportunity to study planets under a wide range of physical conditions. Equally as exciting as the increasing number of known exoplanets, within the last dozen years we have seen the move from exoplanet discovery to characterization we are currently able to measure atmospheric properties of many of the brightest exoplanets. We are now in an era where we can study the diversity of atmospheric conditions for dozens of exoplanets, including measurements of their temperatures, albedos, compositions, and in some cases even more detailed information about their two- or three-dimensional atmospheric structures and circulation patterns. In this talk I will review the current state of theory and observations, the lessons we have learned, and the questions and techniques that direct future work.

  20. Tidal synchronization of close-in satellites and exoplanets: II. Spin dynamics and extension to Mercury and exoplanet host stars

    NASA Astrophysics Data System (ADS)

    Ferraz-Mello, Sylvio

    2015-08-01

    This paper deals with the application of the creep tide theory (Ferraz-Mello, Celest Mech Dyn Astron 116:109, 2013a) to the rotation of close-in satellites, Mercury, close-in exoplanets, and their host stars. The solutions show different behaviors with two extreme cases: close-in giant gaseous planets with fast relaxation (low viscosity) and satellites and Earth-like planets with slow relaxation (high viscosity). The rotation of close-in gaseous planets follows the classical Darwinian pattern: it is tidally driven toward a stationary solution that is synchronized with the orbital motion when the orbit is circular, but if the orbit is elliptical, it has a frequency larger than the orbital mean motion. The rotation of rocky bodies, however, may be driven to several attractors whose frequencies are times the mean motion. The number of attractors increases with the viscosity of the body and with the orbital eccentricity. The final stationary state depends on the initial conditions. The classical example is Mercury, whose rotational period is 2/3 of the orbital period (3/2 attractor). The planet behaves as a molten body with a relaxation that allowed it to cross the 2/1 attractor without being trapped but not to escape being trapped in the 3/2 one. In that case, the relaxation is estimated to lie in the interval (equivalent to a quality factor roughly constrained to the interval ). The stars have a relaxation similar to the hot Jupiters, and their rotation is also driven to the only stationary solution existing in these cases. However, solar-type stars may lose angular momentum due to stellar wind, braking the rotation and displacing the attractor toward larger periods. Old, active host stars with big close-in companions generally have rotational periods larger than the orbital periods of the companions. The paper also includes a study of energy dissipation and the evolution of orbital eccentricity.

  1. The LEECH Exoplanet Imaging Survey: Characterization of the Coldest Directly Imaged Exoplanet, GJ 504 b, and Evidence for Superstellar Metallicity

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Morley, Caroline V.; Zimmerman, Neil T.; Skrutskie, Michael F.; Leisenring, Jarron; Buenzli, Esther; Bonnefoy, Mickael; Bailey, Vanessa; Hinz, Philip; Defrére, Denis; Esposito, Simone; Apai, Dániel; Biller, Beth; Brandner, Wolfgang; Close, Laird; Crepp, Justin R.; De Rosa, Robert J.; Desidera, Silvano; Eisner, Josh; Fortney, Jonathan; Freedman, Richard; Henning, Thomas; Hofmann, Karl-Heinz; Kopytova, Taisiya; Lupu, Roxana; Maire, Anne-Lise; Males, Jared R.; Marley, Mark; Morzinski, Katie; Oza, Apurva; Patience, Jenny; Rajan, Abhijith; Rieke, George; Schertl, Dieter; Schlieder, Joshua; Stone, Jordan; Su, Kate; Vaz, Amali; Visscher, Channon; Ward-Duong, Kimberly; Weigelt, Gerd; Woodward, Charles E.

    2016-02-01

    As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly imaged exoplanets were all L type. Recently, Kuzuhara et al. announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ˜500 K temperature that bridges the gap between the first directly imaged planets (˜1000 K) and our own solar system's Jupiter (˜130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 μm), spanning the red end of the broad methane fundamental absorption feature (3.3 μm) as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. By comparing our new photometry and literature photometry with a grid of custom model atmospheres, we were able to fit GJ 504 b's unusual spectral energy distribution for the first time. We find that GJ 504 b is well fit by models with the following parameters: Teff = 544 ± 10 K, g < 600 m s-2, [M/H] = 0.60 ± 0.12, cloud opacity parameter of fsed = 2-5, R = 0.96 ± 0.07 RJup, and log(L) = -6.13 ± 0.03 L⊙, implying a hot start mass of 3-30 Mjup for a conservative age range of 0.1-6.5 Gyr. Of particular interest, our model fits suggest that GJ 504 b has a superstellar metallicity. Since planet formation can create objects with nonstellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrophisica, Italy; LBT

  2. ARIEL: Atmospheric Remote-Sensing Infrared Exoplanet Large-survey

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna

    2015-11-01

    More than 1,000 extrasolar systems have been discovered, hosting nearly 2,000 exoplanets. Ongoing and planned ESA and NASA missions from space such as GAIA, Cheops, PLATO, K2 and TESS will increase the number of known systems to tens of thousands.Of all these exoplanets we know very little, i.e. their orbital data and, for some of these, their physical parameters such as their size and mass. In the past decade, pioneering results have been obtained using transit spectroscopy with Hubble, Spitzer and ground-based facilities, enabling the detection of a few of the most abundant ionic, atomic and molecular species and to constrain the planet’s thermal structure. Future general purpose facilities with large collecting areas will allow the acquisition of better exoplanet spectra, compared to the currently available, especially from fainter targets. A few tens of planets will be observed with JWST and E-ELT in great detail.A breakthrough in our understanding of planet formation and evolution mechanisms will only happen through the observation of the planetary bulk and atmospheric composition of a statistically large sample of planets. This requires conducting spectroscopic observations covering simultaneously a broad spectral region from the visible to the mid-IR. It also requires a dedicated space mission with the necessary photometric stability to perform these challenging measurements and sufficient agility to observe multiple times ~500 exoplanets over mission life-time.The ESA-M4 mission candidate ARIEL is designed to accomplish this goal and will provide a complete, statistically significant sample of gas-giants, Neptunes and super-Earths with temperatures hotter than 600K, as these types of planets will allow direct observation of their bulk properties, enabling us to constrain models of planet formation and evolution.The ARIEL consortium currently includes academic institutes and industry from eleven countries in Europe; the consortium is open and invites new

  3. Survey: National Environmental Satellite Service

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The national Environmental Satellite Service (NESS) receives data at periodic intervals from satellites of the Synchronous Meteorological Satellite/Geostationary Operational Environmental Satellite series and from the Improved TIROS (Television Infrared Observational Satellite) Operational Satellite. Within the conterminous United States, direct readout and processed products are distributed to users over facsimile networks from a central processing and data distribution facility. In addition, the NESS Satellite Field Stations analyze, interpret, and distribute processed geostationary satellite products to regional weather service activities.

  4. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. I. Methodology

    SciTech Connect

    Clanton, Christian; Gaudi, B. Scott

    2014-08-20

    Motivated by the order of magnitude difference in the frequency of giant planets orbiting M dwarfs inferred by microlensing and radial velocity (RV) surveys, we present a method for comparing the statistical constraints on exoplanet demographics inferred from these methods. We first derive the mapping from the observable parameters of a microlensing-detected planet to those of an analogous planet orbiting an RV-monitored star. Using this mapping, we predict the distribution of RV observables for the planet population inferred from microlensing surveys, taking care to adopt reasonable priors for, and properly marginalize over, the unknown physical parameters of microlensing-detected systems. Finally, we use simple estimates of the detection limits for a fiducial RV survey to predict the number and properties of analogs of the microlensing planet population such an RV survey should detect. We find that RV and microlensing surveys have some overlap, specifically for super-Jupiter mass planets (m{sub p} ≳ 1 M {sub Jup}) with periods between ∼3-10 yr. However, the steeply falling planetary mass function inferred from microlensing implies that, in this region of overlap, RV surveys should infer a much smaller frequency than the overall giant planet frequency (m{sub p} ≳ 0.1 M {sub Jup}) inferred by microlensing. Our analysis demonstrates that it is possible to statistically compare and synthesize data sets from multiple exoplanet detection techniques in order to infer exoplanet demographics over wider regions of parameter space than are accessible to individual methods. In a companion paper, we apply our methodology to several representative microlensing and RV surveys to derive the frequency of planets around M dwarfs with orbits of ≲ 30 yr.

  5. Exoplanets -New Results from Space and Ground-based Surveys

    NASA Astrophysics Data System (ADS)

    Udry, Stephane

    The exploration of the outer solar system and in particular of the giant planets and their environments is an on-going process with the Cassini spacecraft currently around Saturn, the Juno mission to Jupiter preparing to depart and two large future space missions planned to launch in the 2020-2025 time frame for the Jupiter system and its satellites (Europa and Ganymede) on the one hand, and the Saturnian system and Titan on the other hand [1,2]. Titan, Saturn's largest satellite, is the only other object in our Solar system to possess an extensive nitrogen atmosphere, host to an active organic chemistry, based on the interaction of N2 with methane (CH4). Following the Voyager flyby in 1980, Titan has been intensely studied from the ground-based large telescopes (such as the Keck or the VLT) and by artificial satellites (such as the Infrared Space Observatory and the Hubble Space Telescope) for the past three decades. Prior to Cassini-Huygens, Titan's atmospheric composition was thus known to us from the Voyager missions and also through the explorations by the ISO. Our perception of Titan had thus greatly been enhanced accordingly, but many questions remained as to the nature of the haze surrounding the satellite and the composition of the surface. The recent revelations by the Cassini-Huygens mission have managed to surprise us with many discoveries [3-8] and have yet to reveal more of the interesting aspects of the satellite. The Cassini-Huygens mission to the Saturnian system has been an extraordinary success for the planetary community since the Saturn-Orbit-Insertion (SOI) in July 2004 and again the very successful probe descent and landing of Huygens on January 14, 2005. One of its main targets was Titan. Titan was revealed to be a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on

  6. IMAGES: An IMage Archive Generated for Exoplanet Surveys

    NASA Astrophysics Data System (ADS)

    Tanner, A.

    2014-03-01

    Over the past few years the advent of adaptive optics and central star suppression has resulted in multiple low-mass companion surveys of both main sequence and young star systems. The goal of these surveys is to directly detect sub-stellar companions such as brown dwarfs (<75 MJ), very low mass brown dwarfs (20-10 MJ) and massive giant planets (<13 MJ) at separations of >10 AU from their host stars. To date, direct imaging studies have produced a sample of directly imaged, very low mass objects (3-22 MJ, Schneider 2013). This small sample of very low-mass companions results from observations of over one thousand mature and young stars. Since many AO observing programs are quick to publish interesting common proper motion companions but slow to publish the results of the entire survey, there is a surplus of unpublished images that can be utilized for both future high contrast imaging programs and, when combined into a ~3000 star survey, provide further constraints on the companion fraction as a function of age, spectral type, and planet formation environment. Therefore, it is the goal of the IMAGES program to complete a high contrast imaging archive. Our database will help scientists use their telescope time more efficiently and would increase the discovery rate. This archive will also serve as a testbed for the development of a user-friendly, user contributor archive in which astronomers can upload new archival high contrast images in addition to downloading.

  7. ARIEL - The Atmospheric Remote-sensing Infrared Exoplanet Large-survey

    NASA Astrophysics Data System (ADS)

    Eccleston, P.; Tinetti, G.

    2015-10-01

    More than 1,000 extrasolar systems have been discovered, hosting nearly 2,000 exoplanets. Ongoing and planned ESA and NASA missions from space such as GAIA, Cheops, PLATO, K2 and TESS, plus ground based surveys, will increase the number of known systems to tens of thousands. Of all these exoplanets we know very little; i.e. their orbital data and, for some of these, their physical parameters such as their size and mass. In the past decade, pioneering results have been obtained using transit spectroscopy with Hubble, Spitzer and ground-based facilities, enabling the detection of a few of the most abundant ionic, atomic and molecular species and to constrain the planet's thermal structure. Future general purpose facilities with large collecting areas will allow the acquisition of better exoplanet spectra, compared to the currently available, especially from fainter targets. A few tens of planets will be observed with JWST and E-ELT in great detail. A breakthrough in our understanding of planet formation and evolution mechanisms will only happen through the observation of the planetary bulk and atmospheric composition of a statistically large sample of planets. This requires conducting spectroscopic observations covering simultaneously a broad spectral region from the visible to the mid-IR. It also requires a dedicated space mission with the necessary photometric stability to perform these challenging measurements and sufficient agility to observe multiple times ~500 exoplanets over 3.5 years. The ESA Cosmic Vision M4 mission candidate ARIEL is designed to accomplish this goal and will provide a complete, statistically significant sample of gas-giants, Neptunes and super-Earths with temperatures hotter than 600K, as these types of planets will allow direct observation of their bulk properties, enabling us to constrain models of planet formation and evolution. The ARIEL consortium currently includes academic institutes and industry from eleven countries in Europe; the

  8. Teaching practical leadership in MIT satellite development class: CASTOR and Exoplanet projects

    NASA Astrophysics Data System (ADS)

    Babuscia, Alessandra; Craig, Jennifer L.; Connor, Jane A.

    2012-08-01

    For more than a decade, the Aeronautics and Astronautics Department at MIT has offered undergraduate students the opportunity of conceiving, developing, implementing and operating new spacecraft's missions. During a three term class, junior and senior students experience all the challenges of a true engineering team project: design, analysis, testing, technical documentation development, team management, and leadership. Leadership instruction is an important part of the curricula; through the development of leadership skills, students learn to manage themselves and each other in a more effective way, increasing the overall productivity of the team. Also, a strong leadership education is a key factor in improving the abilities of future engineers to be effective team members and leaders in the companies and agencies in which they will work. However, too often leadership instruction is presented in an abstract way, which does not provide students with suggestions for immediate applicability. As a consequence, students underestimate the potential that leadership education can have on the development of their projects. To counteract that effect, a new approach for teaching "practical" leadership has been developed. This approach is composed of a set of activities developed to improve students' leadership skills in the context of a project. Specifically, this approach has been implemented in the MIT satellite development class. In that class, students experienced the challenges of building two satellites: CASTOR and Exoplanet. These two missions are real space projects which will be launched in the next two years, and which involve cooperation with different entities (MIT, NASA, and Draper). Hence, the MIT faculty was interested in developing leadership activities to improve the productivity of the teams in a short time. In fact, one of the key aspects of the approach proposed is that it can be quickly implemented in a single semester, requiring no more than 4 h of

  9. Subaru Direct Imaging Survey of Wide-Orbit Exoplanets and Solar-System-Scale Disks

    NASA Astrophysics Data System (ADS)

    Tamura, Motohide

    2015-08-01

    SEEDS (Strategic Explorations of Exoplanets and Disks with Subaru) is the first Subaru Strategic Program, whose aim is to conduct a direct imaging survey for giant planets as well as protoplanetary/debris disks at a few to a few tens of AU region around 500 nearby solar-type or more massive young stars devoting 120 Subaru nights for 5 years from 2009. The targets are composed of five categories spanning the ages of ~1 Myr to ~1 Gyr. Some RV-planet targets with older ages are also observed. We describe this survey and present its main results. The topics include (1) statistic of wide-orbit planets, (2) detection and characterization of one of the most lowest-mass planet via direct imaging. (3) detection of a super-Jupiter around the most massive star ever imaged, (4) detection of companions around retrograde exoplanet, (5) the discovery of unprecedentedly detailed structures of more than a dozen of protoplanetary disks and some debris disks. The detected structures such as wide gaps and spirals arms of a Solar-system scale could be signpost of planet.

  10. BASS-Ultracool : A Survey for Isolated Analogs of Methane Exoplanets

    NASA Astrophysics Data System (ADS)

    Gagné, Jonathan; Faherty, Jacqueline K.; Malo, Lison; Filippazzo, Joseph C.; Burgasser, Adam J.; Artigau, Etienne; Lafrenière, David; Doyon, Rene; Bowsher, Emily; Nicholls, Christine P.

    2015-12-01

    I will present BASS-Ultracool, a new survey to identify isolated cold, late L and T-type members of young moving groups. These objects have masses below 10 MJup and physical properties similar to those of exoplanets identified with the direct-imaging method. The discovery of such isolated planetary-mass objects will allow us to characterize their atmospheres with unprecedented signal-to-noise and spectroscopic resolution due to the absence of a host star. They will serve as benchmarks to understand cold exoplanets such as the recently discovered 51 Eri b.I will also present how the prototype version of the BASS-Ultracool survey has already identified the first isolated T-type member of a nearby moving group SDSS J1110+0116, which is a young 10-12 MJup T5.5 member of the ~150 Myr-old AB Doradus moving group. This object is an isolated and slightly cooler version of the previously identified T3.5 AB Doradus member GU Psc b.

  11. EXOPLANETS FROM THE ARCTIC: THE FIRST WIDE-FIELD SURVEY AT 80 Degree-Sign N

    SciTech Connect

    Law, Nicholas M.; Sivanandam, Suresh; Carlberg, Raymond; Salbi, Pegah; Ngan, Wai-Hin Wayne; Kerzendorf, Wolfgang; Ahmadi, Aida; Steinbring, Eric; Murowinski, Richard

    2013-03-15

    Located within 10 Degree-Sign of the North Pole, northern Ellesmere Island offers continuous darkness in the winter months. This capability can greatly enhance the detection efficiency of planetary transit surveys and other time domain astronomy programs. We deployed two wide-field cameras at 80 Degree-Sign N, near Eureka, Nunavut, for a 152 hr observing campaign in 2012 February. The 16 megapixel camera systems were based on commercial f/1.2 lenses with 70 mm and 42 mm apertures, and they continuously imaged 504 and 1295 deg{sup 2}, respectively. In total, the cameras took over 44,000 images and produced better than 1% precision light curves for approximately 10,000 stars. We describe a new high-speed astrometric and photometric data reduction pipeline designed for the systems, test several methods for the precision flat fielding of images from very-wide-angle cameras, and evaluate the cameras' image qualities. We achieved a scintillation-limited photometric precision of 1%-2% in each 10 s exposure. Binning the short exposures into 10 minute chunks provided a photometric stability of 2-3 mmag, sufficient for the detection of transiting exoplanets around the bright stars targeted by our survey. We estimate that the cameras, when operated over the full Arctic winter, will be capable of discovering several transiting exoplanets around bright (m{sub V} < 9.5) stars.

  12. A Large Hubble Space Telescope Survey of Low-Mass Exoplanets

    NASA Astrophysics Data System (ADS)

    Benneke, Björn; Crossfield, Ian; Knutson, Heather; Lothringer, Joshua; Dragomir, Diana; Fortney, Jonathan J.; Howard, Andrew; McCullough, Peter R.; Kempton, Eliza; Morley, Caroline

    2016-06-01

    The discovery of short-period planets with masses and radii between Earth and Neptune was one of the biggest surprises in the brief history of exoplanet science. From the Kepler mission, we now know that these “super-Earths” or "sub-Neptunes" orbit at least 40% of stars, likely representing the most common outcome of planet formation. Despite this ubiquity, we know little about their typical compositions and formation histories. Spectroscopic transit observations combined with powerful atmospheric retrieval tools can shed new light on these mysterious worlds. In this talk, we will present the main results from our 124-orbit Hubble Space Telescope survey to reveal the chemical diversity and formation histories of super-Earths. This unprecedented HST survey provides the first comprehensive look at this intriguing new class of planets ranging from 1 Neptune mass and temperatures close to 2000K to a 1 Earth mass planet near the habitable zone of its host star.

  13. RR Lyrae Stars in the GCVS Observed by the Qatar Exoplanet Survey

    NASA Astrophysics Data System (ADS)

    Bramich, D. M.; Alsubai, K. A.; Arellano Ferro, A.; Parley, N. R.; Collier Cameron, A.; Horne, K.; Pollacco, D.; West, R. G.

    2014-05-01

    We used the light curve archive of the Qatar Exoplanet Survey to investigate the RR Lyrae variable stars listed in the GCVS. Of 588 variables studied, we reclassified 14 as eclipsing binaries, one as an RS CVn type variable, one as an irregular variable, four as classical Cepheids, and one as a type II Cepheid, while also improving their periods. We also report new RR Lyrae sub-type classifications for 65 variables and improve on the GCVS period estimates for 135 RR Lyrae variables. There are seven double-mode RR Lyrae stars in the sample for which we measured their fundamental and first overtone periods. Finally, we detected the Blazhko effect in 38 of the RR Lyrae stars for the first time and we successfully measured the Blazhko period for 26 of them.

  14. Use of APT satellite infrared data in oceanographic survey operations

    NASA Technical Reports Server (NTRS)

    Laviolette, P. E.; Stuart, L., Jr.; Vermillion, C.

    1975-01-01

    Experiments are described which were conducted to explore and develop the application of satellite infrared data to oceanographic post survey data analysis. The use of satellite infrared and visible radiation data in oceanographic surveys is examined.

  15. High contrast imaging at the LBT: the LEECH exoplanet imaging survey

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Hinz, Philip; Esposito, Simone; Skrutskie, Michael F.; Defrère, Denis; Bailey, Vanessa; Leisenring, Jarron; Apai, Daniel; Biller, Beth; Bonnefoy, Mickaël.; Brandner, Wolfgang; Buenzli, Esther; Close, Laird; Crepp, Justin; De Rosa, Robert J.; Desidera, Silvano; Eisner, Josh; Fortney, Jonathan; Henning, Thomas; Hofmann, Karl-Heinz; Kopytova, Taisiya; Maire, Anne-Lise; Males, Jared R.; Millan-Gabet, Rafael; Morzinski, Katie; Oza, Apurva; Patience, Jenny; Rajan, Abhijith; Rieke, George; Schertl, Dieter; Schlieder, Joshua; Su, Kate; Vaz, Amali; Ward-Duong, Kimberly; Weigelt, Gerd; Woodward, Charles E.; Zimmerman, Neil

    2014-07-01

    In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its ~130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reduce the telescope's overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L' (3.8 μm), as opposed to the shorter wavelength near-infrared bands (1-2.4 μm) of other surveys. This portion of the spectrum offers deep mass sensitivity, especially around nearby adolescent (~0.1-1 Gyr) stars. LEECH's contrast is competitive with other extreme adaptive optics systems, while providing an alternative survey strategy. Additionally, LEECH is characterizing known exoplanetary systems with observations from 3-5μm in preparation for JWST.

  16. The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system

    NASA Astrophysics Data System (ADS)

    Maire, A.-L.; Skemer, A. J.; Hinz, P. M.; Desidera, S.; Esposito, S.; Gratton, R.; Marzari, F.; Skrutskie, M. F.; Biller, B. A.; Defrère, D.; Bailey, V. P.; Leisenring, J. M.; Apai, D.; Bonnefoy, M.; Brandner, W.; Buenzli, E.; Claudi, R. U.; Close, L. M.; Crepp, J. R.; De Rosa, R. J.; Eisner, J. A.; Fortney, J. J.; Henning, T.; Hofmann, K.-H.; Kopytova, T. G.; Males, J. R.; Mesa, D.; Morzinski, K. M.; Oza, A.; Patience, J.; Pinna, E.; Rajan, A.; Schertl, D.; Schlieder, J. E.; Su, K. Y. L.; Vaz, A.; Ward-Duong, K.; Weigelt, G.; Woodward, C. E.

    2015-04-01

    Context. Astrometric monitoring of directly imaged exoplanets allows the study of their orbital parameters and system architectures. Because most directly imaged planets have long orbital periods (>20 AU), accurate astrometry is challenging when based on data acquired on timescales of a few years and usually with different instruments. The LMIRCam camera on the Large Binocular Telescope is being used for the LBT Exozodi Exoplanet Common Hunt (LEECH) survey to search for and characterize young and adolescent exoplanets in L' band (3.8 μm), including their system architectures. Aims: We first aim to provide a good astrometric calibration of LMIRCam. Then, we derive new astrometry, test the predictions of the orbital model of 8:4:2:1 mean motion resonance proposed for the system, and perform new orbital fitting of the HR 8799 bcde planets. We also present deep limits on a putative fifth planet inside the known planets. Methods: We use observations of HR 8799 and the Θ1 Ori C field obtained during the same run in October 2013. Results: We first characterize the distortion of LMIRCam. We determine a platescale and a true north orientation for the images of 10.707 ± 0.012 mas/pix and -0.430 ± 0.076°, respectively. The errors on the platescale and true north orientation translate into astrometric accuracies at a separation of 1'' of 1.1 mas and 1.3 mas, respectively. The measurements for all planets agree within 3σ with a predicted ephemeris. The orbital fitting based on the new astrometric measurements favors an architecture for the planetary system based on 8:4:2:1 mean motion resonance. The detection limits allow us to exclude a fifth planet slightly brighter or more massive than HR 8799 b at the location of the 2:1 resonance with HR 8799 e (~9.5 AU) and about twice as bright as HR 8799 cde at the location of the 3:1 resonance with HR 8799 e (~7.5 AU). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT

  17. Surveying Nearby M dwarfs with Gaia: A Treasure Trove for Exoplanet Astrophysics

    NASA Astrophysics Data System (ADS)

    Sozzetti, A.; Tinetti, G.; Lattanzi, M. G.; Micela, G.; Morbidelli, R.; Giacobbe, P.

    2011-10-01

    Cool, nearby M dwarfs within a few tens of parsecs from the Sun are today becoming the focus of dedicated experiments in the realm of exoplanets astrophysics. This is due to the shift in theoretical paradigms in light of new observations, and thanks to the improved understanding of the observational opportunities for planet detection and characterization provided by this sample. Gaia, in its all-sky survey, will deliver precision astrometry for a magnitude-limited (V=20) sample of M dwarfs in the vicinity of the Sun, providing an inventory of cool nearby stars with a much higher degree of completeness (particularly for late sub-types) with respect to currently available catalogs. We gauge the Gaia potential for precision astrometry of exoplanets orbiting a sample of actual M stars within 30 pc from the Sun. The stellar reservoir is carefully selected based on cross-correlation among catalogs in the literature (e.g., Lepine, PMSU).We express Gaia sensitivity thresholds as a function of system parameters and in view of the latest mission profile, including the most up-to-date astrometric error model. The simulations also provide insight on the capability of high-precision astrometry to reconstruct the underlying orbital elements and mass distributions of the generated companions. We investigate the synergy between the Gaia data on nearby M dwarfs and other ground-based and spaceborne programs for planet detection and characterization, with a particular focus on: a) the improvements in the determination of transiting planet parameters thanks to the exquisitely precise stellar distances determined by Gaia; b) the betterment in orbit modeling when Gaia astrometry and precision radial-velocities are available for the same targets; and c) the ability of Gaia to carefully predict the ephemerides of detected (transiting and non-transiting) planets aroundM stars, for the purpose of spectroscopic characterization of their atmospheres with dedicated observatories in space

  18. The Gaia Astrometric Survey of Nearby M Dwarfs: A Treasure Trove for Exoplanet Astrophysics

    NASA Astrophysics Data System (ADS)

    Sozzetti, Alessandro; Giacobbe, P.; Lattanzi, M. G.; Micela, G.; Tinetti, G.

    2011-09-01

    Cool, nearby M dwarfs within a few tens of parsecs from the Sun are becoming the focus of dedicated experiments in the realm of exoplanets astrophysics. This is due to the shift in theoretical paradigms in light of new observations, and to the improved understanding of the observational opportunities for planet detection and characterization provided by this sample. Gaia, in its all-sky survey, will deliver precision astrometry for a magnitude-limited (V=20) sample of M dwarfs, providing an inventory of cool nearby stars with a much higher degree of completeness (particularly for late sub-types) with respect to currently available catalogs. We gauge the Gaia potential for precision astrometry of exoplanets orbiting a sample of already known dM stars within 30 pc from the Sun, carefully selected based on cross-correlation among catalogs in the literature (e.g., Lepine, PMSU). We express Gaia sensitivity thresholds as a function of system parameters and in view of the latest mission profile, including the most up-to-date astrometric error model. The simulations also provide insight on the capability of high-precision astrometry to reconstruct the underlying orbital elements and mass distributions of the generated companions. These results will help in evaluating the complete expected Gaia planet population around late-type stars. We investigate the synergy between the Gaia data on nearby M dwarfs and other ground-based and space-borne programs for planet detection and characterization, with a particular focus on: a) the improvements in the determination of transiting planet parameters thanks to the exquisitely precise stellar distances determined by Gaia; b) the betterment in orbit modeling when Gaia astrometry and precision radial-velocities are available for the same targets; and c) the ability of Gaia to carefully predict the ephemerides of (transiting and non-transiting) planets around M stars, for spectroscopic characterization of their atmospheres with

  19. Thermodynamic Equations of State for Aqueous Solutions Applied to Deep Icy Satellite and Exoplanet Oceans

    NASA Astrophysics Data System (ADS)

    Vance, S.; Brown, J. M.; Bollengier, O.; Journaux, B.; Sotin, C.; Choukroun, M.; Barnes, R.

    2014-12-01

    Supporting life in icy world or exoplanet oceans may require global seafloor chemical reactions between water and rock. Such interactions have been regarded as limited in larger icy worlds such as Ganymede and Titan, where ocean depths approach 800 km and GPa pressures (>10katm). If the oceans are composed of pure water, such conditions are consistent with the presence of dense ice phases V and VI that cover the rocky seafloor. Exoplanets with oceans can obtain pressures sufficient to generate ices VII and VIII. We have previously demonstrated temperature gradients in such oceans on the order of 20 K or more, resulting from fluid compressibility in a deep adiabatic ocean based on our experimental work. Accounting for increases in density for highly saline oceans leads to the possibility of oceans perched under and between high pressure ices. Ammonia has the opposite effect, instead decreasing ocean density, as reported by others and confirmed by our laboratory measurements in the ammonia water system. Here we report on the completed equation of state for aqueous ammonia derived from our prior measurements and optimized global b-spline fitting methods We use recent diamond anvil cell measurements for water and ammonia to extend the equation of state to 400°C and beyond 2 GPa, temperatures and pressures applicable to icy worlds and exoplanets. Densities show much less temperature dependence but comparabe high-pressure derivatives to previously published ammonia-water properties derived for application to Titan (Croft et al. 1988). Thermal expansion is in better agreement with the more self-consistent equation of state of Tillner-Roth and Friend (1998). We also describe development of a planetary NaCl equation of state using recent measurements of phase boundaries and sound speeds. We examine implications of realistic ocean-ice thermodynamics for Titan and exoplanet interiors using the methodology recently applied to Ganymede for oceans dominated by MgSO4. High

  20. SERIES - Satellite Emission Range Inferred Earth Surveying

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.; Spitzmesser, D. J.; Buennagel, L. A.

    1983-01-01

    The Satellite Emission Range Inferred Earth Surveying (SERIES) concept is based on the utilization of NAVSTAR Global Positioning System (GPS) radio transmissions without any satellite modifications and in a totally passive mode. The SERIES stations are equipped with lightweight 1.5 m diameter dish antennas mounted on trailers. A series baseline measurement accuracy demonstration is considered, taking into account a 100 meter baseline estimation from approximately one hour of differential Doppler data. It is planned to conduct the next phase of experiments on a 150 m baseline. Attention is given to details regarding future baseline measurement accuracy demonstrations, aspects of ionospheric calibration in connection with subdecimeter baseline accuracy requirements of geodesy, and advantages related to the use of the differential Doppler or pseudoranging mode.

  1. VizieR Online Data Catalog: Catalog of Earth-Like Exoplanet Survey Targets (Chandler+, 2016)

    NASA Astrophysics Data System (ADS)

    Chandler, C. O.; McDonald, I.; Kane, S. R.

    2016-07-01

    We present the Catalog of Earth-Like Exoplanet Survey Targets (CELESTA), a database of habitable zones around 37000 nearby stars. The first step in creating CELESTA was assembling the input data. The Revised Hipparcos Catalog (van Leeuwen 2007, Cat. I/311) is a stellar catalog based on the original Hipparcos mission (Perryman et al. 1997, Cat. I/239) data set. Hipparcos, launched in 1989, recorded with great precision the parallax of nearby stars, ultimately leading to a database of 118218 stars. McDonald et al. 2012 (cat. J/MNRAS/427/343) calculated effective temperatures and luminosities for the Hipparcos stars. The next step was selecting appropriate stars for the construction of CELESTA. The Stellar Parameter Catalog of 103663 stars included many stars that were not suitable for our purposes, especially stars off the Main-Sequence (MS) branch, e.g., giants. Please refer to Section 3.2 in the paper for additional details about the star selection. The final CELESTA catalog contains 37354 stars (see Table2), each with a set of associated attributes, e.g., estimated mass, measured distance. The complete database can also be found online at a dedicated host (http://www.celesta.info/). (2 data files).

  2. The MUSCLES Treasury Survey: Temporally- and Spectrally-Resolved Irradiance from Low-mass Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    France, Kevin; Parke Loyd, R. O.; Youngblood, Allison; Linsky, Jeffrey; MUSCLES Treasury Survey Team

    2016-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to near-UV; 5 - 3200 Ang) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential "biomarker" gases. It has been shown that the atmospheric signatures of potentially habitable planets around low-mass stars may be significantly different from planets orbiting Sun-like stars owing to the different UV spectral energy distribution. I will present results from a panchromatic survey (Hubble/Chandra/XMM/optical) of M and K dwarf exoplanet hosts, the MUSCLES Treasury Survey (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems). We reconstruct the Lyman-alpha and extreme-UV (100-900 Ang) radiation lost to interstellar attenuation and create 5 Angstrom to 5 micron stellar irradiance spectra; these data will be publically available as a High-Level Science Product on MAST. We find that all low-mass exoplanet host stars exhibit significant chromospheric/transition region/coronal emission -- no "UV inactive" M dwarfs are observed. The F(far-UV)/F(near-UV) flux ratio, a driver for possible abiotic production of the suggested biomarkers O2 and O3, increases by ~3 orders of magnitude as the habitable zone moves inward from 1 to 0.1 AU, while the incident far-UV (912 - 1700 Ang) and XUV (5 - 900 Ang) radiation field strengths decrease by factors of a few across this range. Far-UV flare activity is common in 'optically inactive' M dwarfs; statistics from the entire sample indicate that large UV flares (E(300 - 1700 Ang) >= 10^31 erg) occur several times per day on typical M dwarf exoplanet hosts.

  3. Synthesizing Exoplanet Demographics

    NASA Astrophysics Data System (ADS)

    Clanton, Christian

    2016-01-01

    The discovery of thousands of exoplanets has revealed a large diversity of systems, the majority of which look nothing like our own. On the theoretical side, we are able to make ab initio calculations that make predictions about the properties of exoplanets. However, in order to link these predictions with observations, we must construct a statistical census of exoplanet demographics over as broad a range of parameters as possible. Current constraints on exoplanet demographics are typically constructed using the results of individual surveys using a single detection technique, and thus are incomplete. The only way to derive a statistically-complete census that samples a wide region of exoplanet parameter space is to synthesize the results from surveys employing all of the different discovery methods at our disposal. I present the first studies to demonstrate that this is actually possible, and describe a (mostly) de-biased exoplanet census that is constructed from the synthesis of results from microlensing, radial velocity, and direct imaging surveys. I will also discuss future work that will include the results of transit surveys (in particular, Kepler discoveries) to complete the census of exoplanets in our Galaxy, and describe the application of this census to develop the most comprehensive, observationally-constrained models of planet formation and evolution that have been derived to date.

  4. Robo-AO Kepler Planetary Candidate Survey. II. Adaptive Optics Imaging of 969 Kepler Exoplanet Candidate Host Stars

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Ziegler, Carl; Law, Nicholas M.; Morton, Tim; Riddle, Reed; Atkinson, Dani; Schonhut, Jessica; Crepp, Justin

    2016-07-01

    We initiated the Robo-AO Kepler Planetary Candidate Survey in 2012 to observe each Kepler exoplanet candidate host star with high angular resolution, visible light, laser adaptive optics (AOs) imaging. Our goal is to find nearby stars lying in Kepler's photometric apertures that are responsible for the relatively high probability of false-positive exoplanet detections and that cause underestimates of the size of transit radii. Our comprehensive survey will also shed light on the effects of stellar multiplicity on exoplanet properties and will identify rare exoplanetary architectures. In this second part of our ongoing survey, we observed an additional 969 Kepler planet candidate hosts and we report blended stellar companions up to {{Δ }}m≈ 6 that contribute to Kepler's measured light curves. We found 203 companions within ˜4″ of 181 of the Kepler stars, of which 141 are new discoveries. We measure the nearby star probability for this sample of Kepler planet candidate host stars to be 10.6% ± 1.1% at angular separations up to 2.″5, significantly higher than the 7.4% ± 1.0% probability discovered in our initial sample of 715 stars; we find the probability increases to 17.6% ± 1.5% out to a separation of 4.″0. The median position of Kepler Objects of Interest (KOIs) observed in this survey are 1.°1 closer to the galactic plane, which may account for some of the nearby star probability enhancement. We additionally detail 50 Keck AO images of Robo-AO observed KOIs in order to confirm 37 companions detected at a <5σ significance level and to obtain additional infrared photometry on higher significance detected companions.

  5. The MEarth project: an all-sky survey for transiting Earth-like exoplanets orbiting nearby M-dwarfs

    NASA Astrophysics Data System (ADS)

    Irwin, Jonathan; Berta-Thompson, Zachory K.; Charbonneau, David; Dittmann, Jason; Newton, Elisabeth R.

    2015-01-01

    The MEarth project is an operational all-sky survey searching for transiting Earth-like exoplanets around 3,000 of the closest mid-to-late M-dwarfs. These will be among the best planets in their size class for atmospheric characterization using present day and near-future instruments such as HST, JWST and ground-based Extremely Large Telescopes (ELTs), by virtue of the large observational signal sizes afforded by their small and bright host stars. We present an update on the status and recent scientific results of the survey from our two observing stations: MEarth-North at Fred Lawrence Whipple Observatory, Mount Hopkins, Arizona, and MEarth-South at Cerro Tololo Inter-American Observatory, Chile. MEarth-North discovered the transiting mini-Neptune exoplanet GJ 1214b, which currently has the best-studied atmosphere of any exoplanet in its size class. In addition to searching for planets, we actively pursue stellar astrophysics topics and characterization of the target star sample using MEarth data and supplementary spectroscopic follow-up. This has included measuring astrometric parallaxes for more than 1500 nearby stars, the discovery of 6 new low-mass eclipsing binaries amenable to direct measurement of the masses and radii of their components, and rotation periods, spectral classifications, metallicities and activity indices for hundreds of stars. The MEarth light curves themselves also provide a detailed record of the photometric behavior of the target stars, which include the most favorable and interesting targets to search for small and potentially habitable planets. This will be a valuable resource for all future surveys searching for planets around these stars. All light curves gathered during the survey are made publicly available after one year.The MEarth project gratefully acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering, the National Science Foundation under grants AST-0807690, AST-1109468, and AST-1004488

  6. Use of satellite data in agricultural surveys

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Houston, A. G.

    1984-01-01

    The state-of-the-art of crop surveying by satellite is reviewed with an emphasis on the signature extension problem. Registration and preprocessing procedures are discussed with refereence to: normalization of the radiometric values of each scene for scene-to-scene differences; registration techniques, implemented at the NASA Johnson Space Center, capable of 0.5 pixel root-mean-square error; and current research in this direction. Data transformation and modeling techniques applied to the Landsat MSS images and a solution for the field-to-field variations of the greenness and brightness temporal trajectories are included. Finally, a review of the mixture decomposition method of labeling and estimating the areal proportions is given.

  7. The Catalog of Earth-Like Exoplanet Survey Targets (CELESTA): A Database of Habitable Zones Around Nearby Stars

    NASA Astrophysics Data System (ADS)

    Chandler, Colin Orion; McDonald, Iain; Kane, Stephen R.

    2016-03-01

    Locating planets in circumstellar habitable zones (HZs) is a priority for many exoplanet surveys. Space-based and ground-based surveys alike require robust toolsets to aid in target selection and mission planning. We present the Catalog of Earth-Like Exoplanet Survey Targets (CELESTA), a database of HZs around 37,000 nearby stars. We calculated stellar parameters, including effective temperatures, masses, and radii, and we quantified the orbital distances and periods corresponding to the circumstellar HZs. We gauged the accuracy of our predictions by contrasting CELESTA’s computed parameters to observational data. We ascertain a potential return on investment by computing the number of HZs probed for a given survey duration. A versatile framework for extending the functionality of CELESTA into the future enables ongoing comparisons to new observations, and recalculations when updates to HZ models, stellar temperatures, or parallax data become available. We expect to upgrade and expand CELESTA using data from the Gaia mission as the data become available.

  8. Lessons learnt and results from the first survey of transiting exoplanet atmospheres using a multi-object spectrograph

    NASA Astrophysics Data System (ADS)

    Desert, Jean-Michel

    2015-12-01

    We present results from the first comprehensive survey program dedicated to probing transiting exoplanet atmospheres using transmission spectroscopy with a multi-object spectrograph (MOS). Our three-year survey focused on nine close-in giant planets for which the wavelength dependent transit depths in the visible were measured with Gemini/GMOS. In total, about 40 transits (200 hours) have been secured, with each exoplanet observed on average during four transits. This approach allows for a high spectrophotometric precision (200-500 ppm / 10 nm) and for a unique and reliable estimate of systematic uncertainties. We present the main results from this survey, the challenges faced by such an experiment, and the lessons learnt for future MOS observations and instrument designs. We show that the precision achieved by this survey permits us to distinguish hazy atmospheres from cloud-free scenarios. We lay out the challenges that are in front of us whilst preparing future atmospheric reconnaissance of habitable worlds with multi-object spectrographs.

  9. Brouwer Award Lecture: Anelastic tides of close-in satellites and exoplanets

    NASA Astrophysics Data System (ADS)

    Ferraz-Mello, Sylvio

    2016-05-01

    This lecture reviews a new theory of the anelastic tides of celestial bodies in which the deformation of the body is the result of a Newtonian creep inversely proportional to the viscosity of the body and, along each radius, directly proportional to the distance from the actual surface of the body to the equilibrium. The first version of the theory (AAS/DDA 2012; CeMDA 2013), was restricted to homogeneous bodies. It was applied to many different bodies as the Moon, Mercury, super-Earths and hot Jupiters. An improved version (AAS/DDA 2014) included also the loss of angular momentum due to stellar winds and was applied to the study of the rotational evolution of active stars hosting massive companions. One more recent version (Folonier et al. AAS/DDA 2013; DPS 2015) allowed for the consideration of layered structures and was applied to Titan and Mercury. The resulting anelastic tides depend on the nature of the considered body. In the case of low-viscosity bodies (high relaxation factor), as gaseous planets and stars, the results are nearly the same of Darwin's theory. For instance, in these cases the dissipation grows proportionally to the tidal frequency. In the case of high-viscosity rocky satellites and planets (low relaxation factor), the results are structurally different: the dissipation varies with the tidal frequency following an inverse power law and the rotation may be driven to several attractors whose frequencies are 1/2, 1, 3/2, 2, 5/2,… times the orbital mean-motion, even when no permanent triaxiality exists.

  10. Satellite surveying for a Loran-C nonprecision approach

    NASA Technical Reports Server (NTRS)

    Mccall, Daryl L.

    1987-01-01

    Work has continued to site-in a Loran-C nonprecision approach at the Ohio University Gordon K. Bush Airport located in Albany, Ohio. A survey was performed using the Motorola Mini-Ranger Satellite Surveying System, which uses the Navy's TRANSIT satellites. This position was obtained using the point-position method only, that is the position was calculated from sequential Doppler measurements as the TRANSIT satellite's passed within view of the receiver's antenna. Another method, called translocation, can use differential techniques which provide better results. The accuracies obtained, however, are sufficient to site-in a Loran-C nonprecision approach.

  11. The Exoplanet Orbit Database

    NASA Astrophysics Data System (ADS)

    Wright, J. T.; Fakhouri, O.; Marcy, G. W.; Han, E.; Feng, Y.; Johnson, John Asher; Howard, A. W.; Fischer, D. A.; Valenti, J. A.; Anderson, J.; Piskunov, N.

    2011-04-01

    We present a database of well-determined orbital parameters of exoplanets, and their host stars' properties. This database comprises spectroscopic orbital elements measured for 427 planets orbiting 363 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The database is available in a searchable, filterable, and sortable form online through the Exoplanets Data Explorer table, and the data can be plotted and explored through the Exoplanet Data Explorer plotter. We use the Data Explorer to generate publication-ready plots, giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the different selection biases between radial velocity and transit surveys, and that the multiplanet systems show a distinct semimajor-axis distribution from apparently singleton systems.

  12. High-cadence, High-contrast Imaging for Exoplanet Mapping: Observations of the HR 8799 Planets with VLT/SPHERE Satellite-spot-corrected Relative Photometry

    NASA Astrophysics Data System (ADS)

    Apai, Dániel; Kasper, Markus; Skemer, Andrew; Hanson, Jake R.; Lagrange, Anne-Marie; Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Vigan, Arthur

    2016-03-01

    Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysis approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-order anti-correlation pattern between the different spots. Our study finds that KLIP reduction based on principal components analysis with satellite-spot-modulated artificial-planet-injection-based photometry leads to a significant (˜3×) gain in photometric accuracy over standard aperture-based photometry and reaches 0.1 mag per point accuracy for our data set, the signal-to-noise ratio of which is limited by small field rotation. Relative planet-to-planet photometry can be compared between nights, enabling observations spanning multiple nights to probe variability. Recent high-quality relative H-band photometry of the b-c planet pair agrees to about 1%.

  13. The LEECH Exoplanet Imaging Survey: Orbit and Component Masses of the Intermediate-age, Late-type Binary NO UMa

    NASA Astrophysics Data System (ADS)

    Schlieder, Joshua E.; Skemer, Andrew J.; Maire, Anne-Lise; Desidera, Silvano; Hinz, Philip; Skrutskie, Michael F.; Leisenring, Jarron; Bailey, Vanessa; Defrère, Denis; Esposito, Simone; Strassmeier, Klaus G.; Weber, Michael; Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Close, Laird M.; Crepp, Justin R.; Eisner, Josh A.; Hofmann, Karl-Heinz; Henning, Thomas; Morzinski, Katie M.; Schertl, Dieter; Weigelt, Gerd; Woodward, Charles E.

    2016-02-01

    We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBT Interferometer Exozodi Exoplanet Common Hunt exoplanet imaging survey. Our H-, Ks-, and L‧-band observations resolve the system at angular separations <0.″09. The components exhibit significant orbital motion over a span of ∼7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0 ± 0.5 primary and K6.5 ± 0.5 secondary are 0.83 ± 0.02 M⊙ and 0.64 ± 0.02 M⊙, respectively. We also derive a system distance of d = 25.87 ± 0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the ∼500 Myr old Ursa Major moving group, and it is thus a mass and age benchmark. We compare the masses of the NO UMa binary components to those predicted by five sets of stellar evolution models at the age of the Ursa Major group. We find excellent agreement between our measured masses and model predictions with little systematic scatter between the models. NO UMa joins the short list of nearby, bright, late-type binaries having known ages and fully characterized orbits. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC.

  14. A survey of satellite galaxies around NGC 4258

    SciTech Connect

    Spencer, Meghin; Loebman, Sarah; Yoachim, Peter

    2014-06-20

    We conduct a survey of satellite galaxies around the nearby spiral NGC 4258 by combining spectroscopic observations from the Apache Point Observatory 3.5 m telescope with Sloan Digital Sky Survey (SDSS) spectra. New spectroscopy is obtained for 15 galaxies. Of the 47 observed objects, we categorize 8 of them as probable satellites, 8 as possible satellites, and 17 as unlikely to be satellites. We do not speculate on the membership of the remaining 14 galaxies due to a lack of velocity and distance information. Radially integrating our best-fit NFW profile for NGC 4258 yields a total mass of 1.8 × 10{sup 12} M {sub ☉} within 200 kpc. We find that the angular distribution of the satellites appears to be random, and not preferentially aligned with the disk of NGC 4258. In addition, many of the probable satellite galaxies have blue u–r colors and appear to be star-forming irregulars in SDSS images; this stands in contrast to the low number of blue satellites in the Milky Way and M31 systems at comparable distances.

  15. Photometric survey of the irregular satellites

    NASA Astrophysics Data System (ADS)

    Grav, Tommy; Holman, Matthew J.; Gladman, Brett J.; Aksnes, Kaare

    2003-11-01

    We present BVRI colors of 13 jovian and 8 saturnian irregular satellites obtained with the 2.56 m Nordic Optical Telescope on La Palma, the 6.5 m Magellan Baade Telescope on La Campanas, and the 6.5 m MMT on Mt. Hopkins. The observations were performed from December 2001 to March 2002. The colors of the irregular satellites vary from grey to light red. We have arbitrarily divided the known irregular satellites into two classes based on their colors. One, the grey color class, has similar colors to the C-type asteroids, and the other, the light red color class, has colors similar to P/D-type asteroids. We also find at least one object, the jovian irregular J XXIII Kalyke, that has colors similar to the red colored Centaurs/TNOs, although its classification is insecure. We find that there is a correlation between the physical properties and dynamical properties of the irregular satellites. Most of the dynamical clusters have homogeneous colors, which points to single homogeneous progenitors being cratered or fragmented as the source of each individual cluster. The heterogeneously colored clusters are most easily explained by assuming that there are several dynamical clusters in the area, rather than just one, or that the parent body was a differentiated, heterogeneous body. By analyzing simple cratering/fragmentation scenarios, we show that the heterogeneous colored S IX Phoebe cluster, is most likely two different clusters, a grey colored cluster centered on S IX Phoebe and a light red colored cluster centered on S/2000 S 1. To which of these two clusters the remaining saturnian irregulars with inclinations close to 174° belong is not clear from our analysis, but determination of their colors should help constrain this. We also show through analysis of possible fragmentation and dispersion of the six known uranian irregulars that they most likely make up two clusters, one centered on U XVI Caliban and another centered on U XVII Sycorax. We further show that

  16. Exoplanets Galore!

    NASA Astrophysics Data System (ADS)

    2000-05-01

    -dwarf companions to HD 162020 and HD 202206 While about 40 giant exoplanet-candidates have so far been detected with masses in the range from 0.22 to 8.13 times that of Jupiter, only one companion object (in orbit around the star HD 114762) was known until now with a minimum mass between 10 and 15 times that of Jupiter. Such objects, referred to as "brown dwarfs" , are easier to detect than giant planets with similar periods because their greater mass induces larger velocity changes of the central star; they must therefore be very rare. This strongly points towards different formation/evolution processes for giant planets and stellar companions in the brown-dwarf domain. The brown-dwarf candidate around HD 162020 orbits this star (in constellation Scorpius - the Scorpion; visual magnitude 9.1; stellar type K2V) in 8.43 days on a moderately eccentric orbit. The inferred minimum mass of the companion is 13.7 times that of Jupiter. The second brown-dwarf candidate has a comparable minimum mass of 14.7 Jupiter masses. It orbits HD 202206 (in constellation Capricornus; visual magnitude 8.1; stellar type G6V) in 259 days and the orbit is fairly eccentric. The search for exoplanets: current status Most of the stars around which giant planets have been found so far show a significant excess of heavy elements in their atmosphere when compared to the majority of stars of the solar vicinity. This is also the case for most of the central stars of the eight new objects described here. This additional indication of an abnormal chemical composition of stars with giant gaseous planets provides a promising line for a better understanding of the mechanism(s) that ultimately lead to the formation of planetary systems. The high-precision radial-velocity survey with CORALIE in the southern hemisphere has the ambitious goal to make a complete inventory of giant exoplanets orbiting about 1600 stars in our galactic neighbourhood, all of which are relatively similar to our Sun. To date, 11 such exoplanets

  17. The MUSCLES Treasury Survey. II. Intrinsic LYα and Extreme Ultraviolet Spectra of K and M Dwarfs with Exoplanets*

    NASA Astrophysics Data System (ADS)

    Youngblood, Allison; France, Kevin; Parke Loyd, R. O.; Linsky, Jeffrey L.; Redfield, Seth; Schneider, P. Christian; Wood, Brian E.; Brown, Alexander; Froning, Cynthia; Miguel, Yamila; Rugheimer, Sarah; Walkowicz, Lucianne

    2016-06-01

    The ultraviolet (UV) spectral energy distributions (SEDs) of low-mass (K- and M-type) stars play a critical role in the heating and chemistry of exoplanet atmospheres, but are not observationally well-constrained. Direct observations of the intrinsic flux of the Lyα line (the dominant source of UV photons from low-mass stars) are challenging, as interstellar H i absorbs the entire line core for even the closest stars. To address the existing gap in empirical constraints on the UV flux of K and M dwarfs, the MUSCLES Hubble Space Telescope Treasury Survey has obtained UV observations of 11 nearby M and K dwarfs hosting exoplanets. This paper presents the Lyα and extreme-UV spectral reconstructions for the MUSCLES targets. Most targets are optically inactive, but all exhibit significant UV activity. We use a Markov Chain Monte Carlo technique to correct the observed Lyα profiles for interstellar absorption, and we employ empirical relations to compute the extreme-UV SED from the intrinsic Lyα flux in ∼100 Å bins from 100–1170 Å. The reconstructed Lyα profiles have 300 km s‑1 broad cores, while >1% of the total intrinsic Lyα flux is measured in extended wings between 300 and 1200 km s‑1. The Lyα surface flux positively correlates with the Mg ii surface flux and negatively correlates with the stellar rotation period. Stars with larger Lyα surface flux also tend to have larger surface flux in ions formed at higher temperatures, but these correlations remain statistically insignificant in our sample of 11 stars. We also present H i column density measurements for 10 new sightlines through the local interstellar medium. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  18. The MUSCLES Treasury Survey. II. Intrinsic LYα and Extreme Ultraviolet Spectra of K and M Dwarfs with Exoplanets*

    NASA Astrophysics Data System (ADS)

    Youngblood, Allison; France, Kevin; Parke Loyd, R. O.; Linsky, Jeffrey L.; Redfield, Seth; Schneider, P. Christian; Wood, Brian E.; Brown, Alexander; Froning, Cynthia; Miguel, Yamila; Rugheimer, Sarah; Walkowicz, Lucianne

    2016-06-01

    The ultraviolet (UV) spectral energy distributions (SEDs) of low-mass (K- and M-type) stars play a critical role in the heating and chemistry of exoplanet atmospheres, but are not observationally well-constrained. Direct observations of the intrinsic flux of the Lyα line (the dominant source of UV photons from low-mass stars) are challenging, as interstellar H i absorbs the entire line core for even the closest stars. To address the existing gap in empirical constraints on the UV flux of K and M dwarfs, the MUSCLES Hubble Space Telescope Treasury Survey has obtained UV observations of 11 nearby M and K dwarfs hosting exoplanets. This paper presents the Lyα and extreme-UV spectral reconstructions for the MUSCLES targets. Most targets are optically inactive, but all exhibit significant UV activity. We use a Markov Chain Monte Carlo technique to correct the observed Lyα profiles for interstellar absorption, and we employ empirical relations to compute the extreme-UV SED from the intrinsic Lyα flux in ˜100 Å bins from 100–1170 Å. The reconstructed Lyα profiles have 300 km s‑1 broad cores, while >1% of the total intrinsic Lyα flux is measured in extended wings between 300 and 1200 km s‑1. The Lyα surface flux positively correlates with the Mg ii surface flux and negatively correlates with the stellar rotation period. Stars with larger Lyα surface flux also tend to have larger surface flux in ions formed at higher temperatures, but these correlations remain statistically insignificant in our sample of 11 stars. We also present H i column density measurements for 10 new sightlines through the local interstellar medium. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  19. Satellite emission radio interferometric earth surveying series - GPS geodetic system

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1979-01-01

    A concept called SERIES (satellite emissions radio interferometric earth surveying) which makes use of GPS (global positioning system) radio transmissions without any satellite modifications, is described. Through the use of very long baseline interferometry (VLBI) and its calibration methods, 0.5 to 3 cm three dimensional baseline accuracy can be achieved over distances of 2 to 200 km respectively, with only 2 hours of on-site data acquisition. Attention is given to such areas as: the radio flux equivalent of GPS transmissions, synthesized delay precision, transmission and frequency subsystem requirements, tropospheric and ionospheric errors. Applications covered include geodesy and seismic tectonics.

  20. Uncovering Exoplanets using Polarimetry

    NASA Astrophysics Data System (ADS)

    Stam, D. M.

    2012-12-01

    appears to be a strong tool both for the detection and the characterization of such cool exoplanets. Polarimetry helps their detection, because direct starlight is usually unpolarized, while starlight that has been reflected by a planet is usually polarized, especially at the phase angles favorable for observing exoplanets. Polarimetry thus improves the contrast between stars and their planets, and confirms that the detected object is indeed a planet. In my presentation, I will focus on the power of polarimetry for the characterization of exoplanets. This application is known from the derivation of the Venus cloud properties from the planet's polarized phase function by Hansen & Hovenier in 1974. Using numerically simulated flux and polarization phase functions and spectra for both gaseous and solid exoplanets, I will discuss the added value of polarimetry for exoplanet characterization as compared to flux observations, in particular for the retrieval of properties of clouds and hazes. Special attention will be given to the features in polarized phase functions that reveal the existence of liquid water clouds in the atmosphere (rainbows), even in the presence of ice clouds, or liquid water on the surface (glint) of an exoplanet. Using satellite data of the cloud and surface coverage of the Earth, calculated flux and polarization phase functions that should be observable from afar will be presented.

  1. NASA's Exoplanet Exploration Program

    NASA Astrophysics Data System (ADS)

    Devirian, Michael

    2009-01-01

    September 24, 2008 NASA has established the Exoplanet Exploration Program (ExEP) to conduct scientific investigations in one of the most exciting new fields of astronomy, the exploration and characterization of planets around other stars in search of those that might show signs of harboring life. In this paper, we will describe that program and how it is expected to work. Key to success in this field is the advancement of optical capabilities to unprecedented levels of precision and stability. The technology program conducted by ExEP will strive to achieve these advancements to enable near-term moderate scale missions and eventually lead to large flagship-class missions that will deeply probe the most promising earth-like planets for signs of biogenic activity. Significant opportunities for community participation in technology development will be available through NASA research solicitations that will call for technology advancements in specific areas. These developments will focus on challenges posed by a strategy for the progression of scientific investigations developed by the science community through bodies such as the Exoplanet Task Force, the Exoplanet Science Forum and ultimately the NRC Decadal Survey. ExEP will be advised in its tactical implementation of this strategy by Exoplanet Program Analysis Group (ExoPAG), which will engage a broad segment of the community in deliberation and then focus its reports through a core group appointed by NASA HQ. The coming decade offers opportunities for continued exoplanet investigations through ground observations, sub-orbital platforms and moderate scale space missions, and the anticipated process and timing of these opportunities will be described. The Exoplanet Exploration Program is managed for NASA at the Jet Propulsion Laboratory, California Institute of Technology.

  2. Optical design of the camera for Transiting Exoplanet Survey Satellite (TESS)

    NASA Astrophysics Data System (ADS)

    Chrisp, Michael; Clark, Kristin; Primeau, Brian; Dalpiaz, Michael; Lennon, Joseph

    2015-09-01

    The optical design of the wide field of view refractive camera with a 34 degree diagonal field for the TESS payload is described. This fast f/1.4 cryogenic camera, operating at -75°C, has no vignetting for maximum light gathering within the size and weight constraints. Four of these cameras capture full frames of star images for photometric searches of planet crossings. The optical design evolution, from the initial Petzval design, takes advantage of Forbes aspheres to develop a hybrid design form. This maximizes the correction from the two aspherics resulting in a reduction of average spot size by sixty percent in the final design. An external long wavelength pass filter has been replaced by an internal filter coating on a lens to save weight, and has been fabricated to meet the specifications. The stray light requirements are met by an extended lens hood baffle design, giving the necessary off-axis attenuation.

  3. Optical Design of the Camera for Transiting Exoplanet Survey Satellite (TESS)

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael; Clark, Kristin; Primeau, Brian; Dalpiaz, Michael; Lennon, Joseph

    2015-01-01

    The optical design of the wide field of view refractive camera, 34 degrees diagonal field, for the TESS payload is described. This fast f/1.4 cryogenic camera, operating at -75 C, has no vignetting for maximum light gathering within the size and weight constraints. Four of these cameras capture full frames of star images for photometric searches of planet crossings. The optical design evolution, from the initial Petzval design, took advantage of Forbes aspheres to develop a hybrid design form. This maximized the correction from the two aspherics resulting in a reduction of average spot size by sixty percent in the final design. An external long wavelength pass filter was replaced by an internal filter coating on a lens to save weight, and has been fabricated to meet the specifications. The stray light requirements were met by an extended lens hood baffle design, giving the necessary off-axis attenuation.

  4. NASA's Missions for Exoplanet Exploration

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen

    2014-05-01

    Exoplanets are detected and characterized using a range of observational techniques - including direct imaging, astrometry, transits, microlensing, and radial velocities. Each technique illuminates a different aspect of exoplanet properties and statistics. This diversity of approach has contributed to the rapid growth of the field into a major research area in only two decades. In parallel with exoplanet observations, major efforts are now underway to interpret the physical and atmospheric properties of exoplanets for which spectroscopy is now possible. In addition, comparative planetology probes questions of interest to both exoplanets and solar system studies. In this talk I describe NASA's activities in exoplanet research, and discuss plans for near-future missions that have reflected-light spectroscopy as a key goal. The WFIRST-AFTA concept currently under active study includes a major microlensing survey, and now includes a visible light coronagraph for exoplanet spectroscopy and debris disk imaging. Two NASA-selected community-led teams are studying probe-scale (< 1B) mission concepts for imaging and spectroscopy. These concepts complement existing NASA missions that do exoplanet science (such as transit spectroscopy and debris disk imaging with HST and Spitzer) or are under development (survey of nearby transiting exoplanets with TESS, and followup of the most important targets with transit spectroscopy on JWST), and build on the work of ground-based instruments such as LBTI and observing with HIRES on Keck. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2014. California Institute of Technology. Government sponsorship acknowledged.

  5. The MUSCLES Treasury Survey: Intrinsic Lyα Profile Reconstructions and UV, X-ray, and Optical Correlations of Low-mass Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Youngblood, Allison; France, Kevin; Parke Loyd, R. O.

    2016-01-01

    UV stellar radiation can significantly impact planetary atmospheres through heating and photochemistry, even regulating production of potential biomarkers. Cool stars emit the majority of their UV radiation in the form of emission lines, and the incident UV radiation on close-in habitable-zone planets is significant. Lyα (1215.67 Å) dominates the 912 - 3200 Å spectrum of cool stars, but strong absorption from the interstellar medium (ISM) makes direct observations of the intrinsic Lyα emission of even nearby stars challenging. The MUSCLES Hubble Space Telescope Treasury Survey (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems) has completed observations of 7 M and 4 K stars hosting exoplanets (d < 22 pc) with simultaneous X-ray and ground-based optical spectroscopy for many of the targets. We have reconstructed the intrinsic Lyα profiles using an MCMC technique and used the results to estimate the extreme ultraviolet (100 - 911 Å) spectrum. We also present empirical relations between chromospheric UV and optical lines, e.g., Lyα, Mg II, Ca II H & K, and Hα, for use when direct UV observations of low-mass exoplanet host stars are not possible. The spectra presented here will be made publicly available through MAST to support exoplanet atmosphere modeling.

  6. The moving group targets of the seeds high-contrast imaging survey of exoplanets and disks: Results and observations from the first three years

    SciTech Connect

    Brandt, Timothy D.; Turner, Edwin L.; Janson, M.; Knapp, G. R.; Kuzuhara, Masayuki; McElwain, Michael W.; Schlieder, Joshua E.; Carson, J.; Biller, B.; Bonnefoy, M.; Brandner, W.; Wisniewski, John P.; Hashimoto, J.; Matsuo, T.; Dressing, C.; Moro-Martín, A.; Kudo, T.; Kusakabe, N.; Abe, L.; and others

    2014-05-01

    We present results from the first three years of observations of moving group (MG) targets in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) high-contrast imaging survey of exoplanets and disks using the Subaru telescope. We achieve typical contrasts of ∼10{sup 5} at 1'' and ∼10{sup 6} beyond 2'' around 63 proposed members of nearby kinematic MGs. We review each of the kinematic associations to which our targets belong, concluding that five, β Pictoris (∼20 Myr), AB Doradus (∼100 Myr), Columba (∼30 Myr), Tucana-Horogium (∼30 Myr), and TW Hydrae (∼10 Myr), are sufficiently well-defined to constrain the ages of individual targets. Somewhat less than half of our targets are high-probability members of one of these MGs. For all of our targets, we combine proposed MG membership with other age indicators where available, including Ca II HK emission, X-ray activity, and rotation period, to produce a posterior probability distribution of age. SEEDS observations discovered a substellar companion to one of our targets, κ And, a late B star. We do not detect any other substellar companions, but do find seven new close binary systems, of which one still needs to be confirmed. A detailed analysis of the statistics of this sample, and of the companion mass constraints given our age probability distributions and exoplanet cooling models, will be presented in a forthcoming paper.

  7. The Moving Group Targets of the Seeds High-Contrast Imaging Survey of Exoplanets and Disks: Results and Observations from the First Three Years

    NASA Technical Reports Server (NTRS)

    Brandt, Timothy D.; Kuzuhara, Masayuki; McElwain, Michael W.; Schlieder, Joshua E.; Wisniewski, John P.; Turner, Edwin L.; Carson, J.; Matsuo, T.; Biller, B.; Bonnefoy, M.; Dressing, C.; Janson, M.; Knapp, G. R.; Moro-Martin, A.; Thalmann, C.; Kudo, T.; Kusakabe, N.; Hashimoto, J.; Abe, L.; Brandner, W.; Currie, T.; Egner, S.; Feldt, M.; Golota, T.; Goto, M.; Brady, C. A.; Guyon, O.; Hayano, Y.; Hyashi, M.; Hayashi, S.; Henning, T.; Hodapp, W.; Ishi, M.; Iye, M.; Kandori, R.

    2014-01-01

    We present results from the first three years of observations of moving group (MG) targets in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) high-contrast imaging survey of exoplanets and disks using the Subaru telescope. We achieve typical contrasts of (is) approximately10(exp 5) at 1" and (is) approximately 10(exp 6) beyond 2" around 63 proposed members of nearby kinematic MGs. We review each of the kinematic associations to which our targets belong, concluding that five, beta Pictoris ((is) approximately 20 Myr), AB Doradus ((is) approximately 100 Myr), Columba ((is) approximately 30 Myr), Tucana-Horogium ((is) approximately 30 Myr), and TW Hydrae ((is) approximately 10 Myr), are sufficiently well-defined to constrain the ages of individual targets. Somewhat less than half of our targets are high-probability members of one of these MGs. For all of our targets, we combine proposed MG membership with other age indicators where available, including Ca ii HK emission, X-ray activity, and rotation period, to produce a posterior probability distribution of age. SEEDS observations discovered a substellar companion to one of our targets, kappa And, a late B star. We do not detect any other substellar companions, but do find seven new close binary systems, of which one still needs to be confirmed. A detailed analysis of the statistics of this sample, and of the companion mass constraints given our age probability distributions and exoplanet cooling models, will be presented in a forthcoming paper.

  8. The Moving Group Targets of the SEEDS High-contrast Imaging Survey of Exoplanets and Disks: Results and Observations from the First Three Years

    NASA Astrophysics Data System (ADS)

    Brandt, Timothy D.; Kuzuhara, Masayuki; McElwain, Michael W.; Schlieder, Joshua E.; Wisniewski, John P.; Turner, Edwin L.; Carson, J.; Matsuo, T.; Biller, B.; Bonnefoy, M.; Dressing, C.; Janson, M.; Knapp, G. R.; Moro-Martín, A.; Thalmann, C.; Kudo, T.; Kusakabe, N.; Hashimoto, J.; Abe, L.; Brandner, W.; Currie, T.; Egner, S.; Feldt, M.; Golota, T.; Goto, M.; Grady, C. A.; Guyon, O.; Hayano, Y.; Hayashi, M.; Hayashi, S.; Henning, T.; Hodapp, K. W.; Ishii, M.; Iye, M.; Kandori, R.; Kwon, J.; Mede, K.; Miyama, S.; Morino, J.-I.; Nishimura, T.; Pyo, T.-S.; Serabyn, E.; Suenaga, T.; Suto, H.; Suzuki, R.; Takami, M.; Takahashi, Y.; Takato, N.; Terada, H.; Tomono, D.; Watanabe, M.; Yamada, T.; Takami, H.; Usuda, T.; Tamura, M.

    2014-05-01

    We present results from the first three years of observations of moving group (MG) targets in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) high-contrast imaging survey of exoplanets and disks using the Subaru telescope. We achieve typical contrasts of ~105 at 1'' and ~106 beyond 2'' around 63 proposed members of nearby kinematic MGs. We review each of the kinematic associations to which our targets belong, concluding that five, β Pictoris (~20 Myr), AB Doradus (~100 Myr), Columba (~30 Myr), Tucana-Horogium (~30 Myr), and TW Hydrae (~10 Myr), are sufficiently well-defined to constrain the ages of individual targets. Somewhat less than half of our targets are high-probability members of one of these MGs. For all of our targets, we combine proposed MG membership with other age indicators where available, including Ca II HK emission, X-ray activity, and rotation period, to produce a posterior probability distribution of age. SEEDS observations discovered a substellar companion to one of our targets, κ And, a late B star. We do not detect any other substellar companions, but do find seven new close binary systems, of which one still needs to be confirmed. A detailed analysis of the statistics of this sample, and of the companion mass constraints given our age probability distributions and exoplanet cooling models, will be presented in a forthcoming paper.

  9. First Temperate Exoplanet Sized Up

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Combining observations from the CoRoT satellite and the ESO HARPS instrument, astronomers have discovered the first "normal" exoplanet that can be studied in great detail. Designated Corot-9b, the planet regularly passes in front of a star similar to the Sun located 1500 light-years away from Earth towards the constellation of Serpens (the Snake). "This is a normal, temperate exoplanet just like dozens we already know, but this is the first whose properties we can study in depth," says Claire Moutou, who is part of the international team of 60 astronomers that made the discovery. "It is bound to become a Rosetta stone in exoplanet research." "Corot-9b is the first exoplanet that really does resemble planets in our solar system," adds lead author Hans Deeg. "It has the size of Jupiter and an orbit similar to that of Mercury." "Like our own giant planets, Jupiter and Saturn, the planet is mostly made of hydrogen and helium," says team member Tristan Guillot, "and it may contain up to 20 Earth masses of other elements, including water and rock at high temperatures and pressures." Corot-9b passes in front of its host star every 95 days, as seen from Earth [1]. This "transit" lasts for about 8 hours, and provides astronomers with much additional information on the planet. This is fortunate as the gas giant shares many features with the majority of exoplanets discovered so far [2]. "Our analysis has provided more information on Corot-9b than for other exoplanets of the same type," says co-author Didier Queloz. "It may open up a new field of research to understand the atmospheres of moderate- and low-temperature planets, and in particular a completely new window in our understanding of low-temperature chemistry." More than 400 exoplanets have been discovered so far, 70 of them through the transit method. Corot-9b is special in that its distance from its host star is about ten times larger than that of any planet previously discovered by this method. And unlike all such

  10. ARIEL: Atmospheric Remote Sensing Infrared Exoplanet Large Survey. A proposal for the ESA Cosmic Vision M4

    NASA Astrophysics Data System (ADS)

    Pace, E.; Micela, G.; Ariel Team

    The Atmospheric Remote sensing Infrared Exoplanet Large survey (ARIEL) is a proposal in response to the call for a Medium-size mission opportunity in ESA’s Cosmic Vision 2015-2025 Science Programme for a launch in 2025 (M4). This mission will be devoted to observe spectroscopically in the IR a large population (hundreds to one thousand) of known planets in our Galaxy, opening a new discovery space in the field of extrasolar planet exploration and enabling a quantum leap in the understanding of the physics and chemistry of these far away worlds. The population of planets will include warm and hot gas‑giants, Neptunes and large terrestrial planets. The main ARIEL goal is the determination of the composition, formation and history of these planetary systems In order to fulfill the scientific goals of ARIEL, we propose the development of a 1‑meter class aperture space telescope, passively cooled to 70‑80K, to observe the combined light of stars and their planets, building on the current experience of transit and combined light observations with Hubble, Spitzer, and ground-based telescopes. While JWST and EELT will initiate a detailed mid- to high-resolution IR spectroscopic observation of a few tens of planets, this mission will extend the study to a much larger (an order of magnitude difference) representative population of extrasolar planets discovered by ESA GAIA, Cheops, PLATO, NASA Kepler II, TESS and from the ground. The statistical perspective provided by this mission, will allow us to address some of the fundamental questions of the Cosmic Vision programme: What are the conditions for planet formation and the emergence of life? ls our Solar System unique, rare or very common? How does the Solar System work?

  11. Exoplanet habitability.

    PubMed

    Seager, Sara

    2013-05-01

    The search for exoplanets includes the promise to eventually find and identify habitable worlds. The thousands of known exoplanets and planet candidates are extremely diverse in terms of their masses or sizes, orbits, and host star type. The diversity extends to new kinds of planets, which are very common yet have no solar system counterparts. Even with the requirement that a planet's surface temperature must be compatible with liquid water (because all life on Earth requires liquid water), a new emerging view is that planets very different from Earth may have the right conditions for life. The broadened possibilities will increase the future chances of discovering an inhabited world. PMID:23641111

  12. Satellite Emission Range Inferred Earth Survey (SERIES) project

    NASA Technical Reports Server (NTRS)

    Buennagel, L. A.; Macdoran, P. F.; Neilan, R. E.; Spitzmesser, D. J.; Young, L. E.

    1984-01-01

    The Global Positioning System (GPS) was developed by the Department of Defense primarily for navigation use by the United States Armed Forces. The system will consist of a constellation of 18 operational Navigation Satellite Timing and Ranging (NAVSTAR) satellites by the late 1980's. During the last four years, the Satellite Emission Range Inferred Earth Surveying (SERIES) team at the Jet Propulsion Laboratory (JPL) has developed a novel receiver which is the heart of the SERIES geodetic system designed to use signals broadcast from the GPS. This receiver does not require knowledge of the exact code sequence being transmitted. In addition, when two SERIES receivers are used differentially to determine a baseline, few cm accuracies can be obtained. The initial engineering test phase has been completed for the SERIES Project. Baseline lengths, ranging from 150 meters to 171 kilometers, have been measured with 0.3 cm to 7 cm accuracies. This technology, which is sponsored by the NASA Geodynamics Program, has been developed at JPL to meet the challenge for high precision, cost-effective geodesy, and to complement the mobile Very Long Baseline Interferometry (VLBI) system for Earth surveying.

  13. The Robo-AO KOI Survey: Laser Adaptive Optics Imaging of Every Kepler Exoplanet Candidate

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed L.

    2016-01-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that pollute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present approximately 3300 high resolution observations of Kepler planetary hosts from 2012-2015, with ~500 observed nearby stars. We measure an overall nearby star probability rate of 16.2±0.8%. With this large dataset, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host. We then use these clues for insight into the formation and evolution of these exotic systems. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting in the habitable zone.

  14. Improved characterisation of exoplanets discovered in wide-field surveys: HAT-P-29b and HAT-P-31b

    NASA Astrophysics Data System (ADS)

    Rocchetto, M.; Fossey, S.

    2013-09-01

    In recent years a large population of exoplanets has been discovered thanks to ground-based surveys such as WASP and HATnet. These are typically relatively big planets in close orbits to their parent star that produce transit light curves with depths of up to a few percent which can be well observed using relatively smal-aperture ground-based telescopes. Due to the large number of planets discovered, systematic followup of most of these targets is often lacking. Moreover, in some discovery papers the characterisation of the planet is made with partial-transit follow-up light curves or relies entirely on the wide-field survey photometry, leading to relatively large uncertainties in the derived planetary parameters. We present followup photometry for two such cases, HAT-P-29b and HAT-P-31b, obtained with a 35-cm telescope based at UCL's University of London Observatory between 2011 and 2012. We find that our light curves are able to provide more accurate and/or precise parameters than those published. Follow-up observations are also important to monitor effects such as transit timing variations (TTVs), which can provide evidence for the presence of other planets in the system, and we explore the current limits on TTV detections for the two planets discussed here. The use of small-aperture telescopes provides an efficient and cost-effective way to improve the characterisation of known exoplanets, leading to an improvement in the statistical properties of these samples; and might also lead to the discovery of new exoplanets through TTV monitoring.

  15. EMI survey for maritime satellite, L-band, shipboard terminal

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.; Brandel, D. L.

    1974-01-01

    The United States Lines 15,690-ton commercial-container ship, American Alliance, was selected as lead ship for an onboard EMI survey prior to installation of L-Band shipboard terminals for operation with two, geostationary, maritime satellites. In general, the EMI survey revealed tolerable interference levels onboard ship: radiometer measurements indicate antenna-noise temperatures less than 70 K, at elevation angles of 5 deg and greater, at 1559 MHz, at the output terminals of the 1.2-m-diameter, parabolic-dish antenna for the L-Band shipboard terminal. Other EMI measurements include field intensity from 3 cm- and 10 cm-wavelength pulse radars, and conducted-emission tests of primary power lines to both onboard radars.

  16. Magsat - A new satellite to survey the earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Mobley, F. F.; Eckard, L. D.; Fountain, G. H.; Ousley, G. W.

    1980-01-01

    The Magsat satellite was launched on Oct. 30, 1979 into a sun-synchronous dawn-dusk orbit, of 97 deg inclination, 350 km perigee, and 550 km apogee. It contains a precision vector magnetometer and a cesium-vapor scalar magnetometer at the end of a 6-m long graphite epoxy scissors boom. The magnetometers are accurate to 2 nanotesla. A pair of star cameras are used to define the body orientation to 10 arc sec rms. An 'attitude transfer system' measures the orientation of the magnetometer sensors relative to the star cameras to approximately 5 arc sec rms. The satellite position is determined to 70 meters rms by Doppler tracking. The overall objective is to determine each component of the earth's vector magnetic field to an accuracy of 6 nanotesla rms. The Magsat satellite gathers a complete picture of the earth's magnetic field every 12 hours. The vector components are sampled 16 times per second with a resolution of 0.5 nanotesla. The data will be used by the U.S. Geological Survey to prepare 1980 world magnetic field charts and to detect large-scale magnetic anomalies in the earth's crust for use in planning resource exploration strategy.

  17. The NASA Exoplanet Exploration Program

    NASA Astrophysics Data System (ADS)

    Hudgins, Douglas M.; Blackwood, Gary H.; Gagosian, John S.

    2015-12-01

    The NASA Exoplanet Exploration Program (ExEP) is chartered to implement the NASA space science goals of detecting and characterizing exoplanets and to search for signs of life. The ExEP manages space missions, future studies, technology investments, and ground-based science that either enables future missions or completes mission science. The exoplanet science community is engaged by the Program through Science Definition Teams and through the Exoplanet Program Analysis Group (ExoPAG). The ExEP includes the space science missions of Kepler, K2 , and the proposed WFIRST-AFTA that includes dark energy science, a widefield infrared survey, a microlensing survey for outer-exoplanet demographics, and a coronagraph for direct imaging of cool outer gas- and ice-giants around nearby stars. Studies of probe-scale (medium class) missions for a coronagraph (internal occulter) and starshade (external occulter) explore the trades of cost and science and provide motivation for a technology investment program to enable consideration of missions at the next decadal survey for NASA Astrophysics. Program elements include follow-up observations using the Keck Observatory, which contribute to the science yield of Kepler and K2, and include mid-infrared observations of exo-zodiacal dust by the Large Binocular Telescope Interferometer which provide parameters critical to the design and predicted science yield of the next generation of direct imaging missions. ExEP includes the NASA Exoplanet Science Institute which provides archives, tools, and professional education for the exoplanet community. Each of these program elements contribute to the goal of detecting and characterizing earth-like planets orbiting other stars, and seeks to respond to rapid evolution in this discovery-driven field and to ongoing programmatic challenges through engagement of the scientific and technical communities.

  18. The NASA Exoplanet Exploration Program

    NASA Astrophysics Data System (ADS)

    Hudgins, Douglas M.; Blackwood, Gary; Gagosian, John

    2014-11-01

    The NASA Exoplanet Exploration Program (ExEP) is chartered to implement the NASA space science goals of detecting and characterizing exoplanets and to search for signs of life. The ExEP manages space missions, future studies, technology investments, and ground-based science that either enables future missions or completes mission science. The exoplanet science community is engaged by the Program through Science Definition Teams and through the Exoplanet Program Analysis Group. The ExEP includes the space science missions of Kepler, K2, and the proposed WFIRST-AFTA that includes dark energy science, a widefield infrared survey, a microlensing survey for outer-exoplanet demographics, and a coronagraph for direct imaging of cool outer gas- and ice-giants around nearby stars. Studies of probe-scale (medium class) missions for a coronagraph (internal occulter) and starshade (external occulter) explore the trades of cost and science and provide motivation for a technology investment program to enable consideration of missions at the next decadal survey for NASA Astrophysics. Program elements include follow-up observations using the Keck Observatory which contribute to the science yield of Kepler and K2, and include mid-infrared observations of exo-zodiacal dust by the Large Binocular Telescope Interferometer which provide parameters critical to the design and predicted science yield of the next generation of direct imaging missions. ExEP includes the NASA Exoplanet Science Institute which provides archives, tools, and professional education for the exoplanet community. Each of these program elements contribute to the goal of detecting and characterizing earth-like planets orbiting other stars, and seeks to respond to rapid evolution in this discovery-driven field and to ongoing programmatic challenges through engagement of the scientific and technical communities.

  19. Exoplanets, extremophiles and habitability

    NASA Astrophysics Data System (ADS)

    Janot Pacheco, E.; Bernardes, L.

    2012-09-01

    Estimates of the average surface temperature and CO2 partial atmospheric pressure of already discovered exoplanets supposed to be in their Habitable Zone of their stars were surveyed from the Exoplanet Encyclopedia database. Moreover, since planetary surface temperature strongly depends on its albedo and geodynamic conditions, we have been feeding exoplanetary data into a comprehensive model of Earth's atmosphere to get better estimations. We also investigated the possible presence of "exomoons" belonging to giant planets capable of harbour dynamic stability and to retain atmospheric layers and keep geodynamic activity for long time spans. Collected information on biological data of micro-organisms classified as "extremophiles" indicate that such kind of microbial species could dwell in many of them. We thus propose an extension of the more astronomically defined "Habitable Zone" concept into the more astrobiologically "Extremophile Zone", taking into account other refined parameters allowing survival of more robust life forms.

  20. The SEEDS High-Contrast Imaging Survey: Exoplanet and Brown Dwarf Survey for Nearby Young Stars Dated with Gyrochronology and Activity Age Indicators

    NASA Astrophysics Data System (ADS)

    Kuzuhara, Masayuki; Tamura, Motohide; Helminiak, Kris; Mede, Kyle; Brandt, Timothy; Janson, Markus; Kandori, Ryo; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun

    2015-12-01

    The SEEDS campaign has successfully discovered and characterized exoplanets, brown dwarfs, and circumstellar disks since it began in 2009, via the direct imaging technique. The survey has targeted nearby young stars, as well as stars associated to star-forming regions, the Pleiades open cluster, moving groups, and debris disks. We selected the nearby young stars that have been dated with age indicators based on stellar rotation periods (i.e., gyrochronology) and chromoshperic/coronal activities. Of these, nearly 40 were observed, with ages mainly between 100 and 1000 Myr and distances less than 40 pc. Our observations typically attain the contrast of ~6 x 10-6 at 1'' and better than ~1 x 10-6 beyond 2'', enabling us to detect a planetary-mass companion even around such old stars. Indeed, the SEEDS team reported the discovery that the nearby Sun-like star GJ 504 hosts a Jovian companion GJ 504b, which has a mass of 3-8.5 Jupiter masses that is inferred according to the hot-start cooling models and our estimated system age of 100-510 Myr. The remaining observations out of the selected ~40 stars have resulted in no detection of additional planets or brown dwarf companions. Meanwhile, we have newly imaged a low-mass stellar companion orbiting the G-type star HIP 10321, for which the presence of companion was previously announced via radial velocity technique. The astrometry and radial velocity measurements are simultaneously analyzed to determine the orbit, providing constraints on the dynamical mass of both objects and stellar evolution models. Here we summarize our direct imaging observations for the nearby young stars dated with gyrochrolorogy and activity age indicators. Furthermore, we report the analysis for the HIP 10321 system with the imaged low-mass companion.

  1. Exoplanet's Atmospheres Characteristics vs. Exoplanet's Orbital Elements

    NASA Astrophysics Data System (ADS)

    Molaverdikhani, Karan

    2009-10-01

    400 years after Galileo Galilei was detected Jovian system, we know about 400 exoplanets in other stellar systems. But we identify just about their major properties like some of orbital elements, planet's radii or density. Also, there are many scientists who interested in searching for life or habitability on these planets. They are working in different ways such as planetary formation, planetary orbital stability or immigration, HabStars, composition of atmospheres, most probable zone in sky for exoplanets detection, etc. In this research we distinct and defined some main characteristics of terrestrial planet's atmospheres with surveying on solar system's planets and matching with current theorems on atmosphere formation. On the other hand, we were modeled Mars, Venus, Titan, single Hadley Earth and virtual Venus with different tilt angel (applying Global Circulation Modeling) to finding a critical limit on Polar Vortex formation in our last research. With extension this method on hypothetical terrestrial planets in constraint mass between 0.7 to 2.5 Earth's mass on Green Belt and applying host stars from 0.5 to 1.5 Sun's mass, we found some limitations on planet's atmosphere formation and estimation values of atmosphere's main characteristics.

  2. Small satellite survey mission to the second Earth moon

    NASA Astrophysics Data System (ADS)

    Pergola, P.

    2013-11-01

    This paper presents an innovative space mission devoted to the survey of the small Earth companion asteroid by means of nano platforms. Also known as the second Earth moon, Cruithne, is the target identified for the mission. Both the trajectory to reach the target and a preliminary spacecraft budget are here detailed. The idea is to exploit high efficient ion thrusters to reduce the propellant mass fraction in such a high total impulse mission (of the order of 1e6 Ns). This approach allows for a 100 kg class spacecraft with a very small Earth escape energy (5 km2/s2) to reach the destination in about 320 days. The 31% propellant mass fraction allows for a payload mass fraction of the order of 8% and this is sufficient to embark on such a small spacecraft a couple of nano-satellites deployed once at the target to carry out a complete survey of the asteroid. Two 2U Cubesats are here considered as representative payload, but also other scientific payloads or different platforms might be considered according with the specific mission needs. The small spacecraft used to transfer these to the target guarantees the manoeuvre capabilities during the interplanetary journey, the protection against radiations along the path and the telecommunication relay functions for the data transmission with Earth stations. The approach outlined in the paper offers reliable solutions to the main issues associated with a deep space nano-satellite mission thus allowing the exploitation of distant targets by means of these tiny spacecraft. The study presents an innovative general strategy for the NEO observation and Cruithne is chosen as test bench. This target, however, mainly for its relevant inclination, requires a relatively large propellant mass fraction that can be reduced if low inclination asteroids are of interest. This might increase the payload mass fraction (e.g. additional Cubesats and/or additional scientific payloads on the main bus) for the same 100 kg class mission.

  3. Exoplanets: The Hunt Continues!

    NASA Astrophysics Data System (ADS)

    2001-04-01

    Swiss Telescope at La Silla Very Successful Summary The intensive and exciting hunt for planets around other stars ( "exoplanets" ) is continuing with great success in both hemispheres. Today, an international team of astronomers from the Geneva Observatory and other research institutes [1] is announcing the discovery of no less than eleven new, planetary companions to solar-type stars, HD 8574, HD 28185, HD 50554, HD 74156, HD 80606, HD 82943, HD 106252, HD 141937, HD 178911B, HD 141937, among which two new multi-planet systems . The masses of these new objects range from slightly less than to about 10 times the mass of the planet Jupiter [2]. The new detections are based on measured velocity changes of the stars [3], performed with the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory , as well as with instruments on telescopes at the Haute-Provence Observatory and on the Keck telescopes on Mauna Kea (Hawaii, USA). Some of the new planets are unusual: * a two-planet system (around the star HD 82943) in which one orbital period is nearly exactly twice as long as the other - cases like this (refered to as "orbital resonance") are well known in our own solar system; * another two-planet system (HD 74156), with a Jupiter-like planet and a more massive planet further out; * a planet with the most elongated orbit detected so far (HD 80606), moving between 5 and 127 million kilometers from the central star; * a giant planet moving in an orbit around its Sun-like central star that is very similar to the one of the Earth and whose potential satellites (in theory, at least) might be "habitable". At this moment, there are 63 know exoplanet candidates with minimum masses below 10 Jupiter masses, and 67 known objects with minimum masses below 17 Jupiter masses. The present team of astronomers has detected about half of these. PR Photo 13a/01 : Radial-velocity measurements of HD 82943, a two-planet system . PR Photo 13b/01 : Radial

  4. The alignment of SDSS satellites with the VPOS: effects of the survey footprint shape

    NASA Astrophysics Data System (ADS)

    Pawlowski, Marcel S.

    2016-02-01

    It is sometimes argued that the uneven sky coverage of the Sloan Digital Sky Survey (SDSS) biases the distribution of satellite galaxies discovered by it to align with the polar plane defined by the 11 brighter, classical Milky Way (MW) satellites. This might prevent the SDSS satellites from adding significance to the MW's vast polar structure (VPOS). We investigate whether this argument is valid by comparing the observed situation with model satellite distributions confined to the exact SDSS footprint area. We find that the SDSS satellites indeed add to the significance of the VPOS and that the survey footprint rather biases away from a close alignment between the plane fitted to the SDSS satellites and the plane fitted to the 11 classical satellites. Finding the observed satellite phase-space alignments of both the classical and SDSS satellites is an ˜5σ event with respect to an isotropic distribution. This constitutes a robust discovery of the VPOS and makes it more significant than the Great Plane of Andromeda (GPoA). Motivated by the GPoA, which consists of only about half of M31's satellites, we also estimate which fraction of the MW satellites is consistent with being part of an isotropic distribution. Depending on the underlying satellite plane width, only 2 to 6 out of the 27 considered MW satellites are expected to be drawn from isotropy, and an isotropic component of ≳50 per cent of the MW satellite population is excluded at 95 per cent confidence.

  5. Exoplanets Galore!

    NASA Astrophysics Data System (ADS)

    2000-05-01

    Eight New Very Low-Mass Companions to Solar-Type Stars Discovered at La Silla The intensive and exciting hunt for planets around other stars ("exoplanets") is continuing with great success in both hemispheres. Today, a team of astronomers of the Geneva Observatory [1] are announcing the discovery of no less than eight new, very-low mass companions to solar-type stars. The masses of these objects range from less than that of planet Saturn to about 15 times that of Jupiter. The new results were obtained by means of high-precision radial-velocity measurements with the CORALIE spectrometer at the Swiss 1.2-m Leonhard Euler telescope at the ESO La Silla Observatory. An earlier account of this research programme is available as ESO Press Release 18/98. Recent views of this telescope and its dome are available below as PR Photos 13a-c/00. This observational method is based on the detection of changes in the velocity of the central star , due to the changing direction of the gravitational pull from an (unseen) exoplanet as it orbits the star. The evaluation of the measured velocity variations allows to deduce the planet's orbit , in particular the period and the distance from the star, as well as a minimum mass [2]. The characteristics of the new objects are quite diverse. While six of them are most likely bona-fide exoplanets , two are apparently very low-mass brown-dwarfs (objects of sub-stellar mass without a nuclear energy source in their interior). From the first discovery of an exoplanet around the star 51 Pegasi in 1995 (by Michel Mayor and Didier Queloz of the present team), the exoplanet count is now already above 40. "The present discoveries complete and enlarge our still preliminary knowledge of extra-solar planetary systems, as well as the transition between planets and `brown dwarfs'" , say Mayor and Queloz, on behalf of the Swiss team. An overview of the new objects ESO PR Photo 12/00 ESO PR Photo 12/00 [Preview - JPEG: 400 x 242 pix - 76k] [Normal - JPEG

  6. Eccentricity of small exoplanets

    NASA Astrophysics Data System (ADS)

    Van Eylen, Vincent; Albrecht, Simon

    2015-12-01

    Solar system planets move on almost circular orbits. In strong contrast, many massive gas giant exoplanets travel on highly elliptical orbits, whereas the shape of the orbits of smaller, more terrestrial, exoplanets remained largely elusive. This is because the stellar radial velocity caused by these small planets is extremely challenging to measure. Knowing the eccentricity distribution in systems of small planets would be important as it holds information about the planet's formation and evolution. Furthermore the location of the habitable zone depends on eccentricity, and eccentricity also influences occurrence rates inferred for these planets because planets on circular orbits are less likely to transit. We make these eccentricity measurements of small planets using photometry from the Kepler satellite and utilizing a method relying on Kepler's second law, which relates the duration of a planetary transit to its orbital eccentricity, if the stellar density is known.I present a sample of 28 multi-planet systems with precise asteroseismic density measurements, which host 74 planets with an average radius of 2.6 R_earth. We find that the eccentricity of planets in these systems is low and can be described by a Rayleigh distribution with sigma = 0.049 +- 0.013. This is in full agreement with solar system eccentricities, but in contrast to the eccentricity distributions previously derived for exoplanets from radial velocity studies. I further report the first results on the eccentricities of over 50 Kepler single-planet systems, and compare them with the multi-planet systems. I close the talk by showing how transit durations help distinguish between false positives and true planets, and present six new planets.

  7. Combining Photometry from Kepler and TESS to Improve Short-period Exoplanet Characterization

    NASA Astrophysics Data System (ADS)

    Placek, Ben; Knuth, Kevin H.; Angerhausen, Daniel

    2016-07-01

    Planets emit thermal radiation and reflect incident light that they receive from their host stars. As a planet orbits its host star the photometric variations associated with these two effects produce very similar phase curves. If observed through only a single bandpass, this leads to a degeneracy between certain planetary parameters that hinder the precise characterization of such planets. However, observing the same planet through two different bandpasses gives much more information about the planet. Here we develop a Bayesian methodology for combining photometry from both Kepler and the Transiting Exoplanet Survey Satellite. In addition, we demonstrate via simulations that one can disentangle the reflected and thermally emitted light from the atmosphere of a hot-Jupiter as well as more precisely constrain both the geometric albedo and day-side temperature of the planet. This methodology can further be employed using various combinations of photometry from the James Webb Space Telescope, the Characterizing ExOplanet Satellite, or the PLATO mission.

  8. The GTC exoplanet transit spectroscopy survey. III. No asymmetries in the transit of CoRoT-29b

    NASA Astrophysics Data System (ADS)

    Pallé, E.; Chen, G.; Alonso, R.; Nowak, G.; Deeg, H.; Cabrera, J.; Murgas, F.; Parviainen, H.; Nortmann, L.; Hoyer, S.; Prieto-Arranz, J.; Nespral, D.; Cabrera Lavers, A.; Iro, N.

    2016-04-01

    Context. The launch of the exoplanet space missions obtaining exquisite photometry from space has resulted in the discovery of thousands of planetary systems with very different physical properties and architectures. Among them, the exoplanet CoRoT-29b was identified in the light curves the mission obtained in summer 2011, and presented an asymmetric transit light curve, which was tentatively explained via the effects of gravity darkening. Aims: Transits of CoRoT-29b are measured with precision photometry, to characterize the reported asymmetry in their transit shape. Methods: Using the OSIRIS spectrograph at the 10-m GTC telescope, we perform spectro-photometric differential observations, which allow us to both calculate a high-accuracy photometric light curve, and a study of the color-dependence of the transit. Results: After careful data analysis, we find that the previously reported asymmetry is not present in either of two transits, observed in July 2014 and July 2015 with high photometric precisions of 300 ppm over 5 min. Due to the relative faintness of the star, we do not reach the precision necessary to perform transmission spectroscopy of its atmosphere, but we see no signs of color-dependency of the transit depth or duration. Conclusions: We conclude that the previously reported asymmetry may have been a time-dependent phenomenon, which did not occur in more recent epochs. Alternatively, instrumental effects in the discovery data may need to be reconsidered. Light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A62

  9. The GTC exoplanet transit spectroscopy survey. III. No asymmetries in the transit of CoRoT-29b

    NASA Astrophysics Data System (ADS)

    Pallé, E.; Chen, G.; Alonso, R.; Nowak, G.; Deeg, H.; Cabrera, J.; Murgas, F.; Parviainen, H.; Nortmann, L.; Hoyer, S.; Prieto-Arranz, J.; Nespral, D.; Cabrera Lavers, A.; Iro, N.

    2016-05-01

    Context. The launch of the exoplanet space missions obtaining exquisite photometry from space has resulted in the discovery of thousands of planetary systems with very different physical properties and architectures. Among them, the exoplanet CoRoT-29b was identified in the light curves the mission obtained in summer 2011, and presented an asymmetric transit light curve, which was tentatively explained via the effects of gravity darkening. Aims: Transits of CoRoT-29b are measured with precision photometry, to characterize the reported asymmetry in their transit shape. Methods: Using the OSIRIS spectrograph at the 10-m GTC telescope, we perform spectro-photometric differential observations, which allow us to both calculate a high-accuracy photometric light curve, and a study of the color-dependence of the transit. Results: After careful data analysis, we find that the previously reported asymmetry is not present in either of two transits, observed in July 2014 and July 2015 with high photometric precisions of 300 ppm over 5 min. Due to the relative faintness of the star, we do not reach the precision necessary to perform transmission spectroscopy of its atmosphere, but we see no signs of color-dependency of the transit depth or duration. Conclusions: We conclude that the previously reported asymmetry may have been a time-dependent phenomenon, which did not occur in more recent epochs. Alternatively, instrumental effects in the discovery data may need to be reconsidered. Light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A62

  10. GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy

    NASA Astrophysics Data System (ADS)

    Sing, D. K.; Huitson, C. M.; Lopez-Morales, M.; Pont, F.; Désert, J.-M.; Ehrenreich, D.; Wilson, P. A.; Ballester, G. E.; Fortney, J. J.; Lecavelier des Etangs, A.; Vidal-Madjar, A.

    2012-10-01

    We present two transits of the hot-Jupiter exoplanet XO-2b using the Gran Telescopio Canarias (GTC). The time series observations were performed using long-slit spectroscopy of XO-2 and a nearby reference star with the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) instrument, enabling differential spectrophotometric transit light curves capable of measuring the exoplanet's transmission spectrum. Two optical low-resolution grisms were used to cover the optical wavelength range from 3800 to 9300 Å. We find that sub-mmag-level slit losses between the target and reference star prevent full optical transmission spectra from being constructed, limiting our analysis to differential absorption depths over ˜1000 Å regions. Wider long slits or multi-object grism spectroscopy with wide masks will likely prove effective in minimizing the observed slit-loss trends. During both transits, we detect significant absorption in the planetary atmosphere of XO-2b using a 50-Å bandpass centred on the Na I doublet, with absorption depths of Δ(Rpl/R★)2 = 0.049 ± 0.017 per cent using the R500R grism and 0.047 ± 0.011 per cent using the R500B grism (combined 5.2σ significance from both transits). The sodium feature is unresolved in our low-resolution spectra, with detailed modelling also likely ruling out significant line-wing absorption over an ˜800 Å region surrounding the doublet. Combined with narrow-band photometric measurements, XO-2b is the first hot Jupiter with evidence for both sodium and potassium present in the planet's atmosphere. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma, and part of the large European Southern Observatory (ESO) programme 182.C-2018.

  11. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wyttenbach, Aurélien; Ehrenreich, David

    2015-12-01

    The field of exoplanet atmospheres is booming thanks to (low-resolution) space-borne spectrographs and high-resolution (narrow-ranged) NIR spectrographs on ground-based 8m-class telescopes. Atmospheres are important because they are our observing window on the physical, chemical, and evolutionary processes occurring on exoplanets. Transiting exoplanets are the best suitable targets for atmospheric studies. Observing a transit in different filters or with a spectrograph reveals the transmission spectrum of the planet atmosphere. More than one decade of such observations allowed the exploration of these remote words by detecting some constituents of their atmospheres, but revealing also the presence of scattering hazes and clouds in several exoplanets preventing the detection of major chemical constituents at low to medium resolution even from space.Transit observations from the ground with stabilised high-resolution spectrograph, such HARPS, have key roles to play in this context. Observation of the hot-jupiter HD 189733b with HARPS allow the detection of sodium in the planet atmosphere. The high-resolution transmission spectra allowed to probe a new region high in the atmosphere and revealed rapid winds and a heating thermosphere. This new use of the famous planet hunter turned HARPS into a powerful exoplanet characterisation machine. It has the precision level of the Hubble Space Telescope, albeit at 20 higher resolution.A survey of a large set of known hot transiting exoplanets with HARPS and later with ESPRESSO will allow the detection of key tracers of atmospheric physics, chemistry, and evolution, above the scattering haze layers known to dominate low-resolution visible spectra of exoplanets.Such observation, in total sinergy with other technics, will rmly establish stabilised, high-resolution spectrographs on 4m telescopes as corner-stones for the characterisation of exoplanets. This is instrumental considering the upcoming surveys (NGTS,K2, CHEOPS, TESS

  12. SPLAT: Using Spectral Indices to Identify and Characterize Ultracool Stars, Brown Dwarfs and Exoplanets in Deep Surveys and as Companions to Nearby Stars

    NASA Astrophysics Data System (ADS)

    Aganze, Christian; Burgasser, Adam J.; Martin, Eduardo; Konopacky, Quinn; Masters, Daniel C.

    2016-06-01

    The majority of ultracool dwarf stars and brown dwarfs currently known were identified in wide-field red optical and infrared surveys, enabling measures of the local, typically isolated, population in a relatively shallow (<100 pc radius) volume. Constraining the properties of the wider Galactic population (scale height, radial distribution, Population II sources), and close brown dwarf and exoplanet companions to nearby stars, requires specialized instrumentation, such as high-contrast, coronagraphic spectrometers (e.g., Gemini/GPI, VLT/Sphere, Project 1640); and deep spectral surveys (e.g., HST/WFC3 parallel fields, Euclid). We present a set of quantitative methodologies to identify and robustly characterize sources for these specific populations, based on templates and tools developed as part of the SpeX Prism Library Analysis Toolkit. In particular, we define and characterize specifically-tuned sets spectral indices that optimize selection of cool dwarfs and distinguish rare populations (subdwarfs, young planetary-mass objects) based on low-resolution, limited-wavelength-coverage spectral data; and present a template-matching classification method for these instruments. We apply these techniques to HST/WFC3 parallel fields data in the WISPS and HST-3D programs, where our spectral index set allows high completeness and low contamination for searches of late M, L and T dwarfs to distances out to ~3 kpc.The material presented here is based on work supported by the National Aeronautics and Space Administration under Grant No. NNX15AI75G.

  13. Synthesizing Exoplanet Demographics: A Single Population of Long-period Planetary Companions to M Dwarfs Consistent with Microlensing, Radial Velocity, and Direct Imaging Surveys

    NASA Astrophysics Data System (ADS)

    Clanton, Christian; Gaudi, B. Scott

    2016-03-01

    We present the first study to synthesize results from five different exoplanet surveys using three independent detection methods: microlensing, radial velocity, and direct imaging. The constraints derived herein represent the most comprehensive picture of the demographics of large-separation (≳2 AU) planets orbiting the most common stars in our Galaxy that has been constructed to date. We assume a simple, joint power-law planet distribution function of the form {d}2{N}{{pl}}/(d{log} {m}p d{log} a)={ A }{({m}p/{M}{{Sat}})}α {(a/2.5{{AU}})}β with an outer cutoff radius of the separation distribution function of aout. Generating populations of planets from these models and mapping them into the relevant observables for each survey, we use actual or estimated detection sensitivities to determine the expected observations for each survey. Comparing with the reported results, we derive constraints on the parameters \\{α ,β ,{ A },{a}{{out}}\\} that describe a single population of planets that is simultaneously consistent with the results of microlensing, radial velocity, and direct imaging surveys. We find median and 68% confindence intervals of α =-{0.86}-0.19+0.21 (-{0.85}-0.19+0.21), β ={1.1}-1.4+1.9 ({1.1}-1.3+1.9), { A }={0.21}-0.15+0.20 {{dex}}-2 ({0.21}-0.15+0.20 {{dex}}-2), and {a}{{out}}={10}-4.7+26 AU ({12}-6.2+50 AU) assuming “hot-start” (“cold-start”) planet evolutionary models. These values are consistent with all current knowledge of planets on orbits beyond ∼2 AU around single M dwarfs.

  14. U. S. GEOLOGICAL SURVEY'S NATIONAL REAL-TIME HYDROLOGIC INFORMATION SYSTEM USING GOES SATELLITE TECHNOLOGY.

    USGS Publications Warehouse

    Shope, William G., Jr.

    1987-01-01

    The U. S. Geological Survey maintains the basic hydrologic data collection system for the United States. The Survey is upgrading the collection system with electronic communications technologies that acquire, telemeter, process, and disseminate hydrologic data in near real-time. These technologies include satellite communications via the Geostationary Operational Environmental Satellite, Data Collection Platforms in operation at over 1400 Survey gaging stations, Direct-Readout Ground Stations at nine Survey District Offices and a network of powerful minicomputers that allows data to be processed and disseminate quickly.

  15. Satellite Emission Radio Interferometric Earth Surveying (SERIES). [astrometry

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1980-01-01

    Existing satellite radio emissions of the global positioning system were exploited as a resource for cost effective high accuracy geodetic measurements. System applications were directed toward crustal dynamics and earthquake research.

  16. PLANETESIMAL COMPOSITIONS IN EXOPLANET SYSTEMS

    SciTech Connect

    Johnson, Torrence V.; Mousis, Olivier; Lunine, Jonathan I.; Madhusudhan, Nikku

    2012-10-01

    We have used recent surveys of the composition of exoplanet host stars to investigate the expected composition of condensed material in planetesimals formed beyond the snow line in the circumstellar nebulae of these systems. Of the major solid-forming elements, C and O abundances (and particularly the C/O abundance ratio) strongly affect the amounts of volatile ices and refractory phases in icy planetesimals formed in these systems. This results from these elements' effects on the partitioning of O among gas, refractory solid and ice phases in the final condensate. The calculations use a self-consistent model for the condensation sequence of volatile ices from the nebula gas after refractory (silicate and metal) phases have condensed. The resultant mass fractions (compared to the total condensate) of refractory phases and ices were calculated for a range of nebular temperature structures and redox conditions. Planetesimals in systems with sub-solar C/O should be water ice-rich, with lower than solar mass fractions of refractory materials, while in super-solar C/O systems planetesimals should have significantly higher mass fractions of refractories, in some cases having little or no water ice. C-bearing volatile ices and clathrates also become increasingly important with increasing C/O depending on the assumed nebular temperatures. These compositional variations in early condensates in the outer portions of the nebula will be significant for the equivalent of the Kuiper Belt in these systems, icy satellites of giant planets, and the enrichment (over stellar values) of volatiles and heavy elements in giant planet atmospheres.

  17. A statistical analysis of seeds and other high-contrast exoplanet surveys: massive planets or low-mass brown dwarfs?

    SciTech Connect

    Brandt, Timothy D.; Spiegel, David S.; McElwain, Michael W.; Grady, C. A.; Turner, Edwin L.; Mede, Kyle; Kuzuhara, Masayuki; Schlieder, Joshua E.; Brandner, W.; Feldt, M.; Wisniewski, John P.; Abe, L.; Biller, B.; Carson, J.; Currie, T.; Egner, S.; Golota, T.; Guyon, O.; Goto, M.; Hashimoto, J.; and others

    2014-10-20

    We conduct a statistical analysis of a combined sample of direct imaging data, totalling nearly 250 stars. The stars cover a wide range of ages and spectral types, and include five detections (κ And b, two ∼60 M {sub J} brown dwarf companions in the Pleiades, PZ Tel B, and CD–35 2722B). For some analyses we add a currently unpublished set of SEEDS observations, including the detections GJ 504b and GJ 758B. We conduct a uniform, Bayesian analysis of all stellar ages using both membership in a kinematic moving group and activity/rotation age indicators. We then present a new statistical method for computing the likelihood of a substellar distribution function. By performing most of the integrals analytically, we achieve an enormous speedup over brute-force Monte Carlo. We use this method to place upper limits on the maximum semimajor axis of the distribution function derived from radial-velocity planets, finding model-dependent values of ∼30-100 AU. Finally, we model the entire substellar sample, from massive brown dwarfs to a theoretically motivated cutoff at ∼5 M {sub J}, with a single power-law distribution. We find that p(M, a)∝M {sup –0.65} {sup ±} {sup 0.60} a {sup –0.85} {sup ±} {sup 0.39} (1σ errors) provides an adequate fit to our data, with 1.0%-3.1% (68% confidence) of stars hosting 5-70 M {sub J} companions between 10 and 100 AU. This suggests that many of the directly imaged exoplanets known, including most (if not all) of the low-mass companions in our sample, formed by fragmentation in a cloud or disk, and represent the low-mass tail of the brown dwarfs.

  18. A Statistical Analysis of SEEDS and Other High-contrast Exoplanet Surveys: Massive Planets or Low-mass Brown Dwarfs?

    NASA Astrophysics Data System (ADS)

    Brandt, Timothy D.; McElwain, Michael W.; Turner, Edwin L.; Mede, Kyle; Spiegel, David S.; Kuzuhara, Masayuki; Schlieder, Joshua E.; Wisniewski, John P.; Abe, L.; Biller, B.; Brandner, W.; Carson, J.; Currie, T.; Egner, S.; Feldt, M.; Golota, T.; Goto, M.; Grady, C. A.; Guyon, O.; Hashimoto, J.; Hayano, Y.; Hayashi, M.; Hayashi, S.; Henning, T.; Hodapp, K. W.; Inutsuka, S.; Ishii, M.; Iye, M.; Janson, M.; Kandori, R.; Knapp, G. R.; Kudo, T.; Kusakabe, N.; Kwon, J.; Matsuo, T.; Miyama, S.; Morino, J.-I.; Moro-Martín, A.; Nishimura, T.; Pyo, T.-S.; Serabyn, E.; Suto, H.; Suzuki, R.; Takami, M.; Takato, N.; Terada, H.; Thalmann, C.; Tomono, D.; Watanabe, M.; Yamada, T.; Takami, H.; Usuda, T.; Tamura, M.

    2014-10-01

    We conduct a statistical analysis of a combined sample of direct imaging data, totalling nearly 250 stars. The stars cover a wide range of ages and spectral types, and include five detections (κ And b, two ~60 M J brown dwarf companions in the Pleiades, PZ Tel B, and CD-35 2722B). For some analyses we add a currently unpublished set of SEEDS observations, including the detections GJ 504b and GJ 758B. We conduct a uniform, Bayesian analysis of all stellar ages using both membership in a kinematic moving group and activity/rotation age indicators. We then present a new statistical method for computing the likelihood of a substellar distribution function. By performing most of the integrals analytically, we achieve an enormous speedup over brute-force Monte Carlo. We use this method to place upper limits on the maximum semimajor axis of the distribution function derived from radial-velocity planets, finding model-dependent values of ~30-100 AU. Finally, we model the entire substellar sample, from massive brown dwarfs to a theoretically motivated cutoff at ~5 M J, with a single power-law distribution. We find that p(M, a)vpropM -0.65 ± 0.60 a -0.85 ± 0.39 (1σ errors) provides an adequate fit to our data, with 1.0%-3.1% (68% confidence) of stars hosting 5-70 M J companions between 10 and 100 AU. This suggests that many of the directly imaged exoplanets known, including most (if not all) of the low-mass companions in our sample, formed by fragmentation in a cloud or disk, and represent the low-mass tail of the brown dwarfs. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  19. Exoplanet environments to harbour extremophile life

    NASA Astrophysics Data System (ADS)

    Janot-Pacheco, Eduardo; Lage, Claudia A. S.; Lima, Ivan G. P.

    2010-02-01

    In this contribution, we estimate the temperature at the surface of known exoplanets and of their putative satellites for two albedo extreme cases (Venus and Mars) and present a selection of extremophiles living on Earth that can live under those conditions. We examine also the possibility of survival of microorganisms in planetary systems of variable stars.

  20. Discovery and Spectroscopic Follow-up of Milky Way Satellites in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Li, Ting

    2016-01-01

    A complete census of Milky Way satellite galaxies provides crucial tests of both galaxy formation models and the Lambda-Cold Dark Matter theoretical paradigm. Wide-field imaging survey data from the first two year of the Dark Energy Survey (DES) have recently been used to discover many new Milky Way satellites, nearly doubling the number of known satellites. In this talk, I will describe the new dwarf galaxy candidates found in DES. I will also discuss the latest results from spectroscopic follow-up observations on some of the candidates using the Magellan, VLT, and AAT telescopes.

  1. Polarimetry for rocky exoplanet characterization

    NASA Astrophysics Data System (ADS)

    Stam, Daphne; Karalidi, Theodora

    2013-04-01

    polarized, especially at planetary phase angles around 90 degrees, that are favorable for observing exoplanets. Polarimetry thus improves the contrast between stars and their planets, and confirms that the detected object is indeed a planet. Polarimetry is also invaluable for the characterization of exoplanets. This application is known from the derivation of the Venus cloud properties from the planet's polarized phase function by Hansen & Hovenier in 1974. Using numerically simulated flux and polarization phase functions and spectra for rocky exoplanets, I will discuss the added value of polarimetry for exoplanet characterization as compared to flux observations, in particular for the retrieval of properties of clouds and hazes. Special attention will be given to the features in polarized phase functions that reveal the existence of liquid water clouds in an exoplanet's atmosphere (rainbows), even in the presence of ice clouds. Using satellite data of the cloud and surface coverage of the Earth, calculated flux and polarization phase functions that should be observable from afar will be presented.

  2. A Survey of the Utility of Satellite Magnetometer Data for Application to Solid-earth Geophysical and Geological Studies

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A survey of potential users of low altitude satellite magnetic measurements for solid-earth and geological studies was conducted. The principal objectives of this survey were to: document the utility and application of the data and resultant products obtained from such a satellite mission, and establish a users committee for the proposed low altitude vector magnetometer satellite.

  3. Satellites

    SciTech Connect

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system.

  4. The Architecture of Exoplanets

    NASA Astrophysics Data System (ADS)

    Hatzes, Artie P.

    2016-05-01

    Prior to the discovery of exoplanets our expectations of their architecture were largely driven by the properties of our solar system. We expected giant planets to lie in the outer regions and rocky planets in the inner regions. Planets should probably only occupy orbital distances 0.3-30 AU from the star. Planetary orbits should be circular, prograde and in the same plane. The reality of exoplanets have shattered these expectations. Jupiter-mass, Neptune-mass, Superearths, and even Earth-mass planets can orbit within 0.05 AU of the stars, sometimes with orbital periods of less than one day. Exoplanetary orbits can be eccentric, misaligned, and even in retrograde orbits. Radial velocity surveys gave the first hints that the occurrence rate increases with decreasing mass. This was put on a firm statistical basis with the Kepler mission that clearly demonstrated that there were more Neptune- and Superearth-sized planets than Jupiter-sized planets. These are often in multiple, densely packed systems where the planets all orbit within 0.3 AU of the star, a result also suggested by radial velocity surveys. Exoplanets also exhibit diversity along the main sequence. Massive stars tend to have a higher frequency of planets ( ≈ 20-25 %) that tend to be more massive ( M≈ 5-10 M_{Jup}). Giant planets around low mass stars are rare, but these stars show an abundance of small (Neptune and Superearth) planets in multiple systems. Planet formation is also not restricted to single stars as the Kepler mission has discovered several circumbinary planets. Although we have learned much about the architecture of planets over the past 20 years, we know little about the census of small planets at relatively large ( a>1 AU) orbital distances. We have yet to find a planetary system that is analogous to our own solar system. The question of how unique are the properties of our own solar system remains unanswered. Advancements in the detection methods of small planets over a wide range

  5. Optical Survey of the Tumble Rates of Retired GEO Satellites

    NASA Astrophysics Data System (ADS)

    Binz, C.; Davis, M.; Kelm, B.; Moore, C.

    2014-09-01

    The Naval Research Lab (NRL) and the Defense Advanced Research Projects Agency (DARPA) have made significant progress toward robotic rendezvous and docking between spacecraft, however the long-term attitude motion evolution of uncontrolled resident space objects has never been well-characterized. This effort set out to identify the motion exhibited in retired satellites at or near geosynchronous orbit (GEO). Through analysis of the periodic structure of observed reflected light curves, estimated tumble rates were determined for several retired satellites, typically in a super-GEO disposal orbit. The NRL's 1-meter telescope at Midway Research Center was used to track and observe the objects while the sun-satellite-observer geometry was most favorable; typically over a one- to two-hour period, repeated multiple times over the course of weeks. By processing each image with calibration exposures, the relative apparent magnitude of the brightness of the object over time was determined. Several tools, including software developed internally, were used for frequency analysis of the brightness curves. Results show that observed satellites generally exhibit a tumble rate well below the notional bounding case of one degree per second. When harmonics are found to exist in the data, modeling and simulation of the optical characteristics of the satellite can help to resolve ambiguities. This process was validated on spacecraft for which an attitude history is known, and agreement was found.

  6. The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. II. Survey description, results, and performances

    NASA Astrophysics Data System (ADS)

    Chauvin, G.; Vigan, A.; Bonnefoy, M.; Desidera, S.; Bonavita, M.; Mesa, D.; Boccaletti, A.; Buenzli, E.; Carson, J.; Delorme, P.; Hagelberg, J.; Montagnier, G.; Mordasini, C.; Quanz, S. P.; Segransan, D.; Thalmann, C.; Beuzit, J.-L.; Biller, B.; Covino, E.; Feldt, M.; Girard, J.; Gratton, R.; Henning, T.; Kasper, M.; Lagrange, A.-M.; Messina, S.; Meyer, M.; Mouillet, D.; Moutou, C.; Reggiani, M.; Schlieder, J. E.; Zurlo, A.

    2015-01-01

    Context. Young, nearby stars are ideal targets for direct imaging searches for giant planets and brown dwarf companions. After the first-imaged planet discoveries, vast efforts have been devoted to the statistical analysis of the occurence and orbital distributions of giant planets and brown dwarf companions at wide (≥5-6 AU) orbits. Aims: In anticipation of the VLT/SPHERE planet-imager, guaranteed-time programs, we have conducted a preparatory survey of 86 stars between 2009 and 2013 to identify new faint comoving companions to ultimately analyze the occurence of giant planets and brown dwarf companions at wide (10-2000 AU) orbits around young, solar-type stars. Methods: We used NaCo at VLT to explore the occurrence rate of giant planets and brown dwarfs between typically 0.1 and 8''. Diffraction-limited observations in H-band combined with angular differential imaging enabled us to reach primary star-companion brightness ratios as small as 10-6 at 1.5''. Repeated observations at several epochs enabled us to discriminate comoving companions from background objects. Results: During our survey, twelve systems were resolved as new binaries, including the discovery of a new white dwarf companion to the star HD 8049. Around 34 stars, at least one companion candidate was detected in the observed field of view. More than 400 faint sources were detected; 90% of them were in four crowded fields. With the exception of HD 8049 B, we did not identify any new comoving companions. The survey also led to spatially resolved images of the thin debris disk around HD 61005 that have been published earlier. Finally, considering the survey detection limits, we derive a preliminary upper limit on the frequency of giant planets for the semi-major axes of [10, 2000] AU: typically less than 15% between 100 and 500 AU and less than 10% between 50 and 500 AU for exoplanets that are more massive than 5 MJup and 10 MJup respectively, if we consider a uniform input distribution and a

  7. ECLIPSING BINARY SCIENCE VIA THE MERGING OF TRANSIT AND DOPPLER EXOPLANET SURVEY DATA-A CASE STUDY WITH THE MARVELS PILOT PROJECT AND SuperWASP

    SciTech Connect

    Fleming, Scott W.; Ge Jian; De Lee, Nathan M.; Zhao Bo; Wan Xiaoke; Guo Pengcheng; Maxted, Pierre F. L.; Anderson, David R.; Hellier, Coel; Hebb, Leslie; Stassun, Keivan G.; Cargile, Phillip A.; Gary, Bruce; Ghezzi, Luan; Wisniewski, John; Porto de Mello, G. F.; Ferreira, Leticia; West, Richard G.; Mahadevan, Suvrath; Pollacco, Don

    2011-08-15

    Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC 0272-00458-1 is a single-lined spectroscopic binary for which we calculate a mass of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M{sub 1} = 0.92 {+-} 0.1 M{sub sun}, we find M{sub 2} = 0.610 {+-} 0.036 M{sub sun}, R{sub 1} = 0.932 {+-} 0.076 R{sub sun}, and R{sub 2} = 0.559 {+-} 0.102 R{sub sun}, and find that both stars have masses and radii consistent with model predictions. TYC 1422-01328-1 is a triple-component system for which we can directly measure the masses and radii of the eclipsing pair. We find that the eclipsing pair consists of an evolved primary star (M{sub 1} = 1.163 {+-} 0.034 M{sub sun}, R{sub 1} = 2.063 {+-} 0.058 R{sub sun}) and a G-type dwarf secondary (M{sub 2} = 0.905 {+-} 0.067 M{sub sun}, R{sub 2} = 0.887 {+-} 0.037 R{sub sun}). We provide the framework necessary to apply this analysis to much larger data sets.

  8. Astrometric exoplanet detection with Gaia

    SciTech Connect

    Perryman, Michael; Hartman, Joel; Bakos, Gáspár Á.; Lindegren, Lennart

    2014-12-10

    We provide a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes. Our assessment is based on a large representative sample of host stars from the TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency distributions as a function of stellar type, and detailed simulation of the Gaia observations using the updated instrument performance and scanning law. We use two approaches to estimate detectable planetary systems: one based on the signal-to-noise ratio of the astrometric signature per field crossing, easily reproducible and allowing comparisons with previous estimates, and a new and more robust metric based on orbit fitting to the simulated satellite data. With some plausible assumptions on planet occurrences, we find that some 21,000 (±6000) high-mass (∼1-15M {sub J}) long-period planets should be discovered out to distances of ∼500 pc for the nominal 5 yr mission (including at least 1000-1500 around M dwarfs out to 100 pc), rising to some 70,000 (±20, 000) for a 10 yr mission. We indicate some of the expected features of this exoplanet population, amongst them ∼25-50 intermediate-period (P ∼ 2-3 yr) transiting systems.

  9. Use of the transect method in satellite survey missions with application to the infrared astronomical satellite /IRAS/

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.; Lundy, S. A.; Ling, H. Y.; Stroberg, M. W.

    1980-01-01

    The coverage of the celestial sphere or the surface of the earth with a narrow-field instrument onboard a satellite can be described by a set of swaths on the sphere. A transect is a curve on this sphere constructed to sample the coverage. At each point on the transect the number of times that the field-of-view of the instrument has passed over the point is recorded. This information is conveniently displayed as an integer-valued histogram over the length of the transect. The effectiveness of the transect method for a particular observing plan and the best placement of the transects depends upon the structure of the set of observations. Survey missions are usually characterized by a somewhat parallel alignment of the instrument swaths. Using autocorrelation and cross-correlation functions among the histograms the structure of a survey has been analyzed into two components, and each is illustrated by a simple mathematical model. The complex, all-sky survey to be performed by the Infrared Astronomical Satellite (IRAS) is synthesized in some detail utilizing the objectives and constraints of that mission. It is seen that this survey possesses the components predicted by the simple models and this information is useful in characterizing the properties of the IRAS survey and the placement of the transects as a function of celestial latitude and certain structural properties of the coverage.

  10. Contributions of the Pulkovo and Kharkiv Scientific Schools to the search for exoplanets and low-mass dark satellites of stars

    NASA Astrophysics Data System (ADS)

    Zakhozhay, V. A.; Gnedin, Yu. N.; Shakht, N. A.

    2010-12-01

    This article is devoted to the Pulkovo astronomer, Prof. Aleksandr Nikolaevich Deich (Deutsch) (1899-1986), on the 110-th anniversary of his birth. Deich is known as the founder of the Pulkovo program for observing stars with invisible companions, as well as for his research on the star 61 Cyg, which was suspected, in his time, of having invisible companions with the masses of planets. Astrometric observations on the long focus astrograph and searches for exoplanets of nearby stars are reviewed. Modern methods of searching for exoplanets are summarized briefly. Instrument designs proposed by astronomers at Kharkiv (Scientific Research Institute of Astronomy at Kharkiv National University, NIIA KhNU) and Kazan (Institute of Astronomy, Kazan State University, AO KGU) for use in the search for low-mass dark components of stars are discussed. Examples are given of confirmations of invisible companions of stars which were first discovered by observation. A number of theoretical results on this topic from Kharkiv National University (Scientific Research Institute of Astronomy at Kharkiv and the Dept. of Astronomy) are noted.

  11. CONSTRAINTS ON OH MEGAMASER EXCITATION FROM A SURVEY OF OH SATELLITE LINES

    SciTech Connect

    McBride, James; Heiles, Carl; Elitzur, Moshe

    2013-09-01

    We report the results of a full-Stokes survey of all four 18 cm OH lines in 77 OH megamasers (OHMs) using the Arecibo Observatory. This is the first survey of OHMs that included observations of the OH satellite lines; only four of the 77 OHMs have existing satellite line observations in the literature. Satellite line emission is detected in five sources, three of which are redetections of previously published sources. The two sources with new detections of satellite line emission are IRAS F10173+0829, which was detected at 1720 MHz, and IRAS F15107+0724, for which both the 1612 MHz and 1720 MHz lines were detected. In IRAS F15107+0724, the satellite lines are partially conjugate, as 1720 MHz absorption and 1612 MHz emission have the same structure at some velocities within the source, along with additional broader 1612 MHz emission. This is the first observed example of conjugate satellite lines in an OHM. In the remaining sources, no satellite line emission is observed. The detections and upper limits are generally consistent with models of OHM emission in which all of the 18 cm OH lines have the same excitation temperature. There is no evidence for a significant population of strong satellite line emitters among OHMs.

  12. Molecular opacities for exoplanets.

    PubMed

    Bernath, Peter F

    2014-04-28

    Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules as needed for exoplanet spectroscopy. PMID:24664921

  13. Molecular opacities for exoplanets

    PubMed Central

    Bernath, Peter F.

    2014-01-01

    Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules as needed for exoplanet spectroscopy. PMID:24664921

  14. Spectroscopically Unlocking Exoplanet Characteristics

    NASA Astrophysics Data System (ADS)

    Lewis, Nikole

    2016-05-01

    Spectroscopy plays a critical role in a number of areas of exoplanet research. The first exoplanets were detected by precisely measuring Doppler shifts in high resolution (R ~ 100,000) stellar spectra, a technique that has become known as the Radial Velocity (RV) method. The RV method provides critical constraints on exoplanet masses, but is currently limited to some degree by robust line shape predictions. Beyond the RV method, spectroscopy plays a critical role in the characterization of exoplanets beyond their mass and radius. The Hubble Space Telescope has spectroscopically observed the atmospheres of exoplanets that transit their host stars as seen from Earth giving us key insights into atmospheric abundances of key atomic and molecular species as well as cloud optical properties. Similar spectroscopic characterization of exoplanet atmospheres will be carried out at higher resolution (R ~ 100-3000) and with broader wavelength coverage with the James Webb Space Telescope. Future missions such as WFIRST that seek to the pave the way toward the detection and characterization of potentially habitable planets will have the capability of directly measuring the spectra of exoplanet atmospheres and potentially surfaces. Our ability to plan for and interpret spectra from exoplanets relies heavily on the fidelity of the spectroscopic databases available and would greatly benefit from further laboratory and theoretical work aimed at optical properties of atomic, molecular, and cloud/haze species in the pressure and temperature regimes relevant to exoplanet atmospheres.

  15. Spectroscopy of Kepler Candidate Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Everett, Mark E.; Howell, Steve B.; Silva, David R.; Szkody, Paula

    2014-02-01

    Currently the NASA Kepler Mission has identified 3449 exoplanet candidates, one third with estimated radii R_p<2.5R_oplus and orbiting faint (m_Kep>14.5) host stars. The NASA sponsored Kepler Follow-up Program is focusing on small exoplanet candidates (R_p<2.5R_oplus) and those in habitable zone orbits. Planet radii estimates depend on estimates of host star radii. Based on spectra previously obtained at the KPNO Mayall 4-m for 220 stars with candidate exoplanets, Everett et al. (2013) have shown that many host stars are larger than originally assumed (up to factor of 2). Therefore, the exoplanet candidates they host must be larger than originally assumed, which conversely reduces the number of known Earth- sized exoplanet candidates. Determination of the frequency of such Earth-sized planets is a cornerstone Kepler mission objective and of keen general interest. These Mayall spectra were also used to confirm the Buchhave et al. (2012) result that exoplanet candidates larger than 4R_oplus in short-period orbits are preferentially associated with host stars with solar or higher metallicity, using a fainter and larger sample of stars than Buchhave et al. In short, followup Mayall optical spectroscopy is critical to confirming the detection of Earth-sized exoplanets, a Kepler cornerstone goal, as well as characterizing the relationship between host star properties and planetary system properties. Here, we propose to continue our reconnaissance survey with a focus on the smallest (most rare) exoplanet candidates orbiting the faintest Kepler host stars.

  16. Estimating optimal sampling unit sizes for satellite surveys

    NASA Technical Reports Server (NTRS)

    Hallum, C. R.; Perry, C. R., Jr.

    1984-01-01

    This paper reports on an approach for minimizing data loads associated with satellite-acquired data, while improving the efficiency of global crop area estimates using remotely sensed, satellite-based data. Results of a sampling unit size investigation are given that include closed-form models for both nonsampling and sampling error variances. These models provide estimates of the sampling unit sizes that effect minimal costs. Earlier findings from foundational sampling unit size studies conducted by Mahalanobis, Jessen, Cochran, and others are utilized in modeling the sampling error variance as a function of sampling unit size. A conservative nonsampling error variance model is proposed that is realistic in the remote sensing environment where one is faced with numerous unknown nonsampling errors. This approach permits the sampling unit size selection in the global crop inventorying environment to be put on a more quantitative basis while conservatively guarding against expected component error variances.

  17. Assessing Usefulness of High-Resolution Satellite Imagery (HRSI) for Re-Survey of Cadastral Maps

    NASA Astrophysics Data System (ADS)

    Rao, S. S.; Sharma, J. R.; Rajashekar, S. S.; Rao, D. S. P.; Arepalli, A.; Arora, V.; Kuldeep; Singh, R. P.; Kanaparthi, M.

    2014-11-01

    The Government of India has initiated "National Land Records Modernization Programme (NLRMP)" with emphasis to modernize management of land records, minimize scope of land/property disputes, enhance transparency in the land records maintenance system, and facilitate moving eventually towards guaranteed conclusive titles to immovable properties in the country. One of the major components of the programme is survey/re-survey and updating of all survey and settlement records including creation of original cadastral records wherever necessary. The use of ETS/GPS, Aerial or High Resolution Satellite Images (HRSI) and hybrid method of images are suggested for re-survey in the guidelines. The emerging new satellite technologies enabling earth observation at a spatial resolution of 1.0m or 0.5m or even 0.41m have brought revolutionary changes in the field of cadastral survey. The highresolution satellite imagery (HRSI) is showing its usefulness for cadastral surveys in terms of clear identification of parcel boundaries and other cultural features due to which traditional cadastre and land registration systems have been undergoing major changes worldwide. In the present research study, cadastral maps are derived from ETS/GPS, HRSI of 1.0m and 0.5m and used for comparison. The differences in areas, perimeter and position of parcels derived from HRSI are compared vis-a-vis ETS/GPS boundaries. An assessment has been made on the usefulness of HRSI for re-survey of cadastral maps vis-a-vis conventional ground survey.

  18. The APACHE survey hardware and software design: Tools for an automatic search of small-size transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Christille, Jean-Marc; Bernagozzi, A.; Bertolini, E.; Calcidese, P.; Carbognani, A.; Cenadelli, D.; Damasso, M.; Giacobbe, P.; Lanteri, L.; Lattanzi, M. G.; Sozzetti, A.; Smart, R.

    2013-04-01

    Small-size ground-based telescopes can effectively be used to look for transiting rocky planets around nearby low-mass M stars using the photometric transit method, as recently demonstrated for example by the MEarth project. Since 2008 at the Astronomical Observatory of the Autonomous Region of Aosta Valley (OAVdA), we have been preparing for the long-term photometric survey APACHE, aimed at finding transiting small-size planets around thousands of nearby early and mid-M dwarfs. APACHE (A PAthway toward the Characterization of Habitable Earths) is designed to use an array of five dedicated and identical 40-cm Ritchey-Chretien telescopes and its observations started at the beginning of summer 2012. The main characteristics of the survey final set up and the preliminary results from the first weeks of observations will be discussed.

  19. The Lick-Carnegie Exoplanet Survey: HD 32963—A New Jupiter Analog Orbiting a Sun-like Star

    NASA Astrophysics Data System (ADS)

    Rowan, Dominick; Meschiari, Stefano; Laughlin, Gregory; Vogt, Steven S.; Butler, R. Paul; Burt, Jennifer; Wang, Songhu; Holden, Brad; Hanson, Russell; Arriagada, Pamela; Keiser, Sandy; Teske, Johanna; Diaz, Matias

    2016-02-01

    We present a set of 109 new, high-precision Keck/HIRES radial velocity (RV) observations for the solar-type star HD 32963. Our data set reveals a candidate planetary signal with a period of 6.49 ± 0.07 years and a corresponding minimum mass of 0.7 ± 0.03 Jupiter masses. Given Jupiter's crucial role in shaping the evolution of the early Solar System, we emphasize the importance of long-term RV surveys. Finally, using our complete set of Keck radial velocities and correcting for the relative detectability of synthetic planetary candidates orbiting each of the 1122 stars in our sample, we estimate the frequency of Jupiter analogs across our survey at approximately 3%.

  20. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. II. The frequency of planets orbiting M dwarfs

    SciTech Connect

    Clanton, Christian; Gaudi, B. Scott

    2014-08-20

    In contrast to radial velocity (RV) surveys, results from microlensing surveys indicate that giant planets with masses greater than the critical mass for core accretion (∼0.1 M {sub Jup}) are relatively common around low-mass stars. Using the methodology developed in the first paper, we predict the sensitivity of M-dwarf RV surveys to analogs of the population of planets inferred by microlensing. We find that RV surveys should detect a handful of super-Jovian (>M {sub Jup}) planets at the longest periods being probed. These planets are indeed found by RV surveys, implying that the demographic constraints inferred from these two methods are consistent. Finally, we combine the results from both methods to estimate planet frequencies spanning wide regions of parameter space. We find that the frequency of Jupiters and super-Jupiters (1 ≲ m{sub p} sin i/M {sub Jup} ≲ 13) with periods 1 ≤ P/days ≤ 10{sup 4} is f{sub J}=0.029{sub −0.015}{sup +0.013}, a median factor of 4.3 (1.5-14 at 95% confidence) smaller than the inferred frequency of such planets around FGK stars of 0.11 ± 0.02. However, we find the frequency of all giant planets with 30 ≲ m{sub p} sin i/M {sub ⊕} ≲ 10{sup 4} and 1 ≤ P/days ≤ 10{sup 4} to be f{sub G}=0.15{sub −0.07}{sup +0.06}, only a median factor of 2.2 (0.73-5.9 at 95% confidence) smaller than the inferred frequency of such planets orbiting FGK stars of 0.31 ± 0.07. For a more conservative definition of giant planets (50 ≲ m{sub p} sin i/M {sub ⊕} ≲ 10{sup 4}), we find f{sub G{sup ′}}=0.11±0.05, a median factor of 2.2 (0.73-6.7 at 95% confidence) smaller than that inferred for FGK stars of 0.25 ± 0.05. Finally, we find the frequency of all planets with 1 ≤ m{sub p} sin i/M {sub ⊕} ≤ 10{sup 4} and 1 ≤ P/days ≤ 10{sup 4} to be f{sub p} = 1.9 ± 0.5.

  1. Synthesizing Exoplanet Demographics from Radial Velocity and Microlensing Surveys. II. The Frequency of Planets Orbiting M Dwarfs

    NASA Astrophysics Data System (ADS)

    Clanton, Christian; Gaudi, B. Scott

    2014-08-01

    In contrast to radial velocity (RV) surveys, results from microlensing surveys indicate that giant planets with masses greater than the critical mass for core accretion (~0.1 M Jup) are relatively common around low-mass stars. Using the methodology developed in the first paper, we predict the sensitivity of M-dwarf RV surveys to analogs of the population of planets inferred by microlensing. We find that RV surveys should detect a handful of super-Jovian (>M Jup) planets at the longest periods being probed. These planets are indeed found by RV surveys, implying that the demographic constraints inferred from these two methods are consistent. Finally, we combine the results from both methods to estimate planet frequencies spanning wide regions of parameter space. We find that the frequency of Jupiters and super-Jupiters (1 <~ mp sin i/M Jup <~ 13) with periods 1 <= P/days <= 104 is f_J=0.029^{+0.013}_{-0.015}, a median factor of 4.3 (1.5-14 at 95% confidence) smaller than the inferred frequency of such planets around FGK stars of 0.11 ± 0.02. However, we find the frequency of all giant planets with 30 <~ mp sin i/M ⊕ <~ 104 and 1 <= P/days <= 104 to be f_G=0.15^{+0.06}_{-0.07}, only a median factor of 2.2 (0.73-5.9 at 95% confidence) smaller than the inferred frequency of such planets orbiting FGK stars of 0.31 ± 0.07. For a more conservative definition of giant planets (50 <~ mp sin i/M ⊕ <~ 104), we find f_G^{\\prime }=0.11+/- 0.05, a median factor of 2.2 (0.73-6.7 at 95% confidence) smaller than that inferred for FGK stars of 0.25 ± 0.05. Finally, we find the frequency of all planets with 1 <= mp sin i/M ⊕ <= 104 and 1 <= P/days <= 104 to be fp = 1.9 ± 0.5.

  2. First Temperate Exoplanet Sized Up

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Combining observations from the CoRoT satellite and the ESO HARPS instrument, astronomers have discovered the first "normal" exoplanet that can be studied in great detail. Designated Corot-9b, the planet regularly passes in front of a star similar to the Sun located 1500 light-years away from Earth towards the constellation of Serpens (the Snake). "This is a normal, temperate exoplanet just like dozens we already know, but this is the first whose properties we can study in depth," says Claire Moutou, who is part of the international team of 60 astronomers that made the discovery. "It is bound to become a Rosetta stone in exoplanet research." "Corot-9b is the first exoplanet that really does resemble planets in our solar system," adds lead author Hans Deeg. "It has the size of Jupiter and an orbit similar to that of Mercury." "Like our own giant planets, Jupiter and Saturn, the planet is mostly made of hydrogen and helium," says team member Tristan Guillot, "and it may contain up to 20 Earth masses of other elements, including water and rock at high temperatures and pressures." Corot-9b passes in front of its host star every 95 days, as seen from Earth [1]. This "transit" lasts for about 8 hours, and provides astronomers with much additional information on the planet. This is fortunate as the gas giant shares many features with the majority of exoplanets discovered so far [2]. "Our analysis has provided more information on Corot-9b than for other exoplanets of the same type," says co-author Didier Queloz. "It may open up a new field of research to understand the atmospheres of moderate- and low-temperature planets, and in particular a completely new window in our understanding of low-temperature chemistry." More than 400 exoplanets have been discovered so far, 70 of them through the transit method. Corot-9b is special in that its distance from its host star is about ten times larger than that of any planet previously discovered by this method. And unlike all such

  3. The Near Earth Object Surveillance Satellite (NEOSSat), a Survey Telescope on a Micro-Satellite Platform

    NASA Astrophysics Data System (ADS)

    Laurin, Denis; Hildebrand, A.; Cardinal, R.; Harvey, W.; Tafazoli, S.; Doherty, J.

    2009-01-01

    Although ground-based telescopes have made significant progress in finding near-Earth asteroids (NEA's), marked advantage exist in performing the search from space. The ability to search the ecliptic plane at closer elongations to the Sun, use parallax to discriminate NEA's from those of the Main Belt through distance determinations, and being able to observe continuously are the most significant advantages of a space platform. The Canadian Space Agency (CSA) together with Defense Research and Development Canada (DRDC) are building a micro-satellite platform with a 15 cm telescope dedicated for near space surveillance. The NEOSSat (Near Earth Object Surveillance) spacecraft is expected to be able to detect 20 V magnitude objects with a 100 sec exposure, with a 0.86 deg FOV, on a 1024x1024 CCD, and sub-arcsecond pointing stability. For discovery of NEA's, it will search an area from 45 to 55 degrees solar elongation along the ecliptic plane and ± 40 degrees ecliptic latitude. The observation strategy will be optimized, based upon recent models of the NEA population. Ground-based telescopes will also be used to do follow-ups for orbit determination when possible. The micro-satellite bus and instrument are based on the successful CSA MOST micro-satellite, operating on orbit since 2003. NEOSSat is a shared project with DRDC who will demonstrate the capability of an inexpensive space platform to detect high earth-orbiting satellites and debris (High Earth Orbit Space Surveillance - HEOSS). NEOSSat is base lined for launch in 2010.

  4. QUENCHING OF STAR FORMATION IN SLOAN DIGITAL SKY SURVEY GROUPS: CENTRALS, SATELLITES, AND GALACTIC CONFORMITY

    SciTech Connect

    Knobel, Christian; Lilly, Simon J.; Woo, Joanna; Kovač, Katarina

    2015-02-10

    We re-examine the fraction of low-redshift Sloan Digital Sky Survey satellites and centrals in which star formation has been quenched, using the environment quenching efficiency formalism that separates out the dependence of stellar mass. We show that the centrals of the groups containing the satellites are responding to the environment in the same way as their satellites (at least for stellar masses above 10{sup 10.3} M {sub ☉}), and that the well-known differences between satellites and the general set of centrals arise because the latter are overwhelmingly dominated by isolated galaxies. The widespread concept of ''satellite quenching'' as the cause of environmental effects in the galaxy population can therefore be generalized to ''group quenching''. We then explore the dependence of the quenching efficiency of satellites on overdensity, group-centric distance, halo mass, the stellar mass of the satellite, and the stellar mass and specific star formation rate (sSFR) of its central, trying to isolate the effect of these often interdependent variables. We emphasize the importance of the central sSFR in the quenching efficiency of the associated satellites, and develop the meaning of this ''galactic conformity'' effect in a probabilistic description of the quenching of galaxies. We show that conformity is strong, and that it varies strongly across parameter space. Several arguments then suggest that environmental quenching and mass quenching may be different manifestations of the same underlying process. The marked difference in the apparent mass dependencies of environment quenching and mass quenching which produces distinctive signatures in the mass functions of centrals and satellites will arise naturally, since, for satellites at least, the distributions of the environmental variables that we investigate in this work are essentially independent of the stellar mass of the satellite.

  5. The Lick-Carnegie exoplanet survey: Gliese 687 b—A Neptune-mass planet orbiting a nearby red dwarf

    SciTech Connect

    Burt, Jennifer; Vogt, Steven S.; Hanson, Russell; Rivera, Eugenio J.; Laughlin, Gregory; Meschiari, Stefano; Henry, Gregory W.

    2014-07-10

    Precision radial velocities from the Automated Planet Finder (APF) and Keck/HIRES reveal an Msin (i) = 18 ± 2 M{sub ⊕} planet orbiting the nearby M3V star GJ 687. This planet has an orbital period P = 38.14 days and a low orbital eccentricity. Our Strömgren b and y photometry of the host star suggests a stellar rotation signature with a period of P = 60 days. The star is somewhat chromospherically active, with a spot filling factor estimated to be several percent. The rotationally induced 60 day signal, however, is well separated from the period of the radial velocity variations, instilling confidence in the interpretation of a Keplerian origin for the observed velocity variations. Although GJ 687 b produces relatively little specific interest in connection with its individual properties, a compelling case can be argued that it is worthy of remark as an eminently typical, yet at a distance of 4.52 pc, a very nearby representative of the galactic planetary census. The detection of GJ 687 b indicates that the APF telescope is well suited to the discovery of low-mass planets orbiting low-mass stars in the as yet relatively un-surveyed region of the sky near the north celestial pole.

  6. Satellite Detection in AdvancedCamera for Surveys/Wide Field Channel Images

    NASA Astrophysics Data System (ADS)

    Borncamp, D.; Lim, Pey-Lian

    2016-01-01

    This document explains the process by which satellite trails can be found within individual chips of an Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) image. Since satellites are transient and sporadic events, we used the Hubble Frontier Fields (HFF) dataset which is manually checked for satellite trails has been used as a truth set to verify that the method in this document does a complete job without a high false positive rate. This document also details the process of producing a mask that will update data quality information to inform users where the trail traverses the image and properly account for the affected pixels. Along with this document, the Python source code used to detect and mask satellite trails will be released to users with as a stand-alone product within the STSDAS acstools package.

  7. Hubble Exoplanet Pro/Am Collaboration (Abstract)

    NASA Astrophysics Data System (ADS)

    Conti, D. M.

    2016-06-01

    (Abstract only) A collaborative effort is being organized between a world-wide network of amateur astronomers and a Hubble Space Telescope (HST) science team. The purpose of this collaboration is to supplement an HST near-infrared spectroscopy survey of some 15 exoplanets with ground-based observations in the visible range.

  8. THE LICK-CARNEGIE EXOPLANET SURVEY: A URANUS-MASS FOURTH PLANET FOR GJ 876 IN AN EXTRASOLAR LAPLACE CONFIGURATION

    SciTech Connect

    Rivera, Eugenio J.; Laughlin, Gregory; Vogt, Steven S.; Meschiari, Stefano; Haghighipour, Nader

    2010-08-10

    billion years (at least for the coplanar cases). This resonant configuration of three giant planets orbiting an M dwarf primary differs from the well-known Laplace configuration of the three inner Galilean satellites of Jupiter, which are executing very small librations about {psi}{sub Laplace} = 180{sup 0} and which never experience triple conjunctions. The GJ 876 system, by contrast, comes close to a triple conjunction between the outer three planets once per every orbit of the outer planet, 'e'.

  9. A multifaceted approach to understanding dynamic urban processes: satellites, surveys, and censuses.

    NASA Astrophysics Data System (ADS)

    Jones, B.; Balk, D.; Montgomery, M.; Liu, Z.

    2014-12-01

    Urbanization will arguably be the most significant demographic trend of the 21st century, particularly in fast-growing regions of the developing world. Characterizing urbanization in a spatial context, however, is a difficult task given only the moderate resolution data provided by traditional sources of demographic data (i.e., censuses and surveys). Using a sample of five world "mega-cities" we demonstrate how new satellite data products and new analysis of existing satellite data, when combined with new applications of census and survey microdata, can reveal more about cities and urbanization in combination than either data type can by itself. In addition to the partially modelled Global Urban-Rural Mapping Project (GRUMP) urban extents we consider four sources of remotely sensed data that can be used to estimate urban extents; the NOAA Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) intercallibrated nighttime lights time series data, the newer NOAA Visible Infrared Imager Radiometer Suite (VIIRS) nighttime lights data, the German Aerospace Center (DLR) radar satellite data, and Dense Sampling Method (DSM) analysis of the NASA scatterometer data. Demographic data come from national censuses and/or georeferenced survey data from the Demographic & Health Survey (DHS) program. We overlay demographic and remotely sensed data (e.g., Figs 1, 2) to address two questions; (1) how well do satellite derived measures of urban intensity correlate with demographic measures, and (2) how well are temporal changes in the data correlated. Using spatial regression techniques, we then estimate statistical relationships (controlling for influences such as elevation, coastal proximity, and economic development) between the remotely sensed and demographic data and test the ability of each to predict the other. Satellite derived imagery help us to better understand the evolution of the built environment and urban form, while the underlying demographic

  10. Surveys of the earth's resources and environment by satellites

    NASA Technical Reports Server (NTRS)

    Nordberg, W.; Tiedemann, H.; Bohn, C.

    1975-01-01

    The potential and promise of observing the earth from the vantage point of space is discussed. The systematic surveying of processes and phenomena occurring on the surface of the earth by Landsat 1 and Nimbus 5 is considered to be useful in the following areas: assessment of water resources; mineral and petroleum exploration; land use planning; crop, forest, and rangeland inventory; assessment of flood, earthquake, and other environmental hazards; monitoring coastal processes; environmental effects of industrial effluents and of air pollution; mapping the distribution and types of ice covering the earth's polar caps and global soil moisture distributions.

  11. A satellite geodetic survey of spatiotemporal deformation of Iranian volcanos

    NASA Astrophysics Data System (ADS)

    Shirzaei, M.

    2012-04-01

    Surface deformation in volcanic areas is usually due to movement of magma, hydrothermal activity at depth, weight of volcano, landside, etc. Iran, located at the convergence of the Eurasian and Arabian tectonic plates, is the host of five apparently inactive volcanoes, named 'Damavand', 'Taftan', 'Bazman', 'Sabalan' and 'Sahand'. Through investigation of the long term surface deformation rate at Damavand volcano, the highest point in the middle east, Shirzaei et al. (2011) demonstrated that a slow gravity-driven deformation in the form of spreading is going on at this volcano. Extending the earlier work, in this study, I explore large sets of SAR data obtained by Envisat radar satellite from 2003 through 2010 at all Iranian volcanoes. Multitemporal interferometric analysis of the SAR data sets allows retrieving sub-millimeter surface deformation at these volcanic systems. As a result, I detect a transient flank failure in the form of landslide at Damavand that is followed by elevated fumarolic activity. This suggests that landslide might have triggered volcanic unrest. Moreover, I measure significant surface deformation at Taftan and Bazman volcanos associated with different episodes of uplift and subsidence. The inverse model simulations suggest that the time-dependent inflations and deflations of extended and spherical pressurized magma chambers are responsible for the surface displacements at these volcanoes. I also detect time-dependent surface displacements at Sabalan and Sahand volcanoes, where the investigation of the type and the sources of the observed deformation is subject of ongoing research. This study is a best example that shows the absent of recent eruption can not be used as a reliable factor in volcanic hazard assessment and a continuous monitoring system is of vital importance. Reference Shirzaei, M., Walter, T.R., Nankali, H.R. and Holohan, E.P., 2011. Gravity-driven deformation of Damavand volcano, Iran, detected through InSAR time series

  12. The NASA Exoplanet Archive: Data Inventory Service

    NASA Astrophysics Data System (ADS)

    Ramirez, Solange; Akeson, Rachel L.; Ciardi, David R.; Chen, Xi; Christiansen, Jessie; Plavchan, Peter

    2014-06-01

    We present here the latest addition to the NASA Exoplanet Archive - the Data Inventory Service, a tool aimed to provide the user with all the data available within the archive (exoplanet and stellar parameters, time series from ground-based transit surveys (such as Super WASP, XO, HAT-P, KELT), Kepler Pipeline products, CoRoT light curves, etc.) at or near the location of an astronomical object. The NASA Exoplanet Archive is an online service dedicated to compile and to serve public astronomical data sets involved in the search for and characterization of extrasolar planets and their host stars. The data in the archive include stellar parameters (e.g., positions, magnitudes, temperatures, etc.), exoplanet parameters (such as masses and orbital parameters) and discovery/characterization data (e.g., published radial velocity curves, photometric light curves, spectra, etc.). In support of the Kepler Extended Mission, the NASA Exoplanet Archive also hosts data related to Kepler Objects of Interest (KOI), Kepler Pipeline products such as Threshold Crossing Events (TCE) and Data Validation Reports, and Kepler Stellar parameters as used by the Kepler Pipeline. The archive provides tools to work with these data, including interative tables (with plotting capabilities), interactive light curve viewer, periodogram service, transit and ephemeris calculator, and application program interface. To access this information visit us at: http://exoplanetarchive.ipac.caltech.edu

  13. Statistical properties of exoplanets

    NASA Astrophysics Data System (ADS)

    Udry, Stéphane

    Since the detection a decade ago of the planetary companion of 51 Peg, more than 165 extrasolar planets have been unveiled by radial-velocity measurements. They present a wide variety of characteristics such as large masses with small orbital separations, high eccentricities, period resonances in multi-planet systems, etc. Meaningful features of the statistical distributions of the orbital parameters or parent stellar properties have emerged. We discuss them in the context of the constraints they provide for planet-formation models and in comparison to Neptune-mass planets in short-period orbits recently detected by radial-velocity surveys, thanks to new instrumental developments and adequate observing strategy. We expect continued improvement in velocity precision and anticipate the detection of Neptune-mass planets in longer-period orbits and even lower-mass planets in short-period orbits, giving us new information on the mass distribution function of exoplanets. Finally, the role of radial-velocity follow-up measurements of transit candidates is emphasized.

  14. Direct imaging of exoplanets.

    PubMed

    Lagrange, Anne-Marie

    2014-04-28

    Most of the exoplanets known today have been discovered by indirect techniques, based on the study of the host star radial velocity or photometric temporal variations. These detections allowed the study of the planet populations in the first 5-8 AU from the central stars and have provided precious information on the way planets form and evolve at such separations. Direct imaging on 8-10 m class telescopes allows the detection of giant planets at larger separations (currently typically more than 5-10 AU) complementing the indirect techniques. So far, only a few planets have been imaged around young stars, but each of them provides an opportunity for unique dedicated studies of their orbital, physical and atmospheric properties and sometimes also on the interaction with the 'second-generation', debris discs. These few detections already challenge formation theories. In this paper, I present the results of direct imaging surveys obtained so far, and what they already tell us about giant planet (GP) formation and evolution. Individual and emblematic cases are detailed; they illustrate what future instruments will routinely deliver for a much larger number of stars. I also point out the limitations of this approach, as well as the needs for further work in terms of planet formation modelling. I finally present the progress expected in direct imaging in the near future, thanks in particular to forthcoming planet imagers on 8-10 m class telescopes. PMID:24664924

  15. LEECH: LBTI Exozodi Exoplanet Common Hunt

    NASA Astrophysics Data System (ADS)

    Skemer, A.

    2014-03-01

    In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its 100-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4- meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reducing the telescope's overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L' (3.8 microns) with LMIRcam, as opposed to the shorter wavelength near-infrared bands (1-2.4 microns) of other similar surveys. This portion of the spectrum offers deeper mass sensitivity for intermediate age (several hundred Myr-old) systems, since their Jovian-mass planets radiate predominantly in the mid-infrared. The goals of LEECH are to (1) discover new exoplanets, (2) characterize the atmospheres of newly discovered exoplanets, (3) characterize the architectures of nearby planetary systems, and (4) establish meaningful constraints on the prevalence of wideseparation exoplanets.

  16. PROPERTIES OF SATELLITE GALAXIES IN THE SDSS PHOTOMETRIC SURVEY: LUMINOSITIES, COLORS, AND PROJECTED NUMBER DENSITY PROFILES

    SciTech Connect

    Lares, M.; Lambas, D. G.; Dominguez, M. J.

    2011-07-15

    We analyze photometric data in the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) to infer statistical properties of faint satellites associated with isolated bright galaxies (M{sub r} < -20.5) in the redshift range 0.03 < z < 0.1. The mean projected radial number density profile shows an excess of companions in the photometric sample around the primaries, with approximately a power-law shape that extends up to {approx_equal} 700 kpc. Given this overdensity signal, a suitable background subtraction method is used to study the statistical properties of the population of bound satellites, down to magnitude M{sub r} = -14.5, in the projected radial distance range 100 < r{sub p} /kpc < 3(R{sub vir}). The maximum projected distance corresponds to the range 470-660 kpc for the different samples. We have also considered a color cut consistent with the observed colors of spectroscopic satellites in nearby galaxies so that distant redshifted galaxies do not dominate the statistics. We have tested the implementation of this background subtraction procedure using a mock catalog derived from the Millennium simulation semianalytic galaxy catalog based on a {Lambda} cold dark matter model. We find that the method is effective in reproducing the true projected radial satellite number density profile and luminosity distributions, providing confidence in the results derived from SDSS data. We find that the spatial extent of satellite systems is larger for bright, red primaries. Also, we find a larger spatial distribution of blue satellites. For the different samples analyzed, we derive the average number of satellites and their luminosity distributions down to M{sub r} = -14.5. The mean number of satellites depends very strongly on host luminosity. Bright primaries (M{sub r} < -21.5) host on average {approx}6 satellites with M{sub r} < -14.5. This number is reduced for primaries with lower luminosities (-21.5 < M{sub r} < -20.5) which have less than one satellite per host. We

  17. The NASA Exoplanet Archive

    NASA Astrophysics Data System (ADS)

    Ramirez, Solange; Akeson, R. L.; Ciardi, D.; Kane, S. R.; Plavchan, P.; von Braun, K.; NASA Exoplanet Archive Team

    2013-01-01

    The NASA Exoplanet Archive is an online service that compiles and correlates astronomical information on extra solar planets and their host stars. The data in the archive include exoplanet parameters (such as orbits, masses, and radii), associated data (such as published radial velocity curves, photometric light curves, images, and spectra), and stellar parameters (such as magnitudes, positions, and temperatures). All the archived data are linked to the original literature reference.The archive provides tools to work with these data, including interactive tables (with plotting capabilities), interactive light curve viewer, periodogram service, transit and ephemeris calculator, and application program interface.The NASA Exoplanet Archive is the U.S. portal to the public CoRoT mission data for both the Exoplanet and Asteroseismology data sets. The NASA Exoplanet Archive also serves data related to Kepler Objects of Interest (Planet Candidates and the Kepler False Positives, KOI) in an integrated and interactive table containing stellar and transit parameters. In support of the Kepler Extended Mission, the NASA Exoplanet Archive will host transit modeling parameters, centroid results, several statistical values, and summary and detailed reports for all transit-like events identified by the Kepler Pipeline. To access this information visit us at: http://exoplanetarchive.ipac.caltech.edu

  18. Exoplanet Community Report on Direct Infrared Imaging of Exoplanets

    NASA Technical Reports Server (NTRS)

    Danchi, William C.; Lawson, Peter R.

    2009-01-01

    Direct infrared imaging and spectroscopy of exoplanets will allow for detailed characterization of the atmospheric constituents of more than 200 nearby Earth-like planets, more than is possible with any other method under consideration. A flagship mission based on larger passively cooled infrared telescopes and formation flying technologies would have the highest angular resolution of any concept under consideration. The 2008 Exoplanet Forum committee on Direct Infrared Imaging of Exoplanets recommends: (1) a vigorous technology program including component development, integrated testbeds, and end-to-end modeling in the areas of formation flying and mid-infrared nulling; (2) a probe-scale mission based on a passively cooled structurally connected interferometer to be started within the next two to five years, for exoplanetary system characterization that is not accessible from the ground, and which would provide transformative science and lay the engineering groundwork for the flagship mission with formation flying elements. Such a mission would enable a complete exozodiacal dust survey (<1 solar system zodi) in the habitable zone of all nearby stars. This information will allow for a more efficient strategy of spectral characterization of Earth-sized planets for the flagship missions, and also will allow for optimization of the search strategy of an astrometric mission if such a mission were delayed due to cost or technology reasons. (3) Both the flagship and probe missions should be pursued with international partners if possible. Fruitful collaboration with international partners on mission concepts and relevant technology should be continued. (4) Research and Analysis (R&A) should be supported for the development of preliminary science and mission designs. Ongoing efforts to characterize the the typical level of exozodiacal light around Sun-like stars with ground-based nulling technology should be continued.

  19. THE DISTRIBUTION OF FAINT SATELLITES AROUND CENTRAL GALAXIES IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    SciTech Connect

    Jiang, C. Y.; Jing, Y. P.; Li, Cheng

    2012-11-20

    We investigate the radial number density profile and the abundance distribution of faint satellites around central galaxies in the low-redshift universe using the Canada-France-Hawaii Telescope (CFHT) Legacy Survey. We consider three samples of central galaxies with magnitudes of M {sub r} = -21, -22, and -23 selected from the Sloan Digital Sky Survey group catalog of Yang et al. The satellite distribution around these central galaxies is obtained by cross-correlating these galaxies with the photometric catalog of the CFHT Legacy Survey. The projected radial number density of the satellites obeys a power-law form with the best-fit logarithmic slope of -1.05, independent of both the central galaxy luminosity and the satellite luminosity. The projected cross-correlation function between central and satellite galaxies exhibits a non-monotonic trend with satellite luminosity. It is most pronounced for central galaxies with M {sub r} = -21, where the decreasing trend of clustering amplitude with satellite luminosity is reversed when satellites are fainter than central galaxies by more than 2 mag. A comparison with the satellite luminosity functions in the Milky Way (MW) and M31 shows that the MW/M31 system has about twice as many satellites as around a typical central galaxy of similar luminosity. The implications for theoretical models are briefly discussed.

  20. Continuing evolution of satellite-based geodetic positioning and survey navigation capabilities

    SciTech Connect

    Stansell, T.A. Jr.

    1981-01-01

    The paper reviews progress in the TRANSIT Navigation Satellite System for Offshore oil exploration and land geodetic survey, and examines trends affecting future developments. This report covers three major areas. The first is the field of land geodetic survey. The second area focuses on the evolution of integrated navigation systems for offshore oil exploration. The objective is to show how these systems have matured. Trends affecting the direction of future developments are discussed. Finally, this paper evaluates the coming impact of NAVSTAR, the Global Positioning System. 14 refs.

  1. Survey of Verification and Validation Techniques for Small Satellite Software Development

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    2015-01-01

    The purpose of this paper is to provide an overview of the current trends and practices in small-satellite software verification and validation. This document is not intended to promote a specific software assurance method. Rather, it seeks to present an unbiased survey of software assurance methods used to verify and validate small satellite software and to make mention of the benefits and value of each approach. These methods include simulation and testing, verification and validation with model-based design, formal methods, and fault-tolerant software design with run-time monitoring. Although the literature reveals that simulation and testing has by far the longest legacy, model-based design methods are proving to be useful for software verification and validation. Some work in formal methods, though not widely used for any satellites, may offer new ways to improve small satellite software verification and validation. These methods need to be further advanced to deal with the state explosion problem and to make them more usable by small-satellite software engineers to be regularly applied to software verification. Last, it is explained how run-time monitoring, combined with fault-tolerant software design methods, provides an important means to detect and correct software errors that escape the verification process or those errors that are produced after launch through the effects of ionizing radiation.

  2. The history of exoplanet detection.

    PubMed

    Perryman, Michael

    2012-10-01

    I summarize the early developments of the more quantitative aspects of exoplanet detection. After a brief overview of the observational methods currently applied to exoplanet searches and a summary of the first true exoplanet detections resulting from these various techniques, the more relevant historical background is organized according to the observational techniques that are currently most relevant. PMID:23013272

  3. Asteroseismology of Exoplanet-Host Stars in the TESS Era

    NASA Astrophysics Data System (ADS)

    Campante, Tiago L.; Schofield, Mathew; Chaplin, William J.; Huber, Daniel; Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans; Latham, David W.; Ricker, George R.; Winn, Joshua

    2015-12-01

    New insights on stellar evolution and stellar interiors physics are being made possible by asteroseismology, the study of stars by the observation of their natural, resonant oscillations. Throughout the duration of the Kepler mission, asteroseismology has also played an important role in the characterization of host stars and their planetary systems. Examples include the precise estimation of the fundamental properties of stellar hosts, the obliquity determination of planetary systems, or the orbital eccentricity determination via asterodensity profiling. The Transiting Exoplanet Survey Satellite (TESS) will perform a wide-field survey for planets that transit bright host stars. Its excellent photometric precision and long intervals of uninterrupted observations will enable asteroseismology of solar-type stars and their evolved counterparts. Based on existing all-sky simulations of the stellar and planetary populations, we investigate the asteroseismic yield of the mission, placing particular emphasis on the yield of exoplanet-host stars for which we expect to detect solar-like oscillations. This is done both for the cohort of target stars (observed at a 2-min cadence), which will mainly involve low-mass main-sequence hosts, as well as for the cohort of “full-frame image” stars (observed at a 30-min cadence). The latter cohort offers the exciting prospect of conducting asteroseismology on a significant number of evolved hosts. Also, the brightest solar-type hosts with asteroseismology will become some of the best characterized planetary systems known to date. Finally, we discuss the impact of the detected oscillations on the accuracy/precision of the derived properties of the host stars and their planetary systems.

  4. Selection of Nearby Star Targets for the Subaru Strategic Exploration of Exoplanets and Disks

    NASA Astrophysics Data System (ADS)

    Kandori, R.; Tamura, M.; Morino, J.; Ishii, M.; Suzuki, R.; Hashimoto, J.; Kusakabe, N.; Narita, N.; Sato, B.; Yamada, T.; Enya, K.; Goto, M.; Carson, J.; Thalmann, C.; McElwain, M.; Moro-Martin, A.; Knapp, J.; Turner, E. L.

    2009-08-01

    SEEDS (the Subaru Strategic Exploration of Exoplanets and Disks with Hi-CIAO/AO188) is a strategic five-year campaign of direct imaging surveys of exoplanets/disks using the Subaru telescope equipped with the new adaptive optics system AO188 and our new high-contrast instrument, HiCIAO. The goals of the survey are to address the following key issues in exoplanet/disk sciences: (1) the detection and census of exoplanets; (2) the evolution of protoplanetary and debris disks; and (3) the link between exoplanets and disks. Targets prepared for the SEEDS exoplanet searches are in four categories, including nearby stars. We present our scientific motivations and current status of the SEEDS target selection in the nearby stars category.

  5. Asteroseismology and Exoplanet Hosts

    NASA Astrophysics Data System (ADS)

    Huber, Daniel

    2015-08-01

    Asteroseismology is among the most powerful observational tools to determine fundamental properties of stars. Space-based photometry has recently enabled the systematic detection of oscillations in exoplanet host stars, allowing a combination of asteroseismology with transit and radial-velocity measurements to precisely characterize planetary systems. In this talk I will review the latest asteroseismic detections in exoplanet host stars spanning from the main sequence to the red-giant branch, focusing in particular on radii and ages of stars hosting small (sub-Neptune sized) planets discovered by the Kepler mission. I will furthermore discuss applications of asteroseismology to measure spin-orbit inclinations in multiplanet systems, and their implications for formation theories of hot Jupiters. Finally I will give an outlook on asteroseismic studies of exoplanet hosts with current and future space- and ground-based facilities such as K2, SONG, TESS, and PLATO.

  6. KELT-10b: The First Transiting Exoplanet from the KELT-South Survey - A Hot Sub-Jupiter Transiting a V=10.7 Early G-Star

    NASA Astrophysics Data System (ADS)

    Kuhn, Rudolf B.; Rodriguez, Joseph E.; Collins, Karen A.; Lund, Michael B.; Siverd, Robert J.; Colón, Knicole D.; Pepper, Joshua; Stassun, Keivan G.; Cargile, Phillip A.; James, David J.; Penev, Kaloyan; Zhou, George; Bayliss, Daniel; Tan, T. G.; Curtis, Ivan A.; Udry, Stephane; Segransan, Damien; Mawet, Dimitri; Dhital, Saurav; Soutter, Jack; Hart, Rhodes; Carter, Brad; Gaudi, B. Scott; Myers, Gordon; Beatty, Thomas G.; Eastman, Jason D.; Reichart, Daniel E.; Haislip, Joshua B.; Kielkopf, John; Bieryla, Allyson; Latham, David W.; Jensen, Eric L. N.; Oberst, Thomas E.; Stevens, Daniel J.

    2016-04-01

    We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright V = 10.7 star (TYC 8378-64-1), with Teff = 5948 ± 74 K, log g = 4.319_{-0.030}^{+0.020} and [Fe/H] = 0.09_{-0.10}^{+0.11}, an inferred mass M★ = 1.112_{-0.061}^{+0.055} M⊙ and radius R★ = 1.209_{-0.035}^{+0.047} R⊙. The planet has a radius Rp = 1.399_{-0.049}^{+0.069} RJ and mass Mp = 0.679_{-0.038}^{+0.039} MJ. The planet has an eccentricity consistent with zero and a semi-major axis a = 0.05250_{-0.00097}^{+0.00086} AU. The best fitting linear ephemeris is T0 = 2457066.72045±0.00027 BJDTDB and P = 4.1662739±0.0000063 days. This planet joins a group of highly inflated transiting exoplanets with a radius larger and a mass less than that of Jupiter. The planet, which boasts deep transits of 1.4%, has a relatively high equilibrium temperature of Teq = 1377_{-23}^{+28} K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of 0.817_{-0.054}^{+0.068} × 109 erg s-1 cm-2, which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b may not survive beyond the current subgiant phase, depending on the rate of in-spiral of the planet over the next few Gyr. The planet transits a relatively bright star and exhibits the third largest transit depth of all transiting exoplanets with V < 11 in the southern hemisphere, making it a promising candidate for future atmospheric characterization studies.

  7. Further evidence for historical decline of Antarctic sea ice prior to satellite survey era?

    NASA Astrophysics Data System (ADS)

    Gersonde, Rainer; Esper, Oliver; Lohmann, Gerrit; Knorr, Gregor

    2013-04-01

    The decline in Arctic summer sea ice which accelerated during the present century to reach a yet unequaled minimum extent in 2012 as monitored by the satellite-based sea ice survey since the late 1970s is thought to represent one of the most striking examples of current climate change related to the anthropogenic global warming. In contrast, Antarctic sea ice extent has remained nearly unchanged during the past 40 years, according to the satellite survey. The statistical analysis of microfossil (diatom) signals indicative of sea ice occurrence retrieved from a large set of surface samples covering the Pacific, Atlantic and the eastern Indian sectors of the Southern Ocean suggests that Antarctic winter sea ice extent was more extended than the sea ice field documented by satellite surveys. The surface samples generally integrate signals deposited over 100-200 years. Most substantial offsets between the sedimentary proxy and satellite derived data on sea ice extent were encountered on latitudinal transects across the Pacific sector. Independent support for a 20th century decline of Antarctic sea ice fields by up to 25% prior to satellite survey comes from the analysis of whaling positions [1, 2], ice core proxies [3] and combinations of observations with numerical modeling [4]. Proxy records from Holocene sediment cores allow for further extension of sea ice records beyond the short instrumental record. These records indicate that the more extended Antarctic winter sea ice derived from the surface sediment record is a common feature in the present interglacial (Holocene) period, except for the earliest Holocene when the sea ice field was even smaller than present. The proxy results are suitable for validation of reanalysis and numerical model data and will allow for a better understanding of Antarctic sea ice sensitivity in response to natural and anthropogenic processes. [1] de la Mare, W. K. 2009. Clim. Change 92,461-493; [2] Cotté, C., Guinet, C. 2007. Deep

  8. ExELS: an exoplanet legacy science proposal for the ESA Euclid mission - I. Cold exoplanets

    NASA Astrophysics Data System (ADS)

    Penny, M. T.; Kerins, E.; Rattenbury, N.; Beaulieu, J.-P.; Robin, A. C.; Mao, S.; Batista, V.; Calchi Novati, S.; Cassan, A.; Fouqué, P.; McDonald, I.; Marquette, J. B.; Tisserand, P.; Zapatero Osorio, M. R.

    2013-09-01

    The Euclid mission is the second M-class mission of the ESA Cosmic Vision programme, with the principal science goal of studying dark energy through observations of weak lensing and baryon acoustic oscillations. Euclid is also expected to undertake additional Legacy Science programmes. One such proposal is the Exoplanet Euclid Legacy Survey (ExELS) which will be the first survey able to measure the abundance of exoplanets down to Earth mass for host separations from ˜1 au out to the free-floating (unbound) regime. The cold and free-floating exoplanet regimes represent a crucial discovery space for testing planet formation theories. ExELS will use the gravitational microlensing technique and will detect 1000 microlensing events per month over 1.6 deg2 of the Galactic bulge. We assess how many of these events will have detectable planetary signatures using a detailed multiwavelength microlensing simulator - the Manchester-Besançon microLensing Simulator (MABμLS) - which incorporates the Besançon Galactic model with 3D extinction. MABμLS is the first theoretical simulation of microlensing to treat the effects of point spread function (PSF) blending self-consistently with the underlying Galactic model. We use MABμLS, together with current numerical models for the Euclid PSFs, to explore a number of designs and de-scope options for ExELS, including the exoplanet yield as a function of filter choice and slewing time, and the effect of systematic photometry errors. Using conservative extrapolations of current empirical exoplanet mass functions determined from ground-based microlensing and radial velocity surveys, ExELS can expect to detect a few hundred cold exoplanets around mainly G-, K- and M-type stellar hosts, including ˜45 Earth-mass planets and ˜6 Mars-mass planets for an observing programme totalling 10 months. ExELS will be capable of measuring the cold exoplanet mass function down to Earth mass or below, with orbital separations ranging from ˜1 au out

  9. The gas-phase metallicity of central and satellite galaxies in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Pasquali, Anna; Gallazzi, Anna; van den Bosch, Frank C.

    2012-09-01

    We exploit the galaxy groups catalogue of Yang et al. and the galaxy properties measured in the Sloan Digital Sky Survey Data Releases 4 and 7 to study how the gas-phase metallicities of star-forming galaxies depend on environment. We find that satellite and central galaxies follow a qualitatively similar stellar mass (M★)-gas-phase metallicity relation, whereby their gas-phase metallicity increases with M★. Satellites, though, have higher gas-phase metallicities than equally massive centrals, and this difference increases with decreasing stellar mass. We find a maximum offset of 0.06 dex at log(M★/h-2 M⊙) ≃ 8.25. At fixed halo mass, centrals are more metal rich than satellites by ˜0.5 dex on average. This is simply due to the fact that, by definition, centrals are the most massive galaxies in their groups, and the fact that gas-phase metallicity increases with stellar mass. More interestingly, we also find that the gas-phase metallicity of satellites increases with halo mass (Mh) at fixed stellar mass. This increment is more pronounced for less massive galaxies, and, at M★ ≃ 109 h-2 M⊙, corresponds to ˜0.15 dex across the range 11 < log (Mh/h-1 M⊙) < 14. We also show that low-mass satellite galaxies have higher gas-phase metallicities than central galaxies of the same stellar metallicity. This difference becomes negligible for more massive galaxies of roughly solar metallicity. We demonstrate that the observed differences in gas-phase metallicity between centrals and satellites at fixed M★ are not a consequence of stellar mass stripping (advocated by Pasquali et al. in order to explain similar differences but in stellar metallicity), nor to the past star formation history of these galaxies as quantified by their surface mass density or gas mass fraction. Rather, we argue that these trends probably originate from a combination of three environmental effects: (i) strangulation, which prevents satellite galaxies from accreting new, low

  10. The Phase Curve Survey of the Irregular Saturnian Satellites: A Possible Method of Physical Classification

    NASA Technical Reports Server (NTRS)

    Bauer, James M.; Grav, Tommy; Buratti, Bonnie J.; Hicks, Michael D.

    2006-01-01

    During its 2005 January opposition, the saturnian system could be viewed at an unusually low phase angle. We surveyed a subset of Saturn's irregular satellites to obtain their true opposition magnitudes, or nearly so, down to phase angle values of 0.01 deg. Combining our data taken at the Palomar 200-inch and Cerro Tololo Inter-American Observatory's 4-m Blanco telescope with those in the literature, we present the first phase curves for nearly half the irregular satellites originally reported by Gladman et al. [2001. Nature 412, 163-166], including Paaliaq (SXX), Siarnaq (SXXIX), Tarvos (SXXI), Ijiraq (SXXII), Albiorix (SXVI), and additionally Phoebe's narrowest angle brightness measured to date. We find centaur-like steepness in the phase curves or opposition surges in most cases with the notable exception of three, Albiorix and Tarvos, which are suspected to be of similar origin based on dynamical arguments, and Siarnaq.During its 2005 January opposition, the saturnian system could be viewed at an unusually low phase angle. We surveyed a subset of Saturn's irregular satellites to obtain their true opposition magnitudes, or nearly so, down to phase angle values of 0.01 deg. Combining our data taken at the Palomar 200-inch and Cerro Tololo Inter-American Observatory's 4-m Blanco telescope with those in the literature, we present the first phase curves for nearly half the irregular satellites originally reported by Gladman et al. [2001. Nature 412, 163-166], including Paaliaq (SXX), Siarnaq (SXXIX), Tarvos (SXXI), Ijiraq (SXXII), Albiorix (SXVI), and additionally Phoebe's narrowest angle brightness measured to date. We find centaur-like steepness in the phase curves or opposition surges in most cases with the notable exception of three, Albiorix and Tarvos, which are suspected to be of similar origin based on dynamical arguments, and Siarnaq.

  11. Spectroscopy of Exoplanet Atmospheres with the FINESSE Explorer

    NASA Technical Reports Server (NTRS)

    Deroo, Pieter; Swain, Mark R.; Green, Robert O.

    2012-01-01

    FINESSE (Fast INfrared Exoplanet Spectroscopic Survey Explorer) will provide uniquely detailed information on the growing number of newly discovered planets by characterizing their atmospheric composition and temperature structure. This NASA Explorer mission, selected for a competitive Phase A study, is unique in its breath and scope thanks to broad instantaneous spectroscopy from the optical to the mid-IR (0.7 - 5 micron), with a survey of exoplanets measured in a consistent, uniform way. For 200 transiting exoplanets ranging from Terrestrial to Jovians, FINESSE will measure the chemical composition and temperature structure of their atmospheres and trace changes over time with exoplanet longitude. The mission will do so by measuring the spectroscopic time series for a primary and secondary eclipse over the exoplanet orbital phase curve. With spectrophotometric precision being a key enabling aspect for combined light exoplanet characterization, FINESSE is designed to produce spectrophotometric precision of better than 100 parts-per-million per spectral channel without the need for decorrelation. The exceptional stability of FINESSE will even allow the mission to characterize non-transiting planets, potentially as part of FINESSE's Participating Scientist Program. In this paper, we discuss the flow down from the target availability to observations and scheduling to the analysis and calibration of the data and how it enables FINESSE to be the mission that will truly expand the new field of comparative exoplanetology.

  12. Begomovirus-Associated Satellite DNA Diversity Captured Through Vector-Enabled Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae)

    PubMed Central

    Rosario, Karyna; Marr, Christian; Varsani, Arvind; Kraberger, Simona; Stainton, Daisy; Moriones, Enrique; Polston, Jane E.; Breitbart, Mya

    2016-01-01

    Monopartite begomoviruses (Geminiviridae), which are whitefly-transmitted single-stranded DNA viruses known for causing devastating crop diseases, are often associated with satellite DNAs. Since begomovirus acquisition or exchange of satellite DNAs may lead to adaptation to new plant hosts and emergence of new disease complexes, it is important to investigate the diversity and distribution of these molecules. This study reports begomovirus-associated satellite DNAs identified during a vector-enabled metagenomic (VEM) survey of begomoviruses using whiteflies collected in various locations (California (USA), Guatemala, Israel, Puerto Rico, and Spain). Protein-encoding satellite DNAs, including alphasatellites and betasatellites, were identified in Israel, Puerto Rico, and Guatemala. Novel alphasatellites were detected in samples from Guatemala and Puerto Rico, resulting in the description of a phylogenetic clade (DNA-3-type alphasatellites) dominated by New World sequences. In addition, a diversity of small (~640–750 nucleotides) satellite DNAs similar to satellites associated with begomoviruses infecting Ipomoea spp. were detected in Puerto Rico and Spain. A third class of satellite molecules, named gammasatellites, is proposed to encompass the increasing number of reported small (<1 kilobase), non-coding begomovirus-associated satellite DNAs. This VEM-based survey indicates that, although recently recovered begomovirus genomes are variations of known genetic themes, satellite DNAs hold unexplored genetic diversity. PMID:26848679

  13. Begomovirus-Associated Satellite DNA Diversity Captured Through Vector-Enabled Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae).

    PubMed

    Rosario, Karyna; Marr, Christian; Varsani, Arvind; Kraberger, Simona; Stainton, Daisy; Moriones, Enrique; Polston, Jane E; Breitbart, Mya

    2016-02-01

    Monopartite begomoviruses (Geminiviridae), which are whitefly-transmitted single-stranded DNA viruses known for causing devastating crop diseases, are often associated with satellite DNAs. Since begomovirus acquisition or exchange of satellite DNAs may lead to adaptation to new plant hosts and emergence of new disease complexes, it is important to investigate the diversity and distribution of these molecules. This study reports begomovirus-associated satellite DNAs identified during a vector-enabled metagenomic (VEM) survey of begomoviruses using whiteflies collected in various locations (California (USA), Guatemala, Israel, Puerto Rico, and Spain). Protein-encoding satellite DNAs, including alphasatellites and betasatellites, were identified in Israel, Puerto Rico, and Guatemala. Novel alphasatellites were detected in samples from Guatemala and Puerto Rico, resulting in the description of a phylogenetic clade (DNA-3-type alphasatellites) dominated by New World sequences. In addition, a diversity of small (~640-750 nucleotides) satellite DNAs similar to satellites associated with begomoviruses infecting Ipomoea spp. were detected in Puerto Rico and Spain. A third class of satellite molecules, named gammasatellites, is proposed to encompass the increasing number of reported small (<1 kilobase), non-coding begomovirus-associated satellite DNAs. This VEM-based survey indicates that, although recently recovered begomovirus genomes are variations of known genetic themes, satellite DNAs hold unexplored genetic diversity. PMID:26848679

  14. A contribution towards simplifying area-wide tsetse surveys using medium resolution meteorological satellite data.

    PubMed

    Hendrickx, G; Napala, A; Slingenbergh, J H; De Deken, R; Rogers, D J

    2001-10-01

    A raster or grid-based Geographic Information System with data on tsetse, trypanosomiasis, animal production, agriculture and land use has recently been developed in Togo. The area-wide sampling of tsetse fly, aided by satellite imagery, is the subject of two separate papers. This paper follows on a first paper, published in this journal, describing the generation of digital tsetse distribution and abundance maps and how these accord with the local climatic and agro-ecological setting. Such maps when combined with data on the disease, the hosts and their owners, should contribute to the knowledge of the spatial epidemiology of trypanosomiasis and assist planning of integrated control operations. Here we address the problem of generating tsetse distribution and abundance maps from remotely sensed data, using a restricted amount of field data. Different discriminant analysis models have been applied using contemporary tsetse data and remotely sensed, low resolution data acquired from the National Oceanographic and Atmospheric Administration (NOAA) and Meteosat platforms. The results confirm the potential of satellite data application and multivariate analysis for the prediction of the tsetse distribution and abundance. This opens up new avenues because satellite predictions and field data may be combined to strengthen and/or substitute one another. The analysis shows how the strategic incorporation of satellite imagery may minimize field collection of data. Field surveys may be modified and conducted in two stages, first concentrating on the expected fly distribution limits and thereafter on fly abundance. The study also shows that when applying satellite data, care should be taken in selecting the optimal number of predictor variables because this number varies with the amount of training data for predicting abundance and on the homogeneity of the distribution limits for predicting fly presence. Finally, it is suggested that in addition to the use of contemporary

  15. KELT-10b: the first transiting exoplanet from the KELT-South survey - a hot sub-Jupiter transiting a V = 10.7 early G-star

    NASA Astrophysics Data System (ADS)

    Kuhn, Rudolf B.; Rodriguez, Joseph E.; Collins, Karen A.; Lund, Michael B.; Siverd, Robert J.; Colón, Knicole D.; Pepper, Joshua; Stassun, Keivan G.; Cargile, Phillip A.; James, David J.; Penev, Kaloyan; Zhou, George; Bayliss, Daniel; Tan, T. G.; Curtis, Ivan A.; Udry, Stephane; Segransan, Damien; Mawet, Dimitri; Dhital, Saurav; Soutter, Jack; Hart, Rhodes; Carter, Brad; Gaudi, B. Scott; Myers, Gordon; Beatty, Thomas G.; Eastman, Jason D.; Reichart, Daniel E.; Haislip, Joshua B.; Kielkopf, John; Bieryla, Allyson; Latham, David W.; Jensen, Eric L. N.; Oberst, Thomas E.; Stevens, Daniel J.

    2016-07-01

    We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright V = 10.7 star (TYC 8378-64-1), with Teff = 5948 ± 74 K, log g = 4.319_{-0.030}^{+0.020} and [Fe/H] = 0.09_{-0.10}^{+0.11}, an inferred mass M* = 1.112_{-0.061}^{+0.055} M⊙ and radius R* = 1.209_{-0.035}^{+0.047} R⊙. The planet has a radius Rp = 1.399_{-0.049}^{+0.069} RJ and mass Mp = 0.679_{-0.038}^{+0.039} MJ. The planet has an eccentricity consistent with zero and a semimajor axis a = 0.052 50_{-0.000 97}^{+0.000 86} au. The best-fitting linear ephemeris is T0 = 2457 066.720 45 ± 0.000 27 BJDTDB and P = 4.166 2739 ± 0.000 0063 d. This planet joins a group of highly inflated transiting exoplanets with a larger radius and smaller mass than that of Jupiter. The planet, which boasts deep transits of 1.4 per cent, has a relatively high equilibrium temperature of Teq = 1377_{-23}^{+28} K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of 0.817_{-0.054}^{+0.068} × 109 erg s-1 cm-2, which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b may not survive beyond the current subgiant phase, depending on the rate of in-spiral of the planet over the next few Gyr. The planet transits a relatively bright star and exhibits the third largest transit depth of all transiting exoplanets with V < 11 in the Southern hemisphere, making it a promising candidate for future atmospheric characterization studies.

  16. A New Faint Milky Way Satellite Discovered in the Pan-STARRS1 3π Survey

    NASA Astrophysics Data System (ADS)

    Laevens, Benjamin P. M.; Martin, Nicolas F.; Ibata, Rodrigo A.; Rix, Hans-Walter; Bernard, Edouard J.; Bell, Eric F.; Sesar, Branimir; Ferguson, Annette M. N.; Schlafly, Edward F.; Slater, Colin T.; Burgett, William S.; Chambers, Kenneth C.; Flewelling, Heather; Hodapp, Klaus A.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Lupton, Robert H.; Magnier, Eugene A.; Metcalfe, Nigel; Morgan, Jeffrey S.; Price, Paul A.; Tonry, John L.; Wainscoat, Richard J.; Waters, Christopher

    2015-04-01

    We present the discovery of a faint Milky Way satellite, Laevens 2/Triangulum II, found in the Panoramic Survey Telescope And Rapid Response System 3π imaging data and confirmed with follow-up wide-field photometry from the Large Binocular Cameras. The stellar system, with an absolute magnitude of MV = -1.8 ± 0.5, a heliocentric distance of 30-2+2 kpc, and a half-mass-radius of 34-8+9 pc, shows remarkable similarity to faint, nearby, small satellites such as Willman 1, Segue 1, Segue 2, and Boötes II. The discovery of Laevens 2/Triangulum II further populates the region of parameter space for which the boundary between dwarf galaxies and globular clusters becomes tenuous. Follow-up spectroscopy will ultimately determine the nature of this new satellite, whose spatial location hints at a possible connection with the complex Triangulum-Andromeda stellar structures. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are The University of Arizona on behalf of the Arizona university system; Instituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  17. Sampling design for an integrated socioeconomic and ecological survey by using satellite remote sensing and ordination.

    PubMed

    Binford, Michael W; Lee, Tae Jeong; Townsend, Robert M

    2004-08-01

    Environmental variability is an important risk factor in rural agricultural communities. Testing models requires empirical sampling that generates data that are representative in both economic and ecological domains. Detrended correspondence analysis of satellite remote sensing data were used to design an effective low-cost sampling protocol for a field study to create an integrated socioeconomic and ecological database when no prior information on ecology of the survey area existed. We stratified the sample for the selection of tambons from various preselected provinces in Thailand based on factor analysis of spectral land-cover classes derived from satellite data. We conducted the survey for the sampled villages in the chosen tambons. The resulting data capture interesting variations in soil productivity and in the timing of good and bad years, which a purely random sample would likely have missed. Thus, this database will allow tests of hypotheses concerning the effect of credit on productivity, the sharing of idiosyncratic risks, and the economic influence of environmental variability. PMID:15254298

  18. Geology and photometric variation of solar system bodies with minor atmospheres: implications for solid exoplanets.

    PubMed

    Fujii, Yuka; Kimura, Jun; Dohm, James; Ohtake, Makiko

    2014-09-01

    A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in the UV/visible/near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5-50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities, interaction with surrounding energetic particles, and distribution of grained materials. Some indications of these processes are provided by the amplitude and wavelength dependence of variation in combinations of the time-averaged spectra. We also estimate the photometric precision needed to detect their spin rotation rates through periodogram analysis. Our survey illustrates realistic possibilities for inferring the detailed properties of solid exoplanets with future direct imaging observations. Key Words: Planetary environments-Planetary geology-Solar System-Extrasolar terrestrial planets. PMID:25238324

  19. Geology and Photometric Variation of Solar System Bodies with Minor Atmospheres: Implications for Solid Exoplanets

    PubMed Central

    Kimura, Jun; Dohm, James; Ohtake, Makiko

    2014-01-01

    Abstract A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in the UV/visible/near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5–50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities, interaction with surrounding energetic particles, and distribution of grained materials. Some indications of these processes are provided by the amplitude and wavelength dependence of variation in combinations of the time-averaged spectra. We also estimate the photometric precision needed to detect their spin rotation rates through periodogram analysis. Our survey illustrates realistic possibilities for inferring the detailed properties of solid exoplanets with future direct imaging observations. Key Words: Planetary environments—Planetary geology—Solar System—Extrasolar terrestrial planets. Astrobiology 14, 753–768. PMID:25238324

  20. BRIGHTEST SATELLITE GALAXY ALIGNMENT OF SLOAN DIGITAL SKY SURVEY GALAXY GROUPS

    SciTech Connect

    Li Zhigang; Wang Yougang; Chen Xuelei; Yang Xiaohu; Xie Lizhi; Wang Xin E-mail: wangygcluster@gmail.com E-mail: lzxie@bao.ac.cn E-mail: wangxin@pha.jhu.edu

    2013-05-01

    We study the alignment signal between the distribution of the brightest satellite galaxies (BSGs) and the major axes of their host groups using the Sloan Digital Sky Survey group catalog constructed by Yang et al. After correcting for the effect of group ellipticity, a statistically significant ({approx}5{sigma}) major-axis alignment is detected and the alignment angle is found to be 43. Degree-Sign 0 {+-} 0. Degree-Sign 4. More massive and richer groups show a stronger BSG alignment. The BSG alignment around blue brightest central galaxies (BCGs) is slightly stronger than that around red BCGs. Red BSGs have a much stronger major-axis alignment than blue BSGs. Unlike BSGs, other satellites do not show very significant alignment with their group's major axis. We further explore BSG alignment using the semi-analytic model (SAM) constructed by Guo et al. In general, we found good agreement of the model with observations: BSGs in the SAM show a strong major-axis alignment that depends on group mass and richness in the same way as in observations and none of the other satellites exhibit prominent alignment. However, a discrepancy also exists in that the SAM shows a BSG color dependence opposite of that in observations, which is most probably induced by a missing large-scale environment ingredient in the SAM. The combination of two popular scenarios can explain the BSG alignment we detected. First, satellites merged into the group along the surrounding filaments, which are strongly aligned with the major axis of the group. Second, BSGs entered their host group more recently than other satellites, so they have preserved more information about their assembling history and major-axis alignment. In the SAM, we found positive evidence for the second scenario in the fact that BSGs merged into groups statistically more recently than other satellites. We also found that most of the BSGs (80%) were BCGs before they merged into groups and earlier merging BSGs tend to be closer to

  1. THE SPLASH SURVEY: SPECTROSCOPY OF 15 M31 DWARF SPHEROIDAL SATELLITE GALAXIES

    SciTech Connect

    Tollerud, Erik J.; Bullock, James S.; Yniguez, Basilio; Cooper, Michael C. E-mail: bullock@uci.edu E-mail: m.cooper@uci.edu; and others

    2012-06-10

    We present a resolved star spectroscopic survey of 15 dwarf spheroidal (dSph) satellites of the Andromeda galaxy (M31). We filter foreground contamination from Milky Way (MW) stars, noting that MW substructure is evident in this contaminant sample. We also filter M31 halo field giant stars and identify the remainder as probable dSph members. We then use these members to determine the kinematical properties of the dSphs. For the first time, we confirm that And XVIII, XXI, and XXII show kinematics consistent with bound, dark-matter-dominated galaxies. From the velocity dispersions for the full sample of dSphs we determine masses, which we combine with the size and luminosity of the galaxies to produce mass-size-luminosity scaling relations. With these scalings we determine that the M31 dSphs are fully consistent with the MW dSphs, suggesting that the well-studied MW satellite population provides a fair sample for broader conclusions. We also estimate dark matter halo masses of the satellites and find that there is no sign that the luminosity of these galaxies depends on their dark halo mass, a result consistent with what is seen for MW dwarfs. Two of the M31 dSphs (And XV, XVI) have estimated maximum circular velocities smaller than 12 km s{sup -1} (to 1{sigma}), which likely places them within the lowest-mass dark matter halos known to host stars (along with Booetes I of the MW). Finally, we use the systemic velocities of the M31 satellites to estimate the mass of the M31 halo, obtaining a virial mass consistent with previous results.

  2. Foodstuff Survey Around a Major Nuclear Facility with Test of Satellite Image Application

    SciTech Connect

    Fledderman, P.D.

    1999-07-16

    'A foodstuff survey was performed around the Savannah River Site, Aiken SC. It included a census of buildings and fields within 5 km of the boundary and determination of the locations and amounts of crops grown within 80 km of SRS center. Recent information for this region was collected on the amounts of meat, poultry, milk, and eggs produced, of deer hunted, and of sports fish caught. The locations and areas devoted to growing each crop were determined in two ways: by the usual process of assuming uniform crop distribution in each county on the basis of agricultural statistics reported by state agencies, and by analysis of two LANDSAT TM images obtained in May and September. For use with environmental radionuclide transfer and radiation dose calculation codes, locations within 80 km were defined for 64 sections by 16 sectors centered on the Site and by 16-km distance intervals from 16 km to 80 km. Most locally-raised foodstuff was distributed regionally and not retained locally for consumption. For four food crops, the amounts per section based on county agricultural statistics prorated by area were compared with the amounts per section based on satellite image analysis. The median ratios of the former to the latter were 0.6 - 0.7, suggesting that the two approaches are comparable but that satellite image analysis gave consistently higher amounts. Use of satellite image analysis is recommended on the basis of these findings to obtain site-specific, as compared to area-averaged, information on crop locations in conjunction with radionuclide pathway modelling. Some improvements in technique are suggested for satellite image application to characterize additional crops.'

  3. Surveys of elliptical crater populations on the saturnian satellites, Mercury, and Mars

    NASA Astrophysics Data System (ADS)

    Herrick, Robert R.; Schenk, Paul M.; Robbins, Stuart J.

    2012-08-01

    Near-horizontal planetary impacts result in elliptical craters. The percentage of elliptical craters on a planet can be used to infer the impact angle at which craters become elliptical. Previous surveys of the Moon, Mars, and Venus indicated that planetary craters become elliptical at more vertical angles than experimental impacts into a strengthless medium, and this was attributed to a higher ratio of crater diameter to projectile diameter. Here we determined the percentage of elliptical craters on the mid-sized saturnian satellites and Mercury, bodies that represent Solar-System extremes of impactor velocity, target density, and target strength. On the saturnian satellites, 7.6% of the craters have ellipticities e (ratio of major to minor axis) greater than 1.2, but only 0.4% have e > 1.5, and no craters have e > 1.75. On Mercury, 3% of the craters have e > 1.2 and 0.5% have e > 1.5. The mercurian percentages are slightly lower than the other terrestrial planets, attributable to a higher crater diameter to projectile diameter caused by the higher impact velocities at Mercury. We attribute the high percentage of moderately elliptical craters on the saturnian satellites to the rugged target terrain on those bodies. We interpret enhanced crater collapse on the icy surfaces of the saturnian satellites as preventing craters with extremely high ellipticities like the lunar crater Schiller. Finally, a reexamination of the martian crater population shows its elliptical crater population to be consistent with the other planets, and we see little evidence for a large population of craters formed by inward-spiraling moonlets.

  4. Preliminary Results of Detailed Chemical Abundance Analysis of Milky Way Satellite Galaxy Reticulum II Discovered in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Nagasawa, Daniel; Marshall, Jennifer L.; Li, Ting; Dark Energy Survey Milky Way Science Group

    2016-01-01

    We present preliminary results from abundance analysis of stars in Milky Way satellite galaxies found in the Dark Energy Survey (DES). DES has discovered 16 candidate satellite galaxies of the Milky Way in its first two years of operation. Since January 2015, three candidates have subsequently been revealed to be dark matter-dominated by spectroscopic follow-up studies of their kinematics, confirming their status as satellite galaxies. Spectroscopic follow-up of the remaining 13 candidates is underway. We have analyzed high resolution VLT/GIRAFFE spectra of member stars in one of these satellite galaxies, Reticulum II. Using equivalent width measurement and spectral synthesis methods, we measure the abundances of Iron and other species in order to begin to understand the chemical content of these Milky Way satellites.

  5. Exoplanet observations with GTC

    NASA Astrophysics Data System (ADS)

    Pallé, Enric

    2015-12-01

    Our group is presently conducting an observational campaign, using the 10-meter Gran Telescopio Canarias (GTC), to obtain the transmission spectrum of several exoplanets during a transit event. The GTC instrument OSIRIS is used in its long-slit spectroscopic mode, covering the spectral range of 520-1040 nm, and observations are taken using a set of custom-built slits of various, broad, widths. We integrate the stellar flux of both stars in different wavelength regions producing several light curves and fit transit models in order to obtain the star-to-planet radius ratio Rp/Rs across wavelength. A Markov Chain Monte Carlo (MCMC) Bayesian approach is used for the transit fitting. We will show that with our instrumental setup, OSIRIS has been able to reach precisions down to 250 ppm (WASP-48b, V=11.06 mag) for each color light curve 10 nm wide, in a single transit. And accuracies of the order of 500ppm can be obtained for objects with V=16. Central transit timing accuracies have been measured down to 6 seconds.Here, we will present refined planet parameters, the detection of planet color signatures, and the transmission spectra of a set of know and unpublished transiting exoplanets. We will also discuss the capabilities and limitations of GTC with current and future instrumentation, and the role of GTC as tool for the follow up of faint exoplanet targets.

  6. 32 New Exoplanets Found

    NASA Astrophysics Data System (ADS)

    2009-10-01

    oday, at an international ESO/CAUP exoplanet conference in Porto, the team who built the High Accuracy Radial Velocity Planet Searcher, better known as HARPS, the spectrograph for ESO's 3.6-metre telescope, reports on the incredible discovery of some 32 new exoplanets, cementing HARPS's position as the world's foremost exoplanet hunter. This result also increases the number of known low-mass planets by an impressive 30%. Over the past five years HARPS has spotted more than 75 of the roughly 400 or so exoplanets now known. "HARPS is a unique, extremely high precision instrument that is ideal for discovering alien worlds," says Stéphane Udry, who made the announcement. "We have now completed our initial five-year programme, which has succeeded well beyond our expectations." The latest batch of exoplanets announced today comprises no less than 32 new discoveries. Including these new results, data from HARPS have led to the discovery of more than 75 exoplanets in 30 different planetary systems. In particular, thanks to its amazing precision, the search for small planets, those with a mass of a few times that of the Earth - known as super-Earths and Neptune-like planets - has been given a dramatic boost. HARPS has facilitated the discovery of 24 of the 28 planets known with masses below 20 Earth masses. As with the previously detected super-Earths, most of the new low-mass candidates reside in multi-planet systems, with up to five planets per system. In 1999, ESO launched a call for opportunities to build a high resolution, extremely precise spectrograph for the ESO 3.6-metre telescope at La Silla, Chile. Michel Mayor, from the Geneva Observatory, led a consortium to build HARPS, which was installed in 2003 and was soon able to measure the back-and-forward motions of stars by detecting small changes in a star's radial velocity - as small as 3.5 km/hour, a steady walking pace. Such a precision is crucial for the discovery of exoplanets and the radial velocity method

  7. A Forest Biomass Survey by Bitterlich Method With an Electronic Relascope for Satellite Data Validation

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Ishii, R.; Takao, G.; Nakano, T.; Yasuda, T.

    2006-12-01

    For the better understanding of the carbon cycle in the global ecosystem, an investigation on the spatio- temporal variation of the carbon stock which is stored as vegetation biomass should be important. "PALSAR (Phased Array type L-band Synthetic Aperture Radar)", an onboard sensor of the polar orbiting satellite "ALOS (Advanced Land Observing Satellite)" launched in January 2006, provides the information which can be used for the above-ground biomass estimation. It is expected that ALOS/PALSAR provides us a great opportunity to analyze the biomass dynamics over extensive regions. To derive the biomass from the ALOS/PALSAR measurement, it is inevitable to acquire in situ biomass measurement by ground-based forest surveys. Moreover, it is required to obtain such ground-based information at as possible many sites, because the region targeted by satellite remote sensing is extensive and the forest structure in that region is various. Therefore, a quick forest survey will be required to measure the biomass at as possible many sites. For the quick measurement of the forest above-ground biomass, we propose a way that is a combination of Bitterlich angle count sampling method and sampled-tree measuring method. First, a tree which has wider trunk than the basal area factor (BAF) angle is identified by the relascope from a representative point in the target forest. Next, the tree height and the breast height diameter (DBH) of the sampled tree are measured. The biomass of the tree is estimate by the allometric equation with the tree height and DBH measurements. Through these processes, the biomass density of the sampled tree per the forest area defined by the BAF is estimated. By sampling and measuring all trees (usually around 20 trees), the biomass of the forest can be estimate. A brand-new electronic relascope (Criterion RD 1000, Laser Technology Inc.) and laser range finder (TruPulse 200, Laser Technology Inc.) are used for the tree height and DBH measurements to

  8. SEEDS - Strategic explorations of exoplanets and disks with the Subaru Telescope -

    NASA Astrophysics Data System (ADS)

    Tamura, M.

    2016-02-01

    The first convincing detection of planets orbiting stars other than the Sun, or exoplanets, was made in 1995. In only 20 years, the number of the exoplanets including promising candidates has already accumulated to more than 5000. Most of the exoplanets discovered so far are detected by indirect methods because the direct imaging of exoplanets needs to overcome the extreme contrast between the bright central star and the faint planets. Using the large Subaru 8.2-m Telescope, a new high-contrast imager, HiCIAO, and second-generation adaptive optics (AO188), the most ambitious high-contrast direct imaging survey to date for giant planets and planet-forming disks has been conducted, the SEEDS project. In this review, we describe the aims and results of the SEEDS project for exoplanet/disk science. The completeness and uniformity of this systematic survey mean that the resulting data set will dominate this field of research for many years.

  9. Infrared Spectroscopic Imaging Survey (emph{IRSIS}) payload for an Indian satellite

    NASA Astrophysics Data System (ADS)

    Ghosh, S. K.

    The Infrared Spectroscopic Imaging Survey (IRSIS) experiment, targeted for the Small Satellite Mission of the Indian Space Research Organization (ISRO), will carry out spectroscopic measurements in the wavelength range 1.7 to 6.4 μm seamlessly for the first time, covering a large fraction (˜ 50%) of the sky (including the Galactic Plane), with a reasonable sensitivity (completeness at 2.2 μm, K = 14 mag.). The planned Spectral Resolution is ˜ 100. Primary science goals include : (i) Discovery & classification of Brown Dwarfs, M-L-T Dwarfs (faint end of Initial Mass Function); (ii) Large scale mapping in emission features; e.g. Polycyclic Aromatic Hydrocarbon (PAH) at 3.3 μm, 6.2 μm, etc. (Galactic Plane survey); (iii) Minor bodies of Solar System : Asteroids, Comets, Inter- Planetary Dust; Origin, evolution & types of Organics; History of Solar System; and (iv) Asymptotic Giant Branch (AGB), Red-Super-Giant (RSG), Carbon-rich stars; (Galactic Bulge survey). In addition, it will support studies of time critical phenomena like novae, comets etc, under Targets of Opportunity (ToO) observations. The IRSIS database is expected to provide better understanding of energetics and composition of the ISM, infrared characterisation of stars, and various types of Solar system bodies.

  10. Multi-sensor satellite survey of surface oil pollution in the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Mityagina, Marina I.; Lavrova, Olga Y.

    2015-10-01

    The results of long-term satellite survey of the aquatic area of the Caspian Sea are presented. The patterns of surface oil pollution of the Caspian Sea are described and analysed. It is demonstrated that surface oil pollution is often caused by natural causes, namely by natural hydrocarbon seepages and mud volcanoes activity on the sea bottom. A combined analysis of oil film signatures in satellite radar and optical imagery data is performed. Mapping of the main types of surface pollution of the Caspian Sea is performed and areas of the heaviest pollution are outlined and analysed. Dependence of radar signatures of sea surface oil patches on the wind/wave conditions is investigated. The large amount of the data available allowed us to make some generalizations and obtain statistically significant results on a spatial and temporal variability of various sea surface film manifestations in SAR images. The impact of dynamic and circulation processes and natural factors (current meandering, vortical activity, temperature and wind patterns) on spatial and temporal distributions and intensity of oil films is studied. The connection between manifestations of natural seepages and mud volcanoes and earthquake activity in South Caspian and adjacent areas is established.

  11. VLBA Surveys of OH Masers in Star-forming Regions. I. Satellite Lines

    NASA Astrophysics Data System (ADS)

    Ruiz-Velasco, A. E.; Felli, D.; Migenes, V.; Wiggins, B. K.

    2016-05-01

    Using the Very Long Baseline Array we performed a high-resolution OH maser survey in Galactic star-forming regions (SFRs). We observed all the ground state spectral lines: the main lines at 1665 and 1667 MHz and the satellite lines at 1612 and 1720 MHz. Due to the exceptionality of finding satellite lines in SFRs, we will focus our discussion on those lines. In our sample of 41 OH maser sources, five (12%) showed the 1612 MHz line and ten (24%) showed the 1720 MHz line, with only one source showing both lines. We find that 1720 MHz emission is correlated with the presence of H ii regions, suggesting that this emission could be used to diagnose or trace high-mass star formation. We include an analysis of the possible mechanisms that could be causing this correlation as well as assessing the possible relationships between lines in our sample. In particular, the presence of magnetic fields seems to play an important role as we found Zeeman splitting in four of our sources (W75 N, W3(OH), W51 and NGC 7538). Our results have implications for current understanding of the formation of high-mass stars as well as on the masing processes present in SFRs.

  12. Field survey report and satellite image interpretation of the 2013 Super Typhoon Haiyan in the Philippines

    NASA Astrophysics Data System (ADS)

    Mas, E.; Bricker, J.; Kure, S.; Adriano, B.; Yi, C.; Suppasri, A.; Koshimura, S.

    2015-04-01

    Three weeks after the deadly Bohol earthquake of Mw 7.2, which claimed at least 222 victims, another disaster struck the Philippines. This time, Super Typhoon Haiyan, also known as Typhoon Yolanda in the Philippines, devastated the Eastern Visayas islands on 8 November 2013. Its classification as a super typhoon was based on its maximum sustained 1 min surface wind speed of 315 km h-1, which is equivalent to a strong Category 5 hurricane on the Saffir-Simpson scale. This was one of the deadliest typhoon events in the Philippines' history, after the 1897 and 1912 tropical cyclones. At least 6268 individuals have been reported dead and 1061 people are missing. In addition, a wide area of destruction was observed in the Eastern Visayas, on Samar and Leyte islands. The International Research Institute of Disaster Science (IRIDeS) at Tohoku University in Sendai, Japan, has deployed several teams for damage recognition, relief support and collaboration with regard to this disaster event. One of the teams, the hazard and damage evaluation team, visited the affected areas in the Eastern Visayas in mid-January 2014. In this paper, we summarize the rapid damage assessment from satellite imagery conducted days after the event and report on the inundation measurements and the damage surveyed in the field. Damage interpretation results by satellite images were qualitatively confirmed for the Tacloban city area on Leyte Island, the most populated city in the Eastern Visayas. During the survey, significant damage was observed from wind and storm surges on poorly designed housing on the east coast of Leyte Island. Damage, mainly from surface waves and winds, was observed on the east coast of Samar Island.

  13. Renewed uplift at the Yellowstone caldera measured by leveling surveys and satellite radar interferometry

    USGS Publications Warehouse

    Dzurisin, D.; Wicks, C.; Thatcher, W.

    1999-01-01

    A first-order leveling survey across the northeast part of the Yellowstone caldera in September 1998 showed that the central caldera floor near Le Hardy Rapids rose 24 ?? 5 mm relative to the caldera rim at Lake Butte since the previous survey in September 1995. Annual surveys along the same traverse from 1985 to 1995 tracked progressive subsidence near Le Hardy Rapids at an average rate of -19 ?? 1 mm/year. Earlier, less frequent surveys measured net uplift in the same area during 1923-1976 (14 ?? 1 mm/year) and 1976-1984 (22 ?? 1 mm/year). The resumption of uplift following a decade of subsidence was first detected by satellite synthetic aperture radar interferometry, which revealed approximately 15 mm of uplift in the vicinity of Le Hardy Rapids from July 1995 to June 1997. Radar interferograms show that the center of subsidence shifted from the Sour Creek resurgent dome in the northeast part of the caldera during August 1992 to June 1993 to the Mallard Lake resurgent dome in the southwest part during June 1993 to August 1995. Uplift began at the Sour Creek dome during August 1995 to September 1996 and spread to the Mallard Lake dome by June 1997. The rapidity of these changes and the spatial pattern of surface deformation suggest that ground movements are caused at least in part by accumulation and migration of fluids in two sill-like bodies at 5-10 km depth, near the interface between Yellowstone's magmatic and deep hydrothermal systems.

  14. Exoplanet Orbit Database. II. Updates to Exoplanets.org

    NASA Astrophysics Data System (ADS)

    Han, Eunkyu; Wang, Sharon X.; Wright, Jason T.; Feng, Y. Katherina; Zhao, Ming; Fakhouri, Onsi; Brown, Jacob I.; Hancock, Colin

    2014-09-01

    The Exoplanet Orbit Database (EOD) compiles orbital, transit, host star, and other parameters of robustly-detected exoplanets reported in the peer-reviewed literature. The EOD can be navigated through the Exoplanet Data Explorer (EDE) plotter and table, available on the World Wide Web at exoplanets.org. The EOD contains data for 1492 confirmed exoplanets as of 2014 July. The EOD descends from a table provided by Butler and coworkers in 2002 and the Catalog of Nearby Exoplanets (Butler and coworkers in 2006), and the first complete documentation for the EOD and the EDE was presented by Wright and coworkers in 2011. In this work, we describe our work since then. We have expanded the scope of the EOD to include secondary eclipse parameters and asymmetric uncertainties and expanded the EDE to include the sample of over 3000 Kepler Objects of Interest (KOIs) and other real planets without good orbital parameters (such as many of those detected by microlensing and imaging). Users can download the latest version of the entire EOD as a single comma separated value file from the front page of exoplanets.org.

  15. Remote Sensing by Satellite for Environmental Education: A Survey and a Proposal for Teaching at Upper Secondary and University Level.

    ERIC Educational Resources Information Center

    Bosler, Ulrich

    Knowledge of the environment has grown to such an extent that information technology (IT) is essential to make sense of the available data. An example of this is remote sensing by satellite. In recent years this field has grown in importance and remote sensing is used for a range of uses including the automatic survey of wheat yields in North…

  16. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes

    NASA Astrophysics Data System (ADS)

    Pritchard, Matthew E.; Simons, Mark

    2002-07-01

    Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Stratovolcanoes tend to exhibit a complex relationship between deformation and eruptive behaviour. The characteristically long time spans between such eruptions requires a long time series of observations to determine whether deformation without an eruption is common at a given edifice. Such studies, however, are logistically difficult to carry out in most volcanic arcs, as these tend to be remote regions with large numbers of volcanoes (hundreds to even thousands). Here we present a satellite-based interferometric synthetic aperture radar (InSAR) survey of the remote central Andes volcanic arc, a region formed by subduction of the Nazca oceanic plate beneath continental South America. Spanning the years 1992 to 2000, our survey reveals the background level of activity of about 900 volcanoes, 50 of which have been classified as potentially active. We find four centres of broad (tens of kilometres wide), roughly axisymmetric surface deformation. None of these centres are at volcanoes currently classified as potentially active, although two lie within about 10km of volcanoes with known activity. Source depths inferred from the patterns of deformation lie between 5 and 17km. In contrast to the four new sources found, we do not observe any deformation associated with recent eruptions of Lascar, Chile.

  17. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes.

    PubMed

    Pritchard, Matthew E; Simons, Mark

    2002-07-11

    Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Stratovolcanoes tend to exhibit a complex relationship between deformation and eruptive behaviour. The characteristically long time spans between such eruptions requires a long time series of observations to determine whether deformation without an eruption is common at a given edifice. Such studies, however, are logistically difficult to carry out in most volcanic arcs, as these tend to be remote regions with large numbers of volcanoes (hundreds to even thousands). Here we present a satellite-based interferometric synthetic aperture radar (InSAR) survey of the remote central Andes volcanic arc, a region formed by subduction of the Nazca oceanic plate beneath continental South America. Spanning the years 1992 to 2000, our survey reveals the background level of activity of about 900 volcanoes, 50 of which have been classified as potentially active. We find four centres of broad (tens of kilometres wide), roughly axisymmetric surface deformation. None of these centres are at volcanoes currently classified as potentially active, although two lie within about 10 km of volcanoes with known activity. Source depths inferred from the patterns of deformation lie between 5 and 17 km. In contrast to the four new sources found, we do not observe any deformation associated with recent eruptions of Lascar, Chile. PMID:12110886

  18. ExoplanetSat: detecting transiting exoplanets using a low-cost CubeSat platform

    NASA Astrophysics Data System (ADS)

    Smith, Matthew W.; Seager, Sara; Pong, Christopher M.; Villaseñor, Jesus S.; Ricker, George R.; Miller, David W.; Knapp, Mary E.; Farmer, Grant T.; Jensen-Clem, Rebecca

    2010-07-01

    Nanosatellites, i.e. spacecraft that weigh between 1 and 10 kg, are drawing increasing interest as platforms for conducting on-orbit science. This trend is primarily driven by the ability to piggyback nanosatellites on the launch of large spacecraft and hence achieve orbit at greatly reduced cost. The CubeSat platform is a standardized nanosatellite configuration, consisting of one, two, or three 10 cm x 10 cm x 10 cm units (1, 2, or 3 "U"s) arranged in a row. We present a CubeSat-based concept for the discovery of transiting exoplanets around the nearest and brightest Sun-like stars. The spacecraft prototype - termed ExoplanetSat - is a 3U space telescope capable of monitoring a single target star from low Earth orbit. Given the volume limitations of the CubeSat form factor, designing a capable spacecraft requires overcoming significant challenges. This work presents the initial satellite configuration along with several subsystem-specific solutions to the aforementioned constraints. An optical design based on a modified commercial off-the-shelf camera lens is given. We also describe a novel two-stage attitude control architecture that combines 3-axis reaction wheels for coarse pointing with a piezoelectric translation stage at the focal plane for fine pointing. Modeling and simulation results are used to demonstrate feasibility by quantifying ExoplanetSat pointing precision, signal-to-noise ratio, guide star magnitude, and additional design parameters which determine system performance.

  19. Understanding Young Exoplanet Analogs with WISE

    NASA Astrophysics Data System (ADS)

    Rice, Emily

    We propose to tackle outstanding questions about the fundamental properties of young brown dwarfs, which are atmospheric analogs to massive gas giant exoplanets, using public archive data from the Wide-field Infrared Survey Explorer (WISE) combined with our extensive dataset of optical and near-infrared observations, including spectra, proper motions, and parallaxes. Using WISE data we will construct color-color diagrams, color- magnitude diagrams, and spectral energy distributions for our sample of candidate young brown dwarfs. We will fully characterize the spectral properties of the candidates and evaluate their membership in nearby young moving groups in order to obtain independent age estimates. The practical outcomes of this project will allow the research community to use observed colors and spectra to reliably constrain the properties - including effective temperature, gravity, and dust/cloud properties - of both brown dwarfs and gas giant exoplanets. We will also search for new young brown dwarfs in the WISE archive using colors and proper motions. The expanded sample of young brown dwarfs will be used to create a self-contained feedback loop to identify and address the shortcomings of cool atmosphere models and low-mass evolutionary tracks, both of which are already being used to infer the properties of massive exoplanets. Disentangling the effects of physical parameters on the observed properties of young brown dwarfs is directly relevant to studies of exoplanets. Direct observations of exoplanets are currently very limited, and young brown dwarfs are the laboratories in which we can solve existing problems before the onslaught of new observations from instruments capable of directly imaging exoplanets, including the Gemini Planet Imager, Project 1640 at the Palomar Observatory, SPHERE on the VLT, and the James Webb Space Telescope. This project addresses the goal of the NASA Science Mission Directorate to discover how the universe works; in particular

  20. Lightest exoplanet yet discovered

    NASA Astrophysics Data System (ADS)

    2009-04-01

    Well-known exoplanet researcher Michel Mayor today announced the discovery of the lightest exoplanet found so far. The planet, "e", in the famous system Gliese 581, is only about twice the mass of our Earth. The team also refined the orbit of the planet Gliese 581 d, first discovered in 2007, placing it well within the habitable zone, where liquid water oceans could exist. These amazing discoveries are the outcome of more than four years of observations using the most successful low-mass-exoplanet hunter in the world, the HARPS spectrograph attached to the 3.6-metre ESO telescope at La Silla, Chile. ESO PR Photo 15a/09 Artist's impression of Gliese 581 e ESO PR Photo 15b/09 A planet in the habitable zone ESO PR Video 15a/09 ESOcast 6 ESO PR Video 15b/09 VNR A-roll ESO PR Video 15c/09 Zoom-in on Gliese 581 e ESO PR Video 15d/09 Artist's impression of Gliese 581 e ESO PR Video 15e/09 Artist's impression of Gliese 581 d ESO PR Video 15f/09 Artist's impression of Gliese 581 system ESO PR Video 15g/09 The radial velocity method ESO PR Video 15h/09 Statement in English ESO PR Video 15i/09 Statement in French ESO PR Video 15j/09 La Silla Observatory "The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone' -- a region around the host star with the right conditions for water to be liquid on a planet's surface", says Michel Mayor from the Geneva Observatory, who led the European team to this stunning breakthrough. Planet Gliese 581 e orbits its host star - located only 20.5 light-years away in the constellation Libra ("the Scales") -- in just 3.15 days. "With only 1.9 Earth-masses, it is the least massive exoplanet ever detected and is, very likely, a rocky planet", says co-author Xavier Bonfils from Grenoble Observatory. Being so close to its host star, the planet is not in the habitable zone. But another planet in this system appears to be. From previous observations -- also obtained with the HARPS spectrograph

  1. Chemical modeling of exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Venot, O.; Agúndez, M.

    2015-12-01

    The past twenty years have revealed the diversity of planets that exist in the Universe. It turned out that most of exoplanets are different from the planets of our Solar System and thus, everything about them needs to be explored. Thanks to current observational technologies, we are able to determine some information about the atmospheric composition the thermal structure and the dynamics of these exoplanets, but many questions remain still unanswered. To improve our knowledge about exoplanetary systems, more accurate observations are needed and that is why the Exoplanet Characterisation Observatory (EChO) is an essential space mission. Thanks to its large spectral coverage and high spectral resolution, EChO will provide exoplanetary spectra with an unprecedented accuracy, allowing to improve our understanding of exoplanets. In this work, we review what has been done to date concerning the chemical modeling of exoplanet atmospheres and what are the main characteristics of warm exoplanet atmospheres, which are one of the main targets of EChO. Finally we will present the ongoing developments that are necessary for the chemical modeling of exoplanet atmospheres.

  2. Saturn as a Transiting Exoplanet

    NASA Astrophysics Data System (ADS)

    Dalba, Paul A.; Muirhead, Philip S.; Fortney, Jonathan J.; Hedman, Matthew M.; Nicholson, Philip D.; Veyette, Mark J.

    2015-11-01

    Previous investigations of exoplanet atmospheres have not targeted those resembling the gas giant planets in our solar system. These types of exoplanets are too cold to be directly imaged or observed in emission, and their low transit probabilities and frequencies make characterization via transmission spectroscopy a challenging endeavor. However, studies of cold giant exoplanets would be highly valuable to our understanding of planet formation and migration and could place the gas giant members of our own solar system in a greater context. Here, we use solar occultations observed by the Visual and Infrared Mapping Spectrometer aboard the Cassini Spacecraft to extract the 1 to 5 μm transmission spectrum of Saturn, as if it were a transiting exoplanet. We detect absorption features from several molecules despite the presence of ammonia clouds. Self-consistent exoplanet atmosphere models show good agreement with Saturn's transmission spectrum but fail to reproduce the largest feature in the spectrum. We also find that atmospheric refraction determines the minimum altitude that could be probed during mid-transit of a Saturn-twin exoplanet around a Sun-like star. These results suggest that transmission spectroscopy of cold, long-period gaseous exoplanets should be possible with current and future observatories.

  3. Characterizing Transiting Exoplanet Atmospheres with Gemini/GMOS: First Results

    NASA Astrophysics Data System (ADS)

    Huitson, Catherine; Desert, Jean-Michel; Bean, Jacob; Fortney, Jonathan J.; Stevenson, Kevin B.; Bergmann, Marcel

    2015-01-01

    We present the first results from a 4-year ground-based survey of nine transiting exoplanet atmospheres. The program uses the Multi-Object Spectrograph (GMOS) on both Gemini north and south to repetitively measure transit lightcurves of individual exoplanets at high spectrophotometric precision. I will present the first results from this program. We attain photometric precisions per spectral bin of 200-600 ppm. Such precision enables us to construct transmission spectra of hot Jupiters. These transmission spectra reveal the dominant upper-atmosphere absorbers in the optical bandpass. Our overarching goal is to understand the prevalence and formation of high altitude clouds and hazes, and other important atmospheric constituents.

  4. Relativity and Exoplanets: Gravitational Microlensing, Doppler Beaming, and More

    NASA Astrophysics Data System (ADS)

    Gaudi, Scott

    2016-03-01

    Perhaps surprisingly, the theories of both special and general relativity play important roles in several areas of exoplanet research. I will review the most important and intriguing of these applications. The most obvious case is gravitational microlensing, which has become a fairly routine method of finding planets, and is poised to become even more important in the next decade. I will also briefly survey the numerous other areas where relativity plays a role in exoplanet theory and observations, including photometric Doppler beaming, general relativistic precession, transits of compact objects, and even (potentially) gravitational wave experiments.

  5. Search of Exoplanets - Phase I

    NASA Astrophysics Data System (ADS)

    Vodniza, Alberto Q.; Pereira, M. R.; Lopez, J. P.; Reyes, K.; Chaves, L.

    2008-09-01

    From the Astronomical Observatory at the University of Nariño-COLOMBIA, we have begun a systematic search for exoplanets. Initially we made differential photometry on variable stars weaker than the tenth magnitude to get enough experience on the establishment of stellar transits, so then we could undertake the work with exoplanets. We have already confirmed the transits of two exoplanets with good photometry data: At the exoplanet HAT-P-5b, discovered by Bakos and other investigators and which turns around the GSC 02634-01087, with an orbital period of 2.788491 days according to measurements of the discoverers, and also at the exoplanet TrES-3, discovered by O'Donovan and other investigators and which turns around the GSC 03089-00929, with an orbital period of 1.30619 days, established by its discoverers. Both exoplanets are quite interesting because they have one of the smallest periods found on exoplanets. The TrES-3 also provides a big opportunity for studying the orbital decay and mass loss due to evaporation, caused by the great closeness to its star. We have captured a lot of data to elaborate the lightcurves so we can estimate physical parameters of the bodies. We are getting data on various dates. Actually we are preparing the equipment to develop observations of radial velocities through spectrometry. In a later phase, we expect to verify the presence of other exoplanets which cause less deep transits, and then we can investigate stars with possible exoplanets around them. Besides we hope to design a mathematical model of the studied systems. The equipment we employed is: 14"LX200 GPS MEADE telescope, ST-7XME SBIG camera, STL-1001 SBIG camera, LHIRES III Spectrograph, and SGS-SBIG Spectrograph. On the poster it is explained at length the methodology followed over the search, the data we obtained and the physical- mathematical analysis that was carried out.

  6. History of water loss and atmospheric O2 buildup on rocky exoplanets near M dwarfs

    NASA Astrophysics Data System (ADS)

    Tian, Feng

    2015-12-01

    It is recently proposed that early stellar luminosity evolution of M dwarfs leads to severe water loss and the buildup of massive O2 atmospheres on rocky exoplanets in the habitable zone of these stars if interactions of such O2 atmospheres with planetary surfaces are inefficient. Here we show that even without considering atmosphere-surface interactions, the existence of a massive O2 atmosphere on such exoplanets is not an unavoidable consequence around M0-M3 stars and depends on stellar XUV properties, the mass of the exoplanets, and most importantly the initial planetary water inventories. In the case of inefficient atmosphere-surface interactions, the distribution of atmospheric O2 contents on these exoplanets should be bi-modal and such a distribution could be verified by future surveys of rocky exoplanets.

  7. GhostNet marine debris survey in the Gulf of Alaska--satellite guidance and aircraft observations.

    PubMed

    Pichel, William G; Veenstra, Timothy S; Churnside, James H; Arabini, Elena; Friedman, Karen S; Foley, David G; Brainard, Russell E; Kiefer, Dale; Ogle, Simeon; Clemente-Colón, Pablo; Li, Xiaofeng

    2012-01-01

    Marine debris, particularly debris that is composed of lost or abandoned fishing gear, is recognized as a serious threat to marine life, vessels, and coral reefs. The goal of the GhostNet project is the detection of derelict nets at sea through the use of weather and ocean models, drifting buoys and satellite imagery to locate convergent areas where nets are likely to collect, followed by airborne surveys with trained observers and remote sensing instruments to spot individual derelict nets. These components of GhostNet were first tested together in the field during a 14-day marine debris survey of the Gulf of Alaska in July and August 2003. Model, buoy, and satellite data were used in flight planning. A manned aircraft survey with visible and IR cameras and a LIDAR instrument located debris in the targeted locations, including 102 individual pieces of debris of anthropogenic or terrestrial origin. PMID:22088492

  8. Future of High-Dimensional Data-Driven Exoplanet Science

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.

    2016-03-01

    The detection and characterization of exoplanets has come a long way since the 1990’s. For example, instruments specifically designed for Doppler planet surveys feature environmental controls to minimize instrumental effects and advanced calibration systems. Combining these instruments with powerful telescopes, astronomers have detected thousands of exoplanets. The application of Bayesian algorithms has improved the quality and reliability with which astronomers characterize the mass and orbits of exoplanets. Thanks to continued improvements in instrumentation, now the detection of extrasolar low-mass planets is limited primarily by stellar activity, rather than observational uncertainties. This presents a new set of challenges which will require cross-disciplinary research to combine improved statistical algorithms with an astrophysical understanding of stellar activity and the details of astronomical instrumentation. I describe these challenges and outline the roles of parameter estimation over high-dimensional parameter spaces, marginalizing over uncertainties in stellar astrophysics and machine learning for the next generation of Doppler planet searches.

  9. Spectral Signatures of WFIRST-AFTA Exoplanet Coronagraphy Targets

    NASA Astrophysics Data System (ADS)

    Lewis, Nikole K.; Marley, Mark S.; Lupu, Roxana E.; Fortney, Jonathan J.; Morley, Caroline; Greene, Thomas P.; Robinson, Tyler D.; Visscher, Channon; Freedman, Richard; Line, Michael R.; Traub, Wesley A.

    2016-01-01

    A key component of the WFIRST-AFTA mission is high contrast imaging of planets and debris disks around nearby stars. It is expected that the WFIRST-AFTA mission will be able to characterize around a dozen exoplanets, many of which are already known to exist from current radial velocity surveys. These planets will possess a broad range of atmospheric properties, including a number of possible cloud species and atmospheric compositions. In preparation for the WFIRST-AFTA mission, our team is constructing a library of relevant theoretical spectra and performing spectral retrieval analyses to assess the robustness with which WFIRST-AFTA will be able to characterize exoplanet atmospheres. Here we present our initial findings for a subset of the known exoplanet population that will likely be prime targets for the WFIRST-AFTA mission.

  10. Stellar Spectroscopy during Exoplanet Transits: Revealing structures across stellar surfaces

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis; Ludwig, Hans-Günter; Dahlén, Erik

    2015-08-01

    Exoplanet transits permit to study stellar surface portions that successively become hidden behind the planet. Differential spectroscopy between various transit phases reveals spectra of those stellar surface segments that were hidden. The deduced center-to-limb behavior of stellar spectral line shapes, asymmetries and wavelength shifts enables detailed tests of 3-dimensional hydrodynamic models of stellar atmospheres, such that are required for any precise determination of abundances or seismic properties. Such models can now be computed for widely different classes of stars (including metal-poor ones and white dwarfs), but have been feasible to test and verify only for the Sun with its resolved surface structure. Exoplanet transits may also occur across features such as starspots, whose magnetic signatures will be retrieved from spectra of sufficient fidelity.Knowing the precise background stellar spectra, also properties of exoplanet atmospheres are better constrained: e.g., the Rossiter-McLaughlin effect becomes resolved as not only a simple change of stellar wavelength, but as a variation of the full line profiles and their asymmetries.Such studies are challenging since exoplanets cover only a tiny fraction of the stellar disk. Current work, analyzing sequences of high-fidelity ESO UVES spectra, demonstrate that such spatially resolved stellar spectra can already be (marginally) retrieved in a few cases with the brightest host stars. Already in a near future, ongoing exoplanet surveys are likely to find further bright hosts that will enable such studies for various stellar types. http://arxiv.org/abs/1408.1402

  11. Geometric accuracy improvement and verification of remote sensing image product for the ZY-3 surveying and mapping satellite

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Zhou, Ping; Guo, Li

    2015-12-01

    Based on the geometric characteristic of ZY3 surveying and mapping satellite, this paper analyses the main error sources of the geometric accuracy of ZY3 satellite image product, and proposes a key technique to improve the accuracy of geometric positioning of ZY-3 satellite image products without the Ground Control Points. Firstly, 556 ZY-3 satellite images distributed in the central western China, with an area of 350 million km2, were used for the planar positioning accuracy verification. The results show that the planar accuracy of ZY-3 image without the GCPs is about 10.8 meters (1σ), and more than 96.9% of experimental image without the GCPs have the planar accuracy higher than 25 meters. Subsequently, the Digital Surface Model (DSM) produced by the ZY-3 three linear array image in Shanxi without the GCPs and the high-precise Lidar-DEM were compared. The comparison shows that overall vertical accuracy of DSM is higher than 6 meters (1σ), and higher than 5.5 and 6.4 meters (1σ) in plane and mountainous area respectively. So the validation confirmed the overall accuracy of ZY-3 satellite images, indicating that ZY-3 satellite can achieve a higher geometric accuracy.

  12. KEPLER OBSERVATIONS OF THREE PRE-LAUNCH EXOPLANET CANDIDATES: DISCOVERY OF TWO ECLIPSING BINARIES AND A NEW EXOPLANET

    SciTech Connect

    Howell, Steve B.; Rowe, Jason F.; Bryson, Stephen T.; Sherry, William; Von Braun, Kaspar; Ciardi, David R.; Feldmeier, John J.; Horch, Elliott; Van Belle, Gerard T.

    2010-12-20

    Three transiting exoplanet candidate stars were discovered in a ground-based photometric survey prior to the launch of NASA's Kepler mission. Kepler observations of them were obtained during Quarter 1 of the Kepler mission. All three stars are faint by radial velocity follow-up standards, so we have examined these candidates with regard to eliminating false positives and providing high confidence exoplanet selection. We present a first attempt to exclude false positives for this set of faint stars without high-resolution radial velocity analysis. This method of exoplanet confirmation will form a large part of the Kepler mission follow-up for Jupiter-sized exoplanet candidates orbiting faint stars. Using the Kepler light curves and pixel data, as well as medium-resolution reconnaissance spectroscopy and speckle imaging, we find that two of our candidates are binary stars. One consists of a late-F star with an early M companion, while the other is a K0 star plus a late M-dwarf/brown dwarf in a 19 day elliptical orbit. The third candidate (BOKS-1) is an r = 15 G8V star hosting a newly discovered exoplanet with a radius of 1.12 R{sub Jupiter} in a 3.9 day orbit.

  13. Minerva: Big Exoplanet Science from Small Telescopes

    NASA Astrophysics Data System (ADS)

    McCrady, Nate

    2012-10-01

    The Kepler mission has identified over 2300 candidate planets in the past two years, adding to the over 500 confirmed exoplanets from radial velocity (RV) surveys. One of the most striking results of these surveys is that the number of planets increases rapidly with decreasing size. There may in fact be more Earth-like planets in the Galaxy than stars. There must be terrestrial planets around nearby stars, though few have yet been discovered. Finding these planets requires high precision RV observations and high cadence transit observing to densely sample the orbital phase. Minerva will surmount these obstacles with a dedicated observatory for detection of super-Earths and close-in Earth-like planets. Our array of four 0.7-m telescopes will operate in two modes: jointly with a high precision fiber-fed spectrometer capable of detecting the RV signal of an Earth orbiting a low mass star, and independently for photometric transit detection surveys.

  14. Weird Warm Spot on Exoplanet

    NASA Video Gallery

    This animation illustrates an unexpected warm spot on the surface of a gaseous exoplanet. NASA's Spitzer Space Telescope discovered that the hottest part of the planet, shown here as bright, orange...

  15. A Cloudy View of Exoplanets

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    2010-01-01

    The lack of absorption features in the transmission spectrum of exoplanet GJ1214b rules out a hydrogen-rich atmosphere for the planet. It is consistent with an atmosphere rich in water vapour or abundant in clouds.

  16. Exoplanet Clouds in the Laboratory

    NASA Astrophysics Data System (ADS)

    Johnson, Alexandria; Cziczo, Daniel J.; Seager, Sara; Charbonneau, David; Bauer, Amy J. R.

    2015-12-01

    The lack of strong spectral features of some exoplanet atmospheres may suggest the presence of a cloud layer and poses great challenges for atmospheric characterization. We aim to address these observations and the challenges by leveraging lab-based terrestrial cloud particle instrumentation as a means of investigating how particles representative of those in exoplanet atmospheres interact with incoming radiation. In the end we hope to achieve two goals - First, to better understand the observable properties of cloud particles in exoplanet atmospheres. Second, to determine how these clouds might directly limit our ability to observe and characterize the atmosphere below.In this presentation I will discuss the cloud chamber used for this work, how we leverage terrestrial based cloud knowledge, our initial investigation of the light scattered by ammonium nitrate (NH4NO3) across temperature and relative humidity dependent phase changes, and future work with suspected exoplanet atmospheric condensates under various atmospheric compositions, pressures, and temperatures.

  17. Field survey report and satellite image interpretation of the 2013 Super Typhoon Haiyan in the Philippines

    NASA Astrophysics Data System (ADS)

    Mas, E.; Bricker, J.; Kure, S.; Adriano, B.; Yi, C.; Suppasri, A.; Koshimura, S.

    2014-05-01

    Three weeks after the deadly Bohol earthquake of magnitude Mw 7.2, which claimed at least 222 victims; another disaster struck the Philippines. This time, Super Typhoon Haiyan, also known as Typhoon Yolanda in the Philippines, devastated the Eastern Visayas islands on 8 November 2013. Its classification as a Super Typhoon was based on its maximum sustained 1 min surface wind speed of 315 km h-1, which is equivalent to a strong Category 5 hurricane on the Saffir-Simpson Scale. This was one of the deadliest typhoon events in the Philippines' history, after the 1897 and 1912 tropical cyclones. At least 6268 individuals have been reported dead and 1061 people are missing. In addition, a wide area of destruction was observed in the Eastern Visayas, on Samar and Leyte Islands. The International Research Institute of Disaster Science (IRIDeS) at Tohoku University in Sendai, Japan has deployed several teams for damage recognition, relief support and collaboration with regard to this disaster event. One of the teams, the hazard and damage evaluation team, visited the affected areas in the Eastern Visayas in mid-January 2014. In this paper, we summarize the rapid damage assessment conducted days after the event and report on the inundation measurements and the damage surveyed in the field. Damage interpretation results by satellite images were qualitatively confirmed for the Tacloban city area on Leyte Island, the most populated city in the Eastern Visayas. During the survey, significant damage was observed from wind and storm surges on poorly designed housing on the east coast of Leyte Island. Damage, mainly from surface waves and winds was observed on the east coast of Samar Island.

  18. Observations of Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Crossfield, Ian J. M.

    2015-10-01

    Detailed characterization of an extrasolar planet's atmosphere provides the best hope for distinguishing the makeup of its outer layers, and the only hope for understanding the interplay between initial composition, chemistry, dynamics and circulation, and disequilibrium processes. In recent years, some areas have seen rapid progress, while developments in others have come more slowly and/or have been hotly contested. This article gives an observer's perspective on the current understanding of extrasolar planet atmospheres prior to the considerable advances expected from the next generation of observing facilities. Atmospheric processes of both transiting and directly imaged planets are discussed, including molecular and atomic abundances, cloud properties, thermal structure, and planetary energy budgets. In the future we can expect a continuing and accelerating stream of new discoveries, which will fuel the ongoing exoplanet revolution for many years to come.

  19. Structure of exoplanets.

    PubMed

    Spiegel, David S; Fortney, Jonathan J; Sotin, Christophe

    2014-09-01

    The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our solar system are merely possible outcomes of planetary system formation and evolution, and conceivably not even especially common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are both known and speculated to exist in exoplanetary systems--from mostly degenerate objects that are more than 10× as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of Earth. PMID:24379369

  20. Geoengineering on exoplanets

    NASA Astrophysics Data System (ADS)

    Lockley, Andrew

    2015-04-01

    Solar radiation management (SRM) geoengineering can be used to deliberately alter the Earth's radiation budget, by reflecting sunlight to space. SRM has been suggested as a response to Anthropogenic Global Warming (AGW), to partly or fully balance radiative forcing from AGW [1]. Approximately 22% of sun-like stars have Earth-like exoplanets[2]. Advanced civilisations may exist on these, and may use geoengineering for positive or negative radiative forcing. Additionally, terraforming projects [e.g. 3], may be used to expand alien habitable territory, or for resource management or military operations on non-home planets. Potential observations of alien geoengineering and terraforming may enable detection of technologically advanced alien civilisations, and may help identify widely-used and stable geoengineering technologies. This knowledge may assist the development of safe and stable geoengineering methods for Earth. The potential risks and benefits of possible alien detection of Earth-bound geoengineering schemes must be considered before deployment of terrestrial geoengineering schemes.

  1. Visualising Astronomy: Visualising Exoplanets

    NASA Astrophysics Data System (ADS)

    Wyatt, R.

    2012-05-01

    In my previous column1, I described some of the varied means of diagramming the data about exoplanets and exoplanetary systems. Frankly, however, those methods don't do justice to the bigger picture: we need a wider range of tools to help people grok2 (to understand intuitively) what astronomical observations have revealed. (Normally, I use the term "visualisation" to refer to the visual representation of data, but I'm going to relax that a little in this context; instead, I'll interpret the word in its more commonplace usage of creating a mental image.) How can we help people comprehend the scope, the breadth, and the impact of the spectacular observations of planets around other stars?

  2. Structure of exoplanets

    PubMed Central

    Spiegel, David S.; Fortney, Jonathan J.; Sotin, Christophe

    2014-01-01

    The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our solar system are merely possible outcomes of planetary system formation and evolution, and conceivably not even especially common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are both known and speculated to exist in exoplanetary systems—from mostly degenerate objects that are more than 10× as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of Earth. PMID:24379369

  3. Coral Reef Dynamics: Integrating Field Survey, and Satellite Image Data to Monitor and Model Biogeophysical Dynamics

    NASA Astrophysics Data System (ADS)

    Phinn, S. R.; Roelfsema, C.; Leon, J.; Borrego, R.; Canto, R.; Joyce, K.; McGowan, H. A.; Mackellar, M. C.

    2012-12-01

    Developing a complete understanding of the contemporary biogeophysical processes shaping coral reef ecosystems requires integration across multiple disciplines. This paper outlines the results obtained across multiple disciplinary projects for developing an integrated understanding of the biogeophysical processes shaping Heron Reef, on the Great Barrier Reef Australia. Heron Reef is a lagoonal platform reef on the southern Great Reef, with a small coral cay on its western edge. Over the past 10 years the nature of research undertaken On Heron reef has moved from plot-scale field surveys and lab experiments, to process-based measurements and experiments over the entire reef, its adjacent oceanic areas and atmosphere. Resultsfrom four projects are presented to act as the foundation for a conceptual model of biogeophysical processes affecting the reef. These cover: (1) benthic composition mapping; (2) biogeophysical forcing processes; (3) dynamics of benthic composition; and (4) dynamics of geomorphic zonation. (1) Benthic composition and reef structure/bathymetry/rugosity mapping to centimetre scales have been completed on an annual basis for > 10 years using standardised methods to quantify the composition of the reef substrate and benthos. Assessment of the resulting annual data sets, shows distinctive spatial variability in macro-algal and benthic micro-algal cover within and between years, while coral cover changes are longer term, unless linked to disturbance events. These data are critical for calibrating and validating satellite image mapping and models of benthic cover composition and dynamics, and determining input areas for foot-printing of eddy-correlation measurements of coral reef energy and gas fluxes. (2) Biogeophysical processes affected by surface energy and gas exchanges and hydrodynamic forcing by gravity waves and tidal currents have only been measured within past 10 years due to developments in sensor technology. For Heron Reef, several

  4. Foodstuff survey around a major nuclear facility with test of satellite images application

    SciTech Connect

    Twining, S.; Strydom, J.; Rosson, R.; Koffman, L.; Fledderman, P.; Kahn, B.

    2000-05-01

    A foodstuff survey was performed around the Savannah River Site, Aiken, South Carolina. It included a census of buildings and fields within 5 km of the boundary and determination of the locations and amounts of crops grown within 80 km of the Savannah River Site center. Recent information for this region was collected on the amounts of meat, poultry, milk, and eggs produced, of deer hunted, and of sports fish caught. The locations and areas devoted to growing each crop were determined by the usual process of applying county agricultural statistics reported by state agencies. This process was compared to crop analysis of two LANDSAT Thematic Mapper images. For use with environmental radionuclide transfer and radiation dose calculation codes, locations within 80 km were defined for 64 sections by 16 sectors centered on the site and by 16-km distance intervals from 16 km to 80 km. The median areas per section devoted to each of four food crops based on county agricultural statistics were about two-thirds of those based on satellite image analysis. Most locally-raised foodstuff was distributed regionally and not retained locally for consumption.

  5. Survey and documentation of emerging technologies for the satellite power system (SPS)

    SciTech Connect

    Glaser, P.; Chapman, P.

    1981-04-01

    The purpose of this study is to survey emerging technologies and new concepts which may offer advantages over those selected for the SPS Reference System. A brief historical overview of the genesis of the Solar Power Satellite (SPS) concept is presented leading to a discussion of the assumptions and guidelines which were originally established and which led to development of the SPS Reference System design concept. Some of these guidelines are applicable to almost any SPS design, but others could be changed, leading to new and perhaps preferable systems. Moreover, while some of the guidelines are based on solid data, some are little more than arbitrary assumptions which were adopted only to proceed with a concrete point design which then could be assessed in the DOE/NASA Concept Development and Evaluation Program. In order to stimulate new SPS concepts and to facilitate comparative assessment of emerging SPS technologies, one useful approach is to break the overall system into functional parts. The system functions which must be performed by any SPS concept and the interrelations between them are discussed and a systematic framework is presented for assessment of the wide variety of system concepts and subsystem technologies which have been proposed. About 80 alternative SPS technologies are reviewed.

  6. Exoplanet Magnetic Fields and Their Detectability

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tian, B. Y.; Vilim, R.

    2014-12-01

    The investigation of planetary magnetic fields in our solar system provides a wealth of information on planetary interior structure and dynamics. Satellite magnetic data demonstrates that planetary dynamos can produce a range of magnetic field morphologies and intensities. Numerical dynamo simulations are working towards determining relationships between planetary properties and the resulting magnetic field characteristics. However, with only a handful of planetary dynamos in our solar system, it is challenging to determine specific dependence of magnetic field properties on planetary characteristics. Extrasolar planets therefore provide a unique opportunity by significantly increasing the number of planets for study as well as offering a much larger range of planetary properties to investigate. Although detection of exoplanet magnetic fields is challenging at present, the increasing sophistication of observational tools available to astronomers implies these extrasolar planetary magnetic fields may eventually be detectable. This presentation will discuss potential observational trends for magnetic field strength and morphology for exoplanets based on numerical simulations and interior structure modeling. We will focus on the influence of planetary age, environment, composition and structure.

  7. First Solid Evidence for a Rocky Exoplanet - Mass and density of smallest exoplanet finally measured

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The longest set of HARPS measurements ever made has firmly established the nature of the smallest and fastest-orbiting exoplanet known, CoRoT-7b, revealing its mass as five times that of Earth's. Combined with CoRoT-7b's known radius, which is less than twice that of our terrestrial home, this tells us that the exoplanet's density is quite similar to the Earth's, suggesting a solid, rocky world. The extensive dataset also reveals the presence of another so-called super-Earth in this alien solar system. "This is science at its thrilling and amazing best," says Didier Queloz, leader of the team that made the observations. "We did everything we could to learn what the object discovered by the CoRoT satellite looks like and we found a unique system." In February 2009, the discovery by the CoRoT satellite [1] of a small exoplanet around a rather unremarkable star named TYC 4799-1733-1 was announced one year after its detection and after several months of painstaking measurements with many telescopes on the ground, including several from ESO. The star, now known as CoRoT-7, is located towards the constellation of Monoceros (the Unicorn) at a distance of about 500 light-years. Slightly smaller and cooler than our Sun, CoRoT-7 is also thought to be younger, with an age of about 1.5 billion years. Every 20.4 hours, the planet eclipses a small fraction of the light of the star for a little over one hour by one part in 3000 [2]. This planet, designated CoRoT-7b, is only 2.5 million kilometres away from its host star, or 23 times closer than Mercury is to the Sun. It has a radius that is about 80% greater than the Earth's. The initial set of measurements, however, could not provide the mass of the exoplanet. Such a result requires extremely precise measurements of the velocity of the star, which is pulled a tiny amount by the gravitational tug of the orbiting exoplanet. The problem with CoRoT-7b is that these tiny signals are blurred by stellar activity in the form of

  8. Integration of historical aerial and satellite photos, recent satellite images and geophysical surveys for the knowledge of the ancient Dyrrachium (Durres, Albania)

    NASA Astrophysics Data System (ADS)

    Malfitana, Daniele; Shehi, Eduard; Masini, Nicola; Scardozzi, Giuseppe

    2010-05-01

    The paper presents the preliminary results of an integrated multidiscipliary research project concerning the urban area of the modern Durres (ancient Dyrrachium). Here a joint Italian and Albanian researcher are starting preliminary investigations on the place of an ancient roman villa placed in the urban centre of the modern town. In a initial phase are offering interesting results the use of a rich multitemporal remote sensing data-set, historical aerial photos of 1920s and 1930s, photos of USA spy satellites of 1960s and 1970s (Corona KH-4A and KH-4B), and very high resolution satellite imagery. The historical aerial documentation is very rich and includes aerial photogrammetrich flights of two Italian Institutions: the private company SARA - Società Anonima Rilevamenti Aerofotogrammetrici in Rome (1928) and the IGM - Istituto Geografico Militare (1936, 1937 e 1941), which flew on Durres for purposes of cartographic production and military. These photos offer an image of the city before the urban expansion after the Second World War and in recent decades, progressively documented by satellite images of the 1960s-1970s and recent years. They enable a reconstruction of the ancient topography of the urban area, even with the possibility of detailed analysis, as in the case of the the Roman villa, nowadays buried under a modern garden, but also investigated with a GPR survey, in order to rebuild its plan and contextualize the villa in relation to the urban area of the ancient Dyrrachium.

  9. Detecting Exomoons around Self-luminous Giant Exoplanets through Polarization

    NASA Astrophysics Data System (ADS)

    Sengupta, Sujan; Marley, Mark S.

    2016-06-01

    Many of the directly imaged self-luminous gas-giant exoplanets have been found to have cloudy atmospheres. Scattering of the emergent thermal radiation from these planets by the dust grains in their atmospheres should locally give rise to significant linear polarization of the emitted radiation. However, the observable disk-averaged polarization should be zero if the planet is spherically symmetric. Rotation-induced oblateness may yield a net non-zero disk-averaged polarization if the planets have sufficiently high spin rotation velocity. On the other hand, when a large natural satellite or exomoon transits a planet with a cloudy atmosphere along the line of sight, the asymmetry induced during the transit should give rise to a net non-zero, time-resolved linear polarization signal. The peak amplitude of such time-dependent polarization may be detectable even for slowly rotating exoplanets. Therefore, we suggest that large exomoons around directly imaged self-luminous exoplanets may be detectable through time-resolved imaging polarimetry. Adopting detailed atmospheric models for several values of effective temperature and surface gravity that are appropriate for self-luminous exoplanets, we present the polarization profiles of these objects in the infrared during the transit phase and estimate the peak amplitude of polarization that occurs during the inner contacts of the transit ingress/egress phase. The peak polarization is predicted to range between 0.1% and 0.3% in the infrared.

  10. The LBTI Hunt for Observable Signatures of Terrestrial Systems (HOSTS) Survey: a Key NASA Science Program on the Road to Exoplanet Imaging Missions (SPIE Proceedings 2)

    NASA Technical Reports Server (NTRS)

    Danchi, William C.; Bailey, V.; Defrere, D.; Haniff, C.; Hinz, P.; Kennedy, G.; Mennesson, B.; Millan-Gabet, R.; Rieke, G.; Roberge, Aki; Serabyn, E.; Skemer, A.; Stapelfeldt, K.; Weinberger, A.; Wyatt, M.

    2014-01-01

    Telescope Interferometer (LBTI) will survey nearby stars for faint exozodiacal dust (exozodi). This warm circumstellar dust, analogous to the interplanetary dust found in the vicinity of the Earth in our own system, is produced in comet breakups and asteroid collisions. Emission and or scattered light from the exozodi will be the major source of astrophysical noise for a future space telescope aimed at direct imaging and spectroscopy of terrestrial planets (exo- Earths) around nearby stars. About 20 of nearby field stars have cold dust coming from planetesimals at large distances from the stars (Eiroa et al. 2013, AA, 555, A11; Siercho et al. 2014, ApJ, 785, 33). Much less is known about exozodi; current detection limits for individual stars are at best 500 times our solar system's level (aka. 500 zodi). LBTI-HOSTS will be the first survey capable of measuring exozodi at the 10 zodi level (3). Detections of warm dust will also reveal new information about planetary system architectures and evolution. We will describe the motivation for the survey and progress on target selection, not only the actual stars likely to be observed by such a mission but also those whose observation will enable sensible extrapolations for stars that will not be observed with LBTI. We briefly describe the detection of the debris disk around Crv, which is the first scientific result from the LBTI coming from the commissioning of the instrument in December 2013, shortly after the first time the fringes were stabilized.

  11. A Multi-object Exoplanet Detecting Technique

    NASA Astrophysics Data System (ADS)

    Zhang, K.

    2011-05-01

    Exoplanet exploration is not only a meaningful astronomical action, but also has a close relation with the extra-terrestrial life. High resolution echelle spectrograph is the key instrument for measuring stellar radial velocity (RV). But with higher precision, better environmental stability and higher cost are required. An improved technique of RV means invented by David J. Erskine in 1997, External Dispersed Interferometry (EDI), can increase the RV measuring precision by combining the moderate resolution spectrograph with a fixed-delay Michelson interferometer. LAMOST with large aperture and large field of view is equipped with 16 multi-object low resolution fiber spectrographs. And these spectrographs are capable to work in medium resolution mode (R=5{K}˜10{K}). LAMOST will be one of the most powerful exoplanet detecting systems over the world by introducing EDI technique. The EDI technique is a new technique for developing astronomical instrumentation in China. The operating theory of EDI was generally verified by a feasibility experiment done in 2009. And then a multi-object exoplanet survey system based on LAMOST spectrograph was proposed. According to this project, three important tasks have been done as follows: Firstly, a simulation of EDI operating theory contains the stellar spectrum model, interferometer transmission model, spectrograph mediation model and RV solution model. In order to meet the practical situation, two detecting modes, temporal and spatial phase-stepping methods, are separately simulated. The interference spectrum is analyzed with Fourier transform algorithm and a higher resolution conventional spectrum is resolved. Secondly, an EDI prototype is composed of a multi-object interferometer prototype and the LAMOST spectrograph. Some ideas are used in the design to reduce the effect of central obscuration, for example, modular structure and external/internal adjusting frames. Another feasibility experiment was done at Xinglong Station in

  12. Stable regions around Exoplanets: the search for Exomoons

    NASA Astrophysics Data System (ADS)

    Fernandes Guimaraes, Ana Helena; Moretto Tusnski, Luis Ricardo; Vieira-Neto, Ernesto; Silva Valio, Adriana

    2015-08-01

    There are hundreds of exoplanets which the data are available to a dynamical investigation. We extracted from the data base (exoplanets.org) all planets and candidates which have the necessary data available for the numerical investigation of the orbital stability of a body around a exoplanet in a total of 2749 of those.There is a wealth diversity of exoplanets types and the expectation in find our Earth-living conditions in another planet motivates the search for extra-solar planets, and a satellite around a planet would, in addiction, help to keep a favorable climate.Using the planets class according to PHL@Arecibo, those planets were sorted out in groups. Analyses of density, distance from the primary body, and mass ratios were done beside the suggested classification to fit some no-classified planets into one of the groups.The aim of this work is to derive the upper stability limit (or upper critical orbit) of fictitious direct satellites around exoplanets of any density, or size, orbiting single stars. Our search is for stable regions around the planet, the called S-type orbits. This orbit type determines if there is any chance to exist (or not) bodies around the planets. The investigation is limited to single stars, excluding binaries.We derived such limit purely through numerical simulations. Our proposal involved long-term integration of the circular restricted three bodies problem . Basically, the cut off of the stability zone determined in the previous work by Domingos et al. (2006) were confirmed for any planet type. However, the limitation due the Roche limit of the own satellite showed to be lower. We used this to determined possible size and to adjust orbital range were a third body could orbit the exoplanet.Independently of densities, distance, and sizes of the objects involved, the idea was to delimit where to find celestial bodies in any given system around single stars. Furthermore, we aim to provide tracks to the search for exomoons using

  13. The LBTI hunt for observable signatures of terrestrial systems (HOSTS) survey: a key NASA science program on the road to exoplanet imaging missions

    NASA Astrophysics Data System (ADS)

    Danchi, W.; Bailey, V.; Bryden, G.; Defrere, D.; Haniff, C.; Hinz, P.; Kennedy, G.; Mennesson, G.; Millan-Gabet, R.; Rieke, G.; Roberge, A.; Serabyn, E.; Skemer, A.; Stapelfeldt, K.; Weinberger, A.; Wyatt, M.

    2014-07-01

    The Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) program on the Large Binocular Telescope Interferometer (LBTI) will survey nearby stars for faint exozodiacal dust (exozodi). This warm circumstellar dust, analogous to the interplanetary dust found in the vicinity of the Earth in our own system, is produced in comet breakups and asteroid collisions. Emission and/or scattered light from the exozodi will be the major source of astrophysical noise for a future space telescope aimed at direct imaging and spectroscopy of terrestrial planets (exo- Earths) around nearby stars. About 20% of nearby field stars have cold dust coming from planetesimals at large distances from the stars (Eiroa et al. 2013, A&A, 555, A11; Siercho et al. 2014, ApJ, 785, 33). Much less is known about exozodi; current detection limits for individual stars are at best ~ 500 times our solar system's level (aka. 500 zodi). LBTI-HOSTS will be the first survey capable of measuring exozodi at the 10 zodi level (3σ). Detections of warm dust will also reveal new information about planetary system architectures and evolution. We will describe the motivation for the survey and progress on target selection, not only the actual stars likely to be observed by such a mission but also those whose observation will enable sensible extrapolations for stars that will not be observed with LBTI. We briefly describe the detection of the debris disk around η Crv, which is the first scientific result from the LBTI coming from the commissioning of the instrument in December 2013, shortly after the first time the fringes were stabilized.

  14. Weighing Rocky Exoplanets with Improved Radial Velocimetry

    NASA Astrophysics Data System (ADS)

    Xuesong Wang, Sharon; Wright, Jason; California Planet Survey Consortium

    2016-01-01

    The synergy between Kepler and the ground-based radial velocity (RV) surveys have made numerous discoveries of small and rocky exoplanets, opening the age of Earth analogs. However, most (29/33) of the RV-detected exoplanets that are smaller than 3 Earth radii do not have their masses constrained to better than 20% - limited by the current RV precision (1-2 m/s). Our work improves the RV precision of the Keck telescope, which is responsible for most of the mass measurements for small Kepler exoplanets. We have discovered and verified, for the first time, two of the dominant terms in Keck's RV systematic error budget: modeling errors (mostly in deconvolution) and telluric contamination. These two terms contribute 1 m/s and 0.6 m/s, respectively, to the RV error budget (RMS in quadrature), and they create spurious signals at periods of one sidereal year and its harmonics with amplitudes of 0.2-1 m/s. Left untreated, these errors can mimic the signals of Earth-like or Super-Earth planets in the Habitable Zone. Removing these errors will bring better precision to ten-year worth of Keck data and better constraints on the masses and compositions of small Kepler planets. As more precise RV instruments coming online, we need advanced data analysis tools to overcome issues like these in order to detect the Earth twin (RV amplitude 8 cm/s). We are developing a new, open-source RV data analysis tool in Python, which uses Bayesian MCMC and Gaussian processes, to fully exploit the hardware improvements brought by new instruments like MINERVA and NASA's WIYN/EPDS.

  15. Density Estimation for Projected Exoplanet Quantities

    NASA Astrophysics Data System (ADS)

    Brown, Robert A.

    2011-05-01

    Exoplanet searches using radial velocity (RV) and microlensing (ML) produce samples of "projected" mass and orbital radius, respectively. We present a new method for estimating the probability density distribution (density) of the unprojected quantity from such samples. For a sample of n data values, the method involves solving n simultaneous linear equations to determine the weights of delta functions for the raw, unsmoothed density of the unprojected quantity that cause the associated cumulative distribution function (CDF) of the projected quantity to exactly reproduce the empirical CDF of the sample at the locations of the n data values. We smooth the raw density using nonparametric kernel density estimation with a normal kernel of bandwidth σ. We calibrate the dependence of σ on n by Monte Carlo experiments performed on samples drawn from a theoretical density, in which the integrated square error is minimized. We scale this calibration to the ranges of real RV samples using the Normal Reference Rule. The resolution and amplitude accuracy of the estimated density improve with n. For typical RV and ML samples, we expect the fractional noise at the PDF peak to be approximately 80 n -log 2. For illustrations, we apply the new method to 67 RV values given a similar treatment by Jorissen et al. in 2001, and to the 308 RV values listed at exoplanets.org on 2010 October 20. In addition to analyzing observational results, our methods can be used to develop measurement requirements—particularly on the minimum sample size n—for future programs, such as the microlensing survey of Earth-like exoplanets recommended by the Astro 2010 committee.

  16. Undercover Stars Among Exoplanet Candidates

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Very Large Telescope Finds Planet-Sized Transiting Star Summary An international team of astronomers have accurately determined the radius and mass of the smallest core-burning star known until now. The observations were performed in March 2004 with the FLAMES multi-fibre spectrograph on the 8.2-m VLT Kueyen telescope at the ESO Paranal Observatory (Chile). They are part of a large programme aimed at measuring accurate radial velocities for sixty stars for which a temporary brightness "dip" has been detected during the OGLE survey. The astronomers find that the dip seen in the light curve of the star known as OGLE-TR-122 is caused by a very small stellar companion, eclipsing this solar-like star once every 7.3 days. This companion is 96 times heavier than planet Jupiter but only 16% larger. It is the first time that direct observations demonstrate that stars less massive than 1/10th of the solar mass are of nearly the same size as giant planets. This fact will obviously have to be taken into account during the current search for transiting exoplanets. In addition, the observations with the Very Large Telescope have led to the discovery of seven new eclipsing binaries, that harbour stars with masses below one-third the mass of the Sun, a real bonanza for the astronomers. PR Photo 06a/05: Brightness "Dip" and Velocity Variations of OGLE-TR-122. PR Photo 06b/05: Properties of Low-Mass Stars and Planets. PR Photo 06c/05: Comparison Between OGLE-TR-122b, Jupiter and the Sun. The OGLE Survey When a planet happens to pass in front of its parent star (as seen from the Earth), it blocks a small fraction of the star's light from our view [1]. These "planetary transits" are of great interest as they allow astronomers to measure in a unique way the mass and the radius of exoplanets. Several surveys are therefore underway which attempt to find these faint signatures of other worlds. One of these programmes is the OGLE survey which was originally devised to detect microlensing

  17. Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in the United States Geological Survey

    USGS Publications Warehouse

    Rydlund, Paul H.; Densmore, Brenda K.

    2012-01-01

    Geodetic surveys have evolved through the years to the use of survey-grade (centimeter level) global positioning to perpetuate and post-process vertical datum. The U.S. Geological Survey (USGS) uses Global Navigation Satellite Systems (GNSS) technology to monitor natural hazards, ensure geospatial control for climate and land use change, and gather data necessary for investigative studies related to water, the environment, energy, and ecosystems. Vertical datum is fundamental to a variety of these integrated earth sciences. Essentially GNSS surveys provide a three-dimensional position x, y, and z as a function of the North American Datum of 1983 ellipsoid and the most current hybrid geoid model. A GNSS survey may be approached with post-processed positioning for static observations related to a single point or network, or involve real-time corrections to provide positioning "on-the-fly." Field equipment required to facilitate GNSS surveys range from a single receiver, with a power source for static positioning, to an additional receiver or network communicated by radio or cellular for real-time positioning. A real-time approach in its most common form may be described as a roving receiver augmented by a single-base station receiver, known as a single-base real-time (RT) survey. More efficient real-time methods involving a Real-Time Network (RTN) permit the use of only one roving receiver that is augmented to a network of fixed receivers commonly known as Continually Operating Reference Stations (CORS). A post-processed approach in its most common form involves static data collection at a single point. Data are most commonly post-processed through a universally accepted utility maintained by the National Geodetic Survey (NGS), known as the Online Position User Service (OPUS). More complex post-processed methods involve static observations among a network of additional receivers collecting static data at known benchmarks. Both classifications provide users

  18. Outline of the survey on the development of earth observation satellites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An independent earth observation system with land and sea satellites to be developed by Japan is described. Visible and infrared radiometers, microwave radiometers, microwave scattermeters, synthetic aperture radar, and laser sensors are among the instrumentation discussed. Triaxial attitude control, basic technology common to sea and land observation satellites as well as land data analytical technology developed for U.S. LANDSAT data are reviewed.

  19. Exoplanet Equilibrium Chemistry Calculations

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, J.; Bowman, M.; Blecic, J.

    2013-10-01

    Recently, Agundez et al. (2012, A&A 548, A73) used a chemical kinetics code to study a model HD 209458b (equilibrium temperature of 1450 K, assuming full redistribution and 0 albedo). They found that thermochemistry dominates most of the dayside, but that significant compositional gradients may exist across the dayside. We calculate equilibrium-chemistry molecular abundances for several model exoplanets, using NASA's open-source Chemical Equilibrium Abundances code (McBride and Gordon 1996). We vary the degree of radiation redistribution to the dark side, ranging from total redistribution to instantaneous reradiation. Atomically, both the solar abundance multiple and the carbon fraction vary. Planet substellar temperatures range from just above 1200 K, where photochemistry should no longer be important, to those of hot planets (3000 K). We present synthetic abundance images for the key spectroscopic molecules CO, CH4, and H2O for several hot-Jupiter model planets. This work was supported by the NASA Planetary Atmospheres grant NNX12AI69G.

  20. Exoplanet Science with TMT

    NASA Astrophysics Data System (ADS)

    Crossfield, Ian

    2014-07-01

    TMT will have unparalleled capabilities for characterizing the composition of extrasolar planets and their atmospheres, and for probing the complex interplay between planet formation, evolution, and migration. In this plenary talk I will summarize these science cases and discuss their synergy with other observing facilities. High-resolution imaging with IRIS and PFI/SEIT will study young, hot planets in nearby star-forming regions, complementing JWST and WFIRST/AFTA coronagraphic efforts at larger semimajor axes. The same instruments will flesh out planets detected by radial velocity (RV) by measuring the albedos and bolometric radii of old, cold Jovian planets and a few ~300 K super-Earths. Complementing JWST and HST studies of short-period transiting planets, NIRES and IRMS spectroscopy will reveal atmospheric composition, dynamics, and thermal structure for dozens of hot Jupiters and Neptunes; NIRES will also produce 2D global maps and movies of a few exoplanets and dozens of brown dwarfs. HROS high-dispersion spectroscopy will precisely measure the composition of extrasolar planetesimals in polluted white dwarfs, and RV followup will continue to exploit the legacies of Kepler, K2, TESS, and PLATO to measure the masses, orbits, and bulk compositions of Earth analogues. Most exciting of all, TMT may facilitate the next major step in the study of exobiology by allowing the detection of biosignature gases around the closest habitable transiting planets.

  1. Exoplanet Caught on the Move

    NASA Astrophysics Data System (ADS)

    2010-06-01

    For the first time, astronomers have been able to directly follow the motion of an exoplanet as it moves from one side of its host star to the other. The planet has the smallest orbit so far of all directly imaged exoplanets, lying almost as close to its parent star as Saturn is to the Sun. Scientists believe that it may have formed in a similar way to the giant planets in the Solar System. Because the star is so young, this discovery proves that gas giant planets can form within discs in only a few million years, a short time in cosmic terms. Only 12 million years old, or less than three-thousandths of the age of the Sun, Beta Pictoris is 75% more massive than our parent star. It is located about 60 light-years away towards the constellation of Pictor (the Painter) and is one of the best-known examples of a star surrounded by a dusty debris disc [1]. Earlier observations showed a warp of the disc, a secondary inclined disc and comets falling onto the star. "Those were indirect, but tell-tale signs that strongly suggested the presence of a massive planet, and our new observations now definitively prove this," says team leader Anne-Marie Lagrange. "Because the star is so young, our results prove that giant planets can form in discs in time-spans as short as a few million years." Recent observations have shown that discs around young stars disperse within a few million years, and that giant planet formation must occur faster than previously thought. Beta Pictoris is now clear proof that this is indeed possible. The team used the NAOS-CONICA instrument (or NACO [2]), mounted on one of the 8.2-metre Unit Telescopes of ESO's Very Large Telescope (VLT), to study the immediate surroundings of Beta Pictoris in 2003, 2008 and 2009. In 2003 a faint source inside the disc was seen (eso0842), but it was not possible to exclude the remote possibility that it was a background star. In new images taken in 2008 and spring 2009 the source had disappeared! The most recent

  2. THE LICK-CARNEGIE EXOPLANET SURVEY: A 3.1 M{sub +} PLANET IN THE HABITABLE ZONE OF THE NEARBY M3V STAR GLIESE 581

    SciTech Connect

    Vogt, Steven S.; Rivera, E. J.; Haghighipour, N.; Henry, Gregory W.; Williamson, Michael H.

    2010-11-01

    We present 11 years of HIRES precision radial velocities (RVs) of the nearby M3V star Gliese 581, combining our data set of 122 precision RVs with an existing published 4.3-year set of 119 HARPS precision RVs. The velocity set now indicates six companions in Keplerian motion around this star. Differential photometry indicates a likely stellar rotation period of {approx}94 days and reveals no significant periodic variability at any of the Keplerian periods, supporting planetary orbital motion as the cause of all the RV variations. The combined data set strongly confirms the 5.37-day, 12.9-day, 3.15-day, and 67-day planets previously announced by Bonfils et al., Udry et al., and Mayor et al.. The observations also indicate a fifth planet in the system, GJ 581f, a minimum-mass 7.0 M{sub +} planet orbiting in a 0.758 AU orbit of period 433 days, and a sixth planet, GJ 581g, a minimum-mass 3.1 M{sub +} planet orbiting at 0.146 AU with a period of 36.6 days. The estimated equilibrium temperature of GJ 581g is 228 K, placing it squarely in the middle of the habitable zone of the star and offering a very compelling case for a potentially habitable planet around a very nearby star. That a system harboring a potentially habitable planet has been found this nearby, and this soon in the relatively early history of precision RV surveys, indicates that {eta}{sub +}, the fraction of stars with potentially habitable planets, is likely to be substantial. This detection, coupled with statistics of the incompleteness of present-day precision RV surveys for volume-limited samples of stars in the immediate solar neighborhood, suggests that {eta}{sub +} could well be on the order of a few tens of percent. If the local stellar neighborhood is a representative sample of the galaxy as a whole, our Milky Way could be teeming with potentially habitable planets.

  3. Characterization of Kepler Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Everett, M.; Ciardi, D. R.; Silva, D.; Szkody, P.

    2014-01-01

    Using a sample of 220 Exoplanet host stars in the Kepler field for which spectroscopic properties have been determined, we examine their spatial, physical, and time variable properties. Covering effective temperatures from 4670K to 6400K (K4 to F4) and masses from 0.7 to 1.4 M-sun, this sample represents host stars covering the entire Kepler field of view. The majority of the host stars contain one or more Earth-sized exoplanet and range in log g from 4.0 to 4.7 and [Fe/H] from -02.4 to +0.3. Using Yale-Yonsei isochrone fits and photometric information form the Howell-Everett UBV survey of the Kepler field, we examine a complete set of parameters for these stars including their likely residence in the thin or thick disk of the Galaxy. the variability of this sample, in terms of time sale and amplitude, is examined as well.

  4. Asteroseismology of Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Kayhan, Cenk; Çelik Orhan, Zeynep; Yildiz, Mutlu

    2016-07-01

    Exoplanet studies are one of the most interesting and attractive topics in astrophysics. Besides of ground-based observations, Kepler and CoRoT space missions improved our knowledge by providing unprecedented data of exoplanets and host stars. Precise determination of basic properties of planets depends on how we accurately determine fundamental properties of host stars. Asteroseismology is a powerful tool to study stellar structure and evolution and provides us radius, mass and age of the host stars. In this study, we construct stellar interior models of these stars with the MESA evolution code and compare model frequencies with the oscillation frequencies derived from Kepler data. Then, we obtain fundamental parameters of the host stars. Finally, fundamental parameters of exoplanets are reevaluated.

  5. VizieR Online Data Catalog: Exoplanet Orbit Database (Wright+, 2011)

    NASA Astrophysics Data System (ADS)

    Wright, J. T.; Kakhouri, O.; Marcy, G. W.; Han, E.; Feng, Y.; Johnson, J. A.; Howard, A. W.; Fischer, D. A.; Valenti, J. A.; Anderson, J.; Piskunov, N.

    2013-01-01

    We present a database of well determined orbital parameters of exoplanets, and their host stars' properties. This database comprises spectroscopic orbital elements measured for 427 planets orbiting 363 stars from radial velocity and transit measurements as reported in the literature. We have also compiled fundamental transit parameters, stellar parameters, and the method used for the planets discovery. This Exoplanet Orbit Database includes all planets with robust, well measured orbital parameters reported in peer-reviewed articles. The Database is available in a searcheable, filterable, and sortable form on the Web at http://exoplanets.org through the Exoplanets Data Explorer Table, and the data can be plotted and explored through the Exoplanet Data Explorer Plotter. We use the Data Explorer to generate publication-ready plots giving three examples of the signatures of exoplanet migration and dynamical evolution: We illustrate the character of the apparent correlation between mass and period in exoplanet orbits, the different selection biases between radial velocity and transit surveys, and that the multiplanet systems show a distinct semi-major axis distribution from apparently singleton systems. (2 data files).

  6. A COMPLETE SPECTROSCOPIC SURVEY OF THE MILKY WAY SATELLITE SEGUE 1: THE DARKEST GALAXY

    SciTech Connect

    Simon, Joshua D.; Geha, Marla; Minor, Quinn E.; Martinez, Gregory D.; Bullock, James S. E-mail: marla.geha@yale.edu E-mail: gmartine@uci.edu

    2011-05-20

    We present the results of a comprehensive Keck/DEIMOS spectroscopic survey of the ultra-faint Milky Way satellite galaxy Segue 1. We have obtained velocity measurements for 98.2% of the stars within 67 pc (10', or 2.3 half-light radii) of the center of Segue 1 that have colors and magnitudes consistent with membership, down to a magnitude limit of r = 21.7. Based on photometric, kinematic, and metallicity information, we identify 71 stars as probable Segue 1 members, including some as far out as 87 pc. After correcting for the influence of binary stars using repeated velocity measurements, we determine a velocity dispersion of 3.7{sup +1.4}{sub -1.1} km s{sup -1}. The mass within the half-light radius is 5.8{sup +8.2}{sub -3.1} x 10{sup 5} M{sub sun}. The stellar kinematics of Segue 1 require very high mass-to-light ratios unless the system is far from dynamical equilibrium, even if the period distribution of unresolved binary stars is skewed toward implausibly short periods. With a total luminosity less than that of a single bright red giant and a V-band mass-to-light ratio of 3400 M{sub sun}/L{sub sun}, Segue 1 is the darkest galaxy currently known. We critically re-examine recent claims that Segue 1 is a tidally disrupting star cluster and that kinematic samples are contaminated by the Sagittarius stream. The extremely low metallicities ([Fe/H] < -3) of two Segue 1 stars and the large metallicity spread among the members demonstrate conclusively that Segue 1 is a dwarf galaxy, and we find no evidence in favor of tidal effects. We also show that contamination by the Sagittarius stream has been overestimated. Segue 1 has the highest estimated dark matter density of any known galaxy and will therefore be a prime testing ground for dark matter physics and galaxy formation on small scales.

  7. The science of EChO - Exoplanet Characterisation Obseravtory

    NASA Astrophysics Data System (ADS)

    Tinetti, G.; Drossart, P.; Hartogh, P.; Isaak, K.; Linder, M.; Lovis, C.; Micela, G.; Puig, L.; Ollivier, M.; Ribas, I.; Snellen, I.; Swinyard, B.

    2013-09-01

    It is now accepted that exoplanets are ubiquitous in our Galaxy. The planetary parameters mass, radius and temperature alone do not explain the diversity revealed by current observations. The chemical composition of these planets is needed to trace back their formation history and evolution, as was the case for the Solar System. Pioneering results were obtained through transit spectroscopy with Hubble, Spitzer and groundbased facilities, enabling the detection of a few, most abundant ionic, atomic and molecular species and to constrain the planet's thermal structure. With the arrival of EChO in the coming decade, planetary science will expand beyond the narrow boundaries of our Solar System to encompass our whole Galaxy. EChO will address the following fundamental questions: - Why are exoplanets as they are? - What are the causes for the observed diversity? - Can their formation history be traced back from their current composition and evolution? Spectroscopic observations from the visible to Mid-IR of a large, select sample of exoplanets, will allow us to use the chemical composition as a powerful diagnostic of the history, formation mechanisms and evolution of gaseous and rocky exoplanets. Our strategy is to balance statistical information, obtainable through a chemical survey of a large and diverse sample of objects - as it is traditionally done for stars - with deep, repeated observations of a more restricted, select sample of planets - a strategy that will enable the kind of science that was accomplished for Solar System planets.

  8. High Precision Photometry of Bright Transiting Exoplanet Hosts

    NASA Astrophysics Data System (ADS)

    Wilson, Maurice; Eastman, Jason; Johnson, John A.

    2016-01-01

    Within the past two decades, the successful search for exoplanets and the characterization of their physical properties have shown the immense progress that has been made towards finding planets with characteristics similar to Earth. For most exoplanets with a radius about the size of Earth, evaluating their physical properties, such as the mass, radius and equilibrium temperature, cannot be determined with satisfactory precision. The MINiature Exoplanet Radial Velocity Array (MINERVA) was recently built to obtain spectroscopic and photometric measurements to find, confirm, and characterize Earth-like exoplanets. MINERVA's spectroscopic survey targets the brightest, nearby stars which are well-suited to the array's capabilities, while its primary photometric goal is to search for transits around these bright targets. Typically, it is difficult to find satisfactory comparison stars within a telescope's field of view when the primary target is very bright. This issue is resolved by using one of MINERVA's telescopes to observe the primary bright star while the other telescopes observe a distinct field of view that contains satisfactory bright comparison stars. We describe the code used to identify nearby comparison stars, schedule the four telescopes, produce differential photometry from multiple telescopes, and show the first results from this effort.This work has been funded by the Ronald E. McNair Post-Baccalaureate Achievement Program, the ERAU Honors Program, the ERAU Undergraduate Research Spark Fund, and the Banneker Institute at the Harvard-Smithsonian Center for Astrophysics.

  9. Transiting planets with LSST. I. Potential for LSST exoplanet detection

    SciTech Connect

    Lund, Michael B.; Pepper, Joshua; Stassun, Keivan G.

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) is designed to meet several scientific objectives over a 10 year synoptic sky survey. Beyond its primary goals, the large amount of LSST data can be exploited for additional scientific purposes. We show that LSST data are sufficient to detect the transits of exoplanets, including planets orbiting stars that are members of stellar populations that have so far been largely unexplored. Using simulated LSST light curves, we find that existing transit detection algorithms can identify the signatures of Hot Jupiters around solar-type stars, Hot Neptunes around K-dwarfs, and (in favorable cases) Super-Earths in habitable-zone orbits of M-dwarfs. We also find that LSST may identify Hot Jupiters orbiting stars in the Large Magellanic Cloud—a remarkable possibility that would advance exoplanet science into the extragalactic regime.

  10. Remote sensing of effects of land-use practices on water quality. [environmental surveys using Landsat satellites

    NASA Technical Reports Server (NTRS)

    Graves, D. H.

    1975-01-01

    Research efforts are presented for the use of remote sensing in environmental surveys in Kentucky. Ground truth parameters were established that represent the vegetative cover of disturbed and undisturbed watersheds in the Cumberland Plateau of eastern Kentucky. Several water quality parameters were monitored of the watersheds utilized in the establishment of ground truth data. The capabilities of multistage-multispectral aerial photography and satellite imagery were evaluated in detecting various land use practices. The use of photographic signatures of known land use areas utilizing manually-operated spot densitometers was studied. The correlation of imagery signature data to water quality data was examined. Potential water quality predictions were developed from forested and nonforested watersheds based upon the above correlations. The cost effectiveness of predicting water quality values was evaluated using multistage and satellite imagery sampling techniques.

  11. Satellite and earth science data management activities at the U.S. geological survey's EROS data center

    USGS Publications Warehouse

    Carneggie, David M.; Metz, Gary G.; Draeger, William C.; Thompson, Ralph J.

    1991-01-01

    The U.S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center, the national archive for Landsat data, has 20 years of experience in acquiring, archiving, processing, and distributing Landsat and earth science data. The Center is expanding its satellite and earth science data management activities to support the U.S. Global Change Research Program and the National Aeronautics and Space Administration (NASA) Earth Observing System Program. The Center's current and future data management activities focus on land data and include: satellite and earth science data set acquisition, development and archiving; data set preservation, maintenance and conversion to more durable and accessible archive medium; development of an advanced Land Data Information System; development of enhanced data packaging and distribution mechanisms; and data processing, reprocessing, and product generation systems.

  12. Two Extremely Hot Exoplanets Caught in Transit

    NASA Astrophysics Data System (ADS)

    2004-05-01

    VLT Measures Properties of New Jupiter-Size Objects in Very Close Orbits Summary A European team of astronomers [1] are announcing the discovery and study of two new extra-solar planets (exoplanets). They belong to the OGLE transit candidate objects and could be characterized in detail. This trebles the number of exoplanets discovered by the transit method; three such objects are now known. The observations were performed in March 2004 with the FLAMES multi-fiber spectrograph on the 8.2-m VLT Kueyen telescope at the ESO Paranal Observatory (Chile). They enabled the astronomers to measure accurate radial velocities for forty-one stars for which a temporary brightness "dip" had been detected by the OGLE survey. This effect might be the signature of the transit in front of the star of an orbiting planet, but may also be caused by a small stellar companion. For two of the stars (OGLE-TR-113 and OGLE-TR-132), the measured velocity changes revealed the presence of planetary-mass companions in extremely short-period orbits. This result confirms the existence of a new class of giant planets, designated "very hot Jupiters" because of their size and very high surface temperature. They are extremely close to their host stars, orbiting them in less than 2 (Earth) days. The transit method for detecting exoplanets will be "demonstrated" for a wide public on June 8, 2004, when planet Venus passes in front of the solar disc, cf. the VT-2004 programme. PR Photo 14a/04: Sky Field with OGLE-TR-113 PR Photo 14b/04: Sky Field with OGLE-TR-132 PR Photo 14c/04: Brightness "Dips" Caused by Two Transiting Exoplanets PR Photo 14d/04: Velocity Variations Caused by Two Transiting Exoplanets PR Photo 14e/04: Properties of Known Transiting Exoplanets Discovering other Worlds During the past decade, astronomers have learned that our Solar System is not unique, as more than 120 giant planets orbiting other stars were discovered by radial-velocity surveys (cf. ESO PR 13/00, ESO PR 07/01, and ESO

  13. A geographical sampling method for surveys of mosquito larvae in an urban area using high-resolution satellite imagery

    PubMed Central

    Troyo, Adriana; Fuller, Douglas O.; Calderón-Arguedas, Olger; Beier, John C.

    2008-01-01

    Entomological surveys in urban areas are often biased by selecting houses or locations with known high vector densities. A sampling strategy was developed for Puntarenas, Costa Rica, using high-resolution satellite imagery. Grids from the Advanced Spaceborne Thermal Emission and Reflection Radiometer and a QuickBird classified land cover map were used to determine the optimal final grid area for surveys. A random sample (10% of cells) was selected, and sample suitability was assessed by comparing the mean percentage of tree cover between sample and total cells. Sample cells were used obtain entomological data from 581 locations: 26.3% of all locations positive for mosquito larvae were not households, they contained 29.5% of mosquito-positive habitats and 16% of Aedes aegypti pupae collected. Entomological indices for Ae. aegypti (pupae per person, Breteau index, container index, location index) were slightly lower when only household data were analyzed. High-resolution satellite imagery and geographical information systems appear useful for evaluating urban sites and randomly selecting locations for accurate entomological surveys. PMID:18697301

  14. The GATE Initiative (GAia Transiting Exoplanets): The Way to fully Exploit Gaia's Potential to Detect Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Zucker, Shay; Eyer, Laurent; Hodgkin, Simon; Clementini, Gisella

    2015-08-01

    The traditional assumption about low cadence photometric surveys, such as those of Gaia and its predecessor Hipparcos, was that they are not suitable for the detection of transiting exoplanets. The posterior detection of the transits of the planets HD209458b and HD189733b in the Hipparcos photometric data has challenged this view. Inspired by those detections, we have shown in a series of papers that under specific circumstances, the low-cadence photometric data of Gaia will enable the detection of such planets. The chances of detection will improve significantly with the help of carefully scheduled ground-based photometric observations, using Bayesian considerations. The GATE initiative will use this philosophy, combined with the Gaia Science Alerts resources, to maximize the number of transiting exoplanet detections of Gaia. The same approach can be used by other low-cadence surveys.

  15. Mid-Infrared All-Sky Survey with the Infrared Camera (IRC) on Board the ASTRO-F Satellite

    NASA Astrophysics Data System (ADS)

    Ishihara, D.; Wada, T.; Onaka, T.; Matsuhara, H.; Kataza, H.; Ueno, M.; Fujishiro, N.; Kim, W.; Watarai, H.; Uemizu, K.; Murakami, H.; Matsumoto, T.; Yamamura, I.

    2006-02-01

    An all-sky survey in two mid-infrared bands covering wavelengths from 6 to 12 and 14 to 26 μm, with a spatial resolution of ~9.4"-10", will be performed with the Infrared Camera (IRC) on board the ASTRO-F infrared astronomical satellite. The expected detection limit for point sources is 80-130 mJy (5 σ). The all-sky survey will provide data with a detection limit and a spatial resolution an order of magnitude deeper and higher, respectively, than those of the Infrared Astronomical Satellite survey. The IRC is optimally designed for deep imaging in staring observations. It employs 256 × 256 Si:As IBC infrared focal plane arrays for the two mid-infrared channels. In order to make observations with the IRC during the scanning observations for the all-sky survey, a new method of operation for the arrays has been developed-``scan mode'' operation. In the scan mode, only 256 pixels in a single row aligned in the cross-scan direction on the array are used as the scan detector, and they are sampled every 44 ms. Special care has been taken to stabilize the temperature of the array in scan mode, which enables the user to achieve a low readout noise, comparable to that in the imaging mode (20-30 e-). The accuracy of the position determination and the flux measurement for point sources is examined both in computer simulations and laboratory tests with the flight model camera and moving artificial point sources. In this paper we present the scan mode operation of the array, the results of the computer simulation and the laboratory performance test, and the expected performance of the IRC all-sky survey observations.

  16. KNOW THE STAR, KNOW THE PLANET. I. ADAPTIVE OPTICS OF EXOPLANET HOST STARS

    SciTech Connect

    Roberts, Lewis C.; Turner, Nils H.; Ten Brummelaar, Theo A.; Mason, Brian D.; Hartkopf, William I. E-mail: nils@chara-array.org E-mail: bdm@usno.navy.mil

    2011-11-15

    The results of an adaptive optics survey of exoplanet host stars for stellar companions are presented. We used the Advanced Electro-Optical System telescope and its adaptive optics system to collect deep images of the stars in the I band. Sixty-two exoplanet host stars were observed and fifteen multiple star systems were resolved. Of these eight are known multiples, while seven are new candidate binaries. For all binaries, we measured the relative astrometry of the pair and the differential magnitude in the I band. We improved the orbits of HD 19994 and {tau} Boo. These observations will provide improved statistics on the duplicity of exoplanet host stars and provide an increased understanding of the dynamics of known binary star exoplanet hosts.

  17. Survey of low-mass satellites of the neighboring galaxies M31 and M81

    NASA Astrophysics Data System (ADS)

    Kaisin, S. S.; Karachentsev, I. D.

    2013-09-01

    Images have been obtained at the 6-m telescope at the Special Astrophysical Observatory (SAO) of the Russian Academy of Sciences in the Hα line and in the continuum for 20 dwarf spheroidal satellites of M31: And XI-And XXX, plus the distant Globular cluster Bol 520. Their star formation rates (SFR) are estimated using the Hα flux and the ultraviolet FUV flux measured with the GALEX space telescope. Most of the dSph satellites of M31 have extremely low star formation rates with a characteristic upper limit of SFR ~ 5 × 10-7. We have made similar estimates of SFR from the Hα and FUV fluxes for 13 galaxies with low surface brightness recently discovered in the neighborhood of M81. Eleven of them are physical satellites of M81 with typical SFR < 1 × 10-5. The median stellar masses of these satellites of M31 and M81 are 0.9 and 1.9 million solar masses, respectively. Our Hα observations place a 2-3 times stricter limit on the value of SFR than the data from the GALEX satellite, with a substantially higher (3-5 times) angular resolution.

  18. TERMS PHOTOMETRY OF KNOWN TRANSITING EXOPLANETS

    SciTech Connect

    Dragomir, Diana; Kane, Stephen R.; Ciardi, David R.; Gelino, Dawn M.; Payne, Alan; Ramirez, Solange V.; Von Braun, Kaspar; Wyatt, Pamela; Pilyavsky, Genady; Mahadevan, Suvrath; Wright, Jason T.; Zachary Gazak, J.; Rabus, Markus

    2011-10-15

    The Transit Ephemeris Refinement and Monitoring Survey conducts radial velocity and photometric monitoring of known exoplanets in order to refine planetary orbits and predictions of possible transit times. This effort is primarily directed toward planets not known to transit, but a small sample of our targets consists of known transiting systems. Here we present precision photometry for six WASP (Wide Angle Search for Planets) planets acquired during their transit windows. We perform a Markov Chain Monte Carlo analysis for each planet and combine these data with previous measurements to redetermine the period and ephemerides for these planets. These observations provide recent mid-transit times which are useful for scheduling future observations. Our results improve the ephemerides of WASP-4b, WASP-5b, and WASP-6b and reduce the uncertainties on the mid-transit time for WASP-29b. We also confirm the orbital, stellar, and planetary parameters of all six systems.

  19. DEBRIS DISKS IN KEPLER EXOPLANET SYSTEMS

    SciTech Connect

    Lawler, S. M.; Gladman, B.

    2012-06-10

    The Kepler mission recently identified 997 systems hosting candidate extrasolar planets, many of which are super-Earths. Realizing these planetary systems are candidates to host extrasolar asteroid belts, we use mid-infrared data from the Wide-field Infrared Survey Explorer (WISE) to search for emission from dust in these systems. We find excesses around eight stars, indicating the presence of warm to hot dust ({approx}100-500 K), corresponding to orbital distances of 0.1-10 AU for these solar-type stars. The strongest detection, KOI 1099, demands {approx}500 K dust interior to the orbit of its exoplanet candidate. One star, KOI 904, may host very hot dust ({approx}1200 K, corresponding to 0.02 AU). Although the fraction of these exoplanet-bearing stars with detectable warm excesses ({approx}3%) is similar to that found by Spitzer surveys of solar-type field stars, the excesses detectable in the WISE data have much higher fractional luminosities (L{sub dust}/L{sub *}) than most known debris disks, implying that the fraction with debris disks of comparable luminosity may actually be significantly higher. It is difficult to explain the presence of dust so close to the host stars, generally corresponding to dust rings at radii <0.3 AU; both the collisional and Poynting-Robertson drag timescales to remove dust from the system are hundreds of years or less at these distances. Assuming a steady state for these systems implies large mass consumption rates with these short removal timescales, meaning that the dust production mechanism in these systems must almost certainly be episodic in nature.

  20. Direct Exoplanet Detection with Binary Differential Imaging

    NASA Astrophysics Data System (ADS)

    Rodigas, Timothy J.; Weinberger, Alycia; Mamajek, Eric E.; Males, Jared R.; Close, Laird M.; Morzinski, Katie; Hinz, Philip M.; Kaib, Nathan

    2015-10-01

    Binaries are typically excluded from direct imaging exoplanet surveys. However, the recent findings of Kepler and radial velocity programs show that planets can and do form in binary systems. Here, we suggest that visual binaries offer unique advantages for direct imaging. We show that Binary Differential Imaging (BDI), whereby two stars are imaged simultaneously at the same wavelength within the isoplanatic patch at a high Strehl ratio, offers improved point spread function (PSF) subtraction that can result in increased sensitivity to planets close to each star. We demonstrate this by observing a young visual binary separated by 4″ with MagAO/Clio-2 at 3.9 μm, where the Strehl ratio is high, the isoplanatic patch is large, and giant planets are bright. Comparing BDI to angular differential imaging (ADI), we find that BDI’s 5σ contrast is ˜0.5 mag better than ADI’s within ˜1″ for the particular binary we observed. Because planets typically reside close to their host stars, BDI is a promising technique for discovering exoplanets in stellar systems that are often ignored. BDI is also 2-4× more efficient than ADI and classical reference PSF subtraction, since planets can be detected around both the target and PSF reference simultaneously. We are currently exploiting this technique in a new MagAO survey for giant planets in 140 young nearby visual binaries. BDI on a space-based telescope would not be limited by isoplanatism effects and would therefore be an even more powerful tool for imaging and discovering planets. This paper includes data obtained at the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  1. Two Suns in The Sky: Stellar Multiplicity in Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Raghavan, D. R.; Henry, T. J.; Mason, B. D.; Subasavage, J. P.; Jao, W. C.; Beaulieu, T. D.; Hambly, N. C.

    2005-12-01

    We present results of a reconnaissance for stellar companions to all 131 radial-velocity-detected candidate extrasolar planetary systems known as of July 1, 2005. Common proper motion (CPM) companions were investigated using the multi-epoch STScI Digitized Sky Surveys (DSS), and confirmed by matching the trigonometric parallax distances of the primaries to companion distances estimated photometrically using SuperCOSMOS plate, CCD optical and 2MASS infrared photometry. We evaluate whether the ``companions" listed in the Washington Double Star Catalog (WDS) are gravitationally bound to the primary or coincidental alignments in the sky. We also attempt to confirm or refute companions listed in the Catalog of Nearby Stars (CNS), Hipparcos, and Duquennoy & Mayor, 1991. Our findings indicate that a lower limit of 29 (22%) of the 131 exoplanet systems have stellar companions, and an additional 7 (5%) have candidate companions. We report a previously unknown stellar companion to planet host HD 38529, and identify a companion candidate to HD 188015. We confirm 16 previously reported stellar companions to exoplanet hosts, and report 8 additional companions --- these are known stellar companions, but previously not recognized to be in exoplanet systems. In addition, we have confirmed the gravitational connection for a WDS entry for HD 222582. We have also found evidence for 20 entries in WDS that are not gravitationally bound companions --- they do not show any related proper motion in the DSS plates. At least three, and possibly five of the exoplanet systems are contained within triple star systems, and of these, HD 38529 may have a fourth stellar companion as well. Two of the exoplanet systems contain white dwarf companions. These results indicate that solar systems are found in a variety of stellar multiplicity environments -- singles, binaries, triples, and possibly quadruples; and that planets survive post-main-sequence evolution of companion stars.

  2. Test of multi-object exoplanet search spectral interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Wang, Liang; Jiang, Haijiao; Zhu, Yongtian; Hou, Yonghui; Dai, Songxin; Tang, Jin; Tang, Zhen; Zeng, Yizhong; Chen, Yi; Wang, Lei; Hu, Zhongwen

    2014-07-01

    Exoplanet detection, a highlight in the current astronomy, will be part of puzzle in astronomical and astrophysical future, which contains dark energy, dark matter, early universe, black hole, galactic evolution and so on. At present, most of the detected Exoplanets are confirmed through methods of radial velocity and transit. Guo shoujing Telescope well known as LAMOST is an advanced multi-object spectral survey telescope equipped with 4000 fibers and 16 low resolution fiber spectrographs. To explore its potential in different astronomical activities, a new radial velocity method named Externally Dispersed Interferometry (EDI) is applied to serve Exoplanet detection through combining a fixed-delay interferometer with the existing spectrograph in medium spectral resolution mode (R=5,000-10,000). This new technology has an impressive feature to enhance radial velocity measuring accuracy of the existing spectrograph through installing a fixed-delay interferometer in front of spectrograph. This way produces an interference spectrum with higher sensitivity to Doppler Effect by interference phase and fixed delay. This relative system named Multi-object Exoplanet Search Spectral Interferometer (MESSI) is composed of a few parts, including a pair of multi-fiber coupling sockets, a remote control iodine subsystem, a multi-object fixed delay interferometer and the existing spectrograph. It covers from 500 to 550 nm and simultaneously observes up to 21 stars. Even if it's an experimental instrument at present, it's still well demonstrated in paper that how MESSI does explore an effective way to build its own system under the existing condition of LAMOST and get its expected performance for multi-object Exoplanet detection, especially instrument stability and its special data reduction. As a result of test at lab, inside temperature of its instrumental chamber is stable in a range of +/-0.5degree Celsius within 12 hours, and the direct instrumental stability without further

  3. Kepler mission exoplanet transit data analysis using fractal imaging

    NASA Astrophysics Data System (ADS)

    Dehipawala, S.; Tremberger, G.; Majid, Y.; Holden, T.; Lieberman, D.; Cheung, T.

    2012-10-01

    The Kepler mission is designed to survey a fist-sized patch of the sky within the Milky Way galaxy for the discovery of exoplanets, with emphasis on near Earth-size exoplanets in or near the habitable zone. The Kepler space telescope would detect the brightness fluctuation of a host star and extract periodic dimming in the lightcurve caused by exoplanets that cross in front of their host star. The photometric data of a host star could be interpreted as an image where fractal imaging would be applicable. Fractal analysis could elucidate the incomplete data limitation posed by the data integration window. The fractal dimension difference between the lower and upper halves of the image could be used to identify anomalies associated with transits and stellar activity as the buried signals are expected to be in the lower half of such an image. Using an image fractal dimension resolution of 0.04 and defining the whole image fractal dimension as the Chi-square expected value of the fractal dimension, a p-value can be computed and used to establish a numerical threshold for decision making that may be useful in further studies of lightcurves of stars with candidate exoplanets. Similar fractal dimension difference approaches would be applicable to the study of photometric time series data via the Higuchi method. The correlated randomness of the brightness data series could be used to support inferences based on image fractal dimension differences. Fractal compression techniques could be used to transform a lightcurve image, resulting in a new image with a new fractal dimension value, but this method has been found to be ineffective for images with high information capacity. The three studied criteria could be used together to further constrain the Kepler list of candidate lightcurves of stars with possible exoplanets that may be planned for ground-based telescope confirmation.

  4. In-harbor and at-sea electromagnetic compatibility survey for maritime satellite L-band shipboard terminal

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Geostationary maritime satellites, one over the Pacific and one over the Atlantic Ocean, are planned to make available high-speed communications and navigation (position determination) services to ships at sea. A shipboard satellite terminal, operating within the authorized maritime L-band, 1636.5 to 1645.0 MHz, will allow ships to pass voice, teletype, facsimile, and data messages to shore communication facilities with a high degree of reliability. The shore-to-ship link will also operate in the maritime L-band from 1535.0 to 1543.5 MHz. A significant number or maritime/commercial ships are expected to be equipped with an L-band satellite terminal by the year 1980, and so consequently, there is an interest in determining electromagnetic compatibility between the proposed L-band shipboard terminal and existing, on-board, shipboard communications/electronics and electrical systems, as well as determining the influence of shore-based interference sources. The shipboard electromagnetic interference survey described was conducted on-board the United States Line's American Leader class (15,690 tons) commercial container ship, the "American Alliance" from June 16 to 20, 1974. Details of the test plan and measurements are given.

  5. Report of survey research of ways of using second generation practical broadcasting satellites

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The state of development of satellite broadcasting in Japan, was determined was determined and recommendations were made regarding what organizations would use it and what kind of results could be forthcoming. The primary use at this stage is for television broadcasting, and the secondary use is for testing new broadcasting methods and for use by Japan's new Broadcasting University.

  6. Mapping the Distributions of Exoplanet Populations with NICI and GPI

    NASA Astrophysics Data System (ADS)

    Nielsen, Eric L.; Liu, Michael C.; Wahhaj, Zahed; Biller, Beth A.; Hayward, Thomas L.; Close, Laird M.; Close; Macintosh, Bruce; Savransky, Dmitry; Wang, Jason J.; Graham, James R.; De Rosa, Robert J.; Rajan, Abhijith; Rajan

    2016-01-01

    While more and more long-period giant planets are discovered by direct imaging, the distribution of planets at these separations (>~5 AU) has remained largely uncertain, especially compared to planets in the inner regions of solar systems probed by RV and transit techniques. The low frequency, the detection challenges, and heterogeneous samples make determining the mass and orbit distributions of directly imaged planets at the end of a survey difficult. By utilizing Monte Carlo methods that incorporate the age, distance, and spectral type of each target, we can use all stars in the survey, not just those with detected planets, to learn about the underlying population. We have produced upper limits and direct measurements of the frequency of these planets with the most recent generation of direct imaging surveys. The Gemini NICI Planet-Finding Campaign observed 220 young, nearby stars at a median H-band contrast of 14.5 magnitudes at 1'', representing the largest, deepest search for exoplanets by the completion of the survey. The Gemini Planet Imager Exoplanet Survey is in the process of surveying 600 stars, pushing these contrasts to a few tenths of an arcsecond from the star. With the advent of large surveys (many hundreds of stars) using advanced planet-imagers we gain the ability to move beyond measuring the frequency of wide-separation giant planets and to simultaneously determine the distribution as a function of planet mass, semi-major axis, and stellar mass, and so directly test models of planet formation and evolution.

  7. Climates of Oblique Exoplanets

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, A. R.

    2008-12-01

    A previous paper (Dobrovolskis 2007; Icarus 192, 1-23) showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects. The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million km of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets, which is particularly effective for solid/liquid bodies like "Super-Earths". Along with friction between a solid mantle and a liquid core, tides also are expected to despin a planet until it is captured in the synchronous resonance, so that its rotation period is identical to its orbital period. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth. Tides also tend to reduce the planet's obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a "Cassini state", where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. For comparison, stable Cassini states can exist for practically any obliquity up to 180° for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism. This work considers planets in synchronous rotation with circular orbits. For obliquities greater than 90°, the ground track of the sub-solar point wraps around all longitudes on the surface of such a planet. For smaller obliquities, the sub-solar track takes the figure-8 shape of an analemma. This can be visualized as the intersection of the planet's spherical surface with a right circular cylinder, parallel to the spin axis and tangent to the equator from the inside. The excursion of the

  8. Network global navigation satellite system survey to harmonize water-surface elevation data for the Rainy River Basin

    USGS Publications Warehouse

    Ziegeweid, Jeffrey R.; Silliker, R. Jason; Densmore, Brenda K.; Krahulik, Justin

    2016-01-01

    Continuously recording water-level streamgages in Rainy Lake and Namakan Reservoir are used to regulate water levels according to rule curves established in 2000 by the International Joint Commission; however, water levels at streamgages were referenced to a variety of vertical datums, confounding efforts to model the flow of water through the system, regulate water levels during periods of high inflow, and evaluate the effectiveness of the rule curves. In October 2014, the U.S. Geological Survey, Natural Resources Canada, International Joint Commission, and National Park Service began a joint field study with the goal of obtaining precise elevations referenced to a uniform vertical datum for all reference marks used to set water levels at streamgages throughout Rainy Lake and Namakan Reservoir. This report was prepared by the U.S. Geological Survey in cooperation with Natural Resources Canada, International Joint Commission, and National Park Service.Three field crews deployed Global Navigation Satellite System receivers statically over 16 reference marks colocated with active and discontinued water-level streamgages throughout Rainy River, Rainy Lake, Namakan Reservoir, and select tributaries of Rainy Lake and Namakan Reservoir. A Global Navigation Satellite System receiver also was deployed statically over a National Geodetic Survey cooperative base network control station for use as a quality-control reference mark. Satellite data were collected simultaneously during a 5-day period and processed independently by the U.S. Geological Survey and Natural Resources Canada to obtain accurate positioning and elevations for the 17 surveyed reference marks. Processed satellite data were used to convert published water levels to elevations above sea level referenced to the Canadian Geodetic Vertical Datum of 2013 in order to compare water-surface elevations referenced to a uniform vertical datum throughout the study area. In this report, an “offset” refers to the

  9. Advances in Telescope and Detector Technologies - Impacts on the Study and Understanding of Binary Star and Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, Scott; Devinney, Edward J.

    2012-04-01

    )), and space missions, such as the James Webb Space Telescope (JWST), the possible NASA Explorer Transiting Exoplanet Survey Satellite (TESS - recently approved for further study) and Gaia (due for launch during 2013) will all be discussed. Also highlighted are advances in interferometers (both on the ground and from space) and imaging now possible at sub-millimeter wavelengths from the Extremely Long Array (ELVA) and Atacama Large Millimeter Array (ALMA). High precision Doppler spectroscopy, for example with HARPS, HIRES and more recently the Carnegie Planet Finder Spectrograph, are currently returning RVs typically better than ~2-m/s for some brighter exoplanet systems. But soon it should be possible to measure Doppler shifts as small as ~10-cm/s - sufficiently sensitive for detecting Earth-size planets. Also briefly discussed is the impact these instruments will have on the study of eclipsing binaries, along with future possibilities of utilizing methods from the emerging field of Astroinformatics, including: the Virtual Observatory (VO) and the possibilities of analyzing these huge datasets using Neural Network (NN) and Artificial Intelligence (AI) technologies.

  10. A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Martin, N. F.; Ibata, R. A.; Chapman, S. C.; Irwin, M.; Lewis, G. F.

    2007-09-01

    We present the results of a spectroscopic survey of the recently discovered faint Milky Way satellites Boötes, Ursa Major I, Ursa Major II and Willman 1 (Wil1). Using the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, we have obtained samples that contain from ~15 to ~85 probable members of these satellites for which we derive radial velocities precise to a few kms-1 down to i ~ 21-22. About half of these stars are observed with a high enough signal-to-noise ratio to estimate their metallicity to within +/-0.2 dex. The characteristics of all the observed stars are made available, along with those of the Canes Venatici I dwarf galaxy that have been analysed in a companion paper. From this data set, we show that Ursa Major II is the only object that does not show a clear radial velocity peak. However, the measured systemic radial velocity (vr = 115 +/- 5kms-1) is in good agreement with simulations in which this object is the progenitor of the recently discovered Orphan Stream. The three other satellites show velocity dispersions that make them highly dark matter dominated systems (under the usual assumptions of symmetry and virial equilibrium). In particular, we show that despite its small size and faintness, the Wil1 object is not a globular cluster given its metallicity scatter over -2.0 <~ [Fe/H] <~ -1.0 and is therefore almost certainly a dwarf galaxy or dwarf galaxy remnant. We measure a radial velocity dispersion of only 4.3+2.3-1.3kms-1 around a systemic velocity of -12.3 +/- 2.3kms-1 which implies a mass-to-light ratio of ~700 and a total mass of ~5 × 105Msolar for this satellite, making it the least massive satellite galaxy known to date. Such a low mass could mean that the 107Msolar limit that had until now never been crossed for Milky Way and Andromeda satellite galaxies may only be an observational limit and that fainter, less massive systems exist within the Local Group. However, more modelling and an extended search for

  11. LEECH: LBTI Exozodi Exoplanet Common Hunt

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew

    We propose to perform a direct exoplanet imaging survey around nearby (<25 pc), intermediate-aged (0.1-1.0 Gyr) stars using the LBT adaptive optics system (LBTAO) and the mid-infrared imager, LBTI. LBTAO is the first of the next generation extreme AO systems to come online and the only one that will operate in the mid-infrared (>3μm), where old/cool planets are brightest, and adaptive optics performance is superb (>95% Strehl ratio for LBTAO). The proposed survey will leverage 60 nights already-allocated to the NASA LBTI exozodiacal dust survey, which will target nearby stars with nulling interferometry to search for faint, warm debris disks. LBTI has a 3-5μm imager/spectrograph (LMIRCam) and an 8-13μm imager/spectrograph/nuller (NOMIC), which can be operated simultaneously using a beamsplitter, meaning that LMIRCam can search for gas-giant planets while NOMIC measures exozodiacal emission. Executing these two surveys simultaneously will greatly increase the scientific productivity of 60 already-allocated NASA nights by 1) creating exoplanet discovery opportunities and 2) providing a synergetic data set for studying debris disks (exozodis) as signposts of giant planets. The exozodi survey sample is older than the samples of other planned direct imaging surveys, which look at younger stars (<100 Myr) due to the fact that planets become fainter as they age. LBTI is still sensitive to planets around older stars because it operates at L (3.8 μm) where evolutionary models predict planets fade more slowly than at the wavelengths used by most direct-imaging surveys, (H; 1.65 μm). The ability to detect planets around nearby (<25 pc) intermediante-aged (0.1-1.0 Gyr) stars presents several scientific opportunities: 1) A variety of evolutionary models (hot-start, core-accretion/cold-start, warm-start) predict different cooling curves for extrasolar planets, based on different initial conditions. By imaging a population of old planets, we will determine how the planet

  12. Glowing Hot Transiting Exoplanet Discovered

    NASA Astrophysics Data System (ADS)

    2003-04-01

    VLT Spectra Indicate Shortest-Known-Period Planet Orbiting OGLE-TR-3 Summary More than 100 exoplanets in orbit around stars other than the Sun have been found so far. But while their orbital periods and distances from their central stars are well known, their true masses cannot be determined with certainty, only lower limits. This fundamental limitation is inherent in the common observational method to discover exoplanets - the measurements of small and regular changes in the central star's velocity, caused by the planet's gravitational pull as it orbits the star. However, in two cases so far, it has been found that the exoplanet's orbit happens to be positioned in such a way that the planet moves in front of the stellar disk, as seen from the Earth. This "transit" event causes a small and temporary dip in the star's brightness, as the planet covers a small part of its surface, which can be observed. The additional knowledge of the spatial orientation of the planetary orbit then permits a direct determination of the planet's true mass. Now, a group of German astronomers [1] have found a third star in which a planet, somewhat larger than Jupiter, but only half as massive, moves in front of the central star every 28.5 hours . The crucial observation of this solar-type star, designated OGLE-TR-3 [2] was made with the high-dispersion UVES spectrograph on the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). It is the exoplanet with the shortest period found so far and it is very close to the star, only 3.5 million km away. The hemisphere that faces the star must be extremely hot, about 2000 °C and the planet is obviously losing its atmosphere at high rate . PR Photo 10a/03 : The star OGLE-TR-3 . PR Photo 10b/03 : VLT UVES spectrum of OGLE-TR-3. PR Photo 10c/03 : Relation between stellar brightness and velocity (diagram). PR Photo 10d/03 : Observed velocity variation of OGLE-TR-3. PR Photo 10e/03 : Observed brightness variation of OGLE-TR-3. The search

  13. Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin

    NASA Astrophysics Data System (ADS)

    Crétaux, Jean-François; Biancamaria, Sylvain; Arsen, Adalbert; Bergé-Nguyen, Muriel; Becker, Mélanie

    2015-01-01

    Large reservoirs along rivers regulate downstream flows to generate hydropower but may also store water for irrigation and urban sectors. Reservoir management therefore becomes critical, particularly for transboundary basins, where coordination between riparian countries is needed. Reservoir management is even more important in semiarid regions where downstream water users may be totally reliant on upstream reservoir releases. If the water resources are shared between upstream and downstream countries, potentially opposite interests arise as is the case in the Syrdarya river in Central Asia. In this case study, remote sensing data (radar altimetry and optical imagery) are used to highlight the potential of satellite data to monitor water resources: water height, areal extent and storage variations. New results from 20 years of monitoring using satellites over the Syrdarya basin are presented. The accuracy of satellite data is 0.6 km3 using a combination of MODIS data and satellite altimetry, and only 0.2 km3 with Landsat images representing 2-4% of average annual reservoir volume variations in the reservoirs in the Syrdarya basin. With future missions such as Sentinel-3A (S3A), Sentinel-3B (S3B) and surface water and ocean topography (SWOT), significant improvement is expected. The SWOT mission’s main payload (a radar interferometer in Ka band) will furthermore provide 2D maps of water height, reservoirs, lakes, rivers and floodplains, with a temporal resolution of 21 days. At the global scale, the SWOT mission will cover reservoirs with areal extents greater than 250 × 250 m with 20 cm accuracy.

  14. Diagnosing clouds and hazes in exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Fraine, Jonathan David

    on the temperature profile at 3.6 and 4.5mu m. I am one of the founding members of the ACCESS collaboration (Arizona-CfA-Catolica Exoplanet Spectroscopy Survey), a ground based observational campaign to spectroscopically survey a catalogue of exoplanetary atmospheres using major optical telescopes. I observed several of our targets from the 6.5m Magellan-Baade telescope. The results of my first observation provided low signal-to-noise constraints on the cloud properties of the hot Jupiter WASP-4b, as well as the UV radiation environment produced by its host star, WASP-4. The combination of these observational constraints provided greater insight into the end-products of the planet formation process, and developed the knowledge base of our community for both cloudy and clear worlds.

  15. Analysis of Exoplanet Light Curves

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Budding, E.; Rhodes, M. D.; Püsküllü, Ç.; Soydugan, F.; Soydugan, E.; Tüysüz, M.; Demircan, O.

    2015-07-01

    We have applied the close binary system analysis package WINFITTER to a variety of exoplanet transiting light curves taken both from the NASA Exoplanet Archive and our own ground-based observations. WINFitter has parameter options for a realistic physical model, including gravity brightening and structural parameters derived from Kopal's applications of the relevant Radau equation, and it includes appropriate tests for determinacy and adequacy of its best fitting parameter sets. We discuss a number of issues related to empirical checking of models for stellar limb darkening, surface maculation, Doppler beaming, microvariability, and transit time variation (TTV) effects. The Radau coefficients used in the light curve modeling, in principle, allow structural models of the component stars to be tested.

  16. In the Search of Exoplanets

    NASA Astrophysics Data System (ADS)

    Crespo, Luis Cuesta

    The Spanish Instituto Nacional de Técnica Aeroespacial has a network of three telescopes located in some of the best places for Astronomy in Spain: the Observatory of Calar Alto, in Almería, near Calatayud, in Zaragoza, at the summit of a 1,400m high mountain, and at the campus of INTA, in Madrid. The three telescopes have diameters between 40 and 50cm, and are equipped with instrumentation very adequate to identify exoplanets.

  17. Integration of real time kinematic satellite navigation with ground-penetrating radar surveys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture, environmental mapping, and construction benefit from subsurface imaging by revealing the spatial variability of underground features. Features surveyed of agricultural interest are bedrock depth, soil horizon thicknesses, and buried–object features such as drainage pipe. For t...

  18. Survey and analysis of satellite-based telemedicine projects involving Japan and developing nations: investigation of transmission rates, channel numbers, and node numbers.

    PubMed

    Nakajima, I; Natori, M; Takizawa, M; Kaihara, S

    2001-01-01

    We surveyed interactive telemedicine projects via telecommunications satellite (AMINE-PARTNERS, Post-PARTNERS, and Shinshu University Project using Inmarsat satellites) offered by Japan as assistance to developing countries. The survey helped clarify channel occupation time and data transfer rates. Using our survey results, we proposed an optimized satellite model with VSATs simulating the number of required channels and bandwidth magnitude. For future implementation of VSATs for medical use in developing nations, design of telecommunication channels should take into consideration TCP/IP-based operations. We calculated that one hub station with 30-76 VSATs in developing nation can be operated on bandwidth 6 Mbps using with 128 Kbps videoconferencing system for teleconsultation and teleconference, and linking with Internet. PMID:11604854

  19. Phase Curves of Eccentric Exoplanets

    NASA Astrophysics Data System (ADS)

    Lewis, Nikole K.; de Wit, Julien; Laughlin, Gregory P.; Knutson, Heather

    2016-01-01

    Nearly 15% of the known exoplanet population have significantly eccentric orbits (e > 0.25). Systems with planets on highly eccentric orbits provide natural laboratories to test theories of orbital evolution, tidal forcing, and atmospheric response. The two best studied eccentric exoplanets are HAT-P-2b (e~0.5) and HD 80606 b (e~0.9). Both of these eccentric planets have full or partial orbit phase curve observations taken with the 3.6, 4.5, and 8.0 micron channels of the Spitzer IRAC instrument. These phase-curve observations of HAT-P-2b and HD 80606 b have given us important insights into atmospheric radiative timescales, planetary rotation rates and orbital evolution, and planet-star tidal interactions. Here I will overview the key results from the Spitzer observational campaigns for HAT-P-2b and HD 80606 b and look toward the future of phase curve observations of eccentric exoplanets in the era of JWST.

  20. Overcoming Degeneracies in Exoplanet Spectra

    NASA Astrophysics Data System (ADS)

    Benneke, Björn

    2015-08-01

    Spectroscopic observations of exoplanets can provide invaluable insights into the planets’ compositions, their formation and evolution histories, and even their habitability. Obtaining exoplanet spectra is observationally challenging; however, and we are generally limited to relatively low signal-to-noise, low spectral resolution, disk-integrated observations , often with relatively narrow wavelength coverage. This low data situation results in strong correlations and degeneracies between the different planet and atmospheric parameters of interest. In this talk, I will present a conceptual picture of how vital information about the planet is encoded in its observable spectrum. I will then give an overview about the wide range of correlations and degeneracies relevant to today’s exoplanet observations. Finally, I will demonstrate how some degeneracies can be overcome and improved constraints can be obtained by including prior knowledge of atmospheric chemistry and physics in the retrieval. I present a new atmospheric retrieval framework, SCARLET, that combines observational data and our prior (limited) knowledge of atmospheric processes in a statistical robust Bayesian framework. New results for hot Jupiters will be presented.

  1. First Solid Evidence for a Rocky Exoplanet - Mass and density of smallest exoplanet finally measured

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The longest set of HARPS measurements ever made has firmly established the nature of the smallest and fastest-orbiting exoplanet known, CoRoT-7b, revealing its mass as five times that of Earth's. Combined with CoRoT-7b's known radius, which is less than twice that of our terrestrial home, this tells us that the exoplanet's density is quite similar to the Earth's, suggesting a solid, rocky world. The extensive dataset also reveals the presence of another so-called super-Earth in this alien solar system. "This is science at its thrilling and amazing best," says Didier Queloz, leader of the team that made the observations. "We did everything we could to learn what the object discovered by the CoRoT satellite looks like and we found a unique system." In February 2009, the discovery by the CoRoT satellite [1] of a small exoplanet around a rather unremarkable star named TYC 4799-1733-1 was announced one year after its detection and after several months of painstaking measurements with many telescopes on the ground, including several from ESO. The star, now known as CoRoT-7, is located towards the constellation of Monoceros (the Unicorn) at a distance of about 500 light-years. Slightly smaller and cooler than our Sun, CoRoT-7 is also thought to be younger, with an age of about 1.5 billion years. Every 20.4 hours, the planet eclipses a small fraction of the light of the star for a little over one hour by one part in 3000 [2]. This planet, designated CoRoT-7b, is only 2.5 million kilometres away from its host star, or 23 times closer than Mercury is to the Sun. It has a radius that is about 80% greater than the Earth's. The initial set of measurements, however, could not provide the mass of the exoplanet. Such a result requires extremely precise measurements of the velocity of the star, which is pulled a tiny amount by the gravitational tug of the orbiting exoplanet. The problem with CoRoT-7b is that these tiny signals are blurred by stellar activity in the form of

  2. Thermal Structure and Mantle Dynamics of Rocky Exoplanets

    NASA Astrophysics Data System (ADS)

    Wagner, F. W.; Tosi, N.; Hussmann, H.; Sohl, F.

    2011-12-01

    The confirmed detections of CoRoT-7b and Kepler-10b reveal that rocky exoplanets exist. Moreover, recent theoretical studies suggest that small planets beyond the Solar System are indeed common and many of them will be discovered by increasingly precise observational surveys in the years ahead. The knowledge about the interior structure and thermal state of exoplanet interiors provides crucial theoretical input not only for classification and characterization of individual planetary bodies, but also to better understand the origin and evolution of the Solar System and the Earth in general. These developments and considerations have motivated us to address several questions concerning thermal structure and interior dynamics of terrestrial exoplanets. In the present study, depth-dependent structural models of solid exoplanet interiors have been constructed in conjunction with a mixing length approach to calculate self-consistently the radial distribution of temperature and heat flux. Furthermore, 2-D convection simulations using the compressible anelastic approximation have been carried through to examine the effect of thermodynamic quantities (e.g., thermal expansivity) on mantle convection pattern within rocky planets more massive than the Earth. In comparison to parameterized convection models, our calculated results predict generally hotter planetary interiors, which are mainly attributed to a viscosity-regulating feedback mechanism involving temperature and pressure. We find that density and thermal conductivity increase with depth by a factor of two to three, however, thermal expansivity decreases by more than an order of magnitude across the mantle for planets as massive as CoRoT-7b or Kepler-10b. The specific heat capacity is observed to stay almost constant over an extended region of the lower mantle. The planform of mantle convection is strongly modified in the presence of depth-dependent thermodynamic quantities with hot upwellings (plumes) rising across

  3. Enabling Technologies for Characterizing Exoplanet Systems with Exo-C

    NASA Astrophysics Data System (ADS)

    Cahoy, Kerri Lynn; Belikov, Ruslan; Stapelfeldt, Karl R.; Chakrabarti, Supriya; Trauger, John T.; Serabyn, Eugene; McElwain, Michael W.; Pong, Christopher M.; Brugarolas, Paul

    2015-01-01

    The Exoplanet Science and Technology Definition Team's Internal Coronagraph mission design, called 'Exo-C', utilizes several technologies that have advanced over the past decade with support from the Exoplanet Exploration Program. Following the flow of photons through the telescope, the science measurement is enabled by (i) a precision pointing system to keep the target exoplanet system precisely positioned on the detector during the integration time, (ii) high-performance coronagraphs to block the parent star's light so that the planet's reflected light can be detected, (iii) a wavefront control system to compensate for any wavefront errors such as those due to thermal or mechanical deformations in the optical path, especially errors with high spatial frequencies that could cause contrast-reducing speckles, and (iv) an integral field spectrograph (IFS) that provides moderate resolution spectra of the target exoplanets, permitting their characterization and comparison with models and other data sets. Technologies such as the wavefront control system and coronagraphs will also benefit from other funded efforts in progress, such as the Wide Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST-AFTA) program. Similarly, the Exo-C IFS will benefit from the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) demonstration. We present specific examples for each of these technologies showing that the state of the art has advanced to levels that will meet the overall scientific, cost, and schedule requirements of the Exo-C mission. These capabilities have matured with testbed and/or ground-telescope demonstrations and have reached a technological readiness level (TRL) that supports their inclusion in the baseline design for potential flight at the end of this decade. While additional work remains to build and test flight-like components (that concurrently meet science as well as size, weight, power, and environmental

  4. Glowing Hot Transiting Exoplanet Discovered

    NASA Astrophysics Data System (ADS)

    2003-04-01

    VLT Spectra Indicate Shortest-Known-Period Planet Orbiting OGLE-TR-3 Summary More than 100 exoplanets in orbit around stars other than the Sun have been found so far. But while their orbital periods and distances from their central stars are well known, their true masses cannot be determined with certainty, only lower limits. This fundamental limitation is inherent in the common observational method to discover exoplanets - the measurements of small and regular changes in the central star's velocity, caused by the planet's gravitational pull as it orbits the star. However, in two cases so far, it has been found that the exoplanet's orbit happens to be positioned in such a way that the planet moves in front of the stellar disk, as seen from the Earth. This "transit" event causes a small and temporary dip in the star's brightness, as the planet covers a small part of its surface, which can be observed. The additional knowledge of the spatial orientation of the planetary orbit then permits a direct determination of the planet's true mass. Now, a group of German astronomers [1] have found a third star in which a planet, somewhat larger than Jupiter, but only half as massive, moves in front of the central star every 28.5 hours . The crucial observation of this solar-type star, designated OGLE-TR-3 [2] was made with the high-dispersion UVES spectrograph on the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). It is the exoplanet with the shortest period found so far and it is very close to the star, only 3.5 million km away. The hemisphere that faces the star must be extremely hot, about 2000 °C and the planet is obviously losing its atmosphere at high rate . PR Photo 10a/03 : The star OGLE-TR-3 . PR Photo 10b/03 : VLT UVES spectrum of OGLE-TR-3. PR Photo 10c/03 : Relation between stellar brightness and velocity (diagram). PR Photo 10d/03 : Observed velocity variation of OGLE-TR-3. PR Photo 10e/03 : Observed brightness variation of OGLE-TR-3. The search

  5. Using satellite remote sensing and household survey data to assess human health and nutrition response to environmental change.

    PubMed

    Brown, Molly E; Grace, Kathryn; Shively, Gerald; Johnson, Kiersten B; Carroll, Mark

    2014-01-01

    Climate change and degradation of ecosystem services functioning may threaten the ability of current agricultural systems to keep up with demand for adequate and inexpensive food and for clean water, waste disposal and other broader ecosystem services. Human health is likely to be affected by changes occurring across multiple geographic and time scales. Impacts range from increasing transmissibility and the range of vectorborne diseases, such as malaria and yellow fever, to undermining nutrition through deleterious impacts on food production and concomitant increases in food prices. This paper uses case studies to describe methods that make use of satellite remote sensing and Demographic and Health Survey data to better understand individual-level human health and nutrition outcomes. By bringing these diverse datasets together, the connection between environmental change and human health outcomes can be described through new research and analysis. PMID:25132700

  6. Basic research and data analysis for the National Geodetic Satellite program and for the Earth Surveys program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Current research is reported on precise and accurate descriptions of the earth's surface and gravitational field and on time variations of geophysical parameters. A new computer program was written in connection with the adjustment of the BC-4 worldwide geometric satellite triangulation net. The possibility that an increment to accuracy could be transferred from a super-control net to the basic geodetic (first-order triangulation) was investigated. Coordinates of the NA9 solution were computed and were transformed to the NAD datum, based on GEOS 1 observations. Normal equations from observational data of several different systems and constraint equations were added and a single solution was obtained for the combined systems. Transformation parameters with constraints were determined, and the impact of computers on surveying and mapping is discussed.

  7. Using Satellite Remote Sensing and Household Survey Data to Assess Human Health and Nutrition Response to Environmental Change

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Grace, Kathryn; Shively, Gerald; Johnson, Kiersten B.; Carroll, Mark

    2014-01-01

    Climate change and degradation of ecosystem services functioning may threaten the ability of current agricultural systems to keep up with demand for adequate and inexpensive food and for clean water, waste disposal and other broader ecosystem services. Human health is likely to be affected by changes occurring across multiple geographic and time scales. Impacts range from increasing transmissibility and the range of vector-borne diseases, such as malaria and yellow fever, to undermining nutrition through deleterious impacts on food production and concomitant increases in food prices. This paper uses case studies to describe methods that make use of satellite remote sensing and Demographic and Health Survey data to better understand individual-level human health and nutrition outcomes. By bringing these diverse datasets together, the connection between environmental change and human health outcomes can be described through new research and analysis.

  8. U.S. Geological Survey Aids Federal Agencies in ObtainingCommercial Satellite and Aerial Imagery

    USGS Publications Warehouse

    U.S. Geological Survey

    2005-01-01

    The U.S. Geological Survey (USGS) is a leading U.S. Federal civil agency in the implementation of the civil aspects of the Commercial Remote Sensing Space Policy (CRSSP). The USGS is responsible for collecting inter-agency near-term requirements, establishing an operational infrastructure, and supporting the policy and other Federal agencies.

  9. SEEDS — Strategic explorations of exoplanets and disks with the Subaru Telescope —

    PubMed Central

    TAMURA, Motohide

    2016-01-01

    The first convincing detection of planets orbiting stars other than the Sun, or exoplanets, was made in 1995. In only 20 years, the number of the exoplanets including promising candidates has already accumulated to more than 5000. Most of the exoplanets discovered so far are detected by indirect methods because the direct imaging of exoplanets needs to overcome the extreme contrast between the bright central star and the faint planets. Using the large Subaru 8.2-m Telescope, a new high-contrast imager, HiCIAO, and second-generation adaptive optics (AO188), the most ambitious high-contrast direct imaging survey to date for giant planets and planet-forming disks has been conducted, the SEEDS project. In this review, we describe the aims and results of the SEEDS project for exoplanet/disk science. The completeness and uniformity of this systematic survey mean that the resulting data set will dominate this field of research for many years. PMID:26860453

  10. SEEDS - Strategic explorations of exoplanets and disks with the Subaru Telescope.

    PubMed

    Tamura, Motohide

    2016-01-01

    The first convincing detection of planets orbiting stars other than the Sun, or exoplanets, was made in 1995. In only 20 years, the number of the exoplanets including promising candidates has already accumulated to more than 5000. Most of the exoplanets discovered so far are detected by indirect methods because the direct imaging of exoplanets needs to overcome the extreme contrast between the bright central star and the faint planets. Using the large Subaru 8.2-m Telescope, a new high-contrast imager, HiCIAO, and second-generation adaptive optics (AO188), the most ambitious high-contrast direct imaging survey to date for giant planets and planet-forming disks has been conducted, the SEEDS project. In this review, we describe the aims and results of the SEEDS project for exoplanet/disk science. The completeness and uniformity of this systematic survey mean that the resulting data set will dominate this field of research for many years. PMID:26860453

  11. Survey and documentation of emerging technologies for the Satellite Power System (SPS)

    NASA Technical Reports Server (NTRS)

    Glaser, P.; Chapman, P.

    1981-01-01

    The genesis of the solar power satellite (SPS) concept is reviewed historically and the original assumptions and guidelines which led to development of the SPS reference system design concept are discussed. Some guidelines are applicable to almost any SPS design, but others can be changed, leading to new and perhaps preferable systems. In order to stimulate new SPS concepts and to facilitate comparative assessment of emerging SPS technologies, one useful approach is to break the overall system into functional parts. The system functions which must be performed by any SPS concept and the interrelations between them are discussed and a systematic framework is presented for assessing the wide variety of system concepts and subsystem technologies which have been proposed. About 80 alternative SPS technologies are reviewed.

  12. A MEGACAM SURVEY OF OUTER HALO SATELLITES. II. BLUE STRAGGLERS IN THE LOWEST STELLAR DENSITY SYSTEMS

    SciTech Connect

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla; Cote, Patrick; Stetson, Peter; Simon, Joshua D.; Djorgovski, S. G. E-mail: rmunoz@das.uchile.cl

    2013-09-10

    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed for inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.

  13. Gaia, PLATO and WEAVE: A Powerful combination for Exoplanet Characterisation

    NASA Astrophysics Data System (ADS)

    Walton, Nicholas

    2015-12-01

    This presentation will describe the powerful linkages between the Gaia and PLATO missions and the potential impact of the WHT’s WEAVE multi-object spectrograph in the study of exoplanet populations.ESA’s Gaia mission commenced its nominal operations phase in July 2014. Its first data release is expected summer 2016. Over the course of its (at least) five year mission, it will discover, via their astrometric signatures, upwards of 20,000 massive Jupiter sized long period planets at distances out to several hundred parsecs around all star types. In addition Gaia will discover a significant number of short period hot Jupiters around M stars. This presentation will discuss the form and content of the first Gaia Data Release. The ESA PLATO mission, planned to launch in 2024, will photometrically observe a million host stars, and will detect, via the transit technique, planets down to Earth masses. PLATO will observe two fields of over 2,000 square degrees for 2 to 3 years each. At least one of these will be in the northern hemisphere. where WEAVE (a new multi object high resolution spectrograph currently under construction for the 4.2m William Herschel Telescope) will have the potential to provide detailed chemical characterisation of the host stars of the Gaia and PLATO exoplanet systems. This will enable insights into, for instance, metallicity of the host star correlations against both massive exoplanets (perhaps confirming current relationships), and lower mass exoplanets.We note how the rapid exploitation of such a potential WEAVE survey could be achieved, utilising the WEAVE processing systems being developed at the IoA, Cambridge, coupled with efficient interfaces to the Cambridge Gaia and PLATO data processing centres.

  14. The First Atmospheric Characterization of a Habitable-Zone Exoplanet

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin; Bean, Jacob; Charbonneau, David; Desert, Jean-Michel; Fortney, Jonathan; Irwin, Jonathan; Kreidberg, Laura; Line, Michael; Montet, Ben; Morley, Caroline

    2015-10-01

    Exoplanet surveys have recently revealed nearby planets orbiting within stellar habitable zones. This highly-anticipated breakthrough brings us one step closer in our quest to identify cosmic biosignatures, the indicators of extrasolar life. To achieve our goal, we must first study the atmospheres of these temperate worlds to measure their compositions and determine the prevalence of obscuring clouds. Using observations from the K2 mission, Co-I Montet recently announced the discovery of a 2.2 Earth-radii planet within the habitable zone of its relatively bright, nearby M dwarf parent star, K2-18. This temperate world is currently the best habitable-zone target for atmospheric characterization. Congruent with currently planned HST observations, we propose a Spitzer program to measure the transmission spectrum of the first habitable-zone exoplanet. Both telescopes are essential to revealing K2-18b's chemical composition. In a cloud-free, hydrogen-dominated atmosphere, the precision achieved by these measurements will be sufficient to detect methane, ammonia, and water vapor, which are the dominant C, N, and O bearing species at these temperatures. In turn, elemental abundance constraints from a primordial atmosphere can tell us about the composition of a protoplanetary disk in which Earth-like planets could have formed. Conversely, if the atmosphere contains thick clouds then the multi-wavelength observations from K2, HST, and Spitzer will constrain the clouds' properties. Because temperature plays a key role in the formation of clouds, their detection within the atmosphere of this habitable-zone exoplanet would be an important signpost that serves as a guide to future investigations of smaller, rocky exoplanets. As K2 continues discovering more habitable-zone planets, it is imperative that we perform spectral reconnaissance with Spitzer to determine their physical characteristics and begin understanding the prevalence of potentially-obscuring clouds prior to the

  15. Comparative Habitability of Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Barnes, Rory; Meadows, Victoria S.; Evans, Nicole

    2015-12-01

    Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe. We propose a method to compare transiting planets for their potential to support life based on transit data, stellar properties and previously reported limits on planetary emitted flux. For a planet in radiative equilibrium, the emitted flux increases with eccentricity, but decreases with albedo. As these parameters are often unconstrained, there is an “eccentricity-albedo degeneracy” for the habitability of transiting exoplanets. Our method mitigates this degeneracy, includes a penalty for large-radius planets, uses terrestrial mass-radius relationships, and, when available, constraints on eccentricity to compute a number we call the “habitability index for transiting exoplanets” that represents the relative probability that an exoplanet could support liquid surface water. We calculate it for Kepler objects of interest and find that planets that receive between 60% and 90% of the Earth’s incident radiation, assuming circular orbits, are most likely to be habitable. Finally, we make predictions for the upcoming TESS and James Webb Space Telescope missions.

  16. Insolation patterns on eccentric exoplanets

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.

    2015-04-01

    Several studies have found that synchronously-rotating Earth-like planets in the habitable zones of M-dwarf stars should exhibit an "eyeball" climate pattern, with a pupil of open ocean facing the parent star, and ice everywhere else. Recent work on eccentric exoplanets by Wang et al. (Wang, Y., Tian, F., Hu, Y. [2014b] Astrophys. J. 791, L12) has extended this conclusion to the 2:1 spin-orbit resonance as well, where the planet rotates twice during one orbital period. However, Wang et al. also found that the 3:2 and 5:2 half-odd resonances produce a zonally-striped climate pattern with polar icecaps instead. Unfortunately, they used incorrect insolation functions for the 3:2 and 5:2 resonances whose long-term time averages are essentially independent of longitude. This paper presents the correct insolation patterns for eccentric exoplanets with negligible obliquities in the 0:1, 1:2, 1:1, 3:2, 2:1, 5:2, 3:1, 7:2, and 4:1 spin-orbit resonances. I confirm that the mean insolation is distributed in an eyeball pattern for integer resonances; but for half-odd resonances, the mean insolation takes a "double-eyeball" pattern, identical over the "eastern" and "western" hemispheres. Presuming that liquids, ices, clouds, albedo, and thermal emission are similarly distributed, this has significant implications for the observation and interpretation of potentially habitable exoplanets. Finally, whether a striped ball, eyeball, or double-eyeball pattern emerges, the possibility exists that long-term build-up of ice (or liquid) away from the hot spots may alter the planet's inertia tensor and quadrupole moments enough to re-orient the planet, ultimately changing the distribution of liquid and ice.

  17. Time Domain Challenges for Exoplanets

    NASA Astrophysics Data System (ADS)

    Dawson, Rebekah Ilene

    2016-01-01

    Over the past couple decades, thousands of extra-solar planets have been discovered orbiting other stars. Most have been detected and characterized using transit and/or radial velocity time series, and these techniques have undergone huge improvements in instrumental precision. However, the improvements in precision have brought to light new statistical challenges in detecting and characterizing exoplanets in the presence of correlated noise caused by stellar activity (transits and radial velocities) and gaps in the time sampling (radial velocities). These challenges have afflicted many of the most interesting exoplanets, from Earth-like planets to planetary systems whose orbital dynamics place important constraints on how planetary systems form and evolve. In the first part of the talk, I will focus on the problem of correlated noise for characterizing transiting exoplanets using transit timing variations. I will present a comparison of several techniques using wavelets, Gaussian processes, and polynomial splines to account for correlated noise in the likelihood function when inferring planetary parameters. I will also present results on the characteristics of correlated noise that cause planets to be missed by the Kepler and homegrown pipelines despite high nominal signal-to-noise. In the second part of the talk, I will focus on the problem of aliasing caused by gaps in the radial-velocity time series on yearly, daily, and monthly timescales. I will present results on identifying aliases in the Fourier domain by taking advantage of aliasing on multiple timescales and discuss the interplay between aliasing and stellar activity for several habitable-zone "planets" that have recently been called into question as possible spurious signals caused by activity. As we push toward detecting and characterizing lower mass planets, it is essential that astrostatistical advances keep pace with advances in instrumentation.

  18. Enabling Participation In Exoplanet Science

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2015-08-01

    Determining the distribution of exoplanets has required the contributions of a community of astronomers, who all require the support of colleagues to finish their projects in a manner to enable them to enter new collaborations to continue to contribute to understanding exoplanet science.The contributions of each member of the astronomy community are to be encouraged and must never be intentionally obstructed.We present a member’s long pursuit to be a contributing part of the exoplanet community through doing transit photometry as a means of commissioning the telescopes for a new observatory, followed by pursuit of interpreting the distributions in exoplanet parameter data.We present how the photometry projects have been presented as successful by the others who have claimed to have completed them, but how by requiring its employees to present results while omitting one member has been obstructive against members working together and has prevented the results from being published in what can genuinely be called a peer-reviewed fashion.We present how by tolerating one group to obstruct one member from finishing participation and then falsely denying credit is counterproductive to doing science.We show how expecting one member to attempt to go around an ostracizing group by starting something different is destructive to the entire profession. We repeat previously published appeals to help ostracized members to “go around the observatory” by calling for discussion on how the community must act to reverse cases of shunning, bullying, and other abuses. Without better recourse and support from the community, actions that do not meet standard good collegial behavior end up forcing good members from the community. The most important actions are to enable an ostracized member to have recourse to participating in group papers by either working through other authors or through the journal. All journals and authors must expect that no co-author is keeping out a major

  19. Combining satellite remote sensing and surveys to understand persistent yield variation--- a case study in North China Plain

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Lobell, D. B.; Chen, X.

    2015-12-01

    A large gap between maize yields on average farmers' fields and the highest yields achieved by either experiment or farmers is typical throughout the developing world, including in the North China Plain (NCP). This maize yield gap as identified by previous studies indicates large opportunities for raising yield by improving agronomy. Quzhou county is typical of the winter-wheat summer-maize system in NCP where the average plot size is as small as 0.25 hectares. To analyze this cropping system amidst the challenge of substantial heterogeneity, we identified fields that were either persistently higher or lower yielding according to the remote sensing yield estimates, and then conducted detailed field surveys. We found irrigation facility to be a major constraint to yield both in terms of irrigation water quality and farmers' access to wells. In total, improving the access to unsalty water would be associated with a 0.32t/ha (4.2%) increase in multi-year average yield. In addition, farmers' method of choosing cultivar, which likely relates to their overall knowledge level, significantly explained yield variation. In particular, those choosing cultivars according to technician advice, personal experiences and high yielding neighbors' advice had on average higher yield than farmers that either followed seed sellers' advice or collectively purchased seeds. Overall, the study presents a generalizable methodology of assessing yield gap as well as its persistent factors using a combination of satellite and survey data.

  20. Analysis of a Simulated Optical GSO Survey Observation for the Effective Maintenance of the Catalogued Satellites and the Orbit Determination Strategy

    NASA Astrophysics Data System (ADS)

    Choi, Jin; Jo, Jung Hyun; Yim, Hong-Suh; Choi, Young-Jun; Son, Ju-Young; Park, Sun-youp; Bae, Young-Ho; Roh, Dong-Goo; Cho, Sungki

    2015-09-01

    A strategy is needed for a regional survey of geosynchronous orbits (GSOs) to monitor known space objects and detect uncataloged space objects. On the basis of the Inter-Agency Debris Committee's recommendation regarding the protected region of geosynchronous Earth orbit (GEO), target satellites with perigee and apogee of GEO ˜ 200 km and various inclinations are selected for analysis. The status of the GSO region was analyzed using the satellite distribution based on the orbital characteristics in publicly available two-line element data. Natural perturbation effects cause inactive satellites to drift to two stable longitudinal points. Active satellites usually maintain the designed positions as a result of regular or irregular maneuver operations against their natural drift. To analyze the detection rate of a single optical telescope, 152 out of 412 active satellites and 135 out of 288 inactive satellites in the GSO region were selected on the basis of their visibility at the observation site in Daejeon, Korea. By using various vertical view ranges and various numbers of observations of the GSO region, the detection efficiencies were analyzed for a single night, and the numbers of follow-up observations were determined. The orbital estimation accuracies were also checked using the arc length and number of observed data points to maintain the GSO satellite catalog.

  1. Watching the Sun to Improve Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    Looking for stars that wobble is one of the key ways by which we detect exoplanets: the gravitational pull of planets cause tiny variations in stars radial velocities. But our ability to detect Earth twins is currently limited by our ability to distinguish between radial-velocity variations caused by exoplanets, and those caused by noise from the star itself. A team of scientists has recently proposed that the key to solving this problem may be to examine our own star.Precision Amid NoiseThe radial-velocity technique works well for detecting large planets on close orbits, but detecting an Earth twin requires being able to detect star motion on the order of 10 cm/s! This precision is hard to reach, because activity on the stellar surface i.e., sunspots, plages (bright spots), or granulation can also cause variations in the measured radial velocity for the star, obscuring the signature of a planet.Because the stars were examining arent resolved, we cant track the activity on their surfaces so how can we better understand the imprint that stellar activity has on radial-velocity measurements? A team of scientists has come up with a clever approach: examine the Sun as though it were a distant star.Wealth of InformationThe team, led by Xavier Dumusque (Branco-Weiss Fellow at the Harvard-Smithsonian Center for Astrophysics) and David F. Phillips (Harvard-Smithsonian Center for Astrophysics), has begun a project to observe the Sun with a ground-based solar telescope. The telescope observes the full disk of the Sun and feeds the data into the HARPS-N spectrograph in Spain, a spectrograph normally used for radial-velocity measurements of other stars in the hunt for exoplanets.But the team has access to other data about the Sun, too: information from satellites like the Solar Dynamics Observatory and SORCE about the solar activity and total irradiance during the time when the spectra were taken. Dumusque and collaborators have combined all of this information, during a week

  2. The Primordial Destruction of Moons around Giant Exoplanets through Disk-Driven Planetary Migration

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C.

    2015-11-01

    The extensive array of satellites around Jupiter and Saturn makes it reasonable to suspect that similar systems of moons might exist around giant extrasolar planets. Observational surveys have revealed a significant population of such giant planets residing at distances of about 1 AU, leading to speculation that some of these 'exomoons' might be capable of maintaining liquid water on their surfaces. Accordingly, many recent efforts have specifically hunted for moons around giant exoplanets. Owing to the lack of detections thus far, it is worth asking whether certain processes intrinsic to planet formation might lead to the loss of moons. Here, we highlight that giant planets are thought to undergo inward migration within their natal disks and show that the very process of migration naturally captures moons into a so-called "evection resonance". Within this resonance, the lunar orbit's eccentricity grows until the moon is lost, either by collision with the planet or through tidal disruption. Whether moons survive or not is critically dependent upon where the planet began its inward trek. In this way, the presence or absence of exomoons can inform us on the extent of inward migration, for which no reliable observational proxy currently exists.

  3. Concepts of integrated satellite surveys. [thematic mapping of land use in Ethiopia, Sudan, and Morocco

    NASA Technical Reports Server (NTRS)

    Howard, J. A.

    1974-01-01

    The United Nations initially contracted with NASA to carry out investigations in three countries; but now as the result of rapidly increasing interest, ERTS imagery has been/is being used in 7 additional projects related to agriculture, forestry, land-use, soils, landforms and hydrology. Initially the ERTS frames were simply used to provide a synoptic view of a large area of a developing country as a basis to regional surveys. From this, interest has extended to using reconstituted false color imagery and latterly, in co-operation with Purdue University, the use of computer generated false color mosaics and computer generated large scale maps. As many developing countries are inadequately mapped and frequently rely on outdated maps, the ERTS imagery is considered to provide a very wide spectrum of valuable data. Thematic maps can be readily prepared at a scale of 1:250,000 using standard NASA imagery. These provide coverage of areas not previously mapped and provide supplementary information and enable existing maps to be up-dated. There is also increasing evidence that ERTS imagery is useful for temporal studies and for providing a new dimension in integrated surveys.

  4. Detecting Exoplanets with the George Mason University Telescope

    NASA Astrophysics Data System (ADS)

    Renaud, J.

    2014-04-01

    The George Mason Exoplanet Team has become an official follow up team for the KELT Survey. Research areas for the team include: Transit Timing Variations, High-altitude spectroscopy, and characterization of extrasolar planets. Detections were performed using the STX 16803 and filter wheel STX-FW7 at the George Mason 0.8m Telescope. We will present observed transit characteristics of Kelt-1b, HD189733b, WASP-33b, as well as others - discussing the transit depths, timing variations, and data reduction methods.

  5. Methods for Determining the Uncertainty of Population Estimates Derived from Satellite Imagery and Limited Survey Data: A Case Study of Bo City, Sierra Leone

    PubMed Central

    Hillson, Roger; Alejandre, Joel D.; Jacobsen, Kathryn H.; Ansumana, Rashid; Bockarie, Alfred S.; Bangura, Umaru; Lamin, Joseph M.; Malanoski, Anthony P.; Stenger, David A.

    2014-01-01

    This study demonstrates the use of bootstrap methods to estimate the total population of urban and periurban areas using satellite imagery and limited survey data. We conducted complete household surveys in 20 neighborhoods in the city of Bo, Sierra Leone, which collectively were home to 25,954 persons living in 1,979 residential structures. For five of those twenty sections, we quantized the rooftop areas of structures extracted from satellite images. We used bootstrap statistical methods to estimate the total population of the pooled sections, including the associated uncertainty intervals, as a function of sample size. Evaluations based either on rooftop area per person or on the mean number of occupants per residence both converged on the true population size. We demonstrate with this simulation that demographic surveys of a relatively small proportion of residences can provide a foundation for accurately estimating the total population in conjunction with aerial photographs. PMID:25398101

  6. Methods for determining the uncertainty of population estimates derived from satellite imagery and limited survey data: a case study of Bo city, Sierra Leone.

    PubMed

    Hillson, Roger; Alejandre, Joel D; Jacobsen, Kathryn H; Ansumana, Rashid; Bockarie, Alfred S; Bangura, Umaru; Lamin, Joseph M; Malanoski, Anthony P; Stenger, David A

    2014-01-01

    This study demonstrates the use of bootstrap methods to estimate the total population of urban and periurban areas using satellite imagery and limited survey data. We conducted complete household surveys in 20 neighborhoods in the city of Bo, Sierra Leone, which collectively were home to 25,954 persons living in 1,979 residential structures. For five of those twenty sections, we quantized the rooftop areas of structures extracted from satellite images. We used bootstrap statistical methods to estimate the total population of the pooled sections, including the associated uncertainty intervals, as a function of sample size. Evaluations based either on rooftop area per person or on the mean number of occupants per residence both converged on the true population size. We demonstrate with this simulation that demographic surveys of a relatively small proportion of residences can provide a foundation for accurately estimating the total population in conjunction with aerial photographs. PMID:25398101

  7. The Rapid Response Radiation Survey (R3S) Mission Using the HiSat Conformal Satellite Architecture

    NASA Technical Reports Server (NTRS)

    Miller, Nathanael A.; Norman, Ryan B.; Soto, Hector L.; Stewart, Victor A.; Jones, Mark L.; Kowalski, Matthew C.; Ben Shabat, Adam; Gough, Kerry M.; Stavely, Rebecca L.; Shim, Alex C.; Jaeger, Gene T. K.

    2015-01-01

    The Rapid Response Radiation Survey (R3S) experiment, designed as a quick turnaround mission to make radiation measurements in Low Earth Orbit (LEO), will fly as a hosted payload in partnership with NovaWurks using their Hyper-integrated Satlet (HISat) architecture. The need for the mission arises as the Nowcast of Atmospheric Ionization Radiation for Aviation Safety (NAIRAS) model moves from a research effort into an operational radiation assessment tool. Currently, airline professionals are the second largest demographic of radiation workers and to date their radiation exposure is undocumented in the USA. The NAIRAS model seeks to fill this information gap. The data collected by R3S, in addition to the complementary data from a NASA Langley Research Center (LaRC) atmospheric balloon mission entitled Radiation Dosimetry Experiment (RaD-X), will validate exposure prediction capabilities of NAIRAS. The R3S mission collects total dose and radiation spectrum measurements using a Teledyne µDosimeter and a Liulin-6SA2 LED spectrometer. These two radiation sensors provide a cross correlated radiometric measurement in combination with the Honeywell HMR2300 Smart Digital Magnetometer. The magnetometer assesses the Earth's magnetic field in the LEO environment and allows radiation dose to be mapped as a function of the Earth's magnetic shielding. R3S is also unique in that the radiation sensors will be exposed on the outer surface of the spacecraft, possibly making this the first measurements of the LEO radiation environment with bare sensors. Viability of R3S as an extremely fast turnaround mission is due, in part, to the nature of the robust, well-defined interfaces of the conformal satellite HiSat Architecture. The HiSat architecture, which was developed with the support of the Defense Advanced Research Projects Agency's (DARPA's) Phoenix Program, enabled the R3S system to advance from the first concept to delivery of preliminary design review (PDR) level documents in

  8. Highlights in the study of exoplanet atmospheres.

    PubMed

    Burrows, Adam S

    2014-09-18

    Exoplanets are now being discovered in profusion. To understand their character, however, we require spectral models and data. These elements of remote sensing can yield temperatures, compositions and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are made. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has frequently lagged behind ambition. I summarize the most productive, and at times novel, methods used to probe exoplanet atmospheres; highlight some of the most interesting results obtained; and suggest various broad theoretical topics in which further work could pay significant dividends. PMID:25230656

  9. Highlights in the study of exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Burrows, Adam S.

    2014-09-01

    Exoplanets are now being discovered in profusion. To understand their character, however, we require spectral models and data. These elements of remote sensing can yield temperatures, compositions and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are made. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has frequently lagged behind ambition. I summarize the most productive, and at times novel, methods used to probe exoplanet atmospheres; highlight some of the most interesting results obtained; and suggest various broad theoretical topics in which further work could pay significant dividends.

  10. Discussion on application of WorldView 2 satellite data in West Kunlun metallogenic belt remote sensing geological survey

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-peng; Yang, Zhi-qiang; Kang, Gao-feng; Wang, Jun-feng; Jin, Mou-shun

    2014-05-01

    Studding on the remote sensing geological survey in Tashkurgan area of west Kunlun Metallogenic belt using the latest Worldview 2 high resolution satellite image, using Optimum index factor (OIF) select the band combination suitable for this area to do strata and Lithology interpretation is B8, B4 and B3, and test different image enhancement method for mineralization alteration information such as band ratio, principal component analysis (PCA). Carried out lithology, geological structure and mineralization belt and ore body interpretation on the basis of remote sensing data after processing. The results show that the ratio band combination can identify multiple sets of diorite, marble, schist and the lithological boundaries between them clearly; the principal component transform method can enhance the boundary between black biotite-quartz schist and white granite, meanwhile it can clearly reflect the schist by a different hue and brightness level due to contained different mineral such as quartz, mica, feldspar and others, iron mineralized belt is also exposed very well. Spectrum measurement has been done for the rock and mineral in test area. Lithology inversion and mineralization anomaly information extraction test have been carried out afterwards. The test result proved that the single mineral composition rock such as marble is suitable for spectral inversion. The principal component transform of bands B1, B4, B8, and B6 is used to extract iron alteration from worldView2 data, the result shows that PC3 is the main component containing iron alteration abnormal information. Compared with the abnormalities extracted from worldview2 and low resolution satellite image such as ETM , Aster, we found that they can only distinguish wide range distributed mineralizing alteration information, their identification accuracy is not as good as Worldview2. WorldView2 data contained more abundant information and has higher resolution, it not only able to identify a wide range of

  11. The NASA Exoplanet Science Institute Archives: KOA and NStED

    NASA Astrophysics Data System (ADS)

    Berriman, G. B.; Ciardi, D.; Abajian, M.; Barlow, T.; Bryden, G.; von Braun, K.; Good, J.; Kane, S.; Kong, M.; Laity, A.; Lynn, M.; Elroy, D. M.; Plavchan, P.; Ramirez, S.; Schmitz, M.; Stauffer, J.; Wyatt, P.; Zhang, A.; Goodrich, R.; Mader, J.; Tran, H.; Tsubota, M.; Beekley, A.; Berukoff, S.; Chan, B.; Lau, C.; Regelson, M.; Saucedo, M.; Swain, M.

    2010-12-01

    The NASA Exoplanet Science Institute (NExScI) maintains a series of archival services in support of NASA’s planet finding and characterization goals. Two of the larger archival services at NExScI are the Keck Observatory Archive (KOA) and the NASA Star and Exoplanet Database (NStED). KOA, a collaboration between the W. M. Keck Observatory and NExScI, serves raw data from the High Resolution Echelle Spectrograph (HIRES) and extracted spectral browse products. As of June 2009, KOA hosts over 28 million files (4.7 TB) from over 2,000 nights. In Spring 2010, it will begin to serve data from the Near-Infrared Echelle Spectrograph (NIRSPEC). NStED is a general purpose archive with the aim of providing support for NASA’s planet finding and characterization goals, and stellar astrophysics. There are two principal components of NStED: a database of (currently) all known exoplanets, and images; and an archive dedicated to high precision photometric surveys for transiting exoplanets. NStED is the US portal to the CNES mission CoRoT, the first space mission dedicated to the discovery and characterization of exoplanets. These archives share a common software and hardware architecture with the NASA/IPAC Infrared Science Archive (IRSA). The software architecture consists of standalone utilities that perform generic query and retrieval functions. They are called through program interfaces and plugged together to form applications through a simple executive library.

  12. Exoplanet exploration for brown dwarfs with infrared astrometry

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masaki

    The astrometry is one of the oldest method for the exoplanet exploration. However, only one exoplanet has been found with the method. This is because the planet mass is sufficiently smaller than the mass of the central star, so that it is hard to observe the fluctuation of the central star by the planet. Therefore, we investigate the orbital period and mass of planets which we can discover by the future astrometric satellites for brown dwarfs, with the mass less than a tenth of the solar mass. So far five planetary systems of brown dwarfs have been found, whose mass ratios are larger than a tenth. For example, for the system whose distance, orbital period and mass ratio are 10 pc, 1 year and a tenth, respectively, the apparent semi-major axis reaches 3 milli-arcsecond, which can be well detected with the future astrometric satellites such as Small-JASMINE and Gaia. With these satellite, we can discover even super-Earth for the above system. We further investigate where in the period-mass plane we can explore the planet for individual brown dwarf with Small-JASMINE and Gaia. As a result, we find that we can explore a wide region where period and mass are within 5 years and larger than 3 earth mass. In addition, we can explore the region around 0.1 day and 10 Jovian mass, where planets have never found for any central star, and where we can explore only with Small-JASMINE for most target brown dwarfs.

  13. Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan

    2015-01-01

    Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen

  14. Utilization of Satellite Dish Technology and its Application in Taping PeachStar Programming: A Survey of Library Media Specialists.

    ERIC Educational Resources Information Center

    Razza, Betsy L.

    Through lottery funding, all public schools in Georgia received satellite dish equipment. This study is an assessment of the use of the satellite dish equipment by library media specialists in the DeKalb County School System for taping PeachStar (the satellite channel of Georgia Public Broadcasting) programming. The purpose was four-fold: (1) to…

  15. Lightning and Life on Exoplanets

    NASA Astrophysics Data System (ADS)

    Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane

    2016-07-01

    Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between lightning chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very high redox ratio, and that discharges in gases with high redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon lightning chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient lightning driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what lightning might look like on exoplanets, and on lightning driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of lightning, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude

  16. Validation of FLAMINGOS-2 for Exoplanet Research: The WASP-18b Case Study

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin; Desert, Jean-Michel; Bean, Jacob; Madhusudhan, Nikku; Fortney, Jonathan; Bergmann, Marcel

    2013-08-01

    Recent surveys have revealed an amazing, yet unexplained, diversity of planets orbiting other stars. Studying the atmospheres of representative exoplanets is the next step in leveraging these detections to further transform our understanding of planet formation and planetary physics. However, revealing the fundamental properties of exoplanet atmospheres to investigate their nature and origins requires high-precision spectroscopy that is sensitive to spectral features from multiple chemical species. Such data can only be obtained with broad-wavelength studies using large telescopes. We propose to use the FLAMINGOS-2 instrument to perform long-slit, spectroscopy observations of the higly-irradiated exoplanet WASP-18b during secondary eclipse to constrain its dayside atmospheric composition, chemistry, and thermal profile. These observations will be sensitive to molecules such as H2O and CH4 and they will definitively constrain the presence of a thermal inversion. This study is the first step in a planned survey of transiting exoplanets using FLAMINGOS-2. A survey is the next logical step to put analyses of individual objects into a broader context and to get at the underlying physics that results in a diverse array of emergent properties.

  17. CoRoT-22 b: a validated 4.9 R⊕ exoplanet in 10-d orbit

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Almenara, J. M.; Díaz, R. F.; Alonso, R.; Deleuil, M.; Guenther, E.; Pasternacki, T.; Aigrain, S.; Baglin, A.; Barge, P.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Cabrera, J.; Carpano, S.; Cochran, W. D.; Csizmadia, Sz.; Deeg, H. J.; Dvorak, R.; Endl, M.; Erikson, A.; Ferraz-Mello, S.; Fridlund, M.; Gandolfi, D.; Guillot, T.; Hatzes, A.; Hébrard, G.; Lovis, C.; Lammer, H.; MacQueen, P. J.; Mazeh, T.; Ofir, A.; Ollivier, M.; Pätzold, M.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Tingley, B.; Wuchterl, G.

    2014-11-01

    The CoRoT satellite has provided high-precision photometric light curves for more than 163 000 stars and found several hundreds of transiting systems compatible with a planetary scenario. If ground-based velocimetric observations are the best way to identify the actual planets among many possible configurations of eclipsing binary systems, recent transit surveys have shown that it is not always within reach of the radial-velocity detection limits. In this paper, we present a transiting exoplanet candidate discovered by CoRoT whose nature cannot be established from ground-based observations, and where extensive analyses are used to validate the planet scenario. They are based on observing constraints from radial-velocity spectroscopy, adaptive optics imaging and the CoRoT transit shape, as well as from priors on stellar populations, planet and multiple stellar systems frequency. We use the fully Bayesian approach developed in the PASTIS (Planet Analysis and Small Transit Investigation Software) analysis software, and conclude that the planet scenario is at least 1400 times more probable than any other false-positive scenario. The primary star is a metallic solar-like dwarf, with Ms = 1.099 ± 0.049 M⊙ and Rs = 1.136^{+0.038}_{-0.090} R⊙. The validated planet has a radius of Rp = 4.88^{+0.17}_{-0.39} R⊕ and mass less than 49 M⊕. Its mean density is smaller than 2.56 g cm-3 and orbital period is 9.7566 ± 0.0012 d. This object, called CoRoT-22 b, adds to a large number of validated Kepler planets. These planets do not have a proper measurement of the mass but allow statistical characterization of exoplanets population.

  18. Space-based Search for Transiting Exoplanets Orbiting Bright Stars

    NASA Astrophysics Data System (ADS)

    Tsvetanov, Zlatan

    At the current stage of research transiting planets hold the key to advancing our knowledge of exoplanets as they are the only targets that allow determination of many of the key plane-tary parameters. Because the employed techniques are differential (either photometry or spec-troscopy) and the planet is significantly fainter the host star the dominant limitation is simply the number of photons. This puts a very high premium on transiting planets with bright parent stars. The ExoPlanet Task Force recognized the high value of planets transiting bright stars and identified the need to perform a wide area space-based transit survey. In this presentation I will describe a program that addresses the ExoPTF recommendation by using the output of one of the instruments on the currently operating space mission STEREO. STEREO is the third mission in NASA's Solar Terrestrial Probes program. It uses two nearly identical spacecrafts -one on an Earth-leading orbit and one on an Earth-trailing orbit -each equipped with a suit of five small telescopes to provide a stereoscopic view of the coronal mass ejections (CME) as they propagate away from the Sun. As each of these telescopes observes a portion of the heliospehre, they also image the star field in the background. For the purposes of this study we will consider only the images obtained by the HI-1 instruments. Other instruments, although showing the stellar background as well, do not have the data output suitable for a search for transiting exoplanets. This project described here has the potential of delivering a number of very high value targets for follow-up studies with a wide range of facilities, both ground-based and space-based. It will provide a complete survey of all bright stars (<10m) for 18% of the sky. The photometric data series have the sensitivity to detect all transiting hot-Jupiters and other gas giants with periods up to ˜20 days and even some Neptune size planets orbiting bright and/or late type stars. On

  19. Vertical movements of frost mounds in subarctic permafrost regions analyzed using geodetic survey and satellite interferometry

    NASA Astrophysics Data System (ADS)

    Beck, I.; Ludwig, R.; Bernier, M.; Strozzi, T.; Boike, J.

    2015-08-01

    Permafrost-affected soils cover about 40-45 % of Canada. The environment in such areas, especially those located within the discontinuous permafrost zone, has been impacted more than any other by recorded climatic changes. A number of changes, such as surface subsidence and the degradation of frost mounds due to permafrost thawing, have already been observed at many locations. We surveyed three frost mounds (lithalsas) in the subarctic, close to Umiujaq in northern Quebec, using high-precision differential global positioning system (d-GPS) technology during field visits in 2009, 2010 and 2011, thus obtaining detailed information on their responses to the freezing and thawing that occur during the course of the annual temperature cycle. Seasonal pulsations were detected in the frost mounds, and these responses were shown to vary with their state of degradation and the land cover. The most degraded lithalsa showed a maximum amplitude of vertical movement (either up or down) between winter (freezing) and summer (thawing) of 0.19 ± 0.09 m over the study period, while for the least degraded lithalsa this figure was far greater (1.24 ± 0.47 m). Records from areas with little or no vegetation showed far less average vertical movement over the study period (0.17 ± 0.03 m) than those with prostrate shrubs (0.56 ± 0.02 m), suggesting an influence from the land cover. A differential interferometric synthetic aperture radar (D-InSAR) analysis was also completed over the lithalsas using selected TerraSAR-X images acquired from April to October 2009 and from March to October 2010, with a repeat cycle of 11 days. Interferograms with baselines shorter than 200 m were computed revealing a generally very low interferometric coherence, restricting the quantification of vertical movements of the lithalsas. Vertical surface movements of the order of a few centimeters were recorded in the vicinity of Umiujaq.

  20. Spectra as windows into exoplanet atmospheres.

    PubMed

    Burrows, Adam S

    2014-09-01

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets. PMID:24613929

  1. Walking on Exoplanets: Is Star Wars Right?

    NASA Astrophysics Data System (ADS)

    Ballesteros, Fernando J.; Luque, B.

    2016-05-01

    As the number of detected extrasolar planets increases, exoplanet databases become a valuable resource, confirming some details about planetary formation, but also challenging our theories with new unexpected properties.

  2. Spectra as windows into exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Burrows, Adam S.

    2014-09-01

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets.

  3. Seasonal thermal fronts on the northern South China Sea shelf: Satellite measurements and three repeated field surveys

    NASA Astrophysics Data System (ADS)

    Jing, Zhiyou; Qi, Yiquan; Fox-Kemper, Baylor; Du, Yan; Lian, Shumin

    2016-03-01

    Seasonal thermal fronts associated with wind-driven coastal downwelling/upwelling in the northern South China Sea are investigated using satellite measurements and three repeated fine-resolution mapping surveys in winter, spring, and summer. The results show that vigorous thermal fronts develop over the broad shelf with variable widths and intensities in different seasons, which tend to be approximately aligned with the 20-100 m isobaths. Driven by the prevailing winter/summer monsoon, the band-shaped fronts were observed with a magnitude exceeding 0.1°C/km in the subsurface, and accompanied by energetic coastal downwelling/upwelling due to shoreward/offshore Ekman transport. The downward/upward tilting of seasonal thermoclines across the shelf exceeds 20 m, significantly contributing to the development of thermal fronts over the shelf. In addition, the diagnostic analysis of Potential Vorticity (PV) suggests that the summer frontal activities induced by the coastal upwelling are more stable to convection and symmetric instabilities in comparison to the winter fronts associated with downwelling-favorable monsoon forcing. This is primarily due to their essential differences in the upper ocean stratification and horizontal buoyancy gradients arising from wind forcing. At the same time, the coastal currents are substantially regulated by the seasonal winds. An expected lag correlation between the velocity from mooring measurements and alongshore wind stress is detected near the frontal region. These results indicate that seasonal wind forcing plays an important role in the frontal activities and coastal water transport over the shelf.

  4. Balloon Exoplanet Nulling Interferometer (BENI)

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  5. Exoplanet Forecast: Hot and Wet

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This plot of data from NASA's Spitzer Space Telescope tells astronomers that a toasty gas exoplanet, or a planet beyond our solar system, contains water vapor.

    Spitzer observed the planet, called HD 189733b, cross in front of its star at three different infrared wavelengths: 3.6 microns; 4.5 microns and 8 microns (see lime-colored dots). For each wavelength, the planet's atmosphere absorbed different amounts of the starlight that passed through it. The pattern by which this absorption varies with wavelength matches known signatures of water, as shown by the theoretical model in blue.

  6. Exoplanets and their Host Stars

    NASA Astrophysics Data System (ADS)

    Schmitt, J.

    2016-06-01

    Among the most fundamental astrophysical discoveries are clearly the detections of many thousands of ``extrasolar'' planets orbiting their hosts. The majority of these new planetary systems have properties dramatically different from those in our solar system. The large distances to extrasolar planets imply that they can only be observed together with their hosts. Modern observations have shown that stars and planets are not merely accidental celestial neighbors bound by the force of gravity, rather they influence each other in a variety of ways. This also and specifically applies to the X-ray properties of exoplanet systems which I will review in my talk and give some ideas for future work in this area.

  7. Direct Exoplanet Imaging around Sun-like Stars: Beating the Speckle Noise with Innovative Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Marois, Christian; Doyon, R.; Racine, R.; Nadeau, D.; Lafreniere, D.; Vallee, P.; Riopel, M.; Macintosh, B.

    2005-08-01

    Indirect surveys have now uncovered more than 150 exoplanets, but are limited to planets close to the star and measure only the projected mass and orbital parameters. Both photometry and spectroscopy of exoplanets are required to derive their physical characteristics. The star to exoplanet intensity ratio (>108 in the near infrared) and the relative separation (< 0.5 arcseconds) significantly complicate this endeavour. Current ground- and space-based direct imaging surveys achieve an intensity ratio up to 104 at 0.5. separation, a factor 10,000 from the desired goal. These surveys are limited by uncorrected atmospheric turbulence and optical surface imperfections that produce quasi-static speckles that look like exoplanets, but much brighter. Two techniques will be discussed to attenuate this speckle noise. The first is the Simultaneous Spectral Differential Imaging technique (SSDI), acquiring a number of images simultaneously at different adjacent narrowband wavelengths and combining them to attenuate speckles. The second is the Angular Differential Imaging technique (ADI), taking multiple observations while rotating the telescope or waiting for sufficient field rotation to subtract static speckles and to preserve the companion flux. Results from a dedicated SSDI camera "TRIDENT" that was mounted under PUEO/CFHT and from an ongoing ADI survey at Gemini with Altair/NIRI will be presented. Future work involving a new type of detector, the Multi-Color Detector Assembly (MCDA), will also be discussed. Combining these observation strategies and new detectors are of particular interest for specialized exoplanet finder instruments for 10-m telescopes that are currently under study, like ExAOC at Gemini, and future space-based observatories like TPF.

  8. Sagittarius II, Draco II and Laevens 3: Three New Milky Way Satellites Discovered in the Pan-STARRS 1 3 Survey

    NASA Astrophysics Data System (ADS)

    Laevens, Benjamin P. M.; Martin, Nicolas F.; Bernard, Edouard J.; Schlafly, Edward F.; Sesar, Branimir; Rix, Hans-Walter; Bell, Eric F.; Ferguson, Annette M. N.; Slater, Colin T.; Sweeney, William E.; Wyse, Rosemary F. G.; Huxor, Avon P.; Burgett, William S.; Chambers, Kenneth C.; Draper, Peter W.; Hodapp, Klaus A.; Kaiser, Nicholas; Magnier, Eugene A.; Metcalfe, Nigel; Tonry, John L.; Wainscoat, Richard J.; Waters, Christopher

    2015-11-01

    We present the discovery of three new Milky Way satellites from our search for compact stellar overdensities in the photometric catalog of the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS 1, or PS1) 3π survey. The first satellite, Laevens 3, is located at a heliocentric distance of d = 67 ± 3 kpc. With a total magnitude of MV = ‑4.4 ± 0.3 and a half-light radius of rh = 7 ± 2 pc, its properties resemble those of outer halo globular clusters. The second system, Draco II/Laevens 4, is a closer and fainter satellite (d ∼ 20 kpc, MV = ‑2.9 ± 0.8), whose uncertain size ({r}h={19}-6+8 {pc}) renders its classification difficult without kinematic information; it could either be a faint and extended globular cluster or a faint and compact dwarf galaxy. The third satellite, Sagittarius II/Laevens 5 (Sgr II), has an ambiguous nature, as it is either the most compact dwarf galaxy or the most extended globular cluster in its luminosity range ({r}h={37}-8+9 {pc} and MV = ‑5.2 ± 0.4). At a heliocentric distance of 67 ± 5 kpc, this satellite lies intriguingly close to the expected location of the trailing arm of the Sagittarius stellar stream behind the Sagittarius dwarf spheroidal galaxy (Sgr dSph). If confirmed through spectroscopic follow up, this connection would locate this part of the trailing arm of the Sagittarius stellar stream that has so far gone undetected. It would further suggest that Sgr II was brought into the Milky Way halo as a satellite of the Sgr dSph.

  9. SMALL-SCALE STRUCTURE IN THE SLOAN DIGITAL SKY SURVEY AND {Lambda}CDM: ISOLATED {approx}L{sub *} GALAXIES WITH BRIGHT SATELLITES

    SciTech Connect

    Tollerud, Erik J.; Boylan-Kolchin, Michael; Barton, Elizabeth J.; Bullock, James S.; Trinh, Christopher Q. E-mail: ebarton@uci.edu E-mail: bullock@uci.edu

    2011-09-01

    We use a volume-limited spectroscopic sample of isolated galaxies in the Sloan Digital Sky Survey to investigate the frequency and radial distribution of luminous (M{sub r} {approx}< -18.3) satellites like the Large Magellanic Cloud (LMC) around {approx}L{sub *} Milky Way (MW) analogs and compare our results object-by-object to {Lambda}CDM predictions based on abundance matching in simulations. We show that 12% of MW-like galaxies host an LMC-like satellite within 75 kpc (projected), and 42% within 250 kpc (projected). This implies {approx}10% have a satellite within the distance of the LMC, and {approx}40% of L{sub *} galaxies host a bright satellite within the virialized extent of their dark matter halos. Remarkably, the simulation reproduces the observed frequency, radial dependence, velocity distribution, and luminosity function of observed secondaries exceptionally well, suggesting that {Lambda}CDM provides an accurate reproduction of the observed universe to galaxies as faint as L {approx} 10{sup 9} L{sub sun} on {approx}50 kpc scales. When stacked, the observed projected pairwise velocity dispersion of these satellites is {sigma} {approx_equal} 160 km s{sup -1}, in agreement with abundance-matching expectations for their host halo masses. Finally, bright satellites around L{sub *} primaries are significantly redder than typical galaxies in their luminosity range, indicating that environmental quenching is operating within galaxy-size dark matter halos that typically contain only a single bright satellite. This redness trend is in stark contrast to the MW's LMC, which is unusually blue even for a field galaxy. We suggest that the LMC's discrepant color might be further evidence that it is undergoing a triggered star formation event upon first infall.

  10. Forest cover associated with improved child health and nutrition: evidence from the Malawi Demographic and Health Survey and satellite data.

    PubMed

    Johnson, Kiersten B; Jacob, Anila; Brown, Molly E

    2013-08-01

    Healthy forests provide human communities with a host of important ecosystem services, including the provision of food, clean water, fuel, and natural medicines. Yet globally, about 13 million hectares of forests are lost every year, with the biggest losses in Africa and South America. As biodiversity loss and ecosystem degradation due to deforestation continue at unprecedented rates, with concomitant loss of ecosystem services, impacts on human health remain poorly understood. Here, we use data from the 2010 Malawi Demographic and Health Survey, linked with satellite remote sensing data on forest cover, to explore and better understand this relationship. Our analysis finds that forest cover is associated with improved health and nutrition outcomes among children in Malawi. Children living in areas with net forest cover loss between 2000 and 2010 were 19% less likely to have a diverse diet and 29% less likely to consume vitamin A-rich foods than children living in areas with no net change in forest cover. Conversely, children living in communities with higher percentages of forest cover were more likely to consume vitamin A-rich foods and less likely to experience diarrhea. Net gain in forest cover over the 10-year period was associated with a 34% decrease in the odds of children experiencing diarrhea (P = .002). Given that our analysis relied on observational data and that there were potential unknown factors for which we could not account, these preliminary findings demonstrate only associations, not causal relationships, between forest cover and child health and nutrition outcomes. However, the findings raise concerns about the potential short- and long-term impacts of ongoing deforestation and ecosystem degradation on community health in Malawi, and they suggest that preventing forest loss and maintaining the ecosystem services of forests are important factors in improving human health and nutrition outcomes. PMID:25276536

  11. Forest Cover Associated with Improved Child Health and Nutrition: Evidence from the Malawi Demographic and Health Survey and Satellite Data

    NASA Technical Reports Server (NTRS)

    Johnson, Kiersten B.; Jacob, Anila; Brown, Molly Elizabeth

    2013-01-01

    Healthy forests provide human communities with a host of important ecosystem services, including the provision of food, clean water, fuel, and natural medicines. Yet globally, about 13 million hectares of forests are lost every year, with the biggest losses in Africa and South America. As biodiversity loss and ecosystem degradation due to deforestation continue at unprecedented rates, with concomitant loss of ecosystem services, impacts on human health remain poorly understood. Here, we use data from the 2010 Malawi Demographic and Health Survey, linked with satellite remote sensing data on forest cover, to explore and better understand this relationship. Our analysis finds that forest cover is associated with improved health and nutrition outcomes among children in Malawi. Children living in areas with net forest cover loss between 2000 and 2010 were 19% less likely to have a diverse diet and 29% less likely to consume vitamin A-rich foods than children living in areas with no net change in forest cover. Conversely, children living in communities with higher percentages of forest cover were more likely to consume vitamin A-rich foods and less likely to experience diarrhea. Net gain in forest cover over the 10-year period was associated with a 34% decrease in the odds of children experiencing diarrhea (P5.002). Given that our analysis relied on observational data and that there were potential unknown factors for which we could not account, these preliminary findings demonstrate only associations, not causal relationships, between forest cover and child health and nutrition outcomes. However, the findings raise concerns about the potential short- and long-term impacts of ongoing deforestation and ecosystem degradation on community health in Malawi, and they suggest that preventing forest loss and maintaining the ecosystems services of forests are important factors in improving human health and nutrition outcomes.

  12. ALBEDO PROPERTIES OF MAIN BELT ASTEROIDS BASED ON THE ALL-SKY SURVEY OF THE INFRARED ASTRONOMICAL SATELLITE AKARI

    SciTech Connect

    Usui, Fumihiko; Hasegawa, Sunao; Matsuhara, Hideo; Kasuga, Toshihiro; Ishiguro, Masateru; Kuroda, Daisuke; Mueller, Thomas G.; Ootsubo, Takafumi

    2013-01-01

    We present an analysis of the albedo properties of main belt asteroids (MBAs) detected by the All-Sky Survey of the infrared astronomical satellite AKARI. The characteristics of 5120 asteroids detected by the survey, including their sizes and albedos, were cataloged in the Asteroid Catalog Using AKARI (AcuA). Size and albedo measurements were based on the standard thermal model, using inputs of infrared fluxes and absolute magnitudes measured at optical wavelengths. MBAs, which account for 4722 of the 5120 AcuA asteroids, have semimajor axes of 2.06-3.27 AU, except for the near-Earth asteroids. AcuA provides a complete data set of all MBAs brighter than the absolute magnitude of H < 10.3, which corresponds to the diameter of d > 20 km. We confirmed that the albedo distribution of the MBAs is strongly bimodal as was already known from the past observations, and that the bimodal distribution occurs not only in the total population, but also within inner, middle, and outer regions of the main belt. The bimodal distribution in each group consists of low-albedo components in C-type asteroids and high-albedo components in S-type asteroids. We found that the small asteroids have much more variety in albedo than the large asteroids. In spite of the albedo transition process like space weathering, the heliocentric distribution of the mean albedo of asteroids in each taxonomic type is nearly flat. The mean albedo of the total, on the other hand, gradually decreases with an increase in semimajor axis. This can be explained by the compositional ratio of taxonomic types; that is, the proportion of dark asteroids such as C- and D-types increases, while that of bright asteroids such as S-type decreases, with increasing heliocentric distance. The heliocentric distributions of X-subclasses: E-, M-, and P-types, which can be divided based on albedo values, are also examined. P-types, which are the major component in X-types, are distributed throughout the main belt regions, and the

  13. Orbital Architectures of Dynamically Complex Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Nelson, Benjamin E.

    2015-01-01

    The most powerful constraints on planet formation will come from characterizing the dynamical state of complex multi-planet systems. Unfortunately, with that complexity comes a number of factors that make analyzing these systems a computationally challenging endeavor: the sheer number of model parameters, a wonky shaped posterior distribution, and hundreds to thousands of time series measurements. We develop a differential evolution Markov chain Monte Carlo (RUN DMC) to tackle these difficult aspects of data analysis. We apply RUN DMC to two classic multi-planet systems from radial velocity surveys, 55 Cancri and GJ 876. For 55 Cancri, we find the inner-most planet "e" must be coplanar to within 40 degrees of the outer planets, otherwise Kozai-like perturbations will cause the planet's orbit to cross the stellar surface. We find the orbits of planets "b" and "c" are apsidally aligned and librating with low to median amplitude (50±610 degrees), but they are not orbiting in a mean-motion resonance. For GJ 876, we can meaningfully constrain the three-dimensional orbital architecture of all the planets based on the radial velocity data alone. By demanding orbital stability, we find the resonant planets have low mutual inclinations (Φ) so they must be roughly coplanar (Φcb = 1.41±0.620.57 degrees and Φbe = 3.87±1.991.86 degrees). The three-dimensional Laplace argument librates with an amplitude of 50.5±7.910.0 degrees, indicating significant past disk migration and ensuring long-term stability. These empirically derived models will provide new challenges for planet formation models and motivate the need for more sophisticated algorithms to analyze exoplanet data.

  14. Frontiers of Exoplanet Atmosphere Characterization

    NASA Astrophysics Data System (ADS)

    Kreidberg, Laura

    2016-01-01

    Exoplanet atmosphere characterization has the potential to reveal the origins, nature, and even habitability of distant worlds. In this dissertation talk, I will present work that is a step toward realizing that potential for a diverse group of four extrasolar planets. I will discuss the results of intensive observational campaigns with the Hubble and Spitzer Space Telescopes to study the atmospheres of the super-Earth GJ 1214b and the hot Jupiters WASP-43b, WASP-12b, and WASP-103b. For GJ 1214b, I measured an unprecedentedly precise near-infrared transmission spectrum that definitively reveals the presence of clouds in the planet's atmosphere. For WASP-43b and WASP-12b, I also obtained very precise spectra. These exhibit water features at high confidence (>7 sigma). The retrieved water abundance for WASP-43b extends the well-known Solar System trend of decreasing atmospheric metallicity with increasing planet mass. The detection of water for WASP-12b marks the first spectroscopic identification of a molecule in the planet's atmosphere and implies that it has solar composition, ruling out carbon-to-oxygen ratios greater than unity. For WASP-103b, I will present preliminary results from the new technique of phase-resolved spectroscopy that constrain the planet's temperature structure, dynamics, and energy budget. Taken together, these results provide a foundation for comparative planetology beyond the Solar System and the investigation of Earth-like, potentially habitable planets with future observing facilities.

  15. Exoplanet Caught on the Move

    NASA Astrophysics Data System (ADS)

    2010-06-01

    For the first time, astronomers have been able to directly follow the motion of an exoplanet as it moves from one side of its host star to the other. The planet has the smallest orbit so far of all directly imaged exoplanets, lying almost as close to its parent star as Saturn is to the Sun. Scientists believe that it may have formed in a similar way to the giant planets in the Solar System. Because the star is so young, this discovery proves that gas giant planets can form within discs in only a few million years, a short time in cosmic terms. Only 12 million years old, or less than three-thousandths of the age of the Sun, Beta Pictoris is 75% more massive than our parent star. It is located about 60 light-years away towards the constellation of Pictor (the Painter) and is one of the best-known examples of a star surrounded by a dusty debris disc [1]. Earlier observations showed a warp of the disc, a secondary inclined disc and comets falling onto the star. "Those were indirect, but tell-tale signs that strongly suggested the presence of a massive planet, and our new observations now definitively prove this," says team leader Anne-Marie Lagrange. "Because the star is so young, our results prove that giant planets can form in discs in time-spans as short as a few million years." Recent observations have shown that discs around young stars disperse within a few million years, and that giant planet formation must occur faster than previously thought. Beta Pictoris is now clear proof that this is indeed possible. The team used the NAOS-CONICA instrument (or NACO [2]), mounted on one of the 8.2-metre Unit Telescopes of ESO's Very Large Telescope (VLT), to study the immediate surroundings of Beta Pictoris in 2003, 2008 and 2009. In 2003 a faint source inside the disc was seen (eso0842), but it was not possible to exclude the remote possibility that it was a background star. In new images taken in 2008 and spring 2009 the source had disappeared! The most recent

  16. Observed Exoplanets and Intelligent Life

    NASA Astrophysics Data System (ADS)

    Cole, G. H. A.

    2006-05-01

    If intelligent life were common in the Universe, should we not be aware of it on Earth through contact with advanced space ships and automatic probes? Would we not at least expect to intercept communication signals between space travellers? That this is not found has led to much speculation in the past. Recent discoveries of planets around other stars (called here exoplanets) and, separately, recent discoveries in the evolution of life on Earth, including Homo sapiens, allow this question to be considered again but now with more information than before. This is the subject of the present paper. The study involves aspects of physics and chemistry in combination with biological studies. It is concluded here that the places where technologically capable intelligent life might be expected to be found in our Galaxy are so few that any such “centres of civilisation” must be separated by large distances, probably in excess of 50 light years. If true, this would make the different centres essentially isolated and would suggest that each manifestation of advanced intelligent life is a purely local development. This would agree with our experience of aloneness. Nevertheless, the number of centres throughout the Universe would still be astronomically large, even if each galaxy had only one centre. An hypothesis is proposed which could account for the existence of such centres in this form.

  17. Asteroseismic Properties of Exoplanet Host Stars from Archival Kepler Data

    NASA Astrophysics Data System (ADS)

    Metcalfe, Travis

    The transit of an exoplanet across the visible disk of its host star produces a photometric signal that contains information about the size of the planet relative to the size of the star. To obtain the absolute radius of the exoplanet, a precise estimate of the stellar radius is required. Short cadence (1-minute sampling) Kepler observations are capable of revealing solar-like oscillations in the host star, providing a means for estimating a precise stellar radius and other characteristics of the system. For brighter stars and/or longer time-series, solar-like oscillations are resolved into individual frequencies that can substantially improve the asteroseismic estimates of radius, mass and age through detailed modeling. We have developed an automated stellar model-fitting pipeline for the solar-like oscillations observed by Kepler, which is now available through the Asteroseismic Modeling Portal (AMP, http://amp.ucar.edu/). Taking the individual oscillation frequencies and other observational constraints as input, the pipeline uses a parallel genetic algorithm to derive the optimal stellar radius, mass, age and composition. The recent application of AMP to a Kepler Object of Interest yielded the asteroseismic radius, mass and age with a precision near 1%. Although these quantities are all model- dependent at some level, the absolute accuracy has been demonstrated to be near 2% for the radius and mass, and around 15% for the age. We propose to use AMP to conduct precision asteroseismology of Kepler exoplanet host stars using the public data through Q6 that is already available on MAST. This work will be done in collaboration with the Kepler Asteroseismic Science Operations Center (KASOC). Computing time will be provided through an existing allocation from the TeraGrid/XSEDE. Based on the results of the Kepler Asteroseismic Science Consortium (KASC) survey for solar-like oscillations, we expect data with sufficient quality to derive precise asteroseismic radii

  18. Exoplanet Transit Database. Reduction and processing of the photometric data of exoplanet transits

    NASA Astrophysics Data System (ADS)

    Poddaný, Stanislav; Brát, Luboš; Pejcha, Ondřej

    2010-03-01

    We demonstrate the newly developed resource for exoplanet researchers - The Exoplanet Transit Database. This database is designed to be a web application and it is open for any exoplanet observer. It came on-line in September 2008. The ETD consists of three individual sections. One serves for predictions of the transits, the second one for processing and uploading new data from the observers. We use a simple analytical model of the transit to calculate the central time of transit, its duration and the depth of the transit. These values are then plotted into the observed-computed diagrams (O-C), that represent the last part of the application.

  19. Exoplanets, Exo-Solar Life, and Human Significance

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2011-01-01

    With the recent detection of over 500 extrasolar planets, the existence of "other worlds", perhaps even other Earths, is no longer in the realm of science fiction. The study of exoplanets rapidly moved from an activity on the fringe of astronomy to one of the highest priorities of the world's astronomical programs. Actual images of extrasolar planets were revealed over the past two years for the first time. NASA's Hubble Space Telescope is already characterizing the atmospheres of Jupiter-like planets, in other systems. And the recent launch of the NASA Kepler space telescope is enabling the first statistical assessment of how common solar systems like our own really are. As we begin to characterize these "other worlds" and assess their habitability, the question of the significance and uniqueness of life on Earth will impact our society as never before. I will provide a comprehensive overview of the techniques and status of exoplanet detection, followed by reflections as to the societal impact of finding out that Earths are common, or rare. Will finding other potentially habitable planets create another "Copernican Revolution"? Will perceptions of the significance of life on Earth change when we find other Earth-like planets? I will discuss the plans of the scientific community for future telescopes that will be abe to survey our solar neighborhood for Earth-like planets, study their atmospheres, and search for biological signs of life.

  20. vsini observations of potential exoplanet parent stars

    NASA Astrophysics Data System (ADS)

    Stankov, A.; Schulz, R.; Erd, C.; Ho, T.; Stüwe, J.; Smit, H.

    2013-09-01

    We present spectroscopic measurements for a sample of 19 stars with spectral types F, G, and K, suitable to host exoplanets. The relative strengths of the Ca II H and K emission lines were measured and from these the projected rotational velocities, v sin i, will be determined. Theory states that the v sin i value is smaller if the observed star hosts exoplanets [1]. This is valid for stars later than spectreal type F 5 [2]. The v sin i information can be used to prioritize a target star catalog for a project that is aiming at discovering new exoplanets. Here we describe this project in more detail and show first results for selected target stars.

  1. Constraining exoplanet mass from transmission spectroscopy.

    PubMed

    de Wit, Julien; Seager, Sara

    2013-12-20

    Determination of an exoplanet's mass is a key to understanding its basic properties, including its potential for supporting life. To date, mass constraints for exoplanets are predominantly based on radial velocity (RV) measurements, which are not suited for planets with low masses, large semimajor axes, or those orbiting faint or active stars. Here, we present a method to extract an exoplanet's mass solely from its transmission spectrum. We find good agreement between the mass retrieved for the hot Jupiter HD 189733b from transmission spectroscopy with that from RV measurements. Our method will be able to retrieve the masses of Earth-sized and super-Earth planets using data from future space telescopes that were initially designed for atmospheric characterization. PMID:24357312

  2. Next Generation Virgo Survey Photometry and Keck/DEIMOS Spectroscopy of Globular Cluster Satellites of Dwarf Elliptical Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; Toloba, Elisa; Peng, Eric W.; Li, Biao; Gwyn, Stephen; Ferrarese, Laura; Cote, Patrick; Chu, Jason; Sparkman, Lea; Chen, Stephanie; Yagati, Samyukta; Muller, Meredith; Next Generation Virgo Survey Collaboration

    2015-01-01

    We present results from an ongoing study of globular cluster (GC) satellites of low-luminosity dwarf elliptical (dE) galaxies in the Virgo cluster. Our 21 dE targets and candidate GC satellites around them in the apparent magnitude range g ~ 20-24 were selected from the Next Generation Virgo Survey (NGVS) and followed up with medium-resolution Keck/DEIMOS spectroscopy (resolving power: R ~ 2000; wavelength coverage: 4800-9500 Angstrom). In addition, the remaining space available on the nine DEIMOS multi-slit masks were populated with "filler" targets in the form of distant Milky Way halo star candidates in a comparable apparent magnitude range. A combination of radial velocity information (measured from the Keck/DEIMOS spectra), color-color information (from four-band NGVS photometry), and sky position information was used to sort the sample into the following categories: (1) GC satellites of dEs, (2) other non-satellite GCs in the Virgo cluster (we dub them "orphan" GCs), (3) foreground Milky Way stars that are members of the Sagittarius stream, the Virgo overdensity, or the field halo population, and (4) distant background galaxies. We stack the GC satellite population across all 21 host dEs and carry out dynamical modeling of the stacked sample in order to constrain the average mass of dark matter halos that these dEs are embedded in. We study rotation in the system of GC satellites of dEs in the handful of more populated systems in our sample - i.e., those that contain 10 or more GC satellites per dE. A companion AAS poster presented at this meeting (Chu, J. et al. 2015) presents chemical composition and age constraints for these GC satellites relative to the nuclei of the host dEs based on absorption line strengths in co-added spectra. The orphan GCs are likely to be intergalactic GCs within the Virgo cluster (or, equivalently, GCs in the remote outer envelope of the cluster's central galaxy, the giant elliptical M87).This project is funded in part by the

  3. Exoplanet Characterization With Spitzer Eclipses

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph

    We will analyze our existing Spitzer eclipse data for 11 exoplanets (GJ 436b, WASP-8b, WASP-29b, WASP-11b, TrES-1, WASP-34b, WASP-43b, HD 209458b, HAT-P-30b, HAT-P-13b, and WASP-12b) along with all other Spitzer eclipse and transit data for these systems (723 hours of total data). In combination with transit results, these measurements reveal the surface fluxes emitted by the planets' atmospheres in the six Spitzer bandpasses (3.6, 4.5, 5.8, 8.0, 16, and 24 1-4m), as well as orbital eccentricity and in a few cases possibly even precession rate. The fluxes, in turn, can constrain atmospheric composition and thermal profiles. We propose here to analyze data for these planets using Monte Carlo-driven, radiative-transfer, model-fitting codes; to conduct aggregate analyses; and to develop and share statistical modeling tools. Secondary eclipses provide us with a unique way to characterize exoplanetary atmospheres. Since other techniques like spectroscopy divide the planetary signal into many channels, they require very high signal-to-noise ratio (S/N) and are only possible for a few planets. Broadband eclipse photometry is thus the only technique that can measure dozens of atmospheres and identify the mechanisms that cause planets at a given irradiation level to behave so differently from one another. Until JWST becomes available, the broad variety of Spitzer data that we already have in hand, along with observations from the Hubble Space Telescope and possibly SOFIA, are our best way to understand the wide diversity of exoplanetary atmospheres. Since 2010, the team has produced six papers from a new, highly modular pipeline that implements optimal methods for analysis of Spitzer photometric time series, and our efficiency is increasing. The sensitivity needed for these measurements is up to 100 times better than Spitzer's design criteria, so careful treatment of systematic error is critically important and first-order approximations rarely work. The new pipeline

  4. Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS

    NASA Astrophysics Data System (ADS)

    Theys, N.; Campion, R.; Clarisse, L.; Brenot, H.; van Gent, J.; Dils, B.; Corradini, S.; Merucci, L.; Coheur, P.-F.; Van Roozendael, M.; Hurtmans, D.; Clerbaux, C.; Tait, S.; Ferrucci, F.

    2013-06-01

    Sulphur dioxide (SO2) fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile), Nyamulagira (DR Congo) and Nabro (Eritrea). High spectral resolution satellite instruments operating both in the ultraviolet-visible (OMI/Aura and GOME-2/MetOp-A) and thermal infrared (IASI/MetOp-A) spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua) are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case). Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables us to assess the consistency of the SO2 products from the different sensors used.

  5. Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS

    NASA Astrophysics Data System (ADS)

    Theys, N.; Campion, R.; Clarisse, L.; Brenot, H.; van Gent, J.; Dils, B.; Corradini, S.; Merucci, L.; Coheur, P.-F.; Van Roozendael, M.; Hurtmans, D.; Clerbaux, C.; Tait, S.; Ferrucci, F.

    2012-12-01

    Sulphur dioxide (SO2) fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of dispersed and large-scale plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile), Nyamulagira (DR Congo) and Nabro (Eritrea). High spectral resolution satellite instruments operating both in the UV-visible (OMI/Aura and GOME-2/MetOp-A) and thermal infrared (IASI/MetOp-A) spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua) are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case). Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables to assess the consistency of the SO2 products from the different sensors used.

  6. Possible climates on terrestrial exoplanets.

    PubMed

    Forget, F; Leconte, J

    2014-04-28

    What kind of environment may exist on terrestrial planets around other stars? In spite of the lack of direct observations, it may not be premature to speculate on exoplanetary climates, for instance, to optimize future telescopic observations or to assess the probability of habitable worlds. To begin with, climate primarily depends on (i) the atmospheric composition and the volatile inventory; (ii) the incident stellar flux; and (iii) the tidal evolution of the planetary spin, which can notably lock a planet with a permanent night side. The atmospheric composition and mass depends on complex processes, which are difficult to model: origins of volatiles, atmospheric escape, geochemistry, photochemistry, etc. We discuss physical constraints, which can help us to speculate on the possible type of atmosphere, depending on the planet size, its final distance for its star and the star type. Assuming that the atmosphere is known, the possible climates can be explored using global climate models analogous to the ones developed to simulate the Earth as well as the other telluric atmospheres in the solar system. Our experience with Mars, Titan and Venus suggests that realistic climate simulators can be developed by combining components, such as a 'dynamical core', a radiative transfer solver, a parametrization of subgrid-scale turbulence and convection, a thermal ground model and a volatile phase change code. On this basis, we can aspire to build reliable climate predictors for exoplanets. However, whatever the accuracy of the models, predicting the actual climate regime on a specific planet will remain challenging because climate systems are affected by strong positive feedbacks. They can drive planets with very similar forcing and volatile inventory to completely different states. For instance, the coupling among temperature, volatile phase changes and radiative properties results in instabilities, such as runaway glaciations and runaway greenhouse effect. PMID:24664919

  7. Limits on Stellar Companions to Exoplanet Host Stars with Eccentric Planets

    NASA Astrophysics Data System (ADS)

    Kane, Stephen R.; Howell, Steve B.; Horch, Elliott P.; Feng, Ying; Hinkel, Natalie R.; Ciardi, David R.; Everett, Mark E.; Howard, Andrew W.; Wright, Jason T.

    2014-04-01

    Though there are now many hundreds of confirmed exoplanets known, the binarity of exoplanet host stars is not well understood. This is particularly true of host stars that harbor a giant planet in a highly eccentric orbit since these are more likely to have had a dramatic dynamical history that transferred angular momentum to the planet. Here we present observations of four exoplanet host stars that utilize the excellent resolving power of the Differential Speckle Survey Instrument on the Gemini North telescope. Two of the stars are giants and two are dwarfs. Each star is host to a giant planet with an orbital eccentricity >0.5 and whose radial velocity (RV) data contain a trend in the residuals to the Keplerian orbit fit. These observations rule out stellar companions 4-8 mag fainter than the host star at passbands of 692 nm and 880 nm. The resolution and field of view of the instrument result in exclusion radii of 0.''05-1.''4, which excludes stellar companions within several AU of the host star in most cases. We further provide new RVs for the HD 4203 system that confirm that the linear trend previously observed in the residuals is due to an additional planet. These results place dynamical constraints on the source of the planet's eccentricities, place constraints on additional planetary companions, and inform the known distribution of multiplicity amongst exoplanet host stars.

  8. The link between disc dispersal by photoevaporation and the semimajor axis distribution of exoplanets

    NASA Astrophysics Data System (ADS)

    Ercolano, Barbara; Rosotti, Giovanni

    2015-07-01

    We investigate the influence of photoevaporation of protoplanetary discs on the final distribution of exoplanets semimajor axis distances. We model giant planet migration in viscous discs affected by photoevaporation driven by either pure EUV or soft X-ray radiation (XEUV). We show that the final exoplanet distributions are strongly dependant on the choice of the photoevaporation model. In particular, we find that XEUV is more efficient than pure EUV radiation at parking planets at approximately 1-2 au distance from their central star, hence roughly reproducing the observed peak in the exoplanets semimajor axis distributions. We note however that a more quantitative comparison with the observations is hindered by the oversimplified treatment of planetary accretion, which severely affects migration rates. For this reason, caution should be used when using these models to constrain details of disc clearing and/or migration from the observations. Nevertheless our results indicate that disc dispersal by photoevaporation may be the main driver of the features in the exoplanets semimajor axis distribution observed by recent surveys.

  9. High-contrast imaging search for stellar and substellar companions of exoplanet host stars

    NASA Astrophysics Data System (ADS)

    Mugrauer, M.; Ginski, C.

    2015-07-01

    We present the results of our high-contrast imaging survey of close stellar and substellar companions of exoplanet host stars, carried out with the adaptive optics imager NACO at the ESO Paranal observatory, in Chile. In total, 33 exoplanet host stars were observed with NACO in the Ks-band. New comoving companions could be identified close to the stars HD 9578, HD 96167, and HD 142245. The newly detected companions exhibit masses between 0.21 and 0.56 M⊙ and are located at projected separations from their primaries between about 190 and 510 au. In the case of HD 142245, we found evidence that the detected companion is actually a close binary itself with a projected separation of only about 4 au, i.e. HD 142245 might be a hierarchical triple stellar system, which hosts an exoplanet, a new member in the short list of such systems, presently known. In our imaging campaign, a limiting magnitude of Ks = 18.5 mag is reached in average in the background noise limited region around our targets at projected separations beyond about 100 au, which allows the detection of substellar companions with masses down to about 60 MJup. With our NACO observations we can rule out additional stellar companions at projected separations between about 30 and 370 au around the observed exoplanet host stars.

  10. Limits on stellar companions to exoplanet host stars with eccentric planets

    SciTech Connect

    Kane, Stephen R.; Hinkel, Natalie R.; Howell, Steve B.; Horch, Elliott P.; Feng, Ying; Wright, Jason T.; Ciardi, David R.; Everett, Mark E.; Howard, Andrew W.

    2014-04-20

    Though there are now many hundreds of confirmed exoplanets known, the binarity of exoplanet host stars is not well understood. This is particularly true of host stars that harbor a giant planet in a highly eccentric orbit since these are more likely to have had a dramatic dynamical history that transferred angular momentum to the planet. Here we present observations of four exoplanet host stars that utilize the excellent resolving power of the Differential Speckle Survey Instrument on the Gemini North telescope. Two of the stars are giants and two are dwarfs. Each star is host to a giant planet with an orbital eccentricity >0.5 and whose radial velocity (RV) data contain a trend in the residuals to the Keplerian orbit fit. These observations rule out stellar companions 4-8 mag fainter than the host star at passbands of 692 nm and 880 nm. The resolution and field of view of the instrument result in exclusion radii of 0.''05-1.''4, which excludes stellar companions within several AU of the host star in most cases. We further provide new RVs for the HD 4203 system that confirm that the linear trend previously observed in the residuals is due to an additional planet. These results place dynamical constraints on the source of the planet's eccentricities, place constraints on additional planetary companions, and inform the known distribution of multiplicity amongst exoplanet host stars.

  11. Detection Limit for the Globally Distributed Falcon Telescope Network and Viability for Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Novotny, Steven; Polsgrove, Daniel; Chun, Francis; Tippets, Roger; Della-Rose, Devin J.; carlson, randall

    2016-01-01

    The Falcon Telescope Network (FTN) is a globally distributed system of twelve 20-inch robotic telescopes that will be centrally controlled from the Cadet Space Operations Center (CSOC) at the U.S. Air Force Academy in Colorado Springs, CO. In an effort to explore the viability of using the FTN for an exoplanet survey, each site will be characterized to demonstrate the ability to detect and collect accurate photometry on a variety of targets, specifically on nearby (< 25 pc) late-type M Dwarf stars. Values for the limiting magnitude of the optical system using the Sloan Digital Sky Survey i' and z' filters were estimated through a radiative transport approach and validated through a parallel observing campaign. The results of this campaign are presented and will be used as constraints on future projects in exoplanet research, studies in Space Situational Awareness (SSA), and detection and tracking of near-earth objects.

  12. Microphysics of Exoplanet Clouds and Hazes

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Benneke, Björn; Knutson, Heather; Yung, Yuk

    2015-12-01

    Clouds and hazes are ubiquitous in the atmospheres of exoplanets. However, as most of these planets have temperatures between 600 and 2000 K, their clouds and hazes are likely composed of exotic condensates such as silicates, metals, and salts. We currently lack a satisfactory understanding of the microphysical processes that govern the distribution of these clouds and hazes, thus creating a gulf between the cloud properties retrieved from observations and the cloud composition predictions from condensation equilibrium models. In this work we present a 1D microphysical cloud model that calculates, from first principles, the rates of condensation, evaporation, coagulation, and vertical transport of chemically mixed cloud and haze particles in warm and hot exoplanet atmospheres. The model outputs the equilibrium number density of cloud particles with altitude, the particle size distribution, and the chemical makeup of the cloud particles as a function of altitude and particle mass. The model aims to (1) explain the observed variability in “cloudiness” of individual exoplanets, (2) assess whether the proposed cloud materials are capable of forming the observed particle distributions, and (3) examine the role clouds have in the transport of (cloud-forming) heavy elements in exoplanet atmospheres.

  13. Microphysics of Exoplanet Clouds and Hazes

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Benneke, Björn; Knutson, Heather; Yung, Yuk

    2016-01-01

    Clouds and hazes are ubiquitous in the atmospheres of exoplanets. However, as most of these planets have temperatures between 600 and 2000 K, their clouds and hazes are likely composed of exotic condensates such as silicates, metals, and salts. We currently lack a satisfactory understanding of the microphysical processes that govern the distribution of these clouds and hazes, thus creating a gulf between the cloud properties retrieved from observations and the cloud composition predictions from condensation equilibrium models. In this work we present a 1D microphysical cloud model that calculates, from first principles, the rates of condensation, evaporation, coagulation, and vertical transport of chemically mixed cloud and haze particles in warm and hot exoplanet atmospheres. The model outputs the equilibrium number density of cloud particles with altitude, the particle size distribution, and the chemical makeup of the cloud particles as a function of altitude and particle mass. The model aims to (1) explain the observed variability in "cloudiness" of individual exoplanets, (2) assess whether the proposed cloud materials are capable of forming the observed particle distributions, and (3) examine the role clouds have in the transport of (cloud-forming) heavy elements in exoplanet atmospheres.

  14. Microphysics of Exoplanet Clouds and Hazes

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Benneke, Björn; Knutson, Heather A.; Yung, Yuk L.

    2015-11-01

    Clouds and hazes are ubiquitous in the atmospheres of exoplanets. However, as most of these planets have temperatures between 600 and 2000 K, their clouds and hazes are likely composed of exotic condensates such as silicates, metals, and salts. We currently lack a satisfactory understanding of the microphysical processes that govern the distribution of these clouds and hazes, thus creating a gulf between the cloud properties retrieved from observations and the cloud composition predictions from condensation equilibrium models. In this work we present a 1D microphysical cloud model that calculates, from first principles, the rates of condensation, evaporation, coagulation, and vertical transport of chemically mixed cloud and haze particles in warm and hot exoplanet atmospheres. The model outputs the equilibrium number density of cloud particles with altitude, the particle size distribution, and the chemical makeup of the cloud particles as a function of altitude and particle mass. The model aims to (1) explain the observed variability in “cloudiness” of individual exoplanets, (2) assess whether the proposed cloud materials are capable of forming the observed particle distributions, and (3) examine the role clouds have in the transport of (cloud-forming) heavy elements in exoplanet atmospheres.

  15. Deformable Mirrors Capture Exoplanet Data, Reflect Lasers

    NASA Technical Reports Server (NTRS)

    2014-01-01

    To image and characterize exoplanets, Goddard Space Flight Center turned to deformable mirrors (DMs). Berkeley, California-based Iris AO, Inc. worked with Goddard through the SBIR program to improve the company’s microelectromechanical DMs, which are now being evaluated and used for biological research, industrial applications, and could even be used by drug manufacturers.

  16. New Measurements of Polarised Light from Exoplanets

    NASA Astrophysics Data System (ADS)

    Bott, Kimberly Marie; Cotton, Daniel; Kedziora-Chudczer, Lucyna; Bailey, Jeremy

    2015-08-01

    Detections of polarised light from exoplanets are an important expansion of exoplanet studies, as they provide a complimentary and advantageous diagnostic to the other characterisation methods. However some of the earliest claimed detections of polarised light from exoplanets are disputed.The High Precision Polarimetric Instrument (HIPPI) is currently the highest sensitivity astronomical polarimeter (Bailey 2015) in the world at 4.3 ppm or better precision, and has been used to observe exoplanet systems including the disputed first detection source (Berdyugina 2008, Wiktorowicz 2009, Berdyugina 2011), HD189733b. HIPPI is designed for best sensitivity in blue light where Rayleigh scattering would produce a strong signal for hot Jupiter planets (Burrows 2008). These observations, taken at the Anglo-Australian Telescope in 2014 and 2015, are compared to models from a polarised light adaptation of the Versatile Software for the Transfer of Atmospheric Radiation (VSTAR).Our new, independent Hot Jupiter polarised light detections are discussed, including the physical sources of the detected polarised light, as well as additional contributing factors (e.g. debris, ISM anomalies). For HD 189733b we use available visible and near infrared transit and polarimetric data to create and interpret a planetary portrait using VSTAR.

  17. Exoplanet magnetic field: possible marker of habitability

    NASA Astrophysics Data System (ADS)

    Mogilevsky, Mikhail; Skalsky, Alexandre; Gotlib, Vladimir; Rothkaehl, Hanna; Gurvits, Leonid; Korepanov, Valeriy; Romantsova, Tatiana

    2013-04-01

    The intrinsic magnetic field shielding the planetary surface from most of space radiation is one of indicator on possible habitability of exoplanet. A search of exosolar terrestrial-like planets possessing the magnetic fields and developed magnetospheres seems to be the most intriguing objective of exoplanet studies. The interaction of planetary magnetosphere with the star wind results in generation of radioemissions (similar to AKR radiation of the terrestrial magnetosphere) which allows remote sensing of exoplanet magnetic field. However, frequency range of waves expected from terrestrial-like exoplanet is below, roughly, 10 MHz and, thus, these radioemissions can be hardly investigated by ground facilities due to conducting Earth's ionosphere. The Moon possessing a week atmosphere/ionosphere around its surface seems to be a perfect base for carrying out measurements of low frequency radio emissions originated from the space. The paper presents approaches to antenna design and a scenario of radio facility deployment at Moon's surface which is aimed on terrestrial-like planet search in exosolar system.

  18. Spectra as windows into exoplanet atmospheres

    PubMed Central

    Burrows, Adam S.

    2014-01-01

    Understanding a planet’s atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets. PMID:24613929

  19. The PANOPTES project: discovering exoplanets with low-cost digital cameras

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Walawender, Josh; Jovanovic, Nemanja; Butterfield, Mike; Gee, Wilfred T.; Mery, Rawad

    2014-07-01

    The Panoptic Astronomical Networked OPtical observatory for Transiting Exoplanets Survey (PANOPTES, www.projectpanoptes.org) project is aimed at identifying transiting exoplanets using a wide network of low-cost imaging units. Each unit consists of two commercial digital single lens reflex (DSLR) cameras equipped with 85mm F1.4 lenses, mounted on a small equatorial mount. At a few $1000s per unit, the system offers a uniquely advantageous survey eficiency for the cost, and can easily be assembled by amateur astronomers or students. Three generations of prototype units have so far been tested, and the baseline unit design, which optimizes robustness, simplicity and cost, is now ready to be duplicated. We describe the hardware and software for the PANOPTES project, focusing on key challenging aspects of the project. We show that obtaining high precision photometric measurements with commercial DSLR color cameras is possible, using a PSF-matching algorithm we developed for this project. On-sky tests show that percent-level photometric precision is achieved in 1 min with a single camera. We also discuss hardware choices aimed at optimizing system robustness while maintaining adequate cost. PANOPTES is both an outreach project and a scientifically compelling survey for transiting exoplanets. In its current phase, experienced PANOPTES members are deploying a limited number of units, acquiring the experience necessary to run the network. A much wider community will then be able to participate to the project, with schools and citizen scientists integrating their units in the network.

  20. MAPPING DIRECTLY IMAGED GIANT EXOPLANETS

    SciTech Connect

    Kostov, Veselin; Apai, Daniel

    2013-01-01

    With the increasing number of directly imaged giant exoplanets, the current atmosphere models are often not capable of fully explaining the spectra and luminosity of the sources. A particularly challenging component of the atmosphere models is the formation and properties of condensate cloud layers, which fundamentally impact the energetics, opacity, and evolution of the planets. Here we present a suite of techniques that can be used to estimate the level of rotational modulations these planets may show. We propose that the time-resolved observations of such periodic photometric and spectroscopic variations of extrasolar planets due to their rotation can be used as a powerful tool to probe the heterogeneity of their optical surfaces. In this paper, we develop simulations to explore the capabilities of current and next-generation ground- and space-based instruments for this technique. We address and discuss the following questions: (1) what planet properties can be deduced from the light curve and/or spectra, and in particular can we determine rotation periods, spot coverage, spot colors, and spot spectra?; (2) what is the optimal configuration of instrument/wavelength/temporal sampling required for these measurements?; and (3) can principal component analysis be used to invert the light curve and deduce the surface map of the planet? Our simulations describe the expected spectral differences between homogeneous (clear or cloudy) and patchy atmospheres, outline the significance of the dominant absorption features of H{sub 2}O, CH{sub 4}, and CO, and provide a method to distinguish these two types of atmospheres. Assuming surfaces with and without clouds for most currently imaged planets the current models predict the largest variations in the J band. Simulated photometry from current and future instruments is used to estimate the level of detectable photometric variations. We conclude that future instruments will be able to recover not only the rotation periods

  1. Exploring LSST's Transiting Exoplanet Yield for the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Lund, Michael B.; Jacklin, Savannah Renee; Pepper, Joshua; Stassun, Keivan

    2015-12-01

    The Large Synoptic Survey Telescope (LSST) will observe over half the sky during its ten-year mission, and will provide light curves for around one billion stars between 16th and 24th magnitude in the ugrizy bands. The combination of sky coverage and magnitude range will mean that a significant portion of the stars that LSST will observe will be in stellar populations that have rarely been observed by existing transiting planet searches. These new regimes that LSST will explore include Sun-like stars in the Galactic bulge, distant stellar clusters, the Magellanic Clouds, and nearby red dwarfs. We explore the potential yield of transiting exoplanets that LSST will be able to detect in the Large Magellanic Cloud. This presents a first opportunity to detect extragalactic planets.

  2. WASP-29b: A SATURN-SIZED TRANSITING EXOPLANET

    SciTech Connect

    Hellier, Coel; Anderson, D. R.; Maxted, P. F. L.; Smalley, B.; Collier Cameron, A.; Brown, D. J. A.; Enoch, B.; Gillon, M.; Lendl, M.; Queloz, D.; Triaud, A. H. M. J.; Pepe, F.; Segransan, D.; Udry, S.; West, R. G.; Lister, T. A.; Pollacco, D.

    2010-11-01

    We report the discovery of a Saturn-sized planet transiting a V = 11.3, K4 dwarf star every 3.9 days. WASP-29b has a mass of 0.24 {+-} 0.02 M {sub Jup} and a radius of 0.79 {+-} 0.05 R {sub Jup}, making it the smallest planet so far discovered by the WASP survey, and the exoplanet most similar in mass and radius to Saturn. The host star WASP-29 has an above-solar metallicity and fits a possible correlation for Saturn-mass planets such that planets with higher-metallicity host stars have higher core masses and thus smaller radii.

  3. Cloud Driven Variability on Young Brown Dwarfs and Giant Exoplanets

    NASA Astrophysics Data System (ADS)

    Biller, Beth

    2016-01-01

    Variability has now been robustly observed in a range of L and T type field brown dwarfs, primarily at near-IR and mid-IR wavelengths. The probable cause of this variability is surface inhomogeneities in the clouds of these objects, causing a semi-periodic variability signal when combined with the rotational modulation from the 3-12 hour period expected for these objects. Variability at similar or even higher amplitudes may be expected for young brown dwarfs and giant exoplanets, which share similar Teff as field brown dwarfs, but have considerably lower surface gravities. Variability studies of these objects relative to old field objects is then a direct probe of the effects of surface gravity on atmospheric structure. Here I discuss ongoing efforts to detect variability from these young objects, both for free-floating objects and companions to stars, including preliminary results from an ongoing survey of young, low surface gravity objects with NTT SOFI.

  4. Next Generation Transit Survey (NGTS)

    NASA Astrophysics Data System (ADS)

    Wheatley, Peter J.; Pollacco, Don L.; Queloz, Didier; Rauer, Heike; Watson, Christopher A.; West, Richard G.; Chazelas, Bruno; Louden, Tom M.; Bannister, Nigel; Bento, Joao; Burleigh, Matthew; Cabrera, Juan; Eigmüller, Philipp; Erikson, Anders; Genolet, Ludovic; Goad, Michael; Grange, Andrew; Jordán, Andrés; Lawrie, Katherine; McCormac, James; Neveu, Marion; Walker, Simon

    2014-01-01

    The Next Generation Transit Survey (NGTS) is a new ground-based survey for transiting exoplanets. Our primary goal is to find the first statistically-significant sample of Neptunes and super-Earths that are bright enough for radial velocity confirmation. By measuring precise masses and radii we will constrain the bulk composition and internal structure of planets that span the transition between the gas giants and terrestrial planets. Our brightest exoplanets will also be suitable for atmospheric characterisation with large facilities such as the VLT, JWST and the E-ELT. NGTS construction began in June 2013, and the survey is due to commence in 2014.

  5. How to Image Exoplanets at Solar System Scales

    NASA Astrophysics Data System (ADS)

    Rodigas, Timothy; Weinberger, Alycia J.; Mamajek, Eric E.; Males, Jared; Miller Close, Laird; Morzinski, Kathleen M.; Hinz, Phil; Kaib, Nathan A.

    2016-01-01

    Binaries are typically excluded from direct imaging exoplanet surveys. However, the recent findings of Kepler and radial velocity programs show that planets can and do form in binary systems. Here, we suggest that visual binaries offer unique advantages for direct imaging. We show that Binary Differential Imaging (BDI), whereby two stars are imaged simultaneously at the same wavelength within the isoplanatic patch at high Strehl ratio, offers improved point spread function (PSF) subtraction that can result in increased sensitivity to planets close to each star. We demonstrate this by observing a young visual binary separated by ~ 4 arcseconds with MagAO/Clio-2 at 3.9 μm, where the Strehl ratio is high, the isoplanatic patch is large, and giant planets are bright. Comparing BDI to angular differential imaging (ADI), we find that BDI's 5-sigma contrast is ~ 0.5 mags better than ADI's within ~ 1 arcsecond for the particular binary we observed. Because planets typically reside close to their host stars, BDI is a promising technique for discovering exoplanets in stellar systems that are often ignored. BDI is also 2-4x more efficient than ADI and classical reference PSF subtraction, since planets can be detected around both the target and PSF reference simultaneously. We are currently exploiting this technique in a new MagAO survey for giant planets in 140 young nearby visual binaries. BDI on a space-based telescope would not be limited by isoplanatism effects and would therefore be an even more powerful tool for imaging and discovering planets.

  6. Exploring the Diversity of Exoplanet Atmospheres Using Ground-Based Transit Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bean, Jacob

    This is a proposal to fund an observational study of the atmospheres of exoplanets in order to improve our understanding of the nature and origins of these mysterious worlds. The observations will be performed using our new approach for ground-based transit spectroscopy measurements that yields space-telescope quality data. We will also carry out supporting theoretical calculations with new abundance retrieval codes to interpret the measurements. Our project includes a survey of giant exoplanets, and intensive study of especially compelling exoplanets. For the survey, optical and near-infrared transmission spectra, and near-infrared emission spectra will be measured for giant exoplanets with a wide range of estimated temperatures, heavy element abundance, and mass. This comprehensive characterization of a large sample of these planets is now crucial to investigate such issues for their atmospheres as the carbon-to-oxygen ratios and overall metallicities, cause of thermal inversions, and prevalence and nature of high-altitude hazes. The intensive study of compelling individual planets will focus on low-mass (M < 10 M_earth) planets that are feasible targets like the super-Earth GJ1214b, and individual giant planets that display unexpected phenomena like the possibly carbon-rich hot-Jupiter Wasp-12b. The issue that will be addressed for the low-mass planets are the basic compositions of their atmospheres as a boundary condition to constrain models used to infer their bulk compositions. The basic atmospheric compositions of these planets will be determined using transmission spectroscopy, and leveraging its particular sensitivity to the atmospheric scale height. Observations for the project will be carried out with Magellan, Keck, Gemini, and VLT. The team has institutional access to Magellan and Keck, and a demonstrated record of obtaining time on Gemini and VLT for these observations through public channels. This proposal is highly relevant for current and future

  7. Generation of an optimal target list for the exoplanet characterisation observatory (EChO)

    NASA Astrophysics Data System (ADS)

    Varley, R.; Waldmann, I.; Pascale, E.; Tessenyi, M.; Hollis, M.; Morales, J. C.; Tinetti, G.; Swinyard, B.; Deroo, P.; Ollivier, M.; Micela, G.

    2015-12-01

    The Exoplanet Characterisation Observatory (EChO) has been studied as a space mission concept by the European Space Agency in the context of the M3 selection process. Through direct measurement of the atmospheric chemical composition of hundreds of exoplanets, EChO would address fundamental questions such as: What are exoplanets made of? How do planets form and evolve? What is the origin of exoplanet diversity? More specifically, EChO is a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planetary sample within its four to six year mission lifetime. In this paper we use the end-to-end instrument simulator EChOSim to model the currently discovered targets, to gauge which targets are observable and assess the EChO performances obtainable for each observing tier and time. We show that EChO would be capable of observing over 170 relativity diverse planets if it were launched today, and the wealth of optimal targets for EChO expected to be discovered in the next 10 years by space and ground-based facilities is simply overwhelming. In addition, we build on previous molecular detectability studies to show what molecules and abundances will be detectable by EChO for a selection of real targets with various molecular compositions and abundances. EChO's unique contribution to exoplanetary science will be in identifying the main constituents of hundreds of exoplanets in various mass/temperature regimes, meaning that we will be looking no longer at individual cases but at populations. Such a universal view is critical if we truly want to understand the processes of planet formation and evolution in various environments. In this paper we present a selection of key results. The full results are available in Online Resource 1.

  8. Ultraviolet and X-ray Activity and Flaring on Low-Mass Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    France, Kevin; Parke Loyd, R. O.; Brown, Alexander

    2015-08-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to NUV) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential “biomarker” gases. We present results from the MUSCLES Treasury Survey, an ongoing study of time-resolved UV and X-ray spectroscopy of nearby M and K dwarf exoplanet host stars. This program uses contemporaneous Hubble Space Telescope and Chandra (or XMM) observations to characterize the time variability of the energetic radiation field incident on the habitable zones planetary systems at d < 15 pc. We find that all exoplanet host stars observed to date exhibit significant levels of chromospheric and transition region UV emission. M dwarf exoplanet host stars display 30 - 2000% UV emission line amplitude variations on timescales of minutes-to-hours. The relative flare/quiescent UV flux amplitudes on old (age > 1 Gyr) planet-hosting M dwarfs are comparable to active flare stars (e.g., AD Leo), despite their lack of flare activity at visible wavelengths. We also detect similar UV flare behavior on a subset of our K dwarf exoplanet host stars. We conclude that strong flares and stochastic variability are common, even on “optically inactive” M dwarfs hosting planetary systems. These results argue that the traditional assumption of weak UV fields and low flare rates on older low-mass stars needs to be revised.

  9. Disentangling degenerate solutions from primary transit and secondary eclipse spectroscopy of exoplanets.

    PubMed

    Griffith, Caitlin A

    2014-04-28

    Infrared transmission and emission spectroscopy of exoplanets, recorded from primary transit and secondary eclipse measurements, indicate the presence of the most abundant carbon and oxygen molecular species (H2O, CH4, CO and CO2) in a few exoplanets. However, efforts to constrain the molecular abundances to within several orders of magnitude are thwarted by the broad range of degenerate solutions that fit the data. Here, we explore, with radiative transfer models and analytical approximations, the nature of the degenerate solution sets resulting from the sparse measurements of 'hot Jupiter' exoplanets. As demonstrated with simple analytical expressions, primary transit measurements probe roughly four atmospheric scale heights at each wavelength band. Derived mixing ratios from these data are highly sensitive to errors in the radius of the planet at a reference pressure. For example, an uncertainty of 1% in the radius of a 1000 K and H2-based exoplanet with Jupiter's radius and mass causes an uncertainty of a factor of approximately 100-10,000 in the derived gas mixing ratios. The degree of sensitivity depends on how the line strength increases with the optical depth (i.e. the curve of growth) and the atmospheric scale height. Temperature degeneracies in the solutions of the primary transit data, which manifest their effects through the scale height and absorption coefficients, are smaller. We argue that these challenges can be partially surmounted by a combination of selected wavelength sampling of optical and infrared measurements and, when possible, the joint analysis of transit and secondary eclipse data of exoplanets. However, additional work is needed to constrain other effects, such as those owing to planetary clouds and star spots. Given the current range of open questions in the field, both observations and theory, there is a need for detailed measurements with space-based large mirror platforms (e.g. James web space telescope) and smaller broad survey

  10. The orbit determination of the global positioning system satellites for geodetic applications: developments and results at the Geographical Survey Institute.

    NASA Astrophysics Data System (ADS)

    Murakami, M.

    1989-03-01

    The subject which this paper deals with is a 1-ppm level determination of the orbits of the Global Positioning System satellites for geodetic applications. A detailed model of the observables is developed. A new method of processing the phase and the range observables simultaneously to determine the GPS orbits is presented. Results are included and discussed.

  11. Chemical exchange in the interior of water-rich exoplanets

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Choblet, G.; Grasset, O.

    2015-10-01

    Since the discovery of the first exoplanet in 1995 [1], the number of detected exoplanets has grown nearly exponentially [2]. We have learnt from the existing dataset that our Solar System is rather unusual. Exoplanet surveys revealed notably that exoplanets intermediate between Earth and Neptune are surprisingly common, while notably absent in the Solar System [3]. Model mass-radius relationships indicate a great diversity of interior composition and atmospheric extent for the Super-Earth/Mini- Neptune-planet class [e.g. 4]. The observed continuum between Earth-sized and Neptune-sized planets challenges our understanding of planet formation and evolution, which has been biased for many years by our vision of the Solar System. Planetary worlds are probably much more diverse than originally thought, with a wide range of water and other volatile content. In the Solar System, there is a strong dichotomy between the inner system with dry planetary objects having a very small volatile fraction (<0.1 %), and the outer solar system where water ice constitutes a large fraction of solid phase (> 20%). The volatile contents among other systems likely vary more gradually, and a large fraction of exoplanets with sizes intermediate between Earth and Neptune may have a water content exceeding several percents. The existence of massive water envelops around these planets may significantly affect the internal evolution and chemical exchanges between the deep interior and the atmosphere [e.g. 5]. Due to the very high-pressure expected inside these water-rich planets, especially for the the most massive ones, most of the water will be in the form of a high-pressure ice phase (ice VII) [6,7], the presence of liquid water being limited only to the first kilometres. The thermal structure and dynamics of these thick icy mantles are expected to control the heat and chemical transport from the silicate-rich interior to the surface [8,9], in a way analogous to the internal processes

  12. LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION?

    SciTech Connect

    Kraus, Adam L.; Ireland, Michael J.

    2012-01-20

    Young and directly imaged exoplanets offer critical tests of planet-formation models that are not matched by radial velocity surveys of mature stars. These targets have been extremely elusive to date, with no exoplanets younger than 10-20 Myr and only a handful of direct-imaged exoplanets at all ages. We report the direct-imaging discovery of a likely (proto)planet around the young ({approx}2 Myr) solar analog LkCa 15, located inside a known gap in the protoplanetary disk (a 'transitional disk'). Our observations use non-redundant aperture masking interferometry at three epochs to reveal a faint and relatively blue point source (M{sub K{sup '}}=9.1{+-}0.2, K' - L' = 0.98 {+-} 0.22), flanked by approximately co-orbital emission that is red and resolved into at least two sources (M{sub L{sup '}}=7.5{+-}0.2, K' - L' = 2.7 {+-} 0.3; M{sub L{sup '}}=7.4{+-}0.2, K' - L' = 1.94 {+-} 0.16). We propose that the most likely geometry consists of a newly formed (proto)planet that is surrounded by dusty material. The nominal estimated mass is {approx}6 M{sub Jup} according to the 1 Myr hot-start models. However, we argue based on its luminosity, color, and the presence of circumplanetary material that the planet has likely been caught at its epoch of assembly, and hence this mass is an upper limit due to its extreme youth and flux contributed by accretion. The projected separations (71.9 {+-} 1.6 mas, 100.7 {+-} 1.9 mas, and 88.2 {+-} 1.8 mas) and deprojected orbital radii (16, 21, and 19 AU) correspond to the center of the disk gap, but are too close to the primary star for a circular orbit to account for the observed inner edge of the outer disk, so an alternative explanation (i.e., additional planets or an eccentric orbit) is likely required. This discovery is the first direct evidence that at least some transitional disks do indeed host newly formed (or forming) exoplanetary systems, and the observed properties provide crucial insight into the gas giant formation process.

  13. Characterising exoplanet atmospheres with EChO: Updated results for a new payload design

    NASA Astrophysics Data System (ADS)

    Tessenyi, M.; Beaulieu, J.-P.; Ollivier, M.; Tinetti, G.; Coudé du Foresto, V.; Reess, J.-M.

    2012-12-01

    The field of exoplanets is one of the fastest growing and most novel in astrophysics, with hundreds of planetary discoveries and thousands of candidates waiting to be confirmed. Many of these planets are very different from the planets in our Solar System, yet at present we do not have an explanation nor a clear understanding of this diversity. The atmospheric composition of these remote worlds may provide a key to interpreting this diversity. Spectroscopic measurement of transiting exoplanets is the only viable technique we can use today to sound these exotic atmospheres. EChO, the Exoplanet Characterization Observatory is a Medium class ESA mission candidate, currently being assessed as part of the COSMIC VISION programme. EChO will be the first mission fully dedicated to the systematic study of the physics and chemistry of a large portfolio of exoplanet atmospheres. The targets will cover a wide range of planets: from hot planets to temperate ones, from large, gaseous Jupiter-like planets to small telluric planets. The baseline mission design is a 1.2 m off axis telescope with one instrument composed of several channels covering the spectral range 0.4-16 μm with a spectral resolution in the 300-30 range. The satellite is optimised for stability and is based on the legacy of previous successful ESA missions. EChO will observe primary transits and secondary eclipses, and also phase curves of some non-transiting planets. We present updated results for secondary eclipses, based on methods from previous studies and incorporating the evolution of the payload design.

  14. Dispatch Scheduling to Maximize Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Johnson, Samson; McCrady, Nate; MINERVA

    2016-01-01

    MINERVA is a dedicated exoplanet detection telescope array using radial velocity measurements of nearby stars to detect planets. MINERVA will be a completely robotic facility, with a goal of maximizing the number of exoplanets detected. MINERVA requires a unique application of queue scheduling due to its automated nature and the requirement of high cadence observations. A dispatch scheduling algorithm is employed to create a dynamic and flexible selector of targets to observe, in which stars are chosen by assigning values through a weighting function. I designed and have begun testing a simulation which implements the functions of a dispatch scheduler and records observations based on target selections through the same principles that will be used at the commissioned site. These results will be used in a larger simulation that incorporates weather, planet occurrence statistics, and stellar noise to test the planet detection capabilities of MINERVA. This will be used to heuristically determine an optimal observing strategy for the MINERVA project.

  15. Exoplanet Observations in SOFIA's Cycle 1

    NASA Astrophysics Data System (ADS)

    Angerhausen, Daniel

    2013-06-01

    The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), a 2.5-meter infrared telescope on board a Boeing 747-SP, will conduct 0.3 - 1,600 micron photometric, spectroscopic, and imaging observations from altitudes as high as 45,000 ft. The airborne-based platform has unique advantages in comparison to ground- and space-based observatories in the field of characterization of the physical properties of exoplanets: parallel optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses will be feasible with SOFIA's instrumentation, in particular the HIPO-FLITECAM optical/NIR instruments and possible future dedicated instrumentation. Here we present spectrophotometric exoplanet observations that were or will be conducted in SOFIA's cycle 1.

  16. Observing Exoplanets in the Mid-Ultraviolet

    NASA Technical Reports Server (NTRS)

    Heap. Sara

    2008-01-01

    There are good reasons for pushing the spectral range of observation to shorter wavelengths than currently envisaged for terrestrial planet-finding missions utilizing with a 4-m, diffraction-limited, optical telescope: (1) The angular resolution is higher, so the image of an exoplanet is better separated from that of the much brighter star. (2) The exozodiacal background per resolution element is smaller, so exposure times are reduced for the same incident flux. (3) Most importantly, the sensitivity to the ozone biomarker is increased by several hundred-fold by access to the ozone absorption band at 250-300 nm. These benefits must be weighed against challenges arising from the faintness of exoplanets in the mid-UV. We will evaluate both the technical and cost challenges including image quality of large telescopes, advanced mirror coatings and innovative designs for enhanced optical throughput, and CCD detectors optimized for 250-400 nm.

  17. Infrared spectroscopy of exoplanets: observational constraints.

    PubMed

    Encrenaz, Thérèse

    2014-04-28

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations. PMID:24664918

  18. Infrared spectroscopy of exoplanets: observational constraints

    PubMed Central

    Encrenaz, Thérèse

    2014-01-01

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations. PMID:24664918

  19. Instrumentation for the detection and characterization of exoplanets.

    PubMed

    Pepe, Francesco; Ehrenreich, David; Meyer, Michael R

    2014-09-18

    In no other field of astrophysics has the impact of new instrumentation been as substantial as in the domain of exoplanets. Before 1995 our knowledge of exoplanets was mainly based on philosophical and theoretical considerations. The years that followed have been marked, instead, by surprising discoveries made possible by high-precision instruments. Over the past decade, the availability of new techniques has moved the focus of research from the detection to the characterization of exoplanets. Next-generation facilities will produce even more complementary data that will lead to a comprehensive view of exoplanet characteristics and, by comparison with theoretical models, to a better understanding of planet formation. PMID:25230658

  20. Instrumentation for the detection and characterization of exoplanets

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco; Ehrenreich, David; Meyer, Michael R.

    2014-09-01

    In no other field of astrophysics has the impact of new instrumentation been as substantial as in the domain of exoplanets. Before 1995 our knowledge of exoplanets was mainly based on philosophical and theoretical considerations. The years that followed have been marked, instead, by surprising discoveries made possible by high-precision instruments. Over the past decade, the availability of new techniques has moved the focus of research from the detection to the characterization of exoplanets. Next-generation facilities will produce even more complementary data that will lead to a comprehensive view of exoplanet characteristics and, by comparison with theoretical models, to a better understanding of planet formation.

  1. AN EFFICIENT AUTOMATED VALIDATION PROCEDURE FOR EXOPLANET TRANSIT CANDIDATES

    SciTech Connect

    Morton, Timothy D.

    2012-12-10

    Surveys searching for transiting exoplanets have found many more candidates than they have been able to confirm as true planets. This situation is especially acute with the Kepler survey, which has found over 2300 candidates but has to date confirmed only a small fraction of them as planets. I present here a general procedure that can quickly be applied to any planet candidate to calculate its false positive probability. This procedure takes into account the period, depth, duration, and shape of the signal; the colors of the target star; arbitrary spectroscopic or imaging follow-up observations; and informed assumptions about the populations and distributions of field stars and multiple-star properties. Applying these methods to a sample of known Kepler planets, I demonstrate that many signals can be validated with very limited follow-up observations: in most cases with only a spectrum and an adaptive optics image. Additionally, I demonstrate that this procedure can reliably identify false positive signals. Because of the computational efficiency of this analysis, it is feasible to apply it to all Kepler planet candidates in the near future, and it will streamline the follow-up efforts for Kepler and other current and future transit surveys.

  2. Calibration of surface temperature on rocky exoplanets

    NASA Astrophysics Data System (ADS)

    Kashyap Jagadeesh, Madhu

    2016-07-01

    Study of exoplanets and the search for life elsewhere has been a very fascinating area in recent years. Presently, lots of efforts have been channelled in this direction in the form of space exploration and the ultimate search for the habitable planet. One of the parametric methods to analyse the data available from the missions such as Kepler, CoRoT, etc, is the Earth Similarity Index (ESI), defined as a number between zero (no similarity) and one (identical to Earth), introduced to assess the Earth likeness of exoplanets. A multi-parameter ESI scale depends on the radius, density, escape velocity and surface temperature of exoplanets. Our objective is to establish how exactly the individual parameters, entering the interior ESI and surface ESI, are contributing to the global ESI, using the graphical analysis. Presently, the surface temperature estimates are following a correction factor of 30 K, based on the Earth's green-house effect. The main objective of this work in calculations of the global ESI using the HabCat data is to introduce a new method to better estimate the surface temperature of exoplanets, from theoretical formula with fixed albedo factor and emissivity (Earth values). From the graphical analysis of the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures for the Solar System objects. Using extrapolation we found that the power function is the closest description of the trend to attain surface temperature. From this we conclude that the correction term becomes very effective way to calculate the accurate value of the surface temperature, for further analysis with our graphical methodology.

  3. THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES

    SciTech Connect

    Hu Renyu; Seager, Sara; Ehlmann, Bethany L.

    2012-06-10

    We investigate spectra of airless rocky exoplanets with a theoretical framework that self-consistently treats reflection and thermal emission. We find that a silicate surface on an exoplanet is spectroscopically detectable via prominent Si-O features in the thermal emission bands of 7-13 {mu}m and 15-25 {mu}m. The variation of brightness temperature due to the silicate features can be up to 20 K for an airless Earth analog, and the silicate features are wide enough to be distinguished from atmospheric features with relatively high resolution spectra. The surface characterization thus provides a method to unambiguously identify a rocky exoplanet. Furthermore, identification of specific rocky surface types is possible with the planet's reflectance spectrum in near-infrared broad bands. A key parameter to observe is the difference between K-band and J-band geometric albedos (A{sub g}(K) - A{sub g}(J)): A{sub g}(K) - A{sub g}(J) > 0.2 indicates that more than half of the planet's surface has abundant mafic minerals, such as olivine and pyroxene, in other words primary crust from a magma ocean or high-temperature lavas; A{sub g}(K) - A{sub g}(J) < -0.09 indicates that more than half of the planet's surface is covered or partially covered by water ice or hydrated silicates, implying extant or past water on its surface. Also, surface water ice can be specifically distinguished by an H-band geometric albedo lower than the J-band geometric albedo. The surface features can be distinguished from possible atmospheric features with molecule identification of atmospheric species by transmission spectroscopy. We therefore propose that mid-infrared spectroscopy of exoplanets may detect rocky surfaces, and near-infrared spectrophotometry may identify ultramafic surfaces, hydrated surfaces, and water ice.

  4. The ASIAGO exo-planet transits search

    NASA Astrophysics Data System (ADS)

    Claudi, R. U.; Desidera, S.; Gratton, R.; Bruno, P.

    2004-01-01

    The ASIAGO project is a search for giant exo-planets with the photometric transit method, exploiting the 67/92 Schmidt Telescope at Mount Ekar near the town of Asiago, in Italy. The telescope is equipped with the SCAM-1 camera of DLR (Berlin) (Barbieri et al. 2003) and in the summer of 2002 underwent a refurbishment and automation phase. We describe the status of the first phase of the project (telescope refurbishment) and the telescope capability for transit searches.

  5. Radial Velocity Eclipse Mapping of Exoplanets

    NASA Astrophysics Data System (ADS)

    Nikolov, Nikolay; Sainsbury-Martinez, Felix

    2015-07-01

    Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter-McLaughlin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blueshifted) or receding (redshifted) parts of the planet causes a temporal distortion in the planet’s spectral line profiles resulting in an anomaly in the planet’s radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt, and impact factor (i.e., sky-projected planet spin-orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.

  6. Archaeology and direct imaging of exoplanets

    NASA Astrophysics Data System (ADS)

    Campbell, John B.

    The search for extraterrestrial technology effectively began 45 years ago with Frank Drake's Project Ozma and a radioastronomy start to the search for extraterrestrial intelligence (SETI). Eventually searches began for possible interstellar probes in stable orbits in the Solar System, as well as for infrared excesses from possible Dyson spheres round Sun-like stars. Whilst the Cold War was still underway, some scientists looked for evidence of nuclear waste dumps and nuclear wars elsewhere in the Milky Way. None of this work was carried out by archaeologists, even though by their very nature archaeologists are experts in the detection of ancient technologies. The technologies being searched for would have been partly ancient in age though advanced in techniques and science. The development of ESA's Darwin and NASA's TPF for detection and imaging of Earth-like exoplanets in our galactic neighbourhood represents an opportunity for the testing of techniques for detecting signatures of technological activities. Ideally, both Darwin and TPF might be able to provide spectroscopic data on the chemistry and biochemistry of the atmospheres of Earth-like exoplanets, and thus to detect some of the signs of life. If this can be accomplished successfully, then in theory evidence for pollution and nuclear accidents and wars should be detectable. Some infrared signatures of ETT on or round exoplanets might be detectable. Direct visual imaging of ETT structures will probably not be feasible till we have extremely powerful interstellar telescopes or actually send orbital craft.

  7. THE FREQUENCY OF LOW-MASS EXOPLANETS

    SciTech Connect

    O'Toole, S. J.; Jones, H. R. A.; Tinney, C. G.; Bailey, J.; Wittenmyer, R. A.; Butler, R. P.; Marcy, G. W.; Carter, B.

    2009-08-20

    We report first results from the Anglo-Australian Telescope Rocky Planet Search-an intensive, high-precision Doppler planet search targeting low-mass exoplanets in contiguous 48 night observing blocks. On this run, we targeted 24 bright, nearby and intrinsically stable Sun-like stars selected from the Anglo-Australian Planet Search's main sample. These observations have already detected one low-mass planet reported elsewhere (HD 16417b), and here we reconfirm the detection of HD 4308b. Further, we have Monte Carlo simulated data from this run on a star-by-star basis to produce robust detection constraints. These simulations demonstrate clear differences in the exoplanet detectability functions from star to star due to differences in sampling, data quality and intrinsic stellar stability. They reinforce the importance of star-by-star simulation when interpreting the data from Doppler planet searches. These simulations indicate that for some of our target stars we are sensitive to close-orbiting planets as small as a few Earth masses. The two low-mass planets present in our 24-star sample indicate that the exoplanet minimum mass function at low masses is likely to be a flat {alpha} {approx} -1 (for dN/dM {proportional_to} M {sup {alpha}}) and that between 15% {+-} 10% (at {alpha} = -0.3) and 48% {+-} 34% (at {alpha} = -1.3) of stars host planets with orbital periods of less than 16 days and minimum masses greater than 3 M {sub +}.

  8. Observational constraints on the composition of exoplanets

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.; Tinetti, G.; Swain, M. R.; Deroo, P.; Cunha, K.; Schuler, S.; Freedman, R.

    2011-10-01

    Two forms of exoplanetary spectra can be measured. The primary eclipse provides a transmission spectra of the exoplanet's limb as the planet passes in front of the star. The secondary eclipse measures the emission of mainly the planet's dayside atmosphere from the planet plus star's emission minus the emission of star alone, when it eclipses the planet. In the past 3 years, infrared transmission and emission spectroscopy have revealed the presence of the primary carbon and oxygen species (CH4, CO2, CO, and H2O). Yet, efforts to constrain the abundances of these molecules are hindered by degenerate effects of the temperature and composition in the emission spectra, and the composition and assumed radius in the transmission spectrum. These degeneracies lead to derived mixing ratios that span several orders of magnitude. This talk will discuss the correlations in the degenerate solutions that result from the radiative transfer analyses of both emission and transmission spectroscopy. We present an analysis of primary and secondary transit observations of HD209458b's optical to infrared spectra, and correlate the degenerate effects of the atmospheric parameters using a principal components analysis to better constrain the atmospheric composition of the exoplanet. The derived oxygen and carbon composition of the HD209458b's atmosphere are considered in conjunction with the primary star's composition in order to start to address questions regarding the evolution of the exoplanet.

  9. TWO EXOPLANETS DISCOVERED AT KECK OBSERVATORY

    SciTech Connect

    Valenti, Jeff A.; Fischer, Debra; Giguere, Matt; Isaacson, Howard; Marcy, Geoffrey W.; Howard, Andrew W.; Johnson, John A.; Henry, Gregory W.; Wright, Jason T.

    2009-09-10

    We present two exoplanets detected at Keck Observatory. HD 179079 is a G5 subgiant that hosts a hot Neptune planet with M sin i = 27.5 M{sub +} in a 14.48 days, low-eccentricity orbit. The stellar reflex velocity induced by this planet has a semiamplitude of K = 6.6 m s{sup -1}. HD 73534 is a G5 subgiant with a Jupiter-like planet of M sin i = 1.1 M{sub Jup} and K = 16 m s{sup -1} in a nearly circular 4.85 yr orbit. Both stars are chromospherically inactive and metal-rich. We discuss a known, classical bias in measuring eccentricities for orbits with velocity semiamplitudes, K, comparable to the radial velocity uncertainties. For exoplanets with periods longer than 10 days, the observed exoplanet eccentricity distribution is nearly flat for large amplitude systems (K > 80 m s{sup -1}), but rises linearly toward low eccentricity for lower amplitude systems (K > 20 m s{sup -1})

  10. Telecommunications satellite systems

    NASA Astrophysics Data System (ADS)

    Ramat, Pierre

    1992-12-01

    A survey of the telecommunications satellite field is presented. After a review of the historical and regulatory background, the main technical features of satellite networks are analyzed, and existing international and national systems are considered. Particular attention is given to Intelsat, Inmarsat, Eutelsat, and Telecom 1 and 2. Future technical and economic trends are then projected.

  11. Nucleotide sequence heterogeneity of alpha satellite repetitive DNA: a survey of alphoid sequences from different human chromosomes.

    PubMed Central

    Waye, J S; Willard, H F

    1987-01-01

    The human alpha satellite DNA family is composed of diverse, tandemly reiterated monomer units of approximately 171 basepairs localized to the centromeric region of each chromosome. These sequences are organized in a highly chromosome-specific manner with many, if not all human chromosomes being characterized by individually distinct alphoid subsets. Here, we compare the nucleotide sequences of 153 monomer units, representing alphoid components of at least 12 different human chromosomes. Based on the analysis of sequence variation at each position within the 171 basepair monomer, we have derived a consensus sequence for the monomer unit of human alpha satellite DNA which we suggest may reflect the monomer sequence from which different chromosomal subsets have evolved. Sequence heterogeneity is evident at each position within the consensus monomer unit and there are no positions of strict nucleotide sequence conservation, although some regions are more variable than others. A substantial proportion of the overall sequence variation may be accounted for by nucleotide changes which are characteristic of monomer components of individual chromosomal subsets or groups of subsets which have a common evolutionary history. PMID:3658703

  12. The high resolution topographic evolution of an active retrogressive thaw slump compiled from a decade of photography, ground surveys, laser scans and satellite imagery

    NASA Astrophysics Data System (ADS)

    Crosby, B. T.; Barnhart, T. B.; Rowland, J. C.

    2015-12-01

    Remote sensing imagery has enables the temporal reconstruction of thermal erosion features including lakes, shorelines and hillslope failures in remote Arctic locations, yet these planar data limit analysis to lines and areas. This study explores the application of varying techniques to reconstruct the three dimensional evolution of a single thermal erosion feature using a mixture of opportunistic oblique photos, ground surveys and satellite imagery. At the Selawik River retrogressive thaw slump in northwest Alaska, a bush plane collected oblique aerial photos when the feature was first discovered in 2004 and in subsequent years. These images were recently processed via Structure from Motion to generate georeferenced point clouds for the years prior to the initiation of our research. High resolution ground surveys in 2007, 2009 and 2010 were completed using robotic total station. Terrestrial laser scans (TLS) were collected in the summers of 2011 and 2012. Analysis of stereo satellite imagery from 2012 and 2015 enable continued monitoring of the feature after ground campaigns ended. As accurate coregistraion between point clouds is vital to topographic change detection, all prior and subsequent datasets were georeferenced to stable features observed in the 2012 TLS scan. Though this coregistration introduces uncertainty into each image, the magnitudes of uncertainty are significantly smaller than the topographic changes detected. Upslope retreat of the slump headwall generally decreases over time as the slump floor progresses from a highly dissected gully topography to a low relief, earthflow dominated depositional plane. The decreasing slope of the slump floor diminishes transport capacity, resulting in the progressive burial of the slump headwall, thus decreasing headwall retreat rates. This self-regulation of slump size based on feature relief and transport capacity suggests a capacity to predict the maximum size a given feature can expand to before

  13. LACERTA I AND CASSIOPEIA III. TWO LUMINOUS AND DISTANT ANDROMEDA SATELLITE DWARF GALAXIES FOUND IN THE 3{pi} PAN-STARRS1 SURVEY

    SciTech Connect

    Martin, Nicolas F.; Laevens, Benjamin P. M.; Slater, Colin T.; Bell, Eric F.; Schlafly, Edward F.; Morganson, Eric; Rix, Hans-Walter; Bernard, Edouard J.; Ferguson, Annette M. N.; Finkbeiner, Douglas P.; Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Tonry, John L.; Wainscoat, Richard J.; Price, Paul A.

    2013-07-20

    We report the discovery of two new dwarf galaxies, Lacerta I/Andromeda XXXI (Lac I/And XXXI) and Cassiopeia III/Andromeda XXXII (Cas III/And XXXII), in stacked Pan-STARRS1 r{sub P1}- and i{sub P1}-band imaging data. Both are luminous systems (M{sub V} {approx} -12) located at projected distances of 20. Degree-Sign 3 and 10. Degree-Sign 5 from M31. Lac I and Cas III are likely satellites of the Andromeda galaxy with heliocentric distances of 756{sup +44}{sub -28} kpc and 772{sup +61}{sub -56} kpc, respectively, and corresponding M31-centric distances of 275 {+-} 7 kpc and 144{sup +6}{sub -4} kpc. The brightest of recent Local Group member discoveries, these two new dwarf galaxies owe their late discovery to their large sizes (r{sub h} = 4.2{sup +0.4}{sub -0.5} arcmin or 912{sup +124}{sub -93} pc for Lac I; r{sub h} = 6.5{sup +1.2}{sub -1.0} arcmin or 1456 {+-} 267 pc for Cas III) and consequently low surface brightness ({mu}{sub 0} {approx} 26.0 mag arcsec{sup -2}), as well as to the lack of a systematic survey of regions at large radii from M31, close to the Galactic plane. This latter limitation is now alleviated by the 3{pi} Pan-STARRS1 survey, which could lead to the discovery of other distant Andromeda satellite dwarf galaxies.

  14. a Goes-W Satellite Thermal Infrared Survey (2006-2014) Over South Western us Earthquake Prone Area: Preliminary Results on 24 August 2014 Napa Earthquake (M=6)

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Genzano, N.; Coviello, I.; Filizzola, C.; Lisi, M.; Paciello, R.; Pergola, N.; Satriano, V.

    2014-12-01

    The RST (Robust Satellite Technique) methodology has been widely applied to tens of earthquakes occurred in different continents (Europe, Asia, America and Africa), in various geo-tectonic settings (compressive, extensional and transcurrent) and with a wide range of magnitudes (from 4.0 to 7.9) trying to identify anomalous fluctuations of the Earth's emitted TIR (Thermal InfraRed) radiation in possible relation with earthquake occurrence discriminating them from those variations due to other causes. An extended study is presented in the AGU2014 NH008 session by Tramutoli et al. which is devoted to verify to which extent Significant (space-time persistent, non-spurious) Sequences of TIR Anomalies (SSTAs) appear within prefixed space-time windows around earthquakes of magnitude M>4 occurred on 6 years (2006-2011) over South Western US seismic area. Results of such a study (with a rate of false positive of 35%) give an idea on the possible relevance of RST based TIR surveys in the framework of an operational, multi-parametric system for time-Dependent Assessment of Seismic Hazard (t-DASH). In this paper all the data available from the new GOES-W satellite (in orbit in between 2010 and 2014) have been analysed by the same way in the case of the earthquake occurred on 24 August 2014 (M=6) over Napa valley (California). The results presented in this paper, even if still preliminary, seem to confirm the significance of RST based TIR survey in a t-DASH perspective. It should however mentioned, that such an approach (even if not devoted to be used for short-term Earthquake Forecast outside a multiparametric t-DASH system), when compared with whatever traditional OEF (Operational Earthquake Forecast) method (like the one abandoned ten years ago in US but recently re-proposed for Italy) seems already to gives forecast reliabilities of orders of magnitude greater.

  15. Characterization of Transiting Exoplanets by Way of Differential Photometry

    ERIC Educational Resources Information Center

    Cowley, Michael; Hughes, Stephen

    2014-01-01

    This paper describes a simple activity for plotting and characterizing the light curve from an exoplanet transit event by way of differential photometry analysis. Using free digital imaging software, participants analyse a series of telescope images with the goal of calculating various exoplanet parameters, including size, orbital radius and…

  16. Stellar-coronagraph observations of the phase curves of exoplanets

    NASA Astrophysics Data System (ADS)

    Frolov, P. N.; Anan'eva, V. I.; Ksanfomality, L. V.; Tavrov, A. V.

    2015-12-01

    Over the two decades that have passed since the discovery of the first extrasolar planet 51 Peg b, almost all of the newly discovered exoplanets have been found either by radial velocity observations or by the transit method. Here we discuss the possibilities for observation of exoplanets and their phase curves by stellar coronagraphy, which has proven effective in experiments.

  17. Earth-Like Exoplanets: The Science of NASA's Navigator Program

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R. (Editor); Traub, Wesley A. (Editor)

    2006-01-01

    This book outlines the exoplanet science content of NASA's Navigator Program, and it identifies the exoplanet research priorities. The goal of Navigator Program missions is to detect and characterize Earth-like planets in the habitable zone of nearby stars and to search for signs of life on those planets.

  18. High-resolution transmission spectrum of the Earth's atmosphere-seeing Earth as an exoplanet using a lunar eclipse

    NASA Astrophysics Data System (ADS)

    Yan, F.; Fosbury, R. A. E.; Petr-Gotzens, M. G.; Zhao, G.; Wang, W.; Wang, L.; Liu, Y.; Pallé, E.

    2015-04-01

    With the rapid developments in the exoplanet field, more and more terrestrial exoplanets are being detected. Characterizing their atmospheres using transit observations will become a key datum in the quest for detecting an Earth-like exoplanet. The atmospheric transmission spectrum of our Earth will be an ideal template for comparison with future exo-Earth candidates. By observing a lunar eclipse, which offers a similar configuration to that of an exoplanet transit, we have obtained a high-resolution and high signal-to-noise ratio (SNR) transmission spectrum of the Earth's atmosphere. This observation was performed with the High Resolution Spectrograph at Xinglong Station, China during the total lunar eclipse in December 2011. We compare the observed transmission spectrum with our atmospheric model, and determine the characteristics of the various atmospheric species in detail. In the transmission spectrum, O2, O3, O2 . O2, NO2 and H2O are detected, and their column densities are measured and compared with the satellites data. The visible Chappuis band of ozone produces the most prominent absorption feature, which suggests that ozone is a promising molecule for the future exo-Earth characterization. Due to the high resolution and high SNR of our spectrum, several novel details of the Earth atmosphere's transmission spectrum are presented. The individual O2 lines are resolved and O2 isotopes are clearly detected. Our new observations do not confirm the absorption features of Ca II or Na I which have been reported in previous lunar eclipse observations. However, features in these and some other strong Fraunhofer line positions do occur in the observed spectrum. We propose that these are due to a Raman-scattered component in the forward-scattered sunlight appearing in the lunar umbral spectrum. Water vapour absorption is found to be rather weak in our spectrum because the atmosphere we probed is relatively dry, which prompts us to discuss the detectability of water

  19. The Exoplanet Census: A General Method Applied to Kepler

    NASA Astrophysics Data System (ADS)

    Youdin, Andrew N.

    2011-11-01

    We develop a general method to fit the underlying planetary distribution function (PLDF) to exoplanet survey data. This maximum likelihood method accommodates more than one planet per star and any number of planet or target star properties. We apply the method to announced Kepler planet candidates that transit solar-type stars. The Kepler team's estimates of the detection efficiency are used and are shown to agree with theoretical predictions for an ideal transit survey. The PLDF is fit to a joint power law in planet radius, down to 0.5 R ⊕, and orbital period, up to 50 days. The estimated number of planets per star in this sample is ~0.7-1.4, where the range covers systematic uncertainties in the detection efficiency. To analyze trends in the PLDF we consider four planet samples, divided between shorter and longer periods at 7 days and between large and small radii at 3 R ⊕. The size distribution changes appreciably between these four samples, revealing a relative deficit of ~3 R ⊕ planets at the shortest periods. This deficit is suggestive of preferential evaporation and sublimation of Neptune- and Saturn-like planets. If the trend and explanation hold, it would be spectacular observational support of the core accretion and migration hypotheses, and would allow refinement of these theories.

  20. THE EXOPLANET CENSUS: A GENERAL METHOD APPLIED TO KEPLER

    SciTech Connect

    Youdin, Andrew N.

    2011-11-20

    We develop a general method to fit the underlying planetary distribution function (PLDF) to exoplanet survey data. This maximum likelihood method accommodates more than one planet per star and any number of planet or target star properties. We apply the method to announced Kepler planet candidates that transit solar-type stars. The Kepler team's estimates of the detection efficiency are used and are shown to agree with theoretical predictions for an ideal transit survey. The PLDF is fit to a joint power law in planet radius, down to 0.5 R{sub Circled-Plus }, and orbital period, up to 50 days. The estimated number of planets per star in this sample is {approx}0.7-1.4, where the range covers systematic uncertainties in the detection efficiency. To analyze trends in the PLDF we consider four planet samples, divided between shorter and longer periods at 7 days and between large and small radii at 3 R{sub Circled-Plus }. The size distribution changes appreciably between these four samples, revealing a relative deficit of {approx}3 R{sub Circled-Plus} planets at the shortest periods. This deficit is suggestive of preferential evaporation and sublimation of Neptune- and Saturn-like planets. If the trend and explanation hold, it would be spectacular observational support of the core accretion and migration hypotheses, and would allow refinement of these theories.

  1. Bathymetric survey of water reservoirs in north-eastern Brazil based on TanDEM-X satellite data.

    PubMed

    Zhang, Shuping; Foerster, Saskia; Medeiros, Pedro; de Araújo, José Carlos; Motagh, Mahdi; Waske, Bjoern

    2016-11-15

    Water scarcity in the dry season is a vital problem in dryland regions such as northeastern Brazil. Water supplies in these areas often come from numerous reservoirs of various sizes. However, inventory data for these reservoirs is often limited due to the expense and time required for their acquisition via field surveys, particularly in remote areas. Remote sensing techniques provide a valuable alternative to conventional reservoir bathymetric surveys for water resource management. In this study single pass TanDEM-X data acquired in bistatic mode were used to generate digital elevation models (DEMs) in the Madalena catchment, northeastern Brazil. Validation with differential global positioning system (DGPS) data from field measurements indicated an absolute elevation accuracy of approximately 1m for the TanDEM-X derived DEMs (TDX DEMs). The DEMs derived from TanDEM-X data acquired at low water levels show significant advantages over bathymetric maps derived from field survey, particularly with regard to coverage, evenly distributed measurements and replication of reservoir shape. Furthermore, by mapping the dry reservoir bottoms with TanDEM-X data, TDX DEMs are free of emergent and submerged macrophytes, independent of water depth (e.g. >10m), water quality and even weather conditions. Thus, the method is superior to other existing bathymetric mapping approaches, particularly for inland water bodies. The proposed approach relies on (nearly) dry reservoir conditions at times of image acquisition and is thus restricted to areas that show considerable water levels variations. However, comparisons between TDX DEM and the bathymetric map derived from field surveys show that the amount of water retained during the dry phase has only marginal impact on the total water volume derivation from TDX DEM. Overall, DEMs generated from bistatic TanDEM-X data acquired in low water periods constitute a useful and efficient data source for deriving reservoir bathymetry and show

  2. Carbon cycles on super-Earth exoplanets

    NASA Astrophysics Data System (ADS)

    Wordsworth, Robin; Pierrehumbert, Raymond; Hébrard, Eric

    2013-04-01

    On Earth, the long-term global carbon cycle primarily consists of a balance between volcanic emissions of CO2 and the formation and burial of carbonate rocks (the carbonate-silicate weathering 'thermostat'), with important modifications due to the biosphere. On gas giant planets, the carbon cycle is driven by photolysis in the upper atmosphere: methane is converted to longer-chain hydrocarbons such as acetylene, ethane and soot particles, which are then dissociated by thermolysis lower in the atmosphere where the temperature and pressure are much higher. Hydrogen escape rates on terrestrial exoplanets are predicted to be a strong function of their orbital distances, ages and masses. In particular, larger exoplanets around stars with lower extreme ultraviolet (XUV) emissions may have significant difficulties in losing their hydrogen to space, and hence may retain H2 envelopes of varying mass. It is therefore interesting to investigate what happens in the transition between the terrestrial and hydrogen-dominated regimes. Here we present a first attempt to investigate the range of scenarios that occur for terrestrial mass (~1-10 ME) planets with varying hydrogen escape rates. We are developing climate evolution simulations for a range of cases that account for surface processes (primarily outgassing and weathering), hydrogen escape to space, and simple atmospheric chemistry. We discuss various feedbacks that may occur as a result of the influences of CO2, CH4 and H2 on atmospheric and surface temperatures. Finally, we discuss the implications of our results for future observations, with a particular emphasis on the search for biosignatures on exoplanets similar to the Earth.

  3. Collaboration and Competition in Exoplanet Research

    NASA Technical Reports Server (NTRS)

    Beichman, Charles

    2009-01-01

    Collaboration and competition are strong driving forces in the modern search for exoplanets, appears between individuals, agencies and nations as well as between observing techniques and theoretical interpretation. I will argue that these forces, taken in balance, are beneficial to the field and are partly responsible for the rapid progress in the search for planets and ultimately the search for life beyond the solar system. Specific examples will include indirect detection of Earth analogs from ground and space and the direct detection of gas giant and terrestrial planets.

  4. Transit of Exoplanet WASP 24-b

    NASA Astrophysics Data System (ADS)

    Thompson, Robert; Turner, J.; Hardegree-Ullman, K.; Raphael, B.; Smith, C.; Towner, A. P.; Walker-LaFollette, A.; Wallace, S.; Berkson, E.; Greenwood, N.

    2013-01-01

    We observed two primary transits of exoplanet WASP-24b with the Steward Observatory 1.55 meter Kuiper Telescope in the R photometric band. With our results, we have been able to produce a more complete light curve and refine previously published values for the planet’s mass, radius, density, surface gravity, Safronov number, equilibrium temperature, orbital distance, orbital inclination. One of the goals of this project is to give undergraduates opportunity to learn astronomical observing techniques, get practical experience using a research-class telescope, and perform data reduction using IRAF and Transit Analysis Package (TAP).

  5. Dispersed interferometry for infrared exoplanet velocimetry

    NASA Astrophysics Data System (ADS)

    Edelstein, Jerry; Muterspaugh, Matthew W.; Erskine, David; Marckwordt, Mario; Feuerstein, W. Michael; Mercer, Tony; Czeszumska, Agnieszka; Schwer, Jaclyn; Halverson, Sam; Lloyd, James P.; Muirhead, Philip S.; Wright, Jason T.; Herter, Terry

    2008-07-01

    The TEDI (TripleSpec - Exoplanet Discovery Instrument) is the first instrument dedicated to the near infrared radial velocity search for planetary companions to low-mass stars. The TEDI uses Externally Dispersed Interferometry (EDI), a combination of interferometry and multichannel dispersive spectroscopy. We have joined a white-light interferometer with the Cornell TripleSpec (0.9 - 2.4 μm) spectrograph at the Palomar Observatory 200" telescope and begun an experimental program to establish both the experimental and analytical techniques required for precision IR velocimetry and the Doppler-search for planets orbiting low mass stars and brown dwarfs.

  6. Brown Dwarfs at the Exoplanet Mass Boundary

    NASA Astrophysics Data System (ADS)

    Faherty, J. K.; Cruz, K. L.; Rice, E. L.; Riedel, A.

    2014-10-01

    Young brown dwarfs and directly-imaged exoplanets have enticingly similar photometric and spectroscopic characteristics, indicating that their cool, low gravity atmospheres should be studied in concert. Similarities between the peculiar shaped H band, near and mid-IR photometry as well as location on color magnitude diagrams provide important clues about how to extract physical properties of planets from current brown dwarf observations. Our team has assigned >30 brown dwarfs to 10-150 Myr nearby moving groups. In so doing, we have discovered important diversity among this extremely low-mass (10 - 30 M_{Jup}) age-calibrated sample indicating that cloud properties play a critical role in their observables.

  7. Advances in exoplanet science from Kepler.

    PubMed

    Lissauer, Jack J; Dawson, Rebekah I; Tremaine, Scott

    2014-09-18

    Numerous telescopes and techniques have been used to find and study extrasolar planets, but none has been more successful than NASA's Kepler space telescope. Kepler has discovered most of the known exoplanets, the smallest planets to orbit normal stars and the planets most likely to be similar to Earth. Most importantly, Kepler has provided us with our first look at the typical characteristics of planets and planetary systems for planets with sizes as small as, and orbits as large as, those of Earth. PMID:25230655

  8. A Desktop Transiting Exoplanet Shimer, Aurnou

    NASA Astrophysics Data System (ADS)

    Shimer, P.; Aurnou, J. M.

    2013-12-01

    We will present, on-site, a small-scale experiment that simulates the transit of an exoplanet across the face of a star. This experiment consists of i) a rotating table with a light source ('star') at the center; ii) a variable length arm affixed to the table; iii) a small cylinder or sphere ('planet') affixed to the end of the arm; iv) a light intensity sensor ('telescope') placed in the system's orbital plane. Using the characteristic dip in light intensity as the transiting body blocks part of the light source, it is possible to invert the data to infer the body's radius.

  9. Scintillation Noise in Exoplanet Transit Photometry

    NASA Astrophysics Data System (ADS)

    Föhring, Dóra; Wilson, Richard; Osborn, James; Dhillon, Vik

    2015-04-01

    Transit photometry is a powerful technique for studying exoplanets. Transit observations from the ground of targets of magnitude V= 10 or brighter, however, are limited by scintillation noise due to Earth's atmosphere. Through turbulence profiling using instruments such as the stereo-SCIDAR, we have shown to able to accurately model scintillation noise, which is essential in order to fully account for the error budget of the observation. Through numerical modelling we find that employing scintillation reducing techniques enables an improvement of a factor between 1.36 — 1.6 on the astrophysical parameters.

  10. Searches for Exoplanets with Gravitational Microlensing

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander

    2016-07-01

    There are different methods for finding exoplanets such as radial spectral shifts, astrometrical measurements, transits, timing etc. Gravitational microlensing (including pixel-lensing) is among the most promising techniques with the potentiality of detecting Earth-like planets at distances about a few astronomical units from their host star. We emphasize the importance of polarization measurements which can help to resolve degeneracies in theoretical models. In particular, the polarization angle could give additional information about the relative position of the lens with respect to the source.

  11. Concept of a small satellite for sub-MeV and MeV all sky survey: the CAST mission

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Ichinohe, Yuto; Takeda, Shin'ichiro; Tajima, Hiroyasu; Kamae, Tuneyoshi; Kokubun, Motohide; Takashima, Takeshi; Tashiro, Makoto; Tamagawa, Toru; Terada, Yukikatsu; Nomachi, Masaharu; Fukazawa, Yasushi; Makishima, Kazuo; Mizuno, Tsunefumi; Mitani, Takefumi; Yoshimitsu, Tetsuo; Watanabe, Shin

    2012-09-01

    MeV and sub-MeV energy band from ~200 keV to ~2 MeV contains rich information of high-energy phenomena in the universe. The CAST (Compton Telescope for Astro and Solar Terrestrial) mission is planned to be launched at the end of 2010s, and aims at providing all-sky map in this energy-band for the first time. It is made of a semiconductor Compton telescope utilizing Si as a scatterer and CdTe as an absorber. CAST provides allsky sub-MeV polarization map for the first time, as well. The Compton telescope technology is based on the design used in the Soft Gamma-ray Detector (SGD) onboard ASTRO-H, characterized by its tightly stacked semiconductor layers to obtain high Compton reconstruction efficiency. The CAST mission is currently planned as a candidate for the small scientific satellite series in ISAS/JAXA, weighting about 500 kg in total. Scalable detector design enables us to consider other options as well. Scientific outcome of CAST is wide. It will provide new information from high-energy sources, such as AGN and/or its jets, supernova remnants, magnetors, blackhole and neutron-star binaries and others. Polarization map will tell us about activities of jets and reflections in these sources, as well. In addition, CAST will simultaneously observe the Sun, and depending on its attitude, the Earth.

  12. A global survey of intense surface plankton blooms and floating vegetation using the European MERIS satellite sensor (Invited)

    NASA Astrophysics Data System (ADS)

    Gower, J. F.; King, S.

    2009-12-01

    The MERIS imager, launched in June 2002 on the European Envisat satellite, has spectral bands which give a new capability for detection of plankton blooms and aquatic vegetation. This should have significant value in detecting these forms of natural hazard. MERIS has now been in orbit long enough to provide significant information on global distributions and trends. We use MERIS data to compute MCI (Maximum Chlorophyll Index), which measures the radiance peak at 709 nm in water-leaving radiance, indicating the presence of a high surface concentration of chlorophyll a against a scattering background. The index is high in “red tide” conditions (intense, visible, surface, plankton blooms) and also when the blooms give rise to buoyant slicks, or when aquatic vegetation is present, leading to a “red edge” step increase in radiance. A bloom search based on MCI has resulted in detection of a variety of events in oceans, coastal waters and lakes round the world, including blooms among Antarctic ice and extensive areas of pelagic vegetation (Sargassum spp.), previously unreported in the scientific literature. This paper gives a summary of the results, showing examples.

  13. Transiting exoplanets and magnetic spots characterized with optical interferometry

    NASA Astrophysics Data System (ADS)

    Ligi, R.; Mourard, D.; Lagrange, A.-M.; Perraut, K.; Chiavassa, A.

    2015-02-01

    Context. Stellar activity causes difficulties in the characterization of transiting exoplanets. In particular, the magnetic spots present on most exoplanet host stars can lead to false detections with radial velocity, photometry, or astrometry techniques. Studies have been performed to quantify their impact on infrared interferometry, but no such studies have been performed in the visible domain. This wavelength domain, however, allows reaching better angular resolution than in the infrared and is also the wavelength most often used for spectroscopic and photometric measurements. Aims: We use a standard case to completely analyse the impact of an exoplanet and a spot on interferometric observables and relate it to current instrument capabilities, taking into account realistic achievable precisions. Methods: We built a numerical code called COMETS using analytical formulae to perform a simple comparison of exoplanet and spot signals. We explored instrumental specificities needed to detect them, such as the required baseline length, the accuracy, and signal-to-noise ratio. We also discuss the impact of exoplanet and spot parameters on squared visibility and phase: exoplanet diameter and size, exoplanet position, spot temperature, star diameter. Results: According to our study, the main improvement to achieve is the instrument sensitivity. The accuracy on squared visibilities has to be improved by a factor 10 to detect an exoplanet of 0.10 mas, leading to <0.5% precision, along with phase measurements of ~5° accuracy beyond the first null of visibility. For an exoplanet of 0.05 mas, accuracies of ~0.1% and ~1° from the first null are required on squared visibilities and phases. Magnetic spots can mimic these signals, leading to false exoplanet characterization. Phase measurements from the third lobe are needed to distinguish between the spot and the exoplanet if they have the same radius. Conclusions: By increasing interferometer sensitivity, more objects will

  14. A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite. I. The observational data

    NASA Astrophysics Data System (ADS)

    Olofsson, A. O. H.; Persson, C. M.; Koning, N.; Bergman, P.; Bernath, P. F.; Black, J. H.; Frisk, U.; Geppert, W.; Hasegawa, T. I.; Hjalmarson, Å.; Kwok, S.; Larsson, B.; Lecacheux, A.; Nummelin, A.; Olberg, M.; Sandqvist, Aa.; Wirström, E. S.

    2007-12-01

    Aims:Spectral line surveys are useful since they allow identification of new molecules and new lines in uniformly calibrated data sets. The subsequent multi-transition analysis will provide improved knowledge of molecular abundances, cloud temperatures and densities, and may also reveal previously unsuspected blends of molecular lines, which otherwise may lead to erroneous conclusions. Nonetheless, large portions of the sub-millimetre spectral regime remain unexplored due to severe absorptions by H{2}O and O{2} in the terrestrial atmosphere. The purpose of the measurements presented here is to cover wavelength regions at and around 0.55 mm - regions largely unobservable from the ground. Methods: Using the Odin astronomy/aeronomy satellite, we performed the first spectral survey of the Orion KL molecular cloud core in the bands 486-492 and 541-576 GHz with rather uniform sensitivity (22-25 mK baseline noise). Odin's 1.1 m size telescope, equipped with four cryo-cooled tuneable mixers connected to broad band spectrometers, was used in a satellite position-switching mode. Two mixers simultaneously observed different 1.1 GHz bands using frequency steps of 0.5 GHz (25 h each). An on-source integration time of 20 h was achieved for most bands. The entire campaign consumed 1100 orbits, each containing one hour of serviceable astro-observation. Results: We identified 280 spectral lines from 38 known interstellar molecules (including isotopologues) having intensities in the range 80 to 0.05 K. An additional 64 weak lines remain unidentified. Apart from the ground state rotational 1{1,0}-1{0,1} transitions of ortho-H{2}O, H{2}18O and H{2}17O, the high energy 6{2,4}-7{1,7} line of para-H{2}O (Eu=867 K) and the HDO(2{0,2}-1{1,1}) line have been observed, as well as the 1{0}-0{1} lines from NH{3} and its rare isotopologue 15NH{3}. We suggest assignments for some unidentified features, notably the new interstellar molecules ND and SH-. Severe blends have been detected in the

  15. Satellite Communication.

    ERIC Educational Resources Information Center

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  16. The Next Generation Virgo Cluster Survey XVI: The Angular Momentum of Dwarf Early-type Galaxies from Globular Cluster Satellites

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa; Li, Biao; Guhathakurta, Puragra; Peng, Eric W.; Ferrarese, Laura; Côté, Patrick; Emsellem, Eric; Gwyn, Stephen; Zhang, Hongxin; Boselli, Alessandro; Cuillandre, Jean-Charles; Jordan, Andres; Liu, Chengze

    2016-05-01

    We analyze the kinematics of six Virgo cluster dwarf early-type galaxies (dEs) from their globular cluster (GC) systems. We present new Keck/DEIMOS spectroscopy for three of them and re-analyze the data found in the literature for the remaining three. We use two independent methods to estimate the rotation amplitude (V rot) and velocity dispersion (σ GC) of the GC systems and evaluate their statistical significance by simulating non-rotating GC systems with the same number of GC satellites and velocity uncertainties. Our measured kinematics agree with the published values for the three galaxies from the literature and, in all cases, some rotation is measured. However, our simulations show that the null hypothesis of being non-rotating GC systems cannot be ruled out. In the case of VCC 1861, the measured V rot and the simulations indicate that it is not rotating. In the case of VCC 1528, the null hypothesis can be marginally ruled out, and thus it might be rotating although further confirmation is needed. In our analysis, we find that, in general, the measured V rot tends to be overestimated and the measured σ GC tends to be underestimated by amounts that depend on the intrinsic V rot/σ GC, the number of observed GCs (N GC), and the velocity uncertainties. The bias is negligible when N GC ≳ 20. In those cases where a large N GC is not available, it is imperative to obtain data with small velocity uncertainties. For instance, errors of ≤2 km s-1 lead to V rot < 10 km s-1 for a system that is intrinsically not rotating.

  17. Light from Exoplanets: Present and Future

    NASA Technical Reports Server (NTRS)

    Deming, Leo

    2010-01-01

    Measurements using the Spitzer Space Telescope have revealed thermal emission from planets orbiting very close to solar-type stars, primarily transiting "hot Jupiter" exoplanets. The thermal emission spectrum of these worlds has been measured by exploiting their secondary eclipse. Also, during transit of the planet, absorption signatures from atoms and molecules in the planet's atmosphere are imprinted onto the spectrum of the star. Results to date from transit and eclipse studies show that the hot Jupiters often have significant haze and cloud components in their atmospheres, and the temperature structure can often be inverted, i.e. temperature is rising with height. New and very strongly irradiated examples of hot Jupiters have been found that are being stripped of their atmospheres by tidal forces from the star. In parallel, transiting superEarth exoplanets are being discovered, and their atmospheres should also be amenable to study using transit techniques. The 2014 launch of the James Webb Space Telescope will clarify the physical nature of hot Jupiters, and will extend transit and eclipse studies to superEarths orbiting in the habitable zones of lower main sequence stars.

  18. Exoplanet Curriculum at the International Space University

    NASA Astrophysics Data System (ADS)

    Burke, J. D.; Hill, H. G. M.

    2012-04-01

    Rapidly-expanding knowledge of exoplanets is providing a huge opportunity for education at all levels. In addition to the intrinsic scientific interest of finding other planetary systems and developing testable hypotheses about stellar evolution, based for the first time in history on more than one example, there is the prospect of finding habitats for other life. Even if actual life signatures cannot yet be unambiguously detected, just a credible possibility is enough to catalyze new discussions and stimulate new ideas emerging from the rich background of science fiction and the ancient concept of a plurality of inhabited worlds. At the International Space University, a graduate-level institution devoted to identifying, informing and encouraging young professionals from throughout the world, this exploding new field of science provides a grand opportunity for seminars and other activities engaging students in creative thinking about the vast human implications of a populated cosmos. Once a planet's existence and orbit are confirmed by long-continued observations, it may be a suitable object for spectrometry and other techniques to begin finding characteristics of its interior, atmosphere, magnetosphere, possibly even oceans. These observations require not only very advanced instrumentation and data methods but also patience and skill in operations both on Earth and in space. They can serve as an organizing principle for education across all of the specialties represented at ISU. In this paper we discuss the ISU curriculum, focusing on those parts of it that can benefit from the interdisciplinary expansion enabled by exoplanet discoveries.

  19. The science of exoplanets and their systems.

    PubMed

    Lammer, Helmut; Blanc, Michel; Benz, Willy; Fridlund, Malcolm; Foresto, Vincent Coudé du; Güdel, Manuel; Rauer, Heike; Udry, Stephane; Bonnet, Roger-Maurice; Falanga, Maurizio; Charbonneau, David; Helled, Ravit; Kley, Willy; Linsky, Jeffrey; Elkins-Tanton, Linda T; Alibert, Yann; Chassefière, Eric; Encrenaz, Therese; Hatzes, Artie P; Lin, Douglas; Liseau, Rene; Lorenzen, Winfried; Raymond, Sean N

    2013-09-01

    A scientific forum on "The Future Science of Exoplanets and Their Systems," sponsored by Europlanet and the International Space Science Institute (ISSI) and co-organized by the Center for Space and Habitability (CSH) of the University of Bern, was held during December 5 and 6, 2012, in Bern, Switzerland. It gathered 24 well-known specialists in exoplanetary, Solar System, and stellar science to discuss the future of the fast-expanding field of exoplanetary research, which now has nearly 1000 objects to analyze and compare and will develop even more quickly over the coming years. The forum discussions included a review of current observational knowledge, efforts for exoplanetary atmosphere characterization and their formation, water formation, atmospheric evolution, habitability aspects, and our understanding of how exoplanets interact with their stellar and galactic environment throughout their history. Several important and timely research areas of focus for further research efforts in the field were identified by the forum participants. These scientific topics are related to the origin and formation of water and its delivery to planetary bodies and the role of the disk in relation to planet formation, including constraints from observations as well as star-planet interaction processes and their consequences for atmosphere-magnetosphere environments, evolution, and habitability. The relevance of these research areas is outlined in this report, and possible themes for future ISSI workshops are identified that may be proposed by the international research community over the coming 2-3 years. PMID:24015759

  20. M Dwarf Flares: Exoplanet Detection Implications

    NASA Astrophysics Data System (ADS)

    Tofflemire, B. M.; Wisniewski, J. P.; Hilton, E. J.; Kowalski, A. F.; Kundurthy, P.; Schmidt, S. J.; Hawley, S. L.; Holtzman, J. A.

    2011-12-01

    Low mass stars such as M dwarfs have become prime targets for exoplanet transit searches as their low luminosities and small stellar radii could enable the detection of super-Earths residing in their habitable zones. While promising transit targets, M dwarfs are also inherently variable and can exhibit up to ˜6 magnitude flux enhancements in the optical U-band. This is significantly higher than the predicted transit depths of habitable zone super-Earths (0.005 magnitude flux decrease). The behavior of flares at infrared (IR) wavelengths, particularly those likely to be used to study and characterize M dwarf exoplanets using facilities such as the James Web Space Telescope (JWST), remains largely unknown. To address these uncertainties, we are executing a coordinated, contemporaneous monitoring program of the optical and IR flux of M dwarfs known to regularly flare. A suite of telescopes located at the Kitt Peak National Observatory and the Apache Point Observatory are used for the observations. We present the initial results of this program.

  1. Exoplanet Science in the National Science Olympiad

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Young, Donna

    2015-11-01

    The National Science Olympiad is one of the United States' largest science competitions, reaching over 6,000 schools in 48 states. The Olympiad includes a wide variety of events, stretching a full range of potential future STEM careers, from biological sciences to engineering to earth and space sciences. The Astronomy event has been a mainstay at the high school level for well over a decade, and nominally focuses on aspects of stellar evolution. For the 2014-2015 competition season, the event focus was aligned to include exoplanet discovery and characterization along with star formation. Teams studied both the qualitative features of exoplanets and exoplanetary systems and the quantitative aspects behind their discovery and characterization, including basic calculations with the transit and radial velocity methods. Students were also expected to have a qualitative understanding of stellar evolution and understand the differences between classes of young stars including T Tauri and FU Orionis variables, and Herbig Ae/Be stars. Based on the successes of this event topic, we are continuing this event into the 2015-2016 academic year. The key modification is the selection of new exoplanetary systems for students to research. We welcome feedback from the community on how to improve the event and the related educational resources that are created for Science Olympiad students and coaches. We also encourage any interested community members to contact your regional or state Science Olympiad tournament directors and volunteer to organize competitions and supervise events locally.

  2. Technology Enabling the First 100 Exoplanets

    NASA Astrophysics Data System (ADS)

    Marcy, Geoffrey W.

    2014-01-01

    The discoveries of the first 100 exoplanets by precise radial velocities in the late 1990's at Lick Observatory and Observatoire de Haute-Provence were enabled by several technological advances and a cultural one. A key ingredient was a cross-dispersed echelle spectrometer at a stable, coude focus, with a CCD detector, offering high spectral resolution, large wavelength coverage, and a linear response to photons. A second ingredient was a computer capable of storing the megabyte images from such spectrometers and analyzing them for Doppler shifts. Both Lick and OHP depended on these advents. A third ingredient was a stable wavelength calibration. Here, two technologies emerged independently, with iodine gas employed by Marcy's group (used first by solar physicists doing helioseismology) and simultaneous thorium-argon spectra (enabled by fiber optics) used by Mayor's group. A final ingredient was a new culture emerging in the 1990's of forward-modeling of spectra on computers, enabled by the well-behaved photon noise of CCDs, giving Poisson errors amenable to rigorous statistical algorithms for measuring millipixel Doppler shifts. The prospect of detecting the 12 meter/sec reflex velocity (1/100 pixel) of a Jupiter-like planet was considered impossible, except to a few who asked, "What actually limits Doppler precision?". Inspired insights were provided by Robert Howard, Paul Schechter, Bruce Campbell, and Gordon Walker, leading to the first 100 exoplanets.

  3. Exploring exoplanet populations with NASA's Kepler Mission.

    PubMed

    Batalha, Natalie M

    2014-09-01

    The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration's long-term goal of finding habitable environments beyond the solar system. PMID:25049406

  4. Amateur and Professional Astronomer Collaboration Exoplanet Research Programs and Techniques

    NASA Astrophysics Data System (ADS)

    Bissinger, R.

    2007-05-01

    In 1995 the breakthrough announcement was made that a planet had been discovered orbiting a star in the constellation Pegasus. Prior to that time, for decades astronomers had searched in vain to confirm that planets existed around any other star besides our own Sun. Yet it was a mere five years after the first exoplanet discovery that the first amateur astronomers observed a transit of an exoplanet using a 16-inch (40 cm) telescope in Finland. The realization that amateur astronomers could in fact detect exoplanets lead to the formation of transitsearch. org, the first amateur/ professional collaboration to discover exoplanets. In the ensuing years numerous other such collaborations have been formed and dozens of amateur astronomers around the world now regularly observe stars identified by professional astronomers as possibly harboring exoplanets. This paper summarizes the more notable amateur and professional collaborations now ongoing to discover and characterize exoplanets. Tools and techniques used by amateur astronomers in such research are reviewed with an eye towards how amateur astronomers may soon help discover the first earth-sized exoplanet capable of supporting life as we know it.

  5. Network global navigation satellite system surveys to harmonize American and Canadian datum for the Lake Champlain Basin

    USGS Publications Warehouse

    Flynn, Robert H.; Rydlund, Paul H.; Martin, Daniel J.

    2016-01-01

    Lake-gage water-surface elevations determined during the 3 days of surveys were converted to water-surface elevations referenced to the North American Vertical Datum of 1988 by using calculated offsets and historical water-surface elevations. In this report, an “offset” refers to the adjustment that needs to be applied to published data from a particular gage to produce elevation data referenced to the North American Vertical Datum of 1988. Offsets presented in this report can be used in the evaluation of water-surface elevations in a common datum for Lake Champlain and the Richelieu River. In addition, the water-level data referenced to the common datum (as determined from the offsets) may be used to calibrate flow models and support future modeling studies developed for Lake Champlain and the Richelieu River.

  6. Verification of applicability of the Trimble RTX satellite technology with xFill function in establishing surveying control networks

    NASA Astrophysics Data System (ADS)

    Krzyżek, Robert

    2013-12-01

    The paper presents the results of real time measurements of test geodetic control network points using the RTK GPS and RTX Extended technologies. The Trimble RTX technology uses the xFill function, which enables real measurements without the need for constant connection with the ASG EUPOS system reference stations network. Comparative analyses of the results of measurements using the methods were performed and they were compared with the test control network data assumed to be error-free. Although the Trimble RTX technology is an innovative measurement method which is rarely used now, the possibilities it provides in surveying works, including building geodetic control networks, are satisfactory and it will certainly contribute to improving the organisation of surveying works. W pracy przedstawiono wyniki pomiarów w czasie rzeczywistym punktów osnowy testowej z wykorzystaniem technologii RTK GPS oraz RTX Extended. W technologii Trimble RTX wykorzystano funkcję xFill, która daje możliwości realnego wykonywania pomiaru bez konieczności stałej łączności z siecią stacji referencyjnych systemu ASG EUPOS. Wykonano analizy porównawcze wyników pomiaru między metodami oraz odniesiono je do danych osnowy testowej, przyjętych za bezbłędne. Choć technologia Trimble RTX jest innowacyjną metodą pomiaru i jeszcze rzadko stosowaną, to możliwości jakie daje w realizacjach prac geodezyjnych, w tym zakładaniu osnów pomiarowych, są bardzo zadawalające i z pewnością przyczyni się do jeszcze lepszej i bardziej ekonomicznej organizacji prac geodezyjnych.

  7. Colors of Alien Worlds from Direct Imaging Exoplanet Missions

    NASA Astrophysics Data System (ADS)

    Hu, Renyu

    2015-08-01

    Future direct-imaging exoplanet missions such as WFIRST/AFTA, Exo-C, and Exo-S will measure the reflectivity of exoplanets at visible wavelengths. Most of the exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These “cold” exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. I find the mixing ratio of methane and the pressure level of the uppermost cloud deck on these planets can be uniquely determined from their reflection spectra, with moderate spectral resolution, if the cloud deck is between 0.6 and 1.5 bars. The existence of this unique solution is useful for exoplanet direct imaging missions for several reasons. First, the weak bands and strong bands of methane enable the measurement of the methane mixing ratio and the cloud pressure, although an overlying haze layer can bias the estimate of the latter. Second, the cloud pressure, once derived, yields an important constraint on the internal heat flux from the planet, and thus indicating its thermal evolution. Third, water worlds having H2O-dominated atmospheres are likely to have water clouds located higher than the 10-3 bar pressure level, and muted spectral absorption features. These planets would occupy a confined phase space in the color-color diagrams, likely distinguishable from H2-rich giant exoplanets by broadband observations. Therefore, direct-imaging exoplanet missions may offer the capability to broadly distinguish H2-rich giant exoplanets versus H2O-rich super-Earth exoplanets, and to detect ammonia and/or water clouds and methane gas in their atmospheres.

  8. Colors of Alien Worlds from Direct Imaging Exoplanet Missions

    NASA Astrophysics Data System (ADS)

    Hu, Renyu

    2016-01-01

    Future direct-imaging exoplanet missions such as WFIRST will measure the reflectivity of exoplanets at visible wavelengths. Most of the exoplanets to be observed will be located further away from their parent stars than is Earth from the Sun. These "cold" exoplanets have atmospheric environments conducive for the formation of water and/or ammonia clouds, like Jupiter in the Solar System. I find the mixing ratio of methane and the pressure level of the uppermost cloud deck on these planets can be uniquely determined from their reflection spectra, with moderate spectral resolution, if the cloud deck is between 0.6 and 1.5 bars. The existence of this unique solution is useful for exoplanet direct imaging missions for several reasons. First, the weak bands and strong bands of methane enable the measurement of the methane mixing ratio and the cloud pressure, although an overlying haze layer can bias the estimate of the latter. Second, the cloud pressure, once derived, yields an important constraint on the internal heat flux from the planet, and thus indicating its thermal evolution. Third, water worlds having H2O-dominated atmospheres are likely to have water clouds located higher than the 10-3 bar pressure level, and muted spectral absorption features. These planets would occupy a confined phase space in the color-color diagrams, likely distinguishable from H2-rich giant exoplanets by broadband observations. Therefore, direct-imaging exoplanet missions may offer the capability to broadly distinguish H2-rich giant exoplanets versus H2O-rich super-Earth exoplanets, and to detect ammonia and/or water clouds and methane gas in their atmospheres.

  9. Search for Life Beyond the Solar System. Exoplanets, Biosignatures & Instruments

    NASA Astrophysics Data System (ADS)

    Apai, Daniel; Gabor, Pavel

    2014-03-01

    Motivated by the rapidly increasing number of known Earth-sized planets, the increasing range of extreme conditions in which life on Earth can persist, and the progress toward a technology that will ultimately enable the search for life on exoplanets, the Vatican Observatory and the Steward Observatory announce a major conference entitled The Search for Life Beyond the Solar System: Exoplanets, Biosignatures & Instruments. The goal of the conference is to bring together the interdisciplinary community required to address this multi-faceted challenge: experts on exoplanet observations, early and extreme life on Earth, atmospheric biosignatures, and planet-finding telescopes.

  10. THESIS: the terrestrial habitable-zone exoplanet spectroscopy infrared spacecraft

    NASA Astrophysics Data System (ADS)

    Swain, Mark R.; Vasisht, Gautam; Henning, Thomas; Tinetti, Giovanna; Beaulieu, Jean-Phillippe

    2010-07-01

    THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a medium/Probe class exoplanet mission. Building on the recent Spitzer successes in exoplanet characterization, THESIS would extend these types of measurements to super-Earth-like planets. A strength of the THESIS concept is simplicity, low technical risk, and modest cost. The mission concept has the potential to dramatically advance our understanding of conditions on extrasolar worlds and could serve as a stepping stone to more ambitious future missions. We envision this mission as a joint US-European effort with science objectives that resonate with both the traditional astronomy and planetary science communities.

  11. Latest Results From the K2 Exoplanet Survey

    NASA Astrophysics Data System (ADS)

    Crossfield, Ian; Petigura, Erik; Schlieder, Joshua E.; Howard, Andrew; Sinukoff, Evan; Aller, Kimberly Mei; Beichman, Charles A.; Ciardi, David R.; Crepp, Justin R.; Dressing, Courtney D.; Hansen, Bradley M.; Henning, Thomas; Isaacson, Howard T.; Lepine, Sebastien; Liu, Michael C.; Martinez, Arturo Omar; Obermeier, Christian; Werner, Michael W.

    2016-01-01

    For the past year, the K2 mission has used the repurposed Kepler spacecraft to obtain precise time-series photometry in a succession of fields for 80 days each. Our team is using K2 to identify new transiting extrasolar planets in order to: find targets for atmospheric characterization via transmission and eclipse spectroscopy with HST and JWST; find RV targets to measure the exoplanetary mass/radius relationship and constrain bulk compositions; and measure planet occurrence frequencies as a function of stellar environment,age, metallicity, and spectral type. To date we are finding roughly 50 planet candidates per K2 field including numerous multi-planet systems. In this talk I will describe our program methodology and present updated results from our transit search, validation efforts, and followup characterization of these exciting new planetary systems.

  12. Exoplanet atmosphere. Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy.

    PubMed

    Stevenson, Kevin B; Désert, Jean-Michel; Line, Michael R; Bean, Jacob L; Fortney, Jonathan J; Showman, Adam P; Kataria, Tiffany; Kreidberg, Laura; McCullough, Peter R; Henry, Gregory W; Charbonneau, David; Burrows, Adam; Seager, Sara; Madhusudhan, Nikku; Williamson, Michael H; Homeier, Derek

    2014-11-14

    Exoplanets that orbit close to their host stars are much more highly irradiated than their solar system counterparts. Understanding the thermal structures and appearances of these planets requires investigating how their atmospheres respond to such extreme stellar forcing. We present spectroscopic thermal emission measurements as a function of orbital phase ("phase-curve observations") for the highly irradiated exoplanet WASP-43b spanning three full planet rotations using the Hubble Space Telescope. With these data, we construct a map of the planet's atmospheric thermal structure, from which we find large day-night temperature variations at all measured altitudes and a monotonically decreasing temperature with pressure at all longitudes. We also derive a Bond albedo of 0.18(-0.12)(+0.07) and an altitude dependence in the hot-spot offset relative to the substellar point. PMID:25301972

  13. A New Analysis of the Exoplanet Hosting System HD 6434

    NASA Astrophysics Data System (ADS)

    Hinkel, Natalie R.; Kane, Stephen R.; Pilyavsky, Genady; Boyajian, Tabetha S.; James, David J.; Naef, Dominique; Fischer, Debra A.; Udry, Stephane

    2015-12-01

    The current goal of exoplanetary science is not only focused on detecting but characterizing planetary systems in hopes of understanding how they formed, evolved, and relate to the solar system. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) combines both radial velocity (RV) and photometric data in order to achieve unprecedented ground-based precision in the fundamental properties of nearby, bright, exoplanet-hosting systems. Here we discuss HD 6434 and its planet, HD 6434b, which has a Mp sin i = 0.44 MJ mass and orbits every 22.0170 days with an eccentricity of 0.146. We have combined previously published RV data with new measurements to derive a predicted transit duration of ∼6 hr, or 0.25 days, and a transit probability of 4%. Additionally, we have photometrically observed the planetary system using both the 0.9 and 1.0 m telescopes at the Cerro Tololo Inter-American Observatory, covering 75.4% of the predicted transit window. We reduced the data using the automated TERMS Photometry Pipeline, developed to ensure consistent and accurate results. We determine a dispositive null result for the transit of HD 6434b, excluding the full transit to a depth of 0.9% and grazing transit due to impact parameter limitations to a depth of 1.6%.

  14. Period Recoverability of Exoplanets Using LSST: A Yearly Yield Analysis

    NASA Astrophysics Data System (ADS)

    Jacklin, Savannah; Lund, Michael; Pepper, Joshua; Stassun, Keivan

    2016-01-01

    The Large Synoptic Survey Telescope (LSST) will generate light curves for approximately 1 billion stars over the course of its ten year initial mission. The majority of LSST light curves will contain about 1000 data points (so-called regular cadence) while select fields will have 10000 data points (deep-drilling cadence). Lund et al. (2015) demonstrated that several configurations of exoplanetary systems could be recovered using LSST in areas currently underrepresented in planet searches; i.e. the galactic bulge, the Magellanic clouds, and nearby red dwarfs. A fundamental question in working with LSST data is how time-sensitive detection of transient phenomena will affect the rate and type of expected scientific discoveries. Specifically, we aim to examine how quickly significant science results be achievable over the course of LSST's ten-year mission. We apply a methodology established in Jacklin et al. (2015) designed to examine hot Jupiter detectability over a range of planetary periods and radii in LSST's ten-year light curves. Here, we conduct a similar analysis on a yearly basis in order to examine the rate of detection over the course of the LSST mission. We specifically report on how the LSST yield of exoplanet detections evolves on a year-by-year basis for a variety of systems.

  15. Dynamics of water mass in the Central Siberia permafrost zone based on gravity survey from the grace satellites

    NASA Astrophysics Data System (ADS)

    Im, S. T.; Kharuk, V. I.

    2015-12-01

    The GRACE gravimetric survey is applied to analyze the equivalent water mass anomalies (EWMAs) in the permafrost zone of Central Siberia. Variations in EWMAs are related to precipitation, air temperature, potential evapotranspiration, and soil composition (drainage conditions). The EWMA dynamics demonstrates two periods. The period of 2003-2008 is characterized by a positive trend. The one of 2008-2012 shows a decrease in the trend with a simultaneous increase by 30-70% of EWMA dispersion in the background of growth (up to 40%) of precipitation variability. The rate of water mass increment demonstrates a positive correlation with the sand and gravel contents in soil ( r = 0.72) and a negative one with clay content ( r =-0.69 to-0.77). For Taimyr Peninsula, there is a deficit of residual water mass (~250 mm for the period of 2012-2013) indicating the deeper thawing of permafrost soils. In the Central Siberian Plateau, the indicator of more intensive permafrost thawing (and that of an increase in active layer thickness) is a considerable trend of water mass increase (2003-2008). The increasing trend of the largest Siberian rivers (Yenisei and Lena) is revealed in the period of 2003-2012.

  16. DIRECT IMAGING OF A COLD JOVIAN EXOPLANET IN ORBIT AROUND THE SUN-LIKE STAR GJ 504

    SciTech Connect

    Kuzuhara, M.; Tamura, M.; Kandori, R.; Hori, Y.; Suzuki, R.; Suenaga, T.; Takahashi, Y. H.; Kwon, J.; Kudo, T.; Janson, M.; Brandt, T. D.; Spiegel, D.; Burrows, A.; Turner, E. L.; Moro-Martin, A.; Thalmann, C.; Biller, B.; Henning, T.; Carson, J.; McElwain, M. W.; and others

    2013-09-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages (<50 Myr) and atmospheric properties, with temperatures of 800-1800 K and very red colors (J - H > 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct-imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160{sup +350}{sub -60} Myr, GJ 504b has an estimated mass of 4{sup +4.5}{sub -1.0} Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of {approx}30 AU predicted for the core accretion mechanism. GJ 504b is also significantly cooler (510{sup +30}{sub -20} K) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets as well as their atmospheric properties.

  17. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-Like Star GJ 504

    NASA Technical Reports Server (NTRS)

    Kuzuhara, M.; Tamura, M.; Kudo, T.; Janson, M; Kandori, R.; Brandt, T. D.; Thalmann, C.; Spiegel, D.; Biller, B.; Carson, J.; Hori, Y.; Suzuki, R.; Burrows, A.; Henning, T.; Turner, E. L.; McElwain, M. W.; Moro-Martin, A.; Suenaga, T.; Takahashi, Y. H.; Kwon, J.; Lucas, P.; Abe, L.; Brandner, W.; Grady, C. A.; Serabyn, E.

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages (<50 Myr) and atmospheric properties, with temperatures of 800-1800 K and very red colors (J -H > 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160(+350/-60) Myr, GJ 504 b has an estimated mass of 4(+4.5/-1.0) Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of approx.. 30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510(+30/-20) K)) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.

  18. VLT Detects First Superstorm on Exoplanet

    NASA Astrophysics Data System (ADS)

    2010-06-01

    Astronomers have measured a superstorm for the first time in the atmosphere of an exoplanet, the well-studied "hot Jupiter" HD209458b. The very high-precision observations of carbon monoxide gas show that it is streaming at enormous speed from the extremely hot day side to the cooler night side of the planet. The observations also allow another exciting "first" - measuring the orbital speed of the exoplanet itself, providing a direct determination of its mass. The results appear this week in the journal Nature. "HD209458b is definitely not a place for the faint-hearted. By studying the poisonous carbon monoxide gas with great accuracy we found evidence for a super wind, blowing at a speed of 5000 to 10 000 km per hour" says Ignas Snellen, who led the team of astronomers. HD209458b is an exoplanet of about 60% the mass of Jupiter orbiting a solar-like star located 150 light-years from Earth towards the constellation of Pegasus (the Winged Horse). Circling at a distance of only one twentieth the Sun-Earth distance, the planet is heated intensely by its parent star, and has a surface temperature of about 1000 degrees Celsius on the hot side. But as the planet always has the same side to its star, one side is very hot, while the other is much cooler. "On Earth, big temperature differences inevitably lead to fierce winds, and as our new measurements reveal, the situation is no different on HD209458b," says team member Simon Albrecht. HD209458b was the first exoplanet to be found transiting: every 3.5 days the planet moves in front of its host star, blocking a small portion of the starlight during a three-hour period. During such an event a tiny fraction of the starlight filters through the planet's atmosphere, leaving an imprint. A team of astronomers from the Leiden University, the Netherlands Institute for Space Research (SRON), and MIT in the United States, have used ESO's Very Large Telescope and its powerful CRIRES spectrograph to detect and analyse these faint

  19. X-Exoplanets: An X-ray and EUV Database for Exoplanets

    NASA Astrophysics Data System (ADS)

    Sanz-Forcada, J.; García-Álvarez, D.; Velasco, A.; Solano, E.; Ribas, I.; Micela, G.; Pollock, A.

    2010-10-01

    Extreme ultraviolet (EUV) and X-ray emission is of great importance in several phenomena related to the formation of planetary systems and the atmospheres of planets. The atmospheric composition and the mass of an exoplanet are partly dependent on the X-ray and EUV radiation received during the first stages of formation and even during main sequence of the star. Biological life developing on exoplanets would depend severely on the high energy radiation arriving from its parent star. Here we present a database of the X-ray and EUV emission of all the stars currently known to host exoplanets. The archive is public and accessible through the Spanish Virtual Observatory (SVO). The database gives the user the option to download observed X-rays and EUV spectra. Synthetic spectra covering the spectral range 1-912 Å are also available (present day telescopes do not give access to the EUV range at λ > ;180 Å). These spectra are created using coronal models after fitting observed spectra.

  20. X-exoplanets: an X-ray and EUV database for exoplanets

    NASA Astrophysics Data System (ADS)

    Sanz-Forcada, J.; García-Álvarez, D.; Velasco, A.; Solano, E.; Ribas, I.; Micela, G.; Pollock, A.

    2010-02-01

    Extreme Ultraviolet (EUV) and X-ray emission is of great importance in several phenomena related to the formation of planetary systems and the atmospheres of planets. The atmospheric composition, and the mass of an exoplanet, are partly dependent on the X-ray and EUV radiation received during the first stages of formation and even during main sequence of the star. Biological life developing on exoplanets would depend severely on the high energy radiation arriving from its parent star. Here we present a database of the X-ray and EUV emission of all the stars currently known to host exoplanets. The archive is public and accessible through the Spanish Virtual Observatory (SVO). The database gives the user the option to download observed X-rays and EUV spectra. Synthetic spectra covering the spectral range 1-912 Å are also available (present day telescopes do not give access to the EUV range at λ > 180 Å). These spectra are created using coronal models after fitting observed spectra.

  1. Vertical movements of frost mounds in sub-Arctic permafrost regions analyzed using geodetic survey and satellite interferometry

    NASA Astrophysics Data System (ADS)

    Beck, I.; Ludwig, R.; Bernier, M.; Strozzi, T.; Boike, J.

    2015-04-01

    Permafrost-affected soils cover about 45% of Canada. The environment in such areas, especially those located within the discontinuous permafrost zone, has been impacted more than any other by recorded climatic changes. A number of changes, such as surface subsidence and the degradation of frost mounds due to permafrost thawing have already been observed at many locations. We surveyed three frost mounds (lithalsas) close to Umiujaq, northern Quebec, sub-Arctic, using a high-precision differential Global Positioning System (d-GPS) during field visits in 2009, 2010 and 2011, thus obtaining detailed information on their responses to the freezing and thawing that occurs during the course of the annual temperature cycle. Seasonal pulsations were detected in the frost mounds and these responses were shown to vary with the state of degradation and the land cover. The most degraded lithalsa showed a maximum amplitude of vertical movement (either up or down) between winter and summer (thawing) of 0.19 ± 0.09 m over the study period, while for the least degraded lithalsa this figure was far greater (1.24 ± 0.47 m). Records from patches with little or no vegetation showed far less average vertical movement over the study period (0.17 ± 0.03 m) than those with prostrate shrubs (0.56 ± 0.02 m), suggesting an influence from the land-cover. A differential Interferometric Synthetic Aperature Radar (D-InSAR) analysis was also completed over the lithalsas using selected TerraSAR-X images acquired from April to October 2009 and from March to October 2010, with a repeat cycle of 11 days. Interferograms with baselines shorter than 200 m were computed revealing a generally very low interferometric coherence, restricting the quantification of vertical movements of the lithalsas. Vertical surface movements in the centimeter range were recorded in the near vicinity of Umiujaq.

  2. MASS-RADIUS RELATIONSHIPS FOR EXOPLANETS

    SciTech Connect

    Swift, D. C.; Eggert, J. H.; Hicks, D. G.; Hamel, S.; Caspersen, K.; Schwegler, E.; Collins, G. W.; Nettelmann, N.; Ackland, G. J.

    2012-01-01

    For planets other than Earth, particularly exoplanets, interpretation of the composition and structure depends largely on comparing the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass-radius relation which relies heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We lay out a method for deriving and testing equations of state, and deduce mass-radius and mass-pressure relations for key, relevant materials whose equation of state (EOS) is reasonably well established, and for differentiated Fe/rock. We find that variations in the EOS, such as may arise when extrapolating from low-pressure data, can have significant effects on predicted mass-radius relations and on planetary pressure profiles. The relations are compared with the observed masses and radii of planets and exoplanets, broadly supporting recent inferences about exoplanet structures. Kepler-10b is apparently 'Earth-like', likely with a proportionately larger core than Earth's, nominally 2/3 of the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an Fe-based core which is likely to be proportionately smaller than Earth's. GJ 1214b lies between the mass-radius curves for H{sub 2}O and CH{sub 4}, suggesting an 'icy' composition with a relatively large core or a relatively large proportion of H{sub 2}O. CoRoT-2b is less dense than the hydrogen relation, which could be explained by an anomalously high degree of heating or by higher than assumed atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation for hydrogen, suggesting the presence of a significant amount of matter of higher atomic number. CoRoT-3b lies close to the hydrogen relation. The pressure at the center of Kepler-10b is 1.5{sup +1.2}{sub -1.0} TPa. The central pressure in CoRoT-7b is probably close to 0.8 TPa, though may be up to 2 TPa. These pressures are accessible by planar

  3. Dynamos in Terrestrial Exoplanets as Magnetic Shields

    NASA Astrophysics Data System (ADS)

    Driscoll, Peter; Olson, Peter

    2010-05-01

    In order to retain large amounts of water and maintain a habitable surface over long time-scales a magnetic field may be required to shield the atmosphere from mass loss and the surface from harmful stellar radiation. Terrestrial exoplanets in the 1-10 Earth-mass regime orbiting inside of 3 AU with an Earth-like composition, referred to as Super-Earths, are expected to have large, mostly Iron cores that could sustain a convectively driven dynamo. We present a model to estimate the maximum self-sustained magnetic moment of a terrestrial dynamo given the total mass and core-mass fraction. Assuming the magnetic field is self-sustained by a convectively driven dynamo we estimate the magnetic moment using a dynamo scaling law, which relies on dynamical properties of the planetary interior, such as the convective heat flux at the core-mantle boundary and size of the dynamo region. To estimate these properties we model the internal structure of the planet using a sub-solidus, mobile lid convection profile for the mantle and a thermal convection profile for the core. We present models for 1-10 Earth-masses and a range of core-mass fractions. In order to maintain a strong magnetic field we maximize the energy available to drive the dynamo by allowing the core-mantle boundary temperature to be at the perovskite solidus, denoted as the "optimal" state for magnetic field generation. We estimate an optimal Earth-mass planet can maintain a core heat flow of 30 TW, which implies a surface field intensity and magnetic moment of about twice that of the Earth. For a 10 Earth-mass planet that is 65% core by mass (Super-Mercury) we find a core heat flow of 180 TW, and a surface field intensity and magnetic moment of about 6 and 25 times that of the Earth, respectively. We demonstrate that exoplanets with large cores that produce strong magnetic fields can act to shield the surface from stellar radiation, minimizing atmospheric volatile loss and maintaining a habitable surface over

  4. Meteorological satellites

    NASA Astrophysics Data System (ADS)

    1981-10-01

    Meteor-2 (second generation meteorological satellite) and an experimental satellite on which instruments are being tested and modified for the requirements of hydrometeorology and a determination of natural resources are presently operational in the U.S.S.R. Television devices with a 1-10 km terrain image resolution operating in the visible and infrared region are used to determine the space system, velocity and direction of cloud movements and provide information about the snow and ice cover, cyclones, storms, vortices in the atmosphere, and velocity and direction of wind. Images with a 50-1000 m resolution make possible geological and hydrological surveys, an evaluation of the state of vegetation and crops, detection of forest fires, determination of pollution of the atmosphere and sea and determination of optimal fishing regions in the ocean. Measurement of the intensity of atmospheric radiation in narrow infrared regions and very high frequencies allows remote evaluation of the temperature and humidity distribution in the vertical cross section of the Earth's atmosphere.

  5. The Next Generation Virgo Cluster Survey (NGVS). XIII. The Luminosity and Mass Function of Galaxies in the Core of the Virgo Cluster and the Contribution from Disrupted Satellites

    NASA Astrophysics Data System (ADS)

    Ferrarese, Laura; Côté, Patrick; Sánchez-Janssen, Rúben; Roediger, Joel; McConnachie, Alan W.; Durrell, Patrick R.; MacArthur, Lauren A.; Blakeslee, John P.; Duc, Pierre-Alain; Boissier, S.; Boselli, Alessandro; Courteau, Stéphane; Cuillandre, Jean-Charles; Emsellem, Eric; Gwyn, S. D. J.; Guhathakurta, Puragra; Jordán, Andrés; Lançon, Ariane; Liu, Chengze; Mei, Simona; Mihos, J. Christopher; Navarro, Julio F.; Peng, Eric W.; Puzia, Thomas H.; Taylor, James E.; Toloba, Elisa; Zhang, Hongxin

    2016-06-01

    We present measurements of the galaxy luminosity and stellar mass function in a 3.71 deg2 (0.3 Mpc2) area in the core of the Virgo Cluster, based on {u}\\ast griz data from the Next Generation Virgo Cluster Survey (NGVS). The galaxy sample—which consists of 352 objects brighter than M g = ‑9.13 mag, the 50% completeness limit of the survey—reaches 2.2 mag deeper than the widely used Virgo Cluster Catalog and at least 1.2 mag deeper than any sample previously used to measure the luminosity function in Virgo. Using a Bayesian analysis, we find a best-fit faint-end slope of α = ‑1.33 ± 0.02 for the g-band luminosity function; consistent results are found for the stellar mass function and the luminosity function in the other four NGVS bandpasses. We discuss the implications for the faint-end slope of adding 92 ultracompact dwarfs (UCDs)—previously compiled by the NGVS in this region—to the galaxy sample, assuming that UCDs are the stripped remnants of nucleated dwarf galaxies. Under this assumption, the slope of the luminosity function (down to the UCD faint magnitude limit, M g = ‑9.6 mag) increases dramatically, up to α = ‑1.60 ± 0.06 when correcting for the expected number of disrupted non-nucleated galaxies. We also calculate the total number of UCDs and globular clusters that may have been deposited in the core of Virgo owing to the disruption of satellites, both nucleated and non-nucleated. We estimate that ˜150 objects with M g ≲ ‑9.6 mag and that are currently classified as globular clusters might, in fact, be the nuclei of disrupted galaxies. We further estimate that as many as 40% of the (mostly blue) globular clusters in the Virgo core might once have belonged to such satellites; these same disrupted satellites might have contributed ˜40% of the total luminosity in galaxies observed in the core region today. Finally, we use an updated Local Group galaxy catalog to provide a new measurement of the luminosity function of Local Group

  6. The Next Generation Virgo Cluster Survey (NGVS). XIII. The Luminosity and Mass Function of Galaxies in the Core of the Virgo Cluster and the Contribution from Disrupted Satellites

    NASA Astrophysics Data System (ADS)

    Ferrarese, Laura; Côté, Patrick; Sánchez-Janssen, Rúben; Roediger, Joel; McConnachie, Alan W.; Durrell, Patrick R.; MacArthur, Lauren A.; Blakeslee, John P.; Duc, Pierre-Alain; Boissier, S.; Boselli, Alessandro; Courteau, Stéphane; Cuillandre, Jean-Charles; Emsellem, Eric; Gwyn, S. D. J.; Guhathakurta, Puragra; Jordán, Andrés; Lançon, Ariane; Liu, Chengze; Mei, Simona; Mihos, J. Christopher; Navarro, Julio F.; Peng, Eric W.; Puzia, Thomas H.; Taylor, James E.; Toloba, Elisa; Zhang, Hongxin

    2016-06-01

    We present measurements of the galaxy luminosity and stellar mass function in a 3.71 deg2 (0.3 Mpc2) area in the core of the Virgo Cluster, based on {u}\\ast griz data from the Next Generation Virgo Cluster Survey (NGVS). The galaxy sample—which consists of 352 objects brighter than M g = ‑9.13 mag, the 50% completeness limit of the survey—reaches 2.2 mag deeper than the widely used Virgo Cluster Catalog and at least 1.2 mag deeper than any sample previously used to measure the luminosity function in Virgo. Using a Bayesian analysis, we find a best-fit faint-end slope of α = ‑1.33 ± 0.02 for the g-band luminosity function; consistent results are found for the stellar mass function and the luminosity function in the other four NGVS bandpasses. We discuss the implications for the faint-end slope of adding 92 ultracompact dwarfs (UCDs)—previously compiled by the NGVS in this region—to the galaxy sample, assuming that UCDs are the stripped remnants of nucleated dwarf galaxies. Under this assumption, the slope of the luminosity function (down to the UCD faint magnitude limit, M g = ‑9.6 mag) increases dramatically, up to α = ‑1.60 ± 0.06 when correcting for the expected number of disrupted non-nucleated galaxies. We also calculate the total number of UCDs and globular clusters that may have been deposited in the core of Virgo owing to the disruption of satellites, both nucleated and non-nucleated. We estimate that ∼150 objects with M g ≲ ‑9.6 mag and that are currently classified as globular clusters might, in fact, be the nuclei of disrupted galaxies. We further estimate that as many as 40% of the (mostly blue) globular clusters in the Virgo core might once have belonged to such satellites; these same disrupted satellites might have contributed ∼40% of the total luminosity in galaxies observed in the core region today. Finally, we use an updated Local Group galaxy catalog to provide a new measurement of the luminosity function of Local Group

  7. Science enabled by ATHENA: Solar system targets and exoplanets

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella

    2016-07-01

    ATHENA studies of the solar system will offer some of the deepest insights in the complex workings of planetary magnetospheres and exospheres; ATHENA will answer many of the questions that have only started to be tackled by Chandra and XMM-Newton and will add in a major way to our understanding of the interactions of space plasmas with magnetised and un-magnetised bodies in the solar system. The non-dispersive character of X-IFU spectroscopy will enable Jupiter's auroral and disk X-ray emissions, and that from the Io Plasma Torus, to be mapped spatially and spectrally at high resolution; it will also enable surface composition analysis through fluorescence spectra of the Galilean satellites. ATHENA will establish how planetary exospheres, such as that of Mars, and comets respond to the interaction with the solar wind, in a detailed and global way that other observatories or in situ measurements cannot provide. With its remarkably improved sensitivity over current X-ray telescopes, ATHENA will push the search for auroral X-ray emission on Saturn to much fainter limits, and set very sensitive constraints on Uranus X-ray emission. ATHENA will explore the magnetic interplay between stars and planets in X-rays by searching for X-ray spectral variability over the planet's orbital phases and for systems of different orbital eccentricity, and will investigate ingress/eclipse/egress effects for transiting hot-Jupiter exoplanets; again instrumental to this will be the vastly improved signal-to-noise ratio provided by ATHENA over that achievable by XMM-Newton or Chandra.

  8. ellc: A fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.

    2016-06-01

    Context. Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. Aims: I have developed a binary star model (ellc) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. Methods: The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaghlin effect). The main features of the model have been tested by comparison to observed data and other light curve models. Results: The model is found to be accurate enough to analyse the very high quality photometry that is now available from space-spaced instruments, flexible enough to model a wide range of eclipsing binary stars and extrasolar planetary systems, and fast enough to enable the use of modern Monte Carlo methods for data analysis and model testing. The software package is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A111

  9. Thesis: A Combined-light Mission For Exoplanet Molecular Spectroscopy

    NASA Astrophysics Data System (ADS)

    Deroo, Pieter; Swain, M. R.; Tinetti, G.; Griffith, C.; Vasisht, G.; Deming, D.; Henning, T.; Beaulieu, J.

    2010-01-01

    THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a MIDEX/Discovery class exoplanet mission. Building on the recent Spitzer and Hubble successes in exoplanet characterization and molecular spectroscopy, THESIS would extend these types of measurements to a large population of planets including non-transiting planets and super-Earths. The ability to acquire high-stability, spectroscopic data from the near-visible to the mid-infrared is a unique aspect of THESIS. A strength of the THESIS concept is simplicity low technical risk, and modest cost. By enabling molecular spectroscopy of exoplanet atmospheres, THESIS mission has the potential to dramatically advance our understanding of conditions on extrasolar worlds while serving as a stepping stone to more ambitious future missions.

  10. A sub-Mercury-sized exoplanet.

    PubMed

    Barclay, Thomas; Rowe, Jason F; Lissauer, Jack J; Huber, Daniel; Fressin, François; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-02-28

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury. PMID:23426260

  11. Exoplanet Population Estimate from Kepler Data

    NASA Astrophysics Data System (ADS)

    Traub, Wesley A.

    2015-11-01

    The intrinsic population of exoplanets around Kepler target stars is estimated by comparing the observed numbers of planets at each radius and period against a simulation that accounts for the probability of transit and the estimated instrument sensitivity. By assuming that the population can be modeled as a function of period times a function of radius, and further assuming that these functions are broken power laws, sufficient leverage is gained such that the well-measured short-period planet distribution can effectively be used as a template for the less-well sampled long-period terrestrial planets. The resulting population distribution provides a challenge to models of the origin and evolution of planetary systems.

  12. HOMES Holographic Optical Method for Exoplanet Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ditto, Thomas D.; McGrew, Stephen P.

    2013-09-01

    A novel telescope architecture is proposed specifically for the purpose of taking spectra of exoplanets orbiting stars within 10 pc ("the neighborhood"). The primary objective and the secondary spectrograph are holographic optical elements (HOEs) formed on flat membrane substrates of low areal mass that can be transported on cylinder rolls that are compatible with the payload geometry of delivery vehicles. Ribbon-shaped HOEs of up to 100 x 10 meters are contemplated. Computer models are presented with these dimensions. The models predict resolving power better than 10 mas. Because the primary separates wavelengths, we consider coronagraphs that use the divide and conquer strategy of one wavelength at a time. After delivery at the second Lagrange point, the stowed membranes are unfurled into flat holographic optics positioned in a four part formation spanning 1 km of open space.

  13. French Pro/Am collaborations in exoplanet

    NASA Astrophysics Data System (ADS)

    Santerne, A.; Moutou, C.; Vanhuysse, M.; Bouchy, F.; Buil, C.; Cochard, F.; Thizy, O.; Martinez, P.; Desnoux, V.; Pujol, M.; Colas, F.

    2011-10-01

    Amateur astronomers have access to huge telescope time and can reach photometric precision up to a few mmag as well as radial velocity precision up to ˜ 50m.s-1 on brightest stars. We will first present some results of french amateur astronomers in transit photometry and radial velocity and then, we will present an over-view of all the collaborations which can be done between professional and amateur astronomers in the competitive exoplanet domain, and especially the current collaboration between french Pro & Am astronomers which was used in publication in A&A. Finally, we will present a new internet wiki page which goal is to develop such collaboration in different countries.

  14. Predicting the Extreme-UV and Lyman-α Fluxes Received by Exoplanets from their Host Stars

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; France, Kevin; Ayres, Thomas R.

    2015-01-01

    Extreme-UV (EUV) radiation from the chromospheres, transition regions, and coronae of host stars (spectral types F, G, K, and M) ionize and heat the outer atmospheres of exoplanets leading to mass loss that is observed during transits and can change the exoplanet's atmosphere. Lyman-α emission from host stars controls the photochemistry in the upper layers of planetary atmospheres by photodissociating important molecules including H_2O, CO_2, CH_4, thereby increasing the oxygen and ozone mixing ratios important for habitability. Both the EUV and strong Lyman-α radiation are largely absorbed by the interstellar medium and must be reconstructed or estimated to understand the radiation environment of exoplanets. In two recent papers, tet{Linsky2013} and tet{Linsky2014}, we have presented robust methods for predicting the intrinsic Lyman-α and EUV fluxes from main sequence cool stars. Solar models and satellite observations (HST, FUSE, and EUVE) provide tests for the feasibility of these methods.

  15. Doppler methods of search and monitoring of exoplanets

    NASA Astrophysics Data System (ADS)

    Panchuk, V. E.; Klochkova, V. G.; Sachkov, M. E.; Yushkin, M. V.

    2015-12-01

    The main stages of the development of Doppler methods of search and study of extrasolar planetary systems (exoplanets) are described. The main instrumental and methodological effects that influence the measurement accuracy of spectral line positions in the study of exoplanets are considered. The development of the domestic spectrograph for spectroscopic monitoring with high-precision determination of radial velocities is reported. Directions for further development of high-resolution spectroscopy are discussed.

  16. Observing Exoplanets with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Clampin Mark

    2011-01-01

    The search for exoplanets and characterization of their properties has seen increasing success over the last few years. In excess of 500 exoplanets are known and Kepler has approx. 1000 additional candidates. Recently, progress has been made in direct imaging planets, both from the ground and in space. This presentation will discuss the history and current state of technology used for such discoveries, and highlight the new capabilities that will be enabled by the James Webb Space Telescope.

  17. Exoplanet Photometry and Spectroscopy with HII/L2

    NASA Astrophysics Data System (ADS)

    Tamura, M.

    2000-12-01

    With the recent discovery of extrasolar planets (exoplanets) around nearby stars by indirect methods, one of the next goals of the exoplanet study is to directly detect the giant exoplanets and to make photometry and spectroscopy. The next decade will be the time to move from discovery to characterization of exoplanet systems. This, however, requires all of high sensitivity, high spatial resolution, and high dynamic range observations at infrared wavelengths, which will be difficult to achieve from the ground. In this paper, we describe a coronagraphic camera and spectrometer for the HII/L2 mission for mid- and far-infrared astronomy and show the photometry and spectroscopy of exoplanets to be one of the most important scientific aims for this mission. The proposed HII/L2 coronagraph will cover the wavelength between 4 and 27 micron, optimized at 5 micron. The plate scale is about 0.06 arcsec, covering a field-of-view of about 1 arcmin by 1 arcmin with a 1024x1024 array detector. Occulting masks of diameter greater than 0.72 arcsec will be available, which enables the observations of exoplanets beyond ~2 AU around nearby (d~5 pc) stars. The coronagraph greatly takes advantage of the single (non-segmented) mirror of the HII/L2 telescope design. A high-efficiency Ge or CdTe grism with a resolution of a few hundreds will be installed for the coronagraphic spectroscopy of the exoplanet atmosphere. Rich spectral features at mid-infrared wavelengths enable us to study various atmospheric components and to make a comparative study of the exoplanets and our solar system planets.

  18. Variable Star and Exoplanet Section of the Czech Astronomical Society

    NASA Astrophysics Data System (ADS)

    Brát, L.; Zejda, M.

    2010-12-01

    We present activities of Czech variable star observers organized in the Variable Star and Exoplanet Section of the Czech Astronomical Society. We work in four observing projects: B.R.N.O. - eclipsing binaries, MEDUZA - intrinsic variable stars, TRESCA - transiting exoplanets and candidates, HERO - objects of high energy astrophysics. Detailed information together with O-C gate (database of eclipsing binaries minima timings) and OEJV (Open European Journal on Variable stars) are available on our internet portal http://var.astro.cz.

  19. The search for exoplanets in the ESA Science Programme

    NASA Astrophysics Data System (ADS)

    Volonte, S.; Fridlund, C. V. M.

    2003-10-01

    The Darwin mission is a mission aimed at the search for and study of Terrestrial Exoplanets. As such it may be one of the most ambitious objectives undertaken by the European Space Agency. We describe the place of it as an integral part in the COSMIC VISION science plans and the topic of exo-planets. We describe the context within which it will be carried out in the next decade.

  20. Tidal Decay and Disruption of Gaseous Exoplanets

    NASA Astrophysics Data System (ADS)

    Jackson, Brian K.; Arras, Phil; Jensen, Emily; Peacock, Sarah; Marchant, Pablo; Penev, Kaloyan

    2015-11-01

    Many gaseous exoplanets in short-period orbits are on the verge of Roche-lobe overflow, and observations, along with orbital stability analysis, show tides probably drive significant orbital decay. Thus, the coupled processes of orbital evolution and tidal disruption likely shape the observed distribution of close-in exoplanets and may even be responsible for producing the shortest-period solid planets. However, the exact outcome for an overflowing planet depends on its internal response to mass loss and variable stellar insolation, and the accompanying orbital evolution can act to enhance or inhibit the disruption process. The final orbits of the denuded remnants of gas giants may be predictable from their mass-radius relationship, and so a distinctive mass-period relationship for some short-period solid planets may provide evidence for their origins as gaseous planets. In this presentation, we will discuss our work on tidal decay and disruption of close-in gaseous planets using a new model that accounts for the fact that short-period planets have hot, distended atmospheres, which can result in overflow even for planets that are not officially in Roche lobe contact. We will also point out that the orbital expansion that can accompany mass transfer may be less effective than previously realized because the resulting accretion disk may not return all of its angular momentum to the donor, as is usually assumed. Both of these effects have bee incorporated into the fully-featured and robust Modules for Experiments in Stellar Astrophysics (MESA) suite.

  1. LIGHT SCATTERING FROM EXOPLANET OCEANS AND ATMOSPHERES

    SciTech Connect

    Zugger, M. E.; Kane, T. J.; Kasting, J. F.; Williams, D. M.; Philbrick, C. R.

    2010-11-10

    Orbital variation in reflected starlight from exoplanets could eventually be used to detect surface oceans. Exoplanets with rough surfaces, or dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180{sup 0}, whereas ocean planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30{sup 0}. Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74{sup 0}; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach peak polarization near OL = 90{sup 0}, but clouds and Lambertian surface scattering dilute and shift this peak to smaller OL. A shifted Rayleigh peak might be mistaken for a water signature unless data from multiple wavelength bands are available. Our calculations suggest that polarization alone may not positively identify the presence of an ocean under an Earth-like atmosphere; however, polarization adds another dimension which can be used, in combination with unpolarized orbital light curves and contrast ratios, to detect extrasolar oceans, atmospheric water aerosols, and water clouds. Additionally, the presence and direction of the polarization vector could be used to determine planet association with the star, and constrain orbit inclination.

  2. PynPoint code for exoplanet imaging

    NASA Astrophysics Data System (ADS)

    Amara, A.; Quanz, S. P.; Akeret, J.

    2015-04-01

    We announce the public release of PynPoint, a Python package that we have developed for analysing exoplanet data taken with the angular differential imaging observing technique. In particular, PynPoint is designed to model the point spread function of the central star and to subtract its flux contribution to reveal nearby faint companion planets. The current version of the package does this correction by using a principal component analysis method to build a basis set for modelling the point spread function of the observations. We demonstrate the performance of the package by reanalysing publicly available data on the exoplanet β Pictoris b, which consists of close to 24,000 individual image frames. We show that PynPoint is able to analyse this typical data in roughly 1.5 min on a Mac Pro, when the number of images is reduced by co-adding in sets of 5. The main computational work, the calculation of the Singular-Value-Decomposition, parallelises well as a result of a reliance on the SciPy and NumPy packages. For this calculation the peak memory load is 6 GB, which can be run comfortably on most workstations. A simpler calculation, by co-adding over 50, takes 3 s with a peak memory usage of 600 MB. This can be performed easily on a laptop. In developing the package we have modularised the code so that we will be able to extend functionality in future releases, through the inclusion of more modules, without it affecting the users application programming interface. We distribute the PynPoint package under GPLv3 licence through the central PyPI server, and the documentation is available online (http://pynpoint.ethz.ch).

  3. EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS

    SciTech Connect

    Showman, Adam P.; Polvani, Lorenzo M.

    2011-09-01

    The increasing richness of exoplanet observations has motivated a variety of three-dimensional (3D) atmospheric circulation models of these planets. Under strongly irradiated conditions, models of tidally locked, short-period planets (both hot Jupiters and terrestrial planets) tend to exhibit a circulation dominated by a fast eastward, or 'superrotating', jet stream at the equator. When the radiative and advection timescales are comparable, this phenomenon can cause the hottest regions to be displaced eastward from the substellar point by tens of degrees longitude. Such an offset has been subsequently observed on HD 189733b, supporting the possibility of equatorial jets on short-period exoplanets. Despite its relevance, however, the dynamical mechanisms responsible for generating the equatorial superrotation in such models have not been identified. Here, we show that the equatorial jet results from the interaction of the mean flow with standing Rossby waves induced by the day-night thermal forcing. The strong longitudinal variations in radiative heating-namely intense dayside heating and nightside cooling-trigger the formation of standing, planetary-scale equatorial Rossby and Kelvin waves. The Rossby waves develop phase tilts that pump eastward momentum from high latitudes to the equator, thereby inducing equatorial superrotation. We present an analytic theory demonstrating this mechanism and explore its properties in a hierarchy of one-layer (shallow-water) calculations and fully 3D models. The wave-mean-flow interaction produces an equatorial jet whose latitudinal width is comparable to that of the Rossby waves, namely the equatorial Rossby deformation radius modified by radiative and frictional effects. For conditions typical of synchronously rotating hot Jupiters, this length is comparable to a planetary radius, explaining the broad scale of the equatorial jet obtained in most hot-Jupiter models. Our theory illuminates the dependence of the equatorial jet

  4. Successful Starshade petal deployment tolerance verification in support of NASA's technology development for exoplanet missions

    NASA Astrophysics Data System (ADS)

    Webb, D.; Kasdin, N. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Cady, E.; Marks, G. W.; Lo, A.

    2014-07-01

    A Starshade is a sunflower-shaped satellite with a large inner disk structure surrounded by petals. A Starshade flies in formation with a space-borne telescope, creating a deep shadow around the telescope over a broad spectral band to permit nearby exoplanets to be viewed. Removing extraneous starlight before it enters the observatory optics greatly loosens the tolerances on the telescope and instrument that comprise the optical system, but the nature of the Starshade dictates a large deployable structure capable of deploying to a very precise shape. These shape requirements break down into key mechanical requirements which include the rigid-body position and orientation of each of the petals that ring the periphery of the Starshade. To verify our capability to meet these requirements, we modified an existing flight-like Astromesh reflector, provided by Northrup Grumman, as the base ring to which the petals attach. The integrated system, including 4 of the 30 flight-like subscale petals, truss, connecting spokes and central hub, was deployed tens of times in a flight-like manner using a gravity compensation system. After each deployment, discrete points in prescribed locations covering the petals and truss were measured using a highly-accurate laser tracker system. These measurements were then compared against the mechanical requirements, and the as-measured data shows deployment accuracy well within our milestone requirements and resulting in a contrast ratio consistent with exoplanet detection and characterization.

  5. Successful Starshade Petal Deployment Tolerance Verification in Support of NASA's Technology Development for Exoplanet Missions

    NASA Technical Reports Server (NTRS)

    Webb, D.; Kasdin, N. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Cady, E.; Marks, G. W.; Lo, A.

    2014-01-01

    A Starshade is a sunflower-shaped satellite with a large inner disk structure surrounded by petals that flies in formation with a space-borne telescope, creating a deep shadow around the telescope over a broad spectral band to permit nearby exoplanets to be viewed. Removing extraneous starlight before it enters the observatory optics greatly loosens the tolerances on the telescope and instrument that comprise the optical system, but the nature of the Starshade dictates a large deployable structure capable of deploying to a very precise shape. These shape requirements break down into key mechanical requirements, which include the rigid-body position and orientation of each of the petals that ring the periphery of the Starshade. To verify our capability to meet these requirements, we modified an existing flight-like Astromesh reflector, provided by Northrup Grumman, as the base ring to which the petals attach. The integrated system, including 4 of the 30 flight-like subscale petals, truss, connecting spokes and central hub, was deployed tens of times in a flight-like manner using a gravity compensation system. After each deployment, discrete points in prescribed locations covering the petals and truss were measured using a highly-accurate laser tracker system. These measurements were then compared against the mechanical requirements, and the as-measured data shows deployment accuracy well within our milestone requirements and resulting in a contrast ratio consistent with exoplanet detection and characterization.

  6. Satellite communications

    NASA Astrophysics Data System (ADS)

    Rubin, Philip A.

    A review of the economic and technological status of the satellite communications industry is presented. The history of satellite communications is outlined, focusing on the launching of Syncom III in 1963. The basic operation of communication satellites is explained. The differences between C and Ku frequency bands are examined. Economic issues related to satellite communications are discussed in detail.

  7. Satellite communications

    NASA Astrophysics Data System (ADS)

    Saha, M. K.

    1982-11-01

    The paper describes the basic principles and the historial development of satellite communications. Various satellite systems for global communications are discused and compared. Some typical operational communication satellite systems summary including geostationary systems are presented. Considerations leading to the system design including the link design for various multiple access techniques and the future trends in satellite communications systems are also discussed.

  8. Miniature Exoplanet Radial Velocity Array (MINERVA) I. Design, Commissioning, and First Science Results

    NASA Astrophysics Data System (ADS)

    Swift, Jonathan J.; Bottom, Michael; Johnson, John A.; Wright, Jason T.; McCrady, Nate; Wittenmyer, Robert A.; Plavchan, Peter; Riddle, Reed; Muirhead, Philip S.; Herzig, Erich; Myles, Justin; Blake, Cullen H.; Eastman, Jason; Beatty, Thomas G.; Barnes, Stuart I.; Gibson, Steven R.; Lin, Brian; Zhao, Ming; Gardner, Paul; Falco, Emilio; Criswell, Stephen; Nava, Chantanelle; Robinson, Connor; Sliski, David H.; Hedrick, Richard; Ivarsen, Kevin; Hjelstrom, Annie; de Vera, Jon; Szentgyorgyi, Andrew

    2015-04-01

    The Miniature Exoplanet Radial Velocity Array (MINERVA) is a U.S.-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7-m telescopes outfitted for both high-resolution spectroscopy and photometry, and is designed for completely autonomous operation. The primary science program is a dedicated radial velocity survey and the secondary science objective is to obtain high-precision transit light curves. The modular design of the facility and the flexibility of our hardware allows for both science programs to be pursued simultaneously, while the robotic control software provides a robust and efficient means to carry out nightly observations. We describe the design of MINERVA, including major hardware components, software, and science goals. The telescopes and photometry cameras are characterized at our test facility on the Caltech campus in Pasadena, California, and their on-sky performance is validated. The design and simulated performance of the spectrograph is briefly discussed as we await its completion. New observations from our test facility demonstrate sub-mmag photometric precision of one of our radial velocity survey targets, and we present new transit observations and fits of WASP-52b-a known hot-Jupiter with an inflated radius and misaligned orbit. The process of relocating the MINERVA hardware to its final destination at the Fred Lawrence Whipple Observatory in southern Arizona has begun, and science operations are expected to commence in 2015.

  9. Exoplanet Research at a Southwestern Urban High School: Lessons Learned from the Tucson High Astronomy Club Research Program

    NASA Astrophysics Data System (ADS)

    Watson, Zachary T.; Pompea, Stephen M.; Tucson High Astronomy Research Club

    2015-01-01

    We present the results of introducing talented youth to research astronomy projects related to the study of exoplanets. We present the results of students' development of their identities as scientist, their interest in the STEM field as a career, and their knowledge retention through individual surveys. The design of the student interaction was to have weekly after-school club meetings where basic material would be taught to aid the students addressing the research problems themselves by planning observations, observing, and ultimately reducing the data of observations of their selected exoplanets. The after-school club was composed of 12 students of varying backgrounds attending the urban TucsonMagnet High School. The program is ongoing and began September 2013.

  10. VLT Captures First Direct Spectrum of an Exoplanet

    NASA Astrophysics Data System (ADS)

    2010-01-01

    By studying a triple planetary system that resembles a scaled-up version of our own Sun's family of planets, astronomers have been able to obtain the first direct spectrum - the "chemical fingerprint" [1] - of a planet orbiting a distant star [2], thus bringing new insights into the planet's formation and composition. The result represents a milestone in the search for life elsewhere in the Universe. "The spectrum of a planet is like a fingerprint. It provides key information about the chemical elements in the planet's atmosphere," says Markus Janson, lead author of a paper reporting the new findings. "With this information, we can better understand how the planet formed and, in the future, we might even be able to find tell-tale signs of the presence of life." The researchers obtained the spectrum of a giant exoplanet that orbits the bright, very young star HR 8799. The system is at about 130 light-years from Earth. The star has 1.5 times the mass of the Sun, and hosts a planetary system that resembles a scaled-up model of our own Solar System. Three giant companion planets were detected in 2008 by another team of researchers, with masses between 7 and 10 times that of Jupiter. They are between 20 and 70 times as far from their host star as the Earth is from the Sun; the system also features two belts of smaller objects, similar to our Solar System's asteroid and Kuiper belts. "Our target was the middle planet of the three, which is roughly ten times more massive than Jupiter and has a temperature of about 800 degrees Celsius," says team member Carolina Bergfors. "After more than five hours of exposure time, we were able to tease out the planet's spectrum from the host star's much brighter light." This is the first time the spectrum of an exoplanet orbiting a normal, almost Sun-like star has been obtained directly. Previously, the only spectra to be obtained required a space telescope to watch an exoplanet pass directly behind its host star in an "exoplanetary

  11. Characterization and detection of Anopheles vestitipennis and Anopheles punctimacula (Diptera: Culicidae) larval habitats in Belize with field survey and SPOT satellite imagery

    NASA Technical Reports Server (NTRS)

    Rejmankova, E.; Pope, K. O.; Roberts, D. R.; Lege, M. G.; Andre, R.; Greico, J.; Alonzo, Y.

    1998-01-01

    Surveys of larval habitats of Anopheles vestitipennis and Anopheles punctimacula were conducted in Belize, Central America. Habitat analysis and classification resulted in delineation of eight habitat types defined by dominant life forms and hydrology. Percent cover of tall dense macrophytes, shrubs, open water, and pH were significantly different between sites with and without An. vestitipennis. For An. punctimacula, percent cover of tall dense macrophytes, trees, detritus, open water, and water depth were significantly different between larvae positive and negative sites. The discriminant function for An. vestitipennis correctly predicted the presence of larvae in 65% of sites and correctly predicted the absence of larvae in 88% of sites. The discriminant function for An. punctimacula correctly predicted 81% of sites for the presence of larvae and 45% for the absence of larvae. Canonical discriminant analysis of the three groups of habitats (An. vestitipennis positive; An. punctimacula positive; all negative) confirmed that while larval habitats of An. punctimacula are clustered in the tree dominated area, larval habitats of An. vestitipennis were found in both tree dominated and tall dense macrophyte dominated environments. The forest larval habitats of An. vestitipennis and An. punctimacula seem to be randomly distributed among different forest types. Both species tend to occur in denser forests with more detritus, shallower water, and slightly higher pH. Classification of dry season (February) SPOT multispectral satellite imagery produced 10 land cover types with the swamp forest and tall dense marsh classes being of particular interest. The accuracy assessment showed that commission errors for the tall, dense marsh and swamp forest appeared to be minor; but omission errors were significant, especially for the swamp forest (perhaps because no swamp forests are flooded in February). This means that where the classification indicates there are An. vestitipennis

  12. Presenting new exoplanet candidates for the CoRoT chromatic light curves

    NASA Astrophysics Data System (ADS)

    Boufleur, Rodrigo; Emilio, Marcelo; Andrade, Laerte; Janot-Pacheco, Eduardo; De La Reza, Ramiro

    2015-08-01

    One of the most promising topics of modern Astronomy is the discovery and characterization of extrasolar planets due to its importance for the comprehension of planetary formation and evolution. Missions like MOST (Microvariability and Oscillations of Stars Telescope) (Walker et al., 2003) and especially the satellites dedicated to the search for exoplanets CoRoT (Convection, Rotation and planetary Transits) (Baglin et al., 1998) and Kepler (Borucki et al., 2003) produced a great amount of data and together account for hundreds of new discoveries. An important source of error in the search for planets with light curves obtained from space observatories are the displacements occuring in the data due to external causes. This artificial charge generation phenomenon associated with the data is mainly caused by the impact of high energy particles onto the CCD (Pinheiro da Silva et al. 2008), although other sources of error, not as well known also need to be taken into account. So, an effective analysis of the light curves depends a lot on the mechanisms employed to deal with these phenomena. To perform our research, we developed and applied a different method to fix the light curves, the CDAM (Corot Detrend Algorithm Modified), inspired by the work of Mislis et al. (2012). The paradigms were obtained using the BLS method (Kovács et al., 2002). After a semiautomatic pre-analysis associated with a visual inspection of the planetary transits signatures, we obtained dozens of exoplanet candidates in very good agreement with the literature and also new unpublished cases. We present the study results and characterization of the new cases for the chromatic channel public light curves of the CoRoT satellite.

  13. Irregular Satellites of the Planets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    2005-01-01

    This proposal is directed towards the observational exploration of the irregular satellite systems of the planets. Primarily we use large-format CCD cameras on the world's largest telescopes, on Mauna Kea, to discover new irregular satellites and then to monitor their positions in order to ascertain their orbital characteristics. Separate observations are taken to determine the physical properties of the irregular satellites. The big picture science objective is to determine how these satellites were captures, and to use the properties of the satellites and their orbits to place constraints on early solar system (including formation) processes. Work in the first year has focussed on a major investigation of the Saturn irregular satellite system. We secured observing time on the Subaru and Gemini 8-m diameter telescopes in December 2004, January, February and March 2005 for the conduct of a deep, wide-area survey. This has resulted in the detection and orbit determination for 12 new satellites to be announced in the next week or two. Additional satellites were lost, temporarily, due to unusually poor weather conditions on Mauna Kea. These objects will be recovered and their orbits published next year. A separate survey of the Uranus irregular satellites was published (Sheppard, Jewitt and Kleyna 2005). Away from the telescope, we have discovered the amazing result that the four giant planets possess similar numbers of irregular satellites. This flies in the face of the standard gas-drag model for satellite capture, since only two of the giant planets are gas giants and the others (Uranus and Neptune) formed by a different process and in the absence of much gas. The constancy of the satellite number (each giant holds approximately 100 irregular satellites measured down to the kilometer scale) is either a coincidence, with different capture mechanisms at different planets giving by chance the same total numbers of irregular satellites, or indicates that the satellites

  14. The Use of Satellite Delivery Systems in Education in Canada: The Costing of Two Networks and a Preliminary Needs Survey. Volume 1: The Costing of Two Networks.

    ERIC Educational Resources Information Center

    Daniel, John S.; And Others

    This study examines the methodologies and costs of establishing educational delivery systems using satellites currently in orbit or planned. It identifies two operational system scenarios and their predicted costs. One system, the Canadian Universities Satellite System (CUSS), is hypothesized to provide the means of transmitting audio and video…

  15. PULSATION FREQUENCIES AND MODES OF GIANT EXOPLANETS

    SciTech Connect

    Le Bihan, Bastien; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2013-02-10

    We calculate the eigenfrequencies and eigenfunctions of the acoustic oscillations of giant exoplanets and explore the dependence of the characteristic frequency {nu}{sub 0} and the eigenfrequencies on several parameters: the planet mass, the planet radius, the core mass, and the heavy element mass fraction in the envelope. We provide the eigenvalues for degree l up to 8 and radial order n up to 12. For the selected values of l and n, we find that the pulsation eigenfrequencies depend strongly on the planet mass and radius, especially at high frequency. We quantify this dependence through the calculation of the characteristic frequency {nu}{sub 0} which gives us an estimate of the scale of the eigenvalue spectrum at high frequency. For the mass range 0.5 M{sub J} {<=} M{sub P} {<=} 15 M{sub J} , and fixing the planet radius to the Jovian value, we find that {nu}{sub 0} {approx} 164.0 Multiplication-Sign (M{sub P} /M{sub J} ){sup 0.48}{mu}Hz, where M{sub P} is the planet mass and M{sub J} is Jupiter's mass. For the radius range from 0.9 to 2.0 R{sub J} , and fixing the planet's mass to the Jovian value, we find that {nu}{sub 0} {approx} 164.0 Multiplication-Sign (R{sub P} /R{sub J} ){sup -2.09}{mu}Hz, where R{sub P} is the planet radius and R{sub J} is Jupiter's radius. We explore the influence of the presence of a dense core on the pulsation frequencies and on the characteristic frequency of giant exoplanets. We find that the presence of heavy elements in the envelope affects the eigenvalue distribution in ways similar to the presence of a dense core. Additionally, we apply our formalism to Jupiter and Saturn and find results consistent with both the observational data of Gaulme et al. and previous theoretical work.

  16. DiskDetective.org: Finding Homes for Exoplanets Through Citizen Science

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2016-01-01

    The Disk Detective project is scouring the data archive from the WISE all-sky survey to find new debris disks and protoplanetary disks-the dusty dens where exoplanets form and dwell. Volunteers on this citizen science website have already performed 1.6 million classifications, searching a catalog 8x the size of any published WISE survey. We follow up candidates using ground based telescopes in California, Arizona, Chile, Hawaii, and Argentina. We ultimately expect to increase the pool of known debris disks by approx. 400 and triple the solid angle in clusters of young stars examined with WISE, providing a unique new catalog of isolated disk stars, key planet-search targets, and candidate advanced extraterrestrial civilizations. Come to this talk to hear the news about our latest dusty discoveries and the trials and the ecstasy of launching a new citizen science project. Please bring your laptop or smartphone if you like!

  17. Engaging Undergraduate Students in Transiting Exoplanet Research with Small Telescopes

    NASA Astrophysics Data System (ADS)

    Stephens, Denise C.; Stoker, E.; Gaillard, C.; Ranquist, E.; Lara, P.; Wright, K.

    2013-10-01

    Brigham Young University has a relatively large undergraduate physics program with 300 to 360 physics majors. Each of these students is required to be engaged in a research group and to produce a senior thesis before graduating. For the astronomy professors, this means that each of us is mentoring at least 4-6 undergraduate students at any given time. For the past few years I have been searching for meaningful research projects that make use of our telescope resources and are exciting for both myself and my students. We first started following up Kepler Objects of Interest with our 0.9 meter telescope, but quickly realized that most of the transits we could observe were better analyzed with Kepler data and were false positive objects. So now we have joined a team that is searching for transiting planets, and my students are using our 16" telescope to do ground based follow-up on the hundreds of possible transiting planet candidates produced by this survey. In this presentation I will describe our current telescopes, the observational setup, and how we use our telescopes to search for transiting planets. I'll describe some of the software the students have written. I'll also explain how to use the NASA Exoplanet Archive to gather data on known transiting planets and Kepler Objects of Interests. These databases are useful for determining the observational limits of your small telescopes and teaching your students how to reduce and report data on transiting planets. Once that is in place, you are potentially ready to join existing transiting planet missions by doing ground-based follow-up. I will explain how easy it can be to implement this type of research at any high school, college, or university with a small telescope and CCD camera.

  18. Age consistency between exoplanet hosts and field stars

    NASA Astrophysics Data System (ADS)

    Bonfanti, A.; Ortolani, S.; Nascimbeni, V.

    2016-01-01

    Context. Transiting planets around stars are discovered mostly through photometric surveys. Unlike radial velocity surveys, photometric surveys do not tend to target slow rotators, inactive or metal-rich stars. Nevertheless, we suspect that observational biases could also impact transiting-planet hosts. Aims: This paper aims to evaluate how selection effects reflect on the evolutionary stage of both a limited sample of transiting-planet host stars (TPH) and a wider sample of planet-hosting stars detected through radial velocity analysis. Then, thanks to uniform derivation of stellar ages, a homogeneous comparison between exoplanet hosts and field star age distributions is developed. Methods: Stellar parameters have been computed through our custom-developed isochrone placement algorithm, according to Padova evolutionary models. The notable aspects of our algorithm include the treatment of element diffusion, activity checks in terms of log{R'HK} and vsini, and the evaluation of the stellar evolutionary speed in the Hertzsprung-Russel diagram in order to better constrain age. Working with TPH, the observational stellar mean density ρ⋆ allows us to compute stellar luminosity even if the distance is not available, by combining ρ⋆ with the spectroscopic log g. Results: The median value of the TPH ages is 5 Gyr. Even if this sample is not very large, however the result is very similar to what we found for the sample of spectroscopic hosts, whose modal and median values are [3, 3.5) Gyr and 4.8 Gyr, respectively. Thus, these stellar samples suffer almost the same selection effects. An analysis of MS stars of the solar neighbourhood belonging to the same spectral types bring to an age distribution similar to the previous ones and centered around solar age value. Therefore, the age of our Sun is consistent with the age distribution of solar neighbourhood stars with spectral types from late F to early K, regardless of whether they harbour planets or not. We considered

  19. A Systematic Search for Exoplanet Candidates in K2 Data

    NASA Astrophysics Data System (ADS)

    Kahre, Tarryn; Karnes, Katherine L.; Caldwell, Douglas A.; Smith, Jeffrey C.

    2016-01-01

    We present a catalog of 41 promising exoplanet candidates in 33 stellar systems from the K2 Campaign 3 data. The K2 Mission was developed upon the mechanical failure of the second of four reaction wheels, as the Kepler Spacecraft could not continue the original Kepler Mission. The Kepler Mission was a 4-year mission designed to determine the prevalence of exoplanets in our galaxy, and the configuration and diversity of those planetary systems discovered. The K2 Mission has a similar goal, though the spacecraft now points at fields along the ecliptic in ~75 day campaigns (Howell et al. 2014). Although the light curves in K2 data are noisier and have significant motion-induced systematics, it has been shown that there is success in finding exoplanets and exoplanet candidates (Foreman-Mackey et al. 2015; Montet et al. 2015). Utilizing the Transiting Planet Search and Data Validation from the Kepler Processing Pipeline, we systematically search K2 Campaign 3 for potential exoplanet candidates. Setting a 7.1s maximum folded statistic threshold minimum for a minimum of three transit events, we define our initial candidate list. Our list is further narrowed by the results from Data Validation, as it allows us to statistically identify false positives, such as eclipsing binaries or uncorrected roll-drift, in our sample. We further draw parallels between our results and other transit-searching pipeline results published for Campaign 3.

  20. Chemical Timescales in the Atmospheres of Highly Eccentric Exoplanets

    NASA Astrophysics Data System (ADS)

    Visscher, Channon

    2012-10-01

    Close-in exoplanets with highly eccentric orbits are subject to large variations in incoming stellar flux between periapse and apoapse. These variations may lead to large swings in atmospheric temperature, which in turn may cause changes in the chemistry of the atmosphere from relatively higher CO abundances at periapse to relatively higher CH4 abundances at apoapse. Here we examine chemical timescales for CO<->CH4 interconversion compared to orbital timescales and vertical mixing timescales for the highly eccentric exoplanets HAT-P-2b and CoRoT-10b. As exoplanet atmospheres cool, the chemical timescales for CO<->CH4 tend to exceed orbital and/or vertical mixing timescales, leading to quenching. The relative roles of orbit-induced thermal quenching and vertical quenching depend upon mixing timescales relative to orbital timescales. For both HAT-P-2b and CoRoT-10b, vertical quenching will determine disequilibrium CO<->CH4 chemistry at faster vertical mixing rates, whereas orbit-induced thermal quenching may play a significant role at slower mixing rates. The general abundance and chemical timescale results - calculated as a function of pressure, temperature, and metallicity - can be applied for different atmospheric profiles in order to estimate the quench level and disequilibrium abundances of CO and CH4 on hydrogen-dominated exoplanets. Observations of CO and CH4 on highly eccentric exoplanets may yield important clues to the chemical and dynamical properties of their atmospheres.