Science.gov

Sample records for exotic nuclear systems

  1. Heavy quark in exotic hadron and nuclear systems

    NASA Astrophysics Data System (ADS)

    Yasui, Shigehiro

    2014-09-01

    In recent years, it has turned out that heavy hadrons with charm and bottom flavors have rich structures, which are different from simple quark-antiquark or three-quark systems. The new states of heavy hadrons are called exotic hadrons X, Y and Z. The subjects are now covering not only exotic hadrons but also exotic ``nuclei'' in which heavy hadrons are bound. The purpose of the presentation is to discuss the general properties of exotic states of hadrons and nuclei with heavy quarks. We begin our discussion by the heavy quark spin (HQS) symmetry in the heavy quark limit, and show that all heavy hadrons are classified by the HQS symmetry, i.e. either HQS singlet or doublet. Next, in order to discuss the long-range physics of exotic hadrons, we introduce the heavy hadron effective theory according to the HQS symmetry in heavy quark sector as well as by chiral symmetry in light quark sector. As examples, we investigate the theoretically possible states of hadronic molecules with an anti-D meson (B meson) and nucleons with baryon number one, two and infinity (i.e. nuclear matter). Calculating the energies, we show that many of them exhibit the HQS doublets. Beyond the leading order in heavy quark limit, we further discuss the 1/M corrections with heavy hadron mass M, and show that finding the HQS-breaking (non-breaking) terms at 1/M is important to investigate the magnetic (electric) gluons in the heavy hadrons in nuclear medium [1,5]. In recent years, it has turned out that heavy hadrons with charm and bottom flavors have rich structures, which are different from simple quark-antiquark or three-quark systems. The new states of heavy hadrons are called exotic hadrons X, Y and Z. The subjects are now covering not only exotic hadrons but also exotic ``nuclei'' in which heavy hadrons are bound. The purpose of the presentation is to discuss the general properties of exotic states of hadrons and nuclei with heavy quarks. We begin our discussion by the heavy quark spin (HQS

  2. Exotic States of Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Lombardo, Umberto; Baldo, Marcello; Burgio, Fiorella; Schulze, Hans-Josef

    2008-02-01

    ência et al. Quartetting in nuclear matter and [symbol] particle condensation in nuclear systems / G. Röpke & P. Schuck et al. -- pt. C. Neutron star structure and dynamics. Shear viscosity of neutron matter from realistic nuclear interactions / O. Benhar & M. Valli. Protoneutron star dynamo: theory and observations / A. Bonanno & V. Urpin. Magnetic field dissipation in neutron stars: from magnetars to isolated neutron stars / J. A. Pons. Gravitational radiation and equations of state in super-dense cores of core-collapse supernovae / K. Kotake. Joule heating in the cooling of magnetized neutron stars / D. N. Aguilera, J. A. Pons & J. A. Miralles. Exotic fermi surface of dense neutron matter / M. V. Zverev, V. A. Khodel & J. W. Clark. Coupling of nuclear and electron modes in relativistic stellar matter / A. M. S. Santos et al. Neutron stars in the relativistic Hartree-Fock theory and hadron-quark phase transition / B. Y. Sun ... [et al.] -- pt. D. Prospects of present and future observations. Measurements of neutron star masses / D. G. Yakovlev. Dense nuclear matter: constraints from neutron stars / J. M. Lattimer. Neutron star versus heavy-ion data: is the nuclear equation of state hard or soft? / J. Schaffner-Bielich ... [et al.]. Surface emission from x-ray dim isolated neutron stars / R. Turolla. High energy neutrino astronomy / E. Migneco. What gravitational waves say about the inner structure of neutron stars / V. Ferrari. Reconciling 2 M[symbol] pulsars and SN1987A: two branches of neutron stars / P. Haensel, M. Bejger & J. L. Zdunik. EOS of dense matter and fast rotation of neutron stars / J. L. Zdunik ... [et al.] -- pt. E. Quark and strange matter in neutron stars. Bulk viscosity of color-superconducting quark matter / M. Alford. Chiral symmetry restoration and quark deconfinement at large densities and temperature / A. Drago, L. Bonanno & A. Lavagno. Color superconducting quark matter in compact stars / D. B. Blaschke, T. Klähn & F. Sandin. Thermal

  3. Exotic nuclei and nuclear forces

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu

    2013-01-01

    I overview new aspects of the structure of exotic nuclei as compared to stable nuclei, focusing on several characteristic effects of nuclear forces. The shell structure of nuclei has been proposed by Mayer and Jensen, and has been considered to be kept valid basically for all nuclei, with well-known magic numbers, 2, 8, 20, 28, 50, …. Nuclear forces were shown, very recently, to change this paradigm. It will be presented that the evolution of shell structure occurs in various ways as more neutrons and/or protons are added, and I will present basic points of this shell evolution in terms of the monopole interaction of nuclear forces. I will discuss three types of nuclear forces. The first one is the tensor force. The tensor force is one of the most fundamental nuclear forces, but its first-order effect on the shell structure has been clarified only recently in studies on exotic nuclei. The tensor force can change the spin-orbit splitting depending on the occupation of specific orbits. This results in changes of the shell structure in many nuclei, and consequently some of Mayer-Jensen's magic numbers are lost and new ones emerge, in certain nuclei. This mechanism can be understood in an intuitive way, meaning that the effect is general and robust. The second type of nuclear forces is central force. I will show a general but unknown property of the central force in the shell-model Hamiltonian that can describe nuclear properties in a good agreement with experiment. I will then demonstrate how it can be incorporated into a simple model of the central force, and will discuss how this force works in the shell evolution. Actually, by combining this central force with the tensor force, one can understand and foresee how the same proton-neutron interaction drives the shell evolution, for examples such as Sn/Sb isotopes, N = 20 nuclei and Ni/Cu isotopes. The distribution of single-particle strength is discussed also in comparison to (e,e‧p) experiment on 48Ca. The shell

  4. Study of Nuclear Moments on Exotic Nuclei

    SciTech Connect

    Ishihara, Masayasu

    2010-04-30

    Nuclear moments have been measured for a few tens of light unstable nuclei located very far from the line of stability using beta-NMR methods and spin-polarized RI beams. The obtained values of those moments provided indispensable information to reveal/disentangle unique properties of exotic nuclei.

  5. Exotic Superconductivity in Correlated Electron Systems

    SciTech Connect

    Mu, Gang; Sandu, Viorel; Li, Wei; Shen, Bing

    2015-05-25

    Over the past decades, the search for high-Tc superconductivity (SC) and its novel superconducting mechanisms is one of the most challenging tasks of condensed matter physicists and material scientists, wherein the most striking achievement is the discovery of high-c and unconventional superconductivity in strongly correlated 3d-electron systems, such as cuprates and iron pnictides/chalcogenides. Those exotic superconductors display the behaviors beyond the scope of the BCS theory (in the SC states) and the Landau-Fermi liquid theory (in the normal states). In general, such exotic superconductivity can be seen as correlated electron systems, where there are strong interplays among charge, spin, orbital, and lattice degrees of freedom. Thus, we focus on the exotic superconductivity in materials with correlated electrons in the present special issue.

  6. Exotic Superconductivity in Correlated Electron Systems

    DOE PAGESBeta

    Mu, Gang; Sandu, Viorel; Li, Wei; Shen, Bing

    2015-05-25

    Over the past decades, the search for high-Tc superconductivity (SC) and its novel superconducting mechanisms is one of the most challenging tasks of condensed matter physicists and material scientists, wherein the most striking achievement is the discovery of high-c and unconventional superconductivity in strongly correlated 3d-electron systems, such as cuprates and iron pnictides/chalcogenides. Those exotic superconductors display the behaviors beyond the scope of the BCS theory (in the SC states) and the Landau-Fermi liquid theory (in the normal states). In general, such exotic superconductivity can be seen as correlated electron systems, where there are strong interplays among charge, spin, orbital,more » and lattice degrees of freedom. Thus, we focus on the exotic superconductivity in materials with correlated electrons in the present special issue.« less

  7. Searches for exotic interactions in nuclear beta decay

    NASA Astrophysics Data System (ADS)

    Naviliat-Cuncic, O.

    2016-07-01

    This contribution presents current efforts in the search for exotic interactions in nuclear β decay using a calorimetric technique for the measurement of the β energy spectrum shape. We describe the criteria for the choice of sensitive candidates in Gamow-Teller transitions and present the status of measurements performed in 6He and 20F decay.

  8. PREFACE: Structure of Exotic Nuclei and Nuclear Forces

    NASA Astrophysics Data System (ADS)

    Honma, Michio; Otsuka, Takaharu; Aoi, Nori

    2006-11-01

    The International Symposium on `Structure of Exotic Nuclei and Nuclear Forces' was held at The Koshiba Hall, University of Tokyo, on 9 - 12 March 2006. This symposium was organized as an activity of the Grant-in-Aid for the specially promoted area `Monte Carlo Shell Model' from the Ministry of Education, Science, Sports and Culture (MEXT) of Japan. The symposium was sponsored by the Center for Nuclear Study (CNS) and by RIKEN. The purpose of the symposium was to discuss theoretical and experimental developments in the study of the structure of exotic nuclei and its relationship with nuclear forces. There has been much progress recently in our understanding of what the structure of exotic nuclei is and how it can be linked to nuclear forces, with emerging intriguing perspectives. The following subjects were covered in this symposium

  9. Present status and future of the shell model
  10. Effective interaction theories
  11. Experimental results and perspectives
  12. Few-body methods including ab initio calculations
  13. Advancements of mean-fieeld models
  14. Transition between shell and cluster structure
  15. Nuclear astrophysics and nuclear structure
  16. Particle physics and the shell model
  17. Emphasis was placed on the interplay between many-body structures and nuclear forces, and on the experimental clarification of these topics. Around 80 participants attended the symposium and we enjoyed 34 excellent and lively invited talks and 26 oral presentations. The organizing committee consisted of B A Brown (MSU), S Fujii (CNS), M Honma (Aizu), T Kajino (NAO), T Mizusaki (Senshu), T Motobayashi (RIKEN), K Muto (TIT), T Otsuka (Chair, Tokyo/CNS/RIKEN), P Ring (TMU), N Shimizu (Scientific Secretary, Tokyo), S Shimoura (CNS), Y Utsuno (Scientific Secretary, JAEA). Finally, we would like to thank all the speakers and the participants as well as the other organizers for their contributions which made the symposium so successful.

  18. Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities

    SciTech Connect

    Patra, S. K.; Panda, R. N.; Arumugam, P.; Gupta, Raj K.

    2009-12-15

    We have calculated the total nuclear reaction cross sections of exotic nuclei in the framework of the Glauber model, using as inputs the standard relativistic mean field (RMF) densities and the densities obtained from the more recently developed effective-field-theory-motivated RMF (the E-RMF). Both light and heavy nuclei are taken as the representative targets, and the light neutron-rich nuclei as projectiles. We found the total nuclear reaction cross section to increase as a function of the mass number, for both the target and projectile nuclei. The differential nuclear elastic scattering cross sections are evaluated for some selected systems at various incident energies. We found a large dependence of the differential elastic scattering cross section on incident energy. Finally, we have applied the same formalism to calculate both the total nuclear reaction cross section and the differential nuclear elastic scattering cross section for the recently discussed superheavy nucleus with atomic number Z=122.

  19. Light exotic systems at relativistic velocities

    NASA Astrophysics Data System (ADS)

    Simon, H.

    2010-03-01

    In this paper the results of a series of experiments, carried out at the GSI accelerator facilities in Darmstadt at the Aladin-LAND reaction setup are presented. Light nuclei at relativistic velocities, impinging on a carbon and a liquid hydrogen reaction target break up and all fragments are detected in coincidence. The observed correlations are used to draw conclusions on the underlying structure of the bound exotic projectiles as well as to explore continuum structures.

  20. Experiments with Exotic Spin-Oriented Nuclear Beams and Examples of Nuclear Moment Measurements

    NASA Astrophysics Data System (ADS)

    Balabanski, D. L.; Neyens, G.; Borremans, D.; Coulier, N.; Daugas, J. M.; Teughels, S.; Georgiev, G.; Lewitowicz, M.; de Oliveira Santos, F.; Penionzhkevich, Yu. E.

    2002-04-01

    An overview of a series of recent experiments aimed at the determination of the moments of exotic nuclei is presented. The spin-orientation: spin-alignment and spin-polarization of the nuclear ensemble, which is produced in fragmentation reactions, is of utmost importance for these studies. The discussion emphasizes on the open problems related to the production and the preservation of the orientation during the experiments. Pros and contras for experiments at both, intermediate and high energies are considered. Examples from nuclear moment measurements, which were performed using the LISE-III spectrometer at GANIL, are provided. The spin-alignment and the spin-polarization of the nuclear ensemble were studied by the β-LMR, β-NMR and TDPAD experimental techniques. The experimental results are discussed in the framework of the kinematical model of the fragmentation reaction.

  21. Toward a Fundamental Understanding of Nuclear Reactions and Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Quaglioni, Sofia; Hupin, Guillaume; Langhammer, Joachim; Romero-Redondo, Carolina; Schuster, Micah D.; Johnson, Calvin W.; Navrátil, Petr; Roth, Robert

    Nuclear systems near the drip lines offer an exciting opportunity to advance our understanding of the interactions among nucleons, which has so far been mostly based on the study of stable nuclei. However, this is not a goal devoid of challenges. From a theoretical standpoint, it requires the capability to address within an ab initio framework not only bound, but also resonant and scattering states, all of which can be strongly coupled. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from Quantum Chromodynamics employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present a brief overview of one of such methods, the ab initio no-core shell model with continuum, and its applications to nucleon and deuterium scattering on light nuclei. The first investigation of the low-lying continuum spectrum of 6He within an ab initio framework that encompasses the 4He + n + n three-cluster dynamics characterizing its lowest particle-decay channel will also be briefly presented.

  22. Using superconducting qubit circuits to engineer exotic lattice systems

    SciTech Connect

    Tsomokos, Dimitris I.; Ashhab, Sahel; Nori, Franco

    2010-11-15

    We propose an architecture based on superconducting qubits and resonators for the implementation of a variety of exotic lattice systems, such as spin and Hubbard models in higher or fractal dimensions and higher-genus topologies. Spin systems are realized naturally using qubits, while superconducting resonators can be used for the realization of Bose-Hubbard models. Fundamental requirements for these designs, such as controllable interactions between arbitrary qubit pairs, have recently been implemented in the laboratory, rendering our proposals feasible with current technology.

  23. Lifetime Measurements of Tagged Exotic- and Unbound Nuclear States

    SciTech Connect

    Cullen, D. M.

    2011-11-30

    A new Differential Plunger device for measuring pico-second lifetimes of Unbound Nuclear States (DPUNS) is being built at The University of Manchester. DPUNS has been designed to work with alpha-, beta- and isomer-tagging methods using the existing JUROGAM II--RITU--GREAT infrastructure at the University of Jyvaskyla, Finland. The importance of proton emission from nuclei is that it provides valuable nuclear-structure information as direct input to nuclear models beyond the drip line. New experimental data beyond the drip line can provide new extensions to these models especially with the possible coupling of weakly bound and unbound states to the continuum. The results of the first experiments to measure lifetimes of unbound nuclear states with this method was discussed along with possible future experiments which can be addressed with DPUNS using proton-, isomer- and alpha-tagging.

  24. Ab Initio Calculations Of Nuclear Reactions And Exotic Nuclei

    SciTech Connect

    Quaglioni, S.

    2014-05-05

    Our ultimate goal is to develop a fundamental theory and efficient computational tools to describe dynamic processes between nuclei and to use such tools toward supporting several DOE milestones by: 1) performing predictive calculations of difficult-to-measure landmark reactions for nuclear astrophysics, such as those driving the neutrino signature of our sun; 2) improving our understanding of the structure of nuclei near the neutron drip line, which will be the focus of the DOE’s Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University; but also 3) helping to reveal the true nature of the nuclear force. Furthermore, these theoretical developments will support plasma diagnostic efforts at facilities dedicated to the development of terrestrial fusion energy.

  25. Exotic Nuclei

    SciTech Connect

    Galindo-Uribarri, Alfredo {nmn}

    2010-01-01

    Current experimental developments on the study of exotic nuclei far from the valley of stability are discussed. I start with general aspects related to the production of radioactive beams followed by the description of some of the experimental tools and specialized techniques for studies in reaction spectroscopy, nuclear structure research and nuclear applications with examples from selected topical areas with which I have been involved. I discuss some of the common challenges faced in Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beam (RIB) science.

  26. Remote Sensing of Exotic Invasive Weeds in the Rio Grande System of Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic invasive weeds are a serious problem in the Rio Grande system of Texas. This paper presents the results of several aerial remote sensing studies conducted from 2002 to 2006 on the Rio Grande from its mouth near Brownsville in south Texas to El Paso in west Texas. Weed species addressed inc...

  27. ICENES '91:Sixth international conference on emerging nuclear energy systems

    SciTech Connect

    Not Available

    1991-01-01

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, [mu]-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  28. Search for the photoexcitation of exotic mesons in the pi+pi+pi- system.

    PubMed

    Nozar, M; Salgado, C; Weygand, D P; Guo, L; Adams, G; Li, Ji; Eugenio, P; Amaryan, M J; Anghinolfi, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Battaglieri, M; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Blaszczyk, L; Bonner, B E; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Bültmann, S; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Carnahan, B; Casey, L; Cazes, A; Chen, S; Cheng, L; Cole, P L; Collins, P; Coltharp, P; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Crede, V; Cummings, J P; Dale, D; Dashyan, N; De Masi, R; De Vita, R; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Deur, A; Dharmawardane, K V; Dhuga, K S; Dickson, R; Djalali, C; Dodge, G E; Doughty, D; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Fatemi, R; Fedotov, G; Feuerbach, R J; Forest, T A; Fradi, A; Funsten, H; Garçon, M; Gavalian, G; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guillo, M; Guler, N; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, H; Hanretty, C; Hardie, J; Hassall, N; Heddle, D; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Johnstone, J R; Joo, K; Juengst, H G; Kalantarians, N; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Kossov, M; Krahn, Z; Kramer, L H; Kubarovsky, V; Kuhn, J; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Livingston, K; Lu, H Y; Maccormick, M; Markov, N; Mattione, P; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mehrabyan, S; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Mirazita, M; Miskimen, R; Mokeev, V; Moreno, B; Moriya, K; Morrow, S A; Moteabbed, M; Mueller, J; Munevar, E; Mutchler, G S; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Anefalos Pereira, S; Philips, S A; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Polli, E; Popa, I; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Rubin, P D; Sabatié, F; Salamanca, J; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabian, Y G; Sharov, D; Shvedunov, N V; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Sokhan, D; Stavinsky, A; Stepanyan, S S; Stepanyan, S; Stokes, B E; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Tedeschi, D J; Thoma, U; Tkabladze, A; Tkachenko, S; Todor, L; Ungaro, M; Vineyard, M F; Vlassov, A V; Watts, D P; Weinstein, L B; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Zana, L; Zhang, J; Zhao, B; Zhao, Z W

    2009-03-13

    A search for exotic mesons in the pi;{+}pi;{+}pi;{-} system photoproduced by the charge exchange reaction gammap-->pi;{+}pi;{+}pi;{-}(n) was carried out by the CLAS Collaboration at Jefferson Lab. A tagged-photon beam with energies in the 4.8 to 5.4 GeV range, produced through bremsstrahlung from a 5.744 GeV electron beam, was incident on a liquid-hydrogen target. A partial wave analysis was performed on a sample of 83 000 events, the highest such statistics to date in this reaction at these energies. The main objective of this study was to look for the photoproduction of an exotic J;{PC}=1;{-+} resonant state in the 1 to 2 GeV mass range. Our partial wave analysis shows production of the a_{2}(1320) and the pi_{2}(1670) mesons, but no evidence for the a_{1}(1260), nor the pi_{1}(1600) exotic state at the expected levels. An upper limit of 13.5 nb is determined for the exotic pi_{1}(1600) cross section, less than 2% of the a_{2}(1320) production. PMID:19392105

  29. Soliton defects in one-gap periodic system and exotic supersymmetry

    NASA Astrophysics Data System (ADS)

    Arancibia, Adrián; Correa, Francisco; Jakubský, Vít; Mateos Guilarte, Juan; Plyushchay, Mikhail S.

    2014-12-01

    By applying Darboux-Crum transformations to the quantum one-gap Lamé system, we introduce an arbitrary countable number of bound states into forbidden bands. The perturbed potentials are reflectionless and contain two types of soliton defects in the periodic background. The bound states with a finite number of nodes are supported in the lower forbidden band by the periodicity defects of the potential well type, while the pulse-type bound states in the gap have an infinite number of nodes and are trapped by defects of the compression modulations nature. We investigate the exotic nonlinear N =4 supersymmetric structure in such paired Schrödinger systems, which extends an ordinary N =2 supersymmetry and involves two bosonic generators composed from Lax-Novikov integrals of the subsystems. One of the bosonic integrals has a nature of a central charge and allows us to liaise the obtained systems with the stationary equations of the Korteweg-de Vries and modified Korteweg-de Vries hierarchies. This exotic supersymmetry opens the way for the construction of self-consistent condensates based on the Bogoliubov-de Gennes equations and associated with them new solutions to the Gross-Neveu model. They correspond to the kink or kink-antikink defects of the crystalline background in dependence on whether the exotic supersymmetry is unbroken or spontaneously broken.

  1. Multiquark exotics

    SciTech Connect

    Lipkin, H.J.

    1983-01-01

    The question Are Anomalons Multiquark Exotics is discussed. It is concluded that so far there is no convincing experimental evidence for any multiquark exotic bound state nor for any exotic resonance. Except for the delta and S* there are no candidates for bound states and no firm theoretical predictions waiting to be tested. Exotic resonances may exist in the 1.5 to 2.0 GeV region and in the charmed sector, e.g., the charmed-strange exotics. The experimental search for multiquark resonances is still open and active. (WHK)

  2. Exotic branes and nongeometric backgrounds.

    PubMed

    de Boer, Jan; Shigemori, Masaki

    2010-06-25

    When string or M theory is compactified to lower dimensions, the U-duality symmetry predicts so-called exotic branes whose higher-dimensional origin cannot be explained by the standard string or M-theory branes. We argue that exotic branes can be understood in higher dimensions as nongeometric backgrounds or U folds, and that they are important for the physics of systems which originally contain no exotic charges, since the supertube effect generically produces such exotic charges. We discuss the implications of exotic backgrounds for black hole microstate (non-)geometries. PMID:20867363

  3. Exotic Charge Polarization near Dirac Cone Merging Transition in Graphene-based Systems

    NASA Astrophysics Data System (ADS)

    Wilson, Noah; Myers, Owen; Lakoba, Taras; Kotov, Valeri

    Extreme strain in graphene yields a fascinating charge distribution around a Coulomb impurity. Graphene's band structure is characterized by gapless Dirac cones but can be made gapped by application of intense strain. The cones become increasingly elliptic continually merging, until the spectrum has an exotic, highly anisotropic, semi-Dirac, nature. This situation can also occur in various artificially engineered lattices. The unusual spectrum leads to an unconventional charge distribution around a Coulomb impurity. Crucially, unlike isotropic graphene, the polarization charge density exhibits long-range oscillatory tails far from the impurity. Such exotic behavior is due to the anisotropy of the polarization, and occurs even at zero chemical potential (i.e. unrelated to Friedel-type physics). The angular and radial functions are intrinsically coupled, hence a litany of distinct angular distributions is observed through multiple distance regimes. The density can approach infinity at angles where it was once close to zero, be negative all around the impurity, or have its polarity fluctuate along different directions. Thus our results could have important implications for STM experiments probing polarization charge around impurities in highly anisotropic Dirac systems.

  4. ICENES `91:Sixth international conference on emerging nuclear energy systems. Program and abstracts

    SciTech Connect

    Not Available

    1991-12-31

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, {mu}-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  5. International Symposium on Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.; Cherepanov, E. A.

    Methods of production of light exotic nuclei and study of their ptoperties -- Superheavy elements. Syhnthesis and properties -- Nuclear fission -- Nuclear reactions -- rare processes, decay and nuclear structure -- Experimental set-ups and future projects -- Radioactive beams. Production and research programmes -- Public relations.

  6. Space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Carpenter, R. T.

    1972-01-01

    Space nuclear power systems are considered for use in those particular spacecraft applications for which nuclear power systems offer unique advantages over solar and/or chemical space power systems. Both isotopic and reactor heated space electrical power units are described in an attempt to illustrate their operating characteristics, spacecraft integration aspects, and factory-to-end of mission operational considerations. The status of technology developments in nuclear power systems is presented. Some projections of those technologies are made to form a basis for the applications of space nuclear power systems to be expected over the next 10-15 years.

  7. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  8. Dynamical effects in fusion with exotic nuclei

    NASA Astrophysics Data System (ADS)

    Vo-Phuoc, K.; Simenel, C.; Simpson, E. C.

    2016-08-01

    Background: Reactions with stable beams have demonstrated strong interplay between nuclear structure and fusion. Exotic beam facilities open new perspectives to understand the impact of neutron skin, large isospin, and weak binding energies on fusion. Microscopic theories of fusion are required to guide future experiments. Purpose: To investigate new effects of exotic structures and dynamics in near-barrier fusion with exotic nuclei. Method: Microscopic approaches based on the Hartree-Fock (HF) mean-field theory are used for studying fusion barriers in -54Ca40+116Sn reactions for even isotopes. Bare potential barriers are obtained assuming frozen HF ground-state densities. Dynamical effects on the barrier are accounted for in time-dependent Hartree-Fock (TDHF) calculations of the collisions. Vibrational couplings are studied in the coupled-channel framework and near-barrier nucleon transfer is investigated with TDHF calculations. Results: The development of a neutron skin in exotic calcium isotopes strongly lowers the bare potential barrier. However, this static effect is not apparent when dynamical effects are included. On the contrary, a fusion hindrance is observed in TDHF calculations with the most neutron-rich calcium isotopes which cannot be explained by vibrational couplings. Transfer reactions are also important in these systems due to charge equilibration processes. Conclusions: Despite its impact on the bare potential, the neutron skin is not seen as playing an important role in the fusion dynamics. However, the charge transfer with exotic projectiles could lead to an increase of the Coulomb repulsion between the fragments, suppressing fusion. The effects of transfer and dissipative mechanisms on fusion with exotic nuclei deserve further studies.

  9. Relativistic Energy Density Functionals: Exotic modes of excitation

    SciTech Connect

    Vretenar, D.; Paar, N.; Marketin, T.

    2008-11-11

    The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of {beta}-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.

  10. Exotic power and propulsion concepts

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1990-01-01

    The status of some exotic physical phenomena and unconventional spacecraft concepts that might produce breakthroughs in power and propulsion in the 21st Century are reviewed. The subjects covered include: electric, nuclear fission, nuclear fusion, antimatter, high energy density materials, metallic hydrogen, laser thermal, solar thermal, solar sail, magnetic sail, and tether propulsion.

  11. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-12-31

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960`s and early 1970`s was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  12. Nuclear propulsion systems engineering

    SciTech Connect

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts.

  13. Exotic populations in globular clusters: blue stragglers as tracers of the internal dynamical evolution of stellar systems

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco R.

    2016-02-01

    In this paper I present an overview of the main observational properties of a special class of exotic objects (the so-called Blue Straggler Stars, BSSs) in Galactic Globular Clusters (GCs). The BSS specific frequency and their radial distribution are discussed in the framework of using this stellar population as probe of GC internal dynamics. In particular, the shape of the BSS radial distribution has been found to be a powerful tracer of the dynamical evolution of stellar systems, thus allowing the definition of an empirical ``clock''able to measure the dynamical age of stellar aggregates from pure observational properties.

  14. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  15. Single particle versus collectivity, shapes of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Jungclaus, Andrea

    2016-03-01

    In this article some selected topics of nuclear structure research will be discussed as illustration of the progress reached in this field during the last thirty years. These examples evidence the improvement of our understanding of the atomic nucleus reached on the basis of countless experiments, performed to study both exotic nuclei (nuclei far-off the valley of stability) as well as nuclei under exotic conditions (high excitation energy/temperature or large angular momentum/rotational frequency), using stable and radioactive ion beams. The experimental progress, in parallel to the advancement of modern theoretical descriptions, led us to a much richer view of this fundamental many-body system.

  16. The charge breeder beam line for the selective production of exotic species project at INFN-Legnaro National Laboratories

    NASA Astrophysics Data System (ADS)

    Galatà, A.; Comunian, M.; Maggiore, M.; Manzolaro, M.; Angot, J.; Lamy, T.

    2014-02-01

    SPES (Selective Production of Exotic Species) is an INFN (Istituto Nazionale di Fisica Nucleare) project with the aim at producing and post-accelerating exotic beams to perform forefront research in nuclear physics. To allow post-acceleration of the radioactive ions, an ECR-based Charge Breeder (CB) developed on the basis of the Phoenix booster was chosen. The design of the complete beam line for the SPES-CB will be described: a system for stable 1+ beams production was included; special attention was paid to the medium resolution mass spectrometer after the CB to limit possible superposition of the exotic beams with the impurities present in the ECR plasma.

  17. Nuclear core positioning system

    DOEpatents

    Garkisch, Hans D.; Yant, Howard W.; Patterson, John F.

    1979-01-01

    A structural support system for the core of a nuclear reactor which achieves relatively restricted clearances at operating conditions and yet allows sufficient clearance between fuel assemblies at refueling temperatures. Axially displaced spacer pads having variable between pad spacing and a temperature compensated radial restraint system are utilized to maintain clearances between the fuel elements. The core support plates are constructed of metals specially chosen such that differential thermal expansion produces positive restraint at operating temperatures.

  18. Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  19. Nuclear power system

    SciTech Connect

    Yampolsky, J.S.; Cavallaro, L.; Paulovich, K.F.; Schleicher, R.W.

    1989-09-05

    This patent describes an inherently safe modular nuclear power system for producing electrical power at acceptable efficiency levels using working fluids at relatively low temperatures and pressures. The system comprising: a reactor module for heating a first fluid; a heat exchanger module for transferring heat from the first fluid to a second fluid; a first piping system effecting flow of the first fluid in a first fluid circuit successively through the reactor module and the heat exchanger module; a power conversion module comprising a turbogenerator driven by the second fluid, and means for cooling the second fluid upon emergence thereof from the turbogenerator; a second piping system comprising means for effecting flow of the second fluid in a second fluid circuit successively through the heat exchanger module and the power conversion module; and a plurality of pits for receiving the modules.

  20. Nuclear criticality information system

    SciTech Connect

    Koponen, B.L.; Hampel, V.E.

    1981-11-30

    The nuclear criticality safety program at LLNL began in the 1950's with a critical measurements program which produced benchmark data until the late 1960's. This same time period saw the rapid development of computer technology useful for both computer modeling of fissile systems and for computer-aided management and display of the computational benchmark data. Database management grew in importance as the amount of information increased and as experimental programs were terminated. Within the criticality safety program at LLNL we began at that time to develop a computer library of benchmark data for validation of computer codes and cross sections. As part of this effort, we prepared a computer-based bibliography of criticality measurements on relatively simple systems. However, it is only now that some of these computer-based resources can be made available to the nuclear criticality safety community at large. This technology transfer is being accomplished by the DOE Technology Information System (TIS), a dedicated, advanced information system. The NCIS database is described.

  1. Nuclear reactor sealing system

    DOEpatents

    McEdwards, James A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel.

  2. Exotic Quantum Phases and Phase Transitions of Strongly Interacting Electrons in Low-Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Mishmash, Ryan V.

    Experiments on strongly correlated quasi-two-dimensional electronic materials---for example, the high-temperature cuprate superconductors and the putative quantum spin liquids kappa-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2---routinely reveal highly mysterious quantum behavior which cannot be explained in terms of weakly interacting degrees of freedom. Theoretical progress thus requires the introduction of completely new concepts and machinery beyond the traditional framework of the band theory of solids and its interacting counterpart, Landau's Fermi liquid theory. In full two dimensions, controlled and reliable analytical approaches to such problems are severely lacking, as are numerical simulations of even the simplest of model Hamiltonians due to the infamous fermionic sign problem. Here, we attempt to circumvent some of these difficulties by studying analogous problems in quasi-one dimension. In this lower dimensional setting, theoretical and numerical tractability are on much stronger footing due to the methods of bosonization and the density matrix renormalization group, respectively. Using these techniques, we attack two problems: (1) the Mott transition between a Fermi liquid metal and a quantum spin liquid as potentially directly relevant to the organic compounds kappa-(BEDT-TTF)2Cu 2(CN)3 and EtMe3Sb[Pd(dmit)2] 2 and (2) non-Fermi liquid metals as strongly motivated by the strange metal phase observed in the cuprates. In both cases, we are able to realize highly exotic quantum phases as ground states of reasonable microscopic models. This lends strong credence to respective underlying slave-particle descriptions of the low-energy physics, which are inherently strongly interacting and also unconventional in comparison to weakly interacting alternatives. Finally, working in two dimensions directly, we propose a new slave-particle theory which explains in a universal way many of the intriguing experimental results of the triangular lattice organic spin

  3. Nuclear reactor shutdown system

    DOEpatents

    Bhate, Suresh K.; Cooper, Martin H.; Riffe, Delmar R.; Kinney, Calvin L.

    1981-01-01

    An inherent shutdown system for a nuclear reactor having neutron absorbing rods affixed to an armature which is held in an upper position by a magnetic flux flowing through a Curie temperature material. The Curie temperature material is fixedly positioned about the exterior of an inner duct in an annular region through which reactor coolant flows. Elongated fuel rods extending from within the core upwardly toward the Curie temperature material are preferably disposed within the annular region. Upon abnormal conditions which result in high neutron flux and coolant temperature, the Curie material loses its magnetic permeability, breaking the magnetic flux path and allowing the armature and absorber rods to drop into the core, thus shutting down the fissioning reaction. The armature and absorber rods are retrieved by lowering the housing for the electromagnet forming coils which create a magnetic flux path which includes the inner duct wall. The coil housing then is raised, resetting the armature.

  4. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  5. Nuclear medicine imaging system

    DOEpatents

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J.; Rowe, R. Wanda; Zubal, I. George

    1986-01-07

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  6. Physics of Exotic Nuclei at RIBF

    NASA Astrophysics Data System (ADS)

    Sakurai, Hiroyoshi

    2014-09-01

    ``Exotic nuclei'' far from the stability line are unique objects of many-body quantum system, where ratios of neutron number to proton number are much larger or much smaller than those of nuclei found in nature. Their exotic properties and phenomena emerge from their large isospin asymmetry, and even affect scenarios of nucleosynthesis in the universe. Efforts have been made to produce and investigate such exotic nuclei at the accelerator facilities in the world. One of the facilities, the Radioactive Isotope Beam Factory (RIBF) facility at RIKEN, Japan has delivered intense radioactive isotope (RI) beams since 2007. In US, the Facility for Rare Isotope Beams is being constructed to start around 2020. To access nuclei far from the stability line, especially neutron-rich nuclei, the RIBF facility is highly optimized for inflight production of fission fragments via a U beam. The Super-conducting Ring Cyclotron delivers a 345 MeV/u U beam. The U nuclide is converted at a target to fission fragments. An inflight separator BigRIPS was designed to collect about 50% of fission fragments produced at the target and separate nuclei of interest. The RI beams produced at BigRIPS are then delivered to several experimental devices. Large-scale international collaborations have been formed at three spectrometers to conduct unique programs for the investigation of decay properties single particle orbits, collective motions, nucleon correlation, and the equation-of-state of asymmetric nuclear matter. Nuclear binding energy will be measured at a newly constructed ring for the r-process path, and charge distribution of exotic nuclei will be examined at a unique setup of an RI target section in an electron storage ring. Ultra slow RI beams available at a gas catcher system will be utilized for table-top and high precision measurements. In this talk, I would give a facility overview of RIBF, and introduce objectives at RIBF. Special emphasis would be given to selected recent highlights

  7. Direct observation of an isomeric state in 98Rb and nuclear properties of exotic rubidium isotopes measured by laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Procter, T. J.; Behr, J. A.; Billowes, J.; Buchinger, F.; Cheal, B.; Crawford, J. E.; Dilling, J.; Garnsworthy, A. B.; Leary, A.; Levy, C. D. P.; Mané, E.; Pearson, M. R.; Shelbaya, O.; Stolz, M.; Al Tamimi, W.; Voss, A.

    2015-02-01

    Fast-beam collinear laser spectroscopy experiments on rubidium have been performed at the ISAC radioactive ion beam facility at TRIUMF. Most recently, the neutron-rich 98Rb isotope has been studied for the investigation of shape coexistence. Two long-lived nuclear states in 98Rb have been clearly observed for the first time: a low-spin state, assigned a spin of I = 0, and a high-spin state. The high-spin state is tentatively assigned a spin of I = 3 based on this analysis in combination with gamma decay results. The measured nuclear properties of the two states are presented, alongside unpublished values of the neutron-deficient isotopes investigated previously. The mean-square charge radii of both states in 98Rb are observed to continue along the isodeformation line present after the N = 60 onset of deformation.

  8. Nuclear electric propulsion systems overview

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear propulsion background; schedule for the nuclear electric propulsion (NEP) project; NEP for the Space Exploration Initiative; NEP on-going systems tasks; 20KWe mission/system study; and agenda.

  9. Multiply Strange Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Schaffner, J.; Dover, C. B.; Gal, A.; Greiner, C.; Millener, D. J.; Stocker, H.

    1994-10-01

    We investigate the stability of multiply strange baryonic systems, in the context of a mean field approach obtained from an underlying set of phenomenological meson-baryon interactions. The coupling parameters which determine the conventional σ + ω mean fields (Hartree potentials) seen by various baryon species (N, Λ, Ξ) in the many-body system are constrained by reproducing the trend of observed binding energies of single particle (N, Λ, Ξ) states, as well as the energy per particle and density of non-strange nuclear matter. We also consider additional scalar (σ*) and vector (φ) fields which couple strongly to strange baryons. The couplings of these fields are adjusted to produce strong hyperon-hyperon interactions, as suggested by the data on ΛΛ hypernuclei. Extrapolating this approach to systems of large strangeness S, we find a broad class of objects composed of neutrons, protons, Λ‧s and Ξ‧s, which are stable against strong decay. In these systems, the presence of filled Λ orbitals blocks the strong decay ΞN → ΛΛ, leading to a strangeness fraction fs = |S|/A ≍1, density ρ ≍ (2 - 3) ρ0, and charge fraction fq in the range - 0.1

  10. Nuclear weapon system risk assessment

    SciTech Connect

    Carlson, D.D.

    1993-11-01

    Probabilistic risk assessment (PRA) is a process for evaluating hazardous operations by considering what can go wrong, the likelihood of these undesired events, and the resultant consequences. Techniques used in PRA originated in the 1960s. Although there were early exploratory applications to nuclear weapons and other technologies, the first major application of these techniques was in the Reactor Safety Study, WASH-1400, {sup 1} in which the risks of nuclear power accidents were thoroughly investigated for the first time. Recently, these techniques have begun to be adapted to nuclear weapon system applications. This report discusses this application to nuclear weapon systems.

  11. Field Dependence of the Ground State in the Exotic Superconductor CeCoIn5: A Nuclear Magnetic Resonance Investigation

    NASA Astrophysics Data System (ADS)

    Koutroulakis, G.; Mitrović, V. F.; Horvatić, M.; Berthier, C.; Lapertot, G.; Flouquet, J.

    2008-07-01

    We report In115 nuclear magnetic resonance (NMR) measurements in CeCoIn5 at low temperature (T≈70mK) as a function of the magnetic field (H0) from 2 to 13.5 T applied perpendicular to the c^ axis. A NMR line shift reveals that below 10 T the spin susceptibility increases as H0. We associate this with an increase of the density of states due to the Zeeman and Doppler-shifted quasiparticles extended outside the vortex cores in a d-wave superconductor. Above 10 T a new superconducting state is stabilized, possibly the modulated phase predicted by Fulde, Ferrell, Larkin, and Ovchinnikov. This phase is clearly identified by a strong and linear increase of the NMR shift with the field, before a jump at the first order transition to the normal state.

  12. Use of Exotic Coordinate Systems in the Design of RF Resonators for High-Field MRI

    NASA Astrophysics Data System (ADS)

    Butterworth, Edward

    2008-10-01

    High field human MRI (11.7 Tesla is FDC approved for human research) renders standard RF coil design inadequate because the resonant wavelength in human soft tissue (about 8 cm at 500 MHz) is significantly smaller than the physical size of the human body. I propose optimizing the design of such RF coils using coordinate systems appropriate to human body parts, as has been done with ellipticalootnotetextCrozier et al, Concepts Magn Reson 1997; 9:195-210. and Cassinian ovalootnotetextDe Zanche et al, Magn Reson Med 2005; 53:201-211. cross sections. I have computed analytically the magnetic fields produced by a device of toroidal cross section using a cascade of conformal transformations.ootnotetextButterworth & Gore, J Magn Reson 2005; 175:114-123. Building upon these efforts, I will use the eleven coordinate systems of Moon & Spencer,ootnotetextMoon & Spencer, Field Theory Handbook, Berlin: Springer-Verlag; 1971. along with other possible coordinate systems and conformal transformations, to identify a small number of configurations that have the highest probability of being useful as RF coil designs for ultrahigh-field MRI.

  13. Sonication assisted assemblage of exotic polymer supported nanostructured bio-hybrid system and prospective application.

    PubMed

    Konwarh, Rocktotpal; Shail, Manjeshree; Medhi, Tapas; Mandal, Manabendra; Karak, Niranjan

    2014-03-01

    This work was focused on sonication mediated immobilization of porcine pancreatic lipase (PPL) onto poly(ethylene glycol) supported silver-iron oxide hybrid nanoparticles (PEG-Ag/IONPs). Selected process parameters of sonication were optimized using response surface methodology. Sonication assisted assemblage of spherical PEG-Ag/IONPs and consequent evolution of nanorods post PPL immobilization were documented. The efficacy of the reported immobilization strategy was attested by the increased thermostability, storage stability and enhanced activity of the biocatalyst, suggestive of plausible structural modulations post immobilization. The commercial prospect of the antibacterial and magnetically recyclable system was vouched by its excellent compatibility with some commercial detergents for oil de-staining. PMID:24210814

  14. Role of native and exotic woody vegetation in soil restoration in active gully systems (southern Ecuador)

    NASA Astrophysics Data System (ADS)

    Borja Ramon, Pablo; Alvarado Moncayo, Dario; Vanacker, Veerle; Cisneros, Pedro; Molina, Armando; Govers, Gerard

    2015-04-01

    Revegetation projects in degraded lands have the potential to recover essential soil functions. If vegetation restoration is combined with bioengineering techniques, such as the construction of retention dams in active gully systems, soil restoration could be enhanced. One important aspect of this process is the role of vegetation on restoration of soil chemical and physical properties. There is currently a lack of knowledge on the potential of soil restoration in active badland systems, as most studies have concentrated on the direct and visible effect of revegetation on erosion control. The aim of this study is to evaluate the role of revegetation and bioengineering works on the restoration of soil physical and chemical properties. The analyses are realized in a highly degraded area of 3 km2, located in the lower part of the Loreto catchment (Southern Ecuadorian Andes). First, the soil physical and/or chemical parameters that are most sensitive to track environmental change were evaluated. Second, the role of vegetation on soil restoration was quantified. . Soil samples were taken in sites with different vegetation cover, land use and physiographic position. The following physical and chemical parameters were measured: volumetric water content (θsat, θact), bulk density, pH, texture, organic matter, C and N content. Our first results do not show a clear relationship between volumetric water content at saturation (θsat), bulk density, or C content. The saturation water content does not vary significantly between different sites, or land use types. However, significant differences are found between sites at different stages of restoration; and this for most chemical and physical soil properties. Vegetation cover (%) appears to exert a strong control on the C content in the mineral soils. The highest C values are found in soils of forest plantations with Eucalyptus and Pinus species. These plantations are located in areas that were previously affected by active

  15. Establishment, sex structure and breeding system of an exotic riparian willow, Salix X rubens

    USGS Publications Warehouse

    Shafroth, Patrick B.; Scott, Michael L.; Friedman, Jonathan M.; Laven, Richard D.

    1994-01-01

    Several Eurasian tree willows (Salix spp.) have become naturalized in riparian areas outside of their native range. Salix x rubens is a Eurasian willow that is conspicuous along streams in the high plains of Colorado. We examined establishment of seedlings and cuttings, the sex structure and the breeding system of S. x rubens. An experiment was conducted on establishment and growth of seedlings and cuttings under a range of hydrologic conditions. Seedlings became established under all conditions except when flooded, although many fewer seedlings became established where soil surface conditions were relatively dry. Cuttings became established under all experimental conditions, but most frequently where soil moisture was highest. The sex structure of S. x rubens was determined along several streams in the Colorado high plains. Of 2175 trees surveyed, >99% (2172) were female. Salix x rubens produce viable seed apparently as a result of hybridization with another Eurasian willow, S. alba var. vitellina. Salix x rubens often reproduces vegetatively, which, combined with low hybrid seedling survival in the field, may explain the unusual sex structure. Salix x rubens will likely continue to spread vegetatively in high plains riparian areas, and the potential for spread through hybridization could increase if males of compatible Salix spp. are planted near extant S. x rubens.

  16. Reductions in native grass biomass associated with drought facilitates the invasion of an exotic grass into a model grassland system.

    PubMed

    Manea, Anthony; Sloane, Daniel R; Leishman, Michelle R

    2016-05-01

    The invasion success of exotic plant species is often dependent on resource availability. Aspects of climate change such as rising atmospheric CO2 concentration and extreme climatic events will directly and indirectly alter resource availability in ecological communities. Understanding how these climate change-associated changes in resource availability will interact with one another to influence the invasion success of exotic plant species is complex. The aim of the study was to assess the establishment success of an invasive exotic species in response to climate change-associated changes in resource availability (CO2 levels and soil water availability) as a result of extreme drought. We grew grassland mesocosms consisting of four co-occurring native grass species common to the Cumberland Plain Woodland of western Sydney, Australia, under ambient and elevated CO2 levels and subjected them to an extreme drought treatment. We then added seeds of a highly invasive C3 grass, Ehrharta erecta, and assessed its establishment success (biomass production and reproductive output). We found that reduced biomass production of the native grasses in response to the extreme drought treatment enhanced the establishment success of E. erecta by creating resource pulses in light and space. Surprisingly, CO2 level did not affect the establishment success of E. erecta. Our results suggest that the invasion risk of grasslands in the future may be coupled to soil water availability and the subsequent response of resident native vegetation therefore making it strongly context- dependent. PMID:26780256

  17. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Howard, D.F.; Motta, E.E.

    1961-06-27

    A method for controlling the excess reactivity in a nuclear reactor throughout the core life while maintaining the neutron flux distribution at the desired level is described. The control unit embodies a container having two electrodes of different surface area immersed in an electrolytic solution of a good neutron sbsorbing metal ion such as boron, gadolinium, or cadmium. Initially, the neutron absorber is plated on the larger electrode to control the greater neutron flux of a freshly refueled core. As the fuel burns up, the excess reactivity decreases and the neutron absorber is then plated onto the smaller electrode so that the number of neutrons absorbed also decreases. The excess reactivity in the core may thus be maintained without the introduction of serious perturbations in the neutron flux distributibn.

  18. Exotic statistics of leapfrogging vortex rings.

    PubMed

    Niemi, Antti J

    2005-04-01

    The leapfrogging motion of vortex rings is a three-dimensional version of the motion that in two dimensions leads to exotic exchange statistics. The statistical phase factor can be computed using the hydrodynamical Euler equation, which suggests that three-dimensional exotic exchange statistics is a common property of vortex rings in a variety of quantum liquids and gases. Potential applications range from helium superfluids to Bose-Einstein condensed alkali gases, metallic hydrogen in its liquid phases, and maybe even nuclear matter in extreme conditions. PMID:15903923

  19. Materials challenges for nuclear systems

    SciTech Connect

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; Petti, David

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclear systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.

  20. Dynamic Analysis of Nuclear Energy System Strategies

    SciTech Connect

    Den Durpel, Luc Van

    2004-06-17

    DANESS is an integrated process model for nuclear energy systems allowing the simulation of multiple reactors and fuel cycles in a continuously changing nuclear reactor park configuration. The model is energy demand driven and simulates all nuclear fuel cycle facilites, up to 10 reactors and fuels. Reactor and fuel cycle facility history are traced and the cost of generating energy is calculated per reactor and for total nuclear energy system. The DANESS model aims at performing dynamic systems analysis of nuclear energy development used for integrated analysis of development paths for nuclear energy, parameter scoping for new nuclear energy systems, economic analysis of nuclear energy, government role analysis, and education.

  1. Exotic Meson Results from BNL E852

    NASA Astrophysics Data System (ADS)

    Manak, Joseph J.

    1998-10-01

    Results from BNL experiment 852 on exotic (non-q\\overlineq) meson production are presented. Production of final states with J^PC = 1^-+ is observed in π^-p interactions at 18 GeV/c in the ηπ^-, ρπ^- and η^'π^- channels. Since such states are manifestly exotic if they are resonant, we describe amplitude analyses which use the interference between these states and other well known states to measure the phase behavior of the J^PC = 1^-+ amplitudes. The analyses show that, in addition to the previously reported(D.R. Thompson et al.), Phys. Rev. Lett. 79, 1630 (1997) evidence for an exotic meson in the ηπ^- channel, there is strong evidence for a second exotic meson decaying to ρπ^- with a mass of M=1593 ±8^+29_-47 MeV/c^2 and a width of Γ=168 ±20^+150_-12 MeV/c^2. We also show that the η^'π^- system is dominated by J^PC = 1^-+ production and we use those data to determine decay branching ratios for the exotic mesons. Such measurements are expected to be crucial in determining the constituent nature of the exotic mesons - that is, whether they are consistent with being hybrid mesons or four-quark states.

  2. Materials challenges for nuclear systems

    DOE PAGESBeta

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; Petti, David

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less

  3. Exotic nonrelativistic string

    SciTech Connect

    Casalbuoni, Roberto; Gomis, Joaquim; Longhi, Giorgio

    2007-12-15

    We construct a classical nonrelativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the noncommutative structure of the model. Under double-dimensional reduction the model reduces to the exotic nonrelativistic particle in 2+1 dimensions.

  4. Studies of light exotic nuclei in the vicinity of neutron and proton drip lines at FLNR JINR

    NASA Astrophysics Data System (ADS)

    Grigorenko, L. V.; Golovkov, M. S.; Krupko, S. A.; Sidorchuk, S. I.; Ter-Akopian, G. M.; Fomichev, A. S.; Chudoba, V.

    2016-04-01

    Defining the limits of the existence of the nuclear structure is one of fundamental problems of natural science, requiring the advancement of studies towards the sites of maximum neutron- and proton-excess nuclei, to the borders of nuclear stability, and further, to the regions of nuclear instability. In such regions, nuclear systems exist only as resonant states in continuous spectra with characteristic 'nuclear' lifetimes. This work is done most effectively with experimental setups providing radioactive ion beams (RIBs). This review discusses the approaches in this field of research developed during the last 20 years at the ACCULINNA fragment separator in the Flerov Laboratory of Nuclear Reactions (FLNR) of the Joint Institute for Nuclear Research (JINR). The methodology developed is based on the comprehensive study of correlations among the reaction fragments emitted in the decays of nuclear-unstable systems which are populated in direct reactions induced by RIBs with intermediate (20 – 60 MeV per nucleon) energies. This allows us to acquire detailed knowledge about exotic nuclear systems close to and beyond nuclear drip lines. We discuss exotic forms of nuclear dynamics appearing in the vicinity of nuclear drip lines and relevant results of their theoretical analysis. Also discussed are existing facilities and prospective projects aimed at nuclear structure studies with RIBs at JINR.

  5. Upgraded NERVA systems: Enabler nuclear system

    NASA Technical Reports Server (NTRS)

    Farbman, Gerry

    1991-01-01

    The NERVA/Rover Enabler technology enables to go on a low risk, short-term program to meet the requirements of the Mars mission and maybe some lunar missions. The following subject areas are covered: NERVA technology - the foundation for tomorrow's space missions; NERVA/Rover reactor system test sequence; NERVA engine development program; nuclear thermal reactor capability based on many related Westinghouse technology programs; investment in Rover/Nerva technology; synergistic applications of NERVA technology; flow schematic of the NDR engine; the NERVA nuclear subsystem; and technology evolution.

  6. NCIS - a Nuclear Criticality Information System (overview)

    SciTech Connect

    Koponen, B.L.; Hampel, V.E.

    1983-07-01

    A Nuclear Criticality Information System (NCIS) is being established at the Lawrence Livermore National Laboratory (LLNL) in order to serve personnel responsible for safe storage, transport, and handling of fissile materials and those concerned with the evaluation and analysis of nuclear, critical experiments. Public concern for nuclear safety provides the incentive for improved access to nuclear safety information.

  7. RIB Production at LNL: the EXOTIC Facility

    NASA Astrophysics Data System (ADS)

    Marco, Mazzocco

    2016-04-01

    Nuclear reactions involving radioactive isotopes are extremely relevant in several astrophysical scenarios, from the Big-Bang Nucleosynthesis to Supernovae explosions. In this contribution the production of Radioactive Ion Beams (RIBs) by means of the in-flight technique is reviewed. In particular, the use of direct reactions in inverse kinematics for the production of light weakly-bound RIBs by means of the facility EXOTIC at INFN-LNL (Italy) will be described in detail.

  8. Wildlife, exotic pets, and emerging zoonoses.

    PubMed

    Chomel, Bruno B; Belotto, Albino; Meslin, François-Xavier

    2007-01-01

    Most emerging infectious diseases are zoonotic; wildlife constitutes a large and often unknown reservoir. Wildlife can also be a source for reemergence of previously controlled zoonoses. Although the discovery of such zoonoses is often related to better diagnostic tools, the leading causes of their emergence are human behavior and modifications to natural habitats (expansion of human populations and their encroachment on wildlife habitat), changes in agricultural practices, and globalization of trade. However, other factors include wildlife trade and translocation, live animal and bushmeat markets, consumption of exotic foods, development of ecotourism, access to petting zoos, and ownership of exotic pets. To reduce risk for emerging zoonoses, the public should be educated about the risks associated with wildlife, bushmeat, and exotic pet trades; and proper surveillance systems should be implemented. PMID:17370509

  9. Wildlife, Exotic Pets, and Emerging Zoonoses1

    PubMed Central

    Belotto, Albino; Meslin, François-Xavier

    2007-01-01

    Most emerging infectious diseases are zoonotic; wildlife constitutes a large and often unknown reservoir. Wildlife can also be a source for reemergence of previously controlled zoonoses. Although the discovery of such zoonoses is often related to better diagnostic tools, the leading causes of their emergence are human behavior and modifications to natural habitats (expansion of human populations and their encroachment on wildlife habitat), changes in agricultural practices, and globalization of trade. However, other factors include wildlife trade and translocation, live animal and bushmeat markets, consumption of exotic foods, development of ecotourism, access to petting zoos, and ownership of exotic pets. To reduce risk for emerging zoonoses, the public should be educated about the risks associated with wildlife, bushmeat, and exotic pet trades; and proper surveillance systems should be implemented. PMID:17370509

  10. Investigation of Coulomb dipole polarization effects on reactions involving exotic nuclei

    NASA Astrophysics Data System (ADS)

    Fernández-García, J. P.; Alvarez, M. A. G.; Chamon, L. C.

    2015-07-01

    We have analyzed elastic scattering angular distributions and total reaction cross sections of the exotic nuclei 11,9Li on 208Pb, at energies below and above the Coulomb barrier. For this purpose, we have used an optical potential with no adjustable parameters, composed by the nuclear São Paulo potential, derived from the nonlocal nature of the interaction, and the Coulomb dipole polarization potential, derived from the semiclassical theory of Coulomb excitation. Within this formalism, we identified an unusual long-range absorption for the +208Pb 11Li system, which is dominated by the Coulomb interaction. We compare it to the absorption mechanisms observed for +208Pb6He which, unlike those of +208Pb11Li, take place at small interacting distances, where both Coulomb and nuclear interactions are important. The proposed approach shows to be a fundamental basis to study reactions involving exotic nuclei.

  11. Dynamic Analysis of Nuclear Energy System Strategies

    Energy Science and Technology Software Center (ESTSC)

    2004-06-17

    DANESS is an integrated process model for nuclear energy systems allowing the simulation of multiple reactors and fuel cycles in a continuously changing nuclear reactor park configuration. The model is energy demand driven and simulates all nuclear fuel cycle facilites, up to 10 reactors and fuels. Reactor and fuel cycle facility history are traced and the cost of generating energy is calculated per reactor and for total nuclear energy system. The DANESS model aims atmore » performing dynamic systems analysis of nuclear energy development used for integrated analysis of development paths for nuclear energy, parameter scoping for new nuclear energy systems, economic analysis of nuclear energy, government role analysis, and education.« less

  12. Promoting the exotic pet practice.

    PubMed

    Harris, Don J

    2005-09-01

    The marketing and promotion of an exotic pet veterinary practice allows the use of strategies that are not necessarily available in other veterinary disciplines. The advantage that an exotics practice enjoys is that it is able to capitalize not only on the unique nature of the species being attended but also on the specialized features of the hospital itself that make it specifically appropriate in caring for exotic pets. Before marketing, however, comes the responsibility that the practice live up to the claims made in promotional materials. A practice cannot ethically be presented as an "exotics" practice if it is nothing more than a dog and cat facility that is willing to attend to exotic pets. It is the competence of the veterinary staff and the appropriateness of the facility that determines the suitability of the practice for exotics management. PMID:16129354

  13. Free nuclear precession gradiometer system

    SciTech Connect

    Hinton, G. F.

    1985-10-08

    A free nuclear precession gradiometer uses a fluid sample surrounded by a coil the fluid sample containing one or more nuclear species which display a magnetic moment. Current in the coil polarizes the nucleii, which when the current is abruptly terminated precess coherently about the earth's magnetic field. The exact frequency generated is a precise measure of the absolute value of the earth's magnetic field. The signal is in the form of a damped sinusoid with the rate of decay being a function of gradients in the ambient magnetic field. Two vector magnetometers are mounted rigidly on the sensor at the right angles to each other and to the earth's magnetic field. A servo system continuously orients the sensor in a two-axis gimbal system to reduce the output of the vector magnetometers to zero. The instrument is polarized, a counter is triggered to make the frequency measurement, and the signal is analyzed by determining the average amplitude of the signal over a precise interval of time. The result is simultaneous measurement of total intensity and total gradient.

  14. Fieldable Nuclear Material Identification System

    SciTech Connect

    Radle, James E; Archer, Daniel E; Carter, Robert J; Mullens, James Allen; Mihalczo, John T; Britton Jr, Charles L; Lind, Randall F; Wright, Michael C

    2010-01-01

    The Fieldable Nuclear Material Identification System (FNMIS), funded by the NA-241 Office of Dismantlement and Transparency, provides information to determine the material attributes and identity of heavily shielded nuclear objects. This information will provide future treaty participants with verifiable information required by the treaty regime. The neutron interrogation technology uses a combination of information from induced fission neutron radiation and transmitted neutron imaging information to provide high confidence that the shielded item is consistent with the host's declaration. The combination of material identification information and the shape and configuration of the item are very difficult to spoof. When used at various points in the warhead dismantlement sequence, the information complimented by tags and seals can be used to track subassembly and piece part information as the disassembly occurs. The neutron transmission imaging has been developed during the last seven years and the signature analysis over the last several decades. The FNMIS is the culmination of the effort to put the technology in a usable configuration for potential treaty verification purposes.

  15. Materials in space nuclear power systems

    SciTech Connect

    Cooper, R.H.; Moore, J.P.

    1991-01-01

    Man's presence in space has been limited by the availability of reliable lightweight sources of power. Over the course of the last 30 years, a variety of space nuclear power systems have been designed and, in some cases, built and flown. Although a number of technology issues effect the overall performance of these systems, technical issues associated with the materials of construction have most often been a major limitation in obtaining the desired system performance goals. This paper will review selected materials limitations associated with the three major nuclear power systems being considered at this time: radioisotope power, nuclear power, and nuclear propulsion systems.

  16. NASA Missions Enabled by Space Nuclear Systems

    NASA Technical Reports Server (NTRS)

    Scott, John H.; Schmidt, George R.

    2009-01-01

    This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.

  17. Current Status of Exotic Hadrons

    SciTech Connect

    Saeed, M.A.; Ahmed, Maqsood; Fazal-e-Aleem

    2005-03-17

    Physics of exotic hadrons is in the limelight these days. The models for these baryons are discussed as well as their production and decay processes and methods of their identification. The results of recent experiments in this field are presented, in which some unusual states are observed. These states are candidates for exotic hadrons.

  18. Nuclear electric propulsion reactor control systems status

    NASA Technical Reports Server (NTRS)

    Ferg, D. A.

    1973-01-01

    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  19. Nuclear Data Needs for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Rullhusen, Peter

    2006-04-01

    Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S

  20. Non-Nuclear NEP System Testing

    NASA Astrophysics Data System (ADS)

    Hrbud, Ivana; Goodfellow, Keith; van Dyke, Melissa; Houts, Mike

    2003-01-01

    The Safe Affordable Fission Engine (SAFE) test series addresses Phase 1 Space Fission Systems issues in particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  1. Soil ecosystem function under native and exotic plant assemblages as alternative states of successional grasslands

    NASA Astrophysics Data System (ADS)

    Spirito, Florencia; Yahdjian, Laura; Tognetti, Pedro M.; Chaneton, Enrique J.

    2014-01-01

    Old fields often become dominated by exotic plants establishing persistent community states. Ecosystem functioning may differ widely between such novel communities and the native-dominated counterparts. We evaluated soil ecosystem attributes in native and exotic (synthetic) grass assemblages established on a newly abandoned field, and in remnants of native grassland in the Inland Pampa, Argentina. We asked whether exotic species alter soil functioning through the quality of the litter they shed or by changing the decomposition environment. Litter decomposition of the exotic dominant Festuca arundinacea in exotic assemblages was faster than that of the native dominant Paspalum quadrifarium in native assemblages and remnant grasslands. Decomposition of a standard litter (Triticum aestivum) was also faster in exotic assemblages than in native assemblages and remnant grasslands. In a common garden, F. arundinacea showed higher decay rates than P. quadrifarium, which reflected the higher N content and lower C:N of the exotic grass litter. Soil respiration rates were higher in the exotic than in the native assemblages and remnant grasslands. Yet there were no significant differences in soil N availability or net N mineralization between exotic and native assemblages. Our results suggest that exotic grass dominance affected ecosystem function by producing a more decomposable leaf litter and by increasing soil decomposer activity. These changes might contribute to the extended dominance of fast-growing exotic grasses during old-field succession. Further, increased organic matter turnover under novel, exotic communities could reduce the carbon storage capacity of the system in the long term.

  2. Nuclear Space Power Systems Materials Requirements

    SciTech Connect

    Buckman, R.W. Jr.

    2004-02-04

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited.

  3. Nuclear Space Power Systems Materials Requirements

    NASA Astrophysics Data System (ADS)

    Buckman, R. W.

    2004-02-01

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited.

  4. Exotic phenomena in nuclei

    NASA Astrophysics Data System (ADS)

    Neff, Thomas; Feldmeier, Hans; Roth, Robert

    2006-10-01

    In the Fermionic Molecular Dynamics (FMD) model the nuclear many-body system is described using Slater determinants with Gaussian wave-packets as single-particle states. The flexibility of the FMD wave functions allows for a consistent description of shell model like structures, deformed states, cluster structures as well as halos. An effective interaction derived from the realistic Argonne V18 interaction using the Unitary Correlation Operator Method is used for all nuclei. Results for nuclei in the p-shell will be presented. Halo features are present in the Helium isotopes, cluster structures are studied in Beryllium and Carbon isotopes. The interplay between shell structure and cluster structures in the ground and the Hoyle state in ^12C will be discussed.

  5. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability

  6. Multimegawatt nuclear power systems for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1991-01-01

    Results from systems analysis studies of multimegawatt nuclear power systems are presented for application to nuclear electric propulsion. Specific mass estimates are presented for nearer term SP-100 reactor-based potassium Rankine and Brayton power systems for piloted and cargo missions. Growth SP-100/Rankine systems were found to range from roughly 7 to 10 kg/kWe specific mass depending on full power life requirements. The SP-100/Rankine systems were also found to result in a 4-kg/kWe savings in specific mass over SP-100/Brayton systems. The potential of advanced, higher temperature reactor and power conversion technologies for achieving reduced mass Rankine and Brayton systems was also investigated. A target goal of 5 kg/kWe specific mass was deemed reasonable given either 1400 K potassium Rankine with 1500 K lithium-cooled reactors or 2000 K gas cooled reactors with Brayton conversion.

  7. Exotics from Heavy Ion Collisions

    SciTech Connect

    Ohnishi, Akira; Jido, Daisuke; Cho, Sungtae; Furumoto, Takenori; Yazaki, Koichi; Hyodo, Tetsuo; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Sekihara, Takayasu; Yasui, Shigehiro

    2011-10-21

    Discriminating hadronic molecular and multi-quark states is a long standing problem in hadronic physics. We propose here to utilize relativistic heavy ion collisions to resolve this problem, as exotic hadron yields are expected to be strongly affected by their structures. Using the coalescence model, we find that the exotic hadron yield relative to the statistical model result is typically an order of magnitude smaller for a compact multi-quark state, and larger by a factor of two or more for a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured at RHIC and LHC.

  8. A philosophy for space nuclear systems safety

    NASA Astrophysics Data System (ADS)

    Marshall, A. C.

    The unique requirements and contraints of space nuclear systems require careful consideration in the development of a safety policy. The Nuclear Safety Policy Working Group (NSPWG) for the Space Exploration Initiative has proposed a hierarchical approach with safety policy at the top of the hierarchy. This policy allows safety requirements to be tailored to specific applications while still providing reassurance to regulators and the general public that the necessary measures have been taken to assure safe application of space nuclear systems. The safety policy used by the NSPWG is recommended for all space nuclear programs and missions.

  9. A philosophy for space nuclear systems safety

    SciTech Connect

    Marshall, A.C.

    1992-08-01

    The unique requirements and contraints of space nuclear systems require careful consideration in the development of a safety policy. The Nuclear Safety Policy Working Group (NSPWG) for the Space Exploration Initiative has proposed a hierarchical approach with safety policy at the top of the hierarchy. This policy allows safety requirements to be tailored to specific applications while still providing reassurance to regulators and the general public that the necessary measures have been taken to assure safe application of space nuclear systems. The safety policy used by the NSPWG is recommended for all space nuclear programs and missions.

  10. Mitigating exotic impacts: restoring deer mouse populations elevated by an exotic food subsidy.

    PubMed

    Pearson, Dean E; Fletcher, Robert J

    2008-03-01

    The threat posed by exotic organisms to native systems has led to extensive research on exotic invaders, yet management of invasives has progressed relatively slowly. This is partly due to poor understanding of how exotic species management influences native organisms. To address this shortfall, we experimentally evaluated the efficacy of an invasives management tool for restoring native deer mouse (Peromyscus maniculatus) populations elevated by exotic species. The exotic insects, Urophora spp., were introduced in North America for biological control of the Eurasian invader, spotted knapweed (Centaurea maculosa), but instead of controlling C. maculosa, Urophora have become an important food resource that doubles P. maniculatus populations, with substantial indirect effects on other organisms. We hypothesized that herbicide suppression of Urophora's host plant would reduce the Urophora food resource and restore P. maniculatus populations to natural levels. Prior to treatment, mouse populations did not differ between controls and treatments, but following treatment, P. maniculatus were half as abundant where treatment reduced Urophora. Peromyscus maniculatus is insensitive to direct herbicide effects, and herbicide-induced habitat changes could not explain the P. maniculatus response. Treatment-induced reductions of the Urophora food resource offered the most parsimonious explanation for the mouse response: Multistate mark-recapture models indicated that P. maniculatus survival declined where Urophora were removed, and survival rates were more correlated with variation in population size than movement rates. Other demographic and reproductive parameters (sex ratios, reproductive status, pregnancy rates, and juvenile recruitment) were unaffected by treatment. These results suggest the Urophora biocontrol elevated P. maniculatus survival, and the herbicide treatment restored mouse populations by removing the exotic food and reducing survival. This work illustrates the

  11. Exotic models may offer unique opportunities to decipher specific scientific question: the case of Xenopus olfactory system.

    PubMed

    Gascuel, Jean; Amano, Tosikazu

    2013-09-01

    The fact that olfactory systems are highly conserved in all animal species from insects to mammals allow the generalization of findings from one species to another. Most of our knowledge about the anatomy and physiology of the olfactory system comes from data obtained in a very limited number of biological models such as rodents, Zebrafish, Drosophila, and a worm, Caenorhabditis elegans. These models have proved useful to answer most questions in the field of olfaction, and thus concentrating on these few models appear to be a pragmatic strategy. However, the diversity of the organization and physiology of the olfactory system amongst phyla appear to be greater than generally assumed and the four models alone may not be sufficient to address all the questions arising from the study of olfaction. In this article, we will illustrate the idea that we should take advantage of biological diversity to address specific scientific questions and will show that the Xenopus olfactory system is a very good model to investigate: first, olfaction in aerial versus aquatic conditions and second, mechanisms underlying postnatal reorganization of the olfactory system especially those controlled by tyroxine hormone. PMID:23904180

  12. EXOTIC MAGNETS FOR ACCELERATORS.

    SciTech Connect

    WANDERER, P.

    2005-09-18

    Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

  13. Nuclear propulsion system options for Mars missions

    SciTech Connect

    Emrich, W.J. Jr.; Young, A.C. )

    1992-03-01

    This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle-bed-reactor type nuclear engine was chosen as the baseline engine because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study indicates that the particle-bed-reactor engine with its high engine thrust-to-weight ratio (about 20) and high specific impulse (about 950 to 1050 sec) offers distinct advantages over the larger and heavier NERVA-type nuclear engines.

  14. Nuclear propulsion system options for Mars missions

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Young, Archie C.

    1992-01-01

    This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle-bed-reactor type nuclear engine was chosen as the baseline engine because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study indicates that the particle-bed-reactor engine with its high engine thrust-to-weight ratio (about 20) and high specific impulse (about 950 to 1050 sec) offers distinct advantages over the larger and heavier NERVA-type nuclear engines.

  15. Dual mode nuclear rocket system applications.

    NASA Technical Reports Server (NTRS)

    Boretz, J. E.; Bell, J. M.; Plebuch, R. K.; Priest, C. C.

    1972-01-01

    Mission areas where the dual-mode nuclear rocket system is superior to nondual-mode systems are demonstrated. It is shown that the dual-mode system is competitive with the nondual-mode system even for those specific missions and particular payload configurations where it does not have a clear-cut advantage.

  16. Transactions of the fourth symposium on space nuclear power systems

    SciTech Connect

    El-Genk, M.S.; Hoover, M.D.

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  17. Transactions of the fifth symposium on space nuclear power systems

    SciTech Connect

    El-Genk, M.S.; Hoover, M.D.

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  18. Software Quality Assurance for Nuclear Safety Systems

    SciTech Connect

    Sparkman, D R; Lagdon, R

    2004-05-16

    The US Department of Energy has undertaken an initiative to improve the quality of software used to design and operate their nuclear facilities across the United States. One aspect of this initiative is to revise or create new directives and guides associated with quality practices for the safety software in its nuclear facilities. Safety software includes the safety structures, systems, and components software and firmware, support software and design and analysis software used to ensure the safety of the facility. DOE nuclear facilities are unique when compared to commercial nuclear or other industrial activities in terms of the types and quantities of hazards that must be controlled to protect workers, public and the environment. Because of these differences, DOE must develop an approach to software quality assurance that ensures appropriate risk mitigation by developing a framework of requirements that accomplishes the following goals: {sm_bullet} Ensures the software processes developed to address nuclear safety in design, operation, construction and maintenance of its facilities are safe {sm_bullet} Considers the larger system that uses the software and its impacts {sm_bullet} Ensures that the software failures do not create unsafe conditions Software designers for nuclear systems and processes must reduce risks in software applications by incorporating processes that recognize, detect, and mitigate software failure in safety related systems. It must also ensure that fail safe modes and component testing are incorporated into software design. For nuclear facilities, the consideration of risk is not necessarily sufficient to ensure safety. Systematic evaluation, independent verification and system safety analysis must be considered for software design, implementation, and operation. The software industry primarily uses risk analysis to determine the appropriate level of rigor applied to software practices. This risk-based approach distinguishes safety

  19. Nuclear power propulsion system for spacecraft

    NASA Astrophysics Data System (ADS)

    Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.

    2015-12-01

    The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.

  20. Reaction theories for exotic nuclei

    SciTech Connect

    Bonaccorso, Angela

    2012-11-20

    This contribution discusses two important dynamical effects in the scattering of exotic beams. The first part deals proton breakup. The Coulomb interactions between the core and the target and the proton and the target are treated to all orders, including also the full multipole expansion of the Coulomb potential. The dynamics of proton Coulomb breakup is compared to that of an equivalent neutron of larger binding energy in order to elucidate the differences with the well understood neutron breakup mechanism. With respect to nuclear breakup it is found that a proton behaves exactly as a neutron of larger binding energy. The extra 'effective energy' is due to the combined core-target Coulomb barrier. In Coulomb breakup we distinguish the effect of the core-target Coulomb potential (called recoil effect), with respect to which the proton behaves again as a more bound neutron, from the direct proton-target Coulomb potential. The latter gives cross sections about an order of magnitude larger than the recoil term. The two effects give rise to complicated interferences in the parallel momentum distributions. They are instead easily separable in the proton angular distributions which are therefore suggested as a very useful observable for future experimental studies. The second part has to do with the dynamics of one-neutron and one-proton removal from unstable nuclei with large asymmetry {Delta}S S{sub n}-S{sub p} in the separation energies and incident energies below 80 MeV/nucleon. Strong non-sudden effects are observed in the case of deeply-bound-nucleon removal. The corresponding parallel momentum distributions exhibit an abrupt cutoff at high momentum that corresponds to an energy threshold occurring when the incident energy per particle is of comparable magnitude as the nucleon separation energy.

  1. D meson-nucleon hadron and nuclear systems

    SciTech Connect

    Yasui, Shigehiro; Sudoh, Kazutaka

    2010-12-28

    We discuss the new exotic nuclei which contains charm and bottom flavors. We consider the possibility of exotic nuclei with D-bar and B mesons. As simplest systems, we consider the systems of D-bar and B bound with one nucleon and two nucleons. As an interaction between D-bar(B) meson and nucleon, we regard the heavy quark symmetry as important. The potential between D-bar(B) meson is supplied by one pion exchange potential as long range force based on heavy quark symmetry. We investigate possible D-barN(BN) bound state with several quantum numbers. We further discuss the possibility of the existence of D-barNN(BNN) as systems with baryon number two.

  2. Nuclear Materials Identification System Operational Manual

    SciTech Connect

    Chiang, L.G.

    2001-04-10

    This report describes the operation and setup of the Nuclear Materials Identification System (NMIS) with a {sup 252}Cf neutron source at the Oak Ridge Y-12 Plant. The components of the system are described with a description of the setup of the system along with an overview of the NMIS measurements for scanning, calibration, and confirmation of inventory items.

  3. Mathematical models for exotic wakes

    NASA Astrophysics Data System (ADS)

    Basu, Saikat; Stremler, Mark

    2014-11-01

    Vortex wakes are a common occurrence in the environment around us; the most famous example being the von Kármán vortex street with two vortices being shed by the bluff body in each cycle. However, frequently there can be many other more exotic wake configurations with different vortex arrangements, based on the flow parameters and the bluff body dimensions and/or its oscillation characteristics. Some examples include wakes with periodic shedding of three vortices (`P+S' mode) and four vortices (symmetric `2P' mode, staggered `2P' mode, `2C' mode). We present mathematical models for such wakes assuming two-dimensional potential flows with embedded point vortices. The spatial alignment of the vortices is inspired by the experimentally observed wakes. The idealized system follows a Hamiltonian formalism. Model-based analysis reveals a rich dynamics pertaining to the relative vortex motion in the mid-wake region. Downstream evolution of the vortices, as predicted from the model results, also show good correspondence with wake-shedding experiments performed on flowing soap films.

  4. Safe, Affordable, Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Doughty, G. E.

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  5. The Nuclear Criticality Information System: An update

    SciTech Connect

    Koponen, B.L.

    1991-07-01

    The US Department of Energy`s Nuclear Criticality Information System (NCIS) has served the criticality community for the past ten years with publications and with an online information system. NCIS provides a mean for widely distributed nuclear criticality specialists to communicate and work together instantly. Users of the system may receive assistance from all members of the NCIS community, which provides a much broader base of support than is available at any single site. When unified by NCIS, these diverse specialists provide a resource that has proven to be very useful in the safe handling of fissile material. NCIS also is a source of current nuclear criticality safety information; the rapid access of such up-to-date information on the handling of fissile materials outside of nuclear reactors is international in scope, extending beyond political and geographical boundaries.

  6. The Nuclear Criticality Information System: An update

    SciTech Connect

    Koponen, B.L.

    1991-07-01

    The US Department of Energy's Nuclear Criticality Information System (NCIS) has served the criticality community for the past ten years with publications and with an online information system. NCIS provides a mean for widely distributed nuclear criticality specialists to communicate and work together instantly. Users of the system may receive assistance from all members of the NCIS community, which provides a much broader base of support than is available at any single site. When unified by NCIS, these diverse specialists provide a resource that has proven to be very useful in the safe handling of fissile material. NCIS also is a source of current nuclear criticality safety information; the rapid access of such up-to-date information on the handling of fissile materials outside of nuclear reactors is international in scope, extending beyond political and geographical boundaries.

  7. Non-Nuclear Testing of Space Nuclear Systems at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, Boise J.; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky; Emrich, William J.; Garber, Anne; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; Polzin, Kurt; Schoenfeld, Michael P.; Webster, Kenneth L.

    2010-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA's Marshall Space Flight Center (MSFC).

  8. The longevity of nuclear power systems

    SciTech Connect

    Speiwak, I.; Livingston, R.S.

    1985-08-01

    It appears likely that nuclear power plants can be operated safely in excess of the licensed 40 years. This conclusion is based on a systematic review of the plant systems and favorable experience in refurbishing old fossil plants, the Savannah River production reactors and the early British Magnox reactors. The technical areas that may present the greatest difficulty are the reactor pressure vessel, the electrical cable, and reinforced concrete structures. Utilities are also concerned about the difficulty of the Nuclear Regulatory Commission's relicensing process, which has not as yet been defined. If license extensions can be obtained, utilities can afford to spend many hundreds of millions of dollars to achieve an additional ten or more years of operation. Nuclear plant life extension has favorable implications for the long-term price of electricity in systems containing nuclear power plants.

  9. Decontamination of nuclear systems at the Grand Gulf Nuclear Station

    SciTech Connect

    Weed, R.D.; Baker, K.R.

    1996-12-31

    Early in 1994 Management at the Grand Gulf Nuclear Station realized that a potential decontamination of several reactor systems was needed to maintain the commitments to the {open_quotes}As Low As Reasonably Achievable{close_quotes} (ALARA) program. There was a substantial amount of planned outage work required to repair and replace some internals in loop isolation valves and there were inspections and other outage work that needed to be accomplished as it had been postponed from previous outages because of the radiation exposure levels in and around the system equipment. Management scheduled for the procurement specification to be revised to incorporate additional boundary areas which had not been previously considered. The schedule included the period for gathering bids, awarding a contract, and reviewing the contractor`s procedures and reports and granting approval for the decontamination to proceed during the upcoming outage. In addition to the reviews required by the engineering group for overall control of the process, the plant system engineers had to prepare procedures at the system level to provide for a smooth operation to be made during the decontamination of the systems. The system engineers were required to make certain that the decontamination fluids would be contained within the systems being decontaminated and that they would not cross contaminate any other system not being decontaminated. Since these nuclear stations do not have the provisions for decontaminating these systems with using additional equipment, the equipment required is furnished by the contractor as skid mounted packaged units which can be moved into the area, set up near the system being decontaminated, and after the decontamination is completed, the skid mounted packages are removed as part of the contract. Figure 1 shows a typical setup in block diagram required to perform a reactor system decontamination. 1 fig.

  10. Nuclear magnetic resonance in Kondo lattice systems

    NASA Astrophysics Data System (ADS)

    Curro, Nicholas J.

    2016-06-01

    Nuclear magnetic resonance has emerged as a vital tool to explore the fundamental physics of Kondo lattice systems. Because nuclear spins experience two different hyperfine couplings to the itinerant conduction electrons and to the local f moments, the Knight shift can probe multiple types of spin correlations that are not accessible via other techniques. The Knight shift provides direct information about the onset of heavy electron coherence and the emergence of the heavy electron fluid.

  11. β-Decay half-lives and nuclear structure of exotic proton-rich waiting point nuclei under rp-process conditions

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2016-03-01

    We investigate even-even nuclei in the A ∼ 70 mass region within the framework of the proton-neutron quasi-particle random phase approximation (pn-QRPA) and the interacting boson model-1 (IBM-1). Our work includes calculation of the energy spectra and the potential energy surfaces V (β , γ) of Zn, Ge, Se, Kr and Sr nuclei with the same proton and neutron number, N = Z. The parametrization of the IBM-1 Hamiltonian was performed for the calculation of the energy levels in the ground state bands. Geometric shape of the nuclei was predicted by plotting the potential energy surfaces V (β , γ) obtained from the IBM-1 Hamiltonian in the classical limit. The pn-QRPA model was later used to compute half-lives of the neutron-deficient nuclei which were found to be in very good agreement with the measured ones. The pn-QRPA model was also used to calculate the Gamow-Teller strength distributions and was found to be in decent agreement with the measured data. We further calculate the electron capture and positron decay rates for these N = Z waiting point (WP) nuclei in the stellar environment employing the pn-QRPA model. For the rp-process conditions, our total weak rates are within a factor two compared with the Skyrme HF +BCS +QRPA calculation. All calculated electron capture rates are comparable to the competing positron decay rates under rp-process conditions. Our study confirms the finding that electron capture rates form an integral part of the weak rates under rp-process conditions and should not be neglected in the nuclear network calculations.

  12. Generation-IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    McFarlane, Harold

    2008-05-01

    Nuclear power technology has evolved through roughly three generations of system designs: a first generation of prototypes and first-of-a-kind units implemented during the period 1950 to 1970; a second generation of industrial power plants built from 1970 to the turn of the century, most of which are still in operation today; and a third generation of evolutionary advanced reactors which began being built by the turn of the 20^th century, usually called Generation III or III+, which incorporate technical lessons learned through more than 12,000 reactor-years of operation. The Generation IV International Forum (GIF) is a cooperative international endeavor to develop advanced nuclear energy systems in response to the social, environmental and economic requirements of the 21^st century. Six Generation IV systems under development by GIF promise to enhance the future contribution and benefits of nuclear energy. All Generation IV systems aim at performance improvement, new applications of nuclear energy, and/or more sustainable approaches to the management of nuclear materials. High-temperature systems offer the possibility of efficient process heat applications and eventually hydrogen production. Enhanced sustainability is achieved primarily through adoption of a closed fuel cycle with reprocessing and recycling of plutonium, uranium and minor actinides using fast reactors. This approach provides significant reduction in waste generation and uranium resource requirements.

  13. Low energy nuclear reactions with RIBRAS, Radioactive Ion Beam in Brasil, system

    NASA Astrophysics Data System (ADS)

    Guimarães, V.; Lépine-Szily, A.; Lichtenthäler, R.; de Faria, P. N.; Barioni, A.; Pires, K. C. C.; Morcelle, V.; Mendes, D. R.; Zamora, J. C.; Morais, M. C.; Condori, R. P.; Benjamim, E. A.; Monteiro, D. S.; Crema, E.; Moro, A. M.; Lubian, J.

    2011-09-01

    RIBRAS, Radioactive Ion beam in Brasil, is a system based on superconducting solenoids which can produce low energy RNB (Radioactive Nuclear Beams) at the University of São Paulo, Brazil. Secondary radioactive beams of light particles such as 6He, 7Be and 8Li have been produced and low energy elastic scattering and transfer reaction experiments have been performed. The recent scientific program using this facility includes elastic scattering and transfer reactions of 6He halo nucleus on 9Be, 27Al, 51V and 120Sn targets and 8Li on 9Be, 12C and 51V targets. The total reaction cross section as a function of energy has been extracted from the elastic scattering data and the role of breakup of weakly bound or exotic nuclei is discussed. Also spectroscopic factors have been obtained from the transfer reactions.

  14. LOUISIANA EXOTIC INVASIVE SPECIES SYMPOSIUM MX964256

    EPA Science Inventory

    The Louisiana Exotic Invasive Species Symposium will provide a multi-state collaboration among agency representatives, scientists, and the affected public to address the problem of exotic invasive species and to improve coastal environmental conditions in Louisiana.

  15. Review of Nuclear Thermal Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Gabrielli, Roland Antonius; Herdrich, Georg

    2015-11-01

    This article offers a summary of past efforts in the development of Nuclear Thermal Propulsion systems for space transportation. First, the generic principle of thermal propulsion is outlined: a propellant is directly heated by a power source prior to being expanded which creates a thrusting force on the rocket. This enables deriving a motivation for the use of Nuclear Thermal Propulsion (NTP) relying on nuclear power sources. Then, a summary of major families of NTP systems is established on the basis of a literature survey. These families are distinguished by the nature of their power source, the most important being systems with radioisotope, fission, and fusion cores. Concepts proposing to harness the annihilation of matter and anti-matter are only touched briefly due to their limited maturity. For each family, an overview of physical fundamentals, technical concepts, and - if available - tested engines' propulsion parameters is given.

  16. Intelligent Automated Nuclear Fuel Pellet Inspection System

    SciTech Connect

    S. Keyvan

    1999-11-01

    At the present time, nuclear pellet inspection is performed manually using naked eyes for judgment and decisionmaking on accepting or rejecting pellets. This current practice of pellet inspection is tedious and subject to inconsistencies and error. Furthermore, unnecessary re-fabrication of pellets is costly and the presence of low quality pellets in a fuel assembly is unacceptable. To improve the quality control in nuclear fuel fabrication plants, an automated pellet inspection system based on advanced techniques is needed. Such a system addresses the following concerns of the current manual inspection method: (1) the reliability of inspection due to typical human errors, (2) radiation exposure to the workers, and (3) speed of inspection and its economical impact. The goal of this research is to develop an automated nuclear fuel pellet inspection system which is based on pellet video (photographic) images and uses artificial intelligence techniques.

  17. Exotic nuclei in astrophysics

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    2012-07-01

    Recently the academic community has marked several anniversaries connected with discoveries that played a significant role in the development of astrophysical investigations. The year 2009 was proclaimed by the United Nations the International Year of Astronomy. This was associated with the 400th anniversary of Galileo Galilei's discovery of the optical telescope, which marked the beginning of regular research in the field of astronomy. An important contribution to not only the development of physics of the microcosm, but also to the understanding of processes occurring in the Universe, was the discovery of the atomic nucleus made by E. Rutherford 100 years ago. Since then the investigations in the fields of physics of particles and atomic nuclei have helped to understand many processes in the microcosm. Exactly 80 years ago, K. Yanski used a radio-telescope in order to receive the radiation from cosmic objects for the first time, and at the present time this research area of physics is the most efficient method for studying the properties of the Universe. Finally, the April 12, 1961 (50 years ago) launching of the first sputnik into space with a human being onboard, the Russian cosmonaut Yuri Gagarin, marked the beginning of exploration of the Universe with the direct participation of man. All these achievements considerably extended our ideas about the Universe. This work is an attempt to present some problems on the evolution of the Universe: the nucleosynthesis and cosmochronology from the standpoint of physics of particles and nuclei, in particular with the use of the latest results, obtained by means of radioactive nuclear beams. The comparison is made between the processes taking place in the Universe and the mechanisms of formation and decay of nuclei, as well as of their interaction at different energies. Examples are given to show the capabilities of nuclear-physics methods for studying cosmic objects and properties of the Universe. The results of

  18. Exotic aphid control with pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic aphids are invading ecosystems worldwide. The principal factors favoring establishment of these pests are their small size, parthenogenetic reproduction, short generation time, ability for long distance dispersal as winged morphs, and explosive population dynamics. In the past, attention to i...

  19. Exotic smoothness and quantum gravity

    NASA Astrophysics Data System (ADS)

    Asselmeyer-Maluga, T.

    2010-08-01

    Since the first work on exotic smoothness in physics, it was folklore to assume a direct influence of exotic smoothness to quantum gravity. Thus, the negative result of Duston (2009 arXiv:0911.4068) was a surprise. A closer look into the semi-classical approach uncovered the implicit assumption of a close connection between geometry and smoothness structure. But both structures, geometry and smoothness, are independent of each other. In this paper we calculate the 'smoothness structure' part of the path integral in quantum gravity assuming that the 'sum over geometries' is already given. For that purpose we use the knot surgery of Fintushel and Stern applied to the class E(n) of elliptic surfaces. We mainly focus our attention to the K3 surfaces E(2). Then we assume that every exotic smoothness structure of the K3 surface can be generated by knot or link surgery in the manner of Fintushel and Stern. The results are applied to the calculation of expectation values. Here we discuss the two observables, volume and Wilson loop, for the construction of an exotic 4-manifold using the knot 52 and the Whitehead link Wh. By using Mostow rigidity, we obtain a topological contribution to the expectation value of the volume. Furthermore, we obtain a justification of area quantization.

  20. SEARCHING FOR EXOTIC SPODOPTERA SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used sex pheromone-baited traps to collect native and exotic Spodoptera spp. moths at an orchid nursery in Lake County, FL. Lures for S. eridania, exempta, exigua, frugiperda, littoralis, litura, praefica, and Pseudaletia unipuncta were placed in bucket traps that surrounded the greenhouses of t...

  1. Review of Current Nuclear Vacuum System Technologies

    SciTech Connect

    Carroll, M.; McCracken, J.; Shope, T.

    2003-02-25

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.

  2. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear tomography system. 892.1310 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1310 Nuclear tomography system. (a) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body...

  3. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear tomography system. 892.1310 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1310 Nuclear tomography system. (a) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body...

  4. Performance Criteria of Nuclear Space Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Shepherd, L. R.

    Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.

  5. Space nuclear system expansion joints

    NASA Technical Reports Server (NTRS)

    Whitaker, W. D.; Shimazki, T. T.

    1973-01-01

    The engineering, design, and fabrication status of the expansion joint unit (EJU) to be employed in the NaK primary coolant piping loop of the 5-kwe Reactor thermoelectric system are described. Four EJU's are needed in the NaK primary coolant piping loop. The four EJU's which will be identical, utilize bellows as the flexing member, are hermetically sealed, and provide double containment. The bellows are of a nested-formed design, and are to be constructed of 1-ply thickness of 0.010-in. Inconel 718. The EJU's provide a minimum piping load margin of safety of +0.22.

  6. Nuclear Technology Series. Course 5: Introduction to Nuclear Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Nuclear Technology Series. Course 24: Nuclear Systems and Safety.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. TOPAZ-2 Nuclear Power System safety assurance

    SciTech Connect

    Nikitin, V.P.; Ogloblin, B.G.; Lutov, Y.I.; Luppov, A.N.; Shalaev, A.I. ); Ponomarev-Stepnoi, N.N.; Usov, V.A.; Nechaev, Y.A. )

    1993-01-15

    TOPAZ-2 Nuclear Power System (NPS) safety philosophy is based on the requirement that the reactor shall not be critical during all kinds of operations prior to its start-up on the safe orbit (except for physical start-up). Potentially dangerous operation were analyzed and both computational and experimental studies were carried out.

  9. Decentralized nuclear materials management system at SNLA

    SciTech Connect

    James, R.M.

    1981-01-01

    This paper discusses the approach that Sandia took in deciding to implement a nuclear material control and accountability system on a stand-alone minicomputer despite the existence of a Univac 1108 and Univac 1100/82 centralized facility. The benefits which have been obtained by the decentralization and future applications are discussed.

  10. 9 CFR 352.13 - Handling and disposal of condemned or other inedible exotic animal products at official exotic...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CERTIFICATION EXOTIC ANIMALS AND HORSES; VOLUNTARY INSPECTION Exotic Animals § 352.13 Handling and disposal of condemned or other inedible exotic animal products at official exotic animal establishments. This shall be... other inedible exotic animal products at official exotic animal establishments. 352.13......

  11. 9 CFR 352.13 - Handling and disposal of condemned or other inedible exotic animal products at official exotic...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CERTIFICATION EXOTIC ANIMALS AND HORSES; VOLUNTARY INSPECTION Exotic Animals § 352.13 Handling and disposal of condemned or other inedible exotic animal products at official exotic animal establishments. This shall be... other inedible exotic animal products at official exotic animal establishments. 352.13......

  12. Integrated nuclear data utilisation system for innovative reactors.

    PubMed

    Yamano, N; Hasegawa, A; Kato, K; Igashira, M

    2005-01-01

    A five-year research and development project on an integrated nuclear data utilisation system was initiated in 2002, for developing innovative nuclear energy systems such as accelerator-driven systems. The integrated nuclear data utilisation system will be constructed as a modular code system, which consists of two sub-systems: the nuclear data search and plotting sub-system, and the nuclear data processing and utilisation sub-system. The system will be operated with a graphical user interface in order to enable easy utilisation through the Internet by both nuclear design engineers and nuclear data evaluators. This paper presents an overview of the integrated nuclear data utilisation system, describes the development of a prototype system to examine the operability of the user interface and discusses specifications of the two sub-systems. PMID:16381697

  13. Liquid metal cooled nuclear reactor plant system

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  14. The international nuclear non-proliferation system

    SciTech Connect

    Simpson, J.; McGrew, T.

    1985-01-01

    This volume focuses upon the issues raised at this Conference, and attempts to address the international diplomatic, political and trading, rather than technical, questions which surround nuclear non-proliferation policies. It does so by bringing together chapters contributed by participants in non-proliferation diplomacy, those with experience in shaping International Atomic Energy Agency and national policies and academic observers of non-proliferation activities and the international nuclear industry. An analysis is provided of past non-proliferation policies and activities and current issues, and an attempt is made to offer ideas for new initiatives which may sustain the non-proliferation system in the future.

  15. NADS — Nuclear and Atomic Data System

    NASA Astrophysics Data System (ADS)

    McKinley, Michael S.; Beck, Bret; McNabb, Dennis

    2005-05-01

    We have developed NADS (Nuclear and Atomic Data System), a web-based graphical interface for viewing pointwise and grouped cross sections and distributions. Our implementation is a client / server model. The client is a Java applet that displays the graphical interface, which has interactive 2-D, 3-D, and 4-D plots and tables. The server, which can serve and perform computations of the data, has been implemented in Python using the FUDGE package developed by Bret Beck at LLNL. Computational capabilities include algebraic manipulation of nuclear evaluated data in databases such as LLNL's ENDL-99, ENDF/B-V, and ENDF/B-VI, as well as user data. Processed data used in LLNL's transport codes are accessible as well. NADS is available from http://nuclear.llnl.gov/.

  16. NADS - Nuclear And Atomic Data System

    SciTech Connect

    McKinley, M S; Beck, B; McNabb, D

    2004-09-17

    We have developed NADS (Nuclear and Atomic Data System), a web-based graphical interface for viewing pointwise and grouped cross-sections and distributions. Our implementation is a client / server model. The client is a Java applet that displays the graphical interface, which has interactive 2-D, 3-D, and 4-D plots and tables. The server, which can serve and perform computations the data, has been implemented in Python using the FUDGE package developed by Bret Beck at LLNL. Computational capabilities include algebraic manipulation of nuclear evaluated data in databases such as LLNL's ENDL-99, ENDF/B-V and ENDF/B-VI as well as user data. Processed data used in LLNL's transport codes are accessible as well. NADS is available from http://nuclear.llnl.gov/

  17. Perspectives of Physics of Exotic Nuclei Beyond the Shell Evolution

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu

    2015-11-01

    I present one of the possible paradigm shifts with exotic nuclei. This is the shell evolution due to nuclear forces, such as tensor, central and three-nucleon forces. I shall present major points with the N=34 magic number confirmed in 54Ca by RIBF of RIKEN very recently, after the theoretical prediction made in 2001. The shell evolution has been generalized to phenomena caused by massive particle-hole excitations, being referred to as Type II Shell Evolution. This can be found in 68,70Ni. In particular, the shape coexistence of spherical, oblate and prolate shapes is suggested theoretically. Thus, the perspectives of physics with exotic nuclei is being expanded further from single-particle aspects to shapes/deformation, changing the landscape of nuclear structure.

  18. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    SciTech Connect

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  19. Alarm system for a nuclear control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  20. Study of Double-strangeness Nuclear Systems with Nuclear Emulsion

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuma; Endo, Yoko; Hoshino, Kaoru; Ito, Hiroki; Kinbara, Shinji; Kobayashi, Hidetaka; Mishina, Akihiro; Soe, Myint Kyaw; Theint, Aye Moh Moh; Xu, Rong; Tint, Khin Than; Yoshida, Jun'ya; Zhang, Dong Hai

    Double strangeness nuclei such as double-Λ and Ξ hypernuclei have been studied with nuclear emulsion due to its fine position resolution. Recently, we have started an experiment to study Λ-Λ interaction more accurately than that information given by the NAGARA event with ∼102 double-Λ hypernuclei which may provide us understanding free from nuclear medium effect. It is necessary to develop treatment method for huge amount, 2.1 tons of the emulsion gel, even if very pure K- beams are available at J-PARC. We have developed the base film to support the emulsion, emulsion surface coating method with a special layer of 0.5 μm thick, method for making large-size plate (35.0 x 34.5 cm2) and scanning method, called "overall scanning". The first evidence of a deeply bound state of Ξ--14N system, named KISO, was successfully detected in the test operation of the overall scanning.

  1. Prospects for a Global Network of Optical Magnetometers for Exotic Physics (gnome)

    NASA Astrophysics Data System (ADS)

    Kimball, D. F. Jackson; Pustelny, S.; Pospelov, M.; Ledbetter, M. P.; Leefer, N.; Wlodarczyk, P.; Wcislo, P.; Gawlik, W.; Smith, J.; Read, J.; Pankow, C.; Budker, D.

    2014-01-01

    The concept and prospects of a proposed international network of geographically separated, time-synchronized ultrasensitive atomic comagnetometers to search for correlated transient signals heralding new physics is discussed. The Global Network of Optical Magnetometers for Exotic physics (GNOME) would be sensitive to nuclear and electron spin couplings to various exotic fields. To date, no such search has ever been carried out, making the GNOME a novel experimental window on new physics.

  2. SP-100 space nuclear power system

    NASA Technical Reports Server (NTRS)

    Given, R. W.; Morgan, R. E.; Chi, J. W. H.

    1984-01-01

    A baseline design concept for a 100 kWe nuclear reactor space power system is described. The concept was developed under contract from JPL as part of a joint program of the DOE, DOD, and NASA. The major technical and safety constraints influencing the selection of reactor operating parameters are discussed. A lithium-cooled compact fast reactor was selected as the best candidate system. The material selected for the thermoelectric conversion system was silicon germanium (SiGe) with gallium phosphide doping. Attention is given to the improved safety of the seven in-core control rod configuration.

  3. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  4. Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces

    SciTech Connect

    Feiguin, Adrian E.; Fisher, Matthew P. A.

    2009-07-10

    We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.

  5. Exotic and qqbar resonances in the π+π-π- system produced in π-p collisions at 18 GeV/c

    NASA Astrophysics Data System (ADS)

    Chung, S. U.; Danyo, K.; Hackenburg, R. W.; Olchanski, C.; Suh, J. S.; Willutzki, H. J.; Denisov, S. P.; Dorofeev, V.; Lipaev, V. V.; Popov, A. V.; Ryabchikov, D. I.; Bar-Yam, Z.; Dowd, J. P.; Eugenio, P.; Hayek, M.; Kern, W.; King, E.; Shenhav, N.; Bodyagin, V. A.; Kodolova, O. L.; Korotkikh, V. L.; Kostin, M. A.; Ostrovidov, A. I.; Sarycheva, L. I.; Vardanyan, I. N.; Yershov, A. A.; Brown, D. S.; Fan, X. L.; Joffe, D.; Pedlar, T. K.; Seth, K. K.; Tomaradze, A.; Adams, T.; Bishop, J. M.; Cason, N. M.; Ivanov, E. I.; Losecco, J. M.; Manak, J. J.; Shephard, W. D.; Stienike, D. L.; Taegar, S. A.; Adams, G. S.; Cummings, J. P.; Hu, J.; Kuhn, J.; Lu, M.; Napolitano, J.; White, D. B.; Witkowski, M.; Nozar, M.; Shen, X.; Weygand, D. P.

    2002-04-01

    A partial-wave analysis of the reaction π-p-->π+π-π-p at 18 GeV/c has been performed on a data sample of 250 000 events obtained in the Brookhaven experiment E852. The well-known a1(1260), a2(1320) and π2(1670) resonant states are observed. The existence of the π(1800), a1(1700) and a4(2040) states is confirmed. The a3(1874) state is also observed. The exotic 1-+ π1(1600) state produced in the natural parity exchange process is found to decay in the ρ(770)π- channel. A mass-dependent fit results in a resonance mass of 1593+/-8+29-47 MeV/c2 and a width of 168+/-20+150-12 MeV/c2.

  6. New Nuclear Emergency Prognosis system in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Ha; Jeong, Seung-Young; Park, Sang-Hyun; Lee, Kwan-Hee

    2016-04-01

    This paper reviews the status of assessment and prognosis system for nuclear emergency response in Korea, especially atmospheric dispersion model. The Korea Institute of Nuclear Safety (KINS) performs the regulation and radiological emergency preparedness of the nuclear facilities and radiation utilizations. Also, KINS has set up the "Radiological Emergency Technical Advisory Plan" and the associated procedures such as an emergency response manual in consideration of the IAEA Safety Standards GS-R-2, GS-G-2.0, and GS-G-2.1. The Radiological Emergency Technical Advisory Center (RETAC) organized in an emergency situation provides the technical advice on radiological emergency response. The "Atomic Computerized Technical Advisory System for nuclear emergency" (AtomCARE) has been developed to implement assessment and prognosis by RETAC. KINS developed Accident Dose Assessment and Monitoring (ADAMO) system in 2015 to reflect the lessons learned from Fukushima accident. It incorporates (1) the dose assessment on the entire Korean peninsula, Asia region, and global region, (2) multi-units accident assessment (3) applying new methodology of dose rate assessment and the source term estimation with inverse modeling, (4) dose assessment and monitoring with the environmental measurements result. The ADAMO is the renovated version of current FADAS of AtomCARE. The ADAMO increases the accuracy of the radioactive material dispersion with applying the LDAPS(Local Data Assimilation Prediction System, Spatial resolution: 1.5 km) and RDAPS(Regional Data Assimilation Prediction System, Spatial resolution: 12km) of weather prediction data, and performing the data assimilation of automatic weather system (AWS) data from Korea Meteorological Administration (KMA) and data from the weather observation tower at NPP site. The prediction model of the radiological material dispersion is based on the set of the Lagrangian Particle model and Lagrangian Puff model. The dose estimation methodology

  7. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  8. Fission control system for nuclear reactor

    DOEpatents

    Conley, G.H.; Estes, G.P.

    Control system for nuclear reactor comprises a first set of reactivity modifying rods fixed in a reactor core with their upper ends stepped in height across the core, and a second set of reactivity modifying rods movable vertically within the reactor core and having their lower ends stepped to correspond with the stepped arrangement of the first set of rods, pairs of the rods of the first and second sets being in coaxial alignment.

  9. FOREWORD: International Summer School for Advanced Studies 'Dynamics of open nuclear systems' (PREDEAL12)

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Zamfir, N. V.; Raduta, A. R.; Gulminelli, F.

    2013-02-01

    renowned professors and researchers in nuclear physics. This proceedings volume is organized into four chapters, which reflects the traditional chapter structure of nuclear physics textbooks, but seen from the perspective of open quantum systems: INuclear structure IIDecay processes IIINuclear reactions and astrophysics IVContributions The lectures and contributions are listed alphabetically by author within each chapter. The volume contains many comprehensive reviews related to the topics of the School. The first week of the School was focused on nuclear structure and decay phenomena, considering the nucleus as an open system. Experts in these fields lectured on cluster radioactivity, the stability of superheavy nuclei, alpha-decay fine structure, fission versus fusion, beta and double beta decay and pairing versus alpha-clustering. New experimental results related to the nuclear stability of low-lying and high spin states were also presented. Recent developments at JINR—Dubna and GSI—Darmstadt international laboratories were also reported by their current or former directors. The second week of the event was dedicated to the physics of exotic nuclei, heavy ion reactions and multi-fragmentation, symmetries and phase transitions of open quantum systems. The stability of the atomic nucleus is an important and always interesting discussion point, especially in the context of newly discovered nuclear systems close to the stability line, such as proton/neutron rich or superheavy nuclei. Several lectures and contributions were focused on nuclear structure models describing low-lying states. This includes the status of density functional theory, new developments in Bohr-Mottelsohn Hamiltonian and shell-model theory, proton-neutron correlations, shape coexistence, back-bending phenomena and the thermodynamics of open quantum systems. Open systems in astrophysics, such as supernovae and neutron stars, were presented in detail by several lecturers. Important topics connected to

  10. Exotic Quadrupolar Phenomena in Non-Kramers Doublet Systems — The Cases of PrT2Zn20 (T = Ir, Rh) and PrT2Al20 (T = V, Ti) —

    NASA Astrophysics Data System (ADS)

    Onimaru, Takahiro; Kusunose, Hiroaki

    2016-08-01

    This paper reviews experimental evidence and the related theoretical background on exotic phenomena arising from local quadrupolar degrees of freedom. Recent extensive studies on praseodymium-based cubic systems, PrT2X20, have revealed that the active quadrupoles in the non-Kramers doublet ground state play a vital role in exhibiting quadrupole orders and superconductivity with underlying peculiar normal paramagnetic electronic states. We focus on four prototype compounds of PrT2X20 (T = Ir, Rh, X = Zn; T = V, Ti, X = Al). Detailed comprehensive comparisons of these compounds have revealed a universal feature of the non-Fermi liquid state emerging from a lattice quadrupolar Kondo effect, and the commonality and individuality of the quadrupolar and superconducting phases. It may be possible to develop a new class of heavy-fermion systems beyond the classic view of heavy fermions on the basis of a concrete understanding of these phenomena.

  11. System model development for nuclear thermal propulsion

    SciTech Connect

    Walton, J.T.; Hannan, N.A.; Perkins, K.R.; Buksa, J.J.; Worley, B.A.; Dobranich, D.

    1992-10-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. Since October 1991, US (DOE), (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review. The vision and strategy of the interagency team for developing NTP system models will be discussed in this paper. A review of the progress on the Level 1 interagency model is also presented.

  12. An approach to a self-consistent nuclear energy system

    SciTech Connect

    Fujii-e, Yoichi ); Arie, Kazuo; Endo, Hiroshi )

    1992-01-01

    A nuclear energy system should provide a stable supply of energy without endangering the environment or humans. If there is fear about exhausting world energy resources, accumulating radionuclides, and nuclear reactor safety, tension is created in human society. Nuclear energy systems of the future should be able to eliminate fear from people's minds. In other words, the whole system, including the nuclear fuel cycle, should be self-consistent. This is the ultimate goal of nuclear energy. If it can be realized, public acceptance of nuclear energy will increase significantly. In a self-consistent nuclear energy system, misunderstandings between experts on nuclear energy and the public should be minimized. The way to achieve this goal is to explain using simple logic. This paper proposes specific targets for self-consistent nuclear energy systems and shows that the fast breeder reactor (FBR) lies on the route to attaining the final goal.

  13. Shutdown system for a nuclear reactor

    DOEpatents

    Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

    1984-06-05

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

  14. Shutdown system for a nuclear reactor

    DOEpatents

    Groh, Edward F.; Olson, Arne P.; Wade, David C.; Robinson, Bryan W.

    1984-01-01

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

  15. Systems aspects of a space nuclear reactor power system

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  16. Systems approach to nuclear waste glass development

    SciTech Connect

    Jantzen, C M

    1986-01-01

    Development of a host solid for the immobilization of nuclear waste has focused on various vitreous wasteforms. The systems approach requires that parameters affecting product performance and processing be considered simultaneously. Application of the systems approach indicates that borosilicate glasses are, overall, the most suitable glasses for the immobilization of nuclear waste. Phosphate glasses are highly durable; but the glass melts are highly corrosive and the glasses have poor thermal stability and low solubility for many waste components. High-silica glasses have good chemical durability, thermal stability, and mechanical stability, but the associated high melting temperatures increase volatilization of hazardous species in the waste. Borosilicate glasses are chemically durable and are stable both thermally and mechanically. The borosilicate melts are generally less corrosive than commercial glasses, and the melt temperature miimizes excessive volatility of hazardous species. Optimization of borosilicate waste glass formulations has led to their acceptance as the reference nuclear wasteform in the United States, United Kingdom, Belgium, Germany, France, Sweden, Switzerland, and Japan.

  17. Symmetry energy of warm nuclear systems

    NASA Astrophysics Data System (ADS)

    Agrawal, B. K.; De, J. N.; Samaddar, S. K.; Centelles, M.; Viñas, X.

    2014-02-01

    The temperature dependence of the symmetry energy and symmetry free energy coefficients of infinite nuclear matter and of finite nuclei is investigated. For infinite matter, both these coefficients are found to have a weaker dependence on temperature at densities close to saturation; at low but homogeneous densities, the temperature dependence becomes stronger. For finite systems, different definitions of symmetry energy coefficients are encountered in the literature yielding different values. A resolution to this problem is suggested from a global liquid-drop-inspired fit of the energies and free energies of a host of nuclei covering the entire periodic table. The hot nucleus is modeled in a subtracted finite-temperature Thomas-Fermi framework, with dynamical surface phonon coupling to nucleonic motion plugged in. Contrary to infinite nuclear matter, a substantial change in the symmetry energy coefficients is observed for finite nuclei with temperature.

  18. Fluid sampling system for a nuclear reactor

    DOEpatents

    Lau, L.K.; Alper, N.I.

    1994-11-22

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  19. Fluid sampling system for a nuclear reactor

    DOEpatents

    Lau, Louis K.; Alper, Naum I.

    1994-01-01

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  20. Exotic containers for capillary surfaces

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1991-01-01

    This paper discusses 'exotic' rotationally symmetric containers that admit an entire continuum of distinct equilibrium capillary free surfaces. The paper extends earlier work to a larger class of parameters and clarifies and simplifies the governing differential equations, while expressing them in a parametric form appropriate for numerical integration. A unified presentation suitable for both zero and nonzero gravity is given. Solutions for the container shapes are depicted graphically along with members of the free-surface continuum, and comments are given concerning possible physical experiments.

  1. Exotic Zc states at BESIII

    NASA Astrophysics Data System (ADS)

    Shan, Wei

    2016-05-01

    The BESIII Experiment at the Beijing Electron Positron Collider (BEPC2) collected large data samples for electron-positron collisions with center-of-mass above 4 GeV during 2013 and 2014. In this mass region, there are several states that are yet to be understood. In this article we will discuss BESIII analyses of the exotic Zc states. We present the studies of their decays to hidden charm and open charm final states for both the charged and neutral Zc states.

  2. System model development for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Hannan, Nelson A.; Worley, Brian A.; Walton, James T.; Perkins, Ken R.; Buska, John J.; Dobranich, Dean

    1992-08-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, cost and time required for the technology to reach flight-ready status. Since October 1991, the US Department of Energy (DOE), Department of Defense (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling.

  3. System model development for nuclear thermal propulsion

    SciTech Connect

    Hannan, N.A.; Worley, B.A.; Walton, J.T.; Perkins, K.R.; Buksa, J.J.; Dobranich, D.

    1992-11-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, cost and time required for the technology to reach flight-ready status. Since October 1991, the US Department of Energy (DOE), Department of Defense (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling.

  4. Neural net controlled tag gas sampling system for nuclear reactors

    DOEpatents

    Gross, K.C.; Laug, M.T.; Lambert, J.B.; Herzog, J.P.

    1997-02-11

    A method and system are disclosed for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod. 12 figs.

  5. Neural net controlled tag gas sampling system for nuclear reactors

    DOEpatents

    Gross, Kenneth C.; Laug, Matthew T.; Lambert, John D. B.; Herzog, James P.

    1997-01-01

    A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

  6. Towards a novel laser-driven method of exotic nuclei extraction-acceleration for fundamental physics and technology

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Zh.; Nishio, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Orlandi, R.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Koura, H.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2016-04-01

    A combination of a petawatt laser and nuclear physics techniques can crucially facilitate the measurement of exotic nuclei properties. With numerical simulations and laser-driven experiments we show prospects for the Laser-driven Exotic Nuclei extraction-acceleration method proposed in [M. Nishiuchi et al., Phys, Plasmas 22, 033107 (2015)]: a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly charged short-lived heavy exotic nuclei created in the target via nuclear reactions.

  7. First observation of γ γ →p p ¯K+K- and search for exotic baryons in p K systems

    NASA Astrophysics Data System (ADS)

    Shen, C. P.; Yuan, C. Z.; Adachi, I.; Aihara, H.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bakich, A. M.; Barberio, E.; Behera, P.; Bhardwaj, V.; Bhuyan, B.; Biswal, J.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chang, P.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, S.-K.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Dash, N.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Fang, W. X.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gillard, R.; Glattauer, R.; Goldenzweig, P.; Grzymkowska, O.; Haba, J.; Hayasaka, K.; Hayashii, H.; Hou, W.-S.; Iijima, T.; Inami, K.; Inguglia, G.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jaegle, I.; Jeon, H. B.; Joo, K. K.; Julius, T.; Kang, K. H.; Kato, E.; Kiesling, C.; Kim, D. Y.; Kim, J. B.; Kim, K. T.; Kim, S. H.; Kim, Y. J.; Kodyš, P.; Korpar, S.; Kotchetkov, D.; Križan, P.; Krokovny, P.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Li, C. H.; Li, H.; Li, L.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Lubej, M.; Luo, T.; Masuda, M.; Matsuda, T.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Mohanty, S.; Moll, A.; Moon, H. K.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Nath, K. J.; Natkaniec, Z.; Nishida, S.; Ogawa, S.; Olsen, S. L.; Ostrowicz, W.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Park, C.-S.; Park, H.; Pesántez, L.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Pulvermacher, C.; Rauch, J.; Ritter, M.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schlüter, T.; Schneider, O.; Schnell, G.; Schwanda, C.; Seino, Y.; Semmler, D.; Senyo, K.; Seong, I. S.; Sevior, M. E.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Simon, F.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Strube, J. F.; Stypula, J.; Sumihama, M.; Sumiyoshi, T.; Takizawa, M.; Tamponi, U.; Tanida, K.; Tenchini, F.; Trabelsi, K.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Usov, Y.; Van Hulse, C.; Varner, G.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamaoka, J.; Yelton, J.; Yook, Y.; Yusa, Y.; Zhang, C. C.; Zhang, Z. P.; Zhilich, V.; Zhukova, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration

    2016-06-01

    The process γ γ →p p ¯ K+K- and its intermediate processes are measured for the first time using a 980 fb-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. The production of p p ¯K+K- and a Λ (1520 )0 (Λ ¯ (1520 )0) signal in the p K- (p ¯K+) invariant mass spectrum are clearly observed. However, no evidence for an exotic baryon near 1540 MeV /c2 , denoted as Θ (1540 )0 (Θ ¯(1540 )0) or Θ (1540 )++ (Θ (1540 )--), is seen in the p K- (p ¯K+) or p K+ (p ¯K-) invariant mass spectra. Cross sections for γ γ →p p ¯K+K-, Λ (1520 )0p ¯ K++c .c . and the products σ (γ γ →Θ (1540 )0p ¯ K++c .c .)B (Θ (1540 )0→p K-) and σ (γ γ →Θ (1540 )++p ¯ K-+c .c .)B (Θ (1540 )++→p K+) are measured. We also determine upper limits on the products of the χc 0 and χc 2 two-photon decay widths and their branching fractions to p p ¯ K+K- at the 90% credibility level.

  8. Exotic and qq-bar resonances in the pi+pi-pi- system produced in pi-p collisions at 18 GeV/c

    SciTech Connect

    S. U. Chung; K. Danyo; R. W. Hackenburg; C. Olchanski; J. S. Suh; H. J. Willutzki; S. P. Denisov; V. Dorofeev; V. V. Lipaev; A. V. Popov; D. I. Ryabchikov; Z. Bar-Yam; J. P. Dowd; P. Eugenio; M. Hayek; W. Kern; E. King; N. Shenhav; V. A. Bodyagin; O. L. Kodolova; V. L. Korotkikh; M. A. Kostin; A. I. Ostrovidov; L. I. Sarycheva; I. N. Vardanyan; A. A. Yershov; D. S. Brown; X. L. Fan; D. Joffe; T. K. Pedlar; K. K. Seth; A. Tomaradze; T. Adams; J. M. Bishop; N. M. Cason; E. I. Ivanov; J. M. LoSecco; J. J. Manak; W. D. Shephard; D. L. Stienike; S. A. Taegar; G. S. Adams; J. P. Cummings; J. Hu; J. Kuhn; M. Lu; J. Napolitano; D. B. White; M. Witkowski; M. Nozar; X. Shen; D. P. Weygand

    2002-03-01

    A partial-wave analysis of the reaction pi{sup -}p-->pi{sup +}pi{sup -}pi{sup -}p at 18 GeV/c has been performed on a data sample of 250 000 events obtained in the Brookhaven experiment E852. The well-known a{sub 1}(1260), a{sub 2}(1320) and pi{sub 2}(1670) resonant states are observed. The existence of the pi(1800), a{sub 1}(1700) and a{sub 4}(2040) states is confirmed. The a{sub 3}(1874) state is also observed. The exotic 1{sup -+} pi{sub 1}(1600) state produced in the natural parity exchange process is found to decay in the rho(770)pi{sup -} channel. A mass-dependent fit results in a resonance mass of 1593{+-}8{sub -47}{sup +29} MeV/c{sup 2} and a width of 168{+-}20{sub -12}{sup +150} MeV/c{sup 2}.

  9. Nuclear reactor fuel rod attachment system

    DOEpatents

    Not Available

    1980-09-17

    A reusable system is described for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member. The locking cap has two opposing fingers shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed.

  10. Space nuclear power systems for extraterrestrial basing

    NASA Technical Reports Server (NTRS)

    Lance, J. R.; Chi, J. W. H.

    1989-01-01

    Comparative analyses reveal that the nuclear power option significantly reduces the logistic burden required to support a lunar base. The paper considers power levels from tens of kWe for early base operation up to 2000 kWe for a self-sustaining base with a CELSS. It is shown that SP-100 and NERVA derivative reactor (NDR) technology for space power can be used effectively for extraterrestrial base power systems. Recent developments in NDR design that result in major reductions in reactor mass are described.

  11. Rodded shutdown system for a nuclear reactor

    DOEpatents

    Golden, Martin P.; Govi, Aldo R.

    1978-01-01

    A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core.

  12. System model development for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Walton, James T.; Hannan, Nelson A.; Perkins, Ken R.; Buksa, John H.; Worley, Brian A.; Dobranich, Dean

    1992-08-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review.

  13. System model development for nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Walton, James T.; Hannan, Nelson A.; Perkins, Ken R.; Buksa, John H.; Worley, Brian A.; Dobranich, Dean

    1992-01-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. This is crucial for mission analysis and for control subsystem testing as well as for the modeling of various failure modes. Performance must be accurately predicted during steady-state and transient operation, including startup, shutdown, and post operation cooling. The development and application of verified and validated system models has the potential to reduce the design, testing, and cost and time required for the technology to reach flight-ready status. Since Oct. 1991, the U.S. Department of Energy (DOE), Department of Defense (DOD), and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. The first level will provide rapid, parameterized calculations of overall system performance. Succeeding computer programs will provide analysis of each component in sufficient detail to guide the design teams and experimental efforts. The computer programs will allow simulation of the entire system to allow prediction of the integrated performance. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review.

  14. Electroweak baryogenesis from exotic electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Blinov, Nikita; Kozaczuk, Jonathan; Morrissey, David E.; Tamarit, Carlos

    2015-08-01

    We investigate scenarios in which electroweak baryogenesis can occur during an exotic stage of electroweak symmetry breaking in the early Universe. This transition is driven by the expectation value of a new electroweak scalar instead of the standard Higgs field. A later, second transition then takes the system to the usual electroweak minimum, dominated by the Higgs boson, while preserving the baryon asymmetry created in the first transition. We discuss the general requirements for such a two-stage electroweak transition to be suitable for electroweak baryogenesis and present a toy model that illustrates the necessary ingredients. We then apply these results to construct an explicit realization of this scenario within the inert two Higgs doublet model. Despite decoupling the Higgs from the symmetry-breaking transition required for electroweak baryogenesis, we find that this picture generically predicts new light states that are accessible experimentally.

  15. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body and produce images of a specific cross-sectional plane of the body by blurring or eliminating detail...

  16. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body and produce images of a specific cross-sectional plane of the body by blurring or eliminating detail...

  17. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body and produce images of a specific cross-sectional plane of the body by blurring or eliminating detail...

  18. Nuclear reactor pressure vessel support system

    DOEpatents

    Sepelak, George R.

    1978-01-01

    A support system for nuclear reactor pressure vessels which can withstand all possible combinations of stresses caused by a postulated core disrupting accident during reactor operation. The nuclear reactor pressure vessel is provided with a flange around the upper periphery thereof, and the flange includes an annular vertical extension formed integral therewith. A support ring is positioned atop of the support ledge and the flange vertical extension, and is bolted to both members. The plug riser is secured to the flange vertical extension and to the top of a radially outwardly extension of the rotatable plug. This system eliminates one joint through which fluids contained in the vessel could escape by making the fluid flow path through the joint between the flange and the support ring follow the same path through which fluid could escape through the plug risers. In this manner, the sealing means to prohibit the escape of contained fluids through the plug risers can also prohibit the escape of contained fluid through the securing joint.

  19. Mechanisms underlying the impacts of exotic plant invasions.

    PubMed Central

    Levine, Jonathan M; Vilà, Montserrat; D'Antonio, Carla M; Dukes, Jeffrey S; Grigulis, Karl; Lavorel, Sandra

    2003-01-01

    Although the impacts of exotic plant invasions on community structure and ecosystem processes are well appreciated, the pathways or mechanisms that underlie these impacts are poorly understood. Better exploration of these processes is essential to understanding why exotic plants impact only certain systems, and why only some invaders have large impacts. Here, we review over 150 studies to evaluate the mechanisms underlying the impacts of exotic plant invasions on plant and animal community structure, nutrient cycling, hydrology and fire regimes. We find that, while numerous studies have examined the impacts of invasions on plant diversity and composition, less than 5% test whether these effects arise through competition, allelopathy, alteration of ecosystem variables or other processes. Nonetheless, competition was often hypothesized, and nearly all studies competing native and alien plants against each other found strong competitive effects of exotic species. In contrast to studies of the impacts on plant community structure and higher trophic levels, research examining impacts on nitrogen cycling, hydrology and fire regimes is generally highly mechanistic, often motivated by specific invader traits. We encourage future studies that link impacts on community structure to ecosystem processes, and relate the controls over invasibility to the controls over impact. PMID:12737654

  20. Cooling system for a nuclear reactor

    DOEpatents

    Amtmann, Hans H.

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  1. Computer Information System For Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Cahill, P. T.; Knowles, R. J.....; Tsen, O.

    1983-12-01

    To meet the complex needs of a nuclear medicine division serving a 1100-bed hospital, a computer information system has been developed in sequential phases. This database management system is based on a time-shared minicomputer linked to a broadband communications network. The database contains information on patient histories, billing, types of procedures, doses of radiopharmaceuticals, times of study, scanning equipment used, and technician performing the procedure. These patient records are cycled through three levels of storage: (a) an active file of 100 studies for those patients currently scheduled, (b) a temporary storage level of 1000 studies, and (c) an archival level of 10,000 studies containing selected information. Merging of this information with reports and various statistical analyses are possible. This first phase has been in operation for well over a year. The second phase is an upgrade of the size of the various storage levels by a factor of ten.

  2. Supercritical Brayton Cycle Nuclear Power System Concepts

    SciTech Connect

    Wright, Steven A.

    2007-01-30

    Both the NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, and for next generation nuclear power plants on earth. The gas Brayton cycle offers many practical solutions for space nuclear power systems and was selected as the nuclear power system of choice for the NASA Prometheus project. An alternative Brayton cycle that offers high efficiency at a lower reactor coolant outlet temperature is the supercritical Brayton cycle (SCBC). The supercritical cycle is a true Brayton cycle because it uses a single phase fluid with a compressor inlet temperature that is just above the critical point of the fluid. This paper describes the use of a supercritical Brayton cycle that achieves a cycle efficiency of 26.6% with a peak coolant temperature of 750 K and for a compressor inlet temperature of 390 K. The working fluid uses a clear odorless, nontoxic refrigerant C318 perflurocarbon (C4F8) that always operates in the gas phase. This coolant was selected because it has a critical temperature and pressure of 388.38 K and 2.777 MPa. The relatively high critical temperature allows for efficient thermal radiation that keeps the radiator mass small. The SCBC achieves high efficiency because the loop design takes advantage of the non-ideal nature of the coolant equation of state just above the critical point. The lower coolant temperature means that metal fuels, uranium oxide fuels, and uranium zirconium hydride fuels with stainless steel, ferretic steel, or superalloy cladding can be used with little mass penalty or reduction in cycle efficiency. The reactor can use liquid-metal coolants and no high temperature heat exchangers need to be developed. Indirect gas cooling or perhaps even direct gas cooling can be used if the C4F8 coolant is found to be sufficiently radiation tolerant. Other fluids can also be used in the supercritical Brayton cycle including Propane (C3H8, Tcritical = 369 K) and Hexane (C6

  3. Supercritical Brayton Cycle Nuclear Power System Concepts

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.

    2007-01-01

    Both the NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, and for next generation nuclear power plants on earth. The gas Brayton cycle offers many practical solutions for space nuclear power systems and was selected as the nuclear power system of choice for the NASA Prometheus project. An alternative Brayton cycle that offers high efficiency at a lower reactor coolant outlet temperature is the supercritical Brayton cycle (SCBC). The supercritical cycle is a true Brayton cycle because it uses a single phase fluid with a compressor inlet temperature that is just above the critical point of the fluid. This paper describes the use of a supercritical Brayton cycle that achieves a cycle efficiency of 26.6% with a peak coolant temperature of 750 K and for a compressor inlet temperature of 390 K. The working fluid uses a clear odorless, nontoxic refrigerant C318 perflurocarbon (C4F8) that always operates in the gas phase. This coolant was selected because it has a critical temperature and pressure of 388.38 K and 2.777 MPa. The relatively high critical temperature allows for efficient thermal radiation that keeps the radiator mass small. The SCBC achieves high efficiency because the loop design takes advantage of the non-ideal nature of the coolant equation of state just above the critical point. The lower coolant temperature means that metal fuels, uranium oxide fuels, and uranium zirconium hydride fuels with stainless steel, ferretic steel, or superalloy cladding can be used with little mass penalty or reduction in cycle efficiency. The reactor can use liquid-metal coolants and no high temperature heat exchangers need to be developed. Indirect gas cooling or perhaps even direct gas cooling can be used if the C4F8 coolant is found to be sufficiently radiation tolerant. Other fluids can also be used in the supercritical Brayton cycle including Propane (C3H8, Tcritical = 369 K) and Hexane (C6

  4. Nuclear Powered Laser Driven Plasma Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, T.

    A relativistic plasma thruster that could open up the solar system to near-term human exploration is presented. It is based on recent experimental and theoretical research, which show that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. In table top-type experiments charge-neutral proton beams containing more than 1014 particles with mean energies of tens of MeV's have been produced when high intensity lasers with femtosecond (10-15 s) pulse lengths are made to strike thin solid targets. When viewed from a propulsion standpoint such systems can produce specific impulses of several million seconds albeit at modest thrusts and require nuclear power systems to drive them. Several schemes are proposed to enhance the thrust and make these systems suitable for manned interplanetary missions. In this paper we set forth the physics principles that make relativistic plasma driven by ultrafast lasers particularly attractive for propulsion applications. We introduce the “Laser Accelerated Plasma Propulsion System” LAPPS, and demonstrate its potential propulsive capability by addressing an interstellar mission to the Oort Cloud, and a planetary mission to Mars. We show that the first can be carried out in a human's lifetime and the second in a matter of months. In both instances we identify the major technological problems that must be addressed if this system is to evolve into a leading contender among the advance propulsion concepts currently under consideration.

  5. Photoproduction of exotic baryon resonances

    NASA Astrophysics Data System (ADS)

    Karliner, Marek; Rosner, Jonathan L.

    2016-01-01

    We point out that the new exotic resonances recently reported by LHCb in the J / ψ p channel are excellent candidates for photoproduction off a proton target. This test is crucial to confirming the resonant nature of such states, as opposed to their being kinematical effects. We specialize to an interpretation of the heavier narrow state as a molecule composed of Σc and Dbar*, and estimate its production cross section using vector dominance. The relevant photon energies and fluxes are well within the capabilities of the GlueX and CLAS12 detectors at Thomas Jefferson National Accelerator Facility (JLAB). A corresponding calculation is also performed for photoproduction of an analogous resonance which is predicted to exist in the ϒp channel.

  6. 77 FR 28407 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... January 1998 (63 FR 2426; January 15, 1998), because the underlying basis standard, ANSI N15.8-1974... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY:...

  7. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... Information DG-5028, was published in the Federal Register on May 14, 2012 (77 FR 28407), for a 60-day public... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY:...

  8. Initiatives in the US nuclear material tracking system

    SciTech Connect

    Smith, M.R.; Kuzmycz, G.; Heaton, E.R.

    1994-07-01

    The Department of Energy (DOE) Office of Nonproliferation and National Security is in the process of developing a new worldwide nuclear materials tracking system. Its purpose is for DOE to better fulfill its international and domestic nuclear material tracking obligations and needs. The Lawrence Livermore National Laboratory (LLNL), is developing the International Nuclear Analysis (INA) Program to meet this goal. LLNL will assume the function and duties of the current Nuclear Materials management and Safeguards System (NMMSS) operated by Martin Marietta Energy Systems. The program is jointly funded by the DOE, the Nuclear Regulatory Commission and the US Enrichment Corporation.

  9. The Exotic Exchange of Smoke Rings

    NASA Astrophysics Data System (ADS)

    Niemi, A. J.

    Smoke rings are fascinating, to humans and animals alike.Experienced cigarette smokers blow them for entertainment while dolphins play with air-filled underwater rings that they know how to puff.~Smoke ring machines can be bought from science gadget shops and Lord Kelvin explains in a paper [Lord Kelvin, Proceedings of the Royal Society of Edinburgh, Vol. VI (1867), p. 94; reprinted in Philos. Mag. Vol. XXXIV (1867), p.~15] how one can be constructed from a cardboard box. Even Mount Etna [http://news.bbc.co.uk/1/hi/sci/tech/696953.stm] and our Sun [http://spacescience.com/headlines/y2000/ast03feb_1.htm] are known to be sources of huge smoke rings. But a smoke ring is not only fun to watch. It is also an organized structure with the ability to engage in complex acts, best exemplified by the leapfrogging motion of two smoke rings. Here we propose that the leapfrogging actually encodes very important Physics: It is a direct three dimensional generalization of the motion that in the two dimensional context is responsible for exotic exchange statistics which rules the properties of structures and materials such as quantum Hall systems and high-temperature superconductors. By employing very simple and universal concepts with roots in the hydrodynamical Euler equation, the universal law that describes the properties of fluids and gases, we argue that three dimensional exotic exchange statistics is commonplace. Our observations could have far reaching consequences in fluids and gases which are subject to the laws of quantum mechanics, from helium supefluids to Bose-Einstein condensed alkali gases and even metallic hydrogen in its liquid phases.

  10. Assessing an exotic plant surveying program in the Mojave Desert, Clark County, Nevada, USA.

    PubMed

    Abella, Scott R; Spencer, Jessica E; Hoines, Joshua; Nazarchyk, Carrie

    2009-04-01

    Exotic species can threaten native ecosystems and reduce services that ecosystems provide to humans. Early detection of incipient populations of exotic species is a key step in containing exotics before explosive population growth and corresponding impacts occur. We report the results of the first three years of an exotic plant early detection and treatment program conducted along more than 3,000 km of transportation corridors within an area >1.5 million ha in the Mojave Desert, USA. Incipient populations of 43 exotic plant species were mapped using global positioning and geographic information systems. Brassica tournefortii (Sahara mustard) infested the most soil types (47% of 256) surveyed in the study area, while Nicotiana glauca (tree tobacco) and others currently occupy less than 5% of soil types. Malcolmia africana (African mustard) was disproportionately detected on gypsum soils, occurring on 59% of gypsum soil types compared to 27% of all surveyed soils. Gypsum soils constitute unique rare plant habitat in this region, and by conventional wisdom were not previously considered prone to invasion. While this program has provided an initial assessment of the landscape-scale distribution of exotic species along transportation corridors, evaluations of both the survey methods and the effectiveness of treating incipient populations are needed. An exotic plant information system most useful to resource mangers will likely include integrating planning oriented coarse-scale surveys, more detailed monitoring of targeted locations, and research on species life histories, community invasibility, and treatment effectiveness. PMID:18369728

  11. Using exotic atoms to keep borders safe

    SciTech Connect

    Jason, A; Miyadera, H; Esch, E I; Hoteling, N J; Adelmann, A; Heffner, R H; Green, A; Olsthoorn, J; Stocki, T J

    2010-01-01

    Muons, created by a particle accelerator, can be used to scan cargo for special nuclear materials (SNM). These muons exist long enough and are penetrating enough that they can be used to actively scan cargo to ensure the non-proliferation of SNM. A set of 'proof-of-concept' experiments have been performed to show that active muon analysis can be used. Experiments were performed at high intensity, medium energy particle accelerators (TRIUMF and PSI). Negative muons form exotic atoms with one electron replaced by the muon. Since the muon is captured in an excited state, it will give off x-rays which can be detected by high purity germanium detectors. These characteristic x-rays can be used to identify the nuclide. The muonic x-rays corresponding to the SNM of interest have been measured, even with the use of various shielding configurations composed of lead, iron, polyethylene, or fiberglass. These preliminary results show that muons can be successfully used to find shielded SNM. The safety of North Americans can be protected by the use of this technology.

  12. System aspects of a Space Nuclear Reactor Power System

    SciTech Connect

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, altitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly. The power system design evolved during the study and has continued to evolve; the current design differs somewhat from that examined in this paper.

  13. Space Nuclear Propulsion Systems and Applications

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1972-01-01

    The basic principles of the operation of a nuclear rocket engine are reviewed along with a summary of the early history. In addition, the technology status in the nuclear rocket program for development of the flight-rated NERVA engine is described, and applications for this 75,000-pound thrust engine and the results of nuclear stage studies are presented. Advanced research and supporting technology activities in the nuclear rocket program are also summarized.

  14. Nuclear reactor insulation and preheat system

    DOEpatents

    Wampole, Nevin C.

    1978-01-01

    An insulation and preheat system for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the compartment. An external surface of the compartment or enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair.

  15. Nuclear reactor fuel rod attachment system

    DOEpatents

    Christiansen, David W.

    1982-01-01

    A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.

  16. Fuel handling system for a nuclear reactor

    DOEpatents

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  17. Fuel handling system for a nuclear reactor

    DOEpatents

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-12-02

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  18. Nuclear instrumentation system design in FFTF and CRBRP

    SciTech Connect

    Warrick, R.P.

    1980-02-01

    The Nuclear Instrumentation System installed in the Fast Flux Test Facility (FFTF) is described. The Nuclear Instrumentation System includes equipment for monitoring neutron flux levels from shutdown to full power. Detector location and mounting provisions are described. The design basis for equipment design is provided. Detailed discussion of startup testing in FFTF follows a brief discussion of pre-delivery development work and testing. Finally, a description of the Nuclear Instrumentation System planned for the Clinch River Breeder Reactor Plant is provided.

  19. Emerging nuclear energy systems: Economic challenge: Revision 1

    SciTech Connect

    Nuckolls, J.H.

    1986-01-01

    Future nuclear energy systems may achieve substantially lower energy costs than those of existing fossil energy systems and comparable capital costs. Such low cost nuclear energy would provide a strong economic incentive to minimize the use of fossil fuels. If these low cost nuclear energy systems emerge in the next few decades, 21st century civilization may be able to avert potentially disastrous CO/sub 2/ induced global climate changes. 12 refs., 1 fig.

  20. Exotic mammals disperse exotic fungi that promote invasion by exotic trees.

    PubMed

    Nuñez, Martin A; Hayward, Jeremy; Horton, Thomas R; Amico, Guillermo C; Dimarco, Romina D; Barrios-Garcia, M Noelia; Simberloff, Daniel

    2013-01-01

    Biological invasions are often complex phenomena because many factors influence their outcome. One key aspect is how non-natives interact with the local biota. Interaction with local species may be especially important for exotic species that require an obligatory mutualist, such as Pinaceae species that need ectomycorrhizal (EM) fungi. EM fungi and seeds of Pinaceae disperse independently, so they may use different vectors. We studied the role of exotic mammals as dispersal agents of EM fungi on Isla Victoria, Argentina, where many Pinaceae species have been introduced. Only a few of these tree species have become invasive, and they are found in high densities only near plantations, partly because these Pinaceae trees lack proper EM fungi when their seeds land far from plantations. Native mammals (a dwarf deer and rodents) are rare around plantations and do not appear to play a role in these invasions. With greenhouse experiments using animal feces as inoculum, plus observational and molecular studies, we found that wild boar and deer, both non-native, are dispersing EM fungi. Approximately 30% of the Pinaceae seedlings growing with feces of wild boar and 15% of the seedlings growing with deer feces were colonized by non-native EM fungi. Seedlings growing in control pots were not colonized by EM fungi. We found a low diversity of fungi colonizing the seedlings, with the hypogeous Rhizopogon as the most abundant genus. Wild boar, a recent introduction to the island, appear to be the main animal dispersing the fungi and may be playing a key role in facilitating the invasion of pine trees and even triggering their spread. These results show that interactions among non-natives help explain pine invasions in our study area. PMID:23826154

  1. Exotic Mammals Disperse Exotic Fungi That Promote Invasion by Exotic Trees

    PubMed Central

    Nuñez, Martin A.; Hayward, Jeremy; Horton, Thomas R.; Amico, Guillermo C.; Dimarco, Romina D.; Barrios-Garcia, M. Noelia; Simberloff, Daniel

    2013-01-01

    Biological invasions are often complex phenomena because many factors influence their outcome. One key aspect is how non-natives interact with the local biota. Interaction with local species may be especially important for exotic species that require an obligatory mutualist, such as Pinaceae species that need ectomycorrhizal (EM) fungi. EM fungi and seeds of Pinaceae disperse independently, so they may use different vectors. We studied the role of exotic mammals as dispersal agents of EM fungi on Isla Victoria, Argentina, where many Pinaceae species have been introduced. Only a few of these tree species have become invasive, and they are found in high densities only near plantations, partly because these Pinaceae trees lack proper EM fungi when their seeds land far from plantations. Native mammals (a dwarf deer and rodents) are rare around plantations and do not appear to play a role in these invasions. With greenhouse experiments using animal feces as inoculum, plus observational and molecular studies, we found that wild boar and deer, both non-native, are dispersing EM fungi. Approximately 30% of the Pinaceae seedlings growing with feces of wild boar and 15% of the seedlings growing with deer feces were colonized by non-native EM fungi. Seedlings growing in control pots were not colonized by EM fungi. We found a low diversity of fungi colonizing the seedlings, with the hypogeous Rhizopogon as the most abundant genus. Wild boar, a recent introduction to the island, appear to be the main animal dispersing the fungi and may be playing a key role in facilitating the invasion of pine trees and even triggering their spread. These results show that interactions among non-natives help explain pine invasions in our study area. PMID:23826154

  2. Nuclear magnetometry studies of spin dynamics in quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Fauzi, M. H.; Watanabe, S.; Hirayama, Y.

    2014-12-01

    We performed a nuclear magnetometry study on quantum Hall ferromagnet with a bilayer total filling factor of νtot=2 . We found not only a rapid nuclear relaxation but also a sudden change in the nuclear-spin polarization distribution after a one-second interaction with a canted antiferromagnetic phase. We discuss the possibility of observing cooperative phenomena coming from nuclear-spin ensemble triggered by hyperfine interaction in quantum Hall system.

  3. Seminar in Critical Inquiry Twenty-first Century Nuclear Systems

    SciTech Connect

    LeMone, D. V.

    2002-02-25

    Critical Inquiry, has not only been successful in increasing university student retention rate but also in improving student academic performance beyond the initial year of transition into the University. The seminar course herein reviewed is a balanced combination of student personal and academic skill development combined with a solid background in modern nuclear systems. It is a valid premise to assume that entering students as well as stakeholders of the general public demonstrate equal levels of capability. Nuclear systems is designed to give a broad and basic knowledge of nuclear power, medical, industrial, research, and military systems (nuclear systems) in 20-25 hours.

  4. Manned space flight nuclear system safety. Volume 6: Space base nuclear system safety plan

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A qualitative identification of the steps required to assure the incorporation of radiological system safety principles and objectives into all phases of a manned space base program are presented. Specific areas of emphasis include: (1) radiological program management, (2) nuclear system safety plan implementation, (3) impact on program, and (4) summary of the key operation and design guidelines and requirements. The plan clearly indicates the necessity of considering and implementing radiological system safety recommendations as early as possible in the development cycle to assure maximum safety and minimize the impact on design and mission plans.

  5. A system for nuclear data aquisition

    SciTech Connect

    Malaquias, J.L.; Almeida, P.; Amilcar, P.

    1996-12-31

    A system is presented for use in Nuclear Physics Data Acquisition. The system is hosted on a Personal Computer`s ISA bus, and is based on the TMS320C31 digital signal processor (DSP), a fast floating point DSP that simultaneously handles several different tasks in this system, by means of an interrupt-driven architecture. The system includes three different data acquisition modules: a multichannel analyzer, a multi-channel scaler, and a signal analyzer. Using the interrupt-driven architecture, the DSP pre-processes the data coming from the three different data acquisition modules. and accepts data requests from the host PC. On the PC side, the system runs under Microsoft Windows 95 or Windows NT, and it implements the client-server model. While the data acquisition board performs its chores independently, the host PC sends it several commands on behalf of an arbitrary number of clients. Those clients each represent a window over the data being acquired, allowing different users to take different views of the data. Each client can run on the same host computer or on any other computer, provided there is a computer network (the Internet is a possibility, as long as there is enough bandwidth) connecting it to the host. This allows the experimentalist to remotely examine the experimental results from his office without having to go to the lab. On the other hand, different experimentalists can have different views of the data being acquired. All these are benefits stemming from the client-server model.

  6. Nuclear reactor cooling system decontamination reagent regeneration

    DOEpatents

    Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.

    1985-01-01

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  7. Nuclear Criticality Information System. Database examples

    SciTech Connect

    Foret, C.A.

    1984-06-01

    The purpose of this publication is to provide our users with a guide to using the Nuclear Criticality Information System (NCIS). It is comprised of an introduction, an information and resources section, a how-to-use section, and several useful appendices. The main objective of this report is to present a clear picture of the NCIS project and its available resources as well as assisting our users in accessing the database and using the TIS computer to process data. The introduction gives a brief description of the NCIS project, the Technology Information System (TIS), online user information, future plans and lists individuals to contact for additional information about the NCIS project. The information and resources section outlines the NCIS database and describes the resources that are available. The how-to-use section illustrates access to the NCIS database as well as searching datafiles for general or specific data. It also shows how to access and read the NCIS news section as well as connecting to other information centers through the TIS computer.

  8. Exotic brane junctions from F-theory

    NASA Astrophysics Data System (ADS)

    Kimura, Tetsuji

    2016-05-01

    Applying string dualities to F-theory, we obtain various [ p, q]-branes whose constituents are standard branes of codimension two and exotic branes. We construct junctions of the exotic five-branes and their Hanany-Witten transitions associated with those in F-theory. In this procedure, we understand the monodromy of the single 5 2 2 -brane. We also find the objects which are sensitive to the branch cut of the 5 2 2 -brane. Considering the web of branes in the presence of multiple exotic five-branes analogous to the web of five-branes with multiple seven-branes, we obtain novel brane constructions for SU(2) gauge theories with n flavors and their superconformal limit with enhanced E n+1 symmetry in five, four, and three dimensions. Hence, adapting the techniques of the seven-branes to the exotic branes, we will be able to construct F-theories in diverse dimensions.

  9. Exotic terranes of western California

    USGS Publications Warehouse

    McWilliams, M.O.; Howell, D.G.

    1982-01-01

    Numerous distinct geological terranes compose the North American Cordillera1; there may be as many as 50 terranes in California alone2. Critical to deciphering the history of Cordilleran tectonic assembly is an understanding of the displacement history of individual terranes. It is therefore important to know: (1) whether a terrane has undergone significant motion with respect to the stable craton (that is, whether it is allochthonous or exotic); (2) if so, when relative motion started and stopped; (3) from where an individual terrane originated; and (4) the nature of interterrane movements. We consider here the problem of determining whether the now-juxtaposed Salinian and Stanley Mountain terranes of California became amalgamated at or near their present position with respect to cratonic North America, or if they collided at a considerable distance from their present positions and were later accreted to North America as a composite package. The palaeomagnetic data that we present indicate that the latter was the case. ?? 1982 Nature Publishing Group.

  10. Volume integral theorem for exotic matter

    SciTech Connect

    Nandi, Kamal Kanti; Zhang Yuanzhong; Kumar, K.B. Vijaya

    2004-12-15

    We answer an important question in general relativity about the volume integral theorem for exotic matter by suggesting an exact integral quantifier for matter violating Averaged Null Energy Condition (ANEC). It is checked against some well-known static, spherically symmetric traversable wormhole solutions of general relativity with a sign reversed kinetic term minimally coupled scalar field. The improved quantifier is consistent with the principle that traversable wormholes can be supported by arbitrarily small quantities of exotic matter.

  11. Video Otoscopy in Exotic Companion Mammals.

    PubMed

    Jekl, Vladimir; Hauptman, Karel; Knotek, Zdenek

    2015-09-01

    Ear disease is a common disorder seen in exotic companion mammals, especially in ferrets, rabbits, and rats. This article describes patient preparation, equipment, and video otoscopy technique in exotic companion mammals. This noninvasive technique facilitates accurate diagnosis of diseases affecting the external ear canal or middle ear. Moreover, therapeutic otoscopic evaluation of the external ear facilitates foreign body removal, external ear canal flushing, intralesional drug administration, myringotomy, and middle ear cavity flushing. PMID:26117517

  12. Exotic species, Experienced, and Idealized Nature

    NASA Astrophysics Data System (ADS)

    Prévot-Julliard, Anne-Caroline; Clavel, Joanne; Teillac-Deschamps, Pauline; Julliard, Romain

    2011-11-01

    This paper is an answer to the Caplat and Coutts forum about our previous paper "The need for flexibility in conservation practices: exotic species as an example". We precise here why we proposed to consider exotic species as well as indigenous species in the reconnection framework in human-modified environments. One argument is that consistent and understandable arguments must be used in the communication from scientists to the public, in order not to decrease the gap between science and society.

  13. Characterizing noise in the global nuclear weapon monitoring system

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-03-01

    Under the auspices of the Comprehensive Nuclear-Test-Ban Treaty Organization, a worldwide monitoring system designed to detect the illegal testing of nuclear weaponry has been under construction since 1999. The International Monitoring System is composed of a range of sensors, including detectors for hydroacoustic and seismic signals, and when completed, will include 60 infrasound measurement arrays set to detect low-frequency sound waves produced by an atmospheric nuclear detonation.

  14. Ongoing Space Nuclear Systems Development in the United States

    SciTech Connect

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  15. Nuclear system that burns its own wastes shows promise

    NASA Technical Reports Server (NTRS)

    Atchison, K.

    1975-01-01

    A nuclear fission energy system, capable of eliminating a significant amount of its radioactive wastes by burning them, is described. A theoretical investigation of this system conducted by computer analysis, is based on use of gaseous fuel nuclear reactors. Gaseous core reactors using a uranium plasma fuel are studied along with development for space propulsion.

  16. Nuclear thiol redox systems in plants.

    PubMed

    Delorme-Hinoux, Valérie; Bangash, Sajid A K; Meyer, Andreas J; Reichheld, Jean-Philippe

    2016-02-01

    Thiol-disulfide redox regulation is essential for many cellular functions in plants. It has major roles in defense mechanisms, maintains the redox status of the cell and plays structural, with regulatory roles for many proteins. Although thiol-based redox regulation has been extensively studied in subcellular organelles such as chloroplasts, it has been much less studied in the nucleus. Thiol-disulfide redox regulation is dependent on the conserved redox proteins, glutathione/glutaredoxin (GRX) and thioredoxin (TRX) systems. We first focus on the functions of glutathione in the nucleus and discuss recent data concerning accumulation of glutathione in the nucleus. We also provide evidence that glutathione reduction is potentially active in the nucleus. Recent data suggests that the nucleus is enriched in specific GRX and TRX isoforms. We discuss the biochemical and molecular characteristics of these isoforms and focus on genetic evidences for their potential nuclear functions. Finally, we make an overview of the different thiol-based redox regulated proteins in the nucleus. These proteins are involved in various pathways including transcriptional regulation, metabolism and signaling. PMID:26795153

  17. Nuclear plant-aging research on reactor protection systems

    SciTech Connect

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  18. Manned space flight nuclear system safety. Volume 1: Executive summary. Part 2: Space shuttle nuclear system safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The nuclear safety integration and operational aspects of transporting nuclear payloads to and from an earth orbiting space base by space shuttle are discussed. The representative payloads considered were: (1) zirconium hydride-Brayton power module, (2) isotope-Brayton power module, and (3) small isotope power systems or heat sources. Areas of investigation also include nuclear safety related integration and packaging as well as operational requirements for the shuttle and payload systems for all phases of the mission.

  19. Configuration and technology implications of potential nuclear hydrogen system applications.

    SciTech Connect

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given

  20. Passive sensor systems for nuclear material monitoring

    SciTech Connect

    Simpson, M.L.; Boatner, L.A.; Holcomb, D.E.; McElhaney, S.A.; Mihalczo, J.T.; Muhs, J.D.; Roberts, M.R.; Hill, N.W.

    1993-09-01

    Passive fiber optic sensor systems capable of confirming the presence of special nuclear materials in storage or process facilities are being developed at Oak Ridge National Laboratory (ORNL). These sensors provide completely passive, remote measurement capability. No power supplies, amplifiers, or other active components that could degrade system reliability are required at the sensor location. ORNL, through its research programs in scintillator materials, has developed a variety of materials for use in alpha-, beta-, gamma-, and neutron-sensitive scintillator detectors. In addition to sensors for measuring radiation flux, new sensor materials have been developed which are capable of measuring weight, temperature, and source location. An example of a passive sensor for temperature measurement is the combination of a thermophosphor (e.g., rare-earth activated Y{sub 2}O{sub 3}) with {sup 6}LiF (95% {sup 6}Li). This combination results in a new class of scintillators for thermal neutrons that absorb energy from the radiation particles and remit the energy as a light pulse, the decay rate of which, over a specified temperature range, is temperature dependent. Other passive sensors being developed include pressure-sensitive triboluminescent materials, weight-sensitive silicone rubber fibers, scintillating fibers, and other materials for gamma and neutron detection. The light from the scintillator materials of each sensor would be sent through optical fibers to a monitoring station, where the attribute quantity could be measured and compared with previously recorded emission levels. Confirmatory measurement applications of these technologies are being evaluated to reduce the effort, costs, and employee exposures associated with inventorying stockpiles of highly enriched uranium at the Oak Ridge Y-12 Plant.

  1. FOREWORD: International Summer School for Advanced Studies 'Dynamics of open nuclear systems' (PREDEAL12)

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Zamfir, N. V.; Raduta, A. R.; Gulminelli, F.

    2013-02-01

    renowned professors and researchers in nuclear physics. This proceedings volume is organized into four chapters, which reflects the traditional chapter structure of nuclear physics textbooks, but seen from the perspective of open quantum systems: INuclear structure IIDecay processes IIINuclear reactions and astrophysics IVContributions The lectures and contributions are listed alphabetically by author within each chapter. The volume contains many comprehensive reviews related to the topics of the School. The first week of the School was focused on nuclear structure and decay phenomena, considering the nucleus as an open system. Experts in these fields lectured on cluster radioactivity, the stability of superheavy nuclei, alpha-decay fine structure, fission versus fusion, beta and double beta decay and pairing versus alpha-clustering. New experimental results related to the nuclear stability of low-lying and high spin states were also presented. Recent developments at JINR—Dubna and GSI—Darmstadt international laboratories were also reported by their current or former directors. The second week of the event was dedicated to the physics of exotic nuclei, heavy ion reactions and multi-fragmentation, symmetries and phase transitions of open quantum systems. The stability of the atomic nucleus is an important and always interesting discussion point, especially in the context of newly discovered nuclear systems close to the stability line, such as proton/neutron rich or superheavy nuclei. Several lectures and contributions were focused on nuclear structure models describing low-lying states. This includes the status of density functional theory, new developments in Bohr-Mottelsohn Hamiltonian and shell-model theory, proton-neutron correlations, shape coexistence, back-bending phenomena and the thermodynamics of open quantum systems. Open systems in astrophysics, such as supernovae and neutron stars, were presented in detail by several lecturers. Important topics connected to

  2. System engineering of a nuclear electric propulsion testbed spacecraft

    NASA Astrophysics Data System (ADS)

    Cameron, G. E.; Herbert, G. A.

    1993-06-01

    A mission concept aimed at evaluating performance of a Russian Space Nuclear Power System (SNPS) and electric thrusters to be consistent with U.S. safety standards is discussed. Solutions of unique nuclear electric propulsion (NEP) problems optimized for the Nuclear Electric Propulsion Test Program (NEPSTP) are considered. The problems include radiation, thermal management, safety, ground processing concerns of a nuclear payload, the launch of an NEP payload, orbital operations, electromagnetic compatibility, contamination, guidance and control, and a power system. Attention is also given to preliminary spacecraft and mission design developed taking into account all aforementioned problems.

  3. NTP system simulation and detailed nuclear engine modeling

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1993-01-01

    The topics are presented in viewgraph form and include the following: nuclear thermal propulsion (NTP) & detailed nuclear engine modeling; modeling and engineering simulation of nuclear thermal rocket systems; nuclear thermal rocket simulation system; INSPI-NTVR core axial flow profiles; INSPI-NTRV core axial flow profiles; specific impulse vs. chamber pressure; turbine pressure ratio vs. chamber pressure; NERVA core axial flow profiles; P&W XNR2000 core axial flow profiles; pump pressure rise vs. chamber pressure; streamline of jet-induced flow in cylindrical chamber; flow pattern of a jet-induced flow in a chamber; and radiative heat transfer models.

  4. Status, plans, and capabilities of the Nuclear Criticality Information System

    SciTech Connect

    Koponen, B.L.

    1984-01-06

    The Nuclear Criticality Information System (NCIS), in preparation since 1981, has substantially evolved and now contains a growing number of resources pertinent to nuclear criticality safety. These resources include bibliographic compilations, experimental data, communications media, and the International Directory of Nuclear Criticality Safety Personnel. These resources are part of the LLNL Technology Information System (TIS) which provides the host computer for NCIS. The TIS provides nationwide access to authorized members of the nuclear criticality community via interactive dial-up from computer terminals that utilize communication facilities such as commercial and federal telephone networks, toll-free WATS lines, TYMNET, and the ARPANET/MILNET computer network.

  5. Isotope yields with a solenoid-based fragment mass analysis system - prospects for exotic isotope studies in the 10<=Z<=30 range

    NASA Astrophysics Data System (ADS)

    O'Donnell, T. W.; Becchetti, F. D.; Brown, J.; Jänecke, J. W.; Lee, M. Y.; Raymond, R. S.; Roberts, D. A.; Tickle, R. S.; Griffin, H. C.; Ronningen, R. M.

    1999-02-01

    Yields of neutron-rich and other ions in the region of 10≤ Z≤30, produced by a 30 MeV/u 136Xe 24+ beam on a thick natC target, are presented. The ions were collected and identified with the University of Michigan 7-Tesla solenoid device `BigSol' at 1.36 Tm. The yields are sufficient to make feasible gamma- and/or beta-decay studies of lifetimes and nuclear structure at the solenoid's focal position, or alternately with the fragments transported away for low-background studies. Small but usable amounts of ions close to or including the most n-rich ions produced anywhere to-date are produced and it is shown that if particle-by-particle identification is not continuously required, that the yields may be increased by over two orders of magnitude.

  6. White paper on VU for Modeling Nuclear Energy Systems

    SciTech Connect

    Klein, R; Turinsky, P

    2009-05-07

    The purpose of this whitepaper is to provide a framework for understanding the role that Verification and Validation (V&V), Uncertainty Quantification (UQ) and Risk Quantification, collectively referred to as VU, is expected to play in modeling nuclear energy systems. We first provide background for the modeling of nuclear energy based systems. We then provide a brief discussion that emphasizes the critical elements of V&V as applied to nuclear energy systems but is general enough to cover a broad spectrum of scientific and engineering disciplines that include but are not limited to astrophysics, chemistry, physics, geology, hydrology, chemical engineering, mechanical engineering, civil engineering, electrical engineering, nu nuclear engineering material clear science science, etc. Finally, we discuss the critical issues and challenges that must be faced in the development of a viable and sustainable VU program in support of modeling nuclear energy systems.

  7. Progress on the Global Network of Optical Magnetometers to search for Exotic physics (GNOME)

    NASA Astrophysics Data System (ADS)

    Jackson Kimball, D. F.; Decamp, G.; Thulasi, S.; Fuentes, D.; Viegas, I.; Pustelny, S.; Wlodarczyk, P.; Gawlik, W.; Budker, D.; Leefer, N.; Wickenbrock, A.; Afach, S.; Zhivun, L.; Pankow, C.; Smith, J.; Read, J.; Folman, R.; Ledbetter, M. P.; Pospelov, M.; Semertzidis, Y. K.; Shin, Y.; Kornack, T. W.; Stalnaker, J.

    2015-05-01

    We discuss progress on the design and construction of a network of geographically separated, time-synchronized ultrasensitive atomic comagnetometers to search for correlated transient signals heralding new physics. The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) would be sensitive to nuclear and electron spin couplings to various exotic fields generated by astrophysical sources. To date, no such search has ever been carried out, making the GNOME a novel experimental window on new physics. A specific example of new physics detectable with the GNOME, presently unconstrained by astrophysical observations and laboratory experiments, is a network of domain walls of light pseudoscalar fields.

  8. Progress on the Global Network of Optical Magnetometers to search for Exotic physics (GNOME)

    NASA Astrophysics Data System (ADS)

    Budker, Dmitri; Gnome Collaboration

    2016-05-01

    We discuss progress on the construction, implementation, and coordination of a network of geographically separated, time-synchronized ultrasensitive atomic magnetometers and comagnetometers to search for correlated transient signals heralding new physics. The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) is sensitive to nuclear and electron spin couplings to various exotic fields generated by astrophysical sources. A specific example of new physics detectable with the GNOME, presently unconstrained by previous experiments, is a network of domain walls of light pseudoscalar (axion-like) fields. Supported by the Heising-Simons Foundation, Simons Foundation, and the National Science Foundation.

  9. Applicability of trends in nuclear safety analysis to space nuclear power systems

    SciTech Connect

    Bari, R.A.

    1992-10-01

    A survey is presented of some current trends in nuclear safety analysis that may be relevant to space nuclear power systems. This includes: lessons learned from operating power reactor safety and licensing; approaches to the safety design of advanced and novel reactors and facilities; the roles of risk assessment, extremely unlikely accidents, safety goals/targets; and risk-benefit analysis and communication.

  10. Potential Habitats for Exotic Life Within the Life Supporting Zone

    NASA Astrophysics Data System (ADS)

    Leitner, Johannes J.; Firneis, Maria G.; Hitzenberger, Regina

    2010-05-01

    Questions like "Are we alone in the universe?", "How unique is Earth as a planet?" or "How unique is water-based life in the universe?" still are nowhere near of being answered. In recent years, discussions on these topics are more and more influenced by questions whether water is really the only possible solvent, or which conditions are necessary for life to evolve in planetary habitats. A change in our present geocentric mindset on the existence of life is required, in order to address these new questions [see also 1]. In May 2009 a new research platform at the University of Vienna was initiated in order to contribute to the solution of these questions. One task is to find essential biomarkers relevant to the problem of the detection of exotic life. In this context exotic life means: life, which is not necessarily based on a double bond between carbon and oxygen (C=O) and not on water as the only possible solvent. At present little is known about metabolistic systems, which are not based on C=O or on metabolisms which are operative in alternative solvents and a high effort of future laboratory work is necessary to open this window for looking for exotic life. To address the whole spectrum of life the concept of a general life supporting zone is introduced in order to extend the classical habitable zone (which is based on liquid water on a planetary surface, [2]). The life supporting zone of a planetary system is composed of different single "habitable zones" for the liquid phases of specific solvents and composites between water and other solvents. Besides exoplanetary systems which seem to be the most promising place for exotic life in our present understanding, some potential places could also exist within our Solar System and habitats like the subsurface of Enceladus, liquid ethane/methane lakes on Titan or habitable niches in the Venus atmosphere will also be taken into account. A preliminary list of appropriate solvents and their abundances in the Solar

  11. Super-Heavy Element and Other Exotic Nuclei Research at LLNL

    NASA Astrophysics Data System (ADS)

    Stoyer, M. A.

    2015-11-01

    The experimental nuclear physics group at LLNL is actively investigating exotic nuclei in a variety of regions of the chart of nuclides - from light nuclei to super-heavy elements. The experimental nuclear physics effort at LLNL is centered on investigating nuclei at the extremes--in particular, extremes of spin, isospin, neutron richness, excitation energy, decay and detectability, mass, and stability. This talk will focus on recent heavy and super-heavy element experiments including nuclear structure investigations of the heaviest nuclei. Other areas of research, including radioactive ion beam experiments, trapping experiments, nuclear decay spectroscopy experiments, and rare decay searches, will be discussed as time permits. Recent experimental results on studies of exotic nuclei by scientists at LLNL will be presented.

  12. Distinctive exotic flavor and aroma compounds of some exotic tropical fruits and berries: a review.

    PubMed

    Lasekan, Ola; Abbas, Kassim A

    2012-01-01

    The characteristic flavor of exotic tropical fruits is one of their most attractive attributes to consumers. In this article, the enormous diversity of exotic fruit flavors is reviewed. Classifying some of the exotic fruits into two classes on the basis of whether esters or terpenes predominate in the aroma was also attempted. Indeed, as far as exotic tropical fruits are concerned, the majority of fruits have terpenes predominating in their aroma profile. Some of the fruits in this group are the Amazonian fruits such as pitanga, umbu-caja, camu-camu, garcinia, and bacuri. The ester group is made up of rambutan, durians, star fruit, snake fruit, acerola, tamarind, sapodilla, genipap, soursop, cashew, melon, jackfruit, and cupuacu respectively. Also, the role of sulphur-volatiles in some of the exotic fruits is detailed. PMID:22591343

  13. Nuclear reactor loss of coolant protection system

    SciTech Connect

    Loose, R.A.

    1986-03-18

    A pressurized water reactor system is described of a nuclear power plant having a water storage tank for providing emergency coolant water and means provided external to the containment vessel, for use in the event of a primary loss of coolant situation, to circulate emergency water as a coolant by withdrawal through a wall of the containment vessel and return the same back through the wall of the containment vessel and passing the water through a heat exchange means prior to use as a coolant for the reactor core. The improvement described here consists of: an enslosure, the interior of which is sealed to the atmosphere, positioned adjacent to and exterior of a wall of the containment vessel; an inlet conduit, enclosed within a sealed outer casing, communicating between the interior of the containment vessel and the interior of the enclosure; an exhaust conduit, enclosed within a sealed outer casing, communicating between the interior of the enclosure and the interior of the containment vessel; a rupture disc on the inlet conduit within the enclosure, such that failure of the exhaust conduit within the enclosure will produce an increase of the pressure within the enclosure and above a predetermined pressure will fracture the rupture disc, and will circulate the coolant within the enclosure; and means within the interior of the enclosure for pumping coolant from the interior of the containment vessel through the inlet conduit, and back to the interior of the containment vessel through the exhaust conduit; whereby if either of the conduits should fail, coolant will be collected within the enclosure and sealed to the atmosphere.

  14. Nuclear chromodynamics: applications of QCD to relativistic multiquark systems

    SciTech Connect

    Brodsky, S.J.; Ji, C.R.

    1984-07-01

    We review the applications of quantum chromodynamics to nuclear multiquark systems. In particular, predictions are given for the deuteron reduced form factor in the high momentum transfer region, hidden color components in nuclear wavefunctions, and the short distance effective force between nucleons. A new antisymmetrization technique is presented which allows a basis for relativistic multiquark wavefunctions and solutions to their evolution to short distances. Areas in which conventional nuclear theory conflicts with QCD are also briefly reviewed. 48 references.

  15. Boron control system for a nuclear power plant

    SciTech Connect

    Brown, W.W.; Van der Schoot, M.R.

    1980-09-30

    Ion exchangers which reversibly store borate ions in a temperature dependent process are combined with evaporative boric acid recovery apparatus to provide a boron control system for controlling the reactivity of nuclear power plants. A plurality of ion exchangers are operated sequentially to provide varying amounts of boric acid to a nuclear reactor for load follow operations. Evaporative boric acid recovery apparatus is utilized for major changes in the boron concentration within the nuclear reactor.

  16. Improving Qubit Quality Factors Through Exotic Materials

    NASA Astrophysics Data System (ADS)

    Norman, Victoria

    In the time since the first qubits were successfully fabricated, the coherence times of superconducting Josephson junction qubits have improved by several orders of magnitude. Yet as the quantum information and computation field moves forward, these coherence times still need further improvement. We are now finding that in some superconducting systems, non-thermal equilibrium quasiparticles are becoming the limiting factor in qubit lifetimes. For SIS superconducting qubits, the T1 and T2* values may be improved by the use of materials with higher superconducting band gap, EG, for which low values may allow for quasiparticles to break up cooper pairs more easily, leading to a shorter lifetime. At this time, Al-Al2Ox3-Al transmons are very well characterized and understood and will therefore serve as an appropriate baseline with which to compare the more exotic junction materials. Using tantalum and niobium, which have Eg values of 3 times and 10 times that of aluminum respectively, we expect the T1 and T2* values to increase significantly for the Al-Al2Ox3-Nb, Al-Al2Ox3-Ta, and Ta-Ta2Ox5-Nb qubits.

  17. Stirling System Modeling for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Johnson, Paul K.

    2008-01-01

    A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power, and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.

  18. Stirling System Modeling for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Johnson, Paul K.

    2007-01-01

    A dynamic model of a high-power Stirling convertor has been developed for space nuclear power systems modeling. The model is based on the Component Test Power Convertor (CTPC), a 12.5-kWe free-piston Stirling convertor. The model includes the fluid heat source, the Stirling convertor, output power and heat rejection. The Stirling convertor model includes the Stirling cycle thermodynamics, heat flow, mechanical mass-spring damper systems, and the linear alternator. The model was validated against test data. Both nonlinear and linear versions of the model were developed. The linear version algebraically couples two separate linear dynamic models; one model of the Stirling cycle and one model of the thermal system, through the pressure factors. Future possible uses of the Stirling system dynamic model are discussed. A pair of commercially available 1-kWe Stirling convertors is being purchased by NASA Glenn Research Center. The specifications of those convertors may eventually be incorporated into the dynamic model and analysis compared to the convertor test data. Subsequent potential testing could include integrating the convertors into a pumped liquid metal hot-end interface. This test would provide more data for comparison to the dynamic model analysis.

  19. Injuries, envenomations and stings from exotic pets

    PubMed Central

    Warwick, Clifford; Steedman, Catrina

    2012-01-01

    A variety of exotic vertebrate and invertebrate species are kept as ‘pets’ including fishes, amphibians (for example, frogs and toads), reptiles (turtles, crocodiles, lizards and snakes), birds, mammals (for example, primates, civets, and lions), and invertebrates (for example spiders, scorpions, and centipedes), and ownership of some of these animals is rising. Data for 2009–2011 suggest that the number of homes with reptiles rose by approximately 12.5%. Recent surveys, including only some of these animals, indicated that they might be present in around 18.6% of homes (equal to approximately 42 million animals of which around 40 million are indoor or outdoor fish). Many exotic ‘pets’ are capable of causing injury or poisoning to their keepers and some contacts prove fatal. We examined NHS Health Episode Statistics for England using selected formal categories for hospital admissions and bed days for 2004–2010 using the following categories of injury, envenomation or sting; bitten or struck by crocodile or alligator; bitten or crushed by other reptiles: contact with venomous snakes and lizards; contact with scorpions. Between 2004 and 2010 these data conservatively show a total of 760 full consultation episodes, 709 admissions and 2,121 hospital bed days were associated with injuries probably from exotic pets. Injuries, envenomations and stings from exotic pets constitute a small but important component of emerging medical problems. Greater awareness of relevant injuries and medical sequelae from exotic pet keeping may help medics formulate their clinical assessment and advice to patients. PMID:22843648

  20. Injuries, envenomations and stings from exotic pets.

    PubMed

    Warwick, Clifford; Steedman, Catrina

    2012-07-01

    A variety of exotic vertebrate and invertebrate species are kept as 'pets' including fishes, amphibians (for example, frogs and toads), reptiles (turtles, crocodiles, lizards and snakes), birds, mammals (for example, primates, civets, and lions), and invertebrates (for example spiders, scorpions, and centipedes), and ownership of some of these animals is rising. Data for 2009-2011 suggest that the number of homes with reptiles rose by approximately 12.5%. Recent surveys, including only some of these animals, indicated that they might be present in around 18.6% of homes (equal to approximately 42 million animals of which around 40 million are indoor or outdoor fish). Many exotic 'pets' are capable of causing injury or poisoning to their keepers and some contacts prove fatal. We examined NHS Health Episode Statistics for England using selected formal categories for hospital admissions and bed days for 2004-2010 using the following categories of injury, envenomation or sting; bitten or struck by crocodile or alligator; bitten or crushed by other reptiles: contact with venomous snakes and lizards; contact with scorpions. Between 2004 and 2010 these data conservatively show a total of 760 full consultation episodes, 709 admissions and 2,121 hospital bed days were associated with injuries probably from exotic pets. Injuries, envenomations and stings from exotic pets constitute a small but important component of emerging medical problems. Greater awareness of relevant injuries and medical sequelae from exotic pet keeping may help medics formulate their clinical assessment and advice to patients. PMID:22843648

  1. SUITABILITY OF A NEW CALORIMETER FOR EXOTIC MESON SEARCHES

    SciTech Connect

    Bookwalter, C.; Ostrovidov, A.; Eugenio, P.

    2007-01-01

    Exotic mesons, particles that have quantum numbers that are inaccessible to conventional quark-model mesons, are predicted by quantum chromodynamics (QCD), but past experiments seeking to identify exotic candidates have produced controversial results. The HyCLAS experiment (E04005) at Thomas Jefferson National Accelerator Facility (TJNAF) proposes the use of the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS) in Hall B to study the photoproduction of exotic mesons. However, the base detector package at CLAS is not ideal for observing and measuring neutral particles, particularly at forward angles. The Deeply Virtual Compton Scattering (DVCS) experiment at TJNAF has commissioned a new calorimeter for detecting small-angle photons, but studies must be performed to determine its suitability for a meson spectroscopy experiment. The ηπ system has been under especial scrutiny in the community as a source for potential exotics, so the new calorimeter’s ability at reconstructing these resonances must be evaluated. To achieve this, the invariant mass of showers in the calorimeter are reconstructed. Also, two electroproduction reaction channels analogous to photoproduction channels of interest to HyCLAS are examined in DVCS data. It is found that, while not ideal, the new calorimeter will allow access to additional reaction channels, and its inclusion in HyCLAS is warranted. Results in basic shower reconstruction show that the calorimeter has good effi ciency in resolving π° decays, but its η reconstruction is not as strong. When examining ep → epπ°η, preliminary reconstruction of the ηπ° system shows faint signals in the a0(980) region. In the ep → e n π+ η channel, preliminary reconstruction of the ηπ+ system gave good signals in the a0(980) and a2(1320) regions, but statistics were poor. While more analyses are necessary to improve statistics and remove background, these preliminary results support the claim

  2. Developing a Nuclear Grade of Alloy 617 for Gen IV Nuclear Energy Systems

    SciTech Connect

    Ren, Weiju; Swindeman, Robert W; Santella, Michael L

    2010-01-01

    Alloy 617, an attractive material not particularly developed for nuclear use, is now being considered as a leading candidate alloy by several countries for applications in the Gen IV Nuclear Energy Systems. An extensive review of its existing data suggests that it would be beneficial to refine the alloy s specification to a nuclear grade for the intended Gen IV systems. In this paper, rationale for developing a nuclear grade of the alloy is first discussed through an analysis on existing data from various countries. Then initial experiments for refining the alloy specification are described. Preliminary results have suggested the feasibility of the refinement approach, as well as the possibility for achieving a desirable nuclear grade. Based on the results, further research activities are recommended.

  3. U.S. national nuclear material control and accounting system

    SciTech Connect

    Taylor, S; Terentiev, V G

    1998-12-01

    Issues related to nuclear material control and accounting and illegal dealing in these materials were discussed at the April 19--20, 1996 Moscow summit meeting (G7 + Russia). The declaration from this meeting reaffirmed that governments are responsible for the safety of all nuclear materials in their possession and for the effectiveness of the national control and accounting system for these materials. The Russian delegation at this meeting stated that ''the creation of a nuclear materials accounting, control, and physical protection system has become a government priority''. Therefore, in order to create a government nuclear material control and accounting system for the Russian Federation, it is critical to study the structure, operating principles, and regulations supporting the control and accounting of nuclear materials in the national systems of nuclear powers. In particular, Russian specialists have a definite interest in learning about the National Nuclear Material Control and Accounting System of the US, which has been operating successfully as an automated system since 1968.

  4. The ARAUCARIA project. OGLE-LMC-CEP-1718: An exotic eclipsing binary system composed of two classical overtone cepheids in a 413 day orbit

    SciTech Connect

    Gieren, Wolfgang; Pilecki, Bogumił; Pietrzyński, Grzegorz; Graczyk, Dariusz; Gallenne, Alexandre E-mail: pietrzyn@astrouw.edu.pl E-mail: dgallenne@astro-udec.cl; and others

    2014-05-10

    We have obtained extensive high-quality spectroscopic observations of the OGLE-LMC-CEP-1718 eclipsing binary system in the Large Magellanic Cloud that Soszyński et al. had identified as a candidate system for containing two classical Cepheids in orbit. Our spectroscopic data clearly demonstrate binary motion of the Cepheids in a 413 day eccentric orbit, rendering this eclipsing binary system the first ever known to consist of 2 classical Cepheid variables. After disentangling the four different radial velocity variations in the system, we present the orbital solution and the individual pulsational radial velocity curves of the Cepheids. We show that both Cepheids are extremely likely to be first overtone pulsators and determine their respective dynamical masses, which turn out to be equal to within 1.5%. Since the secondary eclipse is not observed in the orbital light curve, we cannot derive the individual radii of the Cepheids, but the sum of their radii derived from the photometry is consistent with overtone pulsation for both variables. The existence of two equal-mass Cepheids in a binary system having different pulsation periods (1.96 and 2.48 days, respectively) may pose an interesting challenge to stellar evolution and pulsation theories, and a more detailed study of this system using additional data sets should yield deeper insight about the physics of stellar evolution of Cepheid variables. Future analysis of the system using additional near-infrared photometry might also lead to a better understanding of the systematic uncertainties in current Baade-Wesselink techniques of distance determinations to Cepheid variables.

  5. Trade studies for nuclear space power systems

    NASA Technical Reports Server (NTRS)

    Smith, John M.; Bents, David J.; Bloomfield, Harvey S.

    1991-01-01

    As visions of space applications expand and as probes extend further and further out into the universe, the need for power also expands, and missions evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources are defined. These include earth orbital platforms, deep space platforms, planetary exploration and extraterrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the moon and Mars has more clearly defined these missions and their power requirements. This paper presents results of recent studies of radioisotope and nuclear-reactor energy sources combined with various energy-conversion devices for earth orbital applications, SEI lunar/Mars rover and surface power, and planetary exploration.

  6. Trade studies for nuclear space power systems

    NASA Technical Reports Server (NTRS)

    Smith, John M.; Bents, David J.; Bloomfield, Harvey S.

    1991-01-01

    As human visions of space applications expand and as we probe further out into the universe, our needs for power will also expand, and missions will evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources have been defined. These include Earth orbital platforms, deep space platforms, planetary exploration, and terrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the Moon and Mars has more clearly defined these missions and their power requirements. Presented here are results of recent studies of radioisotope and nuclear reactor energy sources, combined with various energy conversion devices for Earth orbital applications, SEI lunar/Mars rovers, surface power, and planetary exploration.

  7. Nuclear data needs for accelerator-driven transmutation systems

    SciTech Connect

    Arthur, E.D.; Wilson, W.B.; Young, P.G.

    1994-07-01

    The possibilities of several new technologies based on use of intense, medium-energy proton accelerators are being investigated at Los Alamos National Laboratory. The potential new areas include destruction of long-lived components of nuclear waste, plutonium burning, energy production, and production of tritium. The design, assessment, and safety analysis of potential facilities involves the understanding of complex combinations of nuclear processes, which in turn places new requirements on nuclear data that transcend the traditional needs of the fission and fusion reactor communities. In this paper an assessment of the nuclear data needs for systems currently being considered in the Los Alamos Accelerator-Driven Transmutation Technologies program is given.

  8. Nuclear Material Control and Accountability System Effectiveness Tool (MSET)

    SciTech Connect

    Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T; Campbell, Billy J; Hammond, Glenn A; Meppen, Bruce W; Brown, Richard F

    2011-01-01

    A nuclear material control and accountability (MC&A) system effectiveness tool (MSET) has been developed in the United States for use in evaluating material protection, control, and accountability (MPC&A) systems in nuclear facilities. The project was commissioned by the National Nuclear Security Administration's Office of International Material Protection and Cooperation. MSET was developed by personnel with experience spanning more than six decades in both the U.S. and international nuclear programs and with experience in probabilistic risk assessment (PRA) in the nuclear power industry. MSET offers significant potential benefits for improving nuclear safeguards and security in any nation with a nuclear program. MSET provides a design basis for developing an MC&A system at a nuclear facility that functions to protect against insider theft or diversion of nuclear materials. MSET analyzes the system and identifies several risk importance factors that show where sustainability is essential for optimal performance and where performance degradation has the greatest impact on total system risk. MSET contains five major components: (1) A functional model that shows how to design, build, implement, and operate a robust nuclear MC&A system (2) A fault tree of the operating MC&A system that adapts PRA methodology to analyze system effectiveness and give a relative risk of failure assessment of the system (3) A questionnaire used to document the facility's current MPC&A system (provides data to evaluate the quality of the system and the level of performance of each basic task performed throughout the material balance area [MBA]) (4) A formal process of applying expert judgment to convert the facility questionnaire data into numeric values representing the performance level of each basic event for use in the fault tree risk assessment calculations (5) PRA software that performs the fault tree risk assessment calculations and produces risk importance factor reports on the

  9. Spontaneous hybrids between native and exotic Rubus in the Western United States produce offspring both by apomixis and by sexual recombination.

    PubMed

    Clark, L V; Jasieniuk, M

    2012-11-01

    Facultative asexual reproduction is a trait commonly found in invasive species. With a combination of sexual and asexual reproductive modes, such species may adapt to new environments via sexual recombination during range expansion, while at the same time having the benefits of asexuality such as the maintenance of fitness effects that depend upon heterozygosity. In the Western United States, native species of Rubus (Rosaceae) reproduce sexually whereas exotic naturalized Rubus species reproduce by pseudogamous apomixis. We hypothesized that new asexual lineages of Rubus could arise from hybridization in this range. To detect hybridization between native and exotic Rubus, we genotyped 579 individuals collected across California, Oregon and Washington with eight nuclear microsatellites and two chloroplast markers. Principal Coordinate Analysis and Bayesian clustering revealed a limited amount of hybridization of the native R. ursinus with the exotic R. armeniacus and R. pensilvanicus, as well as cultivated varieties. Genetic distances between these hybrids and their offspring indicated that both R. ursinus × R. armeniacus and R. ursinus × R. pensilvanicus produced a mix of apomictic and sexual seeds, with sexual seeds being more viable. Although neither of these hybrid types is currently considered invasive, they model the early stages of evolution of new invasive lineages, given the potential for fixed heterosis and the generation of novel genotypes. The hybrids also retain the ability to increase their fitness via sexual recombination and natural selection. Mixed reproductive systems such as those described here may be an important step in the evolution of asexual invasive species. PMID:22850699

  10. Passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  11. Natural circulating passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  12. Nuclear power plant alarm systems: Problems and issues

    SciTech Connect

    O'Hara, J.M.; Brown, W.S.

    1991-01-01

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs.

  13. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems. PMID:18049233

  14. Issues and opportunities in exotic hadrons

    DOE PAGESBeta

    Briceno, Raul A.; Cohen, Thomas D.; Coito, S.; Dudek, Jozef J.; Eichten, E.; Fischer, C. S.; Fritsch, M.; Gradl, W.; Jackura, A.; Kornicer, M.; et al

    2016-04-01

    The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons. Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks, pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophisticated, and effective field theories are being applied to an ever greater range of situations. Consequently, it is thus an opportune time to evaluate the status of the field. In the following, a series of high priority experimentalmore » and theoretical issues concerning heavy exotic hadrons is presented.« less

  15. Advances in exotic mammal clinical therapeutics.

    PubMed

    Hawkins, Michelle G

    2015-05-01

    It is important that veterinarians treating exotic companion mammals stay abreast of the latest developments relating to medications and drug delivery approaches for safety, efficacy and welfare issues. Sustained release formulations of commonly used drugs as well as newer routes for administration of therapeutic agents allow the veterinarian treating exotic companion mammals to reduce the stress associated with drug administration. Interactions can occur between vehicle and drugs when formulations are compounded, therefore research studies are warranted regarding potential problems associated with these formulations. PMID:25902274

  16. Exotic nuclei with open heavy flavor mesons

    SciTech Connect

    Yasui, Shigehiro; Sudoh, Kazutaka

    2009-08-01

    We propose stable exotic nuclei bound with D and B mesons with respect to heavy quark symmetry. We indicate that an approximate degeneracy of D(B) and D*(B*) mesons plays an important role, and discuss the stability of DN and BN bound states. We find the binding energies 1.4 MeV and 9.4 MeV for each state in the J{sup P}=1/2{sup -} with the I=0 channel. We discuss also possible existence of exotic nuclei DNN and BNN.

  17. Earth physicist describes US nuclear test monitoring system

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The U. S. capabilities to monitor underground nuclear weapons tests in the USSR was examined. American methods used in monitoring the underground nuclear tests are enumerated. The U. S. technical means of monitoring Solviet nuclear weapons testing, and whether it is possible to conduct tests that could not be detected by these means are examined. The worldwide seismic station network in 55 countries available to the U. S. for seismic detection and measurement of underground nuclear explosions, and also the systems of seismic research observatories in 15 countries and seismic grouping stations in 12 countries are outlined including the advanced computerized data processing capabilities of these facilities. The level of capability of the U. S. seismic system for monitoring nuclear tests, other, nonseismic means of monitoring, such as hydroacoustic and recording of effects in the atmosphere, ionosphere, and the Earth's magnetic field, are discussed.

  18. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  19. Reliability of emergency ac power systems at nuclear power plants

    SciTech Connect

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  20. Assessment of lightweight mobile nuclear power systems. [for airborne vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Rom, F. E.

    1973-01-01

    A review was made of lightweight mobile nuclear power systems (LMNPS). Data cover technical feasibility studies of LMNPS and airborne vehicles, mission studies, and non-technical conditions that are required to develop and use LMNPS.

  1. Development of an Integrity Evaluation System for Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Kim, Young-Jin; Choi, Jae-Boong; Lee, Joon-Seong; Jun, Hyun-Kyu; Park, Youn-Won

    This paper describes the structure and development strategy for integrity evaluation system for nuclear power plants called NPP-KINS/SAFE. NPP-KINS/SAFE consists of three different programs covering the integrity assessment of reactor pressure vessel, pipings, and pressure tubes, respectively. The system has been developed based on currently available codes and standards, and includes a number of databases, expert systems, and numerical analysis schemes. NPP-KINS/SAFE is applicable for various types of nuclear power plants constructed in Korea with the aid of attached database systems including plant specific data. Case studies for the developed system are also provided.

  2. The NASA Advanced Exploration Systems Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; Scott, John; Power, Kevin P.

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse (Isp) above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation systems.

  3. Nuclear power systems for lunar and Mars exploration

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Bozek, J. M.

    1990-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.

  4. Nuclear power systems for lunar and Mars exploration

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Bozek, J. M.

    1990-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and the power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.

  5. Nuclear power systems for Lunar and Mars exploration

    SciTech Connect

    Sovie, R.J.; Bozek, J.M.

    1994-09-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

  6. Expert (exotic Particle Emission and Radioactivity by Tracking) Studies at the Super-Frs Spectrometer

    NASA Astrophysics Data System (ADS)

    Geissel, H.; Kiselev, O.; Mukha, I.; Simon, H.; Scheidenberger, C.; Weick, H.; Winkler, M.; Fomichev, A.; Belogurov, S.; Bezbakh, A.; Chudoba, V.; Golovkov, M.; Gorshkov, A.; Itkis, Y.; Kaminski, G.; Knyazev, A.; Knyazheva, G.; Kozulin, E.; Krupko, S.; Mianowski, S.; Rymzhanova, S.; Sidorchuk, S.; Sharov, P.; Slepnev, R.; Ter-Akopian, G.; Zagrebaev, V.; Pfützner, M.; Dominik, W.; Janas, Z.; Mazzocchi, Ch.; Mianowski, S.; Korsheninnikov, A. A.; Kuzmin, E. A.; Nikolskii, E. Yu.; Eremin, I.; Eremin, V.; Fadeeva, N.; Terukov, E.; Tuboltsev, Yu.; Verbitskaya, E.; Ershov, S. N.; Egorova, I. A.; Nasirov, A. K.; Dunin, V. B.; Alkhazov, G. D.; Dobrovolsky, A. V.; Khanzadeev, A. V.; Parfenova, Yu. L.; Xu, X.; Kaminski, G.; Kopatch, Y.

    2015-06-01

    The proposal EXPERT is suggested for the Super-FRS Collaboration physics program [1] in the NUSTAR Collaboration of the project FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. It is aimed at studies of the nuclear landscape beyond the proton and neutron drip-lines and intends to push researches up to limits of nuclear existence. By combining the EXPERT instrumentation (two tracking techniques applied for radioactivity and nuclear decays in-flight), the phenomena of multi-nucleon radioactivity, resonance decays in continuum, beta-delayed exotic decays and exotic excitation modes can be studied via observations of particle emissions, including the 2p, 4p, 6p, n, 2n, 4n, 6n channels.

  7. Possible exotic superconductivity in the monolayer and bilayer silicene

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Yao, Yugui; Zhang, Li-Da; Liu, Cheng-Cheng; Liu, Feng

    2014-03-01

    Silicene, the silicon-based counterpart of graphene, has attracted a lot of research interest since synthesized recently. Similar honeycomb lattice structures of the two systems let them share most of their marvelous physical properties. The most important structural difference between the two systems lie in the noncoplanar lowbuckled geometry in silicene, which brings up a lot of interesting physical consequence to the system. Here we focus on possible exotic superconductivity (SC) in the family, via random phase approximation (RPA) study on the relevant Hubbard-models. Two systems of this family are studied, including the monolayer and bilayer silicene. For the former system, we found an electric-field driven quantum phase transition (QPT) from chiral d+id to f-wave SC when the field is perpendicular to the silicene plane. For the latter system, we found that even the undoped system is intrinsically metallic and superconducting with chiral d+id symmetry and tunable Tc which can be high . Our study not only provides a new playground for the study of the exotic SC, but also brings a new epoch to the familiar Si industry.

  8. Linking Humans and Systems in Nuclear Power

    SciTech Connect

    Jacques Hugo

    2013-02-01

    Traditional engineering methods do not make provision for the integration of human considerations, while traditional human factors methods do not scale well to the complexity of large-scale nuclear power plant projects. Although the need for up-to-date human factors engineering processes and tools is recognised widely in industry, so far no formal guidance has been developed. This article proposes such a framework.

  9. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    SciTech Connect

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Caffrey, A.J.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.

    2000-09-29

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium {gamma}-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material.

  10. Are the nuclei beyond 132Sn very exotic?

    NASA Astrophysics Data System (ADS)

    Lozeva, R.; Naïdja, H.; Nowacki, F.; Odahara, A.; Moon, C.-B.; NP1112-RIBF87 collaboration

    2016-06-01

    The term exotic nucleus is used for nuclei that have different from normal behavior. However, it turns out that the term normal is valid only for nuclei close to stability and more particularly for regions close to double-shell closures. As long as one drives away in the neutron-rich nuclei, especially at intermediate mass number, interplay between normal single-particle and many collective particle-hole excitations compete. In some cases with the addition of neutrons, these may turn to evolve as a skin, acting against the core nucleus that may also influence its shell evolution. Knowledge of these nuclear ingredients is especially interesting beyond the doubly-magic 132Sn, however a little is known on how the excitations modes develop with the addition of both protons and neutrons. Especially for the Sb nuclei, where one gradually increases these valence particles, the orbital evolution and its impact on exoticness is very intriguing. Experimental studies were conducted on several such isotopes using isomer and, β-decay spectroscopy at RIBF within EURICA. In particular, new data on 140Sb and 136Sb are examined and investigated in the framework of shell model calculations.

  11. INIS: A Computer-Based International Nuclear Information System.

    ERIC Educational Resources Information Center

    Balakrishnan, M. R.

    1986-01-01

    Description of the International Nuclear Information System includes its history, organizational structure, subject classification scheme, thesaurus, input standards, and various products and services generated by the system. Appendices provide a list of participating countries, subjects covered by the system, and a sample output record.…

  12. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  13. Preliminary design studies on a nuclear seawater desalination system

    SciTech Connect

    Wibisono, A. F.; Jung, Y. H.; Choi, J.; Kim, H. S.; Lee, J. I.; Jeong, Y. H.; No, H. C.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclear heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)

  14. [Microbiological conservation medicine and exotic pets].

    PubMed

    Hassl, Andreas

    2004-01-01

    The keeping and the breeding of exotic pets in privacy is a hobby with increasing popularity in industrialised countries. The growing demand for animals usually imported from the tropics, the growing demand for unprofessionally bred feeder organisms, and the increasing number of cases of faulty caring behaviour lead to the creation of new infectiological niches in the interface between exotic pet--nurse--feed--vivarium. These niches are filled preferably by ubiquitous, facultative pathogenic, stress- and age-deduced opportunists with a broad host spectrum. On the one hand these extraordinary germ faunas, relating to their compositions, may generate broad relevance in human medicine, lead to bizarre clinical pictures in specific cases, and may contribute to a reduction of the mean span of life of exotic pets kept in human care. On the other hand the quantitative composition of the fauna may also be a direct measure of the degree of stress the pets are suffering in captivity. Thus, a professional designation of the germ fauna of an exotic pet may contribute to an optimisation of the captivity conditions. PMID:15683044

  15. CMS supersymmetry and exotic Higgs results

    NASA Astrophysics Data System (ADS)

    Yohay, R.; CMS Collaboration

    2016-07-01

    A selection of results covering searches for supersymmetric particles and exotic decays of the Higgs boson are presented. These results are based on 8 TeV proton-proton collision data collected by the Compact Muon Solenoid experiment at the Large Hadron Collider.

  16. Exotic Gauge Bosons in the 331 Model

    SciTech Connect

    Romero, D.; Ravinez, O.; Diaz, H.; Reyes, J.

    2009-04-30

    We analize the bosonic sector of the 331 model which contains exotic leptons, quarks and bosons (E,J,U,V) in order to satisfy the weak gauge SU(3){sub L} invariance. We develop the Feynman rules of the entire kinetic bosonic sector which will let us to compute some of the Z(0)' decays modes.

  17. Phenology of cheatgrass and associated exotic weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cheatgrass (Bromus tectorum), is an exotic, highly invasive annual grass that has dramatically changed the aspect and ecological functions of vast areas of formerly big sagebrush/bunchgrass and salt desert rangelands in the Intermountain west. Cheatgrass increases the chance of ignition, rate of spr...

  18. Exotic heavy-quark states at Belle

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Belle Collaboration

    2016-03-01

    The search for multi-quark states beyond the meson (quark-antiquark) and baryon (three-quark) has resulted in the discovery of many new exotic states of matter, starting with the X(3872) discovery by Belle in 2003. We report selected recent results on searches for such states at Belle. supported by the Department of Energy Office of Science.

  19. Recent Precision Experiments with Exotic Nuclei Produced with Uranium Projectiles and Experimental Prospects at Fair

    NASA Astrophysics Data System (ADS)

    Geissel, H.; Chen, L.; Dickel, T.; Farinon, F.; Dillmann, I.; Knöbel, R.; Kurcewicz, J.; Mukha, I.; Münzenberg, G.; Nociforo, C.; Patyk, Z.; Pietri, S.; Plass, W. R.; Prochazka, A.; Scheidenberger, C.; Takechi, M.; Weick, H.; Winfield, J. S.; Winkler, M.

    2014-03-01

    Precision experiments with relativistic fragments separated in-flight require special experimentalmethods to overcome the inherent large emittance from the creation in nuclear reactions and atomic interactions in matter. At GSI relativistic exotic nuclei have been produced via uranium projectile fragmentation and fission and investigated with the inflight separator FRS directly, or in combination with either the storage-cooler ring ESR or the FRS Ion Catcher. 1000 A·MeV 238U ions were used to create 60 new neutron-rich isotopes separated and identified with the FRS to measure their production cross sections. In another experimental campaign the fragments were separated in flight and injected into the storage-cooler ring ESR for accurate mass and lifetime measurements. In these experimentswe have obtained accurate new mass values analyzed via a novel method which has reduced the systematic errors for both Schottky Mass Spectrometry (SMS) and for Isochronous Mass Spectrometry (IMS). Pioneering experiments have been carried out with the FRS Ion Catcher consisting of three experimental components, the dispersive magnetic system of the FRS with a monoenergetic and a homogeneous degrader, a cryogenic stopping cell filled with pure helium and a multiple-reflection time-of flight mass separator. The FRS Ion Catcher enables high precision spectroscopy experiments with eV to keV exotic nuclides. Results from these different FRS experiments are presented in this overview together with prospects for the next-generation facility Super-FRS. The novel features of the Super-FRS compared with the present FRS will be discussed in addition.

  20. Multimission nuclear electric propulsion system for outer planet exploration missions

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.

    1981-01-01

    The conceptual design configuration of a nuclear electric propulsion system (NEP) with a multimission capability for both earth orbital and electric propulsion missions is discussed. Two basic types of space reactor power system concepts are analyzed emphasizing conduction coupled and radiation coupled systems, and a radiation coupled thermoelectric panel concept is schematically represented and described in detail. A nuclear-powered 100-kWe surveillance spacecraft concept is presented and the developmental phases are given including cost estimates. In addition, a system is described that seems to have the capability to perform all the outer planet missions.

  1. RECOVERY OF EXOTIC ALLELES IN ENHANCED TROPICAL YELLOW GERMPLASM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhancement of overall diversity levels and the incorporation of new favorable traits are major benefits of using exotic germplasm in elite breeding programs. Agronomic deficiencies and poor adaptation often limits use of exotic germplasm in plant breeding programs. To introgress exotic alleles into...

  2. Exotic annual grass alters fuel amounts, continuity and moisture content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. Invasion by exotic plants are one of the most serious threats to native plant communities, biodiversity, and ecosystem functioning. Of particular concern are exotic plants that alter disturbance regimes. Exotic annual grasses are believed to increase wildfire frequency to the detriment of nativ...

  3. Recovery of Exotic Alleles in Enhanced Tropical Yellow Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhancement of overall diversity levels and the incorporation of new favorable traits are major benefits of using exotic germplasm in elite breeding programs. Agronomic deficiencies and poor adaptation often limits use of exotic germplasm in plant breeding programs. To introgress exotic alleles into...

  4. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    SciTech Connect

    Shannon Bragg-Sitton; Richard Boardman; John Collins; Mark Ruth; Owen Zinaman; Charles Forsberg

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  5. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    SciTech Connect

    Mark F. Ruth; Owen R. Zinaman; Mark Antkowiak; Richard D. Boardman; Robert S. Cherry; Morgan D. Bazilian

    2014-02-01

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Thus, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. This paper explores one opportunity – nuclear-renewable hybrid energy systems. These are defined as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. Additionally, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.

  6. Man--machine interface issues for space nuclear power systems

    SciTech Connect

    Nelson, W.R.; Haugset, K. )

    1991-01-10

    The deployment of nuclear reactors in space necessitates an entirely new set of guidelines for the design of the man--machine interface (MMI) when compared to earth-based applications such as commerical nuclear power plants. Although the design objectives of earth- and space-based nuclear power systems are the same, that is, to produce electrical power, the differences in the application environments mean that the operator's role will be significantly different for space-based systems. This paper explores the issues associated with establishing the necessary MMI guidelines for space nuclear power systems. The generic human performance requirements for space-based systems are described, and the operator roles that are utilized for the operation of current and advanced earth-based reactors are briefly summarized. The development of a prototype advanced control room, the Integrated Surveillance and Control System (ISACS) at the Organization for Economic Cooperation and Development (OECD) Halden Reactor Project is introduced. Finally, preliminary ideas for the use of the ISACS system as a test bed for establishing MMI guidelines for space nuclear systems are presented.

  7. Characteristic Features of Strangeness Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Akaishi, Yoshinori

    2001-10-01

    The Λ-Σ coupling is one of the most characteristic dynamics in hypernuclear physics, since the Σ-Λ mass difference is muc h smaller than Δ-N one. The coupling can be divided into coherent and incoheren t parts. The suppression of the incoherent part solves a long-standing problem of Λ-overbinding in ^5_ΛHe but it, in turn, causes an un derbinding problem in ^4_ΛHe. This shortage is overcome by the coherent cou pling which is equivalently expressed by a ΛNN three-body force. The three-body force has a large effect exclusively on the 0^+ state of ^4_ΛHe among s-shell hypernuclei according to coherently added enhancement. The coherent coupling explains also the ^4_ΣHe spectrum recently observed at BNL. In dense neutron matter the coherent Λ-Σ coupling causes strong Σ^0 admixture of 5 ~25 % at ρ=ρ0 ~ 3ρ0 where Λ and Σ^0 components are mixed up as one particle Λ_coh. This coherent mixing drastically affects the hyperon composition of neutron-star matter. One of the most important but yet unsolved problems is how the hadron property changes in nuclear medium. In strangeness sector, this problem is connected to an exciting issue of kao n condensation. Recently Akaishi and Yamazaki predicted that nuclear barK bound sta tes possibly exist in ^3He and ^4He with large binding energies of 108 MeV and of 86 MeV and narrow widths of 20 MeV and of 34 MeV, respectively. The formation of deeply-bound barK nuclear states in He and Be gives a new means to investigate hadron properties in cold high-density nucl ear medium because barK strongly contracts the core nuclei. Observation of such barK nuclear states would provide information of fundamental importance in relation to strangeness condensation.

  8. Modern Nuclear Data Evaluation with the TALYS Code System

    SciTech Connect

    Koning, A.J.; Rochman, D.

    2012-12-15

    This paper presents a general overview of nuclear data evaluation and its applications as developed at NRG, Petten. Based on concepts such as robustness, reproducibility and automation, modern calculation tools are exploited to produce original nuclear data libraries that meet the current demands on quality and completeness. This requires a system which comprises differential measurements, theory development, nuclear model codes, resonance analysis, evaluation, ENDF formatting, data processing and integral validation in one integrated approach. Software, built around the TALYS code, will be presented in which all these essential nuclear data components are seamlessly integrated. Besides the quality of the basic data and its extensive format testing, a second goal lies in the diversity of processing for different type of users. The implications of this scheme are unprecedented. The most important are: 1. Complete ENDF-6 nuclear data files, in the form of the TENDL library, including covariance matrices, for many isotopes, particles, energies, reaction channels and derived quantities. All isotopic data files are mutually consistent and are supposed to rival those of the major world libraries. 2. More exact uncertainty propagation from basic nuclear physics to applied (reactor) calculations based on a Monte Carlo approach: 'Total' Monte Carlo (TMC), using random nuclear data libraries. 3. Automatic optimization in the form of systematic feedback from integral measurements back to the basic data. This method of work also opens a new way of approaching the analysis of nuclear applications, with consequences in both applied nuclear physics and safety of nuclear installations, and several examples are given here. This applied experience and feedback is integrated in a final step to improve the quality of the nuclear data, to change the users vision and finally to orchestrate their integration into simulation codes.

  9. Nuclear safety, legal aspects and policy recommendations for space nuclear power and propulsion systems

    NASA Astrophysics Data System (ADS)

    Lenard, Roger X.

    2006-07-01

    This paper represents a chapter of the International Astronautical Academy's Cosmic Study on safety, legal and policy aspects of advanced (specifically nuclear) power and propulsions systems; it is divided into several sections. The first section covers a series of findings and develops a set of recommendations for operations of space reactor systems in a safe, environmentally compliant fashion. The second section develops a generic set of hazard scenarios that might be experienced by a space nuclear system with emphasis on different methods under which such a system could be engaged, such as surface power, in-space nuclear electric or nuclear thermal propulsion. The third section develops these into test and analysis efforts that would likely be conducted. Risk areas with engineering judgment set toward frequency and consequences. The fourth section identifies what probable technology limits might be experienced by nuclear propulsion systems and the exploration limitations these technology restrictions might impose. Where the IAA recommends a change, the IAA leadership should be prepared to work with national and international bodies to implement the desired modifications.

  10. Principles of Wound Management and Wound Healing in Exotic Pets.

    PubMed

    Mickelson, Megan A; Mans, Christoph; Colopy, Sara A

    2016-01-01

    The care of wounds in exotic animal species can be a challenging endeavor. Special considerations must be made in regard to the animal's temperament and behavior, unique anatomy and small size, and tendency toward secondary stress-related health problems. It is important to assess the entire patient with adequate systemic evaluation and consideration of proper nutrition and husbandry, which could ultimately affect wound healing. This article summarizes the general phases of wound healing, factors that affect healing, and principles of wound management. Emphasis is placed on novel methods of treating wounds and species differences in wound management and healing. PMID:26611923

  11. Important technology considerations for space nuclear power systems

    SciTech Connect

    Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

  12. Important technology considerations for space nuclear power systems

    NASA Astrophysics Data System (ADS)

    Kuspa, John P.; Wahlquist, Earl J.; Bitz, Dennis A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources - isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic - to meet mission requirements well into the next century.

  13. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    SciTech Connect

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  14. Photonuclear-based, nuclear material detection system for cargo containers

    NASA Astrophysics Data System (ADS)

    Jones, J. L.; Yoon, W. Y.; Norman, D. R.; Haskell, K. J.; Zabriskie, J. M.; Watson, S. M.; Sterbentz, J. W.

    2005-12-01

    The Idaho National Laboratory (INL) has been developing electron accelerator-based, photonuclear inspection technologies for over a decade. A current need, having important national implications, has been with the detection of smuggled nuclear material within air- and, especially, sea-cargo transportation containers. This paper describes the latest pulsed, photonuclear inspection system for nuclear material detection and identification in cargo configurations, the numerical responses of 5 kg of a nuclear material placed within selected cargo configurations, and the technology's potential role in addressing future inspection needs.

  15. The NJOY nuclear data processing system Version 91

    SciTech Connect

    MacFarlane, R.E.; Muir, D.W.

    1994-10-01

    The NJOY nuclear data processing system is a comprehensive computer code package for producing pointwise and multigroup cross sections and related quantities from elevated nuclear data in the ENDF format, including the latest US library, ENDF/B-VI. The NJOY code can work with neutrons, photons, and charged particles, and it can produce libraries for a wide variety of particle transport and reactor analysis codes.

  16. Parametric analysis of a thermionic space nuclear power system

    NASA Technical Reports Server (NTRS)

    Strohmayer, W. H.; Van Hagan, T. H.

    1987-01-01

    Key parameters in the design of a thermionic space nuclear power system are identified and analysed in various system tradeoffs. The results are referenced to the thermionic system currently being studied for the SP-100 program. The SP-100 requirements provide definitive guidelines with respect to system optimization, the primary ones being the system mass limit of 3000 kg, the system volume constrraint of one-third of the Space Shuttle cargo bay, and the system lifetime of seven years. Many parametric influences are described and the methods used to optimize system design, in the context of the requirements, are indicated. Considerable design flexiblity is demonstrated.

  17. Systemic calicivirus epidemic in captive exotic felids.

    PubMed

    Harrison, Tara M; Sikarskie, James; Kruger, John; Wise, Annabel; Mullaney, Thomas P; Kiupel, Matti; Maes, Roger K

    2007-06-01

    A 5-day-old, mother-raised, Amur tiger cub (Panthera tigris altaica) presented with tongue ulcerations. Identical lesions appeared and progressed to sloughing of the tongue in the three littermates of this cub the following day. The lesions progressed in all cubs to include sloughing of the carpal, tarsal, metacarpal, and metatarsal foot pad epithelium. Oral ulcerations were also noted in adult African lions (Panthera leo) and Amur tigers (Panthera tigris altaica), but not in two adult snow leopards (Panthera uncia) housed in the same building. All adult cats had been previously vaccinated for common feline diseases including feline calicivirus (FCV). Detection of FCV RNA in oral secretions by a real-time reverse transcription polymerase chain reaction assay (RRT-PCR) confirmed FCV infection in the tiger cubs and one lion. A male lion and a male tiger cub died during the disease outbreak. RRT-PCR confirmed FCV in multiple tissues in both of these animals. A stray cat live-trapped outside the feline building during the epidemic was found to be positive for FCV by virus isolation and was thought to be the source of infection. PMID:17679514

  18. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  19. Proliferation resistance of advanced nuclear energy systems

    SciTech Connect

    Pierpoint, Lara; Kazimi, Mujid; Hejzlar, Pavel

    2007-07-01

    A methodology for evaluating the proliferation resistance of advanced nuclear fuel cycles is presented. The methodology, based on multi-attribute utility theory (MAUT) is intended as a computerized assessment for fuel cycles at their earliest stages of development (i.e. when detailed facility design information is not available). Preliminary results suggest that the methodology may be useful in identifying sources of proliferation vulnerability within different fuel cycles. Of the fuel cycles and segments studied, the fabrication step of the Once- Through fuel cycle and the reprocessing step of the MOX fuel cycle present the greatest vulnerability. The Advanced Burner Reactor (ABR) fuel cycle with conversion ratio 0.0 appears to be the overall safest fuel cycle from a proliferation protection standpoint. (authors)

  20. Historical flight qualifications of space nuclear systems

    SciTech Connect

    Bennett, G.L.

    1997-01-01

    An overview is presented of the qualification programs for the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions; the SNAP-10A space reactor; the Nuclear Engine for Rocket Vehicle Applications (NERVA); the F-1 chemical rocket engine used on the Saturn-V Apollo lunar missions; and the Space Shuttle Main Engines (SSMEs). Some similarities and contrasts between the qualification testing employed on these five programs will be noted. One common thread was that in each of these successful programs there was an early focus on component and subsystem tests to uncover and correct problems. {copyright} {ital 1997 American Institute of Physics.}

  1. Recent Astrophysical Studies with Exotic Beams at ORNL

    SciTech Connect

    Bardayan, Daniel W

    2006-02-01

    The availability of exotic beams has produced great opportunities for advances in our understanding of the nucleosynthesis occurring in stellar burning and stellar explosions such as novae, X-ray bursts, and supernovae. In these extreme environments, synthesized radioactive nuclei can undergo subsequent nuclear processing before they decay, and thus to understand these events, we must understand reaction rates involving radioactive nuclei. At the ORNL Holi led Radioactive Ion Beam Facility (HRIBF), we have made several recent measurements using proton-rich beams such as 18F and 7Be and neutron-rich beams such as 82Ge and 84Se that help clarify the structure of astrophysically-important nuclei. We are also poised to begin studies with doubly-magic 132Sn. The experimental methods and results are discussed.

  2. Exotic Lepton Flavour Violating Processes in the Presence of Nuclei

    NASA Astrophysics Data System (ADS)

    Papoulias, D. K.; Kosmas, T. S.

    2013-02-01

    The discovery of neutrino oscillations indicates the existence of massive neutrinos in contrast to the massless neutrinos predicted by the Standard Model. One of the simplest extensions of the SM obtained by adding a heavy right-handed neutrino singlet, NR, per neutrino generation is the Seesaw mechanism. Within the context of this mechanism, flavour changing neutral current neutrino-nucleus reactions of the type are predicted to occur. In this contribution, motivated by the extensive studies (theoretical and experimental) of the LFV in ν- → e- conversion in nuclei, we investigate FCNC in neutrino-nucleus reactions. From a nuclear theory point of view, the Donnelly-Walecka model for cross sections calculations is employed. To this purpose, the single-particle transition matrix elements are evaluated from a Mathematica code developed in this work. Neutrino-nucleus reactions have important impact in Astrophysics and hence a detailed study of such exotic processes is of significant importance.

  3. Recent astrophysical studies with exotic beams at ORNL

    NASA Astrophysics Data System (ADS)

    Bardayan, D. W.

    2006-03-01

    The availability of exotic beams has produced great opportunities for advances in our understanding of the nucleosynthesis occurring in stellar burning and stellar explosions such as novae, X-ray bursts, and supernovae. In these extreme environments, synthesized radioactive nuclei can undergo subsequent nuclear processing before they decay, and thus to understand these events, we must understand reaction rates involving radioactive nuclei. At the ORNL Holifield Radioactive Ion Beam Facility (HRIBF), we have made a number of measurements using proton-rich beams such as 18F and 7Be and neutron-rich beams such as 82Ge and 84Se that help clarify the structure of astrophysically-important nuclei. We are also poised to begin studies with doubly-magic 132Sn. The experimental methods and results are discussed.

  4. Training programs for the systems approach to nuclear security.

    SciTech Connect

    Ellis, Doris E.

    2005-07-01

    In support of the US Government and the International Atomic Energy Agency (IAEA) Nuclear Security Programmes, Sandia National Laboratories (SNL) has advocated and practiced a risk-based, systematic approach to nuclear security. The risk equation has been implemented as the basis for a performance methodology for the design and evaluation of Physical Protection Systems against a Design Basis Threat (DBT) for theft or sabotage of nuclear and/or radiological materials. Since integrated systems must include people as well as technology and the man-machine interface, a critical aspect of the human element is to train all stakeholders in nuclear security on the systems approach. Current training courses have been beneficial but are still limited in scope. SNL has developed two primary international courses and is completing development of three new courses that will be offered and presented in the near term. In the long-term, SNL envisions establishing a comprehensive nuclear security training curriculum that will be developed along with a series of forthcoming IAEA Nuclear Security Series guidance documents.

  5. New results on the structure of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Sakurai, Hiroyoshi

    2015-04-01

    `Exotic nuclei' far from the stability line are unique objects of many-body quantum system, where ratios of neutron number to proton number are much larger or much smaller than those of nuclei found in nature. Their exotic properties and phenomena emerge from their large isospin asymmetry, and even affect scenarios of nucleosynthesis in universe. One of the exotic emergences is shell evolution. The magic numbers of stable nuclei are known; 2, 8, 20, 28, 50, 82 and 126. However the numbers 8, 20 and 28 have been found no more magic in a neutron-rich region, and new magic numbers such as 6, 16, 32 and 34 have been discovered. To access nuclei far from the stability line, especially neutron-rich nuclei, a large heavy-ion accelerator facility `Radioactive Isotope Beam Factory (RIBF)' was constructed at RIKEN, Japan in 2007. The facility is highly optimized for inflight production of fission fragments via a U beam. The accelerator complex delivers an intense 345 MeV/u U beam. The U nuclide is converted at a target to fission fragments. The fragments of interest are collected and separated at an inflight separator, and are delivered to several experimental devices. The shell evolution programs at RIBF have been conducted with two methods; in-beam gamma spectroscopy and decay spectroscopy. A standard setup of in-beam gamma spectroscopy is combination of a NaI gamma detector array `DALI2' and a beam line spectrometer `ZeroDegree Spectrometer (ZDS)'. Coincidence measurements of de-excitation gamma rays at DALI2 and of reaction products at ZDS make it possible to select reaction channels event-by-event and to observe excited states of exotic nuclei in a specific reaction channel. Recently, a French-made thick liquid hydrogen target system `MINOS' has been introduced to access more neutron-rich nuclei. Isomer and beta-delayed gamma spectroscopy is organized with a Euroball germanium cluster array system `EURICA' and an active silicon stopper In this talk, I would like to

  6. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  7. Nuclear Thermal Propulsion Mars Mission Systems Analysis and Requirements Definition

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Chiroux, Robert C.; Thomas, Dan; Crane, Tracie

    2007-01-01

    This paper describes the Mars transportation vehicle design concepts developed by the Marshall Space Flight Center (MSFC) Advanced Concepts Office. These vehicle design concepts provide an indication of the most demanding and least demanding potential requirements for nuclear thermal propulsion systems for human Mars exploration missions from years 2025 to 2035. Vehicle concept options vary from large "all-up" vehicle configurations that would transport all of the elements for a Mars mission on one vehicle. to "split" mission vehicle configurations that would consist of separate smaller vehicles that would transport cargo elements and human crew elements to Mars separately. Parametric trades and sensitivity studies show NTP stage and engine design options that provide the best balanced set of metrics based on safety, reliability, performance, cost and mission objectives. Trade studies include the sensitivity of vehicle performance to nuclear engine characteristics such as thrust, specific impulse and nuclear reactor type. Tbe associated system requirements are aligned with the NASA Exploration Systems Mission Directorate (ESMD) Reference Mars mission as described in the Explorations Systems Architecture Study (ESAS) report. The focused trade studies include a detailed analysis of nuclear engine radiation shield requirements for human missions and analysis of nuclear thermal engine design options for the ESAS reference mission.

  8. Radioisotope-based Nuclear Power Strategy for Exploration Systems Development

    SciTech Connect

    Schmidt, George R.; Houts, Michael G.

    2006-01-20

    Nuclear power will play an important role in future exploration efforts. Its benefits pertain to practically all the different timeframes associated with the Exploration Vision, from robotic investigation of potential lunar landing sites to long-duration crewed missions on the lunar surface. However, the implementation of nuclear technology must follow a logical progression in capability that meets but does not overwhelm the power requirements for the missions in each exploration timeframe. It is likely that the surface power infrastructure, particularly for early missions, will be distributed in nature. Thus, nuclear sources will have to operate in concert with other types of power and energy storage systems, and must mesh well with the power architectures envisioned for each mission phase. Most importantly, they must demonstrate a clear advantage over other non-nuclear options (e.g., solar power, fuel cells) for their particular function. This paper describes a strategy that does this in the form of three sequential system developments. It begins with use of radioisotope generators currently under development, and applies the power conversion technology developed for these units to the design of a simple, robust reactor power system. The products from these development efforts would eventually serve as the foundation for application of nuclear power systems for exploration of Mars and beyond.

  9. Nuclear Hybrid Energy Systems Regional Studies: West Texas & Northeastern Arizona

    SciTech Connect

    Garcia, Humberto E.; Chen, Jun; Kim, Jong Suk; McKellar, Michael George; Deason, Wesley R; Richard B. Vilim; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [[NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases not generic examples based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  10. Nuclear Engine System Simulation (NESS) version 2.0

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.

  11. Nuclear Engine System Simulation (NESS) version 2.0

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.

  12. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume II. Proliferation resistance

    SciTech Connect

    Not Available

    1980-06-01

    The purpose of this volume is limited to an assessment of the relative effects that particular choices of nuclear-power systems, for whatever reasons, may have on the possible spread of nuclear-weapons capabilities. This volume addresses the concern that non-nuclear-weapons states may be able to initiate efforts to acquire or to improve nuclear-weapons capabilities through civilian nuclear-power programs; it also addresses the concern that subnational groups may obtain and abuse the nuclear materials or facilities of such programs, whether in nuclear-weapons states (NWS's) or nonnuclear-weapons states (NNW's). Accordingly, this volume emphasizes one important factor in such decisions, the resistance of nuclear-power systems to the proliferation of nuclear-weapons capabilities.

  13. A nuclear source term analysis for spacecraft power systems

    SciTech Connect

    McCulloch, W.H.

    1998-12-01

    All US space missions involving on board nuclear material must be approved by the Office of the President. To be approved the mission and the hardware systems must undergo evaluations of the associated nuclear health and safety risk. One part of these evaluations is the characterization of the source terms, i.e., the estimate of the amount, physical form, and location of nuclear material, which might be released into the environment in the event of credible accidents. This paper presents a brief overview of the source term analysis by the Interagency Nuclear Safety Review Panel for the NASA Cassini Space Mission launched in October 1997. Included is a description of the Energy Interaction Model, an innovative approach to the analysis of potential releases from high velocity impacts resulting from launch aborts and reentries.

  14. Proposal of Space Reactor for Nuclear Electric Propulsion System

    NASA Astrophysics Data System (ADS)

    Nagata, Hidetaka; Nishiyama, Takaaki; Nakashima, Hideki

    Currently, the solar battery, the chemical cell, and the RI battery are used for the energy source in space. However, it is difficult for them to satisfy requirements for deep space explorations. Therefore, other electric power sources which can stably produce high electric energy output, regardless of distance from the sun, are necessary to execute such missions. Then, we here propose small nuclear reactors as power sources for deep space exploration, and consider a conceptual design of a small nuclear reactor for Nuclear Electric Propulsion System. It is found from nuclear analyses that the Gas-Cooled reactor could not meet the design requirement imposed on the core mass. On the other hand, a light water reactor is found to be a promising alternative to the Gas-Cooled reactor.

  15. Electron microscopy of some exotic materials

    SciTech Connect

    Mitchell, T.E.

    1998-09-01

    Just about every material has been looked at under the microscope, either out of pure inquisitiveness or the need to relate the microstructure to its properties. Some of these materials are mundane, like steels or glass or polyethylene; others are so-called advanced, such as intermetallics, silicon nitride or zirconia; yet others might be called exotic whether they be martian rocks, high temperature superconductors, fullerenes, diamonds, or the latest thin film device. Many exotic materials are important in Los Alamos, not only weapons materials such as actinides, tritium and explosives, but also civilian materials for energy applications. Here the author will report briefly on plutonium and uranium, on rhenium disilicide, and on Cu-Nb nanolayered composites.

  16. Theoretical predictions for exotic hadrons

    SciTech Connect

    Barnes, T. |

    1996-12-31

    In this contribution the authors discuss current theoretical expectations for the properties of light meson exotica, which are meson resonances outside the q{anti q} quark model. Specifically they discuss expectations for gluonic hadrons (glueballs and hybrids) and multiquark systems (molecules). Experimental candidates for these states are summarized, and the relevance of a TCF to these studies is stressed.

  17. Nuclear thermal rocket workshop reference system Rover/NERVA

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed.

  18. Nuclear bimodal new vision solar system missions

    SciTech Connect

    Mondt, J.F.; Zubrin, R.M.

    1996-03-01

    This paper presents an analysis of the potential mission capability using space reactor bimodal systems for planetary missions. Missions of interest include the Main belt asteroids, Jupiter, Saturn, Neptune, and Pluto. The space reactor bimodal system, defined by an Air Force study for Earth orbital missions, provides 10 kWe power, 1000 N thrust, 850 s Isp, with a 1500 kg system mass. Trajectories to the planetary destinations were examined and optimal direct and gravity assisted trajectories were selected. A conceptual design for a spacecraft using the space reactor bimodal system for propulsion and power, that is capable of performing the missions of interest, is defined. End-to-end mission conceptual designs for bimodal orbiter missions to Jupiter and Saturn are described. All missions considered use the Delta 3 class or Atlas 2AS launch vehicles. The space reactor bimodal power and propulsion system offers both; new vision {open_quote}{open_quote}constellation{close_quote}{close_quote} type missions in which the space reactor bimodal spacecraft acts as a carrier and communication spacecraft for a fleet of microspacecraft deployed at different scientific targets and; conventional missions with only a space reactor bimodal spacecraft and its science payload. {copyright} {ital 1996 American Institute of Physics.}

  19. New Experiments with Stored Exotic Nuclei at the FRS-ESR Facility

    SciTech Connect

    Geissel, H.

    2009-08-26

    High accuracy mass and novel nuclear lifetime measurements have been performed with bare and few-electron ions produced via projectile fragmentation and fission, separated in flight and stored at relativistic energies. Characteristic experimental results and new developments are reviewed. A new generation of studies with exotic nuclei will be possible with the advent of the proposed international Facility for Antiproton and Ion Research (FAIR)

  20. Exotic leptoquarks from superstring derived models

    SciTech Connect

    Elwood, J.K.; Faraggi, A.E.

    1997-03-01

    The H1 and ZEUS collaborations have recently reported a significant excess of e{sup +}p {r_arrow} e{sup +} jet events at high Q{sup 2}. While there exists insufficient data to conclusively determine the origin of this excess, one possibility is that it is due to a new leptoquark at mass scale around 200 GeV. We examine the type of leptoquark states that exist in superstring derived standard-like models, and show that, while these models may contain the standard leptoquark states which exist in Grand Unified Theories, they also generically contain new and exotic leptoquark states with fractional lepton number, {+-}1/2. In contrast to the traditional GUT-type leptoquark states, the couplings of the exotic leptoquarks to the Standard Model states are generated after the breaking of U(1){sub B-L}. This important feature of the exotic leptoquark states may result in local discrete symmetries which forbid some of the undesired leptoquark couplings. We examine these couplings in several models and study the phenomenological implications. The flavor symmetries of the superstring models are found to naturally suppress leptoquark flavor changing processes.

  1. Infectious threats from exotic pets: dermatological implications.

    PubMed

    Rosen, Ted; Jablon, Jennifer

    2003-04-01

    Zoonoses are diseases that can be transmitted from animals to humans. More than 250 distinct zoonoses have been described in the literature. It is estimated that 56% of United States households contain at least one pet, and although considerable research has been performed regarding the more common household animals including dogs, cats, small birds, and rodents, surprisingly little is known about the zoonotic hazards of owning the more exotic pets. According to the 1997 USPHS/IDSA Report on the Prevention of Opportunistic Infections in Persons Infected with Human Immunodeficiency Virus, the immunocompromised patient should avoid contact with feces-laden soil, litter boxes, reptiles, most pet birds, and any animal less than 6 months old . It has also been documented that because of their inquisitive nature, children are at even higher risk for infection from animals than adolescents or immunocompetent adults. In this article the authors have reviewed the available data regarding hazards associated with the hedgehog, flying squirrel, iguana, chinchilla, and cockatoo. With the growing popularity of such exotic pets, further observation and research is warranted. Physicians need to be aware of the possibility of zoonotic disease related to exotic pet ownership, and they should address this issue when obtaining a history and formulating a differential diagnosis of cutaneous lesions suggestive of such illnesses. PMID:12757244

  2. Exotic Forms of Silicon for Energy Applications

    NASA Astrophysics Data System (ADS)

    Taylor, P. Craig

    2015-03-01

    Over the last few decades many exotic forms of carbon, such as carbon-60, carbon nanotubes, and graphene, have generated novel scientific discoveries and revolutionized many important applications. Similar potentially transformative breakthroughs may be expected with exotic forms of silicon. Such structures include, but are not necessarily limited to, (1) those formed under high pressure that are metastable at ambient pressure, (2) single layers of Si (silicene), (2) clathrate Si, which has been studied for superconducting and thermoelectric properties but not in any detail for semiconductor applications, (3) nanostructured forms of Si (nanodots and nanowires), including those composed of diamond Si, (4) porous Si, and (5) any other structures that differ in their structural, optical or electronic properties from bulk diamond Si. Silicon is an abundant, non-toxic element around which an advanced technology exists for semiconducting devices based on diamond Si. One of these exotic forms of Si could form the basis for the next revolution in electronics or even opto-electronics, since some forms exhibit direct, or nearly direct, band gaps. Recent results toward producing pure and dopable semiconductors out of Si nanodots imbedded in amorphous matrices and in clathrate Si and clathrate Si-Ge alloys will be discussed. The author acknowledges important collaborations with R. T. Collins, C. A. Koh, L. Krishna, M. Lusk, and P. Stradins. DOE SUNSHOT program, under Contract DE-EE0005326 and by the NSF MRSEC program under Grant DMR-0820518.

  3. ENABLER Nuclear Propulsion System Conceptual Design

    NASA Astrophysics Data System (ADS)

    Pauley, Keith A.; Woodham, Kurt; Ohi, Don; Haga, Heath; Henderson, Bo

    2004-02-01

    The Titan Corporation conducted a systems engineering study to develop an overall architecture that meets both the articulated and unarticulated requirements on the Prometheus Program with the least development effort. Key elements of the Titan-designed ENABLER system include a thermal fission reactor, thermionic power converters, sodium heat pipes, ion thruster engines, and a radiation shield and deployable truss to protect the payload. The overall design is scaleable over a wide range of power requirements from 10s of kilowatts to 10s of megawatts.

  4. The harmony between nuclear reactions and nuclear reactor structures and systems

    SciTech Connect

    Popa-Simil, L.

    2012-07-01

    Advanced nuclear energy is one extremely viable approach for achieving the required goals. With its extraordinarily high energy density (both, per unit mass and per unit volume), it produces over seven orders of magnitude less waste than fossil fuels per unit of energy generated. Applying nano-technologies to nuclear reactors could potentially produce the extraordinary performance required. The actual nuclear reactors lack of performances, the complexity and hazard of the fuel cycle are in part due to the lack of understanding of the nature's laws related to energy distribution applied to fission products, and in part to the current technologic capabilities that make the economical optimum. In order to produce the desired increase of performances a novel multi-scale multi-physics and engineering approach have been developed, starting from the nuclear reactions involved, analyzing in detail the key features and requirements of the 'key players' in the process (neutrons, compound nucleus, fission products, transmutation products, decay radiation), the consequences of their interaction with matter. That complex interaction generates new reactions and new key-players (knock-on electrons, photons, phonons) that further interact with the matter represented by the nuclear fuel, cladding, cooling agents, structural materials and control systems. The understanding of this complexity of problems from fm-ps scale up to macro-system and mitigating all the requirements drives to that desired harmony that provides a safe energy delivery. (authors)

  5. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    SciTech Connect

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  6. Exotic multi-quark states in the deconfined phase from gravity dual models

    NASA Astrophysics Data System (ADS)

    Burikham, P.; Chatrabhuti, A.; Hirunsirisawat, E.

    2009-05-01

    In the deconfined phase of quark-gluon plasma, it seems that most of the quarks, antiquarks and gluons should be effectively free in the absence of the linear confining potential. However, the remaining Coulomb-type potential between quarks in the plasma could still be sufficiently strong that certain bound states, notably of heavy quarks such as J/ψ are stable even in the deconfined plasma up to a certain temperature. Baryons can also exist in the deconfined phase provided that the density is sufficiently large. We study three kinds of exotic multi-quark bound states in the deconfined phase of quark-gluon plasma from gravity dual models in addition to the normal baryon. They are k-baryon, (N+bar k)-baryon and a bound state of j mesons which we call ``j-mesonance''. Binding energies and screening lengths of these exotic states are studied and are found to have similar properties to those of mesons and baryons at the leading order. Phase diagram for the exotic nuclear phases is subsequently studied in the Sakai-Sugimoto model. Even though the exotics are less stable than normal baryons, in the region of high chemical potential and low temperature, they are more stable thermodynamically than the vacuum and chiral-symmetric quark-gluon plasma phases (χS-QGP).

  7. THE NOX SYSTEM IN NUCLEAR WASTE

    EPA Science Inventory

    A collaborative program between ANL and PNNL is proposed to study the radiation, and radiation induced, chemistry of the NOx system in waste simulants. The study will develop a computer model providing predictive capabilities for future EM operations including the characterizatio...

  8. Structural Materials for Innovative Nuclear Systems

    SciTech Connect

    Yvon, Pascal

    2011-07-01

    This series of slides deal with: the goals for advanced fission reactor systems; the requirements for structural materials; a focus on two important types of materials: ODS and CMC; a focus on materials under irradiation (multiscale modelling, experimental simulation, 'smart' experiments in materials testing reactors); some concluding remarks.

  9. Nuclear power for space based systems

    NASA Astrophysics Data System (ADS)

    Livingston, J. M.; Ivanenok, Joseph F., III

    1991-09-01

    A 100 kWe closed Brayton cycle power conversion system utilizing a recuperator coupled to a NERVA derivative reactor for a lunar power plant is presented. Power plant mass versus recuperator effectiveness, compressor inlet temperature, and turbine pressure ratio are described.

  10. PEGASUS: A multi-megawatt nuclear electric propulsion system

    SciTech Connect

    Coomes, E.P.; King, D.Q.; Cuta, J.M.; Webb, B.J.

    1986-01-01

    A propulsion system (The PEGASUS Drive) consisting of a magnetoplasmadynamic (MPD) thruster driven by a multimegawatt nuclear power system is proposed as the propulsion system for a manned Mars mission. The propulsion system described is based on a mission profile containing a 510-day burn time (for a mission time of approximately 1000 days). Electric propulsion systems have significant advantages over chemical systems, because of high specific impulse, lower propellant requirements, and lower system mass. The thermal power for the PEGASUS Drive is supplied by a boiling liquid-metal fast reactor. The system consists of the reactor, reactor shielding, power conditioning, heat rejection, and MPD thruster subsystems. It is capable of providing a maximum of 8,5 megawatts of electrical power of which 6 megawatts is needed for the thruster system, 1.5 megawatts is available for spacecraft system operations and inflight mission applications, leaving the balance for power system operation.

  11. PEGASUS - A multi-megawatt nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Coomes, E. P.; Cuta, J. M.; Webb, B. J.; King, D. Q.

    1986-01-01

    A propulsion system (The PEGASUS Drive) consisting of a magnetoplasmadynamic (MPD) thruster driven by a multimegawatt nuclear power system is proposed as the propulsion system for a manned Mars mission. The propulsion system described is based on a mission profile containing a 510-day burn time (for a mission time of approximately 1000 days). Electric propulsion systems have significant advantages over chemical systems, because of high specific impulse, lower propellant requirements, and lower system mass. The thermal power for the PEGASUS Drive is supplied by a boiling liquid-metal fast reactor. The system consists of the reactor, reactor shielding, power conditioning, heat rejection, and MPD thruster subsystems. It is capable of providing a maximum of 8.5 megawatts of electrical power of which 6 megawatts is needed for the thruster system, 1.5 megawatts is available for spacecraft system operations and inflight mission applications, leaving the balance for power system operation.

  12. Elastic scattering, fusion, and breakup of light exotic nuclei

    NASA Astrophysics Data System (ADS)

    Kolata, J. J.; Guimarães, V.; Aguilera, E. F.

    2016-05-01

    The present status of fusion reactions involving light ( A < 20) radioactive projectiles at energies around the Coulomb barrier ( E < 10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed.

  13. Advanced materials for space nuclear power systems

    SciTech Connect

    Titran, R.H.; Grobstein, T.L. . Lewis Research Center); Ellis, D.L. )

    1991-01-01

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  14. Partial Dynamical Symmetry in Nuclear Systems

    SciTech Connect

    Escher, J E

    2003-06-02

    Partial dynamical symmetry (PDS) extends and complements the concepts of exact and dynamical symmetry. It allows one to remove undesired constraints from an algebraic theory, while preserving some of the useful aspects of a dynamical symmetry, and to study the effects of symmetry breaking in a controlled manner. An example of a PDS in an interacting fermion system is presented. The associated PDS Hamiltonians are closely related with a realistic quadrupole-quadrupole interaction and provide new insights into this important interaction.

  15. (New imaging systems in nuclear medicine)

    SciTech Connect

    Not Available

    1991-01-01

    We continue to use and maintain PCR-I, the single-slice high- resolution high-sensitivity positron emission tomograph, while development proceeds on PCR-II, a three-dimensional PET system. A two-dimensional BGO scintillation detector has been designed and we are nearing completion of the detector, including the light guide, crystals and phototube assembly, and the gantry electronics. We are currently exploring techniques for a very high resolution (sub-mm) PET imaging system. We are using the current PCR-I system to assess changes in presynaptic dopamine receptors and glucose utilization in current biological models of Huntington's disease. Our preliminary studies support the use of the primate (Cynomolgus monkey) model of Huntington's disease to monitor in vivo functional changes. We are planning to extend this study to examine the MPTP model of Parkinson disease, and to assess the therapeutic value of D{sub 1} dopamine receptor agonists for treatment of MPTP-induced neurological defects. 13 refs., 5 figs. (MHB)

  16. Exotic snakes are not always found in exotic places: how poison centres can assist emergency departments

    PubMed Central

    Lubich, Carol; Krenzelok, Edward P

    2009-01-01

    Emergency departments throughout the USA may have some familiarity with the management of envenomation from indigenous snake species such as Crotalinae (rattlesnakes) and Micrurus (coral snakes). However, venomous species may include exotic reptiles whose bites pose substantial treatment challenges due to both a lack of experience and the difficulty in obtaining antivenoms. Two pet cobra envenomation incidents illustrate the challenges that face emergency departments, especially in urban settings, that are confronted with these exposures. It is important for emergency departments to be aware of the large underground presence of exotic venomous reptile pets and to utilise the expertise of regional poison centres that will also assist in the procurement of exotic antivenoms. PMID:21686401

  17. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  18. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  19. Safety system augmentation at Russian nuclear power plants

    SciTech Connect

    Scerbo, J.A.; Satpute, S.N.; Donkin, J.Y.; Reister, R.A. |

    1996-12-31

    This paper describes the design and procurement of a Class IE DC power supply system to upgrade plant safety at the Kola Nuclear Power Plant (NPP). Kola NPP is located above the Arctic circle at Polyarnie Zorie, Murmansk, Russia. Kola NPP consists of four units. Units 1 and 2 have VVER-440/230 type reactors: Units 3 and 4 have VVER-440/213 type reactors. The VVER-440 reactor design is similar to the pressurized water reactor design used in the US. This project provided redundant, Class 1E DC station batteries and DC switchboards for Kola NPP, Units 1 and 2. The new DC power supply system was designed and procured in compliance with current nuclear design practices and requirements. Technical issues that needed to be addressed included reconciling the requirements in both US and Russian codes and satisfying the requirements of the Russian nuclear regulatory authority. Close interface with ATOMENERGOPROEKT (AEP), the Russian design organization, KOLA NPP plant personnel, and GOSATOMNADZOR (GAN), the Russian version of US Nuclear Regulatory Commission, was necessary to develop a design that would assure compliance with current Russian design requirements. Hence, this project was expected to serve as an example for plant upgrades at other similar VVER-440 nuclear plants. In addition to technical issues, the project needed to address language barriers and the logistics of shipping equipment to a remote section of the Former Soviet Union (FSU). This project was executed by Burns and Roe under the sponsorship of the US DOE as part of the International Safety Program (INSP). The INSP is a comprehensive effort, in cooperation with partners in other countries, to improve nuclear safety worldwide. A major element within the INSP is the improvement of the safety of Soviet-designed nuclear reactors.

  20. A sensor-based automation system for handling nuclear materials

    SciTech Connect

    Drotning, W.; Kimberly, H.; Wapman, W.; Darras, D.

    1997-03-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The automation system performs unpacking and repacking of payloads from shipping and storage containers, and delivery of the payloads to the stations in the laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system in order to enhance system safety, flexibility, and robustness, and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and tool release mechanisms were designed to prevent payload mishandling. An extensive Failure Modes and Effects Analysis of the automation system was developed as a safety design analysis tool.

  1. Nuclear Science Symposium, 26th and Symposium on Nuclear Power Systems, 11th, San Francisco, Calif., October 17-19, 1979, Proceedings

    NASA Technical Reports Server (NTRS)

    Kerns, C. R.

    1980-01-01

    The paper covers the studies presented on nuclear science and nuclear power systems symposiums. The studies deal with nuclear radiation detectors, nuclear circuits and systems, space and medical instrumentation, as well as with environmental and reactor instrumentation. Data preprocessing and acquisition are discussed. Emphasis is placed on the engineered safety features of nuclear systems.

  2. Optoelectronic inventory system for special nuclear material

    SciTech Connect

    Sieradzki, F.H.

    1994-01-01

    In support of the Department of Energy`s Dismantlement Program, the Optoelectronics Characterization and Sensor Development Department 2231 at Sandia National Laboratories/New Mexico has developed an in situ nonintrusive Optoelectronic Inventory System (OIS) that has the potential for application wherever periodic inventory of selected material is desired. Using a network of fiber-optic links, the OIS retrieves and stores inventory signatures from data storage devices (which are permanently attached to material storage containers) while inherently providing electromagnetic pulse immunity and electrical noise isolation. Photovoltaic cells (located within the storage facility) convert laser diode optic power from a laser driver to electrical energy. When powered and triggered, the data storage devices sequentially output their digital inventory signatures through light-emitting diode/photo diode data links for retrieval and storage in a mobile data acquisition system. An item`s exact location is determined through fiber-optic network and software design. The OIS provides an on-demand method for obtaining acceptable inventory reports while eliminating the need for human presence inside the material storage facility. By using modularization and prefabricated construction with mature technologies and components, an OIS installation with virtually unlimited capacity can be tailored to the customer`s requirements.

  3. Safety program considerations for space nuclear reactor systems

    SciTech Connect

    Cropp, L.O.

    1984-08-01

    This report discusses the necessity for in-depth safety program planning for space nuclear reactor systems. The objectives of the safety program and a proposed task structure is presented for meeting those objectives. A proposed working relationship between the design and independent safety groups is suggested. Examples of safety-related design philosophies are given.

  4. System for detecting special nuclear materials

    SciTech Connect

    Jandel, Marian; Rusev, Gencho Yordanov; Taddeucci, Terry Nicholas

    2015-07-14

    The present disclosure includes a radiological material detector having a convertor material that emits one or more photons in response to a capture of a neutron emitted by a radiological material; a photon detector arranged around the convertor material and that produces an electrical signal in response to a receipt of a photon; and a processor connected to the photon detector, the processor configured to determine the presence of a radiological material in response to a predetermined signature of the electrical signal produced at the photon detector. One or more detectors described herein can be integrated into a detection system that is suited for use in port monitoring, treaty compliance, and radiological material management activities.

  5. Nuclear magnetic resonance studies of biological systems

    SciTech Connect

    Antypas, W.G. Jr.

    1988-01-01

    The difference between intracellular and extracellular proton relaxation rates provides the basis for the determination of the mean hemoglobin concentration (MHC) in red blood cells. The observed water T{sub 1} relaxation data from red blood cell samples under various conditions were fit to the complete equation for the time-dependent decay of magnetization for a two-compartment system including chemical exchange. The MHC for each sample was calculated from the hematocrit and the intracellular water fraction as determined by NMR. The binding of the phosphorylcholine (PC) analogue, 2-(trimethylphosphonio)-ethylphosphate (phosphoryl-phosphocholine, PPC) to the PC binding myeloma proteins TEPC-15, McPC 603, and MOPC 167 was studied by {sup 31}P NMR.

  6. Multimegawatt nuclear power system for lunar base applications

    NASA Technical Reports Server (NTRS)

    Panchyshyn, M.; Pressentin, R.; Trueblood, B.

    1987-01-01

    This report describes a conceptual design for a multimegawatt lunar-based nuclear power system developed by students in the Space Systems Design course at the University of Washington. The design requirements are to produce 3 MWe for an operational lifetime of 10 years without human intervention. The system utilizes an inert-gas-cooled fuel-pin reactor as the heat source, a regenerative Brayton cycle as the power converter and a liquid droplet radiator as the thermal management system, and has a specific power of 66 W/kg. The unique requirements of a lunar base on shielding and siting of a nuclear reactor are discussed. The structural elements, though large, have a relatively small total mass and the liquid droplet radiator is highly adaptable to the moon due to the positive effects of lunar gravity on the droplet collection process.

  7. Proposed advanced satellite applications utilizing space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Bailey, Patrick G.; Isenberg, Lon

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000-kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Statements of need are presented from DoD, DOE, and NASA. Safety issues are identified, and if they are properly addressed they should not pose a hindrance. Applications are summarized for the DoD, DOE, NASA, and the civilian community. These applications include both low- and high-altitude satellite surveillance missions, communications satellites, planetary probes, low- and high-power lunar and planetary base power systems, broadband global telecommunications, air traffic control, and high-definition television.

  8. PREFACE: Many-body correlations from dilute to dense nuclear systems

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu; Urban, Michael; Yamada, Taiichi

    2011-09-01

    The International EFES-IN2P3 conference on "Many body correlations from dilute to dense nuclear systems" was held at the Institut Henri Poincaré (IHP), Paris, France, from 15-18 February 2011, on the occasion of the retirement of our colleague Peter Schuck. Correlations play a decisive role in various many-body systems such as nuclear systems, condensed matter and quantum gases. Important examples include: pairing correlations (Cooper pairs) which give rise to nuclear superfluidity (analogous to superconductivity in condensed matter); particle-hole (RPA) correlations in the description of the ground state beyond mean-field theory; clusters; and α-particle correlations in certain nuclei. Also, the nucleons themselves can be viewed as clusters of three quarks. During the past few years, researchers have started to study how the character of these correlations changes with the variation of the density. For instance, the Cooper pairs in dense matter can transform into a Bose-Einstein condensate (BEC) of true bound states at low density (this is the BCS-BEC crossover studied in ultracold Fermi gases). Similar effects play a role in neutron matter at low density, e.g., in the "neutron skin" of exotic nuclei. The α-cluster correlation becomes particularly important at lower density, such as in the excited states of some nuclei (e.g., the α-condensate-like structure in the Hoyle state of 12C) or in the formation of compact stars. In addition to nuclear physics, topics from astrophysics (neutron stars), condensed matter, and quantum gases were discussed in 48 talks and 19 posters, allowing the almost 90 participants from different communities to exchange their ideas, experiences and methods. The conference dinner took place at the Musée d'Orsay, and all the participants enjoyed the very pleasant atmosphere. One session of the conference was dedicated to the celebration of Peter's retirement. We would like to take this opportunity to wish Peter all the best and we hope

  9. Self-isospectrality, mirror symmetry, and exotic nonlinear supersymmetry

    SciTech Connect

    Plyushchay, Mikhail S.; Nieto, Luis-Miguel

    2010-09-15

    We study supersymmetry of a self-isospectral one-gap Poeschl-Teller system in the light of a mirror symmetry that is based on spatial and shift reflections. The revealed exotic, partially broken, nonlinear supersymmetry admits seven alternatives for a grading operator. One of its local, first order supercharges may be identified as a Hamiltonian of an associated one-gap, nonperiodic Bogoliubov-de Gennes system. The latter possesses a nonlinear supersymmetric structure, in which any of the three nonlocal generators of a Clifford algebra may be chosen as the grading operator. We find that the supersymmetry generators for both systems are the Darboux-dressed integrals of a free spin-1/2 particle in the Schroedinger picture, or of a free massive Dirac particle. Nonlocal Foldy-Wouthuysen transformations are shown to be involved in the supersymmetric structure.

  10. Nuclear Science Symposium, 19th, and Nuclear Power Systems Symposium, 4th, Miami, Fla., December 6-8, 1972, Proceedings.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.

  11. Robotic control architecture development for automated nuclear material handling systems

    SciTech Connect

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies.

  12. Expert system for online surveillance of nuclear reactor coolant pumps

    DOEpatents

    Gross, Kenny C.; Singer, Ralph M.; Humenik, Keith E.

    1993-01-01

    An expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  13. Effective specific impulse of external nuclear pulse propulsion systems

    NASA Technical Reports Server (NTRS)

    Reynolds, T. W.

    1972-01-01

    An investigation of a simple self-similar flow model for an external nuclear pulse propulsion system indicates that to achieve the high effective specific impulse of such a system three principal factors are required. The are (1) attaining pulses of optimum energy, (2) attaining good propellant collimation, and (3) using an ablative material for the pusher surface which has high absorptivity for radiant energy at the propellant stagnation temperature.

  14. Engine cycle design considerations for nuclear thermal propulsion systems

    SciTech Connect

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T. )

    1993-01-20

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown.

  15. Fusion Reactions of Superheavy and Giant Nuclear Systems

    SciTech Connect

    Greiner, Walter; Zagrebaev, Valery

    2007-05-22

    The problem of production and study of superheavy elements is discussed in the talk. Different nuclear reactions leading to formation of superheavy nuclei are analyzed. Collisions of transactinide nuclei are investigated as an alternative way for production of neutron-rich superheavy elements. In many events lifetime of the composite giant nuclear system consisting of two touching nuclei turns out to be rather long ({>=} 10-20 s); sufficient for observing line structure in spontaneous positron emission from super-strong electric fields, a fundamental QED process.

  16. Fault-tolerant adaptive control for load-following in static space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Onbasioglu, Fetiye O.; Peddicord, Kenneth L.; Metzger, John D.

    1992-01-01

    The possible use of a dual-loop model-based adaptive control system for load following in static space nuclear power systems is investigated. The proposed approach has thus far been applied only to a thermoelectric space nuclear power system but is equally applicable to other static space nuclear power systems such as thermionic systems.

  17. Observation of lasing modes with exotic localized wave patterns from astigmatic large-Fresnel-number cavities.

    PubMed

    Lu, T H; Lin, Y C; Liang, H C; Huang, Y J; Chen, Y F; Huang, K F

    2010-02-01

    We investigate the lasing modes in large-Fresnel-number laser systems with astigmatism effects. Experimental results reveal that numerous lasing modes are concentrated on exotic patterns corresponding to intriguing geometries. We theoretically use the quantum operator algebra to construct the wave representation for manifesting the origin of the localized wave patterns. PMID:20125716

  18. Nuclear data for non-intrusive inspection systems

    SciTech Connect

    Bendahan, J.; Loveman, R.; Gozani, T.

    1994-12-31

    Non-intrusive inspection systems based on nuclear techniques utilize the interaction of neutrons and gamma rays to determine the elemental constituents of the inspected object. The Thermal Neutron Analysis System has been used to detect explosives and narcotics concealed in passenger luggage and small objects. More recently the Pulsed Fast Neutron Analysis technique is being used to detect contraband in large cargo containers and has been proposed for the characterization of waste drums. The design of these systems requires the utilization of simulation codes where the accuracy of the results depends largely on the nuclear libraries. Several nuclear data evaluations were reviewed and compared with existing data to identify the most accurate ones. Large discrepancies were found among the various nuclear libraries, mainly in the production cross sections and angular distributions of gamma rays, stimulated by neutron interactions. An experimental program was carried out to correct and complement the required data. Evaluations of gamma-ray production cross sections for carbon, oxygen and chlorine are reviewed and compared with existing and new experimental data.

  19. Design and implementation of a nuclear weapons management system submodule: Shipboard security force system. Master's thesis

    SciTech Connect

    Settlemyer, S.R.

    1991-09-01

    The Nuclear Weapons Management System combines the strengths of an expert system with the flexibility of a database management system to assist the Weapons Officer, Security Officer, and the Personnel Reliability Program Officer in the performance of administrative duties associated with the nuclear weapons programs in the United States Navy. This thesis examines the need for, and ultimately the design of, a system that will assist the Security Officer in administrative duties associated with the Shipboard Self Defense Force. This system, designed and coded utilizing dBASE IV, can be implemented as a stand alone system. Furthermore, it interfaces with the expert system submodule that handles the PRP screening process.

  20. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  1. Safety assessment of a robotic system handling nuclear material

    SciTech Connect

    Atcitty, C.B.; Robinson, D.G.

    1996-02-01

    This paper outlines the use of a Failure Modes and Effects Analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, The Weigh and Leak Check System, is to replace a manual process at the Department of Energy facility at Pantex by which nuclear material is inspected for weight and leakage. Failure Modes and Effects Analyses were completed for the robotics process to ensure that safety goals for the system had been meet. These analyses showed that the risks to people and the internal and external environment were acceptable.

  2. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    SciTech Connect

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  3. Launch approval considerations for space nuclear power systems

    NASA Astrophysics Data System (ADS)

    Skinner, Dawn; Phillips, J. Mark

    1998-01-01

    Nuclear Safety Launch Approval is the US process by which approval is granted from the Executive Branch for the use of nuclear materials in space. It involves analyses utilizing a combination of theoretical calculation and empirical test data, by which the launch of a space nuclear system is demonstrated to have acceptable consequences in terms of radiological risk. Many factors influence the launch approval process and it's complexity. Historical launch approval examples are discussed as well as considerations for mission design, power source design, launch vehicle selection and spacecraft design which may simplify the analyses for launch approval. Factors which influence the complexity of the analyses as well as factors which can bound the analyses are discussed.

  4. Timing system for firing widely spaced test nuclear detonations

    NASA Technical Reports Server (NTRS)

    Partridge, Ralph E.

    1992-01-01

    The national weapons design laboratories (Los Alamos National Laboratory and Lawrence Livermore National Laboratory) test fire nuclear devices at the Nevada Test Site (NTS), which is spread over an area of over 1200 square miles. On each test there are hundreds of high time resolution recordings made of nuclear output waveforms and other phenomena. In order to synchronize these recordings with each other, with the nuclear device, and with offsite recordings, there is a requirement that the permanent command center and the outlying temporary firing sites be time tied to each other and to UTC to permit firing the shot at a predetermined time with an accuracy of about a microsecond. Various aspects of the test setup and timing system are discussed.

  5. Systems for the Intermodal Routing of Spent Nuclear Fuel

    SciTech Connect

    Peterson, Steven K; Liu, Cheng

    2015-01-01

    The safe and secure movement of spent nuclear fuel from shutdown and active reactor facilities to intermediate or long term storage sites may, in some instances, require the use of several modes of transportation to accomplish the move. To that end, a fully operable multi-modal routing system is being developed within Oak Ridge National Laboratory s (ORNL) WebTRAGIS (Transportation Routing Analysis Geographic Information System). This study aims to provide an overview of multi-modal routing, the existing state of the TRAGIS networks, the source data needs, and the requirements for developing structural relationships between various modes to create a suitable system for modeling the transport of spent nuclear fuel via a multimodal network. Modern transportation systems are comprised of interconnected, yet separate, modal networks. Efficient transportation networks rely upon the smooth transfer of cargoes at junction points that serve as connectors between modes. A key logistical impediment to the shipment of spent nuclear fuel is the absence of identified or designated transfer locations between transport modes. Understanding the potential network impacts on intermodal transportation of spent nuclear fuel is vital for planning transportation routes from origin to destination. By identifying key locations where modes intersect, routing decisions can be made to prioritize cost savings, optimize transport times and minimize potential risks to the population and environment. In order to facilitate such a process, ORNL began the development of a base intermodal network and associated routing code. The network was developed using previous intermodal networks and information from publicly available data sources to construct a database of potential intermodal transfer locations with likely capability to handle spent nuclear fuel casks. The coding development focused on modifying the existing WebTRAGIS routing code to accommodate intermodal transfers and the selection of

  6. Study of reactor Brayton power systems for nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using Brayton power systems for nuclear electric spacecraft was investigated. The primary performance parameters of systems mass and radiator area were determined for systems from 100 to 1000 kW sub e. Mathematical models of all system components were used to determine masses and volumes. Two completely independent systems provide propulsion power so that no single-point failure can jeopardize a mission. The waste heat radiators utilize armored heat pipes to limit meteorite puncture. The armor thickness was statistically determined to achieve the required probability of survival. A 400 kW sub e reference system received primary attention as required by the contract. The components of this system were defined and a conceptual layout was developed with encouraging results. An arrangement with redundant Brayton power systems having a 1500 K (2240 F) turbine inlet temperature was shown to be compatible with the dimensions of the space shuttle orbiter payload bay.

  7. PEGASUS: A multi-megawatt nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Coomes, Edmund P.; Cuta, Judith M.; Webb, Brent J.; King, David Q.; Patterson, Mike J.; Berkopec, Frank

    1986-01-01

    A propulsion system (PEGASUS) consisting of an electric thruster driven by a multimegawatt nuclear power system is proposed for a manned Mars mission. Magnetoplasmadynamic and mercury-ion thrusters are considered, based on a mission profile containing a 510-day burn time (for a mission time of approximately 1000 days). Both thrusters are capable of meeting the mission parameters. Electric propulsion systems have significant advantages over chemical systems, because of high specific impulse, lower propellant requirements, and lower system mass. The power for the PEGASUS system is supplied by a boiling liquid-metal fast reactor. The power system consists of the reactor, reactor shielding, power conditioning subsystems, and heat rejection subsystems. It is capable of providing a maximum of 8.5 megawatts of electrical power of which 6 megawatts is needed for the thruster system, leaving 1.5 megawatts available for inflight mission applications.

  8. Coupled MEMS Nuclear Battery and FEEP Thruster System

    NASA Astrophysics Data System (ADS)

    Zillmer, Andrew J.; Santarius, John F.; Blanchard, James P.

    2004-02-01

    This paper describes research on combining a microelectromechanical system (MEMS) nuclear battery with a field-emission electric propulsion (FEEP) thruster, thereby providing potentially attractive solutions to precise satellite stationkeeping and propulsion requirements. The MEMS nuclear battery, under development at the University of Wisconsin, consists of multiple layers of a radioisotope source alternating with pn junction semiconductor energy converters. Many radioisotopes were assessed for this purpose, typically with average beta-particle energies of 50-250 eV, and the beta-emitter Cs-137 tentatively has been identified as most suitable. A slit-style, cesium-propellant FEEP thruster was chosen for the present study because it is a relatively mature technology. For use with a FEEP thruster, many modular MEMS nuclear batteries must be arrayed in series in order to achieve a sufficiently high voltage (~10 kV). Critical issues include achieving an attractively high MEMS nuclear battery efficiency, maximizing the battery's lifetime against radiation damage, producing the relatively high voltage (~10 kV) required for a FEEP thruster, and providing an effective interface between the MEMS nuclear battery modules and the FEEP thruster.

  9. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    SciTech Connect

    Timothy J. Leahy

    2010-06-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated “toolkit” consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  10. Upgrades to the NESS (Nuclear Engine System Simulation) Code

    NASA Technical Reports Server (NTRS)

    Fittje, James E.

    2007-01-01

    In support of the President's Vision for Space Exploration, the Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for human expeditions to the moon and Mars. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the 1960's and 1970's. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design.

  11. SCALE 6: Comprehensive Nuclear Safety Analysis Code System

    SciTech Connect

    Bowman, Stephen M

    2011-01-01

    Version 6 of the Standardized Computer Analyses for Licensing Evaluation (SCALE) computer software system developed at Oak Ridge National Laboratory, released in February 2009, contains significant new capabilities and data for nuclear safety analysis and marks an important update for this software package, which is used worldwide. This paper highlights the capabilities of the SCALE system, including continuous-energy flux calculations for processing multigroup problem-dependent cross sections, ENDF/B-VII continuous-energy and multigroup nuclear cross-section data, continuous-energy Monte Carlo criticality safety calculations, Monte Carlo radiation shielding analyses with automated three-dimensional variance reduction techniques, one- and three-dimensional sensitivity and uncertainty analyses for criticality safety evaluations, two- and three-dimensional lattice physics depletion analyses, fast and accurate source terms and decay heat calculations, automated burnup credit analyses with loading curve search, and integrated three-dimensional criticality accident alarm system analyses using coupled Monte Carlo criticality and shielding calculations.

  12. Potential civil mission applications for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Beatty, R. G. G.

    1985-01-01

    It is pointed out that the energy needs of spacecraft over the last 25 years have been met by photovoltaic arrays with batteries, primary fuel cells, and radioisotope thermoelectric generators (RTG). However, it might be difficult to satisfy energy requirements for the next generation of space missions with the currently used energy sources. Applications studies have emphasized the need for a lighter, cheaper, and more compact high-energy source than the scaling up of current technologies would permit. These requirements could be satisfied by a nuclear reactor power system. The joint NASA/DOD/DOE SP-100 program is to explore and evaluate this option. Critical elements of the technology are also to be developed, taking into account space reactor systems of the 100 kW class. The present paper is concerned with some of the civil mission categories and concepts which are enabled or significantly enhanced by the performance characteristics of a nuclear reactor energy system.

  13. Exotic quarks in Twin Higgs models

    DOE PAGESBeta

    Cheng, Hsin -Chia; Jung, Sunghoon; Salvioni, Ennio; Tsai, Yuhsin

    2016-03-14

    The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ~ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of themore » model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. We study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. As a result, depending on the details of the twin sector, the exotic quarks may be probed up to ~ 2.5 TeV at the LHC and beyond 10 TeV at a future 100 TeV collider, providing a strong test of this class of ultraviolet completions.« less

  14. Exotic quarks in Twin Higgs models

    NASA Astrophysics Data System (ADS)

    Cheng, Hsin-Chia; Jung, Sunghoon; Salvioni, Ennio; Tsai, Yuhsin

    2016-03-01

    The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ˜ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of the model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. We study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. Depending on the details of the twin sector, the exotic quarks may be probed up to ˜ 2.5TeV at the LHC and beyond 10TeV at a future 100TeV collider, providing a strong test of this class of ultraviolet completions.

  15. Discovering uncolored naturalness in exotic Higgs decays

    NASA Astrophysics Data System (ADS)

    Curtin, David; Verhaaren, Christopher B.

    2015-12-01

    Solutions to the hierarchy problem usually require top partners. In standard SUSY or composite Higgs theories, the partners carry SM color and are becoming increasingly constrained by LHC searches. However, theories like Folded SUSY (FS), Twin Higgs (TH) and Quirky Little Higgs (QLH) introduce uncolored top partners, which can be SM singlets or carry electroweak charge. Their small production cross section left doubt as to whether the LHC can effectively probe such scenarios. Typically, these partners are charged under their own mirror color gauge group. In FS and QLH, the absence of light mirror matter allows glueballs to form at the bottom of the mirror spectrum. This is also the case in some TH realizations. The Higgs can decay to these mirror glueballs, with the glueballs decaying into SM particles with potentially observable lifetimes. We undertake the first detailed study of this glueball signature and quantitatively demonstrate the discovery potential of uncolored naturalness via exotic Higgs decays at the LHC and a potential future 100TeV collider. Our findings indicate that mirror glueballs are the smoking gun signature of natural FS and QLH type theories, in analogy to tree-level Higgs coupling shifts for the TH. We show that glueball masses in the ˜ 10-60 GeV mass range are theoretically preferred. Careful treatment of lifetime, mirror-hadronization and non-perturbative uncertainties is required to perform meaningful collider studies. We outline several new search strategies for exotic Higgs decays of the form h → XX → 4 f at the LHC, with X having lifetimes in the 10 μm to km range. We find that FS stops can be probed with masses up to 600 (1100) GeV at the LHC with 300 (3000) fb-1 of data, and TH top partners could be accessible with masses up to 900 (1500) GeV. This makes exotic Higgs decays the prime discovery channel for uncolored naturalness at the LHC.

  16. Big brake singularity is accommodated as an exotic quintessence field

    NASA Astrophysics Data System (ADS)

    Chimento, Luis P.; Richarte, Martín G.

    2016-02-01

    We describe a big brake singularity in terms of a modified Chaplygin gas equation of state p =(γm-1 )ρ +α γmρ-n, accommodate this late-time event as an exotic quintessence model obtained from an energy-momentum tensor, and focus on the cosmological behavior of the exotic field, its kinetic energy, and the potential energy. At the background level the exotic field does not blow up, whereas its kinetic energy and potential both grow without limit near the future singularity. We evaluate the classical stability of this background solution by examining the scalar perturbations of the metric along with the inclusion of entropy perturbation in the perturbed pressure. Within the Newtonian gauge, the gravitational field approaches a constant near the singularity plus additional regular terms. When the perturbed exotic field is associated with α >0 the perturbed pressure and contrast density both diverge, whereas the perturbed exotic field and the divergence of the exotic field's velocity go to zero exponentially. When the perturbed exotic field is associated with α <0 the contrast density always blows up, but the perturbed pressure can remain bounded. In addition, the perturbed exotic field and the divergence of the exotic field's velocity vanish near the big brake singularity. We also briefly look at the behavior of the intrinsic entropy perturbation near the singular event.

  17. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Borowski, Stanley K.; Mcilwain, Melvin C.; Pellaccio, Dennis G.

    1992-01-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the 'next generation' of space propulsion systems - the key to space exploration.

  18. Indicator system for advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  19. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    SciTech Connect

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-02-06

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as {approx} 16 We/kg and {approx} 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is {approx} 640 m2 and {approx} 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is {approx} 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is {approx} 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems.

  20. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-02-01

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as ˜ 16 We/kg and ˜ 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is ˜ 640 m2 and ˜ 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is ˜ 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is ˜ 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems.

  1. Relativistic Mean Field description of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Gambhir, Y. K.

    1994-03-01

    The Relativistic Mean Field (RMF) approach which essentially is an extension of the original σ — ω model of Walecka, has been applied to exotic nuclei as an illustration. We consider nuclei near Z = 34 in the very interesting 2p-1f region. The calculated binding energies, root mean square radii, deformations and other observables are very satisfactory and are in accordance with the experiment (where available) and also with the available empirical studies. Large deformations and shape co-existence are obtained for several cases.

  2. Global analysis of fermion mixing with exotics

    NASA Technical Reports Server (NTRS)

    Nardi, Enrico; Roulet, Esteban; Tommasini, Daniele

    1991-01-01

    The limits are analyzed on deviation of the lepton and quark weak-couplings from their standard model values in a general class of models where the known fermions are allowed to mix with new heavy particles with exotic SU(2) x U(1) quantum number assignments (left-handed singlets or right-handed doublets). These mixings appear in many extensions of the electroweak theory such as models with mirror fermions, E(sub 6) models, etc. The results update previous analyses and improve considerably the existing bounds.

  3. Rare and exotic processes at CDF

    SciTech Connect

    Culbertson, Ray; /Fermilab

    2010-01-01

    We report recent results in CDF searches for rare and exotic processes. In a signature-based search, we examine the diphoton dataset for additional energetic objects. In a second signature-based search, we search for anomalous production of a photon, a b-tagged jet, and missing E{sub T}. Finally, we search for a Fermiophobic Higgs in the two-photon decay mode, and conclude this Higgs must have mass greater than 106 GeV/c{sup 2}, at 95% confidence level.

  4. Conceptual baseline document for the nuclear materials safeguards system

    SciTech Connect

    Nelson, R.A.

    1995-08-01

    This document defines the baseline scope, schedule, and cost requirements of the Nuclear Materials Safeguards System (NMSS) replacement for the Plutonium Finishing Plant. The Nuclear Material Safeguards System (NMSS), operating in PFP, comprises data from several site safeguards systems that have been merged since 1987. NMSS was designed and implemented to the state of computer technology for the mid 1970`s. Since implementation, the hardware vendor has stopped producing computer systems and the availability of personnel trained and willing to work with the technology has diminished. Maintenance has become expensive and `reliability is a serious concern. -This effort provides a replacement in kind of the NMSS, using modern, scalable, upgradable hardware and software to the same standards used for the Hanford Local Area Network (HLAN) system. The NMSS Replacement is a Client/Server architecture designed on a Personal Computer based local area network (LAN) platform. The LAN is provided through an ethernet interface running the Transmission Control Protocol/Internet Protocol (TCP/IP). This architecture conforms to the HLAN standard, including the End System Operating Environment (ESOE). The Server runs the Microsoft Windows NT` Server operating system, Microsoft SQL Server2 database management system, and application tools. Clients run Microsoft Windows` and application software provided as part of the system. The interface between the clients and the database is through Microsoft ODBC4.

  5. Monitoring two native Spodoptera species using an exotic pheromone lure developed for an exotic species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pheromone lure for the exotic species Spodoptera exempta was successful at attracting two native species, S. latifascia and S. albula. Trapping was conducted in north-central Florida and in southern Texas. Large numbers of both native species were collected throughout the season....

  6. The MAUS nuclear space reactor with ion propulsion system

    NASA Astrophysics Data System (ADS)

    Mainardi, Enrico

    2006-06-01

    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long-lasting, low-mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermoionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome "La Sapienza" starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA.

  7. Applications of nuclear reactor power systems to electric propulsion missions.

    NASA Technical Reports Server (NTRS)

    Schaupp, R. W.; Sawyer, C. D.

    1971-01-01

    The performance of nuclear electric propulsion systems (NEP) has been evaluated for a wide variety of missions in an attempt to establish the commonality of NEP system requirements. Emphasis was given to those requirements and system characteristics that serve as guidelines for current technology development programs. Various interactions and tradeoffs between NEP system and mission parameters are described. The results show that the most significant factors in selecting NEP system size are launch mode (direct or spiral escape) and, to a weaker extent, launch vehicle capability. Other factors such as mission, payload, and thrust time constraints, have little influence, thus allowing one NEP system to be used for many missions. The results indicated that a 100 kWe NEP would be suitable for most direct escape missions and a 250 kWe NEP system would be suitable for more demanding missions that use the spiral escape mode.

  8. Naval Spent Nuclear Fuel disposal Container System Description Document

    SciTech Connect

    N. E. Pettit

    2001-07-13

    The Naval Spent Nuclear Fuel Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers/waste packages are loaded and sealed in the surface waste handling facilities, transferred underground through the access drifts using a rail mounted transporter, and emplaced in emplacement drifts. The Naval Spent Nuclear Fuel Disposal Container System provides long term confinement of the naval spent nuclear fuel (SNF) placed within the disposal containers, and withstands the loading, transfer, emplacement, and retrieval operations. The Naval Spent Nuclear Fuel Disposal Container System provides containment of waste for a designated period of time and limits radionuclide release thereafter. The waste package maintains the waste in a designated configuration, withstands maximum credible handling and rockfall loads, limits the waste form temperature after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Each naval SNF disposal container will hold a single naval SNF canister. There will be approximately 300 naval SNF canisters, composed of long and short canisters. The disposal container will include outer and inner cylinder walls and lids. An exterior label will provide a means by which to identify a disposal container and its contents. Different materials will be selected for the waste package inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and the natural barrier will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel while the outer cylinder and outer cylinder lids will be made of high-nickel alloy.

  9. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  10. Interface requirements in nuclear medicine devices and systems

    SciTech Connect

    Maguire, G.Q. Jr.; Brill, A.B.; Noz, M.E.

    1982-01-01

    Interface designs for three nuclear medicine imaging systems, and computer networking strategies proposed for medical imaging departments are presented. Configurations for two positron-emission-tomography devices (PET III and ECAT) and a general-purpose tomography instrument (the UNICON) are analyzed in terms of specific performance parameters. Interface designs for these machines are contrasted in terms of utilization of standard versus custom modules, cost, and ease of modification, upgrade, and support. The requirements of general purpose systems for medical image analysis, display, and archiving, are considered, and a realizable state-of-the-art system is specfied, including a suggested timetable.

  11. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    SciTech Connect

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  12. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  13. Design of robust level control system of nuclear steam generator

    NASA Astrophysics Data System (ADS)

    Lee, Y. J.; Na, M. G.

    2007-12-01

    The nuclear steam generator feedwater control system is designed by the robust control methods. The design is divided into two steps. First, the feedwater controller in the feedwater station is designed by H ∞ and MWS methods. Then the controller located on the feedback loop is designed both by classical PID and by robust technique. It is found that the feedback controller of simple PID whose coefficients vary with the power is proper for the system performance. The simulations show that the hybrid system of H ∞ and PID has a good performance with proper stability margins.

  14. Nuclear Thermal Rocket - Arc Jet Integrated System Model

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Emrich, William

    2016-01-01

    In the post-shuttle era, space exploration is moving into a new regime. Commercial space flight is in development and is planned to take on much of the low earth orbit space flight missions. With the development of a heavy lift launch vehicle, the Space Launch, System, NASA has become focused on deep space exploration. Exploration into deep space has traditionally been done with robotic probes. More ambitious missions such as manned missions to asteroids and Mars will require significant technology development. Propulsion system performance is tied to the achievability of these missions and the requirements of other developing technologies that will be required. Nuclear thermal propulsion offers a significant improvement over chemical propulsion while still achieving high levels of thrust. Opportunities exist; however, to build upon what would be considered a standard nuclear thermal engine to attain improved performance, thus further enabling deep space missions. This paper discuss the modeling of a nuclear thermal system integrated with an arc jet to further augment performance. The performance predictions and systems impacts are discussed.

  15. Nuclear-power-safety reporting system: feasibility analysis

    SciTech Connect

    Finlayson, F.C.; Ims, J.

    1983-04-01

    The US Nuclear Regulatory Commission (NRC) is evaluating the possibility of instituting a data gathering system for identifying and quantifying the factors that contribute to the occurrence of significant safety problems involving humans in nuclear power plants. This report presents the results of a brief (6 months) study of the feasibility of developing a voluntary, nonpunitive Nuclear Power Safety Reporting System (NPSRS). Reports collected by the system would be used to create a data base for documenting, analyzing and assessing the significance of the incidents. Results of The Aerospace Corporation study are presented in two volumes. This document, Volume I, contains a summary of an assessment of the Aviation Safety Reporting System (ASRS). The FAA-sponsored, NASA-managed ASRS was found to be successful, relatively low in cost, generally acceptable to all facets of the aviation community, and the source of much useful data and valuable reports on human factor problems in the nation's airways. Several significant ASRS features were found to be pertinent and applicable for adoption into a NPSRS.

  16. TOF-Bρ mass measurements of very exotic nuclides for astrophysical calculations at the NSCL

    NASA Astrophysics Data System (ADS)

    Matoš, M.; Estrade, A.; Amthor, M.; Aprahamian, A.; Bazin, D.; Becerril, A.; Elliot, T.; Galaviz, D.; Gade, A.; Gupta, S.; Lorusso, G.; Montes, F.; Pereira, J.; Portillo, M.; Rogers, A. M.; Schatz, H.; Shapira, D.; Smith, E.; Stolz, A.; Wallace, M.

    2008-01-01

    Atomic masses play a crucial role in many nuclear astrophysics calculations. The lack of experimental values for relevant exotic nuclides triggered a rapid development of new mass measurement devices around the world. The time-of-flight (TOF) mass measurements offer a complementary technique to the most precise one, Penning trap measurements (Blaum 2006 Phys. Rep. 425 1), the latter being limited by the rate and half-lives of the ions of interest. The NSCL facility provides a well-suited infrastructure for the TOF mass measurements of very exotic nuclei. At this facility, we have recently implemented a TOF-Bρ technique and performed mass measurements of neutron-rich nuclides in the Fe region, important for r-process calculations and for calculations of processes occurring in the crust of accreting neutron stars.

  17. The Global Network of Optical Magnetometers to search for Exotic physics (GNOME)

    NASA Astrophysics Data System (ADS)

    Jackson Kimball, Derek; Pustelny, Szymon; Pospelov, Maxim; Ledbetter, Micah; Leefer, Nathan; Wlodarczyk, Przemyslaw; Wcislo, Piotr; Gawlik, Wojciech; Smith, Joshua; Read, Jocelyn; Pankow, Chris; Budker, Dmitry; Gnome Collaboration

    2014-05-01

    Construction of a network of geographically separated, time-synchronized ultrasensitive atomic comagnetometers to search for correlated transient signals heralding new physics is underway [S. Pustelny et al., Annalen der Physik 525(8-9), 659-670 (2013)]. The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) would be sensitive to nuclear and electron spin couplings to various exotic fields generated by astrophysical sources. To date, no such search has ever been carried out, making the GNOME a novel experimental window on new physics. A specific example of new physics detectable with the GNOME, presently unconstrained by astrophysical observations and laboratory experiments, is a network of domain walls of light pseudoscalar fields [M. Pospelov et al., Phys. Rev. Lett. 110, 021803 (2013)]. This work was supported by the National Science Foundation.

  18. Systems and methods for dismantling a nuclear reactor

    DOEpatents

    Heim, Robert R; Adams, Scott Ryan; Cole, Matthew Denver; Kirby, William E; Linnebur, Paul Damon

    2014-10-28

    Systems and methods for dismantling a nuclear reactor are described. In one aspect the system includes a remotely controlled heavy manipulator ("manipulator") operatively coupled to a support structure, and a control station in a non-contaminated portion of a workspace. The support structure provides the manipulator with top down access into a bioshield of a nuclear reactor. At least one computing device in the control station provides remote control to perform operations including: (a) dismantling, using the manipulator, a graphite moderator, concrete walls, and a ceiling of the bioshield, the manipulator being provided with automated access to all internal portions of the bioshield; (b) loading, using the manipulator, contaminated graphite blocks from the graphite core and other components from the bioshield into one or more waste containers; and (c) dispersing, using the manipulator, dust suppression and contamination fixing spray to contaminated matter.

  19. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    SciTech Connect

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  20. Systems analysis of solid fuel nuclear engines in cislunar space

    NASA Astrophysics Data System (ADS)

    Thomas, U.; Koelle, H. H.; Balzer-Sieb, R.; Bernau, D.; Czarnitzki, J.; Floete, A.; Goericke, D.; Lindenthal, A.; Protsch, R.; Teschner, O.

    1984-12-01

    The use of nuclear engines in cislunar space was studied and the restrictions imposed on nuclear ferries by the chemical Earth to lower Earth orbit (LEO) transportation system were analyzed. The operating conditions are best met by tungsten-water-moderated reactors due to a high specific impulse and long durability. Specific transportation cost for LEO to geostationary orbit (GEO) and LEO to lunar orbit flights were calculated for a transportation system life of 50 yr. Average transportation costs are estimated to be 141 $/kg. No difference is made for both routes. An additional analysis of smaller and larger flight units shows only small cost reductions by employing larger ferries but a significant cost increase in case smaller flight units are used.

  1. Expert systems and their use in nuclear power plants

    SciTech Connect

    Uhrig, R.E. |

    1990-12-31

    In the operation of a nuclear power plant, great quantities of numeric, symbolic, and quantitative information are handled by the reactor operators even during routine operation. The sheer magnitude of the number of process parameters and systems interactions poses difficulties for the operators, particularly during abnormal or emergency situations. Recovery from an upset situation depends upon the facility with which available raw data can be converted into, and assimilated as, meaningful knowledge. In operating a nuclear power plant, people are sometimes affected by fatigue, stress, emotion, and environmental factors that may have varying degrees of influence on their performance. Expert systems provide a method of removing some of the uncertainty from operator decisions by providing expert advice and rapid access to a large information base. 74 refs., 2 tabs.

  2. Dual annular rotating "windowed" nuclear reflector reactor control system

    DOEpatents

    Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.

    1994-01-01

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

  3. Application of Nuclear Physics Methods in the Verification System for the Comprehensive Nuclear-Test-Ban Treaty

    NASA Astrophysics Data System (ADS)

    Wilhelmsen, K.; Elmgren, K.; Jansson, P.

    2005-04-01

    Elements of the The Comprehensive Nuclear Test-Ban Treaty (CTBT) and its International Monitoring System (IMS) are briefly described. Two different radionuclide detection systems, developed by the Swedish Defence Research Agency (FOI), are treated in more detail.

  4. Risk analysis of nuclear safeguards regulations. [Aggregated Systems Model (ASM)

    SciTech Connect

    Al-Ayat, R.A.; Altman, W.D.; Judd, B.R.

    1982-06-01

    The Aggregated Systems Model (ASM), a probabilisitic risk analysis tool for nuclear safeguards, was applied to determine benefits and costs of proposed amendments to NRC regulations governing nuclear material control and accounting systems. The objective of the amendments was to improve the ability to detect insiders attempting to steal large quantities of special nuclear material (SNM). Insider threats range from likely events with minor consequences to unlikely events with catastrophic consequences. Moreover, establishing safeguards regulations is complicated by uncertainties in threats, safeguards performance, and consequences, and by the subjective judgments and difficult trade-offs between risks and safeguards costs. The ASM systematically incorporates these factors in a comprehensive, analytical framework. The ASM was used to evaluate the effectiveness of current safeguards and to quantify the risk of SNM theft. Various modifications designed to meet the objectives of the proposed amendments to reduce that risk were analyzed. Safeguards effectiveness was judged in terms of the probability of detecting and preventing theft, the expected time to detection, and the expected quantity of SNM diverted in a year. Data were gathered in tours and interviews at NRC-licensed facilities. The assessment at each facility was begun by carefully selecting scenarios representing the range of potential insider threats. A team of analysts and facility managers assigned probabilities for detection and prevention events in each scenario. Using the ASM we computed the measures of system effectiveness and identified cost-effective safeguards modifications that met the objectives of the proposed amendments.

  5. A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments

    NASA Astrophysics Data System (ADS)

    Sang, Ziru; Li, Feng; Jiang, Xiao; Jin, Ge

    2014-04-01

    We developed a reconfigurable nuclear instrument system (RNIS) that could satisfy the requirements of diverse nuclear and particle physics experiments, and the inertial confinement fusion diagnostic. Benefiting from the reconfigurable hardware structure and digital pulse processing technology, RNIS shakes off the restrictions of cumbersome crates and miscellaneous modules. It retains all the advantages of conventional nuclear instruments and is more flexible and portable. RNIS is primarily composed of a field programmable hardware board and relevant PC software. Separate analog channels are designed to provide different functions, such as amplifiers, ADC, fast discriminators and Schmitt discriminators for diverse experimental purposes. The high-performance field programmable gate array could complete high-precision time interval measurement, histogram accumulation, counting, and coincidence anticoincidence measurement. To illustrate the prospects of RNIS, a series of applications to the experiments are described in this paper. The first, for which RNIS was originally developed, involves nuclear energy spectrum measurement with a scintillation detector and photomultiplier. The second experiment applies RNIS to a G-M tube counting experiment, and in the third, it is applied to a quantum communication experiment through reconfiguration.

  6. Transportin mediates nuclear entry of DNA in vertebrate systems

    PubMed Central

    Lachish-Zalait, Aurelie; Lau, Corine K.; Fichtman, Boris; Zimmerman, Ella; Harel, Amnon; Gaylord, Michelle R.; Forbes, Douglass J.; Elbaum, Michael

    2011-01-01

    Delivery of DNA to the cell nucleus is an essential step in many types of viral infection, transfection, gene transfer by the plant pathogen Agrobacterium tumefaciens, and in strategies for gene therapy. Thus, the mechanism by which DNA crosses the nuclear pore complex (NPC) is of great interest. Using nuclei reconstituted in vitro in Xenopus egg extracts, we previously studied DNA passage through the nuclear pores using a single molecule approach based on optical tweezers. Fluorescently labeled DNA molecules were also seen to accumulate within nuclei. Here we find that this import of DNA relies on a soluble protein receptor of the importin family. To identify this receptor, we used different pathway-specific cargoes in competition studies, as well as pathway-specific dominant negative inhibitors derived from the nucleoporin Nup153. We found that inhibition of the receptor transportin suppresses DNA import. In contrast, inhibition of importin β has little effect on the nuclear accumulation of DNA. The dependence on transportin was fully confirmed in assays using permeabilized HeLa cells and a mammalian cell extract. We conclude that the nuclear import of DNA observed in these different vertebrate systems is largely mediated by the receptor transportin. We further report that histones, a known cargo of transportin, can act as an adaptor for the binding of transportin to DNA. PMID:19761539

  7. NUCLEAR DATA NEEDS FOR ADVANCED REACTOR SYSTEMS. A NEA NUCLEAR SCIENCE COMMITTEE INITIATIVE.

    SciTech Connect

    SALVATORES,J.M.; ALIBERTI, G.; PALMIOTTI, G.; ROCHMAN, D.; OBLOZINSKY, P.; HERMANN, M.; TALOU, P.; KAWANO, T.; LEAL, L.; KONING, A.; KODELI, I.

    2007-04-22

    The Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee has established an International Subgroup to perform an activity in order to develop a systematic approach to define data needs for Gen-IV and, in general, for advanced reactor systems. A methodology, based on sensitivity analysis has been agreed and representative core configurations for Sodium, Gas and Lead cooled Fast Reactors (SFR, GFR, LFR) have been defined as well as a high burn-up VHTR and a high burn-up PWR. In the case of SFRs, both a TRU burner (called in fact SFR) and a core configuration with homogeneous recycling of not separated TRU (called EFR) have been considered.

  8. Education and Feminist Aesthetics: Gauguin and the Exotic

    ERIC Educational Resources Information Center

    Duran, Jane

    2009-01-01

    Throughout this article, the author argued that the attraction of the "exotic" for Gauguin was largely revealed by his response to the women of various locales and that two notions--that of the "feminine" and the "foreign" or exotic--became intertwined for him. She relied both upon the commentary of Britt Salvesen with respect to Gauguin's obvious…

  9. Resources for Teaching and Learning about Exotic Species. ERIC Digest.

    ERIC Educational Resources Information Center

    Lee, Hyonyong; Fortner, Rosanne W.

    Exotic species are organisms transported by humans, wildlife, wind, and water into regions where they did not historically exist. This ERIC Digest describes available materials and resources for teaching and learning about these exotic species. Sixteen Internet sources are provided along with six videotape resources. The digest also provides…

  10. Fire management to prevent and control exotic annual grass invasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of fire is often a critical component of exotic plant prevention and control. It is especially important in the sagebrush ecosystem where exotic annual grasses are spreading rapidly. Historically, in the sagebrush ecosystem, infrequent fires shifted vegetation dominance from sagebrush t...

  11. Fire management to prevent and control exotic annual grass invasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of fire is often a critical component of exotic plant prevention and control. It is especially important in the sagebrush ecosystem where exotic annual grasses are spreading rapidly. Historically, in the sagebrush ecosystem, infrequent fires shifted vegetation dominance from sagebrush to ...

  12. A dynamical systems model for nuclear power plant risk

    NASA Astrophysics Data System (ADS)

    Hess, Stephen Michael

    The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of

  13. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    SciTech Connect

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  14. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would

  15. Nuclear safety as applied to space power reactor systems

    SciTech Connect

    Cummings, G.E.

    1987-01-01

    To develop a strategy for incorporating and demonstrating safety, it is necessary to enumerate the unique aspects of space power reactor systems from a safety standpoint. These features must be differentiated from terrestrial nuclear power plants so that our experience can be applied properly. Some ideas can then be developed on how safe designs can be achieved so that they are safe and perceived to be safe by the public. These ideas include operating only after achieving a stable orbit, developing an inherently safe design, ''designing'' in safety from the start and managing the system development (design) so that it is perceived safe. These and other ideas are explored further in this paper.

  16. Automatic inspection system for nuclear fuel pellets or rods

    DOEpatents

    Miller, Jr., William H.; Sease, John D.; Hamel, William R.; Bradley, Ronnie A.

    1978-01-01

    An automatic inspection system is provided for determining surface defects on cylindrical objects such as nuclear fuel pellets or rods. The active element of the system is a compound ring having a plurality of pneumatic jet units directed into a central bore. These jet units are connected to provide multiple circuits, each circuit being provided with a pressure sensor. The outputs of the sensors are fed to a comparator circuit whereby a signal is generated when the difference of pressure between pneumatic circuits, caused by a defect, exceeds a pre-set amount. This signal may be used to divert the piece being inspected into a "reject" storage bin or the like.

  17. A VISION of Advanced Nuclear System Cost Uncertainty

    SciTech Connect

    J'Tia Taylor; David E. Shropshire; Jacob J. Jacobson

    2008-08-01

    VISION (VerifIable fuel cycle SImulatiON) is the Advanced Fuel Cycle Initiative’s and Global Nuclear Energy Partnership Program’s nuclear fuel cycle systems code designed to simulate the US commercial reactor fleet. The code is a dynamic stock and flow model that tracks the mass of materials at the isotopic level through the entire nuclear fuel cycle. As VISION is run, it calculates the decay of 70 isotopes including uranium, plutonium, minor actinides, and fission products. VISION.ECON is a sub-model of VISION that was developed to estimate fuel cycle and reactor costs. The sub-model uses the mass flows generated by VISION for each of the fuel cycle functions (referred to as modules) and calculates the annual cost based on cost distributions provided by the Advanced Fuel Cycle Cost Basis Report1. Costs are aggregated for each fuel cycle module, and the modules are aggregated into front end, back end, recycling, reactor, and total fuel cycle costs. The software also has the capability to perform system sensitivity analysis. This capability may be used to analyze the impacts on costs due to system uncertainty effects. This paper will provide a preliminary evaluation of the cost uncertainty affects attributable to 1) key reactor and fuel cycle system parameters and 2) scheduling variations. The evaluation will focus on the uncertainty on the total cost of electricity and fuel cycle costs. First, a single light water reactor (LWR) using mixed oxide fuel is examined to ascertain the effects of simple parameter changes. Three system parameters; burnup, capacity factor and reactor power are varied from nominal cost values and the affect on the total cost of electricity is measured. These simple parameter changes are measured in more complex scenarios 2-tier systems including LWRs with mixed fuel and fast recycling reactors using transuranic fuel. Other system parameters are evaluated and results will be presented in the paper. Secondly, the uncertainty due to

  18. Emergency heat removal system for a nuclear reactor

    DOEpatents

    Dunckel, Thomas L.

    1976-01-01

    A heat removal system for nuclear reactors serving as a supplement to an Emergency Core Cooling System (ECCS) during a Loss of Coolant Accident (LOCA) comprises a plurality of heat pipes having one end in heat transfer relationship with either the reactor pressure vessel, the core support grid structure or other in-core components and the opposite end located in heat transfer relationship with a heat exchanger having heat transfer fluid therein. The heat exchanger is located external to the pressure vessel whereby excessive core heat is transferred from the above reactor components and dissipated within the heat exchanger fluid.

  19. ALARA Overview System at Crystal River Unit 3 Nuclear Station.

    PubMed

    Kline, K B; Cope, W B

    1995-08-01

    During the Spring of 1994 the Health Physics Department at Florida Power Company used video and audio equipment to support remote health physics coverage for their Crystal River Unit 3 refueling outage (Refuel 9). The system consisted of eight cameras with audio interface linked to a control center located in a low-dose area. The system allowed health physics personnel to monitor steam generator and refueling activities with minimum exposure in high-dose areas, cutting by half the dose from the previous outage. B&W Nuclear Technologies provided complete setup, maintenance and tear-down, as well as assuming responsibilities for contaminated video and audio equipment. PMID:7622378

  20. 1986 Nuclear Science Symposium, 33rd, and 1986 Symposium on Nuclear Power Systems, 18th, Washington, DC, Oct. 29-31, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Stubblefield, F. W. (Editor)

    1987-01-01

    Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.

  1. Remote controlled tool systems for nuclear sites have subsea applications

    SciTech Connect

    Bath, B.; Yemington, C.; Kuhta, B.

    1995-10-01

    Remotely operated underwater tool systems designed to operate in Nuclear Fuel Storage Basins can be applied to deep water, subsea oilfield applications. Spent nuclear fuel rods re stored underwater in large indoor swimming pool-like facilities where the water cover shields the workers from the radiation. This paper describes three specialized tooling systems that were designed and built by Sonsub for work at the Department of Energy`s Hanford site. The Door Seal Tool removed an existing seal system, cleaned a 20 ft. tall, carbon steel, underwater hatch and installed a new stainless steel gasket surface with underwater epoxy. The Concrete Sampling Tool was built to take core samples from the vertical, concrete walls of the basins. The tool has three hydraulic drills with proprietary hollow core drill bits to cut and retrieve the concrete samples. The Rack Saw remotely attached itself to a structure, cut a variety of steel shapes and pipes, and retained the cut pieces for retrieval. All of these systems are remotely operated with onboard video cameras and debris collection systems. The methods and equipment proven in this application are available to refurbish sealing surfaces and to drill or sample concrete in offshore oil field applications.

  2. Aging effects of US space nuclear systems in orbit

    SciTech Connect

    Bartram, B.W.; Huang, R.; Tammara, S.R.; Thielke, N.R.

    1982-05-14

    This report presents information and data in support of a cost-benefit analysis being performed by Fair child Industries (FI) on the feasibility of retrieving existing US space nuclear systems in earth orbit by the Space Shuttle. This report evaluates, for US space nuclear systems presently in orbit, the radioisotopic inventory and external radiation field as a function of time, the effect of aging on fuel containment materials over the projected lifetime of the system, and the possible radioactive source terms should reentry eventually occur. Although the radioisotopic inventories and radiation fields have been evaluated for all systems, Transit 4A and Transit Triad have been emphasized in the evaluation of the aging effects and reentry consequences because these spacecraft have the shortest projected orbital lifetimes (570 and 150 years, respectively). In addition to existing systems in orbit, the radioisotopic inventory, radiation field, and reentry source terms have been evaluated for a General Purpose Heat Source (GPHS) in a parking orbit due to an aborted Galileo Mission or International Solar Polar Mission (ISPM).

  3. Engine System Model Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; Simpson, Steven P.

    2006-01-01

    In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.

  4. Fuel cycle analysis of once-through nuclear systems.

    SciTech Connect

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium

  5. A 5-GWe nuclear satellite power system conceptual design

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Thomson, W. B.

    1978-01-01

    This paper presents the results of a brief study performed for MSFC on the conceptual design of a nuclear satellite power station which delivers 5 GWe net power to earth by microwave transmission. The system contains 26 modules each consisting of a reactor, fuel processing plant, Brayton PCU, space radiator, and nuclear shield. A high-temperature, gas-cooled, pebble-bed plutonium breeder concept was selected which is resupplied with fertile U-238. Sections of this core are periodically replaced and the spent fuel is chemically processed, the radioactive wastes separated, and stored for eventual space disposal. Fresh fuel pellets, formed from the U-238 and the bred plutonium, are recycled back to the reactor. The hot (1317 C) helium gas exiting the reactor serves as the working fluid in a 30%-efficient Brayton PCU.

  6. Systems resilience : a new analytical framework for nuclear nonproliferation.

    SciTech Connect

    Pregenzer, Arian Leigh

    2011-12-01

    This paper introduces the concept of systems resilience as a new framework for thinking about the future of nonproliferation. Resilience refers to the ability of a system to maintain its vital functions in the face of continuous and unpredictable change. The nonproliferation regime can be viewed as a complex system, and key themes from the literature on systems resilience can be applied to the nonproliferation system. Most existing nonproliferation strategies are aimed at stability rather than resilience, and the current nonproliferation system may be over-constrained by the cumulative evolution of strategies, increasing its vulnerability to collapse. The resilience of the nonproliferation system can be enhanced by diversifying nonproliferation strategies to include general international capabilities to respond to proliferation and focusing more attention on reducing the motivation to acquire nuclear weapons in the first place. Ideas for future research, include understanding unintended consequences and feedbacks among nonproliferation strategies, developing methodologies for measuring the resilience of the nonproliferation system, and accounting for interactions of the nonproliferation system with other systems on larger and smaller scales.

  7. PEGASUS: a multi-megawatt nuclear electric propulsion system

    SciTech Connect

    Coomes, E.P.; Cuta, J.M.; Webb, B.J.; King, D.Q.

    1985-06-01

    With the Space Transportation System (STS), the advent of space station Columbus and the development of expertise at working in space that this will entail, the gateway is open to the final frontier. The exploration of this frontier is possible with state-of-the-art hydrogen/oxygen propulsion but would be greatly enhanced by the higher specific impulse of electric propulsion. This paper presents a concept that uses a multi-megawatt nuclear power plant to drive an electric propulsion system. The concept has been named PEGASUS, PowEr GenerAting System for Use in Space, and is intended as a ''work horse'' for general space transportation needs, both long- and short-haul missions. The recent efforts of the SP-100 program indicate that a power system capable of producing upwards of 1 megawatt of electric power should be available in the next decade. Additionally, efforts in other areas indicate that a power system with a constant power capability an order of magnitude greater could be available near the turn of the century. With the advances expected in megawatt-class space power systems, the high specific impulse propulsion systems must be reconsidered as potential propulsion systems. The power system is capable of meeting both the propulsion system and spacecraft power requirements.

  8. System design for safe robotic handling of nuclear materials

    SciTech Connect

    Drotning, W.; Wapman, W.; Fahrenholtz, J.; Kimberly, H.; Kuhlmann, J.

    1996-03-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive nuclear materials. These systems will reduce the occupational radiation exposure to workers by automating operations which are currently performed manually. Because the robotic systems will handle material that is both hazardous and valuable, the safety of the operations is of utmost importance; assurance must be given that personnel will not be harmed and that the materials and environment will be protected. These safety requirements are met by designing safety features into the system using a layered approach. Several levels of mechanical, electrical and software safety prevent unsafe conditions from generating a hazard, and bring the system to a safe state should an unexpected situation arise. The system safety features include the use of industrial robot standards, commercial robot systems, commercial and custom tooling, mechanical safety interlocks, advanced sensor systems, control and configuration checks, and redundant control schemes. The effectiveness of the safety features in satisfying the safety requirements is verified using a Failure Modes and Effects Analysis. This technique can point out areas of weakness in the safety design as well as areas where unnecessary redundancy may reduce the system reliability.

  9. ENAM'04 Fourth International Conference on Exotic Nuclei and Atomic Masses

    SciTech Connect

    Gross, C. J.; Nazarewicz, W.; Rykaczewski, K. P.

    2005-01-01

    The conference can trace its origins to the 1950s and 1960s with the Atomic Mass and Fundamental Constants (AMCO) and the Nuclei Far From Stability (NFFS) series of conferences. Held jointly in 1992, the conferences officially merged in 1995 and the fourth conference was held at Callaway Gardens in Pine Mountain, GA and was organized by the Physics Division at Oak Ridge National Laboratory. The conference covered a broad list of topics consisting of a series of invited and contributed presentation highlighting recent research in the following fields: Atomic masses, nuclear moments, and nuclear radii; Forms of radioactivity; Nuclear structure, nuclei at the drip lines, cluster phenomena; Reactions with radioactive ion beams; Nuclear astrophysics; Fundamental symmetries and interactions; Heaviest elements and fission; Radioactive ion beam production and experimental developments; Applications of exotic nuclei

  10. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  11. NUCLEAR-FUELED CIRCULATORY SUPPORT SYSTEMS IV: RADIOLOGIC PERSPECTIVES

    PubMed Central

    Huffman, F. N.; Norman, J. C.

    1974-01-01

    If an implantable artificial heart can be developed, it should prove beneficial to a significant group of patients. A variety of energy sources, such as biologic, electromagnetic, and nuclear, are under evaluation. Currently, biologic fuel cell technology is not sufficiently advanced to permit its extrapolation to the power levels required for implantable circulatory support systems. Electromagnetic systems have the disadvantage of heavy batteries of considerable bulk requiring frequent recharging. Radioisotope-fueled thermal engine systems have the potential of providing degrees of freedom not possible with rechargeable units. However, radiosotope circulatory support systems subject their recipients to prolonged intracorporeal radiation, add to environmental background radiation, and constitute an exceedingly small, but finite, hazard due to possible violation of fuel containment. PMID:15215965

  12. Accelerator-Driven Systems for Nuclear Waste Transmutation

    NASA Astrophysics Data System (ADS)

    Bowman, Charles D.

    The renewed interest since 1990 in accelerator-driven subcritical systems for transmutation of commercial nuclear waste has evolved to focus on the issue of whether fast- or thermal-spectrum systems offer greater promise. This review addresses the issue by comparing the performance of the more completely developed thermal- and fast-spectrum designs. Substantial design information is included to allow an assessment of the viability of the systems compared. The performance criteria considered most important are (a) the rapidity of reduction of the current inventory of plutonium and minor actinide from commercial spent fuel, (b) the cost, and (c) the complexity. The liquid-fueled thermal spectrum appears to offer major advantages over the solid-fueled fast-spectrum system, making waste reduction possible with about half the capital requirement on a substantially shorter time scale and with smaller separations requirements.

  13. Software reliability and safety in nuclear reactor protection systems

    SciTech Connect

    Lawrence, J.D.

    1993-11-01

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

  14. EXOTIC PARTICLE SEARCHES WITH STAR AT RHIC.

    SciTech Connect

    KANABA,S.

    2004-03-15

    We present preliminary results of the STAR experiment at RHIC on exotic particle searches in minimum bias Au + Au collisions at {radical} s{sub NN} = 200 GeV. We observe a narrow peak at 1734 {+-} 0.5 {+-} 5 MeV in the {lambda}K{sub s}{sup 0} invariant mass with width consistent with the experimental resolution of about 6 MeV within the errors. The statistical significance can be quantified between 3 and 6 {sigma} depending on cuts and methods. If this peak corresponds to a real particle state it would be a candidate for the N{sup 0} or the {Xi}{sup 0} I = 1/2 pentaquark states.

  15. Simplified models for exotic BSM searches

    NASA Astrophysics Data System (ADS)

    Heisig, Jan; Lessa, Andre; Quertenmont, Loic

    2015-12-01

    Simplified models are a successful way of interpreting current LHC searches for models beyond the standard model (BSM). So far simplified models have focused on topologies featuring a missing transverse energy (MET) signature. However, in some BSM theories other, more exotic, signatures occur. If a charged particle becomes long-lived on collider time scales — as it is the case in parts of the SUSY parameter space — it leads to a very distinct signature. We present an extension of the computer package SModelS which includes simplified models for heavy stable charged particles (HSCP). As a physical application we investigate the CMSSM stau co-annihilation strip containing long-lived staus, which presents a potential solution to the Lithium problem. Applying both MET and HSCP constraints we show that, for low values of tan β, all this region of parameter space either violates Dark Matter constraints or is excluded by LHC searches.

  16. Probing Exotic Physics With Supernova Neutrinos

    SciTech Connect

    Kelso, Chris; Hooper, Dan

    2010-09-01

    Future galactic supernovae will provide an extremely long baseline for studying the properties and interactions of neutrinos. In this paper, we discuss the possibility of using such an event to constrain (or discover) the effects of exotic physics in scenarios that are not currently constrained and are not accessible with reactor or solar neutrino experiments. In particular, we focus on the cases of neutrino decay and quantum decoherence. We calculate the expected signal from a core-collapse supernova in both current and future water Cerenkov, scintillating, and liquid argon detectors, and find that such observations will be capable of distinguishing between many of these scenarios. Additionally, future detectors will be capable of making strong, model-independent conclusions by examining events associated with a galactic supernova's neutronization burst.

  17. Exotic Photon Searches at CDF II

    SciTech Connect

    Lee, Eunsin; collaboration, for the CDF

    2009-10-01

    We present recent results of searches for exotic photons at CDF II. In the first signature-based search, we search for anomalous production of two photons with additional energetic objects. The results are consistent with the standard model expectations. In the second analysis, we present a signature-based search for anomalous production of events containing a photon, two jets, of which at least one is identified as originating from a b quark, and missing transverse energy. We find no indications of non-standard model phenomena. Finally, a search for a fermiophobic Higgs in the diphoton final state is presented. Since no evidence of a resonance in the diphoton mass spectrum is observed we exclude this Higgs boson with mass below 106 GeV/c{sup 2} at a 95% confidence level.

  18. Probing exotic physics with cosmic neutrinos

    SciTech Connect

    Hooper, Dan; /Fermilab

    2005-10-01

    Traditionally, collider experiments have been the primary tool used in searching for particle physics beyond the Standard Model. In this talk, I will discuss alternative approaches for exploring exotic physics scenarios using high energy and ultra-high energy cosmic neutrinos. Such neutrinos can be used to study interactions at energies higher, and over baselines longer, than those accessible to colliders. In this way, neutrino astronomy can provide a window into fundamental physics which is highly complementary to collider techniques. I will discuss the role of neutrino astronomy in fundamental physics, considering the use of such techniques in studying several specific scenarios including low scale gravity models, Standard Model electroweak instanton induced interactions, decaying neutrinos and quantum decoherence.

  19. Renovated Korean nuclear safety and security system: A review and suggestions to successful settlement

    SciTech Connect

    Chung, W. S.; Yun, S. W.; Lee, D. S.; Go, D. Y.

    2012-07-01

    Questions of whether past nuclear regulatory body of Korea is not a proper system to monitor and check the country's nuclear energy policy and utilization have been raised. Moreover, a feeling of insecurity regarding nuclear safety after the nuclear accident in Japan has spread across the public. This has stimulated a renovation of the nuclear safety regime in Korea. The Nuclear Safety and Security Commission (NSSC) was launched on October 26, 2011 as a regulatory body directly under the President in charge of strengthening independence and nuclear safety. This was a meaningful event as the NSSC it is a much more independent regulatory system for Korea. However, the NSSC itself does not guarantee an enhanced public acceptance of the nuclear policy and stable use nuclear energy. This study introduces the new NSSC system and its details in terms of organization structure, appropriateness of specialty, budget stability, and management system. (authors)

  20. Development of the RFID System for nuclear materials management.

    SciTech Connect

    Chen, K.; Tsai, H.; Liu, Y. Y.

    2008-01-01

    Radio frequency identification (RFID) is one of today's most rapidly growing technologies in the automatic data collection industry. Although commercial applications are already widespread, the use of this technology for managing nuclear materials is only in its infancy. Employing an RFID system has the potential to offer an immense payback: enhanced safety and security, reduced need for manned surveillance, real-time access to status and event history data, and overall cost-effectiveness. The Packaging Certification Program (PCP) in the U.S. Department of Energy's (DOE's) Office of Environmental Management (EM), Office of Packaging and Transportation (EM-63), is developing an RFID system for nuclear materials management. The system consists of battery-powered RFID tags with onboard sensors and memories, a reader network, application software, a database server and web pages. The tags monitor and record critical parameters, including the status of seals, movement of objects, and environmental conditions of the nuclear material packages in real time. They also provide instant warnings or alarms when preset thresholds for the sensors are exceeded. The information collected by the readers is transmitted to a dedicated central database server that can be accessed by authorized users across the DOE complex via a secured network. The onboard memory of the tags allows the materials manifest and event history data to reside with the packages throughout their life cycles in storage, transportation, and disposal. Data security is currently based on Advanced Encryption Standard-256. The software provides easy-to-use graphical interfaces that allow access to all vital information once the security and privilege requirements are met. An innovative scheme has been developed for managing batteries in service for more than 10 years without needing to be changed. A miniature onboard dosimeter is being developed for applications that require radiation surveillance. A field

  1. Multi-Detector Analysis System for Spent Nuclear Fuel Characterization

    SciTech Connect

    Reber, Edward Lawrence; Aryaeinejad, Rahmat; Cole, Jerald Donald; Drigert, Mark William; Jewell, James Keith; Egger, Ann Elizabeth; Cordes, Gail Adele

    1999-09-01

    The Spent Nuclear Fuel (SNF) Non-Destructive Analysis (NDA) program at INEEL is developing a system to characterize SNF for fissile mass, radiation source term, and fissile isotopic content. The system is based on the integration of the Fission Assay Tomography System (FATS) and the Gamma-Neutron Analysis Technique (GNAT) developed under programs supported by the DOE Office of Non-proliferation and National Security. Both FATS and GNAT were developed as separate systems to provide information on the location of special nuclear material in weapons configuration (FATS role), and to measure isotopic ratios of fissile material to determine if the material was from a weapon (GNAT role). FATS is capable of not only determining the presence and location of fissile material but also the quantity of fissile material present to within 50%. GNAT determines the ratios of the fissile and fissionable material by coincidence methods that allow the two prompt (immediately) produced fission fragments to be identified. Therefore, from the combination of FATS and GNAT, MDAS is able to measure the fissile material, radiation source term, and fissile isotopics content.

  2. Robotic system for remote maintenance of a pulsed nuclear reactor

    SciTech Connect

    Thunborg, S.

    1986-01-01

    Guidelines recently established for occupational radiation exposure specify that exposure should be as low as reasonably achievable. In conformance with these guidelines, SNL has developed a remote maintenance robot (RMR) system for use in the Sandia Pulse Reactor III (SPR III) facility. The RMR should reduce occupational radiation exposure by a factor of 4 and decrease reactor downtime. Other goals include developing a technology base for a more advanced pulse reactor and for the nuclear fuel cycle programs of the US Department of Energy and US Nuclear Regulatory Commission. The RMR has five major subsystems: (a) a chain-driven cart to bring the system into the reactor room; (b) a Puma 560 robot to perform dextrous operations; (c) a programmable turntable to orient the robot to any of the reactor's four sides; (d) a programmable overhead hoist for lifting components weighing up to 400 lb onto or off of the reactor; and (e) a supervisory control console for the system operator. Figure 1 is a schematic diagram of the turntable, hoist, and robot system in position around the SPR III reactor.

  3. Java-based PACS and reporting system for nuclear medicine

    NASA Astrophysics Data System (ADS)

    Slomka, Piotr J.; Elliott, Edward; Driedger, Albert A.

    2000-05-01

    In medical imaging practice, images and reports often need be reviewed and edited from many locations. We have designed and implemented a Java-based Remote Viewing and Reporting System (JaRRViS) for a nuclear medicine department, which is deployed as a web service, at the fraction of the cost dedicated PACS systems. The system can be extended to other imaging modalities. JaRRViS interfaces to the clinical patient databases of imaging workstations. Specialized nuclear medicine applets support interactive displays of data such as 3-D gated SPECT with all the necessary options such as cine, filtering, dynamic lookup tables, and reorientation. The reporting module is implemented as a separate applet using Java Foundation Classes (JFC) Swing Editor Kit and allows composition of multimedia reports after selection and annotation of appropriate images. The reports are stored on the server in the HTML format. JaRRViS uses Java Servlets for the preparation and storage of final reports. The http links to the reports or to the patient's raw images with applets can be obtained from JaRRViS by any Hospital Information System (HIS) via standard queries. Such links can be sent via e-mail or included as text fields in any HIS database, providing direct access to the patient reports and images via standard web browsers.

  4. Reactor/Brayton power systems for nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    Layton, J. P.

    1980-01-01

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  5. Elastic scattering and reactions of light exotic beams

    NASA Astrophysics Data System (ADS)

    Keeley, N.; Alamanos, N.; Kemper, K. W.; Rusek, K.

    2009-10-01

    The present work provides a literature survey of elastic scattering of exotic nuclei from 6He to 17F. It presents a set of definitions that allow different analyses to be put into a common language. A calculational approach is proposed that yields consistent results across different beams and targets so that conclusions concerning the influence of virtual and real breakup as well as transfer couplings on the elastic scattering may be drawn. Calculations of elastic scattering around the Coulomb barrier are emphasised, employing a Pb target whose large Z allows the interplay between nuclear and Coulomb forces to be exploited to maximise possible effects arising from proton or neutron haloes or skins. A series of test calculations is performed and where possible compared to data, demonstrating that there are instances where coupling to transfer channels can have a large effect on the elastic scattering angular distributions. By careful choice of target/beam combination, different aspects of the coupling effects may be emphasised.

  6. An Approach to Autonomous Control for Space Nuclear Power Systems

    SciTech Connect

    Wood, Richard Thomas; Upadhyaya, Belle R.

    2011-01-01

    Under Project Prometheus, the National Aeronautics and Space Administration (NASA) investigated deep space missions that would utilize space nuclear power systems (SNPSs) to provide energy for propulsion and spacecraft power. The initial study involved the Jupiter Icy Moons Orbiter (JIMO), which was proposed to conduct in-depth studies of three Jovian moons. Current radioisotope thermoelectric generator (RTG) and solar power systems cannot meet expected mission power demands, which include propulsion, scientific instrument packages, and communications. Historically, RTGs have provided long-lived, highly reliable, low-power-level systems. Solar power systems can provide much greater levels of power, but power density levels decrease dramatically at {approx} 1.5 astronomical units (AU) and beyond. Alternatively, an SNPS can supply high-sustained power for space applications that is both reliable and mass efficient. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of an SNPS must be able to provide continuous operatio for the mission duration with limited immediate human interaction and no opportunity for hardware maintenance or sensor calibration. In effect, the SNPS control system must be able to independently operate the power plant while maintaining power production even when subject to off-normal events and component failure. This capability is critical because it will not be possible to rely upon continuous, immediate human interaction for control due to communications delays and periods of planetary occlusion. In addition, uncertainties, rare events, and component degradation combine with the aforementioned inaccessibility and unattended operation to pose unique challenges that an SNPS control system must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design.

  7. Nuclear reactor heat transport system component low friction support system

    DOEpatents

    Wade, Elman E.

    1980-01-01

    A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.

  8. Program to justify life extension of older nuclear piping systems

    SciTech Connect

    Burr, T.K.; Dwight, J.E. Jr.; Morton, D.K.

    1991-01-01

    The Idaho National Engineering Laboratory (INEL) has a history of more than 40 years devoted to the operation of nuclear reactors designed for research and experiments. The Advanced Test Reactor (ATR) is one such operating reactor whose mission requires continued operation for an additional 25 years or more. Since the ATR is approaching its design life of twenty years, life extension evaluations have been initiated. Of particular importance are the associated high temperature, high pressure loop piping system supporting in--reactor experiments. Failure of this piping could challenge core safety margins. Since regulatory rules for nuclear power plant life extension are only in the formulation stage, the current technical guidance on this subject provided by the Department of Energy (DOE) or the commercial nuclear industry is incomplete. In the interim, order to assure continued safe operation of this piping beyond its initial design life, a program has been developed to provide the necessary technical justification for life extension. This paper describes a program that establishes Section 11 of the ASME Boiler and Pressure Vessel Code as the governing criteria document, retains B31.1 as the Code of record for Section 11 activities, specifies additional inservice inspection requirements more strict than Section 11, and relies heavily on flaw detection and fracture mechanics evaluations. 18 refs., 2 figs.

  9. Online Sensor Calibration Assessment in Nuclear Power Systems

    SciTech Connect

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

    2013-06-01

    Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors.

  10. A gamma-ray verification system for special nuclear material

    SciTech Connect

    Lanier, R.G.; Prindle, A.L.; Friensehner, A.V.; Buckley, W.M.

    1994-07-01

    The Safeguards Technology Program at the Lawrence Livermore National Laboratory (LLNL) has developed a gamma-ray screening system for use by the Materials Management Section of the Engineering Sciences Division at LLNL for verifying the presence or absence of special nuclear material (SNM) in a sample. This system facilitates the measurements required under the ``5610`` series of US Department of Energy orders. MMGAM is an intelligent, menu driven software application that runs on a personal computer and requires a precalibrated multi-channel analyzer and HPGe detector. It provides a very quick and easy-to-use means of determining the presence of SNM in a sample. After guiding the operator through a menu driven set-up procedure, the system provides an on-screen GO/NO-GO indication after determining the system calibration status. This system represents advances over earlier used systems in the areas of ease-of use, operator training requirements, and quality assurance. The system records the gamma radiation from a sample using a sequence of measurements involving a background measurement followed immediately by a measurement of the unknown sample. Both spectra are stored and available for analysis or output. In the current application, the presence of {sup 235}U, {sup 238}U, {sup 239}Pu, and {sup 208}Tl isotopes are indicated by extracting, from the stored spectra, four energy ``windows`` preset around gamma-ray lines characteristic of the radioactive decay of these nuclides. The system is easily extendible to more complicated problems.

  11. Bile acid nuclear receptor FXR and digestive system diseases

    PubMed Central

    Ding, Lili; Yang, Li; Wang, Zhengtao; Huang, Wendong

    2015-01-01

    Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases. PMID:26579439

  12. Bile acid nuclear receptor FXR and digestive system diseases.

    PubMed

    Ding, Lili; Yang, Li; Wang, Zhengtao; Huang, Wendong

    2015-03-01

    Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases. PMID:26579439

  13. A triggerless digital data acquisition system for nuclear decay experiments

    SciTech Connect

    Agramunt, J.; Tain, J. L.; Albiol, F.; Algora, A.; Estevez, E.; Giubrone, G.; Jordan, M. D.; Molina, F.; Rubio, B.; Valencia, E.

    2013-06-10

    In nuclear decay experiments an important goal of the Data Acquisition (DAQ) system is to allow the reconstruction of time correlations between signals registered in different detectors. Classically DAQ systems are based in a trigger that starts the event acquisition, and all data related with the event of that trigger are collected as one compact structure. New technologies and electronics developments offer new possibilities to nuclear experiments with the use of sampling ADC-s. This type of ADC-s is able to provide the pulse shape, height and a time stamp of the signal. This new feature (time stamp) allows new systems to run without an event trigger. Later, the event can be reconstructed using the time stamp information. In this work we present a new DAQ developed for {beta}-delayed neutron emission experiments. Due to the long moderation time of neutrons, we opted for a self-trigger DAQ based on commercial digitizers. With this DAQ a negligible acquisition dead time was achieved while keeping a maximum of event information and flexibility in time correlations.

  14. Complex Systems: From Nuclear Physics to Financial Markets

    NASA Astrophysics Data System (ADS)

    Speth, Josef

    2003-04-01

    Complexity is an interdisciplinary concept which first of all addresses the question of how order emerges out of randomness. We discuss two natural complex systems, the nuclear many-body systems and the financial markets. In the nuclear physics case we investigate the chaos-driven decay of giant resonances, where collective states are embedded in complex spectra. In the case of financial markets we discuss the dynamics and correlations of stock and bond indices. The first important observation here is that such indices, e.g. DOW or S, like nuclei, have a finite number of constituents, and therefore one may ask similar questions and apply the same methods to these indices as to finite nuclei. A second, more speculative observation is that financial crashes may be the analogue of critical points in statistical mechanics. Criticality implies a scale invariance that can mathematically defined as: F(λ x) = γ F(x). The general solution of this equation accounts for continuous as well as discrete scale invariance, the latter giving rise to log-periodic modulations correcting the structureless pure power-law behavior. The existence of log-periodic oscillations has been observed in many different systems.We have identified such oscillations in financial markets at very different time scales and indices. This observation seems to have some predictive power.

  15. Reliability program requirements for Space and Terrestrial Nuclear Power Systems

    SciTech Connect

    Not Available

    1982-10-01

    The objectives of the reliability program requirements described in this report are (1) to provide contractors with an outline of the reliability requirements established by the Department of Energy (DOE) in the areas of design, development, production, testing, and acceptance of space and terrestrial nuclear systems hardware, and (2) to guide the contractor in meeting these requirements. This publication or particular portions of it is applicable as specified in the contract. Whether the contractors/subcontractors are subject to all the requirements or only to part of them will be specified by contract, program letter, or by the contract statement-of-work.

  16. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  17. Weld monitor and failure detector for nuclear reactor system

    DOEpatents

    Sutton, Jr., Harry G.

    1987-01-01

    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

  18. Probabilistic assessment of space nuclear propulsion system nozzle

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Ball, Richard D.; Chamis, Christos C.

    1994-01-01

    In assessing the reliability of a space nuclear propulsion system (SNPS) nozzle, uncertainties associated with the following design parameters were considered: geometry, boundary conditions, material behavior, and thermal and pressure loads. A preliminary assessment of the reliability was performed using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), a finite-element computer code developed at the NASA Lewis Research Center. The sensitivity of the nozzle reliability to the uncertainties in the random variables was quantified. With respect to the effective stress, preliminary results showed that the nozzle spatial geometry uncertainties have the most significant effect at low probabilities whereas the inner wall temperature has the most significant effect at higher probabilities.

  19. System issues related to satellite communications in a nuclear environment

    SciTech Connect

    Kullstam, P.A.

    1990-05-03

    Nuclear induced signal scintillation effects are of great importance in design and deployment of military satellite systems that must provide survivable and enduring communications service. The induced scintillation will result in Rayleigh signal fading with limited signal decorrelation time and coherent bandwidth of the transmission channel as well as reduced signal power due to terminal antenna scattering loss. In this environment the coherent bandwidth and signal decorrelation time are most important design parameters for modulation subsystem design. The antenna scattering loss is important for link power budgets and satellite network loading.

  20. Nuclear Electric Propulsion - A concept for solar system exploration

    NASA Technical Reports Server (NTRS)

    Nagorski, R. P.

    1981-01-01

    The potential of Nuclear Electric Propulsion (NEP) to meet the increasing demands of our planetary space exploration program is examined and evaluated. Based on an assumption of a modest growth beyond current technology, an NEP system is described that provides performance advantage over all competitive technologies. Flight times and available payload mass - as indicators of mission performance - are compared for several mission opportunities of interest. NEP is shown to have a unique capacity for substantial reductions in mission flight times in terms of payloads consistent with the needs of planetary exploration.

  1. Testing of Liquid Metal Components for Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Pearson, J. B.; Godfroy, T. J.; Schoenfeld, M.; Webster, K.; Briggs, M. H.; Geng, S. M.; Adkins, H. E.; Werner, J. E.

    2010-01-01

    The capability to perform testing at both the module/component level and in near prototypic reactor configurations using a non-nuclear test methodology allowed for evaluation of two components critical to the development of a potential nuclear fission power system for the lunar surface. A pair of 1 kW Stirling power convertors, similar to the type that would be used in a reactor system to convert heat to electricity, were integrated into a reactor simulator system to determine their performance using pumped NaK as the hot side working fluid. The performance in the pumped-NaK system met or exceed the baseline performance measurements where the converters were electrically heated. At the maximum hot-side temperature of 550 C the maximum output power was 2375 watts. A specially-designed test apparatus was fabricated and used to quantify the performance of an annular linear induction pump that is similar to the type that could be used to circulate liquid metal through the core of a space reactor system. The errors on the measurements were generally much smaller than the magnitude of the measurements, permitting accurate performance evaluation over a wide range of operating conditions. The pump produced flow rates spanning roughly 0.16 to 5.7 l/s (2.5 to 90 GPM), and delta p levels from less than 1 kPa to 90 kPa (greater than 0.145 psi to roughly 13 psi). At the nominal FSP system operating temperature of 525 C the maximum efficiency was just over 4%.

  2. Summary of space nuclear reactor power systems, 1983--1992

    SciTech Connect

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  3. EDITORIAL: Focus on Superconductors with Exotic Symmetries FOCUS ON SUPERCONDUCTORS WITH EXOTIC SYMMETRIES

    NASA Astrophysics Data System (ADS)

    Rice, T. Maurice; Sigrist, Manfred; Maeno, Yoshiteru

    2009-05-01

    Superconductors can usefully be divided into two classes, those that are well described by the classic Bardeen-Cooper-Schrieffer (BCS) theory and its extensions and those which require a different microscopic description. The BCS theory of superconductivity solved the long standing mystery of this spectacular phenomenon and described all superconductors that were known when it was formulated in the 1950s. The key ingredient is an attractive interaction generated by the exchange of phonons between electrons which overcomes a Coulomb repulsion weakened by screening, to give a net attractive force on the low energy scale. In this case the simplest s-wave pairing always maximises the energy gain. There were speculations a little later that other types of electron pairing could be possible, but it took a quarter of a century until the first signs of superconductors with different and exotic pairing appeared. In the intervening thirty years many superconductors with exotic pairing have been and continue to be discovered and the study of their superconductivity has grown into a major subfield of condensed matter physics today. The importance of these exotic superconductors with unconventional symmetry is that their pairing is of electronic origin. As a result they are freed from the restrictions of low transition temperatures that go along with the phonon driven conventional superconductors. However in two of the main classes of the exotic superconductors, namely heavy fermion and organic superconductors, the intrinsic energy scales are very small leading to low temperature scales. The third class contains the small number of superconducting transition metal compounds with exotic pairing symmetry. The most studied of these are the high-Tc cuprates, the newly discovered iron pnictides and strontium ruthenate which is closely related to superfluid 3He. Although the basic electronic structure of these materials is well understood, the origin of the pairing is more complex

  4. Ecosystem engineers modulate exotic invasions in riparian plant communities

    NASA Astrophysics Data System (ADS)

    Corenblit, D.; Tabacchi, E.; Steiger, J.; Gonzales, E.; Planty-Tabacchi, A. M.

    2012-04-01

    The relationship between biodiversity and invasibility of exotic plant species within different environments and at different spatial scales is still being discussed amongst scientists. In this study, patterns of native and exotic plant species richness and cover were examined in relation with ecosystem engineer effects of pioneer vegetation within the active tract of the Mediterranean gravel bed river Tech, South France. The floristic composition was characterized according to two distinct vegetation types corresponding to two habitats with contrasted conditions: (i) open and exposed alluvial bars dominated by herbaceous communities and (ii) islands and river margins partly stabilized by ecosystem engineer plants, disconnected from annual hydrogeomorphic disturbances, and covered by woody vegetation. A significant positive correlation between exotic and native plant species richness and cover was observed for the herbaceous and the woody types, indicating that both native and exotic richness benefit from the prevailing environmental conditions. However, significant differences in native and exotic specific richness and cover were found between these two vegetation types. Higher values of total species richness and Shannon diversity of native and exotic species were attained within the herbaceous vegetation type compared to the woody type. These differences may be related to changes in local exposure to hydrogeomorphic disturbances driven by engineer plant species, and to vegetation succession. A lower exotic cover within the woody vegetation type compared to the herbaceous type suggested an increase of resistance to invasion by exotic species during the biogeomorphic succession. The engineer effects of woody vegetation resulted in a decrease of alpha (α) diversity at patch scale but, in parallel, caused an increase in gamma (γ) diversity at the scale of the studied river segment. Our study corroborates recent investigations that support the theory of biotic

  5. Impact of the prospective payment system on the delivery of nuclear medicine services

    SciTech Connect

    Crucitti, T.W.; Pappas, V.M.

    1986-07-01

    The study evaluates the effect of the Medicare Prospective Payment System (PPS) on nuclear medicine technologists and services. Since 80% of nuclear medicine technologists work in hospitals, a large segment of the professionals would be affected by the new system. The survey was designed to assess the PPSs effect on nuclear medicine departments at the early implementation stage.

  6. Technological implications of SNAP reactor power system development on future space nuclear power systems

    SciTech Connect

    Anderson, R.V.

    1982-11-16

    Nuclear reactor systems are one method of satisfying space mission power needs. The development of such systems must proceed on a path consistent with mission needs and schedules. This path, or technology roadmap, starts from the power system technology data base available today. Much of this data base was established during the 1960s and early 1970s, when government and industry developed space nuclear reactor systems for steady-state power and propulsion. One of the largest development programs was the Systems for Nuclear Auxiliary Power (SNAP) Program. By the early 1970s, a technology base had evolved from this program at the system, subsystem, and component levels. There are many implications of this technology base on future reactor power systems. A review of this base highlights the need for performing a power system technology and mission overview study. Such a study is currently being performed by Rockwell's Energy Systems Group for the Department of Energy and will assess power system capabilities versus mission needs, considering development, schedule, and cost implications. The end product of the study will be a technology roadmap to guide reactor power system development.

  7. Demonstrating the Viability and Affordability of Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Vandyke, Melissa K.

    2006-01-01

    A set of tasks have been identified to help demonstrate the viability, performance, and affordability of surface fission systems. Completion of these tasks will move surface fission systems closer to reality by demonstrating affordability and performance potential. Tasks include fabrication and test of a 19-pin section of a Surface Power Unit Demonstrator (SPUD); design, fabrication, and utilization of thermal simulators optimized for surface fission' applications; design, fabrication, and utilization of GPHS module thermal simulators; design, fabrication, and test of a fission surface power system shield; and work related to potential fission surface power fuel/clad systems. Work on the SPUD will feed directly into joint NASA MSFC/NASA GRC fabrication and test of a surface power plant Engineering Development Unit (EDU). The goal of the EDU will be to perform highly realistic thermal, structural, and electrical testing on an integrated fission surface power system. Fission thermal simulator work will help enable high fidelity non-nuclear testing of pumped NaK surface fission power systems. Radioisotope thermal simulator work will help enable design and development of higher power radioisotope systems (power ultimately limited by Pu-238 availability). Shield work is designed to assess the potential of using a water neutron shield on the surface of the moon. Fuels work is geared toward assessing the current potential of using fuels that have already flown in space.

  8. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-03-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an

  9. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an

  10. Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges

    SciTech Connect

    Steven E. Aumeier

    2010-10-01

    As global population reaches an expected 8 billion people by 2030, primary energy consumption is expected to increase by almost 40% from approximately 520 exajoules consumed today to almost 740 exajoules. Much of this increase is expected to come from non-Organization for Economic Cooperation and Development (OECD) nations, and Asia specifically. In these economies, energy used for transportation is expected to grow substantially, as is industrial, commercial and to a lesser degree residential energy use, creating considerable pressure on global and local energy markets. The magnitude and timing of growth in energy consumption likely will create a global imperative to deploy energy production technologies that balance the three pillars of energy security: • economic stability – related to the affordability of energy products, stability and predictability in their price, and the efficient and effective deployment of global capital resources in their development; • environmental sustainability – related to minimizing the negative impacts of energy production to air, land, and water systems and advancing the long-term viability of using a particular resource in a way that does not limit future generations ability to prosper; • resource security – related to the ability to access energy resources and products where and when necessary, in an affordable and predictable manner. One approach to meeting these objectives is hybrid energy systems (HES). Broadly described, HES are energy product production plants that take two or more energy resource inputs (typically includes both carbon and non-carbon based sources) and produce two or more energy products (e.g. electricity, liquid transportation fuels, industrial chemicals) in an integrated plant. Nuclear energy integration into HES offers intriguing potential, particularly if smaller (<300 MWe) reactors are available. Although the concept of using nuclear energy in a variety of non-electrical process

  11. Nuclear Technology Series. Course 10: Power Plant Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  12. Nuclear Technology Series. Course 35: Systems and Components.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  13. Nuclear Technology Series. Course 9: Reactor Auxiliary Systems.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  14. Nuclear Technology Series. Course 33: Control Systems I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  15. Nuclear Technology Series. Course 34: Control Systems II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    SciTech Connect

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants.

  17. Issues and Opportunities in Exotic Hadrons

    NASA Astrophysics Data System (ADS)

    Briceño, R. A.; Cohen, T. D.; Coito, S.; Dudek, J. J.; Eichten, E.; Fischer, C. S.; Fritsch, M.; Gradl, W.; Jackura, A.; Kornicer, M.; Krein, G.; Lebed, R. F.; Machado, F. A.; Mitchell, R. E.; Morningstar, C. J.; Peardon, M.; Pennington, M. R.; Peters, K.; Richard, J. M.; Shen, C. P.; Shepherd, M. R.; Skwarnicki, T.; Swanson, E. S.; Szczepaniak, A. P.; Yuan, C. Z.

    2016-04-01

    The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons. Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks, pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophisticated, and effective field theories are being applied to an ever greater range of situations. It is thus an opportune time to evaluate the status of the field. In the following, a series of high priority experimental and theoretical issues concerning heavy exotic hadrons is presented. Supported by U.S. Department of Energy (Cohen); the Institute of Modern Physics and Chinese Academy of Sciences under contract Y104160YQ0 and agreement No. 2015-BH-02 (Coito); the U.S. Department of Energy, for grant DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, manages and operates Jefferson Laboratory and DE-SC0006765, Early Career award (Dudek); Fermilab, operated by the Fermi Research Alliance under contract number DEAC02-07CH11359 with the U.S. Department of Energy (Eichten); BMBF, under contract No. 06GI7121, and the DAAD under contract No. 56889822 and by the Helmholtz International Center for FAIR within the LOEWE program of the State of Hesse (Fischer); the German Research Foundation DFG under contract number Collaborative Research Centre CRC-1044 (Gradl); the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, Grant No. 305894/2009-9 and Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP, Grant No. 2013/01907-0 (Krein); U.S. National Science Foundation, under grants PHY-1068286 and PHY-1403891 (Lebed); the Brazilian National Council for Scientific and Technological Development under grant CNPq/CAPES-208188/2014-2 (Machado); U.S. Department of Energy under grant DE-FG02-05ER41374

  18. Plant Modernization with Digital Reactor Protection System Safety System Upgrades at US Nuclear Power Stations

    SciTech Connect

    Heckle, Wm. Lloyd; Bolian, Tricia W.

    2006-07-01

    As the current fleet of nuclear power plants in the US reaches 25+ years of operation, obsolescence is driving many utilities to implement upgrades to both their safety and non-safety-related Instrumentation and Control (I and C) Systems. Digital technology is the predominant replacement technology for these upgrades. Within the last 15 years, digital control systems have been deployed in non-safety- related control applications at many utilities. In addition, a few utilities have replaced small safety-related systems utilizing digital technology. These systems have shown digital technology to be robust, reliable and simpler to maintain. Based upon this success, acceptance of digital technology has gained momentum with both utilities and regulatory agencies. Today, in an effort to extend the operating lives of their nuclear stations and resolve obsolescence of critical components, utilities are now pursuing digital technology for replacement of their primary safety systems. AREVA is leading this effort in the United States with the first significant digital upgrade of a major safety system. AREVA has previously completed upgrades to safety-related control systems emergency diesel engine controls and governor control systems for a hydro station which serves as the emergency power source for a nuclear station. Currently, AREVA is implementing the replacement of both the Reactor Protection System (RPS) and the Engineered Safety Features Actuation System (ESFAS) on all three units at a US PWR site. (authors)

  19. A Nuclear-Powered Laser-Accelerated Plasma Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, Terry

    2003-01-01

    Recent experiments at the University of Michigan and other laboratories throughout the world have demonstrated that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. The terrawatt laser at the University of Michigan has generated a beam of protons containing more than 1010 particles at a mean energy of over one Mev while the petawatt laser at the Lawrence Livermore National Laboratory has produced proton beams containing more than 1014 particles with maximum energy of 58 Mev and a mean energy of about 6 Mev. Using the latter data as a basis for a present-day LAPPS (Laser Accelerated Plasma Propulsion System) propulsion device we show that it can produce a specific impulse of several million seconds albeit at a fraction of a Newton of thrust. We show that if the thrust can be increased to a modest 25 Newtons a fly-by robotic interstellar mission to 10,000 AU can be achieved in about 26 years, while a round trip to Mars will be accomplished in about 6 months. In both instances a one MWe nuclear power system with a mass of about 5 MT will be needed to drive the laser, and the recently announced NASA's Nuclear Space Initiative should be able to address such reactors in the near future.

  20. Nuclear power systems for the First Lunar Outpost

    NASA Astrophysics Data System (ADS)

    Mason, Lee S.; Cataldo, Robert L.

    1993-01-01

    A recent study effort at NASA has developed a preliminary reference mission description for a human return to the Moon by the end of this decade. The First Lunar Outpost (FLO) would provide the framework for establishing a permanent human presence on the Moon and a necessary step toward eventual piloted trips to Mars. The primary objectives of FLO are to sustain a crew of four on the lunar surface for 45 days during which local roving, surface science, and demonstration-level resource extraction would be accomplished. Power systems capable of meeting the diverse requirements of FLO are a significant engineering challenge. Power requirements range from 10's of watts for small science packages to 10's of kilowatts for the crew habitat. The guidelines imposed on power systems include that they be lightweight, easily deployable, and cost efficient. Nuclear systems such as radioisotope thermoelectric generators (RTGs), dynamic isotope power systems (DIPS), and small reactor power systems offer distinct advantages over solar and electrochemical alternatives. Concepts for modular RTGs and DIPS, and deployable reactor systems relevant to the FLO mission and its evolution are described and compared.

  1. RIB in-flight production and the facility EXOTIC at LNL

    SciTech Connect

    Mazzocco, Marco

    2014-05-09

    The production of Radioactive Ion Beams (RIBs) via the In-Flight technique is reviewed. This separation method typically employs four main production mechanisms: (i) Projectile Fragmentation; (ii) Projectile Fission; (iii) Nuclear Fusion and (iv) Direct Processes in Inverse Kinematics. We will concentrate particularly on the last mechanism, the one used by the facility EXOTIC at the INFN-Laboratori Nazionali di Legnaro (LNL) for the production of light RIBs. An extensive description of the facility and a brief overview of the most recent scientific achievements with {sup 7}Be and {sup 17}F are given.

  2. Applying twisted boundary conditions for few-body nuclear systems

    NASA Astrophysics Data System (ADS)

    Körber, Christopher; Luu, Thomas

    2016-05-01

    We describe and implement twisted boundary conditions for the deuteron and triton systems within finite volumes using the nuclear lattice EFT formalism. We investigate the finite-volume dependence of these systems with different twist angles. We demonstrate how various finite-volume information can be used to improve calculations of binding energies in such a framework. Our results suggests that with appropriate twisting of boundaries, infinite-volume binding energies can be reliably extracted from calculations using modest volume sizes with cubic length L ≈8 -14 fm. Of particular importance is our derivation and numerical verification of three-body analogs of "i-periodic" twist angles that eliminate the leading-order finite-volume effects to the three-body binding energy.

  3. Design consideration for a nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Pawlik, E. V.

    1978-01-01

    A study is currently underway to design a nuclear electric propulsion vehicle capable of performing detailed exploration of the outer-planets. Primary emphasis is on the power subsystem. Secondary emphasis includes integration into a spacecraft, and integration with the thrust subsystem and science package or payload. The results of several design iterations indicate an all-heat-pipe system offers greater reliability, elimination of many technology development areas and a specific weight of under 20 kg/kWe at the 400 kWe power level. The system is compatible with a single Shuttle launch and provides greater safety than could be obtained with designs using pumped liquid metal cooling. Two configurations, one with the reactor and power conversion forward on the spacecraft with the ion engines aft and the other with reactor, power conversion and ion engines aft were selected as dual baseline designs based on minimum weight, minimum required technology development and maximum growth potential and flexibility.

  4. Alkali Metal Thermoelectric Conversion (AMTEC) for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Cole, T.; Khanna, S. K.; Thakoor, A. P.

    1985-01-01

    Performance parameters of the Alkali Metal Thermoelectric Converter (AMTEC) for a 100 kW electric power system have been calculated at four technological levels assuming a heat pipe-cooled nuclear reactor heat source. The most advanced level considered would operate between 1180 K converter temperature and 711 K radiator temperature at 16 percent efficiency, and would weigh 1850 kg with a radiator area of 43 sq m. In addition, electrode research studies for the AMTEC systems have been conducted utilizing an experimental test cell of Bankston et al. (1983) and Mo and several Mo-Ti electrodes. It was found that the Mo-Ti electrodes offered no improvement in lifetime characteristics over the pure Mo electrodes, however, oxygen treatment of a degraded Mo electrode restored its specific power output to 90 percent of its original specific power and maintained this level for 60 hr, thus offering a potential for lifetime stability.

  5. Improving nuclear plant management effectiveness: Aligning strategy, systems, and people

    SciTech Connect

    Price, K.F.

    1991-11-01

    The effectiveness of any organization requires alignment of the appropriate financial, physical, and human resources. The manager's role is to efficiently utilize the right combination of these resources to achieve organizational objectives. In-depth studies of the nuclear programs of three major investor-owned utilities using a culture assessment process called the communication, values, and rewards (CVR) assessment have shown significant misalignments in those organizations' strategies, systems and people management. The CVR assessment related employees' perceptions of what drives their company's culture with the stated company strategic direction and management philosophies. Specifically, CVR provides a comparison of employee-held work-related values with those desired by management. Data obtained by a CVR assessment can be used to understand organizational misalignment and make changes to bring systems into alignment with corporate strategy and culture.

  6. Nuclear physics. Momentum sharing in imbalanced Fermi systems.

    PubMed

    Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I

    2014-10-31

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. PMID:25323697

  7. TOPICAL REVIEW: Shapes and collectivity of exotic nuclei via low-energy Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Görgen, Andreas

    2010-10-01

    The way in which an atomic nucleus responds to excitations, whether by promoting individual nucleons into higher shells or by collective rotation or vibration, reveals many details of the underlying nuclear structure. The response of the nucleus is closely related to its macroscopic shape. Low-energy Coulomb excitation provides a well-understood means of exciting atomic nuclei, allowing the measurement of static and dynamic electromagnetic moments as a probe of the nuclear wavefunctions. Owing to the availability of radioactive heavy-ion beams with energies near the Coulomb barrier, it is now possible to study the shape and collectivity of short-lived nuclei far from β stability (the so-called exotic nuclei), providing a particularly stringent test of modern theoretical nuclear structure models. This review gives an introduction to the experimental techniques related to low-energy Coulomb excitation with radioactive ion beams and summarizes the results that were obtained over the last 10 years for a wide variety of exotic nuclei at various laboratories employing the isotope separation on-line technique.

  8. Investigation of the structure of light exotic nuclei by proton elastic scattering in inverse kinematics

    SciTech Connect

    Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V. Inglessi, A. G.; Korolev, G. A.; Khanzadeev, A. V.

    2015-05-15

    In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured. The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the {sup 6}He, {sup 8}He, {sup 11}Li, and {sup 14}Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the {sup 8}Li, {sup 9}Li, and {sup 12}Be nuclei.

  9. Investigation of the structure of light exotic nuclei by proton elastic scattering in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V.; Inglessi, A. G.; Korolev, G. A.; Khanzadeev, A. V.

    2015-05-01

    In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured. The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the 6He, 8He, 11Li, and 14Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the 8Li, 9Li, and 12Be nuclei.

  10. Degeneracies and exotic phases in an isotropic frustrated spin-1/2 chain

    NASA Astrophysics Data System (ADS)

    Parvej, Aslam; Kumar, Manoranjan

    2016-03-01

    In the presence of an axial magnetic field, a frustrated isotropic J1 - J2 model system shows many exotic phases, such as vector chiral and multipolar phases. In this paper, the phase boundaries of these exotic phases are calculated based on the order parameters, energy level crossings and magnetization jumps in the system. The order parameter of the vector chiral phase is calculated using the broken symmetry states at a finite magnetic field. The exact diagonalization and the density matrix renormalization group results are used to show that the vector chiral phase exists only in a narrow range of J2/J1 parameter space. In the quadrupolar phase, the magnetization jumps can be associated with the binding energy of two magnons localized at two different legs of the zigzag chain. The energy level crossings and degeneracies in the presence of the axial magnetic field are studied in detail using the exact diagonalization method.

  11. 9 CFR 352.3 - Application by official exotic animal establishment for inspection services.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION EXOTIC ANIMALS AND HORSES; VOLUNTARY INSPECTION Exotic Animals § 352.3 Application by official exotic animal establishment for inspection services... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Application by official exotic...

  12. 9 CFR 352.3 - Application by official exotic animal establishment for inspection services.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION EXOTIC ANIMALS AND HORSES; VOLUNTARY INSPECTION Exotic Animals § 352.3 Application by official exotic animal establishment for inspection services... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Application by official exotic...

  13. Bio-Invasions: The Spread of Exotic Species.

    ERIC Educational Resources Information Center

    Bright, Chris

    1995-01-01

    Human mobility has radically increased the rate at which large numbers of living things are moving from one ecosystem to another. Discusses how ecosystems change when "exotic" species invade natural communities and notes efforts to control adverse effects. (LZ)

  14. Exotic grasslands on reclaimed midwestern coal mines: An ornithological perspective

    SciTech Connect

    Scott, P.E.; Lima, S.L.

    2004-07-01

    The largest grasslands in Indiana and Illinois are on reclaimed surface coal mines, which are numerous in the Illinois Coal Basin. The reclamation goal of establishing a vegetation cover with inexpensive, hardy exotic grass species (e.g., tall fescue, smooth brome) inadvertently created persistent, large grassland bird refuges. We review research documenting the importance of these sites for native prairie birds. On mines, grassland specialist birds (restricted to grassland throughout their range) prefer sites dominated by exotic grasses to those rich in forbs, whereas nonspecialist bird species show no significant preference. Midwestern mine grasslands potentially could be converted into landscapes that include native warm-season grasses and forbs adapted to the relatively dry, poor soil conditions, in addition to the present successful exotic grass stands. A key question is whether native mixtures will resist conversion to forb-rich or woody growth over the long term, as the exotic grasses have done.

  15. Elements of a national emergency response system for nuclear accidents

    SciTech Connect

    Dickerson, M.H.

    1987-02-10

    The purpose of this paper is to suggest elements for a general emergency response system, employed at a national level, to detect, evaluate and assess the consequences of a radiological atmospheric release occurring within or outside of national boundaries. These elements are focused on the total aspect of emergency response ranging from providing an initial alarm to a total assessment of the environmental and health effects. Elements of the emergency response system are described in such a way that existing resources can be directly applied if appropriate; if not, newly developed or an expansion of existing resources can be employed. The major thrust of this paper is toward a philosophical discussion and general description of resources that would be required to implementation. If the major features of this proposal system are judged desirable for implementation, then the next level of detail can be added. The philosophy underlying this paper is preparedness - preparedness through planning, awareness and the application of technology. More specifically, it is establishment of reasonable guidelines including the definition of reference and protective action levels for public exposure to accidents involving nuclear material; education of the public, government officials and the news media; and the application of models and measurements coupled to computer systems to address a series of questions related to emergency planning, response and assessment. It is the role of a proven national emergency response system to provide reliable, quality-controlled information to decision makers for the management of environmental crises.

  16. Prescriptive concepts for advanced nuclear materials control and accountability systems

    SciTech Connect

    Whitty, W.J.; Strittmatter, R.B.; Ford, W.; Tisinger, R.M.; Meyer, T.H.

    1987-06-01

    Networking- and distributed-processing hardware and software have the potential of greatly enhancing nuclear materials control and accountability (MC and A) systems, from both safeguards and process operations perspectives, while allowing timely integrated safeguards activities and enhanced computer security at reasonable cost. A hierarchical distributed system is proposed consisting of groups of terminal and instruments in plant production and support areas connected to microprocessors that are connected to either larger microprocessors or minicomputers. These micros and/or minis are connected to a main machine, which might be either a mainframe or a super minicomputer. Data acquisition, preliminary input data validation, and transaction processing occur at the lowest level. Transaction buffering, resource sharing, and selected data processing occur at the intermediate level. The host computer maintains overall control of the data base and provides routine safeguards and security reporting and special safeguards analyses. The research described outlines the distribution of MC and A system requirements in the hierarchical system and distributed processing applied to MC and A. Implications of integrated safeguards and computer security concepts for the distributed system design are discussed. 10 refs., 4 figs.

  17. An integrated computer system for Fudan nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Zou, Degang; Ren, Chigang; Tang, Jiayong; Yang, Fujia

    1995-09-01

    With the help of modern personal computer (PC) and object oriented programming (OOP) technology, we have recently developed a compact, integrated, user-friendly computer system for Fudan nuclear microprobe, which was originally modeled after the SUNY/Albany system. The system software has been thoroughly rewritten so as to take advantage of today's high-performance PC and facilitate easy upgrading and expansion in the case of future development of both hardware and software. Most functions of this system such as sample searching, scanning control, data acquisition, image processing and displaying, are based on a single 80386 IBM style PC with a 1-MB DRAM TVGA high-resolution monitor. Data from up to 4 ADCs, 4 sensors and a CCD camera can be acquired simultaneously. Two stepper motors are employed to move the target; a CCD camera system is also included to locate the area of interest on the sample; the secondary electron image could act as a reference to fine adjustment. Rectangular raster scanning or irregular scanning is facilitated with beam motion triggered either by a timer or by pulses from a current integrator. A variety of built-in image displaying, processing and printing methods have also been implemented in order to make the maps easier to interpret for the eyes. All of these functions are administrated by an integrated, completely menu-driven software package-MBSYS.

  18. Refractory metal alloys and composites for space nuclear power systems

    SciTech Connect

    Titran, R.H.; Stephens, J.R.; Petrasek, D.W.

    1988-01-01

    Space power requirements for future NASA and other United States missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide base line information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wire for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites will be discussed. 20 refs., 27 figs., 1 tab.

  19. Refractory metal alloys and composites for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.

  20. The nuclear disaster management system in Taiwan: a case study of the third (Maanshan) nuclear power plant.

    PubMed

    Yang, Yung-Nane

    2016-07-01

    This paper explores the effectiveness of the nuclear disaster management system in Taiwan via a review of the third (Maanshan) nuclear power plant. In doing so, the Fukushima Daiichi nuclear disaster in Japan on 11 March 2011 is reviewed and compared with the situation in Taiwan. The latter's nuclear disaster management system is examined with respect to three key variables: information; mobilisation; and inter-organisational cooperation. In-depth interviews with 10 policy stakeholders with different backgrounds serve as the research method. The results point up the need for improvement in all dimensions. In addition, they highlight three principal problems with the nuclear disaster management system: (i) it might not be possible to provide first-hand nuclear disaster information immediately to the communities surrounding the Maanshan facility in Pingtung County, southern Taiwan; (ii) the availability of medical resources for treating radiation in Hengchun Township is limited; and (iii) the inter-organisational relationships for addressing nuclear disasters need to be strengthened. Hence, cooperation among related organisations is necessary. PMID:26578340