Science.gov

Sample records for exotiques tres deformes

  1. Influence of deposit architecture on intrastratal deformation, slope deposits of the Tres Pasos Formation, Chile

    NASA Astrophysics Data System (ADS)

    Auchter, Neal C.; Romans, Brian W.; Hubbard, Stephen M.

    2016-07-01

    Slope sediments on passive and active margins deform and fail across a broad range of scales ranging from loading and sediment remobilization near the sediment-water interface to submarine landslides and mass movements that incorporate significant volumes of slope deposits. Deformational styles are characterized by updip extension and downdip compressional features that occur above a detachment surface. Conditions for failure and deformation include the presence of weak layer(s) that serve as a detachment surface, competency contrasts that allow for detachment and downslope movement, deformation above a detachment surface, and a triggering mechanism(s) that initiates failure. Slope failure processes and products are well documented at scales resolvable by seismic-reflection surveys and in instances of extensive downslope failure, but the processes and products associated with intermediate-scale slope deformation are poorly understood. Intrastratal deformation is defined as stratigraphically isolated zones of deformation bounded above and below by concordant and undeformed strata. In this study, outcrop examples of intrastratal deformation from the Upper Cretaceous Tres Pasos Formation are used to elucidate the influence of depositional architecture on slope deformation. The facies distribution associated with compensational stacking of lobe deposits is shown to have a first-order control on the location and style of deformation. Detachment planes that form in mudstone deposits associated with lobe fringe and interlobe deposits are spatially limited and deformation is restricted to interbedded sandstone and mudstone associated with off-axial lobe positions. Downslope translation was arrested by stratigraphic buttresses associated with more sandstone-prone axial deposits. Emplacement of a regionally extensive mass transport deposit is interpreted as the triggering mechanism for contemporaneous intrastratal deformation of > 60 m of underlying stratigraphy. A vertical

  2. The Tres Ventanas Mummies of Peru.

    PubMed

    Wann, L Samuel; Lombardi, Guido; Ojeda, Bernadino; Benfer, Robert A; Rivera, Ricardo; Finch, Caleb E; Thomas, Gregory S; Thompson, Randall C

    2015-06-01

    The Tres Ventanas mummies of Peru are thought to be among the oldest mummies in existence, dating to between 8,000 and 10,000 years ago. A preliminary assessment is made of the potential of these mummies for use in future research on mummified remains. Although the Tres Ventanas cave and the four mummies were explored and then excavated by Frederic Engel in 1966-67, and the project is named in his honor as the "Engel Study Group", the importance of both the physical remains and the context in which they were found has only come to light in the last few years. Most important is the paleopathological examination of these remains, since these mummies are found in a high altitude area of Peru where adaptation to the limited partial pressure of oxygen is perhaps a key component in broadening our understanding of human diversity in past populations. PMID:25998637

  3. Haglund's Deformity

    MedlinePlus

    ... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...

  4. Madelung Deformity.

    PubMed

    Kozin, Scott H; Zlotolow, Dan A

    2015-10-01

    Madelung deformity of the wrist is more common in females and is often associated with Leri Weill dyschondrosteosis, a mesomelic form of dwarfism. Patients with Madelung deformity often report wrist deformity resulting from the prominence of the relatively long ulna. The typical Madelung deformity is associated with a Vickers ligament that creates a tether across the volar-ulnar radial physis that restricts growth across this segment. The distal radius deforms in the coronal (increasing radial inclination) and the sagittal (increasing volar tilt) planes. There is lunate subsidence and the proximal carpal row adapts to the deformity by forming an upside-down pyramid shape or triangle. Treatment depends on the age at presentation, degree of deformity, and magnitude of symptoms. Mild asymptomatic deformity warrants a period of nonsurgical management with serial x-ray examinations because the natural history is unpredictable. Many patients never require surgical intervention. Progressive deformity in the young child with considerable growth potential remaining requires release of Vickers ligament and radial physiolysis to prevent ongoing deterioration Concomitant ulnar epiphysiodesis may be necessary. Advanced asymptomatic deformity in older children with an unacceptable-appearing wrist or symptomatic deformity are indications for surgery. A dome osteotomy of the radius allows 3-dimensional correction of the deformity. Positive radiographic and clinical results after dome osteotomy have been reported. PMID:26341718

  5. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010

  6. Quaternary deformation

    SciTech Connect

    Brown, R.D. Jr.

    1990-01-01

    Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.

  7. Madelung deformity.

    PubMed

    Ghatan, Andrew C; Hanel, Douglas P

    2013-06-01

    Madelung deformity is a rare congenital anomaly of the wrist caused by asymmetric growth at the distal radial physis secondary to a partial ulnar-sided arrest. The deformity is characterized by ulnar and palmar curvature of the distal radius, positive ulnar variance, and proximal subsidence of the lunate. It more commonly occurs in females than males and typically affects both wrists. The deformity can occur in isolation or as part of a genetic syndrome. The pattern of inheritance varies, with some cases following a pseudoautosomal pattern and many others lacking a clear family history. Nonsurgical management is typically advocated in asymptomatic patients. Few studies exist on the natural history of the condition; however, extensor tendon ruptures have been reported in severe and chronic cases. Stiffness, pain, and patient concerns regarding wrist cosmesis have been cited as indications for surgery. Various techniques for surgical management of Madelung deformity have been described, but clear evidence to support the use of any single approach is lacking. PMID:23728962

  8. APOSTLE: 11 TRANSIT OBSERVATIONS OF TrES-3b

    SciTech Connect

    Kundurthy, P.; Becker, A. C.; Agol, E.; Barnes, R.; Williams, B.

    2013-02-10

    The Apache Point Survey of Transit Lightcurves of Exoplanets (APOSTLE) observed 11 transits of TrES-3b over two years in order to constrain system parameters and look for transit timing and depth variations. We describe an updated analysis protocol for APOSTLE data, including the reduction pipeline, transit model, and Markov Chain Monte Carlo analyzer. Our estimates of the system parameters for TrES-3b are consistent with previous estimates to within the 2{sigma} confidence level. We improved the errors (by 10%-30%) on system parameters such as the orbital inclination (i {sub orb}), impact parameter (b), and stellar density ({rho}{sub *}) compared to previous measurements. The near-grazing nature of the system, and incomplete sampling of some transits, limited our ability to place reliable uncertainties on individual transit depths and hence we do not report strong evidence for variability. Our analysis of the transit timing data shows no evidence for transit timing variations and our timing measurements are able to rule out super-Earth and gas giant companions in low-order mean motion resonance with TrES-3b.

  9. 78 FR 77445 - Tres Palacios Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Tres Palacios Gas Storage LLC; Notice of Application Take notice that on December 6, 2013, Tres Palacios Gas Storage LLC (Tres Palacios) 700 Louisiana Street, Suite 2060,...

  10. 76 FR 41235 - Tres Palacios Gas Storage LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Tres Palacios Gas Storage LLC; Notice of Application Take notice that on July 5, 2011, Tres Palacios Gas Storage LLC (TPGS), Two Brush Creek Blvd., Suite 200, Kansas...

  11. Deformations in VLBI antennas

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Thomsen, P.

    1988-01-01

    A study is presented of deformations in antennas with the emphasis on their influence on VLBI measurements. The GIFTS structural analysis program has been used to model the VLBI antenna in Fairbanks (Alaska). The report identifies key deformations and studies the effect of gravity, wind, and temperature. Estimates of expected deformations are given.

  12. Deformable Nanolaminate Optics

    SciTech Connect

    Olivier, S S; Papavasiliou, A P; Barbee, T W; Miles, R R; Walton, C C; Cohn, M B; Chang, K

    2006-05-12

    We are developing a new class of deformable optic based on electrostatic actuation of nanolaminate foils. These foils are engineered at the atomic level to provide optimal opto-mechanical properties, including surface quality, strength and stiffness, for a wide range of deformable optics. We are combining these foils, developed at Lawrence Livermore National Laboratory (LLNL), with commercial metal processing techniques to produce prototype deformable optics with aperture sizes up to 10 cm and actuator spacing from 1 mm to 1 cm and with a range of surface deformation designed to be as much as 10 microns. The existing capability for producing nanolaminate foils at LLNL, coupled with the commercial metal processing techniques being used, enable the potential production of these deformable optics with aperture sizes of over 1 m, and much larger deformable optics could potentially be produced by tiling multiple deformable segments. In addition, based on the fabrication processes being used, deformable nanolaminate optics could potentially be produced with areal densities of less than 1 kg per square m for applications in which lightweight deformable optics are desirable, and deformable nanolaminate optics could potentially be fabricated with intrinsically curved surfaces, including aspheric shapes. We will describe the basic principles of these devices, and we will present details of the design, fabrication and characterization of the prototype deformable nanolaminate optics that have been developed to date. We will also discuss the possibilities for future work on scaling these devices to larger sizes and developing both devices with lower areal densities and devices with curved surfaces.

  13. Deformable bearing seat

    NASA Technical Reports Server (NTRS)

    Moreman, O. S., III (Inventor)

    1977-01-01

    A deformable bearing seat is described for seating a bearing assembly in a housing. The seat includes a seating surface in the housing having a first predetermined spheroidal contour when the housing is in an undeformed mode. The seating surface is deformable to a second predetermined spherically contoured surface when the housing is in a deformed mode. The seat is particularly adaptable for application to a rotating blade and mounting ring assembly in a gas turbine engine.

  14. Deformed discrete symmetries

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  15. Fluctuations as stochastic deformation.

    PubMed

    Kazinski, P O

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium. PMID:18517590

  16. Fluctuations as stochastic deformation

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  17. Resurgent deformation quantisation

    SciTech Connect

    Garay, Mauricio; Goursac, Axel de; Straten, Duco van

    2014-03-15

    We construct a version of the complex Heisenberg algebra based on the idea of endless analytic continuation. The algebra would be large enough to capture quantum effects that escape ordinary formal deformation quantisation. -- Highlights: •We construct resurgent deformation quantisation. •We give integral formulæ. •We compute examples which show that hypergeometric functions appear naturally in quantum computations.

  18. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  19. The University of Arizona Astronomy Club Observations of Transiting Extrasolar Planets TrES-3b and TrES-4b

    NASA Astrophysics Data System (ADS)

    Turner, Jake; Hardegree-Ullman, K.; Smart, B.; Walker-LaFollette, A.; Cunningham, K.; Hardegree-Ullman, E. E.; Crawford, B.; Mueting, J.; Carleton, T.; Schwarz, K.; Robertson, A.; Guvenen, B.; Towner, A.; Austin, C.; Henz, T.; Keys, D.; Johnson, K.

    2011-05-01

    Using the Steward Observatory 61" Kuiper Telescope, The University of Arizona Astronomy Club observed extrasolar planets TrES-3b and TrES-4b. We observed the planets with the Harris-B, V, and R filters as they transited their parent stars during the months of May-July 2009. The main goal of this project was to get undergraduates involved with a research astronomy project and allow them to gain experience beyond what they would receive in the classroom. Many of the team members were introduced to astronomical observing techniques and data reduction using IRAF. Part of the project involved determining the optimum number of flat-field and bias frames required for image calibrations. With our results, we have been able to confirm and refine previously published values for the planets' orbital inclination, mass, radius, and density.

  20. Chemical Composition of the Planet-Harboring Star TrES-1

    NASA Astrophysics Data System (ADS)

    Sozzetti, A.; Yong, D.; Carney, B. W.; Laird, J. B.; Latham, D. W.; Torres, G.

    2005-12-01

    We present a detailed chemical abundance analysis of the parent star of the transiting extrasolar planet TrES-1. Based on high-resolution Keck/HIRES and HET/HRS spectra, we have determined abundances relative to the Sun for 16 elements (Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, and Ba). The resulting average abundance of <[X/H]> = -0.02± 0.06 is in good agreement with initial estimates of solar metallicity based on iron. We compare the elemental abundances of TrES-1 with those of the sample of stars with planets, searching for possible chemical abundance anomalies. TrES-1 appears not to be chemically peculiar in any measurable way. We investigate possible signs of selective accretion of refractory elements in TrES-1 and other stars with planets, and find no statistically significant trends of metallicity [X/H] with condensation temperature Tc. We use published abundances and kinematic information for the sample of planet-hosting stars (including TrES-1) and several statistical indicators to provide an updated classification in terms of their likelihood to belong to either the thin disk or the thick disk of the Milky Way Galaxy. TrES-1 is found to be a very likely member of the thin disk population. By comparing α -element abundances of planet hosts and a large control sample of field stars, we also find that metal-rich ([Fe/H]> 0.0) stars with planets appear to be systematically underabundant in [α /Fe] by ˜ 0.1 dex with respect to comparison field stars. The reason for this signature is unclear, but systematic differences in the analysis procedures adopted by different groups cannot be ruled out.

  1. Chemical Composition of the Planet-harboring Star TrES-1

    NASA Astrophysics Data System (ADS)

    Sozzetti, Alessandro; Yong, David; Carney, Bruce W.; Laird, John B.; Latham, David W.; Torres, Guillermo

    2006-04-01

    We present a detailed chemical abundance analysis of the parent star of the transiting extrasolar planet TrES-1. Based on high-resolution Keck HIRES and Hobby-Eberly Telescope HRS spectra, we have determined abundances relative to the Sun for 16 elements (Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, and Ba). The resulting average abundance of <[X/H]>=-0.02+/-0.06 is in good agreement with initial estimates of solar metallicity based on iron. We compare the elemental abundances of TrES-1 with those of the sample of stars with planets, searching for possible chemical abundance anomalies. TrES-1 appears not to be chemically peculiar in any measurable way. We investigate possible signs of selective accretion of refractory elements in TrES-1 and other stars with planets and find no statistically significant trends of metallicity [X/H] with condensation temperature Tc. We use published abundances and kinematic information for the sample of planet-hosting stars (including TrES-1) and several statistical indicators to provide an updated classification in terms of their likelihood to belong to either the thin disk or the thick disk of the Milky Way. TrES-1 is found to be very likely a member of the thin-disk population. By comparing α-element abundances of planet hosts and a large control sample of field stars, we also find that metal-rich ([Fe/H]>~0.0) stars with planets appear to be systematically underabundant in [α/Fe] by ~0.1 dex with respect to comparison field stars. The reason for this signature is unclear, but systematic differences in the analysis procedures adopted by different groups cannot be ruled out.

  2. Deformations of 3-algebras

    SciTech Connect

    Figueroa-O'Farrill, Jose Miguel

    2009-11-15

    We phrase deformations of n-Leibniz algebras in terms of the cohomology theory of the associated Leibniz algebra. We do the same for n-Lie algebras and for the metric versions of n-Leibniz and n-Lie algebras. We place particular emphasis on the case of n=3 and explore the deformations of 3-algebras of relevance to three-dimensional superconformal Chern-Simons theories with matter.

  3. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  4. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  5. VizieR Online Data Catalog: TrES-4b RV and Ic curves (Sozzetti+, 2015)

    NASA Astrophysics Data System (ADS)

    Sozzetti, A.; Bonomo, A. S.; Biazzo, K.; Mancini, L.; Damasso, M.; Desidera, S.; Gratton, R.; Lanza, A. F.; Poretti, E.; Rainer, M.; Malavolta, L.; Affer, L.; Barbieri, M.; Bedin, L. R.; Boccato, C.; Bonavita, M.; Borsa, F.; Ciceri, S.; Claudi, R. U.; Gandolfi, D.; Giacobbe, P.; Henning, T.; Knapic, C.; Latham, D. W.; Lodato, G.; Maggio, A.; Maldonado, J.; Marzari, F.; Martinez Fiorenzano, A. F.; Micela, G.; Molinari, E.; Mordasini, C.; Nascimbeni, V.; Pagano, I.; Pedani, M.; Pepe, F.; Piotto, G.; Santos, N.; Scandariato, G.; Shkolnik, E.; Southworth, J.

    2015-06-01

    The TrES-4 system was observed with HARPS-N on 17 individual epochs between March 2013 and July 2014. We carried out Ic-band precision photometric observations of two complete transit events of TrES-4 b with the CAHA 1.23-m on UT 2013 July 6 and UT 2014 June 30. (2 data files).

  6. Experimental Deformation of Magnetite

    NASA Astrophysics Data System (ADS)

    Till, J. L.; Rybacki, E.; Morales, L. F. G.

    2015-12-01

    Magnetite is an important iron ore mineral and the most prominent Fe-oxide phase in the Earth's crust. The systematic occurrence of magnetite in zones of intense deformation in oceanic core complexes suggests that it may play a role in strain localization in some silicate rocks. We performed a series of high-temperature deformation experiments on synthetic magnetite aggregates and natural single crystals to characterize the rheological behavior of magnetite. As starting material, we used fine-grained magnetite powder that was hot isostatically pressed at 1100°C for several hours, resulting in polycrystalline material with a mean grain size of around 40 μm and containing 3-5% porosity. Samples were deformed to 15-20% axial strain under constant load (approximating constant stress) conditions in a Paterson-type gas apparatus for triaxial deformation at temperatures between 900 and 1100°C and 300 MPa confining pressure. The aggregates exhibit typical power-law creep behavior. At high stresses, samples deformed by dislocation creep exhibit stress exponents close to 3, revealing a transition to near-Newtonian creep with stress exponents around 1.3 at lower stresses. Natural magnetite single crystals deformed at 1 atm pressure and temperatures between 950°C and 1150 °C also exhibit stress exponents close to 3, but with lower flow stresses and a lower apparent activation energy than the aggregates. Such behavior may result from the different oxygen fugacity buffers used. Crystallographic-preferred orientations in all polycrystalline samples are very weak and corroborate numerical models of CPO development, suggesting that texture development in magnetite may be inherently slow compared with lower symmetry phases. Comparison of our results with experimental deformation data for various silicate minerals suggests that magnetite should be weaker than most silicates during ductile creep in dry igneous rocks.

  7. Vaporization of Deforming Droplets

    NASA Astrophysics Data System (ADS)

    Wang, Yanxing; Chen, Xiaodong; Ma, Dongjun; Yang, Vigor

    2012-11-01

    Droplet deformation is one of the most important factors influencing the evaporation rate. In the present study, high-fidelity numerical simulations of single evaporating droplets with deformation are carried out over a wide range of the Reynolds and Weber numbers. The formulation is based on a complete set of conservation equations for both the liquid and surrounding gas phases. A modified volume-of-fluid (VOF) technique that takes into account heat and mass transfer is used to track the behavior of the liquid/gas interface. Special attention is given to the property conservation, which can be realized by using an iterative algorithm that enforces a divergence constraint in cells containing the interface. The effect of the ambient flow on droplet dynamics and evaporation are investigated systematically. Various underlying mechanisms dictating the droplet characteristics in different deformation regimes are identified. Correlations for the droplet evaporation rate are established in terms of the Reynolds and Weber numbers.

  8. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  9. Crustal deformation and earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1984-01-01

    The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.

  10. Plate motion and deformation

    SciTech Connect

    Minster, B.; Prescott, W.; Royden, L.

    1991-02-01

    Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.

  11. Lobster claw deformity.

    PubMed

    Agrawal, Ashish; Agrawal, Rahul; Singh, Rajat; Agrawal, Romi; Agrawal, Seema

    2014-01-01

    Endogenous erythroid colony (EEC) syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits) can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM) or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-syndromic form). In this article, describes a rare case report of lobster claw deformity patient. PMID:24992861

  12. Nail Deformities and Injuries.

    PubMed

    Tucker, James Rory J

    2015-12-01

    A variety of nail deformities commonly presents in the primary care office. An understanding of nail anatomy coupled with inspection of the nails at routine office visits can reveal undetected disorders. Some problems are benign, and treatment should be attempted by the primary care provider, such as onychomycosis, paronychia, or ingrown toenails. For conditions such as benign melanonychia, longitudinal ridges, isolated Beau lines, and onycholysis, clinicians may offer reassurance to patients who are concerned about the change in their nails. For deformities such as early pterygium or clubbing, a thorough evaluation and referral to an appropriate specialist may be warranted. PMID:26612379

  13. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  14. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  15. Optical and Near-UV Observations of the Transiting Extrasolar Planet TrES-4b

    NASA Astrophysics Data System (ADS)

    Smith, Carter-Thaxton; Turner, J.; Carleton, T.; Crawford, B.; Guvenen, B.; Hardegree-Ullman, K.; Small, L.; Towner, A. P.; Walker-LaFollette, A.; Henz, T.

    2013-01-01

    Using the Steward Observatory 61” Kuiper Telescope, The University of Arizona Astronomy Club conducted photometric observations of the transiting extrasolar planet TrES-4b as part of the Exoplanet Observation Project. Observations were made in the Bessell U, Harris B, and Harris R filters. Initial observations were made in 2009, with follow up observations in 2011. Basic data reduction and photometry was done using IRAF and determination of transit parameters was done using Transit Analysis Package (TAP) and JKTEBOP transit modeling code. We present an updated planetary mass, radius, density, surface gravity, Safronov number, equilibrium temperature, orbital distance, and orbital inclination for TrES-4b. In addition, we also searched for asymmetries between the near-UV and optical light curves. This project, started in spring 2009, has introduced many undergraduate students to research and given them valuable experience with data reduction and observation techniques.

  16. Transfer involving deformed nuclei

    SciTech Connect

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs.

  17. Deformation twins in Hornblende

    USGS Publications Warehouse

    Rooney, T.P.; Riecker, R.E.; Ross, M.

    1970-01-01

    Hornblende deformation twins with twin planes parallel to (101) are produced experimentally in single crystals by compression parallel to the c axis. Twinning occurs at confining pressures from 5 to 15 kilobars and temperatures from 400?? to 600??C (strain rate, 10-5 per second).

  18. Degenerative Spinal Deformity.

    PubMed

    Ailon, Tamir; Smith, Justin S; Shaffrey, Christopher I; Lenke, Lawrence G; Brodke, Darrel; Harrop, James S; Fehlings, Michael; Ames, Christopher P

    2015-10-01

    Degenerative spinal deformity afflicts a significant portion of the elderly and is increasing in prevalence. Recent evidence has revealed sagittal plane malalignment to be a key driver of pain and disability in this population and has led to a significant shift toward a more evidence-based management paradigm. In this narrative review, we review the recent literature on the epidemiology, evaluation, management, and outcomes of degenerative adult spinal deformity (ASD). ASD is increasing in prevalence in North America due to an aging population and demographic shifts. It results from cumulative degenerative changes focused in the intervertebral discs and facet joints that occur asymmetrically to produce deformity. Deformity correction focuses on restoration of global alignment, especially in the sagittal plane, and decompression of the neural elements. General realignment goals have been established, including sagittal vertical axis <50 mm, pelvic tilt <22°, and lumbopelvic mismatch <±9°; however, these should be tailored to the patient. Operative management, in carefully selected patients, yields satisfactory outcomes that appear to be superior to nonoperative strategies. ASD is characterized by malalignment in the sagittal and/or coronal plane and, in adults, presents with pain and disability. Nonoperative management is recommended for patients with mild, nonprogressive symptoms; however, evidence of its efficacy is limited. Surgery aims to restore global spinal alignment, decompress neural elements, and achieve fusion with minimal complications. The surgical approach should balance the desired correction with the increased risk of more aggressive maneuvers. In well-selected patients, surgery yields excellent outcomes. PMID:26378361

  19. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  20. DETECTION OF PLANETARY EMISSION FROM THE EXOPLANET TrES-2 USING SPITZER/IRAC

    SciTech Connect

    O'Donovan, Francis T.; Charbonneau, David; Knutson, Heather A.; Harrington, Joseph; Madhusudhan, N.; Seager, Sara; Deming, Drake

    2010-02-20

    We present here the results of our observations of TrES-2 using the Infrared Array Camera on Spitzer. We monitored this transiting system during two secondary eclipses, when the planetary emission is blocked by the star. The resulting decrease in flux is 0.127% +- 0.021%, 0.230% +- 0.024%, 0.199% +- 0.054%, and 0.359% +- 0.060% at 3.6 {mu}m, 4.5 {mu}m, 5.8 {mu}m, and 8.0 {mu}m, respectively. We show that three of these flux contrasts are well fit by a blackbody spectrum with T{sub eff} = 1500 K, as well as by a more detailed model spectrum of a planetary atmosphere. The observed planet-to-star flux ratios in all four IRAC channels can be explained by models with and without a thermal inversion in the atmosphere of TrES-2, although with different atmospheric chemistry. Based on the assumption of thermochemical equilibrium, the chemical composition of the inversion model seems more plausible, making it a more favorable scenario. TrES-2 also falls in the category of highly irradiated planets which have been theoretically predicted to exhibit thermal inversions. However, more observations at infrared and visible wavelengths would be needed to confirm a thermal inversion in this system. Furthermore, we find that the times of the secondary eclipses are consistent with previously published times of transit and the expectation from a circular orbit. This implies that TrES-2 most likely has a circular orbit, and thus does not obtain additional thermal energy from tidal dissipation of a non-zero orbital eccentricity, a proposed explanation for the large radius of this planet.

  1. Detection of Planetary Emission from the Exoplanet TrES-2 Using Spitzer/IRAC

    NASA Technical Reports Server (NTRS)

    Donovan, Francis T.; Charbonneau, David; Harrington, Joseph; Madhusudhan, N.; Seager, Sara; Deming, Drake; Knutson, Heather A.

    2010-01-01

    We present here the results of our observations of TrES-2 using the Infrared Array Camera on Spitzer. We monitored this transiting system during two secondary eclipses, when the planetary emission is blocked by the star. The resulting decrease in flux is 0.127% +/- 0.021%, 0.230% +/- 0.024%, 0.199% +/- 0.054%, and 0.359% +/- 0.060% at 3.6 microns, 4.5 microns, 5.8 microns, and 8.0 microns, respectively. We show that three of these flux contrasts are well fit by a blackbody spectrum with T(sub eff) = 1500 K, as well as by a more detailed model spectrum of a planetary atmosphere. The observed planet-to-star flux ratios in all four lRAC channels can be explained by models with and without a thermal inversion in the atmosphere of TrES-2, although with different atmospheric chemistry. Based on the assumption of thermochemical equilibrium, the chemical composition of the inversion model seems more plausible, making it a more favorable scenario. TrES-2 also falls in the category of highly irradiated planets which have been theoretically predicted to exhibit thermal inversions. However, more observations at infrared and visible wavelengths would be needed to confirm a thermal inversion in this system. Furthermore, we find that the times of the secondary eclipses are consistent with previously published times of transit and the expectation from a circular orbit. This implies that TrES-2 most likely has a circular orbit, and thus does not obtain additional thermal energy from tidal dissipation of a non-zero orbital eccentricity, a proposed explanation for the large radius of this planet. Key words: eclipses - infrared: stars - planetary systems - stars: individual (OSC 03549-02811) - techniques: photometric

  2. TRES: Identification of Discriminatory and Informative SNPs from Population Genomic Data.

    PubMed

    Kavakiotis, Ioannis; Triantafyllidis, Alexandros; Ntelidou, Despoina; Alexandri, Panoraia; Megens, Hendrik-Jan; Crooijmans, Richard P M A; Groenen, Martien A M; Tsoumakas, Grigorios; Vlahavas, Ioannis

    2015-01-01

    The advent of high-throughput genomic technologies is enabling analyses on thousands or even millions of single-nucleotide polymorphisms (SNPs). At the same time, the selection of a minimum number of SNPs with the maximum information content is becoming increasingly problematic. Available locus ranking programs have been accused of providing upwardly biased results (concerning the predicted accuracy of the chosen set of markers for population assignment), cannot handle high-dimensional datasets, and some of them are computationally intensive. The toolbox for ranking and evaluation of SNPs (TRES) is a collection of algorithms built in a user-friendly and computationally efficient software that can manipulate and analyze datasets even in the order of millions of genotypes in a matter of seconds. It offers a variety of established methods for evaluating and ranking SNPs on user defined groups of populations and produces a set of predefined number of top ranked loci. Moreover, dataset manipulation algorithms enable users to convert datasets in different file formats, split the initial datasets into train and test sets, and finally create datasets containing only selected SNPs occurring from the SNP selection analysis for later on evaluation in dedicated software such as GENECLASS. This application can aid biologists to select loci with maximum power for optimization of cost-effective panels with applications related to e.g. species identification, wildlife management, and forensic problems. TRES is available for all operating systems at http://mlkd.csd.auth.gr/bio/tres. PMID:26137847

  3. Planetary transit observations at the University Observatory Jena: TrES-2

    NASA Astrophysics Data System (ADS)

    Raetz, St.; Mugrauer, M.; Schmidt, T. O. B.; Roell, T.; Eisenbeiss, T.; Hohle, M. M.; Koeltzsch, A.; Vaňko, M.; Ginski, Ch.; Marka, C.; Moualla, M.; Tetzlaff, N.; Seifahrt, A.; Broeg, Ch.; Koppenhoefer, J.; Raetz, M.; Neuhäuser, R.

    2009-05-01

    We report on observations of several transit events of the transiting planet TrES-2 obtained with the Cassegrain-Teleskop-Kamera at the University Observatory Jena. Between March 2007 and November 2008 ten different transits and almost a complete orbital period were observed. Overall, in 40 nights of observation 4291 exposures (in total 71.52 h of observation) of the TrES-2 parent star were taken. With the transit timings for TrES-2 from the 34 events published by the TrES-network, the Transit Light Curve project and the Exoplanet Transit Database plus our own ten transits, we find that the orbital period is P=(2.470614± 0.000001) d, a slight change by ˜ 0.6 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we found a second dip after the transit which could either be due to a blended variable star or occultation of a second star or even an additional object in the system. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University Jena and the 80cm telescope of the Wendelstein Observatory of the Ludwig-Maximilians-University Munich.

  4. Probing deformed quantum commutators

    NASA Astrophysics Data System (ADS)

    Rossi, Matteo A. C.; Giani, Tommaso; Paris, Matteo G. A.

    2016-07-01

    Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length, under which the concepts of space and time lose their physical meaning. In quantum mechanics, the insurgence of such a minimal length can be described by introducing a modified position-momentum commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position measurements has a lower bound. The value of the minimal length is not predicted by theories and must be estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in the deformed algebra induced by the deformed commutation relations.

  5. [Babies with cranial deformity].

    PubMed

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option. PMID:19857299

  6. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  7. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  8. Ice deformation near SHEBA

    NASA Astrophysics Data System (ADS)

    Lindsay, R. W.

    2002-10-01

    The deformation rate of sea ice is a key parameter for determining the evolution of the ice thickness distribution. It determines the rate of new ice formation through opening and the rate of ridging through closing and shear. An extensive suite of ground-based and satellite-based measurements of ice motion is used to construct a daily time series of the ice velocity and deformation in the vicinity of the Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp that is suitable for forcing a model of the ice thickness distribution. The velocity is interpolated to a square grid that remains centered on the camp, has a spacing of 25 km, is 400 km on a side, and is determined for a 371-day period from 2 October 1997 to 7 October 1998. Velocity measurements from buoys, Advanced Very High Resolution Radiometer (AVHRR), Special Sensor Microwave/Imager (SSMI), and Radarsat Geophysical Processing System (RGPS) are merged using optimal interpolation and a Kalman filter approach. The deformation rate is taken directly from the RGPS measurements when available. The daily total deformation rate measured on a scale of 100 km near the camp averaged 2.21% d-1, and the standard deviation was 1.78% d-1. The divergence was positive in the early winter and negative through most of the spring and summer. There were two major opening/closing events, one in January and one at the end of July. The net divergence over the year was very near zero. The vorticity indicated a net rotation of 87° over the year, with the winter showing strong anticyclonic turning and the summer showing strong cyclonic turning.

  9. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  10. Deformable micro torque swimmer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke

    2015-11-01

    We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.

  11. Deformation of Wrinkled Graphene

    PubMed Central

    2015-01-01

    The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609

  12. Treatment of Madelung's deformity.

    PubMed

    Saffar, P; Badina, A

    2015-12-01

    Treatment of Madelung's deformity is still controversial. We reviewed retrospectively 19 patients with Madelung's deformity (two bilateral, 21 cases) who underwent surgery to the radius and ulna to improve range of motion, decrease pain and improve appearance of the wrist. Nineteen patients underwent 21 distal radial osteotomy procedures using three different techniques: subtraction, addition or dome osteotomy. Ulnar shortening and redirection of the distal ulna was performed in 12 cases; a long oblique osteotomy was used in 10 of these cases. The Sauvé-Kapandji technique was performed in five cases, an ulnar distal epiphysiodesis in two cases and a combination of osteotomy and epiphysiodesis in one case. The aim was to reduce the distal radial slope and to restore the orientation and congruity of the distal radio-ulnar joint and to improve its function. Pain was reduced as a result of the procedure: more than 75% of the cases had no or intermittent pain at the review. Pronation improved from 63° to 68° (P=0.467, not significant) and supination improved from 48° to 72° on average (P=0.034, significant). Grip strength increased from 11 to 18 kgf (P=0.013, significant). Madelung's deformity is not always a benign condition and it responds well to corrective osteotomies. PMID:26525609

  13. Supertransvectants, cohomology, and deformations

    NASA Astrophysics Data System (ADS)

    Ben Fraj, Nizar; Laraiedh, Ismail; Omri, Salem

    2013-02-01

    Over the (1, N)-dimensional real superspace, N = 2, 3, we classify {osp}(N|2)-invariant binary differential operators acting on the superspaces of weighted densities, where {osp}(N|2) is the orthosymplectic Lie superalgebra. This result allows us to compute the first differential {osp}(N|2)-relative cohomology of the Lie superalgebra K(N) of contact vector fields with coefficients in the superspace of linear differential operators acting on the superspaces of weighted densities. We classify generic formal {osp}(3|2)-trivial deformations of the K(3)-module structure on the superspaces of symbols of differential operators. We prove that any generic formal {osp}(3|2)-trivial deformation of this K(3)-module is equivalent to its infinitesimal part. This work is the simplest generalization of a result by the first author et al. [Basdouri, I., Ben Ammar, M., Ben Fraj, N., Boujelbene, M., and Kammoun, K., "Cohomology of the Lie superalgebra of contact vector fields on {K}^{1|1} and deformations of the superspace of symbols," J. Nonlinear Math. Phys. 16, 373 (2009), 10.1142/S1402925109000431].

  14. Nanoscale Deformable Optics

    NASA Technical Reports Server (NTRS)

    Strauss, Karl F.; Sheldon, Douglas J.

    2011-01-01

    Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic

  15. ON THE APPARENT ORBITAL INCLINATION CHANGE OF THE EXTRASOLAR TRANSITING PLANET TrES-2b

    SciTech Connect

    Scuderi, Louis J.; Dittmann, Jason A.; Males, Jared R.; Green, Elizabeth M.; Close, Laird M.

    2010-05-01

    On 2009 June 15 UT the transit of TrES-2b was detected using the University of Arizona's 1.55 m Kuiper Telescope with 2.0-2.5 millimag rms accuracy in the I band. We find a central transit time of T{sub c} = 2454997.76286 {+-} 0.00035 HJD, an orbital period of P = 2.4706127 {+-} 0.0000009 days, and an inclination angle of i = 83.{sup 0}92 {+-} 0{sup 0}.05, which is consistent with our re-fit of the original I-band light curve of O'Donovan et al. where we find i = 83.{sup 0}84 {+-} 0{sup 0}.05. We calculate an insignificant inclination change of {Delta}i = -0.{sup 0}08 {+-} 0{sup 0}.07 over the last three years, and as such, our observations rule out, at the {approx}11{sigma} level, the apparent change of orbital inclination to i{sub predicted} = 83.{sup 0}35 {+-} 0{sup 0}.1 as predicted by Mislis and Schmitt and Mislis et al. for our epoch. Moreover, our analysis of a recently published Kepler Space Telescope light curve for TrES-2b finds an inclination of i = 83.{sup 0}91 {+-} 0.{sup 0}03 for a similar epoch. These Kepler results definitively rule out change in i as a function of time. Indeed, we detect no significant changes in any of the orbital parameters of TrES-2b.

  16. A Spitzer Five-band Analysis of the Jupiter-sized Planet TrES-1

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Harrington, Joseph; Madhusudhan, Nikku; Foster, Andrew S. D.; Lust, Nate B.; Hardy, Ryan A.; Bowman, M. Oliver

    2014-12-01

    With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by Spitzer. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all Spitzer eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 μm (0.083% ± 0.024%, 1270 ± 110 K), 4.5 μm (0.094% ± 0.024%, 1126 ± 90 K), 5.8 μm (0.162% ± 0.042%, 1205 ± 130 K), 8.0 μm (0.213% ± 0.042%, 1190 ± 130 K), and 16 μm (0.33% ± 0.12%, 1270 ± 310 K) bands. The eclipse depths can be explained, within 1σ errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity of e = 0.033+0.015 -0.031, consistent with a circular orbit. Since TrES-1's eclipses have low signal-to-noise ratios, we implemented optimal photometry and differential-evolution Markov Chain Monte Carlo (MCMC) algorithms in our Photometry for Orbits, Eclipses, and Transits pipeline. Benefits include higher photometric precision and ~10 times faster MCMC convergence, with better exploration of the phase space and no manual parameter tuning.

  17. A Spitzer five-band analysis of the Jupiter-sized planet TrES-1

    SciTech Connect

    Cubillos, Patricio; Harrington, Joseph; Foster, Andrew S. D.; Lust, Nate B.; Hardy, Ryan A.; Bowman, M. Oliver; Madhusudhan, Nikku

    2014-12-10

    With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by Spitzer. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all Spitzer eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 μm (0.083% ± 0.024%, 1270 ± 110 K), 4.5 μm (0.094% ± 0.024%, 1126 ± 90 K), 5.8 μm (0.162% ± 0.042%, 1205 ± 130 K), 8.0 μm (0.213% ± 0.042%, 1190 ± 130 K), and 16 μm (0.33% ± 0.12%, 1270 ± 310 K) bands. The eclipse depths can be explained, within 1σ errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity of e=0.033{sub −0.031}{sup +0.015}, consistent with a circular orbit. Since TrES-1's eclipses have low signal-to-noise ratios, we implemented optimal photometry and differential-evolution Markov Chain Monte Carlo (MCMC) algorithms in our Photometry for Orbits, Eclipses, and Transits pipeline. Benefits include higher photometric precision and ∼10 times faster MCMC convergence, with better exploration of the phase space and no manual parameter tuning.

  18. Formation and subdivision of deformation structures during plastic deformation.

    PubMed

    Jakobsen, Bo; Poulsen, Henning F; Lienert, Ulrich; Almer, Jonathan; Shastri, Sarvjit D; Sørensen, Henning O; Gundlach, Carsten; Pantleon, Wolfgang

    2006-05-12

    During plastic deformation of metals and alloys, dislocations arrange in ordered patterns. How and when these self-organization processes take place have remained elusive, because in situ observations have not been feasible. We present an x-ray diffraction method that provided data on the dynamics of individual, deeply embedded dislocation structures. During tensile deformation of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent dynamics, for example, appearing and disappearing with proceeding deformation and even displaying transient splitting behavior. Insight into these processes is relevant for an understanding of the strength and work-hardening of deformed materials. PMID:16690859

  19. Deformable spanners and applications.

    PubMed

    Gao, Jie; Guibas, Leonidas J; Nguyen, An

    2006-08-01

    For a set S of points in ℝ(d), an s-spanner is a subgraph of the complete graph with node set S such that any pair of points is connected via some path in the spanner whose total length is at most s times the Euclidean distance between the points. In this paper we propose a new sparse (1 + ε)-spanner with O(n/ε(d)) edges, where ε is a specified parameter. The key property of this spanner is that it can be efficiently maintained under dynamic insertion or deletion of points, as well as under continuous motion of the points in both the kinetic data structures setting and in the more realistic blackbox displacement model we introduce. Our deformable spanner succinctly encodes all proximity information in a deforming point cloud, giving us efficient kinetic algorithms for problems such as the closest pair, the near neighbors of all points, approximate nearest neighbor search (aka approximate Voronoi diagram), well-separated pair decompositions, and approximate k-centers. PMID:21165161

  20. Deformable spanners and applications

    PubMed Central

    Guibas, Leonidas J.; Nguyen, An

    2010-01-01

    For a set S of points in ℝd, an s-spanner is a subgraph of the complete graph with node set S such that any pair of points is connected via some path in the spanner whose total length is at most s times the Euclidean distance between the points. In this paper we propose a new sparse (1 + ε)-spanner with O(n/εd) edges, where ε is a specified parameter. The key property of this spanner is that it can be efficiently maintained under dynamic insertion or deletion of points, as well as under continuous motion of the points in both the kinetic data structures setting and in the more realistic blackbox displacement model we introduce. Our deformable spanner succinctly encodes all proximity information in a deforming point cloud, giving us efficient kinetic algorithms for problems such as the closest pair, the near neighbors of all points, approximate nearest neighbor search (aka approximate Voronoi diagram), well-separated pair decompositions, and approximate k-centers. PMID:21165161

  1. Ultrasoft, highly deformable microgels.

    PubMed

    Bachman, Haylee; Brown, Ashley C; Clarke, Kimberly C; Dhada, Kabir S; Douglas, Alison; Hansen, Caroline E; Herman, Emily; Hyatt, John S; Kodlekere, Purva; Meng, Zhiyong; Saxena, Shalini; Spears, Mark W; Welsch, Nicole; Lyon, L Andrew

    2015-03-14

    Microgels are colloidally stable, hydrogel microparticles that have previously been used in a range of (soft) material applications due to their tunable mechanical and chemical properties. Most commonly, thermo and pH-responsive poly(N-isopropylacrylamide) (pNIPAm) microgels can be fabricated by precipitation polymerization in the presence of the co-monomer acrylic acid (AAc). Traditionally pNIPAm microgels are synthesized in the presence of a crosslinking agent, such as N,N'-methylenebisacrylamide (BIS), however, microgels can also be synthesized under 'crosslinker free' conditions. The resulting particles have extremely low (<0.5%), core-localized crosslinking resulting from rare chain transfer reactions. AFM nanoindentation of these ultralow crosslinked (ULC) particles indicate that they are soft relative to crosslinked microgels, with a Young's modulus of ∼10 kPa. Furthermore, ULC microgels are highly deformable as indicated by a high degree of spreading on glass surfaces and the ability to translocate through nanopores significantly smaller than the hydrodynamic diameter of the particles. The size and charge of ULCs can be easily modulated by altering reaction conditions, such as temperature, monomer, surfactant and initiator concentrations, and through the addition of co-monomers. Microgels based on the widely utilized, biocompatible polymer polyethylene glycol (PEG) can also be synthesized under crosslinker free conditions. Due to their softness and deformability, ULC microgels are a unique base material for a wide variety of biomedical applications including biomaterials for drug delivery and regenerative medicine. PMID:25648590

  2. Measuring deformations with deflectometry

    NASA Astrophysics Data System (ADS)

    Li, Wansong; Huke, Philipp; Burke, Jan; von Kopylow, Christoph; Bergmann, Ralf B.

    2014-07-01

    Phase-measuring deflectometry is a powerful method to measure reflective surfaces. It is relatively easy to extract slope and curvature information from the measured phase maps; however, retrieving shape information depends very sensitively on the calibration of the camera and the geometry of the measurement system. Whereas we have previously demonstrated shape uncertainties below 1 μm, the range below 100 nm is currently inaccessible to deflectometric shape measurement. On the other hand, the astounding sensitivity of deflectometry can be put to good use for deformation measurements. The evaluation of corresponding shape differences rather than absolute shapes is much less susceptible to system calibration errors and its resolution is given mostly by the measurement system's sensitivity. We give an overview of recent progress in difference deflectometry. Firstly we show results from solar mirror substrates under load to detect flaws with high sensitivity. Secondly we present a preliminary simulation study of achievable deformation-measurement uncertainties to assess the feasibility of deflectometric characterisation of actuator performance and gravity sag for the mirror segments of the European Extremely Large Telescope (E-ELT). Results for the relevant Zernike terms show reliable detection of Zernike coefficients at the 25 nm level. Random artefacts related to noise in the phase measurements are seen to translate into bogus Zernike terms, and we discuss possible mitigation techniques to enhance the sensitivity and accuracy further.

  3. Analysis of Kepler's Short-cadence Photometry for TrES-2b

    NASA Astrophysics Data System (ADS)

    Kipping, David; Bakos, Gáspár

    2011-05-01

    We present an analysis of 18 short-cadence (SC) transit light curves of TrES-2b using quarter 0 (Q0) and quarter 1 (Q1) from the Kepler Mission. The photometry is of unprecedented precision, 237 ppm minute-1, allowing for the most accurate determination of the transit parameters yet obtained for this system. Global fits of the transit photometry, radial velocities, and known transit times are used to obtain a self-consistent set of refined parameters for this system, including updated stellar and planetary parameters. Special attention is paid to fitting for limb darkening and eccentricity. We place an upper limit on the occultation depth to be <72.9 ppm to 3σ confidence, indicating TrES-2b has the lowest determined geometric albedo for an exoplanet, of Ag < 0.146. We also produce a transit timing analysis using Kepler's SC data and demonstrate exceptional timing precision at the level of a few seconds for each transit event. With 18 fully sampled transits at such high precision, we are able to produce stringent constraints on the presence of perturbing planets, Trojans, and extrasolar moons. We introduce the novel use of control data to identify phasing effects. We also exclude the previously proposed hypotheses of short-period transit time variation and additional transits but find that the hypothesis of long-term inclination change is neither supported nor refuted by our analysis. Based on archival data of the Kepler telescope.

  4. ANALYSIS OF KEPLER'S SHORT-CADENCE PHOTOMETRY FOR TrES-2b

    SciTech Connect

    Kipping, David; Bakos, Gaspar

    2011-05-20

    We present an analysis of 18 short-cadence (SC) transit light curves of TrES-2b using quarter 0 (Q0) and quarter 1 (Q1) from the Kepler Mission. The photometry is of unprecedented precision, 237 ppm minute{sup -1}, allowing for the most accurate determination of the transit parameters yet obtained for this system. Global fits of the transit photometry, radial velocities, and known transit times are used to obtain a self-consistent set of refined parameters for this system, including updated stellar and planetary parameters. Special attention is paid to fitting for limb darkening and eccentricity. We place an upper limit on the occultation depth to be <72.9 ppm to 3{sigma} confidence, indicating TrES-2b has the lowest determined geometric albedo for an exoplanet, of A{sub g} < 0.146. We also produce a transit timing analysis using Kepler's SC data and demonstrate exceptional timing precision at the level of a few seconds for each transit event. With 18 fully sampled transits at such high precision, we are able to produce stringent constraints on the presence of perturbing planets, Trojans, and extrasolar moons. We introduce the novel use of control data to identify phasing effects. We also exclude the previously proposed hypotheses of short-period transit time variation and additional transits but find that the hypothesis of long-term inclination change is neither supported nor refuted by our analysis.

  5. Learning Deformable Shape Manifolds

    PubMed Central

    Rivera, Samuel; Martinez, Aleix

    2011-01-01

    We propose an approach to shape detection of highly deformable shapes in images via manifold learning with regression. Our method does not require shape key points be defined at high contrast image regions, nor do we need an initial estimate of the shape. We only require sufficient representative training data and a rough initial estimate of the object position and scale. We demonstrate the method for face shape learning, and provide a comparison to nonlinear Active Appearance Model. Our method is extremely accurate, to nearly pixel precision and is capable of accurately detecting the shape of faces undergoing extreme expression changes. The technique is robust to occlusions such as glasses and gives reasonable results for extremely degraded image resolutions. PMID:22308002

  6. IBA in deformed nuclei

    SciTech Connect

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for /sup 168/Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong ..beta.. ..-->.. ..gamma.. transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the ..beta.. ..-->.. ..gamma.. transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ..delta..K=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics.

  7. SYSTEM PARAMETERS, TRANSIT TIMES, AND SECONDARY ECLIPSE CONSTRAINTS OF THE EXOPLANET SYSTEMS HAT-P-4, TrES-2, TrES-3, and WASP-3 FROM THE NASA EPOXI MISSION OF OPPORTUNITY

    SciTech Connect

    Christiansen, Jessie L.; Ballard, Sarah; Charbonneau, David; Holman, Matthew J.; Deming, Drake; Barry, Richard K.; Livengood, Timothy A.; Hewagama, Tilak; Madhusudhan, Nikku; Seager, Sara; Wellnitz, Dennis D.; A'Hearn, Michael F.; Hampton, Don L.; Lisse, Carey M.

    2011-01-10

    As part of the NASA EPOXI Mission of Opportunity, we observed seven known transiting extrasolar planet systems in order to construct time series photometry of extremely high phase coverage and precision. Here we present the results for four 'hot-Jupiter systems' with near-solar stars-HAT-P-4, TrES-3, TrES-2, and WASP-3. We observe 10 transits of HAT-P-4, estimating the planet radius R{sub p} = 1.332 {+-} 0.052 R{sub Jup}, the stellar radius R{sub *} = 1.602 {+-} 0.061 R{sub sun}, the inclination i = 89.67 {+-} 0.30 deg, and the transit duration from first to fourth contact {tau} = 255.6 {+-} 1.9 minutes. For TrES-3, we observe seven transits and find R{sub p} = 1.320 {+-} 0.057 R{sub Jup}, R{sub *} = 0.817 {+-} 0.022 R{sub sun}, i = 81.99 {+-} 0.30 deg, and {tau} = 81.9 {+-} 1.1 minutes. We also note a long-term variability in the TrES-3 light curve, which may be due to star spots. We observe nine transits of TrES-2 and find R{sub p} = 1.169 {+-} 0.034 R{sub Jup}, R{sub *} = 0.940 {+-} 0.026 R{sub sun}, i = 84.15 {+-} 0.16 deg, and {tau} = 107.3 {+-} 1.1 minutes. Finally, we observe eight transits of WASP-3, finding R{sub p} = 1.385 {+-} 0.060 R{sub Jup}, R{sub *} = 1.354 {+-} 0.056 R{sub sun}, i = 84.22 {+-} 0.81 deg, and {tau} = 167.3 {+-} 1.3 minutes. We present refined orbital periods and times of transit for each target. We state 95% confidence upper limits on the secondary eclipse depths in our broadband visible bandpass centered on 650 nm. These limits are 0.073% for HAT-P-4, 0.062% for TrES-3, 0.16% for TrES-2, and 0.11% for WASP-3. We combine the TrES-3 secondary eclipse information with the existing published data and confirm that the atmosphere likely does not have a temperature inversion.

  8. Stroke amplifier for deformable mirrors

    PubMed Central

    Webb, Robert H.; Albanese, Marc J.; Zhou, Yaopeng; Bifano, Thomas; Burns, Stephen A.

    2010-01-01

    We demonstrate a simple optical configuration that amplifies the usable stroke of a deformable mirror. By arranging for the wavefront to traverse the deformable mirror more than once, we correct it more than once. The experimental implementation of the idea demonstrates a doubling of 2.0 and 2.04 by two different means. PMID:15495423

  9. POSSIBLE TRANSIT TIMING VARIATIONS OF THE TrES-3 PLANETARY SYSTEM

    SciTech Connect

    Jiang, Ing-Guey; Wu, Yu-Ting; Chien, Ping; Lin, Yi-Ling; Chen, Hong-Yu; Hu, Juei-Hwa; Yeh, Li-Chin; Thakur, Parijat; Sun Zhao; Ji Jianghui

    2013-03-15

    Five newly observed transit light curves of the TrES-3 planetary system are presented. Together with other light-curve data from the literature, 23 transit light curves in total, which cover an overall timescale of 911 epochs, have been analyzed through a standard procedure. From these observational data, the system's orbital parameters are determined and possible transit timing variations (TTVs) are investigated. Given that a null TTV produces a fit with reduced {chi}{sup 2} = 1.52, our results agree with previous work, that TTVs might not exist in these data. However, a one-frequency oscillating TTV model, giving a fit with a reduced {chi}{sup 2} = 0.93, does possess a statistically higher probability. It is thus concluded that future observations and dynamical simulations for this planetary system will be very important.

  10. Metazoan parasite community of blue sea catfish, Sciades guatemalensis (Ariidae), from Tres Palos Lagoon, Guerrero, Mexico.

    PubMed

    Violante-González, Juan; Aguirre-Macedo, Ma Leopoldina; Rojas-Herrera, Agustín; Guerrero, Salvador Gil

    2009-10-01

    The seasonal dynamic of the metazoan parasite community of the blue sea catfish (Sciades guatemalensis) from Tres Palos Lagoon, Guerrero, Mexico, was studied at the component community and infracommunity levels. A total of 382 fish were collected during the regional dry and rainy seasons (a total of seven seasons) between April 2000 and September 2007. Nine helminths were collected: Neotetraonchus sp., Pseudoacanthostomum panamense, Austrodiplostomum compactum, Clinostomum complanatum, Metadena sp., Pseudoleptorhynchoides lamothei, Neoechinorhynchus cf. golvani, Hysterothylacium perezi, and Contracaecum sp. The infection dynamics of some dominant helminths was influenced by environmental changes generated by the dry/rainy season cycle. Nested (non-random) species composition was observed in the infracommunities during almost all of the sample period. Variation in the intensity of nestedness was attributed to a sequential colonization process over time by the dominant helminths. PMID:19548005

  11. [Spectrum research on metamorphic and deformation of tectonically deformed coals].

    PubMed

    Li, Xiao-Shi; Ju, Yi-Wen; Hou, Quan-Lin; Lin, Hong

    2011-08-01

    The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation. PMID:22007412

  12. Perceptual transparency from image deformation

    PubMed Central

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin’ya

    2015-01-01

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid’s surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of “invisible” transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation. PMID:26240313

  13. Opioids and rat erythrocyte deformability.

    PubMed

    Rhoads, D L; Wei, L X; Lin, E T; Rezvani, A; Way, E L

    1986-01-01

    In previous studies from this laboratory, it was noted that opioids in vitro reduced human red blood cell deformability. The effect was found to be dose-dependent, naloxone reversible and preferentially selective kappa ligands exhibited the highest potency. To extend these findings studies were carried out using rat erythrocytes. The time required for erythrocytes to pass through a 5.0 um pore membrane was determined and used as an index of deformability. Opioids added in vitro produced inhibition of deformability in a dose-dependent, naloxone reversible manner. Injecting naive animals with morphine or nalbuphine also produced dose related reductions in red cell deformability. The degree of inhibition produced by nalbuphine correlated well with its plasma concentrations as measured by high performance liquid chromatography (HPLC). Chronic morphine treatment by pellet implantation resulted in the development of tolerance as evidenced by a loss in the ability of morphine in vitro to inhibit red cell deformability. Addition of naloxone resulted in a decrease in filtration time. Thus, the data confirm and extend previous findings on human red blood cells. In as much as previous data from this laboratory demonstrated that opioids inhibit calcium flux from erythrocytes by inhibiting calcium-ATPase and calcium efflux is necessary for normal deformability, it is concluded that opioids act to reduce red cell deformability by inhibition of the calcium pump. PMID:3123933

  14. Perceptual transparency from image deformation.

    PubMed

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation. PMID:26240313

  15. Metastable vacua and complex deformations

    SciTech Connect

    Tatar, Radu; Wetenhall, Ben

    2007-12-15

    We use the non-normalizable complex deformations to describe the stringy realizations of the metastable vacua in N=1, SU(N{sub c}) SUSY theories with N{sub f}>N{sub c} massive fundamental flavors. The consideration of the non-normalizable deformations requires a modified toric duality. The new approach considers the tachyon condensation between pairs of wrapped D5 branes and anti-D5 branes and the resulting mixing between some cycles in the geometry. We enlarge the class of metastable vacua to the case of branes-antibranes wrapped on cycles of deformed A{sub n} singularities.

  16. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  17. The GAPS programme with HARPS-N at TNG. VI. The curious case of TrES-4b

    NASA Astrophysics Data System (ADS)

    Sozzetti, A.; Bonomo, A. S.; Biazzo, K.; Mancini, L.; Damasso, M.; Desidera, S.; Gratton, R.; Lanza, A. F.; Poretti, E.; Rainer, M.; Malavolta, L.; Affer, L.; Barbieri, M.; Bedin, L. R.; Boccato, C.; Bonavita, M.; Borsa, F.; Ciceri, S.; Claudi, R. U.; Gandolfi, D.; Giacobbe, P.; Henning, T.; Knapic, C.; Latham, D. W.; Lodato, G.; Maggio, A.; Maldonado, J.; Marzari, F.; Martinez Fiorenzano, A. F.; Micela, G.; Molinari, E.; Mordasini, C.; Nascimbeni, V.; Pagano, I.; Pedani, M.; Pepe, F.; Piotto, G.; Santos, N.; Scandariato, G.; Shkolnik, E.; Southworth, J.

    2015-03-01

    We update the TrES-4 system parameters using high-precision HARPS-N radial-velocity measurements and new photometric light curves. A combined spectroscopic and photometric analysis allows us to determine a spectroscopic orbit with a semi-amplitude K = 51 ± 3 m s-1. The derived mass of TrES-4b is found to be Mp = 0.49 ± 0.04 MJup, significantly lower than previously reported. Combined with the large radius () inferred from our analysis, TrES-4b becomes the transiting hot Jupiter with the second-lowest density known. We discuss several scenarios to explain the puzzling discrepancy in the mass of TrES-4b in the context of the exotic class of highly inflated transiting giant planets. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF at the Spanish Observatorio del Roque de los Muchachos of the IAC in the frame of the program Global Architecture of Planetary Systems (GAPS), and with the Zeiss 1.23-m telescope at the German-Spanish Astronomical Center at Calar Alto, Spain. Tables 1 and 3 are available in electronic form at http://www.aanda.org

  18. 77 FR 40628 - Draft Safe Harbor Agreement and Application for an Enhancement of Survival Permit for the Tres...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ...: Mike_Martinez@fws.gov . Include ``Arizona Ecological Services Field Office draft Tres Rios SHA'' in the.... FOR FURTHER INFORMATION CONTACT: Mike Martinez, at the U.S. Fish and Wildlife Service, by mail at the address under ADDRESSES, by phone at 602-242-0210 x224, or by email at...

  19. ATMOSPHERE AND SPECTRAL MODELS OF THE KEPLER-FIELD PLANETS HAT-P-7b AND TrES-2

    SciTech Connect

    Spiegel, David S.; Burrows, Adam E-mail: burrows@astro.princeton.ed

    2010-10-10

    We develop atmosphere models of two of the three Kepler-field planets that were known prior to the start of the Kepler mission (HAT-P-7b and TrES-2). We find that published Kepler and Spitzer data for HAT-P-7b appear to require an extremely hot upper atmosphere on the dayside, with a strong thermal inversion and little day-night redistribution. The Spitzer data for TrES-2 suggest a mild thermal inversion with moderate day-night redistribution. We examine the effect of nonequilibrium chemistry on TrES-2 model atmospheres and find that methane levels must be adjusted by extreme amounts in order to cause even mild changes in atmospheric structure and emergent spectra. Our best-fit models to the Spitzer data for TrES-2 lead us to predict a low secondary eclipse planet-star flux ratio ({approx}<2 x 10{sup -5}) in the Kepler bandpass, which is consistent with what very recent observations have found. Finally, we consider how the Kepler-band optical flux from a hot exoplanet depends on the strength of a possible extra optical absorber in the upper atmosphere. We find that the optical flux is not monotonic in optical opacity, and the non-monotonicity is greater for brighter, hotter stars.

  20. Shear deformation in granular materials

    SciTech Connect

    Bardenhagen, S.G.; Brackbill, J.U.; Sulsky, D.L.

    1998-12-31

    An investigation into the properties of granular materials is undertaken via numerical simulation. These simulations highlight that frictional contact, a defining characteristic of dry granular materials, and interfacial debonding, an expected deformation mode in plastic bonded explosives, must be properly modeled. Frictional contact and debonding algorithms have been implemented into FLIP, a particle in cell code, and are described. Frictionless and frictional contact are simulated, with attention paid to energy and momentum conservation. Debonding is simulated, with attention paid to the interfacial debonding speed. A first step toward calculations of shear deformation in plastic bonded explosives is made. Simulations are performed on the scale of the grains where experimental data is difficult to obtain. Two characteristics of deformation are found, namely the intermittent binding of grains when rotation and translation are insufficient to accommodate deformation, and the role of the binder as a lubricant in force chains.

  1. Carrier Deformability in Drug Delivery.

    PubMed

    Morilla, Maria Jose; Romero, Eder Lilia

    2016-01-01

    Deformability is a key property of drug carriers used to increase the mass penetration across the skin without disrupting the lipid barrier. Highly deformable vesicles proved to be more effective than conventional liposomes in delivering drugs into and across the mammalian skin upon topical non occlusive application. In the past five years, highly deformable vesicles have been used for local delivery of drugs on joint diseases, skin cancer, atopic dermatitis, would healing, psoriasis, scar treatment, fungal, bacteria and protozoa infections. Promising topical vaccination strategies rely also in this type of carriers. Here we provide an overview on the main structural and mechanical features of deformable vesicles, to finish with an extensive update on their latest preclinical applications. PMID:26675226

  2. Modelling magnetically deformed neutron stars

    NASA Astrophysics Data System (ADS)

    Haskell, B.; Samuelsson, L.; Glampedakis, K.; Andersson, N.

    2008-03-01

    Rotating deformed neutron stars are important potential sources for ground-based gravitational wave interferometers such as LIGO, GEO600 and VIRGO. One mechanism that may lead to significant non-asymmetries is the internal magnetic field. It is well known that a magnetic star will not be spherical and, if the magnetic axis is not aligned with the spin axis, the deformation will lead to the emission of gravitational waves. The aim of this paper is to develop a formalism that would allow us to model magnetically deformed stars, using both realistic equations of state and field configurations. As a first step, we consider a set of simplified model problems. Focusing on dipolar fields, we determine the internal magnetic field which is consistent with a given neutron star model and calculate the associated deformation. We discuss the relevance of our results for current gravitational wave detectors and future prospects.

  3. Promoting research in rock deformation

    NASA Astrophysics Data System (ADS)

    Kirby, Steve

    In response to informal discussions at the 1988 AGU Spring Meeting in Baltimore, Md., a dinner colloquium was held December 5, 1988, in San Francisco. Our purpose was to explore ways of promoting basic research in rock deformation, for which no professional organization exists that spans the full range of research interests. In spite of an informal distribution of announcements of the meeting, 54 people attended.Rock deformation is the materials science of the crystalline and amorphous materials that make up the solid Earth. As such, it includes not only the physical processes responsible for brittle and ductile deformation but also the important chemical processes that influence time-dependent inelastic deformation. Consequently, there is a continuing need to engage interest and collaboration from materials scientists, mineral physicists, metallurgists, surface chemists, and geochemists in the study of the inelastic mechanical behavior of these complex materials.

  4. ROCK DEFORMATION. Final Progress Report

    SciTech Connect

    2002-05-24

    The Gordon Research Conference (GRC) on ROCK DEFORMATION was held at II Ciocco from 5/19/02 thru 5/24/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  5. M theory on deformed superspace

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2011-11-01

    In this paper we will analyze a noncommutative deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in N=1 superspace formalism. We will then analyze the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries for this deformed ABJM theory, and its linear as well as nonlinear gauges. We will show that the sum of the gauge fixing term and the ghost term for this deformed ABJM theory can be expressed as a combination of the total BRST and the total anti-BRST variation, in Landau and nonlinear gauges. We will show that in Landau and Curci-Ferrari gauges deformed ABJM theory is invariant under an additional set of symmetry transformations. We will also discuss the effect that the addition of a bare mass term has on this theory.

  6. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  7. Deformations in chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr; Reddy, Kathryn; Bateman, Daniel; Iljin, Andrey

    2014-03-01

    Deformations and their relaxation in chiral liquid crystals are studied experimentally and theoretically in planar geometry for liquid crystalline mixtures of varying viscosities. It is shown by both methods that shear deformation in liquid crystals results in the inclination and extension of cholesteric helix in samples with high viscosity. Stretching deformation results in shrinking cholesteric helix. This leads to a possibility of detecting deformations on a nanometer scale by observing changes in selective reflection spectra. Theoretical model takes into account elastic strain of physical network formed by the entanglements between components of liquid crystalline mixture, viscosity of the matrix and elasticity of the liquid crystalline subsystem. This allows to model mechanical response of the matrix with different viscosities to stretching and shear of various amplitudes. It is shown that relaxation of the cholesteric helix takes much shorter time than mechanical relaxation of the mixtures. The model perfectly agrees with experimental data. The model is compared with theoretical model describing behavior of elastomers.

  8. Anatomy of gravitationally deformed slopes

    NASA Astrophysics Data System (ADS)

    Chigira, Masahiro; Yamasaki, Shintaro; Hariyama, Takehiro

    2010-05-01

    Deep-seated gravitational slope deformation is the deformation of rocks as well as slope surfaces, but the internal structures have not been well observed and described before. This is mainly due to the difficulty in obtaining undisturbed samples from underground. We analyzed the internal deformational structures of gravitationally deformed slopes by using high quality drilled cores obtained by hybrid drilling technique, which has been recently developed and can recover very fragile materials that could not be taken by the conventional drilling techniques. Investigated slopes were gravitationally deformed out-facing slopes of pelitic schist and shale. The slope surfaces showed deformational features of small steps, depressions, knobs, and linear depressions, but had no major main scarp and landslide body with well-defined outline. This is indicative of slow, deep-seated gravitational deformation. Most of these small deformational features are hidden by vegetations, but they are detected by using airborne laser scanner. Drilled cores showed that the internal deformation is dominated by the slip and tearing off along foliations. Slippage along foliations is conspicuous in pelitic schist: Pelitic schist is sheared, particularly along black layers, which are rich in graphite and pyrite. Graphite is known to be a solid lubricant in material sciences, which seems to be why shearing occurs along the black layers. Rock mass between two slip layers is sheared, rotated, fractured, and pulverized; undulation of bedding or schistosity could be the nucleation points of fracturing. Tearing off along foliations is also the major deformation mode, which forms jagged morphology of rock fragments within shear zones. Rock fragments with jagged surface are commonly observed in "gouge", which is very different from tectonic gouge. This probably reflects the low confining pressures during their formation. Microscopic to mesoscopic openings along fractures are commonly observed with

  9. Measurement of deformations by NMR

    NASA Astrophysics Data System (ADS)

    Bytchenkoff, Dimitri; Rodts, Stéphane

    2015-12-01

    Two NMR data acquisition protocols together with corresponding data processing algorithms for locating macroscopic objects, measuring distances between them or monitoring their displacements or deformations with microscopic precision are presented and discussed. The performance of the methods is demonstrated by applying them to the measurement of deformations of a freely supported beam under loading. We believe that our methods will find their applications in mechanics, civil engineering and medicine.

  10. Mixing of discontinuously deforming media.

    PubMed

    Smith, L D; Rudman, M; Lester, D R; Metcalfe, G

    2016-02-01

    Mixing of materials is fundamental to many natural phenomena and engineering applications. The presence of discontinuous deformations-such as shear banding or wall slip-creates new mechanisms for mixing and transport beyond those predicted by classical dynamical systems theory. Here, we show how a novel mixing mechanism combining stretching with cutting and shuffling yields exponential mixing rates, quantified by a positive Lyapunov exponent, an impossibility for systems with cutting and shuffling alone or bounded systems with stretching alone, and demonstrate it in a fluid flow. While dynamical systems theory provides a framework for understanding mixing in smoothly deforming media, a theory of discontinuous mixing is yet to be fully developed. New methods are needed to systematize, explain, and extrapolate measurements on systems with discontinuous deformations. Here, we investigate "webs" of Lagrangian discontinuities and show that they provide a template for the overall transport dynamics. Considering slip deformations as the asymptotic limit of increasingly localised smooth shear, we also demonstrate exactly how some of the new structures introduced by discontinuous deformations are analogous to structures in smoothly deforming systems. PMID:26931594

  11. Microstructures and deformation mechanisms of experimentally deformed gabbro

    NASA Astrophysics Data System (ADS)

    Zhou, Yongsheng; He, Changrong

    2015-04-01

    The natural gabbro samples were deformed at temperature ranging from 700 to 1150 °C with strain rate steps of 1 × 10-4, 2.5 × 10-5, 6.3 × 10-6 s-1. The mechanical data show that sample experiences gradual transition from semi-brittle flow to plastic flow, corresponding to a systematically decreasing stress exponent n with the increasing temperature ranging from 16.5 to 4.1 (He et al. Sci China (D) 46(7):730-742, 2003). We investigate microstructures and deformation mechanisms of experimentally deformed gabbro under transmission electron microscope in this study. For low temperature of 700 °C to 950 °C, the deformation is mainly accommodated with dislocation glide and mechanical twinning, corresponding to stress exponent lager than 5, which means semi-brittle deformation. Whereas with higher temperature up to 1000 °C-1150 °C, the deformation is accommodated mainly with dislocation glide and climb corresponding to stress exponent of 4.1, which means plastic deformation. Evidence of dislocation climb has been found as dislocation walls in plagioclase. The observed slip system in plagioclase is (001)1/2[110] and that in clinopyroxene are (100)[001] and (010)[001]. The (010)[001] slip system in clinopyroxene is newly found in this work. Melt was found at temperature of 950 °C-1050 °C. The melt glass distributed both in melt thin film between two grain boundaries and melt tubules of triangular along three grain boundaries at temperature of 950 °C-1000 °C. The melt triangular interconnected to the melt film at temperature of 1050 °C-1150 °C, where the melt chemical composition differentiated into iron-rich dark dots and silicate-rich matrix.

  12. Perioperative Assessment of Myocardial Deformation

    PubMed Central

    Duncan, Andra E.; Alfirevic, Andrej; Sessler, Daniel I.; Popovic, Zoran B.; Thomas, James D.

    2014-01-01

    Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation which reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis using transthoracic echocardiography are (mean ± SD) −19.7 ± 0.4%, while radial and circumferential strain are 47.3 ± 1.9 and −23.3 ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages −1.10 ± 0.16 sec−1. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to

  13. Analysis of Mining Terrain Deformation Characteristics with Deformation Information System

    NASA Astrophysics Data System (ADS)

    Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr

    2014-05-01

    Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on

  14. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Kaercher, P. M.; Zepeda-Alarcon, E.; Prakapenka, V.; Kanitpanyacharoen, W.; Smith, J.; Sinogeikin, S. V.; Wenk, H. R.

    2014-12-01

    The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, yet little is known about its deformation mechanisms. Information about how stishovite deforms under stress is important for understanding subduction of quartz-bearing crustal rocks into the mantle. Particularly, stishovite is elastically anisotropic and thus development of crystallographic preferred orientation (CPO) during deformation may contribute to seismic anomalies in the mantle. We converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. Diffraction patterns were collected in situ in radial geometry at the Advanced Light Source (ALS) and the Advanced Photon Source (APS) to examine development of CPO during deformation. We find that (001) poles preferentially align with the compression direction and infer deformation mechanisms leading to the observed CPO with visco-plastic self consistent (VPSC) polycrystal plasticity models. Our results show pyramidal and basal slip are most likely active at high pressure and ambient temperature, in agreement with transmission electron microscopy (TEM) studies of rutile (TiO2) and paratellurite (TeO2), which are isostructural to stishovite. Conversely other TEM studies of stishovite done at higher temperature suggest dominant prismatic slip. This indicates that a variety of slip systems may be active in stishovite, depending on conditions. As a result, stishovite's contribution to the seismic signature in the mantle may vary as a function of pressure and temperature and thus depth.

  15. THE BROADBAND INFRARED EMISSION SPECTRUM OF THE EXOPLANET TrES-3

    SciTech Connect

    Fressin, Francois; Knutson, Heather A.; Charbonneau, David; O'Donovan, Francis T.; Burrows, Adam; Spiegel, David; Deming, Drake; Mandushev, Georgi

    2010-03-01

    We use the Spitzer Space Telescope to estimate the dayside thermal emission of the exoplanet TrES-3 integrated in the 3.6, 4.5, 5.8, and 8.0 {mu}m bandpasses of the Infrared Array Camera (IRAC) instrument. We observe two secondary eclipses and find relative eclipse depths of 0.00346 +- 0.00035, 0.00372 +- 0.00054, 0.00449 +- 0.00097, and 0.00475 +- 0.00046, respectively, in the four IRAC bandpasses. We combine our results with the earlier K-band measurement of De Mooij et al., and compare them with models of the planetary emission. We find that the planet does not require the presence of an inversion layer in the high atmosphere. This is the first very strongly irradiated planet that does not have a temperature inversion, which indicates that stellar or planetary characteristics other than temperature have an important impact on temperature inversion. De Mooij and Snellen also detected a possible slight offset in the timing of the secondary eclipse in the K band. However, based on our four Spitzer channels, we place a 3sigma upper limit of |ecos(omega)| < 0.0056, where e is the planet's orbital eccentricity and omega is the longitude of the periastron. This result strongly indicates that the orbit is circular, as expected from tidal circularization theory.

  16. Residual deformations in ocular tissues

    PubMed Central

    Wang, Ruoya; Raykin, Julia; Gleason, Rudolph L.; Ethier, C. Ross

    2015-01-01

    Residual deformations strongly influence the local biomechanical environment in a number of connective tissues. The sclera is known to be biomechanically important in healthy and diseased eyes, such as in glaucoma. Here, we study the residual deformations of the sclera, as well as the adjacent choroid and retina. Using freshly harvested porcine eyes, we developed two approaches of quantifying residual deformations in the spherically shaped tissues of interest. The first consisted of punching discs from the posterior wall of the eye and quantifying the changes in the area and eccentricity of these samples. The second consisted of cutting a ring from the equatorial sclera and making stress-relieving cuts in it. Measurements of curvature were made before and after the stress-relieving cuts. Using the first approach, we observed a 42% areal contraction of the choroid, but only modest contractions of the sclera and retina. The observed contractions were asymmetric. In the second approach, we observed an opening of the scleral rings (approx. 10% decrease in curvature). We conclude that residual bending deformations are present in the sclera, which we speculate may be due to radially heterogeneous growth and remodelling of the tissue during normal development. Further, residual areal deformations present in the choroid may be due to the network of elastic fibres in this tissue and residual deformations in the constituent vascular bed. Future studies of ocular biomechanics should attempt to include effects of these residual deformations into mechanical models in order to gain a better understanding of the biomechanics of the ocular wall. PMID:25740853

  17. Deformation of second and third quantization

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  18. Quantifying torso deformity in scoliosis

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter O.; Kumar, Anish; Durdle, Nelson G.; Raso, V. James

    2006-03-01

    Scoliosis affects the alignment of the spine and the shape of the torso. Most scoliosis patients and their families are more concerned about the effect of scoliosis on the torso than its effect on the spine. There is a need to develop robust techniques for quantifying torso deformity based on full torso scans. In this paper, deformation indices obtained from orthogonal maps of full torso scans are used to quantify torso deformity in scoliosis. 'Orthogonal maps' are obtained by applying orthogonal transforms to 3D surface maps. (An 'orthogonal transform' maps a cylindrical coordinate system to a Cartesian coordinate system.) The technique was tested on 361 deformed computer models of the human torso and on 22 scans of volunteers (8 normal and 14 scoliosis). Deformation indices from the orthogonal maps correctly classified up to 95% of the volunteers with a specificity of 1.00 and a sensitivity of 0.91. In addition to classifying scoliosis, the system gives a visual representation of the entire torso in one view and is viable for use in a clinical environment for managing scoliosis.

  19. Mixing of discontinuously deforming media

    NASA Astrophysics Data System (ADS)

    Smith, L. D.; Rudman, M.; Lester, D. R.; Metcalfe, G.

    2016-02-01

    Mixing of materials is fundamental to many natural phenomena and engineering applications. The presence of discontinuous deformations—such as shear banding or wall slip—creates new mechanisms for mixing and transport beyond those predicted by classical dynamical systems theory. Here, we show how a novel mixing mechanism combining stretching with cutting and shuffling yields exponential mixing rates, quantified by a positive Lyapunov exponent, an impossibility for systems with cutting and shuffling alone or bounded systems with stretching alone, and demonstrate it in a fluid flow. While dynamical systems theory provides a framework for understanding mixing in smoothly deforming media, a theory of discontinuous mixing is yet to be fully developed. New methods are needed to systematize, explain, and extrapolate measurements on systems with discontinuous deformations. Here, we investigate "webs" of Lagrangian discontinuities and show that they provide a template for the overall transport dynamics. Considering slip deformations as the asymptotic limit of increasingly localised smooth shear, we also demonstrate exactly how some of the new structures introduced by discontinuous deformations are analogous to structures in smoothly deforming systems.

  20. Transverse deformations of extreme horizons

    NASA Astrophysics Data System (ADS)

    Li, Carmen; Lucietti, James

    2016-04-01

    We consider the inverse problem of determining all extreme black hole solutions to the Einstein equations with a prescribed near-horizon geometry. We investigate this problem by considering infinitesimal deformations of the near-horizon geometry along transverse null geodesics. We show that, up to a gauge transformation, the linearised Einstein equations reduce to an elliptic PDE for the extrinsic curvature of a cross-section of the horizon. We deduce that for a given near-horizon geometry there exists a finite dimensional moduli space of infinitesimal transverse deformations. We then establish a uniqueness theorem for transverse deformations of the extreme Kerr horizon. In particular, we prove that the only smooth axisymmetric transverse deformation of the near-horizon geometry of extreme Kerr, such that cross-sections of the horizon are marginally trapped surfaces, corresponds to that of the extreme Kerr black hole. Furthermore, we determine all smooth and biaxisymmetric transverse deformations of the near-horizon geometry of the five-dimensional extreme Myers-Perry black hole with equal angular momenta. We find a three parameter family of solutions such that cross-sections of the horizon are marginally trapped, which is more general than the known black hole solutions. We discuss the possibility that they correspond to new five-dimensional vacuum black holes.

  1. Finite Deformation of Magnetoelastic Film

    SciTech Connect

    Barham, Matthew Ian

    2011-05-31

    A nonlinear two-dimensional theory is developed for thin magnetoelastic lms capable of large deformations. This is derived directly from three-dimensional theory. Signi cant simpli cations emerge in the descent from three dimensions to two, permitting the self eld generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers with two material models. First weak magnetization is investigated leading to a free energy where magnetization and deformation are un-coupled. The second closely couples the magnetization and deformation. Numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure and an applied magnetic eld. An instability is inferred and investigated for the weak magnetization material model.

  2. Deformation processes in forging ceramics

    NASA Technical Reports Server (NTRS)

    Cannon, R. M.; Rhodes, W. H.

    1973-01-01

    The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging was utilized to investigate both the flow and fracture processes involved. Deformation studies of very fine grain Al203 revealed an apparent transition in behavior, characterized by a shift in the strain rate sensitivity from 0.5 at low stresses to near unity at higher stresses. The behavior is indicative of a shift in control between two dependent mechanisms, one of which is indicated to be cation limited diffusional creep with significant boundary enhancement. The possible contributions of slip, indicated by crystallographic texture, interface control of the diffusional creep and inhomogeneous boundary sliding are also discussed. Additional experiments indicated an independence of deformation behavior on MgO doping and retained hot pressing impurities, at least for ultrafine grained material, and also an independence of test atmosphere.

  3. Shock metamorphism of deformed quartz

    NASA Technical Reports Server (NTRS)

    Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter

    1988-01-01

    The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.

  4. Chaetal deformities in aquatic oligochaeta

    SciTech Connect

    Brinkhurst, R.O.; Wetzel, M.J.

    1994-12-31

    Gross deformities in the chaetae of specimens of the tubificid Potamothrix hammoniensis were described by Milbrink from Lake Vaenern, Sweden. This lake is one of the most mercury-polluted major lakes of the world. Statistical tests showed a highly significant correlation between the incidence of deformities and the mercury concentration in the sediments. Changes in the pulp and paper mill process led to marked reduction in specimens with deformities. Similarly modified specimens of various species have been observed at a number of sites contaminated with heavy metals or oil residues in North America. Experimental work on chaetal form has demonstrated changes due to conductivity which have also been observed in saline inland waters. These experiments suggest that chaetae may be shed and replaced by worms every few days. EDX observation of chaetae indicated that metals may accumulate in them, and so provide a potential depuration mechanism. Independent physiological studies suggest that worms may be capable of regulating their metal levels.

  5. Observations of the transiting planet TrES-2 with the AIU Jena telescope in Großschwabhausen

    NASA Astrophysics Data System (ADS)

    Raetz, S.; Mugrauer, M.; Schmidt, T. O. B.; Roell, T.; Eisenbeiss, T.; Hohle, M.; Seifahrt, A.; Koeltzsch, A.; Vaňko, M.; Broeg, Ch.; Koppenhoefer, J.; Neuhäuser, R.

    2009-02-01

    We have started high precision photometric monitoring observations at the AIU Jena observatory in Großschwabhausen near Jena in fall 2006. We used a 25.4cm Cassegrain telescope equipped with a CCD-camera mounted piggyback on a 90cm telescope. To test the attainable photometric precision, we observed stars with known transiting planets. We could recover all planetary transits observed by us. We observed the parent star of the transiting planet TrES-2 over a longer period in Großschwabhausen. Between March and November 2007 seven different transits and almost a complete orbital period were analyzed. Overall, in 31 nights of observation 3423 exposures (in total 57.05h of observation) of the TrES-2 parent star were taken. Here, we present our methods and the resulting light curves. Using our observations we could improve the orbital parameters of the system.

  6. Microstructure of deformed graywacke sandstones

    SciTech Connect

    Dengler, L.A.

    1980-03-05

    Microsctures in low-permeability graywacke sandstones were studied by optical and scanning electron microscopy (SEM). SEM specimens were prepared by ion-bombardment of thick polished samples. The undeformed rock contains grains in a matrix composed primarily of authigenic chlorite and kaolinite. Chlorite platelets are randomly arranged in face-to-edge relation to one another. Kaolinite occurs as pseudohexagonal crystals stacked face-to-face in pore filling books. Uniaxial-stress experiments covered a range of confining pressures from .1 to 600 MPa. Below 50 MPa confining pressure, intergranular fracturing occurs within the fault zone and near the sample's cylindrical surface. Between 100 and 300 MPa confining pressure, fault zones contain highly fractured grains, gauge and slickensides on grain surfaces. At 600 MPa, the sample contains a diffuse shear zone of highly fractured grains and no well-defined fault. In all samples, the distribution of microcracks is heterogeneous. Different clay minerals exhibit different modes of deformation. Chlorite structure responds to applied stress by compaction, reducing both pore size and volume. Chlorite platelets are plastically deformed in even the least strained samples. Kaolinite does not deform plastically in any of the samples examined. Deformation of kaolinite is restricted to toppling of the book structure. Dilatant crack growth was studied in two samples unloaded prior to failure. Uniaxially-strained samples deform primarily along grain boundaries, producing intergranular cracks and realignment of chlorite platelets. Intragranular crack density is linearly related to axial-strain, although grains are less fractured than in uniaxially-stressed samples tested at equivalent mean pressures. Cracks are rarely longer than a grain diameter. Nuclear-explosively deformed samples were recovered after the Rio Blanco gas stimulation experiment. (JGB)

  7. Microwave Tomography Using Deformable Mirrors

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Udpa, Lalita; Udpa, Satish S.

    2008-09-01

    Microwave tomography aims to reconstruct the spatial distribution of the electrical property of penetrable objects using field measurements acquired from multiple views at single or multiple frequencies. This paper presents a novel microwave tomography technique to image penetrable scatterers using deformable mirrors. The deformable mirror consists of a continuum of radiating elements that yields multi-view field measurements for noninvasive characterization of the spatial dielectric property of the scatterer in the microwave regime. Computational feasibility of the proposed technique is presented for heterogeneous two dimensional dielectric scatterers.

  8. Deforming baryons into confining strings

    NASA Astrophysics Data System (ADS)

    Hartnoll, Sean A.; Portugues, Rubén

    2004-09-01

    We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nuñez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in N=1 gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G2 holonomy M theory background. The relation between these deformed baryons and confining strings is not as straightforward.

  9. Controllable objective with deformable mirrors

    SciTech Connect

    Agafonov, V V; Safronov, A G

    2004-03-31

    A new optical device - an objective with deformable mirrors and parameters controlled in the dynamic regime is proposed. The computer simulation of the objective is performed. The dependences of some parameters of the objective on the control voltage are determined. The simulation showed that the ranges of control of the rear focal segment and the focal distance for the objective with the focal distance 602 mm were 1057 and 340 mm, respectively, which is substantially greater than in the control of an equivalent deformable mirror. (laser applications and other topics in quantum electronics)

  10. Analytical volcano deformation source models

    USGS Publications Warehouse

    Lisowski, Michael

    2007-01-01

    Primary volcanic landforms are created by the ascent and eruption of magma. The ascending magma displaces and interacts with surrounding rock and fluids as it creates new pathways, flows through cracks or conduits, vesiculates, and accumulates in underground reservoirs. The formation of new pathways and pressure changes within existing conduits and reservoirs stress and deform the surrounding rock. Eruption products load the crust. The pattern and rate of surface deformation around volcanoes reflect the tectonic and volcanic processes transmitted to the surface through the mechanical properties of the crust.

  11. Fourth order deformed general relativity

    NASA Astrophysics Data System (ADS)

    Cuttell, Peter D.; Sakellariadou, Mairi

    2014-11-01

    Whenever the condition of anomaly freedom is imposed within the framework of effective approaches to loop quantum cosmology, one seems to conclude that a deformation of general covariance is required. Here, starting from a general deformation we regain an effective gravitational Lagrangian including terms up to fourth order in extrinsic curvature. We subsequently constrain the form of the corrections for the homogeneous case, and then investigate the conditions for the occurrence of a big bounce and the realization of an inflationary era, in the presence of a perfect fluid or scalar field.

  12. Deformation properties of lead isotopes

    NASA Astrophysics Data System (ADS)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E.

    2016-01-01

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF0 Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, 180Pb and 184Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF0 functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF0 functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo

  13. Neutron scattering on deformed nuclei

    NASA Astrophysics Data System (ADS)

    Hansen, L. F.; Haight, R. C.; Pohl, B. A.; Wong, C.; Lagrange, Ch.

    1985-01-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9Be, C, 181Ta, 232Th, 238U, and 239Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune, and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonably good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP.

  14. Cavity coalescence in superplastic deformation

    SciTech Connect

    Stowell, M.J.; Livesey, D.W.; Ridley, N.

    1984-01-01

    An analysis of the probability distribution function of particles randomly dispersed in a solid has been applied to cavitation during superplastic deformation and a method of predicting cavity coalescence developed. Cavity size distribution data were obtained from two microduplex nickel-silver alloys deformed superplastically to various extents at elevated temperature, and compared to theoretical predictions. Excellent agreement occurred for small void sizes but the model underestimated the number of voids in the largest size groups. It is argued that the discrepancy results from a combination of effects due to non-random cavity distributions and to enhanced growth rates and incomplete spheroidization of the largest cavities.

  15. Learning deformation and structure simultaneously: in situ endograft deformation analysis.

    PubMed

    Langs, Georg; Paragios, Nikos; Desgranges, Pascal; Rahmouni, Alain; Kobeiter, Hicham

    2011-02-01

    The learning of the shape and appearance behavior of complex anatomical structures is of growing importance in the successful use of medical imaging data. We propose a method to simultaneously learn a model of shape variation and the behavioral structure of objects in volumetric data sets. The algorithm performs a group-wise registration of a set of examples, and accounts for the heterogeneous deformation or variability properties of the data. We use the method for the in situ analysis of endograft deformation in the thoracic aorta during the cardiac cycle. The method is based on an emerging model of the shape variation, which is learned autonomously from a gated computed tomography sequence. It automatically adapts to the highly non-uniform elasticity properties of the structure during learning. The resulting deformation model is used for the measurement of global and local characteristics of the endograft movement. The method allows for the in situ localization of the stent during the cardiac cycle, and the measurement of its deformation. Furthermore, it makes the comparison of different endograft designs possible, and can serve as a basis for fitting a physical model of the endograft- and vessel surface to individual patients. The latter is essential for long-term risk assessment of the impact of endografts in highly mobile areas. We evaluate the approach on 10 data sets from patients that underwent endograft placement after traumatic ruptures of the thoracic aorta. PMID:20675181

  16. Space-based monitoring of ground deformation

    NASA Astrophysics Data System (ADS)

    Nobakht Ersi, Fereydoun; Safari, Abdolreza; Gamse, Sonja

    2016-07-01

    Ground deformation monitoring is valuable to understanding of the behaviour of natural phenomena. Space-Based measurement systems such as Global Positioning System are useful tools for continuous monitoring of ground deformation. Ground deformation analysis based on space geodetic techniques have provided a new, more accurate, and reliable source of information for geodetic positioning which is used to detect deformations of the Ground surface. This type of studies using displacement fields derived from repeated measurments of space-based geodetic networks indicates how crucial role the space geodetic methods play in geodynamics. The main scope of this contribution is to monitor of ground deformation by obtained measurements from GPS sites. We present ground deformation analysis in three steps: a global congruency test on daily coordinates of permanent GPS stations to specify in which epochs deformations occur, the localization of the deformed GPS sites and the determination of deformations.

  17. Electrostatics of Deformable Lipid Membranes

    PubMed Central

    Vorobyov, Igor; Bekker, Borislava; Allen, Toby W.

    2010-01-01

    Abstract It was recently demonstrated that significant local deformations of biological membranes take place due to the fields of charged peptides and ions, challenging the standard model of membrane electrostatics. The ability of ions to retain their immediate hydration environment, combined with the lack of sensitivity of permeability to ion type or even ion pairs, led us to question the extent to which hydration energetics and electrostatics control membrane ion permeation. Using the arginine analog methyl-guanidinium as a test case, we find that although hydrocarbon electronic polarizability causes dramatic changes in ion solvation free energy, as well as a significant change (∼0.4 V) in the membrane dipole potential, little change in membrane permeation energetics occurs. We attribute this to compensation of solvation terms from polar and polarizable nonpolar components within the membrane, and explain why the dipole potential is not fully sensed in terms of the locally deformed bilayer interface. Our descriptions provide a deeper understanding of the translocation process and allow predictions for poly-ions, ion pairs, charged lipids, and lipid flip-flop. We also report simulations of large hydrophobic-ion-like membrane defects and the ionophore valinomycin, which exhibit little membrane deformation, as well as hydrophilic defects and the ion channel gramicidin A, to provide parallels to membranes deformed by unassisted ion permeation. PMID:20550903

  18. Highly deformable bones: unusual deformation mechanisms of seahorse armor.

    PubMed

    Porter, Michael M; Novitskaya, Ekaterina; Castro-Ceseña, Ana Bertha; Meyers, Marc A; McKittrick, Joanna

    2013-06-01

    Multifunctional materials and devices found in nature serve as inspiration for advanced synthetic materials, structures and robotics. Here, we elucidate the architecture and unusual deformation mechanisms of seahorse tails that provide prehension as well as protection against predators. The seahorse tail is composed of subdermal bony plates arranged in articulating ring-like segments that overlap for controlled ventral bending and twisting. The bony plates are highly deformable materials designed to slide past one another and buckle when compressed. This complex plate and segment motion, along with the unique hardness distribution and structural hierarchy of each plate, provide seahorses with joint flexibility while shielding them against impact and crushing. Mimicking seahorse armor may lead to novel bio-inspired technologies, such as flexible armor, fracture-resistant structures or prehensile robotics. PMID:23470547

  19. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Kaercher, Pamela M.; Zepeda-Alarcon, Eloisa; Prakapenka, Vitali B.; Kanitpanyacharoen, Waruntorn; Smith, Jesse S.; Sinogeikin, Stanislav; Wenk, Hans-Rudolf

    2015-04-01

    Although the crystal structure of the high-pressure SiO2 polymorph stishovite has been studied in detail, little is known about the development of crystallographic preferred orientation (CPO) during deformation in stishovite. Insight into CPO and associated deformation mechanics of stishovite would provide important information for understanding subduction of quartz-bearing crustal rocks into the mantle. To study CPO development, we converted a natural sample of flint to stishovite in a laser-heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. We collected diffraction patterns in radial geometry to examine in situ development of crystallographic preferred orientation and find that (001) poles preferentially align with the compression direction. Viscoplastic self-consistent modeling suggests the most likely slip systems at high pressure and ambient temperature are pyramidal and basal slip.

  20. Clusterization and quadrupole deformation in nuclei

    SciTech Connect

    Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.

    2006-04-26

    We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.

  1. Application of Quaternions for Mesh Deformation

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2002-01-01

    A new three-dimensional mesh deformation algorithm, based on quaternion algebra, is introduced. A brief overview of quaternion algebra is provided, along with some preliminary results for two-dimensional structured and unstructured viscous mesh deformation.

  2. Kirner's deformity: a case report and review.

    PubMed Central

    Scott, C. E.; Engber, W.

    1996-01-01

    Kirner's deformity is an uncommon "characteristic" palmo-radial curvature of the distal phalanx of the little finger. Splinting may be beneficial for pain relief and, if used early, may retard progression of the deformity. Disability is usually minimal and treatment to correct the deformity may be delayed to prevent recurrence. Images Figure 1A Figure 1B Figure 1C PMID:9129292

  3. New regions of nuclear deformation

    SciTech Connect

    Lister, C.J.; Gelletly, W.; Varley, B.J.; Price, H.G.; Olness, J.W.

    1983-01-01

    It has long been expected from general theoretical considerations that nuclei with Z and N far removed from major shell closures should exhibit considerable collectivity and maybe deformed in their groundstates. A number of calculations have recently attempted to quantify these expectations through detailed predictions of nuclear shapes across the periodic table. In this contribution we review predictions and experimental data for the regions with Z,N = (40,40), (40,64) and (64,64) which are all off the valley of stability. Emphasis is placed on the experimental techniques and data obtained from the first of these regions where the prediction of extremely large prolate deformation has been experimentally verified.

  4. Thermal deformation of helical gears

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Fei, Ye-tai; Liu, Shan-lin

    2010-08-01

    The analytical equation for the thermal field of a helical gear under normal working condition in a stable thermal field is established using mathematical physics, and the thermal deformation of the gear can be computed using this equation. The variations of gear geometric parameters, such as radial dimension, tooth depth, spiral angle, pressure angle, flank clearance and etc., are investigated with respect to the temperature change. According to the analytical and computational results obtained using the equation, the thermal deformation of the gear is strongly dependent on the choice of parameters, which is also confirmed using simulation software (COMSOL Multiphysic software). This is significant for the improvement of the rotation precision and working efficiency of screw gears.

  5. Variational approach and deformed derivatives

    NASA Astrophysics Data System (ADS)

    Weberszpil, J.; Helayël-Neto, J. A.

    2016-05-01

    Recently, we have demonstrated that there exists a possible relationship between q-deformed algebras in two different contexts of Statistical Mechanics, namely, the Tsallis' framework and the Kaniadakis' scenario, with a local form of fractional-derivative operators for fractal media, the so-called Hausdorff derivatives, mapped into a continuous medium with a fractal measure. Here, in this paper, we present an extension of the traditional calculus of variations for systems containing deformed-derivatives embedded into the Lagrangian and the Lagrangian densities for classical and field systems. The results extend the classical Euler-Lagrange equations and the Hamiltonian formalism. The resulting dynamical equations seem to be compatible with those found in the literature, specially with mass-dependent and with nonlinear equations for systems in classical and quantum mechanics. Examples are presented to illustrate applications of the formulation. Also, the conserved ​Noether current is worked out.

  6. Performance through Deformation and Instability

    NASA Astrophysics Data System (ADS)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  7. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  8. Deformation processes in forging ceramics

    NASA Technical Reports Server (NTRS)

    Cannon, R. M.; Rhodes, W. H.

    1972-01-01

    The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging are utilized to investigate both the flow and fracture processes involved. An additional hemisphere forging was done which failed prematurely. Analysis and comparison with available fracture data for AL2O3 indicated possible causes of the failure. Examination of previous forgings indicated an increase in grain boundary cavitation with increasing strain.

  9. Elastic deformations of bolalipid membranes.

    PubMed

    Galimzyanov, Timur R; Kuzmin, Peter I; Pohl, Peter; Akimov, Sergey A

    2016-02-17

    Archaeal membranes have unique mechanical properties that enable these organisms to survive under extremely aggressive environmental conditions. The so-called bolalipids contribute to this exceptional stability. They have two polar heads joined by two hydrocarbon chains. The two headgroups can face different sides of the membrane (O-shape conformation) or the same side (U-shape conformation). We have developed an elasticity theory for bolalipid membranes and show that the energetic contributions of (i) tilt deformations, (ii) area compression/stretching deformations, (iii) as well as those of Gaussian splay from the two membrane surfaces are additive, while splay deformations yield a cross-term. The presence of a small fraction of U-shaped molecules resulted in spontaneous membrane curvature. We estimated the tilt modulus to be approximately equal to that of membranes in eukaryotic cells. In contrast to conventional lipids, the bolalipid membrane possesses two splay moduli, one of which is estimated to be an order of magnitude larger than that of conventional lipids. The projected values of elastic moduli act to hamper pore formation and to decelerate membrane fusion and fission. PMID:26791255

  10. What is red cell deformability?

    PubMed

    Schmid-Schönbein, H; Gaehtgens, P

    1981-01-01

    Microscopic flow visualization of the process of red cell adaptation to flow shows that red cell deformation in flow is the consequence of a continuous viscous rather than an elastic deformation. This fluid drop-like adaptation primarily depends on: (a) the fluidity of the cytoplasm and (b) the favourable surface-area-to-volume ratio, with an excess of surface area allowing strong deformations without an increase in surface area (a real strain). (c) In contrast to previous notions, the modulus of shear elasticity of the membrane is probably less significant. After many attempts to differentiate the contribution of bending and shear stiffness to the elastic recovery of the normal biconcave cell shape have not produced equivocal results, we have changed the elastic shear modulus experimentally by cross-linking the spectrin using the membrane-permeant, bifunctional SH-reagent DIAMIDE, which allows to increase the elastic shear modulus in a dose-dependent manner. Despite a 25-fold decrease in compliance the DIAMIDE-treated cells have normal shape and show remarkably small changes in the rheological behaviour when tested in vitro and in vivo. PMID:6948373

  11. Shape memory composite deformable mirrors

    NASA Astrophysics Data System (ADS)

    Riva, M.; Bettini, P.; Di Landro, L.; Sala, G.

    2009-03-01

    This paper deals with some of the critical aspects regarding Shape Memory Composite (SMC) design: firstly some technological aspects concerning embedding technique and their efficiency secondarily the lack of useful numerical tools for this peculiar design. It has been taken into account as a possible application a deformable panel which is devoted to act as a substrate for a deformable mirror. The activity has been mainly focused to the study of embedding technologies, activation and authority. In detail it will be presented the "how to" manufacturing of some smart panels with embedded NiTiNol wires in order to show the technology developed for SMC structures. The first part of the work compares non conventional pull-out tests on wires embedded in composites laminates (real condition of application), with standard pull-out in pure epoxy resin blocks. Considering the numerical approach some different modeling techniques to be implemented in commercial codes (ABAQUS) have been investigated. The Turner's thermo-mechanical model has been adopted for the modeling of the benchmark: A spherical panel devoted to work as an active substrate for a Carbon Fiber Reinforced Plastic (CFRP) deformable mirror has been considered as a significant technological demonstrator and possible future application (f=240mm, r.o.c.=1996mm).

  12. Deformational injection rate measuring method

    NASA Astrophysics Data System (ADS)

    Marčič, Milan

    2002-09-01

    After completing the diesel engine endurance testing, we detected various traces of thermal load on the walls of combustion chambers located in the engine pistons. The engines were fitted with ω combustion chambers. The thermal load of different intensity levels occurred where the spray of fuel, fuel vapor, and air interacted with the combustion chamber wall. The uneven thermal load distribution of the combustion chamber wall results from varying injection rates in each injection nozzle hole. The most widely applied controlling methods so far for injection rate measurement, such as the Zeuch and Bosch concepts, allow measurement of only the total injection rate in multihole nozzles, without providing any indication whatsoever of the injection rate differences in individual injection nozzle holes. The new deformational measuring method described in the article allows the injection rate to be measured in each hole of the multihole nozzle. The results of the measurements using this method showed that the differences occurred in injection rates of individual injection nozzle holes. These differences may be the cause of various thermal loads on the combustion chamber walls. The criterion for injection rate is the deformation of the membrane due to an increase in the fuel quantity in the measuring space and due to the pressure waves resulting from the fuel being injected into the measuring space. The membrane deformation is measured using strain gauges, glued to the membrane and forming the Wheatstone's bridge. We devoted special attention to the temperature compensation of the Wheatstone's bridge and the membrane, heated up during the measurements.

  13. Shapeable sheet without plastic deformation

    NASA Astrophysics Data System (ADS)

    Oppenheimer, Naomi; Witten, Thomas A.

    2015-11-01

    Randomly crumpled sheets have shape memory. In order to understand the basis of this form of memory, we simulate triangular lattices of springs whose lengths are altered to create a topography with multiple potential energy minima. We then deform these lattices into different shapes and investigate their ability to retain the imposed shape when the energy is relaxed. The lattices are able to retain a range of curvatures. Under moderate forcing from a state of local equilibrium, the lattices deform by several percent but return to their retained shape when the forces are removed. By increasing the forcing until an irreversible motion occurs, we find that the transitions between remembered shapes show cooperativity among several springs. For fixed lattice structures, the shape memory tends to decrease as the lattice is enlarged; we propose ways to counter this decrease by modifying the lattice geometry. We survey the energy landscape by displacing individual nodes. An extensive fraction of these nodes proves to be bistable; they retain their displaced position when the energy is relaxed. Bending the lattice to a stable curved state alters the pattern of bistable nodes. We discuss this shapeability in the context of other forms of material memory and contrast it with the shapeability of plastic deformation. We outline the prospects for making real materials based on these principles.

  14. Transit timing of TrES-2: a combined analysis of ground- and space-based photometry

    NASA Astrophysics Data System (ADS)

    Raetz, St.; Maciejewski, G.; Ginski, Ch.; Mugrauer, M.; Berndt, A.; Eisenbeiss, T.; Adam, Ch.; Raetz, M.; Roell, T.; Seeliger, M.; Marka, C.; Vaňko, M.; Bukowiecki, Ł.; Errmann, R.; Kitze, M.; Ohlert, J.; Pribulla, T.; Schmidt, J. G.; Sebastian, D.; Puchalski, D.; Tetzlaff, N.; Hohle, M. M.; Schmidt, T. O. B.; Neuhäuser, R.

    2014-10-01

    Homogeneous observations and careful analysis of transit light curves can lead to the identification of transit timing variations (TTVs). TrES-2 is one of few exoplanets, which offer the matchless possibility to combine long-term ground-based observations with continuous satellite data. Our research aimed at the search for TTVs that would be indicative of perturbations from additional bodies in the system. We also wanted to refine the system parameters and the orbital elements. We obtained 44 ground-based light curves of 31 individual transit events of TrES-2. Eight 0.2-2.2-m telescopes located at six observatories in Germany, Poland and Spain were used. In addition, we analysed 18 quarters (Q0-Q17) of observational data from NASA's space telescope Kepler including 435 individual transit events and 11 publicly available ground-based light curves. Assuming different limb darkening (LD) laws we performed an analysis for all light curves and redetermined the parameters of the system. We also carried out a joint analysis of the ground- and space-based data. The long observation period of seven years (2007-2013) allowed a very precise redetermination of the transit ephemeris. For a total of 490 transit light curves of TrES-2, the time of transit mid-point was determined. The transit times support neither variations on long time-scale nor on short time-scales. The nearly continuous observations of Kepler show no statistically significant increase or decrease in the orbital inclination i and the transit duration D. Only the transit depth shows a slight increase which could be an indication of an increasing stellar activity. In general, system parameters obtained by us were found to be in agreement with previous studies but are the most precise values to date.

  15. Stochastic deformation of a thermodynamic symplectic structure

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2009-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered.

  16. Stochastic deformation of a thermodynamic symplectic structure.

    PubMed

    Kazinski, P O

    2009-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered. PMID:19256999

  17. PHOTOMETRICALLY DERIVED MASSES AND RADII OF THE PLANET AND STAR IN THE TrES-2 SYSTEM

    SciTech Connect

    Barclay, Thomas; Huber, Daniel; Rowe, Jason F.; Quintana, Elisa V.; Christiansen, Jessie L.; Jenkins, Jon M.; Mullally, Fergal; Seader, Shaun E.; Tenenbaum, Peter; Thompson, Susan E.; Barentsen, Geert; Bloemen, Steven; Demory, Brice-Olivier; Fulton, Benjamin J.; Shporer, Avi; Ragozzine, Darin

    2012-12-10

    We measure the mass and radius of the star and planet in the TrES-2 system using 2.7 years of observations by the Kepler spacecraft. The light curve shows evidence for ellipsoidal variations and Doppler beaming on a period consistent with the orbital period of the planet with amplitudes of 2.79{sup +0.44}{sub -0.62} and 3.44{sup +0.32}{sub -0.37} parts per million (ppm), respectively, and a difference between the dayside and the nightside planetary flux of 3.41{sup +0.55}{sub -0.82} ppm. We present an asteroseismic analysis of solar-like oscillations on TrES-2A which we use to calculate the stellar mass of 0.94 {+-} 0.05 M{sub Sun} and radius of 0.95 {+-} 0.02 R{sub Sun }. Using these stellar parameters, a transit model fit and the phase-curve variations, we determine the planetary radius of 1.162{sup +0.020}{sub -0.024} R{sub Jup} and derive a mass for TrES-2b from the photometry of 1.44 {+-} 0.21 M{sub Jup}. The ratio of the ellipsoidal variation to the Doppler beaming amplitudes agrees to better than 2{sigma} with theoretical predications, while our measured planet mass and radius agree within 2{sigma} of previously published values based on spectroscopic radial velocity measurements. We measure a geometric albedo of 0.0136{sup +0.0022}{sub -0.0033} and an occultation (secondary eclipse) depth of 6.5{sup +1.7}{sub -1.8} ppm which we combined with the day/night planetary flux ratio to model the atmosphere of TrES-2b. We find that an atmosphere model that contains a temperature inversion is strongly preferred. We hypothesize that the Kepler bandpass probes a significantly greater atmospheric depth on the night side relative to the day side.

  18. A new species of Myotis from the Islas Tres Marias, Nayarit, Mexico, with comments on variation in Myotis nigricans

    USGS Publications Warehouse

    Bogan, Michael A.

    1978-01-01

    A new Myotis is described from the Islas Tres Marias, Nayarit, Mexico. the new species is distinct from related taxa n the adjacent Mexican mainland (M. californicus, M. leibii, and M. carteri), although most closely related to M. carteri as shown by univariate and canonical variates analyses. An analysis of six groups of M. nigricans from Middle and South America supports the elevation of M. nigricans carteri to specific status, confirms the distinctness of M. nigricus extremus, but fails to substantiate subspecific status for bats from Columbia and Ecuador, recent recognized as M. n. punensis.

  19. Mesh deformation based on artificial neural networks

    NASA Astrophysics Data System (ADS)

    Stadler, Domen; Kosel, Franc; Čelič, Damjan; Lipej, Andrej

    2011-09-01

    In the article a new mesh deformation algorithm based on artificial neural networks is introduced. This method is a point-to-point method, meaning that it does not use connectivity information for calculation of the mesh deformation. Two already known point-to-point methods, based on interpolation techniques, are also presented. In contrast to the two known interpolation methods, the new method does not require a summation over all boundary nodes for one displacement calculation. The consequence of this fact is a shorter computational time of mesh deformation, which is proven by different deformation tests. The quality of the deformed meshes with all three deformation methods was also compared. Finally, the generated and the deformed three-dimensional meshes were used in the computational fluid dynamics numerical analysis of a Francis water turbine. A comparison of the analysis results was made to prove the applicability of the new method in every day computation.

  20. Spin-orbit alignment for KELT-7b and HAT-P-56b via Doppler tomography with TRES

    NASA Astrophysics Data System (ADS)

    Zhou, George; Latham, David W.; Bieryla, Allyson; Beatty, Thomas G.; Buchhave, Lars A.; Esquerdo, Gilbert A.; Berlind, Perry; Calkins, Michael L.

    2016-08-01

    We present Doppler tomographic analyses for the spectroscopic transits of KELT-7b and HAT-P-56b, two hot-Jupiters orbiting rapidly rotating F-dwarf host stars. These include analyses of archival TRES observations for KELT-7b, and a new TRES transit observation of HAT-P-56b. We report spin-orbit aligned geometries for KELT-7b (2.7 +/- 0.6 deg) and HAT-P-56b (8 +/- 2 deg). The host stars KELT-7 and HAT-P-56 are among some of the most rapidly rotating planet-hosting stars known. We examine the tidal re-alignment model for the evolution of the spin-orbit angle in the context of the spin rates of these stars. We find no evidence that the rotation rates of KELT-7 and HAT-P-56 have been modified by star-planet tidal interactions, suggesting that the spin-orbit angle of systems around these hot stars may represent their primordial configuration. In fact, KELT-7 and HAT-P-56 are two of three systems in super-synchronous, spin-orbit aligned states, where the rotation periods of the host stars are faster than the orbital periods of the planets.

  1. Seasonal patterns in metazoan parasite community of the "Fat Sleeper" Dormitator latifrons (Pisces: Eleotridae) from Tres Palos Lagoon, Guerrero, Mexico.

    PubMed

    Violante-González, Juan; Rojas-Herrera, Agustín; Aguirre-Macedo, Ma Leopoldina

    2008-09-01

    Dormitator is among the most important fish genera in the Mexican Pacific coastal lagoon systems. In Tres Palos Lagoon, the Fat Sleeper Dormitator latifrons is one of the most significant species based on catch volume, although it is only consumed locally. Very little information exists on this species' parasitofauna. Composition and temporal variation in the metazoan parasite community structure of Dormitator latifrons from Tres Palos Lagoon (99 degrees 47' W, 16 degrees 48' N), Guerrero, Mexico, were determined using seasonal samples taken between April 2000 and June 2002. Ten parasite species (55 817 individuals) were recovered from 219 examined hosts. These species included eight helminths (Ascocotyle (Phagicola) longa, Echinochasmus leopoldinae, Clinostomum complanatum, Pseudoacanthostomum panamense, Saccocoelioides lamothei, Parvitaenia cochlearii, Contracaecum sp. and Neoechinorhynchus golvani) and two crustaceans (Argulus sp. and Ergasilus sp.). Five of the helminth species exhibited seasonal variation in their infection dynamics associated with environmental changes during the dry and rainy seasons. The variations in the infection dynamics generated changes in the community structure over time. PMID:19419054

  2. Spin-orbit alignment for KELT-7b and HAT-P-56b via Doppler tomography with TRES

    NASA Astrophysics Data System (ADS)

    Zhou, George; Latham, David W.; Bieryla, Allyson; Beatty, Thomas G.; Buchhave, Lars A.; Esquerdo, Gilbert A.; Berlind, Perry; Calkins, Michael L.

    2016-08-01

    We present Doppler tomographic analyses for the spectroscopic transits of KELT-7b and HAT-P-56b, two hot-Jupiters orbiting rapidly rotating F-dwarf host stars. These include analyses of archival Tillinghast Reflector Echelle Spectrograph (TRES) observations for KELT-7b, and a new TRES transit observation of HAT-P-56b. We report spin-orbit aligned geometries for KELT-7b (2.7° ± 0.6°) and HAT-P-56b (8° ± 2°). The host stars KELT-7 and HAT-P-56 are among some of the most rapidly rotating planet-hosting stars known. We examine the tidal re-alignment model for the evolution of the spin-orbit angle in the context of the spin rates of these stars. We find no evidence that the rotation rates of KELT-7 and HAT-P-56 have been modified by star-planet tidal interactions, suggesting that the spin-orbit angle of systems around these hot stars may represent their primordial configuration. In fact, KELT-7 and HAT-P-56 are two of three systems in supersynchronous, spin-orbit aligned states, where the rotation periods of the host stars are faster than the orbital periods of the planets.

  3. Does deformation saturate seismic anisotropy?

    NASA Astrophysics Data System (ADS)

    Tatham, D. J.; Lloyd, G. E.; Butler, R. W.; Casey, M.

    2006-12-01

    The progressive simple shear deformation that characterizes ductile fault zones in the crust involves both rotation and intensification of the strain ellipsoid. These mathematic predictions have been confirmed repeatedly by finite strain determinations in outcrop studies of natural shear zones and used to test geodynamic models of mountain belts. Seismic anisotropy (SA) methods offer the opportunity to pursue these approaches in situ. First however, we must calibrate the magnitude and orientation of the SA ellipsoid against naturally deformed tectonites of known strain state and microstructure. Here we present data from a field analogue of mafic ductile crust in an amphibolite-facies shear zone developed in a deformed mafic dyke embedded within the Lewisian Gneiss (Badcall, NW Scotland). Deflection of pre-existing linear and planar elements and attenuation of the dyke into the shear zone are used to determine the strain gradient. Specimens collected along this gradient were used to establish the geometric fabric intensity defined by different minerals (hornblende grain alignment and ellipticity of plagioclase clots). Finally, petrophysical properties were calculated for the specimens using the SEM-EBSD measured populations of lattice preferred orientations (LPO) for all mineral phases. It is the hornblende-plagioclase LPO, combined in their modal proportions and modulated by the individual mineral single crystal elastic properties, which define the SA profile across the shear zone. Hornblende develops a strong preferred dimensional orientation and hence LPO at shear strains of about 2, whereas the plagioclase LPO remains close to random regardless of bulk strain. The modelled SA of the samples is dominated therefore by the amphibole LPO. Although the values of bulk shear strain vary across the shear zone (0 at the margins to greater than 12 in the centre), the calculated intensity of SA saturates at a shear strain of about 2. These results, if typical of large

  4. Deformational characteristics of thermoplastic elastomers

    NASA Astrophysics Data System (ADS)

    Indukuri, Kishore K.

    This thesis focuses primarily on the structure-property relationships of poly (styrene-ethylene-butylene-styrene) triblock copolymer TPEs. First evidence for strain-induced crystallization occurring in certain SEBS block copolymers has been established using unique techniques like deformation calorimetry, combined in-situ small angle X-ray and wide angle X-ray diffraction (SAXD/WAXD). Also the ramifications of such strain-induced crystallization on the mechanical properties like cyclic hysteresis, stress relaxation/creep retention of these SEBS systems have been studied. In addition, the structural changes in the morphology of these systems on deformation have been investigated using combined SAXD/WAXD setup. Small angle X-ray diffraction probed the changes at the nano-scale of polystyrene (PS) cylinders, while wide angle X-ray diffraction probed the changes at molecular length scales of the amorphous/crystalline domains of the elastomeric mid-block in these systems. New structural features at both these length scales have been observed and incorporated into the overall deformation mechanisms of the material. Continuous processing techniques like extrusion have been used to obtain ultra long-range order and orientation in these SEBS systems. Thus well ordered crystal like hexagonal packing of cylinders, where in each element in this hexagonal lattice can be individually addressed without any grain boundaries can be realized using these robust techniques. The effect of long-range order/orientation on the mechanical properties has been studied. In addition, these well ordered systems serve as model systems for evaluating deformation mechanisms of these SEBS systems, where the relative contributions of each of the phases can be estimated. EPDM/i-PP thermoplastic vulcanizates (TPVs) have micron size scale phase separated morphologies of EPDM rubber dispersed in a semicrystalline i-PP matrix as a result of the dynamic vulcanization process. Confocal microscopy studies

  5. Dissipation in deforming chaotic billiards

    NASA Astrophysics Data System (ADS)

    Barnett, Alexander Harvey

    Chaotic billiards (hard-walled cavities) in two or more dimensions are paradigm systems in the fields of classical and quantum chaos. We study the dissipation (irreversible heating) rate in such billiard systems due to general shape deformations which are periodic in time. We are motivated by older studies of one-body nuclear dissipation and by anticipated mesoscopic applications. We review the classical and quantum linear response theories of dissipation rate and demonstrate their correspondence in the semiclassical limit. In both pictures, heating is a result of stochastic energy spreading. The heating rate can be expressed as a frequency-dependent friction coefficient μ(ω), which depends on billiard shape and deformation choice. We show that there is a special class of deformations for which μ vanishes as like a power law in the small- ω limit. Namely, for deformations which cause translations and dilations μ ~ ω4 whereas for those which cause rotations μ ~ ω2. This contrasts the generic case for which μ ~ ω4 We show how a systematic treatment of this special class leads to an improved version of the `wall formula' estimate for μ(0). We show that the special nature of dilation (a new result) is semiclassically equivalent to a quasi- orthogonality relation between the (undeformed) billiard quantum eigenstates on the boundary. This quasi- orthogonality forms the heart of a `scaling method' for the numerical calculation of quantum eigenstates, invented recently by Vergini and Saraceno. The scaling method is orders of magnitude more efficient than any other known billiard quantization method, however an adequate explanation for its success has been lacking until now. We explain the scaling method, its errors, and applications. We also present improvements to Heller's plane wave method. Two smaller projects conclude the thesis. Firstly, we give a new formalism for quantum point contact (QPC) conductance in terms of scattering cross-section in the half

  6. Deformable Mirrors Correct Optical Distortions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    By combining the high sensitivity of space telescopes with revolutionary imaging technologies consisting primarily of adaptive optics, the Terrestrial Planet Finder is slated to have imaging power 100 times greater than the Hubble Space Telescope. To this end, Boston Micromachines Corporation, of Cambridge, Massachusetts, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory for space-based adaptive optical technology. The work resulted in a microelectromechanical systems (MEMS) deformable mirror (DM) called the Kilo-DM. The company now offers a full line of MEMS DMs, which are being used in observatories across the world, in laser communication, and microscopy.

  7. Deformation quantization of cosmological models

    NASA Astrophysics Data System (ADS)

    Cordero, Rubén; García-Compeán, Hugo; Turrubiates, Francisco J.

    2011-06-01

    The Weyl-Wigner-Groenewold-Moyal formalism of deformation quantization is applied to cosmological models in the minisuperspace. The quantization procedure is performed explicitly for quantum cosmology in a flat minisuperspace. The de Sitter cosmological model is worked out in detail and the computation of the Wigner functions for the Hartle-Hawking, Vilenkin and Linde wave functions are done numerically. The Wigner function is analytically calculated for the Kantowski-Sachs model in (non)commutative quantum cosmology and for string cosmology with dilaton exponential potential. Finally, baby universes solutions are described in this context and the Wigner function is obtained.

  8. Tectonic deformation in southern California

    NASA Technical Reports Server (NTRS)

    Jackson, David D.

    1993-01-01

    Our objectives were to use modem geodetic data, especially those derived from space techniques like Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and the Global Positioning System (GPS) to infer crustal deformation in southern California and relate it to plate tectonics and earthquake hazard. To do this, we needed to collect some original data, write computer programs to determine positions of survey markers from geodetic observables, interpret time dependent positions in terms of velocity and earthquake caused episodic displacements, and construct a model to explain these velocities and displacements in terms of fault slip and plate movements.

  9. Formation Flying and Deformable Instruments

    SciTech Connect

    Rio, Yvon

    2009-05-11

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  10. A two-dimensional deformable phantom for quantitatively verifying deformation algorithms

    SciTech Connect

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean

    2011-08-15

    Purpose: The incorporation of deformable image registration into the treatment planning process is rapidly advancing. For this reason, the methods used to verify the underlying deformation algorithms must evolve equally fast. This manuscript proposes a two-dimensional deformable phantom, which can objectively verify the accuracy of deformation algorithms, as the next step for improving these techniques. Methods: The phantom represents a single plane of the anatomy for a head and neck patient. Inflation of a balloon catheter inside the phantom simulates tumor growth. CT and camera images of the phantom are acquired before and after its deformation. Nonradiopaque markers reside on the surface of the deformable anatomy and are visible through an acrylic plate, which enables an optical camera to measure their positions; thus, establishing the ground-truth deformation. This measured deformation is directly compared to the predictions of deformation algorithms, using several similarity metrics. The ratio of the number of points with more than a 3 mm deformation error over the number that are deformed by more than 3 mm is used for an error metric to evaluate algorithm accuracy. Results: An optical method of characterizing deformation has been successfully demonstrated. For the tests of this method, the balloon catheter deforms 32 out of the 54 surface markers by more than 3 mm. Different deformation errors result from the different similarity metrics. The most accurate deformation predictions had an error of 75%. Conclusions: The results presented here demonstrate the utility of the phantom for objectively verifying deformation algorithms and determining which is the most accurate. They also indicate that the phantom would benefit from more electron density heterogeneity. The reduction of the deformable anatomy to a two-dimensional system allows for the use of nonradiopaque markers, which do not influence deformation algorithms. This is the fundamental advantage of this

  11. Deformation During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  12. Thermocapillary motion of deformable drops

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali

    1994-01-01

    The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.

  13. Deformable human body model development

    SciTech Connect

    Wray, W.O.; Aida, T.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A Deformable Human Body Model (DHBM) capable of simulating a wide variety of deformation interactions between man and his environment has been developed. The model was intended to have applications in automobile safety analysis, soldier survivability studies and assistive technology development for the disabled. To date, we have demonstrated the utility of the DHBM in automobile safety analysis and are currently engaged in discussions with the U.S. military involving two additional applications. More specifically, the DHBM has been incorporated into a Virtual Safety Lab (VSL) for automobile design under contract to General Motors Corporation. Furthermore, we have won $1.8M in funding from the U.S. Army Medical Research and Material Command for development of a noninvasive intracranial pressure measurement system. The proposed research makes use of the detailed head model that is a component of the DHBM; the project duration is three years. In addition, we have been contacted by the Air Force Armstrong Aerospace Medical Research Laboratory concerning possible use of the DHBM in analyzing the loads and injury potential to pilots upon ejection from military aircraft. Current discussions with Armstrong involve possible LANL participation in a comparison between DHBM and the Air Force Articulated Total Body (ATB) model that is the current military standard.

  14. Deformation parameters influencing prepreg tack

    SciTech Connect

    Ahn, K.J.; Seferis, J.C. ); Pelton, T.; Wilhelm, M. )

    1992-01-01

    A compression to tension apparatus and a methodology capable of measuring prepreg tack have been analyzed in detail in order to establish fundamental material and operating characteristics. Both intrinsic and extrinsic parameters influencing prepreg tack were identified and analyzed using commercially available carbon fiber/epoxy prepregs and mechanical testing equipment. Two different factors, (1) contact (or wetting) area of adjacent prepreg plies and (2) viscoelastic properties of the prepreg, were found to control prepreg tack. At low temperatures, contact area was the main deformation controlling step, while at high temperatures, the viscoelastic property of the prepreg was found to be dominant. Both interlaminar and intralaminar deformations were observed depending on the prepreg systems examined as well as the operating conditions of the test. In addition, hold time, hold pressure, loading rate, resin content, and out-time were also found to affect prepreg tack. Energy of separation, which may be viewed as a descriptor of prepreg tack, was observed to increase with increasing hold time, hold pressure, and loading rate. Energy of separation also showed a maximum value at a specific resin content for a specific prepreg system, while it decreased with increasing prepreg out-time due to prepreg surface characteristic change rather than bulk physical aging. Conclusively, it was observed that prepreg tack must be viewed as an extrinsic, bulk, but surface-sensitive, viscoelastic property which depends on material as well as operating conditions.

  15. Uniaxial deformation of a soft porous material

    NASA Astrophysics Data System (ADS)

    MacMinn, Chris; Dufresne, Eric; Wettlaufer, John

    2015-11-01

    Compressing a porous material will decrease the volume of pore space, driving fluid out. Similarly, injecting fluid into a porous material will drive mechanical deformation, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with linear elasticity and then further linearizing in the strain. This is a good model for very small deformations, but it becomes increasingly inappropriate as deformations grow larger, and moderate to large deformations are common in the context of phenomena such as swelling, damage, and extreme softness. Here, we compare the predictions of linear poroelasticity with those of a rigorous large-deformation framework in the context of two uniaxial model problems. We explore the error associated with the linear model in both steady and dynamic situations, as well as the impact of allowing the permeability to vary with the deformation.

  16. Protein transfer to membranes upon shape deformation

    NASA Astrophysics Data System (ADS)

    Sagis, L. M. C.; Bijl, E.; Antono, L.; de Ruijter, N. C. A.; van Valenberg, H.

    2013-05-01

    Red blood cells, milk fat droplets, or liposomes all have interfaces consisting of lipid membranes. These particles show significant shape deformations as a result of flow. Here we show that these shape deformations can induce adsorption of proteins to the membrane. Red blood cell deformability is an important factor in several diseases involving obstructions of the microcirculatory system, and deformation induced protein adsorption will alter the rigidity of their membranes. Deformation induced protein transfer will also affect adsorption of cells onto implant surfaces, and the performance of liposome based controlled release systems. Quantitative models describing this phenomenon in biomaterials do not exist. Using a simple quantitative model, we provide new insight in this phenomenon. We present data that show convincingly that for cells or droplets with diameters upwards of a few micrometers, shape deformations induce adsorption of proteins at their interface even at moderate flow rates.

  17. Self-adjointness of deformed unbounded operators

    SciTech Connect

    Much, Albert

    2015-09-15

    We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem, we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.

  18. Integrable deformations of the XXZ spin chain

    NASA Astrophysics Data System (ADS)

    Beisert, Niklas; Fiévet, Lucas; de Leeuw, Marius; Loebbert, Florian

    2013-09-01

    We consider integrable deformations of the XXZ spin chain for periodic and open boundary conditions. In particular, we classify all long-range deformations and study their impact on the spectrum. As compared to the XXX case, we have the z-spin at our disposal, which induces two additional deformations: the short-range magnetic twist and a new long-range momentum-dependent twist.

  19. Deformation-Induced Anisotropy of Polymers

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.; Landel, R. F.

    1982-01-01

    New theory calculates anisotropies induced by large deformations in polymers. Theory was developed primarily for calculating anistropy of thermal expansivity, but is also applicable to thermal conductivity, elastic moduli and other properties. Theory assumes that in isotropic state, long polymer chains are randomly coiled and not oriented in particular direction. They acquire an orientation when material is deformed. As average molecular orientation increases with deformation, properties of bulk material exhibit averaging of the microscopic anistropies of the oriented molecular segments.

  20. Origami-enabled deformable silicon solar cells

    SciTech Connect

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  1. Physics-based deformable tongue visualization.

    PubMed

    Yang, Yin; Guo, Xiaohu; Vick, Jennell; Torres, Luis G; Campbell, Thomas F

    2013-05-01

    In this paper, a physics-based framework is presented to visualize the human tongue deformation. The tongue is modeled with the Finite Element Method (FEM) and driven by the motion capture data gathered during speech production. Several novel deformation visualization techniques are presented for in-depth data analysis and exploration. To reveal the hidden semantic information of the tongue deformation, we present a novel physics-based volume segmentation algorithm. This is accomplished by decomposing the tongue model into segments based on its deformation pattern with the computation of deformation subspaces and fitting the target deformation locally at each segment. In addition, the strain energy is utilized to provide an intuitive low-dimensional visualization for the high-dimensional sequential motion. Energy-interpolation-based morphing is also equipped to effectively highlight the subtle differences of the 3D deformed shapes without any visual occlusion. Our experimental results and analysis demonstrate the effectiveness of this framework. The proposed methods, though originally designed for the exploration of the tongue deformation, are also valid for general deformation analysis of other shapes. PMID:23492381

  2. Deformation twinning: Influence of strain rate

    SciTech Connect

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  3. THE TRANSIT LIGHT-CURVE PROJECT. XIV. CONFIRMATION OF ANOMALOUS RADII FOR THE EXOPLANETS TrES-4b, HAT-P-3b, AND WASP-12b

    SciTech Connect

    Chan, Tucker; Ingemyr, Mikael; Winn, Joshua N.; Sanchis-Ojeda, Roberto; Holman, Matthew J.; Esquerdo, Gil; Everett, Mark

    2011-06-15

    We present transit photometry of three exoplanets, TrES-4b, HAT-P-3b, and WASP-12b, allowing for refined estimates of the systems' parameters. TrES-4b and WASP-12b were confirmed to be 'bloated' planets, with radii of 1.706 {+-} 0.056R{sub Jup} and 1.736 {+-} 0.092R{sub Jup}, respectively. These planets are too large to be explained with standard models of gas giant planets. In contrast, HAT-P-3b has a radius of 0.827 {+-} 0.055R{sub Jup}, smaller than a pure hydrogen-helium planet and indicative of a highly metal-enriched composition. Analyses of the transit timings revealed no significant departures from strict periodicity. For TrES-4, our relatively recent observations allow for improvement in the orbital ephemerides, which is useful for planning future observations.

  4. 2012 ROCK DEFORMATION: FEEDBACK PROCESSES IN ROCK DEFORMATION GORDON RESEARCH CONFERENCE, AUGUST 19-24, 2012

    SciTech Connect

    Kelemen, Peter

    2012-08-24

    Topics covered include: Failure At High Confining Pressure; Fluid-assisted Slip, Earthquakes & Fracture; Reaction-driven Cracking; Fluid Transport, Deformation And Reaction; Localized Fluid Transport And Deformation; Earthquake Mechanisms; Subduction Zone Dynamics And Crustal Growth.

  5. Madelung deformity and Madelung-type deformities: a review of the clinical and radiological characteristics.

    PubMed

    Ali, Sayed; Kaplan, Summer; Kaufman, Theresa; Fenerty, Sarah; Kozin, Scott; Zlotolow, Dan A

    2015-11-01

    Madelung deformity of the distal radius results from premature closure of the medial volar aspect of the distal radial physis, leading to increased volar tilt and increased inclination of the radial articular surface, triangulation of the carpus with proximal migration of the lunate and dorsal displacement of the distal ulna. The deformity is particularly common in Leri-Weill dyschondrosteosis, but it may also occur in isolation. True Madelung deformity can be differentiated from Madelung-type deformities by the presence of an anomalous radiolunate ligament (Vickers ligament). In this article, we will review the imaging characteristics of true Madelung deformity, including the common "distal radius" variant, the less common "entire radius" variant and "reverse" Madelung deformity. We will discuss the role of the Vickers ligament in disease pathogenesis and its use in differentiating true Madelung deformity from Madelung-type deformities arising from trauma or multiple hereditary exostoses. Surgical management of these patients will also be addressed. PMID:26135644

  6. Deformed ellipsoidal diffraction grating blank

    NASA Technical Reports Server (NTRS)

    Decew, Alan E., Jr.

    1994-01-01

    The Deformed Ellipsoidal Grating Blank (DEGB) is the primary component in an ultraviolet spectrometer. Since one of the major concerns for these instruments is throughput, significant efforts are made to reduce the number of components and subsequently reflections. Each reflection results in losses through absorption and scattering. It is these two sources of photon loss that dictated the requirements for the DEGB. The first goal is to shape the DEGB in such a way that the energy at the entrance slit is focused as well as possible on the exit slit. The second goal is to produce a surface smooth enough to minimize the photon loss due to scattering. The program was accomplished in three phases. The first phase was the fabrication planning. The second phase was the actual fabrication and initial testing. The last phase was the final testing of the completed DEGB.

  7. Deformable Surface Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Hess, K.; Dandliker, R.; Thalmann, R.

    1987-05-01

    A spatial light modulator (SLM) based on a deformable gel surface is presented. It has remarkable optical properties and its construction and operation are comparatively simple. It can be optically addressed through a photoconductor layer. The surface relief pattern is read out by total reflection and a schlieren optical system. The device provides good wavefront quality (X/10 over the whole aperture of 30 x 50 mm2) and has a spatial resolution of 10 line pairs/mm. Contrast ratios for modulation up to 40:1 were measured. The input sensitivity is typically 0.3 mW/cm2. The rise and decay times are both approximately 20 ms. Besides its primary application as a light valve in large screen TV projection, it can be used in optical information processing systems, e.g., as an incoherent-to-coherent transducer. Combined with a CRT, the SLM can be addressed electronically.

  8. Dynamic study of the upper Sao Francisco River and the Tres Marias reservoir using MSS/LANDSAT images. [Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Sausen, T. M.

    1981-01-01

    The use of LANDSAT multispectral ban scanner imagery to verify the relationship between the behavior of the Tres Marias reservoir and the dynamics of the Sao Francisco River supply basin is described. The dispersion of suspended sediments and their concentration in the surface layers of the water are considered. A five year survey of the region during both dry and rainy seasons was performed. The drainage network was analyzed based on the patterns of dessication, water rises and soil use in the supply basin. Surface layers of the reservoir were tabulated as a function of the levels of gray in the imagery. In situ observations of water depth and reflectance were performed. Ground truth and LANDSAT data were correlated to determine the factors affecting the dynamics of the supply basin.

  9. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  10. Statistical field theories deformed within different calculi

    NASA Astrophysics Data System (ADS)

    Olemskoi, A. I.; Borysov, S. S.; Shuda, I. A.

    2010-09-01

    Within the framework of basic-deformed and finite-difference calculi, as well as deformation procedures proposed by Tsallis, Abe, and Kaniadakis and generalized by Naudts, we develop field-theoretical schemes of statistically distributed fields. We construct a set of generating functionals and find their connection with corresponding correlators for basic-deformed, finite-difference, and Kaniadakis calculi. Moreover, we introduce pair of additive functionals, which expansions into deformed series yield both Green functions and their irreducible proper vertices. We find as well formal equations, governing by the generating functionals of systems which possess a symmetry with respect to a field variation and are subjected to an arbitrary constrain. Finally, we generalize field-theoretical schemes inherent in concrete calculi in the Naudts manner. From the physical point of view, we study dependences of both one-site partition function and variance of free fields on deformations. We show that within the basic-deformed statistics dependence of the specific partition function on deformation has in logarithmic axes symmetrical form with respect to maximum related to deformation absence; in case of the finite-difference statistics, the partition function takes non-deformed value; for the Kaniadakis statistics, curves of related dependences have convex symmetrical form at small curvatures of the effective action and concave form at large ones. We demonstrate that only moment of the second order of free fields takes non-zero values to be proportional to inverse curvature of effective action. In dependence of the deformation parameter, the free field variance has linearly arising form for the basic-deformed distribution and increases non-linearly rapidly in case of the finite-difference statistics; for more complicated case of the Kaniadakis distribution, related dependence has double-well form.

  11. A TRANSIT TIMING ANALYSIS OF NINE RISE LIGHT CURVES OF THE EXOPLANET SYSTEM TrES-3

    SciTech Connect

    Gibson, N. P.; Pollacco, D.; Simpson, E. K.; Barros, S.; Joshi, Y. C.; Todd, I.; Keenan, F. P.; Skillen, I.; Benn, C.; Christian, D.; Hrudkova, M.; Steele, I. A.

    2009-08-01

    We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte Carlo analysis was used to determine the planet-star radius ratio and inclination of the system, which were found to be R{sub p} /R {sub *} = 0.1664{sup +0.0011} {sub -0.0018} and i = 81.73{sup +0.13} {sub -0.04}, respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving {chi}{sup 2} = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a constant period either have relatively little out-of-transit coverage or have clear systematics. A new ephemeris was calculated using the transit times and was found to be T{sub c} (0) = 2454632.62610 {+-} 0.00006 HJD and P = 1.3061864 {+-} 0.0000005 days. The transit times were then used to place upper mass limits as a function of the period ratio of a potential perturbing planet, showing that our data are sufficiently sensitive to have probed sub-Earth mass planets in both interior and exterior 2:1 resonances, assuming that the additional planet is in an initially circular orbit.

  12. High-precision multiband time series photometry of exoplanets Qatar-1b and TrES-5b

    NASA Astrophysics Data System (ADS)

    Mislis, D.; Mancini, L.; Tregloan-Reed, J.; Ciceri, S.; Southworth, J.; D'Ago, G.; Bruni, I.; Baştürk, Ö.; Alsubai, K. A.; Bachelet, E.; Bramich, D. M.; Henning, Th.; Hinse, T. C.; Iannella, A. L.; Parley, N.; Schroeder, T.

    2015-04-01

    We present an analysis of the Qatar-1 and TrES-5 transiting exoplanetary systems, which contain Jupiter-like planets on short-period orbits around K-dwarf stars. Our data comprise a total of 20 transit light curves obtained using five medium-class telescopes, operated using the defocusing technique. The average precision we reach in all our data is RMSQ = 1.1 mmag for Qatar-1 (V = 12.8) and RMST = 1.0 mmag for TrES-5 (V = 13.7). We use these data to refine the orbital ephemeris, photometric parameters, and measured physical properties of the two systems. One transit event for each object was observed simultaneously in three passbands (gri) using the BUSCA imager. The QES survey light curve of Qatar-1 has a clear sinusoidal variation on a period of P⋆ = 23.697 ± 0.123 d, implying significant star-spot activity. We searched for star-spot crossing events in our light curves, but did not find clear evidence in any of the new data sets. The planet in the Qatar-1 system did not transit the active latitudes on the surfaces of its host star. Under the assumption that P⋆ corresponds to the rotation period of Qatar-1A, the rotational velocity of this star is very close to the vsin i⋆ value found from observations of the Rossiter-McLaughlin effect. The low projected orbital obliquity found in this system thus implies a low absolute orbital obliquity, which is also a necessary condition for the transit chord of the planet to avoid active latitudes on the stellar surface.

  13. Inflated Soft Actuators with Reversible Stable Deformations.

    PubMed

    Hines, Lindsey; Petersen, Kirstin; Sitti, Metin

    2016-05-01

    Most soft robotic systems are currently dependent on bulky compressors or pumps. A soft actuation method is presented combining hyperelastic membranes and dielectric elastomer actuators to switch between stable deformations of sealed chambers. This method is capable of large repeatable deformations, and has a number of stable states proportional to the number of actuatable membranes in the chamber. PMID:27008455

  14. Interactive multigrid refinement for deformable image registration.

    PubMed

    Zhou, Wu; Xie, Yaoqin

    2013-01-01

    Deformable image registration is the spatial mapping of corresponding locations between images and can be used for important applications in radiotherapy. Although numerous methods have attempted to register deformable medical images automatically, such as salient-feature-based registration (SFBR), free-form deformation (FFD), and demons, no automatic method for registration is perfect, and no generic automatic algorithm has shown to work properly for clinical applications due to the fact that the deformation field is often complex and cannot be estimated well by current automatic deformable registration methods. This paper focuses on how to revise registration results interactively for deformable image registration. We can manually revise the transformed image locally in a hierarchical multigrid manner to make the transformed image register well with the reference image. The proposed method is based on multilevel B-spline to interactively revise the deformable transformation in the overlapping region between the reference image and the transformed image. The resulting deformation controls the shape of the transformed image and produces a nice registration or improves the registration results of other registration methods. Experimental results in clinical medical images for adaptive radiotherapy demonstrated the effectiveness of the proposed method. PMID:24232828

  15. Measuring Viscoelastic Deformation with an Optical Mouse

    ERIC Educational Resources Information Center

    Ng, T. W.

    2004-01-01

    The feasibility of using an optical mouse to track the viscoelastic deformation of low-density polyethylene films that have a fixed attached load is presented. It is seen that using an optical mouse and with rudimentary experiment paraphernalia and arrangement, it is possible to get good measurements of viscoelastic deformation.

  16. Deformed Palmprint Matching Based on Stable Regions.

    PubMed

    Wu, Xiangqian; Zhao, Qiushi

    2015-12-01

    Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods. PMID:26390453

  17. Solute transport through a deforming porous medium

    NASA Astrophysics Data System (ADS)

    Peters, Glen P.; Smith, David W.

    2002-06-01

    Solute transport through a porous medium is typically modelled assuming the porous medium is rigid. However, many applications exist where the porous medium is deforming, including, municipal landfill liners, mine tailings dams, and land subsidence. In this paper, mass balance laws are used to derive the flow and transport equations for a deforming porous medium. The equations are derived in both spatial and material co-ordinate systems. Solute transport through an engineered landfill liner is used as an illustrative example to show the differences between the theory for a rigid porous medium, and small and large deformation analysis of a deforming porous medium. It is found that the large deformation model produces shorter solute breakthrough times, followed by the small deformation model, and then the rigid porous medium model. It is also found that it is important to include spatial and temporal void ratio variations in the large deformation analysis. It is shown that a non-linear large deformation model may greatly reduce the solute breakthrough time, compared to a standard transport analysis typically employed by environmental engineers.

  18. Madelung Deformity and Extensor Tendon Rupture.

    PubMed

    Shahcheraghi, Gholam Hossain; Peyman, Maryam; Mozafarian, Kamran

    2015-07-01

    Extensor tendon rupture in chronic Madelung deformity, as a result of tendon attrition on the dislocated distal ulna, is a rare occurrence. It is, however, seen more often in rheumatoid arthritis. There are few case reports in the English-language literature on this issue. We report a case of multiple tendon ruptures in a previously undiagnosed Madelung deformity. PMID:26161772

  19. Plate-tectonic mechanism of Laramide deformation.

    USGS Publications Warehouse

    Hamilton, W.

    1981-01-01

    The Laramide compressive deformation of the craton was caused by a clockwise rotation of about 2-4o of the Colorado Plateau region relative to the continental interior, during late Late Cretaceous and early Tertiary time. Late Paleozoic and Neogene deformation of the craton also were produced by motion of a southwestern subplate relative to the continental interior. -from Author

  20. Nanoplasmonic ruler to measure lipid vesicle deformation.

    PubMed

    Jackman, Joshua A; Špačková, Barbora; Linardy, Eric; Kim, Min Chul; Yoon, Bo Kyeong; Homola, Jiří; Cho, Nam-Joon

    2016-01-01

    A nanoplasmonic ruler method is presented in order to measure the deformation of adsorbed, nm-scale lipid vesicles on solid supports. It is demonstrated that single adsorbed vesicles undergo greater deformation on silicon oxide over titanium oxide, offering direct experimental evidence to support membrane tension-based theoretical models of supported lipid bilayer formation. PMID:26466086

  1. Deformation Mechanisms of Antigorite Serpentinite at Subduction Zone Conditions Determined from Experimentally and Naturally Deformed Rocks

    NASA Astrophysics Data System (ADS)

    Auzende, A. L.; Escartin, J.; Walte, N.; Guillot, S.; Hirth, G.; Frost, D. J.

    2014-12-01

    The rheology of serpentinite, and particularly that of antigorite-bearing rocks, is of prime importance for understanding subduction zone proceses, including decoupling between the downwelling slab and the overriding plate, exhumation of high-pressure rocks, fluids pathways and, more generally, mantle wedge dynamics. We present results from deformation-DIA experiments on antigorite serpentinite performed under conditions relevant of subduction zones (1-3.5 GPa ; 400-650°C). We complemented our study with a sample deformed in a Griggs-type apparatus at 1 GPa and 400°C (Chernak and Hirth, EPSL, 2010), and with natural samples from Cuba and the Alps deformed under blueschist/eclogitic conditions. Our observations on experimental samples of antigorite deformed within its stability field show that deformation is dominated by cataclastic flow; we can only document a minor contribution of plastic deformation. In naturally deformed samples, deformation-related plastic structures largely dominate strain accommodation, but we also document a minor contribution of brittle deformation. When dehydration occurs in experiments, plasticity increases, and is coupled to local embrittlement attributed to hydraulic fracturating due to the migration of dehydration fluids. Our results thus show that semibrittle deformation operates within and above the stability field of antigorite. We also document that the corrugated structure of antigorite has a control on the strain accommodation mechanisms under subduction conditions, with preferred inter and intra-cracking along (001) and gliding along both a and b. Deformation dominated by brittle processes, as observed in experiments, may occur during deformation at elevated (seismic?) strain rates, while plastic deformation, as observed in naturally deformed rocks, may correspond instead to low strain rates instead (aseismic creep?). We also discuss the role of antigorite rheology and mode of deformation on fluid transport.

  2. Deformation Measurements of Smart Aerodynamic Surfaces

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Burner, Alpheus

    2005-01-01

    Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F planform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flap, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.

  3. CubeSat deformable mirror demonstration

    NASA Astrophysics Data System (ADS)

    Cahoy, Kerri; Marinan, Anne; Kerr, Caitlin; Cheng, Kezi; Jamil, Sara

    2012-09-01

    The goal of the CubeSat Deformable Mirror Demonstration (DeMi) is to characterize the performance of a small deformable mirror over a year in low-Earth orbit. Small form factor deformable mirrors are a key technology needed to correct optical system aberrations in high contrast, high dynamic range space telescope applications such as space-based coronagraphic direct imaging of exoplanets. They can also improve distortions and reduce bit error rates for space-based laser communication systems. While follow-on missions can take advantage of this general 3U CubeSat platform to test the on-orbit performance of several different types of deformable mirrors, this first design accommodates a 32-actuator Boston Micromachines MEMS deformable mirror.

  4. Strong crystal size effect on deformation twinning.

    PubMed

    Yu, Qian; Shan, Zhi-Wei; Li, Ju; Huang, Xiaoxu; Xiao, Lin; Sun, Jun; Ma, Evan

    2010-01-21

    Deformation twinning in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium's ideal strength. We develop a 'stimulated slip' model to explain the strong size dependence of deformation twinning. The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence relevant for applications. PMID:20090749

  5. Deformation measurements of smart aerodynamic surfaces

    NASA Astrophysics Data System (ADS)

    Fleming, Gary A.; Burner, Alpheus W.

    1999-10-01

    Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F platform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flat, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.

  6. Scoliosis and tibiotarsal deformities in broiler chickens.

    PubMed

    Droual, R; Bickford, A A; Farver, T B

    1991-01-01

    The incidence and degree of scoliosis were investigated in broiler chickens with and without intertarsal deformities associated with slipped gastrocnemius tendons. In both groups, the incidence of scoliosis was similar and there was a significant tendency for scoliosis to be convex on the right side. However, scoliosis was significantly greater in birds with intertarsal deformities, and in a significant proportion of these the joint with a slipped tendon was on the convex side of scoliosis. In birds with deformities, inequalities between right and left tibiotarsi were significantly greater, and tibiotarsi with greater length, narrower condyles and trochleae, and shallower trochlear grooves were significantly more often on the convex side of scoliosis. Significant positive correlations were found between scoliosis and rotational and bending deformities of the distal tibiotarsus on the convex side of scoliosis. These findings suggest a cause-and-effect relationship between scoliosis and tibiotarsal deformities associated with slipped tendons. PMID:2029256

  7. Deformation-based surface morphometry applied to gray matter deformation.

    PubMed

    Chung, Moo K; Worsley, Keith J; Robbins, Steve; Paus, Tomás; Taylor, Jonathan; Giedd, Jay N; Rapoport, Judith L; Evans, Alan C

    2003-02-01

    We present a unified statistical approach to deformation-based morphometry applied to the cortical surface. The cerebral cortex has the topology of a 2D highly convoluted sheet. As the brain develops over time, the cortical surface area, thickness, curvature, and total gray matter volume change. It is highly likely that such age-related surface changes are not uniform. By measuring how such surface metrics change over time, the regions of the most rapid structural changes can be localized. We avoided using surface flattening, which distorts the inherent geometry of the cortex in our analysis and it is only used in visualization. To increase the signal to noise ratio, diffusion smoothing, which generalizes Gaussian kernel smoothing to an arbitrary curved cortical surface, has been developed and applied to surface data. Afterward, statistical inference on the cortical surface will be performed via random fields theory. As an illustration, we demonstrate how this new surface-based morphometry can be applied in localizing the cortical regions of the gray matter tissue growth and loss in the brain images longitudinally collected in the group of children and adolescents. PMID:12595176

  8. The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation

    SciTech Connect

    Deta, U. A. E-mail: utamadeta@unesa.ac.id; Suparmi

    2015-09-30

    Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.

  9. Inelastic deformation and dislocation structure of a nickel alloy - Effects of deformation and thermal histories

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Page, R. A.

    1988-01-01

    Inelastic deformation behavior of the cast Ni-base alloy, B1900 + Hf, was investigated using data from step-temperature tensile tests and thermomechanical cyclic tests in the temperature ranges 538-760 C and 760-982 C. The deformation results were correlated with the dislocation structures of deformed specimens, identified by TEM. It was found that, in the 760-982 C temperature range, there are no thermal history effects in the inelastic deformation behavior of B1900 + Hf. In the 538-760 range, anomalous cyclic hardening and, possibly, thermal history effects were observed in thermomechanically deformed alloy, caused by sessile (010) dislocations in the gamma-prime phase.

  10. The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation

    NASA Astrophysics Data System (ADS)

    Deta, U. A.; Suparmi

    2015-09-01

    Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.

  11. Large Deformations of a Soft Porous Material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2016-04-01

    Compressing a porous material will decrease the volume of the pore space, driving fluid out. Similarly, injecting fluid into a porous material can expand the pore space, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with Terzaghi's effective stress and linear elasticity in a linearized kinematic framework. Linear poroelasticity is a good model for very small deformations, but it becomes increasingly inappropriate for moderate to large deformations, which are common in the context of phenomena such as swelling and damage, and for soft materials such as gels and tissues. The well-known theory of large-deformation poroelasticity combines Darcy's law with Terzaghi's effective stress and nonlinear elasticity in a rigorous kinematic framework. This theory has been used extensively in biomechanics to model large elastic deformations in soft tissues and in geomechanics to model large elastoplastic deformations in soils. Here, we first provide an overview and discussion of this theory with an emphasis on the physics of poromechanical coupling. We present the large-deformation theory in an Eulerian framework to minimize the mathematical complexity, and we show how this nonlinear theory simplifies to linear poroelasticity under the assumption of small strain. We then compare the predictions of linear poroelasticity with those of large-deformation poroelasticity in the context of two uniaxial model problems: fluid outflow driven by an applied mechanical load (the consolidation problem) and compression driven by a steady fluid throughflow. We explore the steady and dynamical errors associated with the linear model in both situations, as well as the impact of introducing a deformation-dependent permeability. We show that the error in linear poroelasticity is due primarily to kinematic

  12. Tracking of object deformations in color and depth video: deformation models and applications

    NASA Astrophysics Data System (ADS)

    Jordt, Andreas; Reinhold, Stefan; Koch, Reinhard

    2015-05-01

    The research on deformation tracking based on color image data has continuously gained a wide interest in the last 15 years. In addition, using depth sensors such as the Microsoft Kinect, allows to mitigate the ambiguity problems that arise when trying to solve the deformation tracking tasks on color images only, by adding depth information. However, the fusion of color and depth data is not straight forward, and the deformation tracking task is still ill-posed due to the lack of a general deformation model. The problem is usually circumvented by providing special deformation functions for the task at hand, e.g., skeleton-based for reconstructing people or triangle-based for tracking planar surfaces. In this article we summarize the Analysis by Synthesis (AbS) approach for deformation tracking in depth and color video and show some successful applications of specialized deformation functions. To overcome the issues with NURBS based deformation tracking we propose a new geodesic RBF-based deformation model, which can adapt to any surface topology and shape, while keeping the number of deformation parameters low. Example deformations for objects of different topologies are given, showing the versatility and efficiency of the proposed model.

  13. Deformation mechanisms of antigorite serpentinite at subduction zone conditions determined from experimentally and naturally deformed rocks

    NASA Astrophysics Data System (ADS)

    Auzende, Anne-Line; Escartin, Javier; Walte, Nicolas P.; Guillot, Stéphane; Hirth, Greg; Frost, Daniel J.

    2015-02-01

    We performed deformation-DIA experiments on antigorite serpentinite at pressures of 1-3.5 GPa and temperatures of between 400 and 650 °C, bracketing the stability of antigorite under subduction zone conditions. For each set of pressure-temperature (P-T) conditions, we conducted two runs at strain rates of 5 ×10-5 and 1 ×10-4 s-1. We complemented our study with a sample deformed in a Griggs-type apparatus at 1 GPa and 400 °C (Chernak and Hirth, 2010), and with natural samples from Cuba and the Alps deformed under blueschist/eclogitic conditions. Optical and transmission electron microscopies were used for microstructural characterization and determination of deformation mechanisms. Our observations on experimentally deformed antigorite prior to breakdown show that deformation is dominated by cataclastic flow with observable but minor contribution of plastic deformation (microkinking and (001) gliding mainly expressed by stacking disorder mainly). In contrast, in naturally deformed samples, plastic deformation structures are dominant (stacking disorder, kinking, pressure solution), with minor but also perceptible contribution of brittle deformation. When dehydration occurs in experiments, plasticity increases and is coupled to local embrittlement that we attribute to antigorite dehydration. In dehydrating samples collected in the Alps, embrittlement is also observed suggesting that dehydration may contribute to intermediate-depth seismicity. Our results thus show that semibrittle deformation operates within and above the stability field of antigorite. However, the plastic deformation recorded by naturally deformed samples was likely acquired at low strain rates. We also document that the corrugated structure of antigorite controls the strain accommodation mechanisms under subduction conditions, with preferred inter- and intra-grain cracking along (001) and gliding along both a and b. We also show that antigorite rheology in subduction zones is partly controlled

  14. Mathematical textbook of deformable neuroanatomies.

    PubMed

    Miller, M I; Christensen, G E; Amit, Y; Grenander, U

    1993-12-15

    Mathematical techniques are presented for the transformation of digital anatomical textbooks from the ideal to the individual, allowing for the representation of the variabilities manifest in normal human anatomies. The ideal textbook is constructed on a fixed coordinate system to contain all of the information currently available about the physical properties of neuroanatomies. This information is obtained via sensor probes such as magnetic resonance, as well as computed axial and emission tomography, along with symbolic information such as white- and gray-matter tracts, nuclei, etc. Human variability associated with individuals is accommodated by defining probabilistic transformations on the textbook coordinate system, the transformations forming mathematical translation groups of high dimension. The ideal is applied to the individual patient by finding the transformation which is consistent with physical properties of deformable elastic solids and which brings the coordinate system of the textbook to that of the patient. Registration, segmentation, and fusion all result automatically because the textbook carries symbolic values as well as multisensor features. PMID:8265653

  15. Mathematical textbook of deformable neuroanatomies.

    PubMed Central

    Miller, M I; Christensen, G E; Amit, Y; Grenander, U

    1993-01-01

    Mathematical techniques are presented for the transformation of digital anatomical textbooks from the ideal to the individual, allowing for the representation of the variabilities manifest in normal human anatomies. The ideal textbook is constructed on a fixed coordinate system to contain all of the information currently available about the physical properties of neuroanatomies. This information is obtained via sensor probes such as magnetic resonance, as well as computed axial and emission tomography, along with symbolic information such as white- and gray-matter tracts, nuclei, etc. Human variability associated with individuals is accommodated by defining probabilistic transformations on the textbook coordinate system, the transformations forming mathematical translation groups of high dimension. The ideal is applied to the individual patient by finding the transformation which is consistent with physical properties of deformable elastic solids and which brings the coordinate system of the textbook to that of the patient. Registration, segmentation, and fusion all result automatically because the textbook carries symbolic values as well as multisensor features. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8265653

  16. Weak associativity and deformation quantization

    NASA Astrophysics Data System (ADS)

    Kupriyanov, V. G.

    2016-09-01

    Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev-Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.

  17. Deformability-based capsule sorting

    NASA Astrophysics Data System (ADS)

    Le Goff, Anne; Munier, Nadege; Maire, Pauline; Edwards-Levy, Florence; Salsac, Anne-Virginie

    2015-11-01

    Many microfluidic devices have been developed for cancer diagnosis applications, most of which relying on costly antibodies. Since some cancer cells display abnormal mechanical properties, new sorting tools based on mechanical sensing are of particular interest. We present a simple, passive pinched flow microfluidic system for capsule sorting. The device consists of a straight microchannel containing a cylindrical obstacle. Thanks to a flow-focusing module placed at the channel entrance, capsules arrive well-centered in the vicinity of the obstacle. Pure size-sorting can be achieved at low shear rate. When increasing the shear rate, capsules are deformed in the narrow space between the pillar and the wall. The softer the capsule, the more tightly it wraps around the obstacle. After the obstacle, streamlines diverge, allowing for the separation between soft capsules, that follow central streamlines, and stiff capsules, that drift away from the obstacle with a wider angle. This proves that we have developed a flexible multipurpose sorting microsystem based on a simple design.

  18. Capillary deformations of bendable films.

    PubMed

    Schroll, R D; Adda-Bedia, M; Cerda, E; Huang, J; Menon, N; Russell, T P; Toga, K B; Vella, D; Davidovitch, B

    2013-07-01

    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids. Our calculations and experiments show that the liquid-solid-vapor contact angle is modified from the Young angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio between the surface tension γ and E is of molecular size. This finding indicates a new elastocapillary phenomenon that stems from the high bendability of very thin elastic sheets rather than from material softness. We also show that the size of the wrinkle pattern that emerges in the sheet is fully predictable, thus resolving a puzzle in modeling "drop-on-a-floating-sheet" experiments and enabling a quantitative, calibration-free use of this setup for the metrology of ultrathin films. PMID:23863002

  19. Capillary Deformations of Bendable Films

    NASA Astrophysics Data System (ADS)

    Schroll, R. D.; Adda-Bedia, M.; Cerda, E.; Huang, J.; Menon, N.; Russell, T. P.; Toga, K. B.; Vella, D.; Davidovitch, B.

    2013-07-01

    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids. Our calculations and experiments show that the liquid-solid-vapor contact angle is modified from the Young angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio between the surface tension γ and E is of molecular size. This finding indicates a new elastocapillary phenomenon that stems from the high bendability of very thin elastic sheets rather than from material softness. We also show that the size of the wrinkle pattern that emerges in the sheet is fully predictable, thus resolving a puzzle in modeling “drop-on-a-floating-sheet” experiments and enabling a quantitative, calibration-free use of this setup for the metrology of ultrathin films.

  20. Crustal deformation: Earth vs Venus

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1989-01-01

    It is timely to consider the possible tectonic regimes on Venus both in terms of what is known about Venus and in terms of deformation mechanisms operative on the earth. Plate tectonic phenomena dominate tectonics on the earth. Horizontal displacements are associated with the creation of new crust at ridges and destruction of crust at trenches. The presence of plate tectonics on Venus is debated, but there is certainly no evidence for the trenches associated with subduction on the earth. An essential question is what kind of tectonics can be expected if there is no plate tectonics on Venus. Mars and the Moon are reference examples. Volcanic constructs appear to play a dominant role on Mars but their role on Venus is not clear. On single plate planets and satellites, tectonic structures are often associated with thermal stresses. Cooling of a planet leads to thermal contraction and surface compressive features. Delamination has been propsed for Venus by several authors. Delamination is associated with the subduction of the mantle lithosphere and possibly the lower crust but not the upper crust. The surface manifestations of delamination are unclear. There is some evidence that delamination is occurring beneath the Transverse Ranges in California. Delamination will certainly lead to lithospheric thinning and is likely to lead to uplift and crustal thinning.

  1. Motion of deformable ring made of IPMC

    NASA Astrophysics Data System (ADS)

    Firouzeh, Amir; Alasty, Aria; Ozmaeian, Masoumeh

    2011-11-01

    In this paper application of Ionic Polymer Metal Composite (IPMC) as actuator in a deformable ring capable of locomotion is studied. Such a deformable ring moves as a result of gravitational force acting on its body when its shape changes. It can be used in exploration, search and rescue missions in future, where using conventional robots with rigid bodies and actuators is impossible. Large deformation induced by small stimulating voltage, low stiffness the sensing characteristics that in future work can be used in feedback control make IPMC a good choice for such an application. In this work first a model for IPMC is introduce that can be used in simulating deformation of IPMC in different arrangements of actuators. Since in this research we used our own fabricated IPMC, next we present characterization tests and identification results for model's parameters. Then using this model in simulation possibility of generating locomotion using body deformation in a ring made of IPMC is confirmed. Finally result of experiment on deformable ring is presented and possibility of implementation of the proposed design is confirmed. Based on this work, more accurate models can be developed to get better compatibility between experiment and simulation results. Also by modifying fabrication techniques, a deformable ring with faster and steadier movement can be made in future.

  2. Motion of deformable ring made of IPMC

    NASA Astrophysics Data System (ADS)

    Firouzeh, Amir; Alasty, Aria; Ozmaeian, Masoumeh

    2012-04-01

    In this paper application of Ionic Polymer Metal Composite (IPMC) as actuator in a deformable ring capable of locomotion is studied. Such a deformable ring moves as a result of gravitational force acting on its body when its shape changes. It can be used in exploration, search and rescue missions in future, where using conventional robots with rigid bodies and actuators is impossible. Large deformation induced by small stimulating voltage, low stiffness the sensing characteristics that in future work can be used in feedback control make IPMC a good choice for such an application. In this work first a model for IPMC is introduce that can be used in simulating deformation of IPMC in different arrangements of actuators. Since in this research we used our own fabricated IPMC, next we present characterization tests and identification results for model's parameters. Then using this model in simulation possibility of generating locomotion using body deformation in a ring made of IPMC is confirmed. Finally result of experiment on deformable ring is presented and possibility of implementation of the proposed design is confirmed. Based on this work, more accurate models can be developed to get better compatibility between experiment and simulation results. Also by modifying fabrication techniques, a deformable ring with faster and steadier movement can be made in future.

  3. A Deformable Atlas of the Laboratory Mouse

    PubMed Central

    Wang, Hongkai; Stout, David B.; Chatziioannou, Arion F.

    2015-01-01

    Purpose This paper presents a deformable mouse atlas of the laboratory mouse anatomy. This atlas is fully articulated and can be positioned into arbitrary body poses. The atlas can also adapt body weight by changing body length and fat amount. Procedures A training set of 103 micro-CT images was used to construct the atlas. A cage-based deformation method was applied to realize the articulated pose change. The weight-related body deformation was learned from the training set using a linear regression method. A conditional Gaussian model and thin-plate spline mapping were used to deform the internal organs following the changes of pose and weight. Results The atlas was deformed into different body poses and weights, and the deformation results were more realistic compared to the results achieved with other mouse atlases. The organ weights of this atlas matched well with the measurements of real mouse organ weights. This atlas can also be converted into voxelized images with labeled organs, pseudo CT images and tetrahedral mesh for phantom studies. Conclusions With the unique ability of articulated pose and weight changes, the deformable laboratory mouse atlas can become a valuable tool for preclinical image analysis. PMID:25049072

  4. Models of the Dynamic Deformations of Polymers

    NASA Astrophysics Data System (ADS)

    Merzhievsky, Lev; Voronin, Mihail; Korchagina, Anna

    2013-06-01

    In the process of deformation under the influence of external loading polymeric mediums show the complicated behavior connected with features of their structure. For amorphous polymers distinguish three physical conditions - glasslike, highlyelastic and viscoplastic. To each of the listed conditions there corresponds to mikro - meso- and macrostructural mechanisms of irreversible deformation. In the report the review of results of construction of models for the description of dynamic and shock-wave deformation of the polymers which are based on developed authors representations about mechanisms of irreversible deformation is made. Models include the formulation of the equations of conservation laws, considering effect of a relaxation of shear stresses in the process of deformation. For closing of models the equations of states with nonspherical tensor of deformations and relation for time of a relaxation of shear stresses are constructed. With using of the formulated models a number of problems of dynamic and shock wave deformations has been solved. The results are compared with corresponding experimental date. Development of the used approach are in summary discussed. To taking into account memory and fractal properties of real polymers is supposed of derivatives and integrals of a fractional order to use. Examples of constitutive equations with derivatives of a fractional order are presented. This work is supported by the Integration project of the Siberian Branch of the Russian Academy of Science 64 and grant RFBR 12-01-00726.

  5. Ultrasound evaluation of foot deformities in infants.

    PubMed

    Miron, Marie-Claude; Grimard, Guy

    2016-02-01

    Foot deformity in infants is the most common congenital musculoskeletal condition. A precise diagnosis can sometimes be impossible to establish clinically. Radiologic imaging plays a major role in the evaluation of musculoskeletal abnormalities. However conventional imaging techniques, such as plain radiographs of the foot, are of very little help in this age group because of the lack of ossification of the tarsal bones. US presents a significant advantage because it permits the visualization of cartilaginous structures. This leads to the detailed assessment of foot deformities in infants. Furthermore, US can also be used as a dynamic imaging modality. Different scanning views are beneficial to evaluate the complete anatomy of the foot; depending on the suspected clinical diagnosis, some planes are more informative to display the pathological features of a specific deformity. We describe the US findings of five of the most common foot deformities referred to our pediatric orthopedic clinic (clubfoot, simple metatarsus adductus, skewfoot, and oblique and vertical talus). For each deformity we propose a specific imaging protocol based on US to provide an accurate diagnosis. US is a complementary tool to the clinical examination for determining the diagnosis and the severity of the deformity and also for monitoring the efficacy of treatment. Radiologists investigating foot deformities in infants should consider using US for the detailed assessment of the foot in this age group. PMID:26459012

  6. Salient region preservation for image deformation

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Lai, Jianhuang; Yuen, Pong C.; Xie, Xiaohua

    2014-11-01

    We present an interactive image deformation method which preserves the local shapes of salient objects in the concerned image during the deformation. The proposed method falls into the moving least squares (MLS) framework, but notably differs from the original MLS deformation method. First, a saliency-related distance is developed to replace the original Euclidean distance in the weight definition. Second, the original affine matrix is decomposed into a single rotation matrix and a symmetric matrix by using a singular value decomposition, then the free parameters of these matrices are interpolated according to the saliency information. Furthermore, for the line-based MLS deformation, the closed-form solution of weight cannot be found directly when using the proposed saliency-based distance. To address this problem, we propose a method using an exponential transformation to regulate the weight where the regulation factor is also correlated to saliency information. All these revisions lead a saliency-sensitive mapping which creates a deformation change in the nonvital parts of image while preserving the local shapes of salient parts. Experimental results show that the proposed deformation outperforms the original MLS deformation in terms of visual performance.

  7. Deformations of GR and BH thermodynamics

    NASA Astrophysics Data System (ADS)

    Krasnov, Kirill

    2016-08-01

    In four space–time dimensions General Relativity can be non-trivially deformed. Deformed theories continue to describe two propagating degrees of freedom, as GR. We study Euclidean black hole thermodynamics of these deformations. We use the recently developed formulation that works with {{SO}}(3) connections as well as certain matrices M of auxiliary fields. We show that the black hole entropy is given by one quarter of the horizon area as measured by the Lie algebra valued two-form MF, where F is the connection curvature. This coincides with the horizon area as measured by the metric only for the case of General Relativity.

  8. Deformed symmetries from quantum relational observables

    NASA Astrophysics Data System (ADS)

    Girelli, Florian; Poulin, David

    2007-05-01

    Deformed Special Relativity (DSR) is a candidate phenomenological theory to describe the Quantum Gravitational (QG) semi-classical regime. A possible interpretation of DSR can be derived from the notion of deformed reference frame. Observables in (quantum) General Relativity can be constructed from (quantum) reference frame - a physical observable is then a relation between a system of interest and the reference frame. We present a toy model and study an example of such quantum relational observables. We show how the intrinsic quantum nature of the reference frame naturally leads to a deformation of the symmetries, comforting DSR to be a good candidate to describe the QG semi-classical regime.

  9. Marginal deformations of nonrelativistic field theories

    NASA Astrophysics Data System (ADS)

    Mallayev, Davron; Vázquez-Poritz, Justin F.; Zhang, Zhibai

    2014-11-01

    We construct the supergravity duals of marginal deformations of a (0, 2) Landau-Ginsburg theory that describes the supersymmetric lowest Landau level. These deformations preserve supersymmetry and it is proposed that they are associated with the introduction of a phase in the (0, 2) superpotential. We also consider marginal deformations of various field theories that exhibit Schrödinger symmetry and Lifshitz scaling. This includes countably infinite examples with dynamical exponent z =2 based on the Sasaki-Einstein spaces Yp ,q and Lp ,q ,r, as well as an example with general dynamical exponent z ≥1 .

  10. Postearthquake deformation analysis of wildlife site

    SciTech Connect

    Gu, W.H. ); Morgenstern, N.R.; Robertson, P.K. . Dept. of Civil Engineering)

    1994-02-01

    Postearthquake deformations of the Wildlife site, Imperial Valley, Calif., following the 1987 Superstition Hills earthquake, have been interpreted by finite-element deformation analyses. The analyses consider the stress redistribution and reconsolidation caused by the development of liquefaction. The stress redistribution analysis was conducted under fully undrained condition to consider the effects of strain-softening behavior of liquefied materials. The reconsolidation analysis was conducted using Biot's theory to consider the effects of dissipation of excess pore-water pressures. The results reveal that the delayed pore-water pressure response and deformation may be due to the redistribution of stresses and pore-water pressures.

  11. Optical tweezer for probing erythrocyte membrane deformability

    NASA Astrophysics Data System (ADS)

    Khan, Manas; Soni, Harsh; Sood, A. K.

    2009-12-01

    We report that the average rotation speed of optically trapped crenated erythrocytes is direct signature of their membrane deformability. When placed in hypertonic buffer, discocytic erythrocytes are subjected to crenation. The deformation of cells brings in chirality and asymmetry in shape that makes them rotate under the scattering force of a linearly polarized optical trap. A change in the deformability of the erythrocytes, due to any internal or environmental factor, affects the rotation speed of the trapped crenated cells. Here we show how the increment in erythrocyte membrane rigidity with adsorption of Ca++ ions can be exhibited through this approach.

  12. Liquid Droplets on a Highly Deformable Membrane

    NASA Astrophysics Data System (ADS)

    Schulman, Rafael D.; Dalnoki-Veress, Kari

    2015-11-01

    We examine the deformation produced by microdroplets atop thin elastomeric and glassy free-standing films. Because of the Laplace pressure, the droplets deform the elastic membrane thereby forming a bulge. Thus, two angles define the droplet or membrane geometry: the angles the deformed bulge and the liquid surface make with the film. These angles are measured as a function of the film tension, and are in excellent agreement with a force balance at the contact line. Finally, we find that if the membrane has an anisotropic tension, the droplets are no longer spherical but become elongated along the direction of high tension.

  13. Preparing for Routine Satellite Global Volcano Deformation Observations: The Volcano Deformation Database Task Force

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Jay, J.; Andrews, B. J.; Cooper, J.; Henderson, S. T.; Delgado, F.; Biggs, J.; Ebmeier, S. K.

    2014-12-01

    Satellite Interferometric Synthetic Aperture Radar (InSAR) has greatly expanded the number volcanoes that can be monitored for ground deformation - the number of known deforming volcanoes has increased almost five-fold since 1997 (to more than 213 volcanoes in 2014). However, from 1992-2014, there are still gaps in global volcano surveillance and only a fraction of the 1400 subaerial Holocene volcanoes have frequent observations in this time period. Starting in 2014, near global observations of volcano deformation should begin with the Sentinel satellites from the European Space Agency, ALOS-2 from the Japanese Space Agency, and eventually NISAR from the Indian Space Agency and NASA. With more frequent observations, more volcano deformation episodes are sure to be observed, but evaluating the significance of the observed deformation is not always straightforward -- how can we determine if deformation will lead to eruption? To answer this question, an international task force has been formed to create an inventory of volcano deformation events as part of the Global Volcano Model (http://globalvolcanomodel.org/gvm-task-forces/volcano-deformation-database/). We present the first results from our global study focusing on volcanoes that have few or no previous studies. In some cases, there is a lack of SAR data (for example, volcanoes of the South Sandwich Islands). For others, observations either show an absence of deformation or possible deformation that requires more data to be verified. An example of a deforming volcano that has few past studies is Pagan, an island in the Marianas Arc comprised of 2 stratovolcanoes within calderas. Our new InSAR measurements from both the ALOS and Envisat satellites show deformation near the 1981 May VEI 4 lava flow eruption on North Pagan at 2-3 cm/year between 2004-2010. Another example of a newly observed volcano is Karthala volcano in the Comoros. InSAR observations between 2004-2010 span four eruptions, only one of which is

  14. Impact de la varicocèle sur le volume testiculaire et les paramètres spermatiques

    PubMed Central

    Benazzouz, Mohamed Hicham; Essatara, Younes; El Sayegh, Hachem; Iken, Ali; Benslimane, Lounis; Nouini, Yassine

    2014-01-01

    Introduction La varicocèle est une pathologie masculine fréquente dont l'incidence est encore plus importante dans dans la population des hommes infertiles. Si ses mécanismes sont à ce jour incomplètement expliqués il semble acquis que la varicocèle peut être associée a une dysfonction testiculaire avec diminution du volume testiculaire et de la concentration en spermatozoïde de l’éjaculat. Méthodes Dans un premier temps nous exposons les résultats d'une étude rétrospective sur 5 ans (de Mars 2009 à Mars 2014), réalisée au service d'urologie A de l'hôpital Ibn Sina de Rabat et ayant comme objectif d’évaluer l'impact de la varicocèle palpable sur le volume testiculaire et les paramètres spermatiques. Tous les patients inclus dans notre étude avaient une varicocèle palpable. Dans un deuxième temps, et à travers une revue de la littérature nous discutons l'impact du traitement de la varicocèle sur la fertilité. Résultats 39 patients ont été inclus dans notre étude. L’âge moyen était de 29,71 ans et la varicocèle siégeait dans 89,74% des cas du coté gauche. Une atrophie testiculaire homolatérale à la varicocèle était retrouvée dans 7% des cas alors que des anomalies du spermogramme se voyaient dans 69,23% des cas. Conclusion L'impact de la varicocèle sur l'altération des paramètres spermatiques a été clairement établi bien que sa physio pathogénie ne soit pas bien élucidée. Le traitement chirurgical de la varicocèle semble indiqué chez les hommes infertiles présentant une varicocèle clinique et une altération significative du sperme. PMID:25918574

  15. Simultaneous deformations of a Lie algebroid and its Lie subalgebroid

    NASA Astrophysics Data System (ADS)

    Ji, Xiang

    2014-10-01

    Deformation problem is an interesting problem in mathematical physics. In this paper, we show that the deformations of a Lie algebroid are governed by a differential graded Lie algebra; and under certain regularity assumptions, an L∞-algebra can be constructed to govern the deformations of its Lie subalgebroid. Furthermore, by applying Y. Frégier and M. Zambon's result (0000, Thm. 3), these structures can be combined together to govern the simultaneous deformations. Applications of our results include deformations of a foliation, deformations of a Lie subalgebra, deformations of a complex structure, and deformations of a homomorphism of Lie algebroids.

  16. Deformation Behavior of Nanoporous Metals

    SciTech Connect

    Biener, J; Hodge, A M; Hamza, A V

    2007-11-28

    of free surfaces can no longer be neglected. As the material becomes more and more constraint by the presence of free surfaces, length scale effects on plasticity become more and more important and bulk properties can no longer be used to describe the material properties. Even the elastic properties may be affected as the reduced coordination of surface atoms and the concomitant redistribution of electrons may soften or stiffen the material. If, and to what extend, such length scale effects control the mechanical behavior of nanoporous materials depends strongly on the material and the characteristic length scale associated with its plastic deformation. For example, ductile materials such as metals which deform via dislocation-mediated processes can be expected to exhibit pronounced length scale effects in the sub-micron regime where free surfaces start to constrain efficient dislocation multiplication. In this chapter we will limit our discussion to our own area of expertise which is the mechanical behavior of nanoporous open-cell gold foams as a typical example of nanoporous metal foams. Throughout this chapter we will review our current understanding of the mechanical properties of nanoporous open-cell foams including both experimental and theoretical studies.

  17. Deformable Mirror Materials Issue Assessment

    SciTech Connect

    Rudd, R E

    2008-05-27

    It was a pleasure to speak with you and Dr. Olivier Guyon about your project to develop a coronagraph and in particular about materials science considerations in the development of the deformable mirror (DM) for the coronagraph. The coronagraph application will demand more of a DM than previous applications with regard to precision, and since the characterization and modeling tools are currently under development, you asked me to comment on materials issues that might impact the DM design and testing. I have not conducted research on this question, and my own research on modeling MEMS has not included DM systems. I am only in a position to discuss some general considerations that may help in developing a research plan for the DM system. As I understand it, the relevant points about the DM system are as follows. The DM surface needs to be positioned to less than 1 {angstrom} RMS of the desired shape, and be stable to 0.3 {angstrom} RMS for an hour. In the ultimate application in space the stability requirements may be greater. For example, the DM shape can be set using a bright star and then allow the coronagraph to be turned to a dim star to collect data for several hours, counting on the mirror shape to be stable. The DM is made of a polysilicon membrane coated with one or more metal layers for the reflective surface and actuated by 32x32 or 64x64 electrostatic actuators on the back side. The uncertainty in the position of any one actuator should be at the few-picometer level or less averaged over the 300-{micro}m region of the actuator. Currently, experiments are conducted that can characterize the surface shape to the 1 nm level, and it is anticipated that the experiments will be able to characterize the shape at the sub-Angstrom level but not in the immediate future. Regarding stability, under relatively large deformations (10's of nm), the DM mirror surface shows no hysteresis at the measurable nm level. Let me begin by saying that I am not aware of any

  18. A ferrofluidic deformable mirror for ophthalmology

    NASA Astrophysics Data System (ADS)

    Macpherson, J. B.; Thibault, S.; Borra, E. F.; Ritcey, A. M.; Carufel, N.; Asselin, D.; Jerominek, H.; Campbell, M. C. W.

    2005-09-01

    Optical aberrations reduce the imaging quality of the human eye. In addition to degrading vision, this limits our ability to illuminate small points of the retina for therapeutic, surgical or diagnostic purposes. When viewing the rear of the eye, aberrations cause structures in the fundus to appear blurred, limiting the resolution of ophthalmoscopes (diagnostic instruments used to image the eye). Adaptive optics, such as deformable mirrors may be used to compensate for aberrations, allowing the eye to work as a diffraction-limited optical element. Unfortunately, this type of correction has not been widely available for ophthalmic applications because of the expense and technical limitations of current deformable mirrors. We present preliminary design and characterisation of a deformable mirror suitable for ophthalmology. In this ferrofluidic mirror, wavefronts are reflected from a fluid whose surface shape is controlled by a magnetic field. Challenges in design are outlined, as are advantages over traditional deformable mirrors.

  19. Deformed and twisted black holes with NUTs

    NASA Astrophysics Data System (ADS)

    Krtouš, Pavel; Kubizňák, David; Frolov, Valeri P.; Kolář, Ivan

    2016-06-01

    We construct a new class of vacuum black hole solutions whose geometry is deformed and twisted by the presence of NUT charges. The solutions are obtained by ‘unspinning’ the general Kerr-NUT-(A)dS spacetimes, effectively switching off some of their rotation parameters. The resulting geometry has a structure of warped space with the Kerr-like Lorentzian part warped to a Euclidean metric of a deformed and/or twisted sphere, with the deformation and twist characterized by the ‘Euclidean NUT’ parameters. In the absence of NUTs, the solution reduces to a well known Kerr-(A)dS black hole with several rotations switched off. New geometries inherit the original symmetry of the Kerr-NUT-(A)dS family, namely, they possess the full Killing tower of hidden and explicit symmetries. As expected, for vanishing NUT, twist, and deformation parameters, the symmetry is further enlarged.

  20. Defect characterization in plastically deformed gallium arsenide

    SciTech Connect

    Leipner, H.S.; Huebner, C.; Storbeck, O.; Polity, A.; Krause-Rehberg, R.

    1996-12-31

    The defect spectrum in plastically deformed GaAs is analyzed by positron lifetime measurements. Different types of defects, such as vacancy clusters or antisites, are identified and their thermal annealing behavior is studied.

  1. Probing deformed commutators with macroscopic harmonic oscillators

    PubMed Central

    Bawaj, Mateusz; Biancofiore, Ciro; Bonaldi, Michele; Bonfigli, Federica; Borrielli, Antonio; Di Giuseppe, Giovanni; Marconi, Lorenzo; Marino, Francesco; Natali, Riccardo; Pontin, Antonio; Prodi, Giovanni A.; Serra, Enrico; Vitali, David; Marin, Francesco

    2015-01-01

    A minimal observable length is a common feature of theories that aim to merge quantum physics and gravity. Quantum mechanically, this concept is associated with a nonzero minimal uncertainty in position measurements, which is encoded in deformed commutation relations. In spite of increasing theoretical interest, the subject suffers from the complete lack of dedicated experiments and bounds to the deformation parameters have just been extrapolated from indirect measurements. As recently proposed, low-energy mechanical oscillators could allow to reveal the effect of a modified commutator. Here we analyze the free evolution of high-quality factor micro- and nano-oscillators, spanning a wide range of masses around the Planck mass mP (≈22 μg). The direct check against a model of deformed dynamics substantially lowers the previous limits on the parameters quantifying the commutator deformation. PMID:26088965

  2. Large poroelastic deformation of a soft material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2014-11-01

    Flow through a porous material will drive mechanical deformation when the fluid pressure becomes comparable to the stiffness of the solid skeleton. This has applications ranging from hydraulic fracture for recovery of shale gas, where fluid is injected at high pressure, to the mechanics of biological cells and tissues, where the solid skeleton is very soft. The traditional linear theory of poroelasticity captures this fluid-solid coupling by combining Darcy's law with linear elasticity. However, linear elasticity is only volume-conservative to first order in the strain, which can become problematic when damage, plasticity, or extreme softness lead to large deformations. Here, we compare the predictions of linear poroelasticity with those of a large-deformation framework in the context of two model problems. We show that errors in volume conservation are compounded and amplified by coupling with the fluid flow, and can become important even when the deformation is small. We also illustrate these results with a laboratory experiment.

  3. Gravitational Redshift of Deformed Neutron Stars

    NASA Astrophysics Data System (ADS)

    Romero, Alexis; Zubairi, Omair; Weber, Fridolin

    2015-04-01

    Non-rotating neutron stars are generally treated in theoretical studies as perfect spheres. Such a treatment, however, may not be correct if strong magnetic fields are present and/or the pressure of the matter in the cores of neutron stars is non-isotropic, leading to neutron stars which are deformed. In this work, we investigate the impact of deformation on the gravitational redshift of neutron stars in the framework of general relativity. Using a parameterized metric to model non-spherical mass distributions, we derive an expression for the gravitational redshift in terms of the mass, radius, and deformity of a neutron star. Numerical solutions for the redshifts of sequences of deformed neutron stars are presented and observational implications are pointed out. This research is funded by the NIH through the Maximizing Access to Research Careers (MARC), under Grant Number: 5T34GM008303-25 and through the National Science Foundation under grant PHY-1411708.

  4. GEOPHYSICS. Layered deformation in the Taiwan orogen.

    PubMed

    Huang, T-Y; Gung, Y; Kuo, B-Y; Chiao, L-Y; Chen, Y-N

    2015-08-14

    The underthrusting of continental crust during mountain building is an issue of debate for orogens at convergent continental margins. We report three-dimensional seismic anisotropic tomography of Taiwan that shows a nearly 90° rotation of anisotropic fabrics across a 10- to 20-kilometer depth, consistent with the presence of two layers of deformation. The upper crust is dominated by collision-related compressional deformation, whereas the lower crust of Taiwan, mostly the crust of the subducted Eurasian plate, is dominated by convergence-parallel shear deformation. We interpret this lower crustal shearing as driven by the continuous sinking of the Eurasian mantle lithosphere when the surface of the subducted plate is coupled with the orogen. The two-layer deformation clearly defines the role of subduction in the formation of the Taiwan mountain belt. PMID:26273051

  5. On Isospectral Deformations of an Inhomogeneous String

    NASA Astrophysics Data System (ADS)

    Colville, Kale; Gomez, Daniel; Szmigielski, Jacek

    2016-07-01

    In this paper we consider a class of isospectral deformations of the inhomogeneous string boundary value problem. The deformations considered are generalizations of the isospectral deformation that has arisen in connection with the Camassa-Holm equation for the shallow water waves. It is proved that these new isospectral deformations result in evolution equations on the mass density whose form depends on how the string is tied at the endpoints. Moreover, it is shown that the evolution equations in this class linearize on the spectral side and hence can be solved by the inverse spectral method. In particular, the problem involving a mass density given by a discrete finite measure and arbitrary boundary conditions is shown to be solvable by Stieltjes' continued fractions.

  6. 7 CFR 51.319 - Seriously deformed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Definitions § 51.319 Seriously deformed. “Seriously deformed” means that the apple is so badly misshapen that its appearance is...

  7. 7 CFR 51.319 - Seriously deformed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Definitions § 51.319 Seriously deformed. “Seriously deformed” means that the apple is so badly misshapen that its appearance is...

  8. Probing deformed commutators with macroscopic harmonic oscillators.

    PubMed

    Bawaj, Mateusz; Biancofiore, Ciro; Bonaldi, Michele; Bonfigli, Federica; Borrielli, Antonio; Di Giuseppe, Giovanni; Marconi, Lorenzo; Marino, Francesco; Natali, Riccardo; Pontin, Antonio; Prodi, Giovanni A; Serra, Enrico; Vitali, David; Marin, Francesco

    2015-01-01

    A minimal observable length is a common feature of theories that aim to merge quantum physics and gravity. Quantum mechanically, this concept is associated with a nonzero minimal uncertainty in position measurements, which is encoded in deformed commutation relations. In spite of increasing theoretical interest, the subject suffers from the complete lack of dedicated experiments and bounds to the deformation parameters have just been extrapolated from indirect measurements. As recently proposed, low-energy mechanical oscillators could allow to reveal the effect of a modified commutator. Here we analyze the free evolution of high-quality factor micro- and nano-oscillators, spanning a wide range of masses around the Planck mass mP (≈ 22 μg). The direct check against a model of deformed dynamics substantially lowers the previous limits on the parameters quantifying the commutator deformation. PMID:26088965

  9. Dielectric elastomer membranes undergoing inhomogeneous deformation

    NASA Astrophysics Data System (ADS)

    He, Tianhu; Zhao, Xuanhe; Suo, Zhigang

    2009-10-01

    Dielectric elastomers are capable of large deformation subject to an electric voltage and are promising for use as actuators, sensors, and generators. Because of large deformation, nonlinear equations of states, and diverse modes of failure, modeling the process of electromechanical transduction has been challenging. This paper studies a membrane of a dielectric elastomer deformed into an out-of-plane axisymmetric shape, a configuration used in a family of commercial devices known as the universal muscle actuators. The kinematics of deformation and charging, together with thermodynamics, leads to equations that govern the state of equilibrium. Numerical results indicate that the field in the membrane can be very inhomogeneous, and that the membrane is susceptible to several modes of failure, including electrical breakdown, loss of tension, and rupture by stretch. Care is needed in the design to balance the requirements of averting various modes of failure while using the material efficiently.

  10. Deformation stages of technical aluminum at reverse

    NASA Astrophysics Data System (ADS)

    Vaulina, O. Yu; Durnovtseva, A. N.; Shvagrukova, E. V.

    2016-02-01

    Durability and reliability of machines and mechanisms are determined, mainly, by their fatigue resistance as far as, in the most cases, variable load impacts on machine components. Accordingly, the problem of fatigue failure is extremely topical, still. Its complexity is connected with a wide range of factors. First of all, at cyclic load the compatibility relations of a material surface layer, which is loaded over the yield point and the elastic-loaded substrate layer, play a very important role. This fact determines involvement into plastic flow and failure of all the scale hierarchy of deformation structural levels. Reverse loading under the condition of the elastic-loaded substrate layer causes strong localization of plastic deformation in the surface layers. In the deformation localization areas the material reaches its limit state, when fatigue cracks arise and expand. The paper presents the mechanisms of fatigue deformation for technical aluminum at various fatigue stages.

  11. Digital deformation model for fisheye image rectification.

    PubMed

    Hou, Wenguang; Ding, Mingyue; Qin, Nannan; Lai, Xudong

    2012-09-24

    Fisheye lens can provide a wide view over 180°. It then has prominence advantages in three dimensional reconstruction and machine vision applications. However, the serious deformation in the image limits fisheye lens's usage. To overcome this obstacle, a new rectification method named DDM (Digital Deformation Model) is developed based on two dimensional perspective transformation. DDM is a type of digital grid representation of the deformation of each pixel on CCD chip which is built by interpolating the difference between the actual image coordinate and pseudo-ideal coordinate of each mark on a control panel. This method obtains the pseudo-ideal coordinate according to two dimensional perspective transformation by setting four mark's deformations on image. The main advantages are that this method does not rely on the optical principle of fisheye lens and has relatively less computation. In applications, equivalent pinhole images can be obtained after correcting fisheye lens images using DDM. PMID:23037373

  12. Deformable mirror for short wavelength applications

    DOEpatents

    Chapman, Henry N.; Sweeney, Donald W.

    1999-01-01

    A deformable mirror compatible with short wavelength (extreme ultraviolet) radiation that can be precisely controlled to nanometer and subnanometer accuracy is described. Actuators are coupled between a reaction plate and a face plate which has a reflective coating. A control system adjusts the voltage supplied to the actuators; by coordinating the voltages supplied to the actuators, the reflective surface of the mirror can be deformed to correct for dimensional errors in the mirror or to produce a desired contour.

  13. Dislocations: 75 years of Deformation Mechanisms

    NASA Technical Reports Server (NTRS)

    Schneider, Judy

    2009-01-01

    The selection of papers presented in this section reflect on themes to be explored at the "Dislocations: 75 years of Deformation Mechanisms" Symposium to be held at the Annual 2009 TMS meeting. The symposium was sponsored by the Mechanical Behavior of Materials Committee to give tribute to the evolution of a concept that has formed the basis of our mechanistic understanding of how crystalline solids plastically deform and how they fail.

  14. Deformability curve for K18 steel

    SciTech Connect

    Pospiech, J.

    1999-12-01

    The problem of the best utilization of plasticity in plastic working processes of metals, at low resistance to deformation and maximum utilization of capacity of installations has gained great importance, especially in recent years. Determination of plasticity of materials by the method of Kolmogorow is described. Variation of the stress factor for several plastic working processes is also described. Tests to plot the deformability curve (also referred to as reserve of plasticity curve) were selected and proved.

  15. Noncommutative scalar fields from symplectic deformation

    SciTech Connect

    Daoud, M.; Hamama, A.

    2008-02-15

    This paper is concerned with the quantum theory of noncommutative scalar fields in two dimensional space-time. It is shown that the noncommutativity originates from the the deformation of symplectic structures. The quantization is performed and the modes expansions of the fields, in the presence of an electromagnetic background, are derived. The Hamiltonian of the theory is given and the degeneracies lifting, induced by the deformation, is also discussed.

  16. Integrated dual-stage deformable mirrors

    NASA Astrophysics Data System (ADS)

    Griffith, Mike; Laycock, Leslie; Archer, Nick; Myers, Richard; Kirby, Andrew; Doel, Peter; Brooks, David

    2010-07-01

    We present the results of a study on Dual-Stage Deformable Mirrors using Zonal Bimorph Deformable Mirror (ZBDM) technology. A high density 'tweeter' DM has been assembled onto a lower density, high dynamic range 'woofer' DM to generate an integrated mirror which offers both high resolution and dynamic range simultaneously. Such a device has the potential to significantly simplify the design of astronomical Adaptive Optics (AO) systems. The latest developments are presented, including the fabrication of a small scale demonstrator.

  17. Dynamics of continental deformation in Asia

    NASA Astrophysics Data System (ADS)

    Vergnolle, M.; Calais, E.; Dong, L.

    2007-11-01

    The relevance of plate tectonics concepts to the description of deformation of large continental areas like Asia is subject to much debate. For some, the deformation of continents is better described by rigid motion of lithospheric blocks with strain concentrated along narrow fault zones. For others, it is better described by viscous flow of a continuously deforming solid in which faults play a minor role. Discriminating these end-member hypotheses requires spatially dense measurements of surface strain rates covering the whole deforming area. Here we revisit the issue of the forces and rheological structure that control present-day deformation in Asia. We use the "thin sheet" theory, with deformation driven by the balance of boundary and buoyancy stresses acting on a faulted lithosphere with laterally varying strength. Models are validated against a recent, homogeneous, GPS velocity field that covers most of Asia. In the models, deformation in compressional areas (Himalayas, Tien Shan, Altay) is well reproduced with strong coupling at the India/Eurasia plate contact, which allows for boundary forces to transfer into Asia. Southeastward motions observed in north and south China, however, require tensional, oceanward directed stresses, possibly generated by gravitational potential energy gradients across the Indonesian and Pacific subductions. Model and observed strain rates show that a large part of Asia undergoes no resolvable strain, with a kinematics apparently consistent with block- or plate-like motions. Internal strain, possibly continuous, is limited to high-elevation, mechanically weaker areas. Lateral variations of lithospheric strength appear to control the style of deformation in Asia, with a dynamics consistent with the thin sheet physical framework.

  18. Thermal elastic deformations of the planet Mercury

    NASA Technical Reports Server (NTRS)

    Liu, H.

    1971-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is shown that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of 0.004 and a period of 176 days.

  19. Thermal elastic deformations of the planet Mercury.

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1972-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is found that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of .004 and a period of 176 days.

  20. Novel technologies for small deformable mirrors

    NASA Astrophysics Data System (ADS)

    Strachan, Mel; Myers, Richard; Cooke, Kevin; Hampshire, Joanne; Hough, Jim; Rowan, Sheila; van Veggel, Marielle; Kirk, Katherine; Hutson, David; Uzgur, Erman; Kim, Shin-Sung

    2010-07-01

    Adaptive optic requirements for instrumentation such as EAGLE for the European extremely large telescope present an enormous challenge to deformable mirror technology. We have developed a unique approach using fabricated arrays of multilayer actuator technology to address the requirements of actuator density and deflection. Our programme of work has uncovered a novel approach which has led to a built in test capability. We will present the outcomes of our work which we believe will lead to a compact deformable mirror.

  1. Extremal black hole initial data deformations

    NASA Astrophysics Data System (ADS)

    Aceña, Andrés; Gabach Clément, María E.

    2016-06-01

    We study deformations of axially symmetric initial data for Einstein-Maxwell equations satisfying time-rotation (t-ϕ) symmetry and containing one asymptotically cylindrical end and one asymptotically flat end. We find that the t-ϕ symmetry implies the existence of a family of deformed data having the same horizon structure. This result allows us to measure how close the solutions are to the Lichnerowicz equation when arising from nearby free data.

  2. Seismic activity and stress tensor inversion at Las Tres Vírgenes Volcanic and Geothermal Field (México)

    NASA Astrophysics Data System (ADS)

    Antayhua-Vera, Yanet; Lermo-Samaniego, Javier; Quintanar-Robles, Luis; Campos-Enríquez, Oscar

    2015-10-01

    We analyze local earthquakes occurring between 2003 and 2012 at the Las Tres Vírgenes Volcanic and Geothermal Field (TVVGF) to establish their temporal and spatial distribution, and relationships with local and regional fault systems, water injection, acid stimulation and steam production tests. We obtained focal mechanisms and inverted data for the stress tensor to understand the local and regional stress fields. We analyzed 423 local earthquakes with magnitudes between 0.1 and 2.9 Mc and hypocentral depths from 0.2 to 7.4 km b.s.l. The cutoff depth at ~ 7.4 km possibly delineates the brittle-ductile transition zone. We identified seven swarms (from 1 to 7). Swarms 1 (December 2009), 2 (May 2010), 3 (June-July 2010) and 7 (December 2012) are strongly correlated with injection processes; whereas swarms 5 (April 2012) and 6 (September 2012) are correlated with local tectonic faults. Stress inversion showed NW-SE, E-W and NE-SW extensional orientations (Shmin), in agreement with the local tectonic stress field; while NE-SW compressional orientations (SHmax) are correlated with the regional tectonic stress field.

  3. Probing Cell Deformability via Acoustically Actuated Bubbles

    PubMed Central

    Xie, Yuliang; Nama, Nitesh; Li, Peng; Mao, Zhangming; Huang, Po-Hsun; Zhao, Chenglong; Costanzo, Francesco; Huang, Tony Jun

    2016-01-01

    An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis. PMID:26715211

  4. Probing Cell Deformability via Acoustically Actuated Bubbles.

    PubMed

    Xie, Yuliang; Nama, Nitesh; Li, Peng; Mao, Zhangming; Huang, Po-Hsun; Zhao, Chenglong; Costanzo, Francesco; Huang, Tony Jun

    2016-02-17

    An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis. PMID:26715211

  5. Clinical Implications of Nasal Septal Deformities.

    PubMed

    Mladina, Ranko; Skitarelić, Neven; Poje, Gorazd; Šubarić, Marin

    2015-04-01

    The first attempts to systematize septal distortions have been given by Cottle who defined four groups of septal deformities: subluxation, large spurs, caudal deflection and tension septum. Fortunately, the variations of the septal deformities show a certain order, thus enabling more precise classification. Mladina was the first to make user-friendly classification of septal deformities in six basic types. He also described the seventh type, named "Passali deformity", which presents individually, but is always a well-defined combination between some of the previous six types. Mladina types of septal deformities (SD) are divided in two main groups: so called "vertical" deformities (types 1, 2, 3 and 4), and "horizontal" ones (types 5 and 6). This classification was immediately well accepted by rhinologists worldwide and started to be cited from the very beginning. Since then it has been continuously cited increasingly more often, thus making Mladina classification a gold standard whenever clinical researches on nasal septum are concerned. More than forty clinical studies based on this classification have been performed to date. It is extremely important to make a strict distinction between the types of SD since all of them play some specific role in the nasal and general physiology in man. PMID:26167337

  6. Quantum deformations of the flat space superstring

    NASA Astrophysics Data System (ADS)

    Pachoł, Anna; van Tongeren, Stijn J.

    2016-01-01

    We discuss a quantum deformation of the Green-Schwarz superstring on flat space, arising as a contraction limit of the corresponding deformation of AdS5×S5 . This contraction limit turns out to be equivalent to a previously studied limit that yields the so-called mirror model—the model obtained from the light cone gauge fixed AdS5×S5 string by a double Wick rotation. Reversing this logic, the AdS5×S5 superstring is the double Wick rotation of a quantum deformation of the flat space superstring. This quantum deformed flat space string realizes symmetries of the timelike κ -Poincaré type and is T dual to dS5×H5, indicating interesting relations between symmetry algebras under T duality. Our results directly extend to AdS2×S2×T6 and AdS3×S3×T4 and beyond string theory to many (semi)symmetric space coset sigma models, such as a deformation of the four-dimensional Minkowski sigma model with timelike κ -Poincaré symmetry. We also discuss possible null and spacelike deformations.

  7. Compliant deformable mirror approach for wavefront improvement

    NASA Astrophysics Data System (ADS)

    Clark, James H.; Penado, F. Ernesto

    2016-04-01

    We describe a compliant static deformable mirror approach to reduce the wavefront concavity at the Navy Precision Optical Interferometer (NPOI). A single actuator pressing on the back surface of just one of the relay mirrors deforms the front surface in a correcting convex shape. Our design uses the mechanical advantage gained from a force actuator sandwiched between a rear flexure plate and the back surface of the mirror. We superimpose wavefront contour measurements with our finite element deformed mirror model. An example analysis showed improvement from 210-nm concave-concave wavefront to 51-nm concave-concave wavefront. With our present model, a 100-nm actuator increment displaces the mirror surface by 1.1 nm. We describe the need for wavefront improvement that arises from the NPOI reconfigurable array, offer a practical design approach, and analyze the support structure and compliant deformable mirror using the finite element method. We conclude that a 20.3-cm-diameter, 1.9-cm-thick Zerodur® mirror shows that it is possible to deform the reflective surface and cancel out three-fourths of the wavefront deformation without overstressing the material.

  8. Bialgebra cohomology, deformations, and quantum groups.

    PubMed Central

    Gerstenhaber, M; Schack, S D

    1990-01-01

    We introduce cohomology and deformation theories for a bialgebra A (over a commutative unital ring k) such that the second cohomology group is the space of infinitesimal deformations. Our theory gives a natural identification between the underlying k-modules of the original and the deformed bialgebra. Certain explicit deformation formulas are given for the construction of quantum groups--i.e., Hopf algebras that are neither commutative nor cocommutative (whether or not they arise from quantum Yang-Baxter operators). These formulas yield, in particular, all GLq(n) and SLq(n) as deformations of GL(n) and SL(n). Using a Hodge decomposition of the underlying cochain complex, we compute our cohomology for GL(n). With this, we show that every deformation of GL(n) is equivalent to one in which the comultiplication is unchanged, not merely on elements of degree one but on all elements (settling in the strongest way a decade-old conjecture) and in which the quantum determinant, as an element of the underlying k-module, is identical with the usual one. PMID:11607053

  9. Membranotropic photobiomodulation on red blood cell deformability

    NASA Astrophysics Data System (ADS)

    Luo, Gang-Yue; Zhao, Yan-Ping; Liu, Timon C.; Liu, Song-Hao

    2007-05-01

    To assess modulation of laser on erythrocyte permeability and deformability via cell morphology changes, healthy human echinocytes with shrinking size and high plasmic viscosity due to cellular dehydration were treated with 1 mW, 2 mW, 3 mW, and 5 mW laser power exposure respectively. Image analyzing system on single intact erythrocyte was applied for measuring comprehensive cell morphological parameters (surface area, external membrane perimeter, circle index and elongation index) that were determined by the modulation of erythrocyte water permeability and deformability to detect relationship between erythrocyte water permeability alteration and deformability. Our preliminary experiment showed that exposure under light dose of 5 mW for 5 min could induce more active erythrocyte swelling and deformation. water channel aquaporin-1(AQP-1) was inhibited by the incubation of HgCl II in the presence and absence of 5 mW laser irradiation. The result suggested that osmotic water permeability is a primary factor in the procedure of erythrocyte deformability. In addition, no modulation of laser(5mW) on erythrocyte deformability had been found when the echinocytes were cultured with GDP-β-S (G protein inhibitor).

  10. Global synthesis of volcano deformation: Results of the Volcano Deformation Task Force

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Jay, J.; Biggs, J.; Ebmeier, S. K.; Delgado, F.

    2013-12-01

    Ground deformation in volcanic regions is being observed more frequently -- the number of known deforming volcanoes has increased from 44 in 1997 to more than 210 in 2013 thanks in large part thanks to the availability of satellite InSAR observations. With the launch of new SAR satellites in the coming years devoted to global deformation monitoring, the number of well-studied episodes of volcano deformation will continue to increase. But evaluating the significance of the observed deformation is not always straightforward -- how often do deformation episodes lead to eruption? Are there certain characteristics of the deformation or the volcano that make the linkage between deformation and eruption more robust -- for example the duration or magnitude of the ground deformation and/or the composition and tectonic setting of the volcano? To answer these questions, a global database of volcano deformation events is needed. Recognizing the need for global information on volcano deformation and the opportunity to address it with InSAR and other techniques, we formed the Volcano Deformation Database Task force as part of Global Volcano Model. The three objectives of our organization are: 1) to compile deformation observations of all volcanoes globally into appropriate formats for WOVOdat and the Global Volcanism Program of the Smithsonian Institution. 2) document any relation between deformation events and eruptions for the Global assessment of volcanic hazard and risk report for 2015 (GAR15) for the UN. 3) to better link InSAR and other remote sensing observations to volcano observatories. We present the first results from our global study of the relation between deformation and eruptions, including case studies of particular eruptions. We compile a systematically-observed catalog of >500 volcanoes with observation windows up to 20 years. Of 90 volcanoes showing deformation, 40 erupted. The positive predictive value (PPV = 0.44) linking deformation and eruption on this