Science.gov

Sample records for expanded austenite experimental

  1. Magnetic properties of single crystalline expanded austenite obtained by plasma nitriding of austenitic stainless steel single crystals.

    PubMed

    Menéndez, Enric; Templier, Claude; Garcia-Ramirez, Pablo; Santiso, José; Vantomme, André; Temst, Kristiaan; Nogués, Josep

    2013-10-23

    Ferromagnetic single crystalline [100], [110], and [111]-oriented expanded austenite is obtained by plasma nitriding of paramagnetic 316L austenitic stainless steel single crystals at either 300 or 400 °C. After nitriding at 400 °C, the [100] direction appears to constitute the magnetic easy axis due to the interplay between a large lattice expansion and the expected decomposition of the expanded austenite, which results in Fe- and Ni-enriched areas. However, a complex combination of uniaxial (i.e., twofold) and biaxial (i.e., fourfold) in-plane magnetic anisotropies is encountered. It is suggested that the former is related to residual stress-induced effects while the latter is associated to the in-plane projections of the cubic lattice symmetry. Increasing the processing temperature strengthens the biaxial in-plane anisotropy in detriment of the uniaxial contribution, in agreement with a more homogeneous structure of expanded austenite with lower residual stresses. In contrast to polycrystalline expanded austenite, single crystalline expanded austenite exhibits its magnetic easy axes along basic directions. PMID:24028676

  2. CrN precipitation and elemental segregation during the decay of expanded austenite

    NASA Astrophysics Data System (ADS)

    Manova, D.; Lotnyk, A.; Mändl, S.; Neumann, H.; Rauschenbach, B.

    2016-06-01

    Nitrogen insertion into austenitic stainless steel at elevated temperatures leads to anomalous fast nitrogen diffusion and the formation of an expanded fcc phase which is known as expanded austenite. In situ x-ray diffraction measurements during low energy nitrogen ion implantation into steel AISI 304 at 475 °C and short annealing at 575 °C were performed in conjunction with transmission electron microscopy investigations. They show the time dependent decay of this expanded phase with coalescing and growing CrN precipitates. There is elemental segregation associated with this decay where Fe is absent very early from the Cr–N containing precipitates. Ni is segregating towards the Fe-rich matrix more slowly. At the same time, the microstructure—decayed phase vs expanded austenite—is visible in SIMS cluster analysis.

  3. An experimental reciprocating expander for cryocooler application

    NASA Technical Reports Server (NTRS)

    Minta, M.; Smith, J. L., Jr.

    1985-01-01

    An experimental reciprocating expander was designed with features appropriate for cryocooler cycles. The expander has a displacer piston, simple valves, and a hydraulic/pneumatic stroking mechanism. The expander has a valve in head configuration with the valves extending out the bottom of the vacuum enclosure while the piston extends out the top. The expander was tested using a CTI 1400 liquefier to supply 13 atm in the temperature range 4.2 to 12 K. Expander efficiency was measured in the range 84 to 93% while operating the apparatus as a supercritical wet expander and in the range 91 to 93% aa a single phase expander. The apparatus can also be modified to operate as a compressor for saturated helium vapor.

  4. Ferromagnetic and spin wave resonances in thin layer of expanded austenite phase

    NASA Astrophysics Data System (ADS)

    Typek, J.; Guskos, N.; Zolnierkiewicz, G.; Berczynski, P.; Guskos, A.; Baranowska, J.; Fryska, S.

    2014-06-01

    Four samples of austenite coatings deposited by reactive magnetron sputtering on silicon substrate at four different temperatures and pressures were investigated by ferromagnetic resonance (FMR) method at room temperature. The expanded austenite phase S ( γ N ) layers with thickness in the 160-273 nm range and concentration of magnetic atoms: 72 % Fe, 18 % Cr and 10 % Ni, were obtained. The coatings with nanometric size grains were strongly textured and grown mostly in [100] direction, perpendicular to the sample surface. Intense FMR spectra were recorded at various angles between the static magnetic field direction and the sample surface. A strong magnetic anisotropy of the main uniform FMR mode was observed and the effective magnetization 4 πM eff determined. Spin wave resonance (SWR) modes were observed in all investigated samples in out-of-plane geometry of the magnetic field. The resonance fields of SWR modes in our samples varied linearly with the spin wave mode number. The value of the effective magnon stiffness constant was determined assuming a parabolic shape of the magnetization variation across the sample thickness.

  5. Effect of initial microstructure on austenite formation kinetics in high-strength experimental microalloyed steels

    NASA Astrophysics Data System (ADS)

    López-Martínez, Edgar; Vázquez-Gómez, Octavio; Vergara-Hernández, Héctor Javier; Campillo, Bernardo

    2015-12-01

    Austenite formation kinetics in two high-strength experimental microalloyed steels with different initial microstructures comprising bainite-martensite and ferrite-martensite/austenite microconstituents was studied during continuous heating by dilatometric analysis. Austenite formation occurred in two steps: (1) carbide dissolution and precipitation and (2) transformation of residual ferrite to austenite. Dilatometric analysis was used to determine the critical temperatures of austenite formation and continuous heating transformation diagrams for heating rates ranging from 0.03°C•s-1 to 0.67°C•s-1. The austenite volume fraction was fitted using the Johnson-Mehl-Avrami-Kolmogorov equation to determine the kinetic parameters k and n as functions of the heating rate. Both n and k parameters increased with increasing heating rate, which suggests an increase in the nucleation and growth rates of austenite. The activation energy of austenite formation was determined by the Kissinger method. Two activation energies were associated with each of the two austenite formation steps. In the first step, the austenite growth rate was controlled by carbon diffusion from carbide dissolution and precipitation; in the second step, it was controlled by the dissolution of residual ferrite to austenite.

  6. Autofocus imaging: Experimental results in an anisotropic austenitic weld

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Drinkwater, B. W.; Wilcox, P. D.; Hunter, A.

    2012-05-01

    The quality of an ultrasonic array image, especially for anisotropic material, depends on accurate information about acoustic properties. Inaccuracy of acoustic properties causes image degradation, e.g., blurring, errors in locating of reflectors and introduction of artifacts. In this paper, for an anisotropic austenitic steel weld, an autofocus imaging technique is presented. The array data from a series of beacons is captured and then used to statistically extract anisotropic weld properties by using a Monte-Carlo inversion approach. The beacon and imaging systems are realized using two separated arrays; one acts as a series of beacons and the other images these beacons. Key to the Monte-Carlo inversion scheme is a fast forward model of wave propagation in the anisotropic weld and this is based on the Dijkstra algorithm. Using this autofocus approach a measured weld map was extracted from an austenitic weld and used to reduce location errors, initially greater than 6mm, to less than 1mm.

  7. Formation of Expanded Austenite on a Cold-Sprayed AISI 316L Coating by Low-Temperature Plasma Nitriding

    NASA Astrophysics Data System (ADS)

    Adachi, Shinichiro; Ueda, Nobuhiro

    2015-12-01

    Low-temperature plasma nitriding at temperatures below 450 °C is commonly applied to austenitic stainless steels to enhance wear resistance, while maintaining corrosion resistance, by forming expanded austenite (known as the S-phase). In this work, low-temperature plasma nitriding of cold-sprayed AISI 316L coatings was examined. A cold-spray technique was developed to produce metal coatings with less oxidation. However, the cold-sprayed AISI 316L coating obtained by use of nitrogen gas as propellant contained many interconnected pores and cracks, and was, consequently, unsuitable as an anticorrosive coating. Therefore, laser post-treatment was used to modify the coating and increase its density to similar to that of bulk steel. The anticorrosive performance of this coating on a carbon steel substrate in NaCl solution was substantially improved. Subsequent low-temperature plasma nitriding enhanced the wear resistance by two orders of magnitude. It is concluded that cold-sprayed AISI 316L coatings treated by laser post-treatment and subsequent low-temperature plasma nitriding could be used as protective coatings under severe wear and corrosion conditions.

  8. Experimental Research on Balloon-expandable Endovascular Stent Expansion.

    PubMed

    Wang, Yuexuan; Yi, Hong; Ni, Zhonghua

    2005-01-01

    The application background and experimental research overview of medical endovascular stent are presented. Based on the analytical comparison of the current research achievements, the life cycle of medical vascular stent, which is composed of three phases of mounting, deployment and long-term in vivo service, is pointed out and the characteristics of stent expansion process in the life cycle are emphasized on. The experimental scheme of in vitro stent expansion based on the machine vision technology in LabVIEW is presented. The selected component devices and measurement program for experiment are expatiated. A special drug-loading stent was expanded on the assembled platform of selected equipments and experimental results are analyzed. The experimental scheme presented in the paper provides powerful experimental support for the computer simulation of stent expansion process by the finite element analysis. PMID:17282686

  9. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  10. Carburization behavior of AISI 316LN austenitic stainless steel - Experimental studies and modeling

    NASA Astrophysics Data System (ADS)

    Sudha, C.; Sivai Bharasi, N.; Anand, R.; Shaikh, H.; Dayal, R. K.; Vijayalakshmi, M.

    2010-07-01

    AISI type 316LN austenitic stainless steel was exposed to flowing sodium at 798 K for 16,000 h in the bi-metallic (BIM) sodium loop. A modified surface layer of 10 μm width having a ferrite structure was detected from X-ray diffraction and electron micro probe based analysis. Beneath the modified surface layer a carburized zone of 60 μm width was identified which was found to consist of M 23C 6 carbides. A mathematical model based on finite difference technique was developed to predict the carburization profiles in sodium exposed austenitic stainless steel. In the computation, effect of only chromium on carbon diffusion was considered. Amount of carbon remaining in solution was determined from the solubility parameter. The predicted profile showed a reasonably good match with the experimental profile. Calculations were extended to simulate the thickness of the carburized layer after exposure to sodium for a period of 40 years. Attempt was also made to predict the carburization profiles based on equilibrium calculations using Dictra and Thermocalc which contain both thermodynamic and kinetic databases for the system under consideration.

  11. The Nature and Origin of "Double Expanded Austenite" in Ni-Based Ni-Ti Alloys Developing Upon Low Temperature Gaseous Nitriding

    NASA Astrophysics Data System (ADS)

    Fonović, Matej; Leineweber, Andreas; Robach, Odile; Jägle, Eric A.; Mittemeijer, Eric J.

    2015-09-01

    Gaseous nitriding of Ni-4 wt pct Ti alloy plates led to the development of double expanded austenite ( γ N1 and γ N2) at the surface of the nitride plates. Grazing-incidence X-ray diffraction analysis demonstrated that the component γ N1 is located close to the surface and the component γ N2 is located at a certain depth below the specimen surface, in correspondence with a layered character of the nitrided zone beneath the surface as revealed by optical microscopy. Electron probe microanalysis, atom probe tomography, and Laue microdiffraction analysis did not reveal a significant difference in nitrogen content of the γ N1 and γ N2 sublayers. By X-ray diffraction stress analysis it was shown that the only significant differences of the two expanded austenite layers is a pronounced difference in compressive stress parallel to the surface: the γ N1 layer is subjected to a huge compressive stress, as large as a few GPa, whereas a relatively modest stress prevails in the γ N2 layer.

  12. Determining Experimental Parameters for Thermal-Mechanical Forming Simulation considering Martensite Formation in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Schmid, Philipp; Liewald, Mathias

    2011-08-01

    The forming behavior of metastable austenitic stainless steel is mainly dominated by the temperature-dependent TRIP effect (transformation induced plasticity). Of course, the high dependency of material properties on the temperature level during forming means the temperature must be considered during the FE analysis. The strain-induced formation of α'-martensite from austenite can be represented by using finite element programs utilizing suitable models such as the Haensel-model. This paper discusses the determination of parameters for a completely thermal-mechanical forming simulation in LS-DYNA based on the material model of Haensel. The measurement of the martensite evolution in non-isothermal tensile tests was performed with metastable austenitic stainless steel EN 1.4301 at different rolling directions between 0° and 90 °. This allows an estimation of the influence of the rolling direction to the martensite formation. Of specific importance is the accuracy of the martensite content measured by magnetic induction methods (Feritscope). The observation of different factors, such as stress dependence of the magnetisation, blank thickness and numerous calibration curves discloses a substantial important influence on the parameter determination for the material models. The parameters obtained for use of Haensel model and temperature-dependent friction coefficients are used to simulate forming process of a real component and to validate its implementation in the commercial code LS-DYNA.

  13. Experimental and Numerical Investigation of Flows in Expanding Channels

    SciTech Connect

    Vorobieff, Peter; Putkaradze, Vakhtang

    2008-10-24

    We present an experimental realization of the classical Jeffery-Hamel flows inside a wedge-shaped channel. We compare the measured velocity fields with the predictions of Jeffery-Hamel theory. A detailed experimental study of bifurcation diagrams for the solutions reveals the absolute stability of the pure outflow solution and an interesting hysteretic structure for bifurcations. We also observe a multiple vortex flow regime predicted earlier numerically and analytically. Experimental studies of the stability of the flow to perturbations at the channel exit are also conducted.

  14. Experimental investigation of double layers in expanding plasmas

    SciTech Connect

    Plihon, N.; Chabert, P.; Corr, C. S.

    2007-01-15

    Double layers (DLs) have been observed in a plasma reactor composed of a source chamber attached to a larger expanding chamber. Positive ion beams generated across the DL were characterized in the low plasma potential region using retarding field energy analyzers. In electropositive gases, DLs were formed at very low pressures (between 0.1 and 1 mTorr) with the plasma expansion forced by a strongly diverging magnetic field. The DL remains static, robust to changes in boundary conditions, and its position is related to the magnetic field lines. The voltage drop across the DL increases with decreasing pressure; i.e., with increasing electron temperature (around 20 V at 0.17 mTorr). DLs were also observed in electronegative gases without a magnetic field over a greater range of pressure (0.5 to 10 mTorr). The actual profile of the electronegative DL is very sensitive to external parameters and intrusive elements, and they propagate at high negative ion fraction. Electrostatic probes measurements and laser-induced photodetachment show discontinuities in all plasma parameters (electron density, electron temperature, negative ion fraction) at the DL position. The voltage drop across the electronegative DL is about 8 V, is independent of the gas pressure and therefore of the electron temperature.

  15. Experimental and Numerical Investigation of Flows in Expanding Channels

    SciTech Connect

    Vakhtang Putkaradze Peter Vorobieff

    2004-10-28

    This is the first year progress report for our grant starting Feb. 1 2004. It describes experimental and theoretical achievements during the first year, lists the articles published during this period, as well as the progress of the graduate students supported by this grant. The timeline for the future is outlined; the current results convince us that the work will be done on time and within the budget.

  16. Experimental study of cryogenic liquid turbine expander with closed-loop liquefied nitrogen system

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Sun, Jinju; Song, Peng

    2015-04-01

    A cryogenic liquid turbine expander is developed as a replacement for traditional Joule-Thomson valves used in the cryogenic systems for the purpose of energy saving. An experimental study was conducted to evaluate the performance of the turbine expander and is the subject of this paper. The test rig comprises a closed-loop liquefied nitrogen system, cryogenic liquid turbine expander unit, and its auxiliary and measuring systems. The test operating parameters of the turbine expander are determined on the basis of flow similarity rules. Pre-cooling of the liquid nitrogen system is first performed, and then the tests are conducted at different flow rates and speed ratios. The turbine expander flow rate, inlet and outlet pressure and temperature, rotational speed and shaft torque were measured. Experimental results and their uncertainties were analyzed and discussed. The following are demonstrated: (1) For both test cases, turbine expander peak isentropic efficiency is respectively 78.8% and 68.4% obtained at 89.6% and 92% of the design flow rate. The large uncertainties in isentropic efficiency are caused by the large enthalpy variations subjected to small measurement uncertainties in temperature and pressure. (2) Total efficiency and hydraulic efficiency of the turbine expander are obtained. They are essentially the same, since both include flow-related effects and also bearing losses. Comparisons of total efficiency and hydraulic efficiency were used to justify measurement uncertainties of different quantities, since the former involves the measured mass flow rate and enthalpy drop (being dependant on inlet and outlet temperature and pressure), while the latter involves the actual shaft power, volume flow rate, and inlet and outlet pressure. (3) Losses in flow passages and the shaft-bearing system have been inferred based on the measured turbine expander total efficiency, isentropic efficiency, and mechanical efficiency, which are respectively 57.6-74.8%, 62

  17. DICTRA Simulation of Holding Time Dependence of NbC Size and Experimental Study of Effect of NbC on Austenite Grain Growth

    NASA Astrophysics Data System (ADS)

    Tao, Su-Fen; Wang, Fu-Ming; Sun, Gui-Lin; Yang, Zhan-Bing; Li, Chang-Rong

    2015-08-01

    The effect of austenitizing temperature and holding time on the prior austenite grain size was examined in both the transverse and the longitudinal directions of the samples that were made of the offshore structure steel EQ70. The grain size of the prior austenite was measured by using the linear intercept method. The equilibrium phase diagram was used to explain the abnormal grain growth. The equilibrium precipitation of steel EQ70 was calculated by Thermo-Calc software package, and the relationship between NbC size and the holding time was simulated based on DICTRA. The experimental results show that the prior austenite grain size is initially insensitive to increasing the austenitizing temperature from 1123 K (850 °C) with holding times from 1 to 6 hours, and presents a sudden growth at approximately 1373 K (1100 °C). The growth of the austenite grain size is also insensitive to increasing the holding time while the soaking temperature is lower than 1223 K (950 °C) or higher than 1373 K (1100 °C), and a sudden growth of grains takes place as the holding time is prolonged from 4 to 5 hours at the temperatures between 1273 K and 1323 K (1000 °C and 1050 °C). The results of DICTRA simulation and TEM observation confirm that the abnormal grain growth behavior at 1373 K (1100 °C) was influenced by coarsening of NbC with radius larger than the average and full dissolution of AlN and almost full dissolution of NbC with radius equal to or less than the average, while the same behavior between 1223 K and 1273 K (950 °C and 1000 °C) was caused by coarsening of NbC with radius larger than the average and the full dissolution of AlN but partial dissolution of NbC with radius equal to or less than the average. The present experimental and simulation results can provide a useful reference for determining the austenitizing parameters of steel EQ70.

  18. Experimental investigation of the ORC system in a cogenerative domestic power plant with a scroll expanders

    NASA Astrophysics Data System (ADS)

    Kaczmarczyk, Tomasz Z.; Ihnatowicz, Eugeniusz; Żywica, Grzegorz; Kiciński, Jan

    2015-11-01

    The paper presents the results of experimental investigations of the ORC system with two scroll expanders which have been used as a source of electricity. Theworking fluidwas HFE7100 - a newly engineered fluid with a unique heat transfer and favourable environmental properties. In the ORC system three heat exchangers were used (evaporator, regenerator, condenser) and before expanders the droplet separator was installed. As a source of heat an innovative biomass boiler was used. Studies have been carried out for the expanders worked in series and in parallel. The paper presents the thermal and fluidflow properties of the ORC installation for the selected flow rates and different temperatures of the working medium. The characteristics of output electrical power, operating speed and vibrations for scroll expanders were also presented.

  19. Experimental performance of a piston expander in a small- scale organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Oudkerk, J. F.; Dickes, R.; Dumont, O.; Lemort, V.

    2015-08-01

    Volumetric expanders are suitable for more and more applications in the field of micro- and small-scale power system as waster heat recovery or solar energy. This paper present an experimental study carried out on a swatch-plate piston expander. The expander was integrated into an ORC test-bench using R245fa. The performances are evaluated in term of isentropic efficiency and filling factor. The maximum efficiency and power reached are respectively 53% and 2 kW. Inside cylinder pressure measurements allow to compute mechanical efficiency and drown P-V diagram. A semi-empirical simulation model is then proposed, calibrated and used to analyse the different sources of losses.

  20. Effect of Treatment Time on the Microstructure of Austenitic Stainless Steel During Low-Temperature Liquid Nitrocarburizing

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Lin, Yuanhua; Zhang, Qiang; Zeng, Dezhi; Fan, Hongyuan

    2014-09-01

    The effect of treatment time on the microstructure of AISI 304 austenitic stainless steel during liquid nitrocarburizing (LNC) at 703 K (430 °C) was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Experimental results revealed that the modified layer was covered with the alloy surface and the modified layer depth increased extensively from 2 to 33.4 μm with increasing treatment time. SEM and XRD showed that when the 304 stainless steel sample was subjected to LNC at 703 K (430 °C) for less than 4 hours, the main phase of the modified layer was expanded austenite. When the treatment time was prolonged to 8 hours, the abundant expanded austenite was formed and it partially transformed into CrN and ferrite subsequently. With the increased treatment time, more and more CrN precipitate transformed in the overwhelming majority zone in the form of a typical dendritic structure in the nearby outer part treated for 40 hours. Still there was a single-phase layer of the expanded austenite between the CrN part and the inner substrate. TEM showed the expanded austenite decomposition into the CrN and ferrite after longtime treatment even at low temperature.

  1. Experimental investigation of over-expanded supersonic steam jet submerged in quiescent water

    SciTech Connect

    Wu, Xin-Zhuang; Yan, Jun-Jie; Li, Wen-Jun; Pan, Dong-Dong; Liu, Guang-Yao

    2010-01-15

    This study was designed to determine the behaviour of an over-expanded supersonic steam jet in quiescent water. Only two shapes of steam plume were observed and an analytical model was constructed. The axial and radial temperature distributions were measured in the steam plume and in the surrounding water. The flow pattern and temperature distributions were influenced mainly by steam mass flux and water temperature. The results confirmed the occurrence of compression and expansion waves in the steam plume, and indicated that the temperature distributions reflected the steam plume shapes. The axial temperature distributions in the forepart of the steam plume were independent of water temperature. Empirical correlations were found that predicted the dimensionless axial and radial temperatures of the turbulent jet region. Moreover, prediction of the steam plume length by the dimensionless axial temperature showed good agreement with the experimental results. (author)

  2. Mechanical properties of HIP bonded joints of austenitic stainless steel and Cu-alloy for fusion experimental reactor blanket

    NASA Astrophysics Data System (ADS)

    Sato, S.; Kuroda, T.; Kurasawa, T.; Furuya, K.; Togami, I.; Takatsu, H.

    1996-10-01

    Tensile, fatigue and impact properties have been measured for hot isostatic pressing (HIP) bonded joints of type 316 austenitic stainless steel (SS316)/SS316, and of SS316/Al 2O 3 dispersion strengthened copper (DSCu). The HIP bonded joints of SS316/SS316 had almost the same tensile and fatigue properties as those of the base metal. The HIP bonded joints of SS316/DSCu had also almost the same tensile properties as those of the base metal of the DSCu, though total elongation and fatigue strength were slightly lower than those of the DSCu base metal. Further data accumulation, even with further optimization of fabrication conditions, is required, especially for HIP bonded SS316/DSCu joints, to confirm above data and reflect to blanket/first wall design.

  3. A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming

    PubMed Central

    Kopp, Christopher W.; Cleland, Elsa E.

    2015-01-01

    Shifts in plant species phenology (the timing of life-history events such as flowering) have been observed worldwide in concert with rising global temperatures. While most species display earlier phenology with warming, there is large variation among, and even within, species in phenological sensitivity to rising temperatures. Other indirect effects of climate change, such as shifting species composition and altered species interactions, may also be contributing to shifting plant phenology. Here, we describe how experimental warming and the presence of a range-expanding species, sagebrush (Artemisia rothrockii), interact to influence the flowering phenology (day of first and peak flowering) and production (number of flowers) of an alpine cushion plant, Trifolium andersonii, in California’s White Mountains. Both first flowering and peak flowering were strongly accelerated by warming, but not when sagebrush was present. Warming significantly increased flower production of T. andersonii, but less so in the presence of sagebrush. A shading treatment delayed phenology and lowered flower production, suggesting that shading may be the mechanism by which sagebrush presence delayed flowering of the understory species. This study demonstrates that species interactions can modify phenological responses to climate change, and suggests that indirect effects of rising temperatures arising from shifting species ranges and altered species interactions may even exceed the direct effects of rising temperatures on phenology. PMID:26402617

  4. Parameters Optimization of Laser-Induced Breakdown Spectroscopy Experimental Setup for the Case with Beam Expander

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Zhang, Lei; Fan, Juanjuan; Li, Yufang; Gong, Yao; Dong, Lei; Ma, Weiguang; Yin, Wangbao; Jia, Suotang

    2015-11-01

    Improvement of measurement precision and repeatability is one of the issues currently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quantitative analysis. It was found that there was great potential to improve the signal quality and repeatability by reducing the laser beam divergence angle using a suitable beam expander (BE). In the present work, the influences of several experimental parameters for the case with BE are studied in order to optimize the analytical performances: the signal to noise ratio (SNR) and the relative standard deviation (RSD). We demonstrate that by selecting the optimal experimental parameters, the BE-included LIBS setup can give higher SNR and lower RSD values of the line intensity normalized by the whole spectrum area. For validation purposes, support vector machine (SVM) regression combined with principal component analysis (PCA) was used to establish a calibration model to realize the quantitative analysis of the ash content. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for ash content analysis is estimated to be 0.31%, while the average relative error is 2.36%. supported by the 973 Program of China (No. 2012CB921603), National Natural Science Foundation of China (Nos. 61475093, 61127017, 61178009, 61108030, 61378047, 61275213, 61475093, and 61205216), the National Key Technology R&D Program of China (No. 2013BAC14B01), the Shanxi Natural Science Foundation (Nos. 2013021004-1 and 2012021022-1), the Shanxi Scholarship Council of China (Nos. 2013-011 and 2013-01), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China

  5. (R)evolution: toward a new paradigm of policy and patient advocacy for expanded access to experimental treatments.

    PubMed

    Hogan, Melissa

    2016-01-01

    In life-threatening conditions such as cancer and rare diseases, where there is no cure and no U.S. Food and Drug Administration (FDA)-approved therapy, patients sometimes seek access to an unapproved, experimental therapy through expanded access programs as their last, best hope for treatment to save their lives. Since the 1980s, the policies and the practice of expanded access have evolved, but a common challenge remains that there is no obligation, and often little incentive, for manufacturers to offer expanded access programs, especially for individual patients. In recent years, online campaigns seeking access to an experimental therapy have become more common, paralleling growth in and representing an intersection of social media, digital health, and patient advocacy.Mackey and Schoenfeld have examined the evolution of expanded access policy, practice, and trends, as well as case studies of online campaigns to access experimental therapies, to arrive at several recommendations for the future of expanded access. This commentary puts their paper in context, examines their recommendations, and suggests further reforms.Please see related article: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0568-8. PMID:26926908

  6. The influence of silicon and aluminum on austenite deformation behavior during fatigue and tensile loading

    NASA Astrophysics Data System (ADS)

    Lehnhoff, Gregory R.

    Advanced high strength steels (AHSS) for automobile light-weighting utilize Si and Al alloying to retain austenite in the microstructure during thermal partitioning treatments. This research project utilized fully austenitic steels with varied Si and Al compositions to understand the effect of these elements on austenite deformation response, including deformation induced martensite formation and deformation twinning. Specific focus was directed at understanding austenite deformation response during fatigue loading. Independent alloying additions of 2.5 wt pct Si and Al were made to a base steel composition of 15 Ni - 11 Cr - 1 Mn - 0.03 C (wt pct). Weak beam dark field transmission electron microscopy (TEM) imaging of dissociated dislocations was implemented to experimentally determine the influences of Si and Al on austenite stacking fault energy (SFE). The 2.5 wt pct Si alloying addition decreased the SFE by 6.4 mJ/m2, while the 2.5 wt pct Al alloying increased the SFE by 12 mJ/m2. Fully reversed, total strain controlled, low cycle fatigue (LCF) tests indicated that all four alloys underwent primary cyclic hardening and stabilization. Secondary cyclic strain hardening was correlated to BCC martensite formation using Feritscope magnetic fraction measurements of LCF specimens; the formation of 1 pct martensite led to 7 MPa of secondary hardening. TEM showed that martensite predominantly formed as parallel, irregular bands through strain induced nucleation on austenite shear bands. The austenite shear bands consisted of austenite {111} planes with concentrated dislocations, stacking faults, and/or HCP epsilon-martensite. Aluminum alloying promoted martensite formation during LCF, while Si suppressed martensite. Therefore, the strain induced nucleation process was not suppressed by the increased SFE associated with Al alloying. Tensile testing indicated that Si alloying promoted deformation twinning by lowering the SFE. Similarly to LCF loading, Al promoted

  7. Expanding the three Rs to meet new challenges in humane animal experimentation.

    PubMed

    Schuppli, Catherine A; Fraser, David; McDonald, Michael

    2004-11-01

    The Three Rs are the main principles used by Animal Ethics Committees in the governance of animal experimentation, but they appear not to cover some ethical issues that arise today. These include: a) claims that certain species should be exempted on principle from harmful research; b) increased emphasis on enhancing quality of life of research animals; c) research involving genetically modified (GM) animals; and d) animals bred as models of disease. In some cases, the Three Rs can be extended to cover these developments. The burgeoning use of GM animals in science calls for new forms of reduction through improved genetic modification technology, plus continued attention to alternative approaches and cost-benefit analyses that include the large numbers of animals involved indirectly. The adoption of more expanded definitions of refinement that go beyond minimising distress will capture concerns for enhancing the quality of life of animals through improved husbandry and handling. Targeting refinement to the unpredictable effects of gene modification may be difficult; in these cases, careful attention to monitoring and endpoints are the obvious options. Refinement can also include sharing data about the welfare impacts of gene modifications, and modelling earlier stages of disease, in order to reduce the potential suffering caused to disease models. Other issues may require a move beyond the Three Rs. Certain levels of harm, or numbers and use of certain species, may be unacceptable, regardless of potential benefits. This can be addressed by supplementing the utilitarian basis of the Three Rs with principles based on deontological and relational ethics. The Three Rs remain very useful, but they require thoughtful interpretation and expansion in order for Animal Ethics Committees to address the full range of issues in animal-based research. PMID:15656775

  8. Expanded clinical and experimental use of SOX11 - using a monoclonal antibody

    PubMed Central

    2012-01-01

    Background The transcription factor SOX11 is of diagnostic and prognostic importance in mantle cell lymphoma (MCL) and epithelial ovarian cancer (EOC), respectively. Thus, there is an unmet clinical and experimental need for SOX11-targeting assays with low background, high specificity and robust performance in multiple applications, including immunohistochemistry (IHC-P) and flow cytometry, which until now has been lacking. Methods We have developed SOX11-C1, a monoclonal mouse antibody targeting SOX11, and successfully evaluated its performance in western blots (WB), IHC-P, fluorescence microscopy and flow cytometry. Results We confirm the importance of SOX11 as a diagnostic antigen in MCL as 100% of tissue micro array (TMA) cases show bright nuclear staining, using the SOX11-C1 antibody in IHC-P. We also show that previous reports of weak SOX11 immunostaining in a fraction of hairy cell leukemias (HCL) are not confirmed using SOX11-C1, which is consistent with the lack of transcription. Thus, high sensitivity and improved specificity are demonstrated using the monoclonal SOX11-C1 antibody. Furthermore, we show for the first time that flow cytometry can be used to separate SOX11 positive and negative cell lines and primary tumors. Of note, SOX11-C1 shows no nonspecific binding to primary B or T cells in blood and thus, can be used for analysis of B and T cell lymphomas from complex clinical samples. Dilution experiments showed that low frequencies of malignant cells (~1%) are detectable above background using SOX11 as a discriminant antigen in flow cytometry. Conclusions The novel monoclonal SOX11-specific antibody offers high sensitivity and improved specificity in IHC-P based detection of MCL and its expanded use in flow cytometry analysis of blood and tissue samples may allow a convenient approach to early diagnosis and follow-up of MCL patients. PMID:22738398

  9. Correlation Between Experimental and Calculated Phase Fractions in Aged 20Cr32Ni1Nb Austenitic Stainless Steels Containing Nitrogen

    NASA Astrophysics Data System (ADS)

    Dewar, Matthew P.; Gerlich, Adrian P.

    2013-02-01

    A centrifugally cast 20Cr32Ni1Nb stainless steel manifold in service for 16 years at temperatures ranging from 1073 K to 1123 K (800 °C to 850 °C) has been characterized using scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), auger electron spectroscopy (AES), and X-ray diffraction (XRD). Nb(C,N), M23C6, and the silicide G-phases (Ni16Nb6Si7) were all identified in a conventional SEM, while the nitride Z-phase (CrNbN) was observed only in AES. M23C6, Z-phase and G-phase were characterized in XRD. Thermodynamic equilibrium calculations using ThermoCalc Version S, with the TCS Steel and Fe-alloys Database (TCFE6), and Thermotech Ni-based Superalloys Database (TTNI8) were validated by comparing experimental phase fraction results obtained from both EPMA and AES. A computational study looking at variations in the chemical composition of the alloy, and how they affect phase equilibria, was investigated. Increasing the nitrogen concentration is shown to decrease G-phase formation, where it is replaced by other intermetallic phases such as Z-phase and π-phase that do not experience liquation during pre-weld annealing treatments. Suppressing G-phase formation was ultimately determined to be a function of minimizing silicon content, and understabilizing the Nb/(C + 6/7N) ratio.

  10. The chick embryo as an expanding experimental model for cancer and cardiovascular research

    PubMed Central

    Kain, Kristin H.; Miller, James W.I.; Jones-Paris, Celestial R.; Thomason, Rebecca T.; Lewis, John D.; Bader, David M.; Barnett, Joey V.; Zijlstra, Andries

    2014-01-01

    A long and productive history in biomedical research defines the chick as a model for human biology. Fundamental discoveries, including the description of directional circulation propelled by the heart and the link between oncogenes and the formation of cancer, indicate its utility in cardiac biology and cancer. Despite the more recent arrival of several vertebrate and invertebrate animal models during the last century, the chick embryo remains a commonly used model for vertebrate biology and provides a tractable biological template. With new molecular and genetic tools applied to the avian genome the chick embryo is accelerating the discovery of normal development and elusive disease processes. Moreover, progress in imaging and chick culture technologies is advancing real-time visualization of dynamic biological events, such as tissue morphogenesis, angiogenesis and cancer metastasis. A rich background of information, coupled with new technologies and relative ease of maintenance suggest an expanding utility for the chick embryo in cardiac biology and cancer research. PMID:24357262

  11. Expandable device type III for easy and reliable approximation of dissection layers in sutureless aortic anastomosis. Ex vivo experimental study.

    PubMed

    Nazari, Stefano

    2010-02-01

    In past years, we developed expandable devices (type I and II) for sutureless aortic anastomosis. We have now further modified the device (type III) incorporating a second expandable ring, external to the main one, which can be operated contrariwise in such a way that the aortic wall (i.e. the dissection layers) is compressed between the two expandable rings, providing full control on both the layers compression pressure and the anastomosis final diameter. The device was evaluated in ex vivo experimental models of swine aortic arch fresh samples; air-tight sealing at increasing endovascular pressures was also evaluated and compared with sealing achieved by standard suturing. Ex vivo data suggest that the present version of the device can be used easily and quickly also in elliptical, asymmetric 'oblique' anastomosis as when concavity arch is involved. Perfect air-tight sealing of the anastomosis was verified at endovascular pressures up to 150 mmHg, while standard suture cannot withstand even minimal endovascular air pressure. Compared to the previous versions, the present device is less bulky and softer, can be used also for concavity arch resection and provides full and standardizable control on dissection layers stable and sealed approximation. PMID:19933306

  12. Children's Experimental Workshop: Expanding the Park Experience to Children with Special Needs.

    ERIC Educational Resources Information Center

    Ross, Wendy, Ed.; And Others

    The handbook was designed to assist those interested in developing accessible programs for the handicapped in a variety of settings - parks, recreational areas, community centers, and other cultural and educational facilities - by providing information on how the Children's Experimental Workshop (CEW) was created, implemented, and evaluated. The…

  13. Differences in Endothelial Injury After Balloon Angioplasty, Insertion of Balloon-Expanded Stents or Release of Self-Expanding Stents: An Electron Microscopic Experimental Study

    SciTech Connect

    Harnek, Jan; Zoucas, Evita; Carlemalm, Erik; Cwikiel, Wojciech

    1999-01-15

    Purpose: To evaluate which of six different commonly available stents inserted into an artery without percutaneous transluminal angioplasty (PTA) causes the least endothelial damage. To compare the degree of endothelial injury after insertion of such a stent with injury caused by PTA. Methods: Twelve healthy pigs were used in the experiments. In the first part of the study six different types of stents were inserted into the common iliac arteries. In the second part of the study self-expanding stents with large spaces between the wires were used. PTA was performed in the contralateral iliac artery. The pigs were killed immediately after the procedure and resected specimens examined after fixation, using scanning electron microscopy. Results: All procedures but two were accomplished successfully. More endothelium was preserved after insertion of self-expanding stents with large spaces between the wires, compared with stents with small spaces and balloon-expanded stents. After insertion of self-expanding stents with large spaces, 50.1% {+-} 16.4% of the endothelium remained intact, compared with only 5.6% {+-} 7.7% after PTA. The difference was statistically significant (p < 0.001). Conclusion: Self-expanding stents with large spaces between the wires, inserted without PTA, cause less damage to the endothelium than other stents and significantly less damage than PTA.

  14. Gas-Expanded Liquids: Synergism of Experimental and Computational Determinations of Local Structure

    SciTech Connect

    Charles A. Eckert; Charles L. Liotta; Rigoberto Hernandez

    2007-06-26

    This project focuses on the characterization of a new class of solvent systems called gas-expanded liquids (GXLs), targeted for green-chemistry processing. The collaboration has adopted a synergistic approach combining elements of molecular dynamics (MD) simulation and spectroscopic experiments to explore the local solvent behavior that could not be studied by simulation or experiment alone. The major accomplishments from this project are: • Applied MD simulations to explore the non-uniform structure of CO2/methanol and CO2/acetone GXLs and studied their dynamic behavior with self-diffusion coefficients and correlation functions • Studied local solvent structure and solvation behavior with a combination of spectroscopy and MD simulations • Measured transport properties of heterocyclic solutes in GXLs through Taylor-Aris diffusion techniques and compared these findings to those of MD simulations • Probed local polarity and specific solute-solvent interactions with Diels-Alder and SN2 reaction studies The broader scientific impact resulting from the research activities of this contract have been recognized by two recent awards: the Presidential Green Chemistry Award (Eckert & Liotta) and a fellowship in the American Association for the Advancement of Science (Hernandez). In addition to the technical aspects of this contract, the investigators have been engaged in a number of programs extending the broader impacts of this project. The project has directly supported the development of two postdoctoral researcher, four graduate students, and five undergraduate students. Several of the undergraduate students were co-funded by a Georgia Tech program, the Presidential Undergraduate Research Award. The other student, an African-American female graduated from Georgia Tech in December 2005, and was co-funded through an NSF Research and Education for Undergraduates (REU) award.

  15. Measurement and control system for cryogenic helium gas bearing turbo-expander experimental platform based on Siemens PLC S7-300

    SciTech Connect

    Li, J.; Xiong, L. Y.; Peng, N.; Dong, B.; Liu, L. Q.; Wang, P.

    2014-01-29

    An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemens S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.

  16. Measurement and control system for cryogenic helium gas bearing turbo-expander experimental platform based on Siemens PLC S7-300

    NASA Astrophysics Data System (ADS)

    Li, J.; Xiong, L. Y.; Peng, N.; Dong, B.; Wang, P.; Liu, L. Q.

    2014-01-01

    An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemens S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.

  17. CD1dhiCD5+ B cells Expanded by GM-CSF in Vivo Suppress Experimental Autoimmune Myasthenia Gravis

    PubMed Central

    Sheng, Jian Rong; Quan, Songhua; Soliven, Betty

    2014-01-01

    IL-10-competent subset within CD1dhiCD5+ B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. Whether B10 cells can prevent or suppress the development of experimental autoimmune myasthenia gravis (EAMG) has not been studied. In this study, we investigated whether low dose granulocyte macrophage-colony stimulating factor (GM-CSF), which suppresses EAMG, can expand B10 cells in vivo, and whether adoptive transfer of CD1dhiCD5+ B cells would prevent or suppress EAMG. We found that treatment of EAMG mice with low-dose GM-CSF increased the proportion of CD1dhiCD5+ B cells and B10 cells. In vitro co-culture studies revealed that CD1dhiCD5+ B cells altered T cell cytokine profile but did not directly inhibit T cell proliferation. On the other hand, CD1dhiCD5+ B cells inhibited B cell proliferation and its autoantibody production in an IL-10-dependent manner. Adoptive transfer of CD1dhiCD5+ B cells to mice could prevent disease as well as suppress EAMG after disease onset. This was associated with downregulation of mature dendritic cell markers and expansion of regulatory T cells resulting in the suppression of acetylcholine receptor (AChR)-specific T cell and B cell responses. Thus, our data have provided significant insights into the mechanisms underlying the tolerogenic effects of B10 cells in EAMG. These observations suggest that in vivo or in vitro expansion of CD1dhiCD5+ B cells or B10 cells may represent an effective strategy in the treatment of human myasthenia gravis. PMID:25135828

  18. Going "social" to access experimental and potentially life-saving treatment: an assessment of the policy and online patient advocacy environment for expanded access.

    PubMed

    Mackey, Tim K; Schoenfeld, Virginia J

    2016-01-01

    Social media is fundamentally altering how we access health information and make decisions about medical treatment, including for terminally ill patients. This specifically includes the growing phenomenon of patients who use online petitions and social media campaigns in an attempt to gain access to experimental drugs through expanded access pathways. Importantly, controversy surrounding expanded access and "compassionate use" involves several disparate stakeholders, including patients, manufacturers, policymakers, and regulatory agencies-all with competing interests and priorities, leading to confusion, frustration, and ultimately advocacy. In order to explore this issue in detail, this correspondence article first conducts a literature review to describe how the expanded access policy and regulatory environment in the United States has evolved over time and how it currently impacts access to experimental drugs. We then conducted structured web searches to identify patient use of online petitions and social media campaigns aimed at compelling access to experimental drugs. This was carried out in order to characterize the types of communication strategies utilized, the diseases and drugs subject to expanded access petitions, and the prevalent themes associated with this form of "digital" patient advocacy. We find that patients and their families experience mixed results, but still gravitate towards the use of online campaigns out of desperation, lack of reliable information about treatment access options, and in direct response to limitations of the current fragmented structure of expanded access regulation and policy currently in place. In response, we discuss potential policy reforms to improve expanded access processes, including advocating greater transparency for expanded access programs, exploring use of targeted economic incentives for manufacturers, and developing systems to facilitate patient information about existing treatment options. This includes

  19. Precipitation hardening austenitic superalloys

    DOEpatents

    Korenko, Michael K.

    1985-01-01

    Precipitation hardening, austenitic type superalloys are described. These alloys contain 0.5 to 1.5 weight percent silicon in combination with about 0.05 to 0.5 weight percent of a post irradiation ductility enhancing agent selected from the group of hafnium, yttrium, lanthanum and scandium, alone or in combination with each other. In addition, when hafnium or yttrium are selected, reductions in irradiation induced swelling have been noted.

  20. Austenite Grain Growth and the Surface Quality of Continuously Cast Steel

    NASA Astrophysics Data System (ADS)

    Dippenaar, Rian; Bernhard, Christian; Schider, Siegfried; Wieser, Gerhard

    2014-04-01

    Austenite grain growth does not only play an important role in determining the mechanical properties of steel, but certain surface defects encountered in the continuous casting industry have also been attributed to the formation of large austenite grains. Earlier research has seen innovative experimentation, the development of metallographic techniques to determine austenite grain size and the building of mathematical models to simulate the conditions pertaining to austenite grain growth during the continuous casting of steel. Oscillation marks and depressions in the meniscus region of the continuously casting mold lead to retarded cooling of the strand surface, which in turn results in the formation of coarse austenite grains, but little is known about the mechanism and rate of formation of these large austenite grains. Relevant earlier research will be briefly reviewed to put into context our recent in situ observations of the delta-ferrite to austenite phase transition. We have confirmed earlier evidence that very large delta-ferrite grains are formed very quickly in the single-phase region and that these large delta-ferrite grains are transformed to large austenite grains at low cooling rates. At the higher cooling rates relevant to the early stages of the solidification of steel in a continuously cast mold, delta-ferrite transforms to austenite by an apparently massive type of transformation mechanism. Large austenite grains then form very quickly from this massive type of microstructure and on further cooling, austenite transforms to thin ferrite allotriomorphs on austenite grain boundaries, followed by Widmanstätten plate growth, with almost no regard to the cooling rate. This observation is important because it is now well established that the presence of a thin ferrite film on austenite grain boundaries is the main cause of reduction in hot ductility. Moreover, this reduction in ductility is exacerbated by the presence of large austenite grains.

  1. Effect of Intercritical Annealing Temperature on Martensite and Bainite Start Temperatures After Partial Austenitization

    NASA Astrophysics Data System (ADS)

    Erişir, Ersoy; Bilir, Oğuz Gürkan

    2016-01-01

    The microstructure evolution of dual-phase steel during partial austenitization was investigated for different intercritical annealing temperatures between Ac1 and Ac3 temperatures. Partial austenitization may result in different austenite volume fraction, chemical composition, and grain size of austenite depending on the intercritical annealing temperature. This study examines the effect of intercritical annealing temperature on M s and B s temperatures for dual-phase steels. M s and B s were measured experimentally for different intercritical annealing temperatures by using dilatometry and were compared with calculated values from empirical formulas. The grain sizes of the final microstructures were also quantitatively analyzed. It was shown that M s depends on the intercritical annealing temperature and austenite grain size. It was concluded that this double effect is attributed to the intercritical annealing temperature, which is responsible for both austenite chemical composition and grain size.

  2. A Feasibility Study on Low Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    NASA Astrophysics Data System (ADS)

    Haruman, Esa; Sun, Yong; Triwiyanto, Askar; Manurung, Yupiter H. P.; Adesta, Erry Y.

    2011-04-01

    In this work, the feasibility of using an industrial fluidized bed furnace to perform low temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitridingcarburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen and carbon containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  3. Modeling of Austenite Grain Growth During Austenitization in a Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Dong, Dingqian; Chen, Fei; Cui, Zhenshan

    2016-01-01

    The main purpose of this work is to develop a pragmatic model to predict austenite grain growth in a nuclear reactor pressure vessel steel. Austenite grain growth kinetics has been investigated under different heating conditions, involving heating temperature, holding time, as well as heating rate. Based on the experimental results, the mathematical model was established by regression analysis. The model predictions present a good agreement with the experimental data. Meanwhile, grain boundary precipitates and pinning effects on grain growth were studied by transmission electron microscopy. It is found that with the increasing of the temperature, the second-phase particles tend to be dissolved and the pinning effects become smaller, which results in a rapid growth of certain large grains with favorable orientation. The results from this study provide the basis for the establishment of large-sized ingot heating specification for SA508-III steel.

  4. Experimental Verification of a Critical Condition for the Formation of As-Cast Coarse Columnar Austenite Grain Structure in a Hyperperitectic Carbon Steel

    NASA Astrophysics Data System (ADS)

    Ohno, Munekazu; Maruyama, Masato; Matsuura, Kiyotaka

    2015-11-01

    Experimental verification of a critical condition for the formation of coarse columnar γ grain (CCG) structure in as-cast hyperperitectic carbon steels, which was put forward based on theories of grain growth and phase-field simulations in early studies, is carried out by means of a Bridgman-type directional solidification experiment. The occurrence of the discontinuous and continuous grain growth processes and the resulting formation of CCG and equiaxed γ grain structures, respectively, are demonstrated. Importantly, these changes of the as-cast microstructures and the grain growth modes are in excellent agreement with the previously proposed critical condition of the CCG formation.

  5. Boiling liquid expanding vapor explosion: experimental research in the evolution of the two-phase flow and over-pressure.

    PubMed

    Chen, Sining; Sun, Jinhua; Wan, Wei

    2008-08-15

    In a boiling liquid expanding vapor explosion (BLEVE), the superheating and boiling of the liquefied gas inside the vessel as it fails is important information necessary to understand the mechanism of this type of disaster. In this paper, a small-scale experiment was developed to investigate the possible processes that could lead to a BLEVE. Water was used as the test fluid. High-speed video was utilized to observe the two-phase flow swelling which occurred immediately following the partial loss of containment through a simulated crack. The velocity of the two-phase swelling was measured along with pressure and temperature. It was observed that initially a mist-like two-phase layer was rapidly formed on the liquid surface (~3-4 ms) after the vessel opened. The superheated liquid rapidly boiled and this accelerated upwards the two-phase layer, the whole liquid boiled after about 17 ms form opening. It was supposed that the swelling of the two-phase layer was the possible reason for the first over-pressure measured at the top and bottom of the vessel. From 38 ms to 168 ms, the boiling of the superheated liquid weakened. And from 170 ms, the original drop/mist-like two-phase flow turned into a churn-turbulent bubbly two-phase flow, rose quickly in the field of the camera and eventually impacted the vessel top wall. The force of its impact and "cavitation" and "choke" following with the two-phase ejection were maybe main reasons for the second obvious pressure increasing. PMID:18261848

  6. Austenite to ferrite transformation kinetics during continuous cooling

    SciTech Connect

    Militzer, M.; Pandi, R.; Hawbolt, E.B.

    1994-12-31

    The austenite decomposition has been investigated in a hypo-eutectoid plain carbon steel under continuous cooling conditions using a dilatometer and a Gleeble 1500 thermomechanical simulator. The experimental results were used to verify model calculations based on a fundamental approach for the dilute ternary systems Fe-C-Mn. The austenite to ferrite transformation start temperature can be predicted from a nucleation model for slow cooling rates. The formation of ferrite nuclei takes place with equilibrium composition on austenite grain boundaries. The nuclei are assumed to have a pill box shape in accordance with minimal interfacial energy. For higher cooling rates, early growth has to be taken into account to describe the transformation start. In contrast to nucleation, growth of the ferrite is characterized by paraequilibrium; i.e. only carbon can redistribute, whereas the diffusion of Mn is too slow to allow full equilibrium in the ternary system. However, Mn segregation to the moving ferrite-austenite interface has to be considered. The latter, in turn, exerts a solute drag effect on the boundary movement. Thus, growth kinetics is controlled by carbon diffusion in austenite modified by interfacial segregation of Mn. Employing a phenomenological segregation model, good agreement has been achieved with the measurements.

  7. Stimulation of interferons and endorphins/enkephalins by electro-aerosol inhalation? An experimental approach for testing an expanded hypothesis

    NASA Astrophysics Data System (ADS)

    Wehner, A. P.

    1984-03-01

    The biological effects of endorphins/enkephalins and of interferons closely resemble those attributed to air ions and electro-aerosols. Air ions/electro-aerosols have been reported to affect brain functions and feelings of “well-being”; to have sedative and analgesic effects; to be therapeutically effective in certain viral (e.g., upper respiratory) infections; and to have tumor-attenuating effects. It is, therefore, conceivable that endorphins/enkephalins and interferons might be the mediators of these air ion/electro-aerosol effects. An experimental approach for testing this hypothesis is described. It calls for mice to be challenged with a suitable agent and to be exposed under appropriate conditions to a negatively charged aerosol of physiological saline 6 hours/day for up to 3 weeks; for the serial sacrifice of subgroups of these mice; for collecting blood and brains of the sacrificed animals; for the bioassay of the sera for interferon; and for radioimmunoassays of brains for endorphins/enkephalins. Special considerations, necessitated by the nature of the experiment, are discussed.

  8. Accurate modelling of anisotropic effects in austenitic stainless steel welds

    NASA Astrophysics Data System (ADS)

    Nowers, O. D.; Duxbury, D. J.; Drinkwater, B. W.

    2014-02-01

    The ultrasonic inspection of austenitic steel welds is challenging due to the formation of highly anisotropic and heterogeneous structures post-welding. This is due to the intrinsic crystallographic structure of austenitic steel, driving the formation of dendritic grain structures on cooling. The anisotropy is manifested as both a `steering' of the ultrasonic beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the quantitative effects and relative impacts of these phenomena are not well-understood. A semi-analytical simulation framework has been developed to allow the study of anisotropic effects in austenitic stainless steel welds. Frequency-dependent scatterers are allocated to a weld-region to approximate the coarse grain-structures observed within austenitic welds and imaged using a simulated array. The simulated A-scans are compared against an equivalent experimental setup demonstrating excellent agreement of the Signal to Noise (S/N) ratio. Comparison of images of the simulated and experimental data generated using the Total Focusing Method (TFM) indicate a prominent layered effect in the simulated data. A superior grain allocation routine is required to improve upon this.

  9. Accurate modelling of anisotropic effects in austenitic stainless steel welds

    SciTech Connect

    Nowers, O. D.; Duxbury, D. J.; Drinkwater, B. W.

    2014-02-18

    The ultrasonic inspection of austenitic steel welds is challenging due to the formation of highly anisotropic and heterogeneous structures post-welding. This is due to the intrinsic crystallographic structure of austenitic steel, driving the formation of dendritic grain structures on cooling. The anisotropy is manifested as both a ‘steering’ of the ultrasonic beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the quantitative effects and relative impacts of these phenomena are not well-understood. A semi-analytical simulation framework has been developed to allow the study of anisotropic effects in austenitic stainless steel welds. Frequency-dependent scatterers are allocated to a weld-region to approximate the coarse grain-structures observed within austenitic welds and imaged using a simulated array. The simulated A-scans are compared against an equivalent experimental setup demonstrating excellent agreement of the Signal to Noise (S/N) ratio. Comparison of images of the simulated and experimental data generated using the Total Focusing Method (TFM) indicate a prominent layered effect in the simulated data. A superior grain allocation routine is required to improve upon this.

  10. Influence of carbon partitioning kinetics on final Austenite fraction during quenching and partitioning

    SciTech Connect

    Clarke, Amy J; Speer, John G; Matlock, David K; Rizzo, F C; Edmonds, David V; Santofimia, Maria J

    2009-01-01

    The quenching and partitioning (Q&P) process is a two-stage heat-treatment procedure proposed for producing steel microstructures that contain carbon-enriched retained austenite. In Q&P processing, austenite stabilization is accomplished by carbon partitioning from supersaturated martensite. A quench temperature selection methodology was developed to predict an optimum process quench temperature; extension of this methodology to include carbon partitioning kinetics is developed here. Final austenite fraction is less sensitive to quench temperature than previously predicted, in agreement with experimental results.

  11. Expanding Universe

    NASA Astrophysics Data System (ADS)

    Schrödinger, E.

    2011-02-01

    Preface; Part I. The de Sitter Universe: 1. Synthetic construction; 2. The reduced model: geodesics; 3. The elliptic interpretation; 4. The static frame; 5. The determination of parallaxes; 6. The Lemaître-Robertson frame; Part II. The Theory of Geodesics: 7. On null geodesics; i. Determination of the parameter for null lines in special cases; ii. Frequency shift; 8. Free particles and light rays in general expanding spaces, flat or hyperspherical; i. Flat spaces; ii. Spherical spaces; iii. The red shift for spherical spaces; Part III. Waves in General Riemannian Space-Time: 9. The nature of our approximation; 10. The Hamilton-Jacobi theory in a gravitational field; 11. Procuring approximate solutions of the Hamilton-Jacobi equation from wave theory; Part IV. Waves in an Expanding Universe: 12. General considerations; 13. Proper vibrations and wave parcels; Bibliography.

  12. Expanding Gravity

    NASA Astrophysics Data System (ADS)

    Aisenberg, Sol

    2005-04-01

    Newton's gravitational constant Gn and Laws of Gravity are based upon observations in our solar system. Mysteries appear when they are used far outside our solar system Apparently, Newton's gravitational constant can not be applied at large distances. Dark matter was needed to explain the observed flat rotational velocity curves of spiral galaxies (Rubin), and of groups of remote galaxies (Zwicky). Our expansion of Newton's gravitational constant Gn as a power series in distance r, is sufficient to explain these observations without using dark matter. This is different from the MOND theory of Milgrom involving acceleration. Also, our Expanded Gravitational Constant (EGC) can show the correct use of the red shift. In addition to the Doppler contribution, there are three other contributions and these depend only upon gravity. Thus, velocity observations only based on the red shift can not be used to support the concept of the expanding universe, the accelerating expansion, or dark energy. Our expanded gravity constant can predict and explain Olbers' paradox (dark sky), and the temperature of the CMB (cosmic microwave background). Thus, CMB may not support the big bang and inflation.

  13. An approach to prior austenite reconstruction

    SciTech Connect

    Abbasi, Majid; Nelson, Tracy W.; Sorensen, Carl D.; Wei Lingyun

    2012-04-15

    One area of interest in Friction Stir Welding (FSW) of steels is to understand microstructural evolution during the process. Most of the deformation occurs in the austenite temperature range. Quantitative microstructural measurements of prior austenite microstructure are needed in order to understand evolution of the microstructure. Considering the fact that room temperature microstructure in ferritic steels contains very little to no retained austenite, prior austenite microstructure needs to be recovered from the room temperature ferrite. In this paper, an approach based on Electron Backscattered Diffraction (EBSD) is introduced to detect Bain zones. Bain zone detection is used to reconstruct prior austenite grain structure. Additionally, a separate approach based on phase transformation orientation relationships is introduced in order to recover prior austenite orientation. - Highlights: Black-Right-Pointing-Pointer This approach provides a tool to reconstruct large-scale austenite microstructures. Black-Right-Pointing-Pointer It recovers prior austenite orientation without relying on retained austenite. Black-Right-Pointing-Pointer It utilizes EBSD data from the room temperature microstructure. Black-Right-Pointing-Pointer Higher number of active variants leads to more accurate reconstructions. Black-Right-Pointing-Pointer At least two variants are needed in order to recover prior austenite orientation.

  14. An integrated computer model with applications for austenite-to-ferrite transformation during hot deformation of Nb-microalloyed steels

    NASA Astrophysics Data System (ADS)

    Majta, Janusz; Pietrzyk, Maciej; Zurek, Anna K.; Cola, Mark; Hochanadel, Pat

    2002-05-01

    This work presents an austenite decomposition model, based on the thermodynamics of the system and diffusion-controlled nucleation theory, to predict the evolution of microstructure during hot working of niobium-microalloyed steels. The differences in microstructural development of hotdeformed microalloyed steel in the single-phase austenite and two-phase (austenite + ferrite) regions have been effectively described using an integrated computer modeling process. The complete model presented here takes into account the kinetics of recrystallization, recrystallized austenite grain size, precipitation, phase transformation, and the resulting ferrite structure. After considering existing austenite decomposition models, we decided that the method adopted in the present work relies on isothermal transformation kinetics and the principle-of-additivity rule. The thermomechanical part of the modeling process was carried out using the finite-element method. Experimental results at different temperatures, strain rates, and strain levels were obtained using a Gleeble thermomechanical simulator. A comparison of results of the model with experiments shows good agreement.

  15. Austenite Formation in a Cold-Rolled Semi-austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Celada Casero, Carola; San Martín, David

    2014-04-01

    The progress of the martensite ( α') to austenite ( γ) phase transformation has been thoroughly investigated at different temperatures during the continuous heating of a cold-rolled precipitation hardening metastable stainless steel at a heating rate of 0.1 K/s. Heat-treated samples have been characterized using different experimental complementary techniques: high-resolution dilatometry, magnetization, and thermoelectric power (TEP) measurements, micro-hardness-Vickers testing, optical/scanning electron microscopy, and tensile testing. The two-step transformation behavior observed is thought to be related to the presence of a pronounced chemical banding in the initial microstructure. This banding has been characterized using electron probe microanalysis. Unexpectedly, dilatometry measurements seem unable to locate the end of the transformation accurately, as this technique does not detect the second step of this transformation (last 20 pct of it). It is shown that once the starting ( A S) and finishing ( A F) transformation temperatures have been estimated by magnetization measurements, the evolution of the volume fractions of austenite and martensite can be evaluated by TEP or micro-hardness measurement quite reliably as compared to magnetization measurements. The mechanical response of the material after being heated to temperatures close to A S, A F, and ( A F - A S)/2 is also discussed.

  16. Expanded Yegua

    SciTech Connect

    Hart, R.E.; Grayson, S.; Benes, J.

    1988-01-01

    The upper Eocene Yegua Formation expands dramatically across a regional flexure generally 12-15 km wide. During each of several postulated Yegua sea level drops, this flexure became a focal point for deltaic deposition of good to excellent reservoir-quality sands. From the western edge of the Houston salt dome basin to the San Marcos arch, this trend has yielded, since 1982, at least seven noteworthy discoveries: Toro Grande and Lost Bridge fields in Jackson County, and Black Owl, Shanghai, Shanghai East, El Campo, and Phase Four fields in Wharton County, Texas. El Campo field in Wharton County, Texas, was discovered in December 1985 by Ladd Petroleum Corporation with the drilling of the Ladd Petroleum 1 Popp well. Mud logs acquired while drilling indicated that a very sandy reservoir, with encouraging quantities of natural gas and condensate had been encountered. Subsequent open-hold logging generated more questions than answers about the prospective sand section. Additional open hole logs (EPT/ML,SHDT) were run to identify what turned out to be an extremely laminated sand-shale sequence over 400 ft thick. Subsequent development drilling and the acquisition of a 120 ft whole core provided valuable data in analyzing this prolific, geopressured natural gas and condensate Yegua reservoir. Whole-core data, open-hole logs, and computer logs were integrated to develop petro-physical evaluation procedures and to determine the environment of deposition. El Campo field is believed to represent an extremely thick, delta front slope to distal delta front facies.

  17. An alternative to the crystallographic reconstruction of austenite in steels

    SciTech Connect

    Bernier, Nicolas; Bracke, Lieven; Malet, Loïc; Godet, Stéphane

    2014-03-01

    An alternative crystallographic austenite reconstruction programme written in Matlab is developed by combining the best features of the existing models: the orientation relationship refinement, the local pixel-by-pixel analysis and the nuclei identification and spreading strategy. This programme can be directly applied to experimental electron backscatter diffraction mappings. Its applicability is demonstrated on both quenching and partitioning and as-quenched lath-martensite steels. - Highlights: • An alternative crystallographic austenite reconstruction program is developed. • The method combines a local analysis and a nuclei identification/spreading strategy. • The validity of the calculated orientation relationship is verified on a Q and P steel. • The accuracy of the reconstructed microtexture is investigated on a martensite steel.

  18. High Mn austenitic stainless steel

    DOEpatents

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  19. An Investigation on Low-Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    NASA Astrophysics Data System (ADS)

    Haruman, E.; Sun, Y.; Triwiyanto, A.; Manurung, Y. H. P.; Adesta, E. Y.

    2012-03-01

    In this study, the feasibility of using an industrial fluidized bed furnace to perform low-temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low-temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitriding-carburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low-temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen- and carbon-containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  20. Prediction and Validation of the Austenite Phase Fraction upon Intercritical Annealing of Medium Mn Steels

    NASA Astrophysics Data System (ADS)

    Farahani, Hussein; Xu, Wei; van der Zwaag, Sybrand

    2015-11-01

    In this research, the effects of Mn and Si concentration and that of the isothermal intercritical holding temperature on the austenite-to-ferrite ( γ → α) and the martensite-to-austenite ( α' → γ) phase transformations are studied for a series of Fe-C-Mn-Si steels with up to 7 wt pct Mn. The model is based on the local equilibrium (LE) concept. The model predictions are compared to experimental observations. It is found that the austenite volume fraction at the end of intercritical annealing depends significantly on the initial microstructure. For Mn concentrations between 3 and 7 wt pct, the LE model is qualitatively correct. However, at higher Mn levels the discrepancy between the predicted austenite fractions and the experimental values increases, in particular for the α' → γ transformation. Intragrain nucleation is held responsible for the higher austenite fractions observed experimentally. Silicon is found have a much smaller effect on the kinetics of the intercritical annealing than Mn.

  1. The chemical composition of precipitated austenite in 9Ni steel

    NASA Astrophysics Data System (ADS)

    Fultz, B.; Kim, J. I.; Kim, Y. H.; Morris, J. W.

    1986-06-01

    Analytical scanning transmission electron microscopy and a novel Mössbauer spectrometry technique were used to measure the chemical composition of austenite particles which precipitate during intercritical tempering of 9Ni steel. Both techniques showed an enrichment of Ni, Mn, Cr, and Si in the austenite. A straightforward analysis involving data on both austenite composition and austenite formation kinetics suggests that the growth of austenite particles is controlled by a 3-dimensional diffusion process. The segregation of solutes to the austenite accounts for much of its stability against the martensitic transformation at low temperatures. Composition inhomogeneities develop in austenite particles after long temperings; the central regions of the particles are lean in solutes and are first to undergo the martensitic transformation. However, changes in solute concentrations of the austenite during long temperings seem too small to account for the large changes in austenite stability. It appears that some of the stability of precipitated austenite must be microstructural in origin.

  2. Microstructural effects on the stability of retained austenite in Transformation Induced Plasticity steels

    NASA Astrophysics Data System (ADS)

    Mark, Alison Fiona Lockie

    Transformation Induced Plasticity (TRIP) steels have both high strength and high ductility. Retained austenite in the microstructure, upon straining, transforms to martensite and this absorbs energy and improves the work hardening of the steel, giving improved elongation. The transformation can be either stress-assisted or strain-induced and the initiation and the mechanism depend on the composition of, the size and shape of, and the phases surrounding, the austenite grains. It is important to understand the relationship between these variables and the properties of the TRIP steel. The aim of this work was to determine how the microstructure of the TRIP steel affects the transformation. Four experimental microstructures were developed, containing austenite grains with different sizes, shapes, and surrounding phases. The Fine microstructure had thin elongated austenite laths between fine bainitic ferrite laths, the Coarse microstructure had elongated austenite grains between coarser bainitic ferrite laths, the Equiaxed microstructure had equiaxed austenite grains in a matrix of equiaxed ferrite and the Acicular microstructure had elongated austenite grains surrounded by recovered ferrite laths. Tensile tests were performed and detailed characterization, using neutron diffraction, was done of samples with the four microstructures. The variation in the amount of austenite during deformation was measured. The tensile tests revealed that the microstructures had different mechanical properties and different transformation behaviours. Fine had the lowest elongation and the highest strength. Acicular and Equiaxed had good elongation but lower strength. Coarse had intermediate strength and Equiaxed had sustained work hardening. The transformation in Fine and Coarse was minimal. Coarse had some slow, steady transformation, but Fine may have had none. The transformation in Equiaxed was larger. It started quickly and then slowed at higher strains. The austenite in Acicular

  3. Instabilities in stabilized austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Ayer, Raghavan; Klein, C. F.; Marzinsky, C. N.

    1992-09-01

    The effect of aging on the precipitation of grain boundary phases in three austenitic stainless steels (AISI 347, 347AP, and an experimental steel stabilized with hafnium) was investigated. Aging was performed both on bulk steels as well as on samples which were subjected to a thermal treatment to simulate the coarse grain region of the heat affected zone (HAZ) during welding. Aging of the bulk steels at 866 K for 8000 hours resulted in the precipitation of Cr23C6 carbides, σ, and Fe2Nb phases; the propensity for precipitation was least for the hafnium-stabilized steel. Weld simulation of the HAZ resulted in dissolution of the phases present in the as-received 347 and 347AP steels, leading to grain coarsening. Subsequent aging caused extensive grain boundary Cr23C6 carbides and inhomogeneous matrix precipitation. In addition, steel 347AP formed a precipitate free zone (PFZ) along the grain boundaries. The steel containing hafnium showed the best microstructural stability to aging and welding.

  4. Influence of kinetics of supercooled austenite decomposition on structure formation in sparingly-alloyed tool steel

    NASA Astrophysics Data System (ADS)

    Krylova, S. E.; Yakovleva, I. L.; Tereshchenko, N. A.; Priimak, E. Yu.; Kletsova, O. A.

    2013-10-01

    The decomposition of supercooled austenite in 70Kh3G2VTB steel under isothermal conditions and continuous cooling have been studied. The isothermal and continuous cooling tranformation curves of the decomposition of austenite in the experimental steel have been constructed. The effect of alloying elements on phase transformations in the steel under heating and cooling have been established. The features of the formation of a microstructure in the 70Kh3G2VTB steel after different regimes of heat treatment have been described. The optimal parameters of hardening heat treatment have been developed.

  5. Development of a System to Measure Austenite Grain Size of Plate Steel Using Laser-Based Ultrasonics

    SciTech Connect

    Lim, C. S.; Hong, S. T.; Yi, J. K.; Choi, S. G.; Oh, K. J.; Nagata, Y.; Yamada, H.; Hamada, N.

    2007-03-21

    A measurement system for austenite grain size of plate steel using laser-based ultrasonics has been developed. At first, the relationship between the ultrasonic attenuation coefficients using longitudinal waves and austenite grain size of samples was investigated in the laboratory experiments. According to the experimental results, the ultrasonic attenuation coefficients showed a good correlation with actual austenite grain sizes. For the next step, the system was installed in a hot rolling pilot plant of plate steel, and it was verified that the austenite grain size could be measured even in the environment of a hot rolling pilot plant. In the experiments, it was also confirmed that the fiber delivery system could deliver Nd:YAG laser beam of 810 mJ/pulse and ultrasonic signals could be obtained successfully.

  6. Static Recrystallized Grain Size of Coarse-Grained Austenite in an API-X70 Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Sha, Qingyun; Li, Guiyan; Li, Dahang

    2013-12-01

    The effects of initial grain size and strain on the static recrystallized grain size of coarse-grained austenite in an API-X70 steel microalloyed with Nb, V, and Ti were investigated using a Gleeble-3800 thermomechanical simulator. The results indicate that the static recrystallized grain size of coarse-grained austenite decreases with decreasing initial grain size and increasing applied strain. The addition of microalloying elements can lead to a smaller initial grain size for hot deformation due to the grain growth inhibition during reheating, resulting in decreasing of static recrystallized grain size. Based on the experimental data, an equation for the static recrystallized grain size was derived using the least square method. The grain sizes calculated using this equation fit well with the measured ones compared with the equations for fine-grained austenite and for coarse-grained austenite of Nb-V microalloyed steel.

  7. Progressive vascular remodeling and reduced neointimal formation after placement of a thermoelastic self-expanding nitinol stent in an experimental model.

    PubMed

    Carter, A J; Scott, D; Laird, J R; Bailey, L; Kovach, J A; Hoopes, T G; Pierce, K; Heath, K; Hess, K; Farb, A; Virmani, R

    1998-06-01

    Despite the improvements afforded by intracoronary stenting, restenosis remains a significant problem. The optimal physical properties of a stent have not been defined. We compared the vascular response to a thermoelastic self-expanding nitinol stent with a balloon-expandable tubular slotted stainless steel stent in normal porcine coronary arteries. Twenty-two stents (11 nitinol and 11 tubular slotted) were implanted in 11 miniature swine. The nitinol stents were deployed using the intrinsic thermal properties of the metal, without adjunctive balloon dilation. The tubular slotted stents were implanted using a noncompliant balloon with a mean inflation pressure of 12 atm. Intravascular ultrasound (IVUS) and histology were used to evaluate the vascular response to the stents. The mean cross-sectional area (CSA) of the nitinol stents (mm2) as measured by IVUS increased from 8.13 +/- 1.09 at implant to 9.10 +/- 0.99 after 28 days (P = 0.038), while the mean CSA of the tubular slotted stents was unchanged (7.84 +/- 1.39 mm2 vs. 7.10 +/- 1.07 mm2, P = 0.25). On histology at 3 days, the tubular slotted stents had more inflammatory cells adjacent to the stent wires (5.7 +/- 1.5 cells/0.1 mm2) than the nitinol (3.9 +/- 1.3 cells/0.1 mm2, P = 0.016). The tubular slotted also had increased thrombus thickness (83 +/- 85 microm) than the nitinol stents (43 +/- 25 microm, P = 0.0014). After 28 days, the vessel injury score was similar for the nitinol (0.6 +/- 0.3) and the tubular slotted (0.5 +/- 0.1, P = 0.73) designs. The mean neointimal area (0.97 +/- 0.46 mm2 vs. 1.96 +/- 0.34 mm2, P = 0.002) and percent area stenosis (15 +/- 7 vs. 33 +/- 7, P = 0.003) were significantly lower in the nitinol than in the tubular slotted stents, respectively. We conclude that a thermoelastic nitinol stent exerts a more favorable effect on vascular remodeling, with less neointimal formation, than a balloon-expandable design. Progressive intrinsic stent expansion after implant does not appear to

  8. A simplified leak-before-break evaluation procedure for austenitic and ferritic steel piping

    SciTech Connect

    Gamble, R.M.; Zahoor, A.; Ghassemi, B.

    1994-10-01

    A simplified procedure has been defined for computing the allowable circumferential throughwall crack length as a function of applied loads in piping. This procedure has been defined to enable leak-before-break (LBB) evaluations to be performed without complex and time consuming analyses. The development of the LBB evaluation procedure is similar to that now used in Section 11 of the ASME Code for evaluation of part-throughwall flaws found in piping. The LBB evaluation procedure was bench marked using experimental data obtained from pipes having circumferential throughwall flaws. Comparisons of the experimental and predicted load carrying capacities indicate that the method has a conservative bias, such that for at least 97% of the experiments the experimental load is equal to or greater than 90% of the predicted load. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austenitic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials.

  9. Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic-Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Huang, Qiuliang; De Cooman, Bruno C.; Biermann, Horst; Mola, Javad

    2016-05-01

    The influence of martensite fraction ( f α') on the stabilization of austenite was studied by quench interruption below M s temperature of an Fe-13Cr-0.31C (mass pct) stainless steel. The interval between the quench interruption temperature and the secondary martensite start temperature, denoted as θ, was used to quantify the extent of austenite stabilization. In experiments with and without a reheating step subsequent to quench interruption, the variation of θ with f α' showed a transition after transformation of almost half of the austenite. This trend was observed regardless of the solution annealing temperature which influenced the martensite start temperature. The transition in θ was ascribed to a change in the type of martensite nucleation sites from austenite grain and twin boundaries at low f α' to the faults near austenite-martensite (A-M) boundaries at high f α'. At low temperatures, the local carbon enrichment of such boundaries was responsible for the enhanced stabilization at high f α'. At high temperatures, relevant to the quenching and partitioning processing, on the other hand, the pronounced stabilization at high f α' was attributed to the uniform partitioning of the carbon stored at A-M boundaries into the austenite. Reduction in the fault density of austenite served as an auxiliary stabilization mechanism at high temperatures.

  10. Explosive Surface Hardening of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kovacs-Coskun, T.

    2016-04-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea mean indirect hardening setup. Austenitic stainless steels have high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  11. Expanded Quality Management Using Information Power (EQUIP): protocol for a quasi-experimental study to improve maternal and newborn health in Tanzania and Uganda

    PubMed Central

    2014-01-01

    Background Maternal and newborn mortality remain unacceptably high in sub-Saharan Africa. Tanzania and Uganda are committed to reduce maternal and newborn mortality, but progress has been limited and many essential interventions are unavailable in primary and referral facilities. Quality management has the potential to overcome low implementation levels by assisting teams of health workers and others finding local solutions to problems in delivering quality care and the underutilization of health services by the community. Existing evidence of the effect of quality management on health worker performance in these contexts has important limitations, and the feasibility of expanding quality management to the community level is unknown. We aim to assess quality management at the district, facility, and community levels, supported by information from high-quality, continuous surveys, and report effects of the quality management intervention on the utilization and quality of services in Tanzania and Uganda. Methods In Uganda and Tanzania, the Expanded Quality Management Using Information Power (EQUIP) intervention is implemented in one intervention district and evaluated using a plausibility design with one non-randomly selected comparison district. The quality management approach is based on the collaborative model for improvement, in which groups of quality improvement teams test new implementation strategies (change ideas) and periodically meet to share results and identify the best strategies. The teams use locally-generated community and health facility data to monitor improvements. In addition, data from continuous health facility and household surveys are used to guide prioritization and decision making by quality improvement teams as well as for evaluation of the intervention. These data include input, process, output, coverage, implementation practice, and client satisfaction indicators in both intervention and comparison districts. Thus, intervention districts

  12. Expanding the Start of the College Pipeline: Ninth-Grade Findings from an Experimental Study of the Impact of the Early College High School Model

    ERIC Educational Resources Information Center

    Edmunds, Julie A.; Bernstein, Lawrence; Unlu, Fatih; Glennie, Elizabeth; Willse, John; Smith, Arthur; Arshavsky, Nina

    2012-01-01

    Early college high schools are a new and rapidly spreading model that merges the high school and college experiences and that is designed to increase the number of students who graduate from high school and enroll and succeed in postsecondary education. This article presents results from a federally funded experimental study of the impact of the…

  13. Replacing the Transfusion of 1–2 Units of Blood with Plasma Expanders that Increase Oxygen Delivery Capacity: Evidence from Experimental Studies

    PubMed Central

    Tsai, Amy G.; Salazar Vázquez, Beatriz Y.; Cabrales, Pedro; Kistler, Erik B.; Tartakovsky, Daniel M.; Subramaniam, Shankar; Acharya, Seetharama A.; Intaglietta, Marcos

    2014-01-01

    At least a third of the blood supply in the world is used to transfuse 1–2 units of packed red blood cells for each intervention and most clinical trials of blood substitutes have been carried out at this level of oxygen carrying capacity (OCC) restoration. However, the increase of oxygenation achieved is marginal or none at all for molecular hemoglobin (Hb) products, due to their lingering vasoactivity. This has provided the impetus for the development of “oxygen therapeutics” using Hb-based molecules that have high oxygen affinity and target delivery of oxygen to anoxic areas. However it is still unclear how these oxygen carriers counteract or mitigate the functional effects of anemia due to obstruction, vasoconstriction and under-perfusion. Indeed, they are administered as a low dosage/low volume therapeutic Hb (subsequently further diluted in the circulatory pool) and hence induce extremely small OCC changes. Hyperviscous plasma expanders provide an alternative to oxygen therapeutics by increasing the oxygen delivery capacity (ODC); in anemia they induce supra-perfusion and increase tissue perfusion (flow) by as much as 50%. Polyethylene glycol conjugate albumin (PEG-Alb) accomplishes this by enhancing the shear thinning behavior of diluted blood, which increases microvascular endothelial shear stress, causes vasodilation and lowering peripheral vascular resistance thus facilitating cardiac function. Induction of supra-perfusion takes advantage of the fact that ODC is the product of OCC and blood flow and hence can be maintained by increasing either or both. Animal studies suggest that this approach may save a considerable fraction of the blood supply. It has an additional benefit of enhancing tissue clearance of toxic metabolites. PMID:25350267

  14. Modeling the austenite decomposition into ferrite and bainite

    NASA Astrophysics Data System (ADS)

    Fazeli, Fateh

    2005-12-01

    Novel advanced high-strength steels such as dual-phase (DP) and transformation induced plasticity (TRIP) steels, are considered as promising materials for new generation of lightweight vehicles. The superior mechanical properties of these steels, compared to classical high strength steels, are associated with their complex microstructures. The desired phase configuration and morphology can only be achieved through well-controlled processing paths with rather tight processing windows. To implement such challenging processing stages into the current industrial facilities a significant amount of development efforts, in terms of mill trials, have to be performed. Alternatively, process models as predictive tools can be employed to aid the process development' and also to design new steel grades. Knowledge-based process models are developed by virtue of the underlying physical phenomena occurring during the industrial processing and are validated with experimental data. The goal of the present work is to develop an integrated microstructure model to adequately describe the kinetics of austenite decomposition into polygonal ferrite and bainite, such that for complex thermal paths simulating those of industrial practice, the final microstructure in advanced high strength steels can reasonably be predicted. This is in particular relevant to hot-rolled DP and TRIP steels, where the intercritical ferrite evolution due to its crucial influence on the onset and kinetics of the subsequent bainite formation, has to be quantified precisely. The calculated fraction, size and spatial carbon distribution of the intercritical austenite are employed as input to characterize adequately the kinetic of the bainite reaction. Pertinent to ferrite formation, a phenomenological, physically-based model was developed on the ground of the mixed-mode approach. The model deals with the growth stage since nucleation site saturation at prior austenite grain boundaries is likely to be attained

  15. Austenitic stainless steels for cryogenic service

    SciTech Connect

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  16. Cast alumina forming austenitic stainless steels

    DOEpatents

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  17. Ion beam nitriding of single and polycrystalline austenitic stainless steel

    SciTech Connect

    Abrasonis, G.; Riviere, J.P.; Templier, C.; Declemy, A.; Pranevicius, L.; Milhet, X.

    2005-04-15

    Polycrystalline and single crystalline [orientations (001) and (011)] AISI 316L austenitic stainless steel was implanted at 400 deg. C with 1.2 keV nitrogen ions using a high current density of 0.5 mA cm{sup -2}. The nitrogen distribution profiles were determined using nuclear reaction analysis (NRA). The structure of nitrided polycrystalline stainless steel samples was analyzed using glancing incidence and symmetric x-ray diffraction (XRD) while the structure of the nitrided single crystalline stainless steel samples was analyzed using x-ray diffraction mapping of the reciprocal space. For identical treatment conditions, it is observed that the nitrogen penetration depth is larger for the polycrystalline samples than for the single crystalline ones. The nitrogen penetration depth depends on the orientation, the <001> being more preferential for nitrogen diffusion than <011>. In both type of samples, XRD analysis shows the presence of the phase usually called 'expanded' austenite or {gamma}{sub N} phase. The lattice expansion depends on the crystallographic plane family, the (001) planes showing an anomalously large expansion. The reciprocal lattice maps of the nitrided single crystalline stainless steel demonstrate that during nitriding lattice rotation takes place simultaneously with lattice expansion. The analysis of the results based on the presence of stacking faults, residual compressive stress induced by the lattice expansion, and nitrogen concentration gradient indicates that the average lattice parameter increases with the nitrided layer depth. A possible explanation of the anomalous expansion of the (001) planes is presented, which is based on the combination of faster nitriding rate in the (001) oriented grains and the role of stacking faults and compressive stress.

  18. Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model

    NASA Astrophysics Data System (ADS)

    Nowers, O.; Duxbury, D. J.; Velichko, A.; Drinkwater, B. W.

    2015-03-01

    The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a `steering' of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is used to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development.

  19. Imaging of transverse cracks in austenitic welds with RT-SAFT

    NASA Astrophysics Data System (ADS)

    Höhne, C.; Kolkoori, S. R.; Rahman, M.-U.; Prager, J.

    2014-02-01

    The synthetic aperture focusing technique (SAFT) is an imaging technique commonly used in ultrasonic inspection. In order to apply SAFT to the inspection of austenitic welds, the inhomogeneous anisotropic nature of the weld structure has to be taken into account. A suitable approach to accomplish this, is to couple the SAFT-algorithm with a ray tracing program (RT-SAFT). While SAFT-imaging of cracks in austenitic welds by use of ray tracing has been carried out before, all attempts so far were limited to longitudinal cracks which usually allows a treatment as 2-dimensional problem. In case of transverse cracks, a full 3-dimensional ray tracing is necessary in order to perform a SAFT-reconstruction. In this paper, we give an outline of our attempts to reconstruct images of transverse cracks in austenitic welds, utilizing 3-dimensional ray tracing and a layered structure model derived from an empirical model of grain orientations in welds. We present results of this RT-SAFT on experimental data taken from transverse cracks in different austenitic welds, which show that size and position of the cracks can be estimated with good accuracy, and compare them to images obtained by assuming an isotropic homogeneous medium which corresponds to the application of the classical SAFT-algorithm.

  20. Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model

    SciTech Connect

    Nowers, O.; Duxbury, D. J.; Velichko, A.; Drinkwater, B. W.

    2015-03-31

    The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a ‘steering’ of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is used to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development.

  1. Crack growth rates and fracture toughness of irradiated austenitic stainless steels in BWR environments.

    SciTech Connect

    Chopra, O. K.; Shack, W. J.

    2008-01-21

    In light water reactors, austenitic stainless steels (SSs) are used extensively as structural alloys in reactor core internal components because of their high strength, ductility, and fracture toughness. However, exposure to high levels of neutron irradiation for extended periods degrades the fracture properties of these steels by changing the material microstructure (e.g., radiation hardening) and microchemistry (e.g., radiation-induced segregation). Experimental data are presented on the fracture toughness and crack growth rates (CGRs) of wrought and cast austenitic SSs, including weld heat-affected-zone materials, that were irradiated to fluence levels as high as {approx} 2x 10{sup 21} n/cm{sup 2} (E > 1 MeV) ({approx} 3 dpa) in a light water reactor at 288-300 C. The results are compared with the data available in the literature. The effects of material composition, irradiation dose, and water chemistry on CGRs under cyclic and stress corrosion cracking conditions were determined. A superposition model was used to represent the cyclic CGRs of austenitic SSs. The effects of neutron irradiation on the fracture toughness of these steels, as well as the effects of material and irradiation conditions and test temperature, have been evaluated. A fracture toughness trend curve that bounds the existing data has been defined. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components have also been evaluated.

  2. What Expands in an Expanding Universe?

    PubMed

    Pacheco, José A De Freitas

    2015-01-01

    In the present investigation, the possible effects of the expansion of the Universe on systems bonded either by gravitational or electromagnetic forces, are reconsidered. It will be shown that the acceleration (positive or negative) of the expanding background, is the determinant factor affecting planetary orbits and atomic sizes. In the presently accepted cosmology (ΛCDM) all bonded systems are expanding at a decreasing rate that tends to be zero as the universe enters in a de Sitter phase. It is worth mentioning that the estimated expansion rates are rather small and they can be neglected for all practical purposes. PMID:26628035

  3. Modelling the evolution of composition-and stress-depth profiles in austenitic stainless steels during low-temperature nitriding

    NASA Astrophysics Data System (ADS)

    Jespersen, Freja N.; Hattel, Jesper H.; Somers, Marcel A. J.

    2016-02-01

    Nitriding of stainless steel causes a surface zone of expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behaviour. During nitriding huge residual stresses are introduced in the treated zone, arising from the volume expansion that accompanies the dissolution of high nitrogen contents in expanded austenite. An intriguing phenomenon during low-temperature nitriding is that the residual stresses evoked by dissolution of nitrogen in the solid state, affect the thermodynamics and the diffusion kinetics of nitrogen dissolution. In the present paper solid mechanics was combined with thermodynamics and diffusion kinetics to simulate the evolution of composition-depth and stress-depth profiles resulting from nitriding. The model takes into account a composition-dependent diffusion coefficient of nitrogen in expanded austenite, short range ordering (trapping) of nitrogen atoms by chromium atoms, and the effect of composition-induced stress on surface concentration and diffusive flux. The effect of plasticity and concentration-dependence of the yield stress was also included.

  4. Formability analysis of austenitic stainless steel-304 under warm conditions

    NASA Astrophysics Data System (ADS)

    Lade, Jayahari; Singh, Swadesh Kumar; Banoth, Balu Naik; Gupta, Amit Kumar

    2013-12-01

    A warm deep drawing process of austenitic stainless steel-304 (ASS-304) of circular blanks with coupled ther mal analysis is studied in this article. 65 mm blanks were deep drawn at different temperatures and thickness distribution is experimentally measured after cutting the drawn component into two halves. The process is simulated using explicit fin ite element code LS-DYNA. A Barlat 3 parameter model is used in the simulation, as the material is anisotropic up to 30 0°C. Material properties for the simulation are determined at different temperatures using a 5 T UTM coupled with a furn ace. In this analysis constant punch speed and variable blank holder force (BHF) is applied to draw cups without wrinkle.

  5. Heavy hydrogen isotopes penetration through austenitic and martensitic steels

    NASA Astrophysics Data System (ADS)

    Dolinski, Yu.; Lyasota, I.; Shestakov, A.; Repritsev, Yu.; Zouev, Yu.

    2000-12-01

    Experimental results are presented of deuterium and tritium permeability through samples of nickel, austenitic steel (16Cr-15Ni-3Mo-Ti), and martensitic steel DIN 1.4914 (MANET) exposed to a gaseous phase. Experiments were carried out at the RFNC-VNHTF installation, which has the capability of measuring the permeability of hydrogen isotopes by mass spectrometry over a temperature range of 293-1000 K, hydrogen isotope pressure ranges of 50-1000 Pa. Sample disks (30 and 40 mm diam.) can be assembled in the test chamber by electron-beam welding or mounted (30-mm diam. disks) on gaskets. Diffusion and permeability dependencies on temperature and pressure are determined and corresponding activation energies are presented.

  6. The nucleation of austenite in ferritic ductile cast iron

    SciTech Connect

    Chou, J.M.; Hon, M.H. ); Lee, J.L. )

    1992-07-01

    Austempered ductile cast iron has recently been receiving increasing attention because of its excellent combination of strength and ductility. Since the austenitization process has a significant influence on the mechanical properties of austempered ductile cast iron, several investigations on the nucleation sites of austenite and diffusion paths of carbon from spheroidal graphite have been reported in ferritic ductile cast iron. However, agreement on this subject has not ben reached. The purpose of this paper is to study the preferential nucleation sites of austenite during austenitization at two austenitizing temperatures in ferritic ductile cast iron. An attempt was made to understand the reasons which give rise to preferential austenite nucleation sites. The carbon diffusion paths from spheroidal graphite were also investigated.

  7. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    SciTech Connect

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

  8. Pitting corrosion resistant austenite stainless steel

    DOEpatents

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  9. Embrittlement of austenitic stainless steel welds

    SciTech Connect

    David, S.A.; Vitek, J.M.

    1997-12-31

    The microstructure of type-308 austenitic stainless steel weld metal containing {gamma} and {delta} and ferrite is shown. Typical composition of the weld metal is Cr-20.2, Ni-9.4, Mn-1.7, Si-0.5, C-0.05, N-0.06 and balance Fe (in wt %). Exposure of austenitic stainless steel welds to elevated temperatures can lead to extensive changes in the microstructural features of the weld metal. On exposure to elevated temperatures over a long period of time, a continuous network of M{sub 23}C{sub 6} carbide forms at the austenite/ferrite interface. Upon aging at temperatures between 550--850 C, ferrite in the weld has been found to be unstable and transforms to sigma phase. These changes have been found to influence mechanical behavior of the weld metal, in particular the creep-rupture properties. For aging temperatures below 550 C the ferrite decomposes spinodally into {alpha} and {alpha}{prime} phases. In addition, precipitation of G-phase occurs within the decomposed ferrite. These transformations at temperatures below 550 C lead to embrittlement of the weld metal as revealed by the Charpy impact properties.

  10. Pinning of Austenite Grain Boundaries by

    NASA Astrophysics Data System (ADS)

    Doğan, Ömer N.; Michal, G. M.; Kwon, H.-W.

    1992-08-01

    The growth behavior of austenite grains in the presence of A1N precipitates varies with the temperature and time of anneal. To study this behavior, two iron alloys, (in weight percent) a 0.1 carbon base chemistry with 0.03A1/0.01N and 0.09A1/0.04N, respectively, were annealed between 1000 °C and 1200 °C for times of up to 180 minutes. Using optical microscopy, as many as 1000 austenite grains per heat-treatment condition were measured. Conditions of sup- pressed, abnormal, and uniform grain growth were observed. Using an extraction replica tech- nique, the size, shape, and distribution of the A1N particles were determined using transmission electron microscopy (TEM). The largest grain boundary curvatures calculated, using the Hellman- Hillert pinning model, were in close agreement with independent calculations of curvatures using the grain size data. The largest grains in the lognormal size distribution of austenite grains were found to be the ones with the potential to grow to abnormally large sizes.

  11. Effect of carbonitride dissolution on T{sub {delta}} and V{sub {delta}} of austenitic steels

    SciTech Connect

    Yang Ruzeng; Dai Qixun

    1997-03-01

    The authors deal with the effect of carbide dissolution on the {gamma}/{gamma}+{delta} boundary temperature, T{sub {delta}}, and the {delta} phase volume, V{sub {delta}}, as well as the equilibrium relation between the alloying elements at the {gamma}/{gamma}+{delta} boundary of austenitic steels at high temperature, and study the variation of the ferrite volume with temperature in {alpha}+{gamma} dual phase steel. The relevant expressions are derived from many experimental results, which may provide a basis for quantitative calculation, the design of compositions, the determination of working processes and prediction of the mechanical properties and microstructure of the austenitic steels.

  12. Kinetics of Austenite Grain Growth During Heating and Its Influence on Hot Deformation of LZ50 Steel

    NASA Astrophysics Data System (ADS)

    Du, Shiwen; Li, Yongtang; Zheng, Yi

    2016-07-01

    Grain growth behaviors of LZ50 have been systematically investigated for various temperatures and holding times. Quantitative evaluations of the grain growth kinetics over a wide range of temperature (950-1200 °C) and holding time (10-180 min) have been performed. With the holding time kept constant, the average austenite grain size has an exponential relationship with the heating temperature, while with the heating temperature kept constant, the relationship between the austenite average grain size and holding time is a parabolic curve approximately. The holding time dependence of average austenite grain size obeys the Beck's equation. As the heating temperature increases, the time exponent for grain growth n increases from 0.21 to 0.39. On the basis of previous models and experimental results, taking the initial grain size into account, the mathematical model for austenite grain growth of LZ50 during isothermal heating and non-isothermal heating is proposed. The effects of initial austenite grain size on hot deformation behavior of LZ50 are analyzed through true stress-strain curves under different deformation conditions. Initial grain size has a slight effect on peak stress.

  13. Hydrogen-related phase transformations in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Narita, N.; Altstetter, C. J.; Birnbaum, H. K.

    1982-08-01

    The effect of hydrogen and stress (strain) on the stability of the austenite phase in stainless steels was investigated. Hydrogen was introduced by severe cathodic charging and by elevated temperature equilibration with high pressure H2 gas. Using X-ray diffraction and magnetic techniques, the behavior of two “stable” type AISI310 steels and an “unstable” type AISI304 steel was studied during charging and during the outgassing period following charging. Transformation from the fcc γ phase to an expanded fcc phase, γ*, and to the hcp ɛ phase occurred during cathodic charging. Reversion of the γ* and e phases to the original γ structure and formation of the bcc α structure were examined, and the kinetics of these processes was studied. The γ* phase was shown to be ferromagnetic with a subambient Curie temperature. The γ⇆ɛ phase transition was studied after hydrogen charging in high pressure gas, as was the formation of a during outgassing. These results are interpreted as effects of hydrogen and stress (strain) on the stability of the various phases. A proposed psuedo-binary phase diagram for the metal-hydrogen system was proposed to account for the formation of the γ* phase. The relation of these phase changes to hydrogen embrittlement and stress corrosion cracking of stainless steel is discussed.

  14. A new view of the ultrasonic behavior of cast austenitic steels

    SciTech Connect

    Beller, L.S.

    1986-01-01

    A three-dimensionally anisotropic model of the cast austenitics is proposed and tested experimentally. The model predicts unique propagation modes and directions, which are observed experimentally in centrifugally cast stainless steel (CCSS) specimens, but which are not predicted by the single- preferred-axis model. It accounts for a large share of the difficulties noted in ultrasonic inspection of these materials by conventional techniques. The model also suggests a technique for significant improvement in signal/noise ratio (SNR) and in apparent attenuation; this technique is demonstrated experimentally to give striking improvements in SNR. In addition, a number of previously anomalous behaviors are explained by this model. 10 refs., 6 figs.

  15. Functionalized expanded porphyrins

    DOEpatents

    Sessler, Jonathan L; Pantos, Patricia J

    2013-11-12

    Disclosed are functionalized expanded porphyrins that can be used as spectrometric sensors for high-valent actinide cations. The disclosed functionalized expanded porphyrins have the advantage over unfunctionalized systems in that they can be immobilized via covalent attachment to a solid support comprising an inorganic or organic polymer or other common substrates. Substrates comprising the disclosed functionalized expanded porphyrins are also disclosed. Further, disclosed are methods of making the disclosed compounds (immobilized and free), methods of using them as sensors to detect high valent actinides, devices that comprise the disclosed compounds, and kits.

  16. Investigation of joining techniques for advanced austenitic alloys

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.; Kikuchi, Y.; Shi, C.; Gill, T.P.S.

    1991-05-01

    Modified Alloys 316 and 800H, designed for high temperature service, have been developed at Oak Ridge National Laboratory. Assessment of the weldability of the advanced austenitic alloys has been conducted at the University of Tennessee. Four aspects of weldability of the advanced austenitic alloys were included in the investigation.

  17. A creep model for austenitic stainless steels incorporating cavitation and wedge cracking

    NASA Astrophysics Data System (ADS)

    Mahesh, S.; Alur, K. C.; Mathew, M. D.

    2011-01-01

    A model of damage evolution in austenitic stainless steels under creep loading at elevated temperatures is proposed. The initial microstructure is idealized as a space-tiling aggregate of identical rhombic dodecahedral grains, which undergo power-law creep deformation. Damage evolution in the form of cavitation and wedge cracking on grain-boundary facets is considered. Both diffusion- and deformation-driven grain-boundary cavity growth are treated. Cavity and wedge-crack length evolution are derived from an energy balance argument that combines and extends the models of Cottrell (1961 Trans. AIME 212 191-203), Williams (1967 Phil. Mag. 15 1289-91) and Evans (1971 Phil Mag. 23 1101-12). The time to rupture predicted by the model is in good agreement with published experimental data for a type 316 austenitic stainless steel under uniaxial creep loading. Deformation and damage evolution at the microscale predicted by the present model are also discussed.

  18. Study of the Sensitization on the Grain Boundary in Austenitic Stainless Steel Aisi 316

    NASA Astrophysics Data System (ADS)

    Kocsisová, Edina; Dománková, Mária; Slatkovský, Ivan; Sahul, Martin

    2014-12-01

    Intergranular corrosion (IGC) is one of the major problems in austenitic stainless steels. This type of corrosion is caused by precipitation of secondary phases on grain boundaries (GB). Precipitation of the secondary phases can lead to formation of chromium depleted zones in the vicinity of grain boundaries. Mount of the sensitization of material is characterized by the degree of sensitization (DOS). Austenitic stainless steel AISI 316 as experimental material had been chosen. The samples for the study of sensitization were solution annealed on 1100 °C for 60 min followed by water quenching and then sensitization by isothermal annealing on 700 °C and 650 °C with holding time from 15 to 600 min. Transmission electron microscopy (TEM) was used for identification of secondary phases. Electron backscattered diffraction (EBSD) was applied for characterization of grain boundary structure as one of the factors which influences on DOS.

  19. Modelling of Nb influence on phase transformation behaviours from austenite to ferrite in low carbon steels

    NASA Astrophysics Data System (ADS)

    Wang, L.; Parker, S. V.; Rose, A. J.; West, G. D.; Thomson, R. C.

    2016-03-01

    In this paper, a new model has been developed to predict the phase transformation behaviours from austenite to ferrite in Nb-containing low carbon steels. The new model is based on some previous work and incorporates the effects of Nb on phase transformation behaviours, in order to make it applicable for Nb-containing steels. Dissolved Nb atoms segregated at prior austenite grain boundaries increase the critical energy for ferrite nucleation, and thus the ferrite nucleation rate is decreased. Dissolved Nb atoms also apply a solute drag effect to the moving transformation interface, and the ferrite grain growth rate is also decreased. The overall transformation kinetics is then calculated according to the classic Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory. The new model predictions are quite consistent with experimental results for various steels during isothermal transformations or continuous cooling.

  20. Improvement of the resistance to stress corrosion cracking in austenitic stainless steels by cyclic prestraining

    SciTech Connect

    Chambreuil-Paret, A.; Magnin, T.

    1999-05-01

    Austenitic stainless steels are known to be sensitive to stress corrosion cracking (SCC) in hot chloride solutions. The aim of the present study is to find improvements in the SCC behavior of 316L-type austenitic stainless steels in 117 C MgCl{sub 2} solutions. Previously, the authors have proposed the corrosion-enhanced plasticity model (CEPM) to describe the discontinuous cracking process which occurs in SCC. This model is based on localized corrosion (anodic dissolution, and hydrogen absorption)-deformation (dislocations) interactions (CDI). From the framework of this model, it is proposed that a prestraining in fatigue at saturation decreases the SCC sensitivity. This idea is experimentally confirmed for both crack initiation and crack propagation, through the analysis of the SCC behavior by slow-strain-rate tests of single and polycrystals after different prestraining conditions.

  1. Embrittlement of austenitic stainless steel welds

    SciTech Connect

    David, S.A.; Vitek, J.M.; Alexander, D.J.

    1995-06-01

    To prevent hot-cracking, austenitic stainless steel welds generally contain a small percent of delta ferrite. Although ferrite has been found to effectively prevent hot-cracking, it can lead to embrittlement of welds when exposed to elevated temperatures. The aging behavior of type-308 stainless steel weld has been examined over a range of temperatures 475--850 C for times up to 10,000 hrs. Upon aging, and depending on the temperature range, the unstable ferrite may undergo a variety of solid state transformations. These phase changes creep-rupture and Charpy impact properties.

  2. Wear behavior of austenite containing plate steels

    NASA Astrophysics Data System (ADS)

    Hensley, Christina E.

    As a follow up to Wolfram's Master of Science thesis, samples from the prior work were further investigated. Samples from four steel alloys were selected for investigation, namely AR400F, 9260, Hadfield, and 301 Stainless steels. AR400F is martensitic while the Hadfield and 301 stainless steels are austenitic. The 9260 exhibited a variety of hardness levels and retained austenite contents, achieved by heat treatments, including quench and tempering (Q&T) and quench and partitioning (Q&P). Samples worn by three wear tests, namely Dry Sand/Rubber Wheel (DSRW), impeller tumbler impact abrasion, and Bond abrasion, were examined by optical profilometry. The wear behaviors observed in topography maps were compared to the same in scanning electron microscopy micrographs and both were used to characterize the wear surfaces. Optical profilometry showed that the scratching abrasion present on the wear surface transitioned to gouging abrasion as impact conditions increased (i.e. from DSRW to impeller to Bond abrasion). Optical profilometry roughness measurements were also compared to sample hardness as well as normalized volume loss (NVL) results for each of the three wear tests. The steels displayed a relationship between roughness measurements and observed wear rates for all three categories of wear testing. Nanoindentation was used to investigate local hardness changes adjacent to the wear surface. DSRW samples generally did not exhibit significant work hardening. The austenitic materials exhibited significant hardening under the high impact conditions of the Bond abrasion wear test. Hardening in the Q&P materials was less pronounced. The Q&T microstructures also demonstrated some hardening. Scratch testing was performed on samples at three different loads, as a more systematic approach to determining the scratching abrasion behavior. Wear rates and scratch hardness were calculated from scratch testing results. Certain similarities between wear behavior in scratch testing

  3. Corrosion of austenitic alloys in aerated brines

    SciTech Connect

    Heidersbach, R.; Shi, A.; Sharp, S.

    1999-11-01

    This report discusses the results of corrosion exposures of three austenitic alloys--3l6L stainless steel, UNS N10276, and UNS N08367. Coupons of these alloys were suspended in a series of brines used for processing in the pharmaceutical industry. The effects of surface finish and welding processes on the corrosion behavior of these alloys were determined. The 316L coupons experienced corrosion in several environments, but the other alloys were unaffected during the one-month exposures of this investigation. Electropolishing the surfaces improved corrosion resistance.

  4. Precipitation and stability of reversed austenite in 9Ni steel

    NASA Astrophysics Data System (ADS)

    Yang, Yue-Hui; Cai, Qing-Wu; Tang, Di; Wu, Hui-Bin

    2010-10-01

    A new method was used to analyze the factors affecting the precipitation of reversed austenite during tempering. The samples were kept at various tempering temperatures for 10 min and their length changes were recorded. Then, the precipitation of reversed austenite which led to the length reduction was shown by thermal expansion curves. The results show that the effects of process parameters on the precipitation of reversed austenite can be determined more accurately by this method than by X-ray diffraction. When the quenching and tempering process is adopted, both the lower quenching temperature and higher tempering temperature can promote the precipitation of reversed austenite during tempering; and when the quenching, lamellarizing, and tempering process is used, intercritical quenching is considered beneficial to the precipitation of reversed austenite in the subsequent tempering because of Ni segregation during holding at the intercritical temperature.

  5. Influence of Plastic Deformation on Low-Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    NASA Astrophysics Data System (ADS)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.; Somers, Marcel A. J.

    2015-06-01

    This article addresses an investigation of the influence of plastic deformation on low-temperature surface hardening by gaseous nitriding of two commercial stainless steels: EN 1.4369 and AISI 304. The materials were plastically deformed to several levels of equivalent strain by conventional tensile straining, plane strain compression, and shear. Gaseous nitriding of the strained material was performed in ammonia gas at atmospheric pressure at various temperatures. Microstructural characterization of the as-deformed state and the nitrided case produced included X-ray diffraction analysis, reflected-light microscopy, and microhardness testing. The results demonstrate that a case of expanded austenite develops and that the presence of plastic deformation has a significant influence on the morphology of the nitrided case. The presence of strain-induced martensite favors the formation of CrN, while a high dislocation density in a fully austenitic structure does not lead to such premature nucleation of CrN.

  6. Weldment for austenitic stainless steel and method

    DOEpatents

    Bagnall, Christopher; McBride, Marvin A.

    1985-01-01

    For making defect-free welds for joining two austenitic stainless steel mers, using gas tungsten-arc welding, a thin foil-like iron member is placed between the two steel members to be joined, prior to making the weld, with the foil-like iron member having a higher melting point than the stainless steel members. When the weld is formed, there results a weld nugget comprising melted and then solidified portions of the joined members with small portions of the foil-like iron member projecting into the solidified weld nugget. The portions of the weld nugget proximate the small portions of the foil-like iron member which project into the weld nugget are relatively rich in iron. This causes these iron-rich nugget portions to display substantial delta ferrite during solidification of the weld nugget which eliminates weld defects which could otherwise occur. This is especially useful for joining austenitic steel members which, when just below the solidus temperature, include at most only a very minor proportion of delta ferrite.

  7. Characterization of Low Temperature Ferrite/Austenite Transformations in the Heat Affected Zone of 2205 Duplex Stainless Steel Arc Welds

    SciTech Connect

    Palmer, T A; Elmer, J W; Babu, S S; Vitek, J M

    2003-08-20

    Spatially Resolved X-Ray Diffraction (SRXRD) has been used to identify a previously unobserved low temperature ferrite ({delta})/austenite({gamma}) phase transformation in the heat affected zone (HAZ) of 2205 Duplex Stainless Steel (DSS) welds. In this ''ferrite dip'' transformation, the ferrite transforms to austenite during heating to peak temperatures on the order of 750 C, and re-transforms to ferrite during cooling, resulting in a ferrite volume fraction equivalent to that in the base metal. Time Resolved X-Ray Diffraction (TRXRD) and laser dilatometry measurements during Gleeble{reg_sign} thermal simulations are performed in order to verify the existence of this low temperature phase transformation. Thermodynamic and kinetic models for phase transformations, including both local-equilibrium and para-equilibrium diffusion controlled growth, show that diffusion of substitutional alloying elements does not provide a reasonable explanation for the experimental observations. On the other hand, the diffusion of interstitial alloying elements may be rapid enough to explain this behavior. Based on both the experimental and modeling results, two mechanisms for the ''ferrite dip'' transformation, including the formation and decomposition of secondary austenite and an athermal martensitic-type transformation of ferrite to austenite, are considered.

  8. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld metal.

  9. A new constitutive model for nitrogen austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Fréchard, S.; Lichtenberger, A.; Rondot, F.; Faderl, N.; Redjaïmia, A.; Adoum, M.

    2003-09-01

    Quasi-static, quasi-dynamic and dynamic compression tests have been performed on a nitrogen alloyed austenitic stainless steel. For all strain rates, a high strain hardening rate and a good ductility have been achieved. In addition, this steel owns a great strain rate sensitivity. The temperature sensitivity bas been determined between 20°C and 400°C. Microstructural analysis has been performed after different loading conditions in relation to the behaviour of the material. Johnson-Cook and Zerilli-Armstrong models have been selected to fit the experimental data into constitutive equations. These models do not reproduce properly the behaviour of this type of steel over the complete range. A new constitutive model that fits very well all the experimental data at different strain, strain rate and temperature has been determined. The model is based on empirical considerations on the separated influence of the main parameters. Single Taylor tests have been realized to validate the models. Live observations of the specimen during impact have been achieved using a special CCD camera set-up. The overall profile at different times are compared to numerical predictions using LS-DYNA code.

  10. Dislocation loop evolution under ion irradiation in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Etienne, A.; Hernández-Mayoral, M.; Genevois, C.; Radiguet, B.; Pareige, P.

    2010-05-01

    A solution annealed 304 and a cold worked 316 austenitic stainless steels were irradiated from 0.36 to 5 dpa at 350 °C using 160 keV Fe ions. Irradiated microstructures were characterized by transmission electron microscopy (TEM). Observations after irradiation revealed the presence of a high number density of Frank loops. Size and number density of Frank loops have been measured. Results are in good agreement with those observed in the literature and show that ion irradiation is able to simulate dislocation loop microstructure obtained after neutron irradiation. Experimental results and data from literature were compared with predictions from the cluster dynamic model, MFVIC (Mean Field Vacancy and Interstitial Clustering). It is able to reproduce dislocation loop population for neutron irradiation. Effects of dose rate and temperature on the loop number density are simulated by the model. Calculations for ion irradiations show that simulation results are consistent with experimental observations. However, results also show the model limitations due to the lack of accurate parameters.

  11. Silicon microfabricated beam expander

    SciTech Connect

    Othman, A. Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  12. Silicon microfabricated beam expander

    NASA Astrophysics Data System (ADS)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  13. Phase Field Modeling of Cyclic Austenite-Ferrite Transformations in Fe-C-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhu, Benqiang; Militzer, Matthias

    2016-06-01

    Three different approaches for considering the effect of Mn on the austenite-ferrite interface migration in an Fe-0.1C-0.5Mn alloy have been coupled with a phase field model (PFM). In the first approach (PFM-I), only long-range C diffusion is considered while Mn is assumed to be immobile during the phase transformations. Both long-range C and Mn diffusions are considered in the second approach (PFM-II). In the third approach (PFM-III), long-range C diffusion is considered in combination with the Gibbs energy dissipation due to Mn diffusion inside the interface instead of solving for long-range diffusion of Mn. The three PFM approaches are first benchmarked with isothermal austenite-to-ferrite transformation at 1058.15 K (785 °C) before considering cyclic phase transformations. It is found that PFM-II can predict the stagnant stage and growth retardation experimentally observed during cycling transformations, whereas PFM-III can only replicate the stagnant stage but not the growth retardation and PFM-I predicts neither the stagnant stage nor the growth retardation. The results of this study suggest a significant role of Mn redistribution near the interface on reducing transformation rates, which should, therefore, be considered in future simulations of austenite-ferrite transformations in steels, particularly at temperatures in the intercritical range and above.

  14. The detection of flaws in austenitic welds using the decomposition of the time-reversal operator

    PubMed Central

    Cunningham, Laura J.; Mulholland, Anthony J.; Gachagan, Anthony; Harvey, Gerry; Bird, Colin

    2016-01-01

    The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity of safety critical structures. The internal microstructure of these welds is highly scattering and can lead to the obscuration of defects when investigated by traditional imaging algorithms. This paper proposes an alternative objective method for the detection of flaws embedded in austenitic welds based on the singular value decomposition of the time-frequency domain response matrices. The distribution of the singular values is examined in the cases where a flaw exists and where there is no flaw present. A lower threshold on the singular values, specific to austenitic welds, is derived which, when exceeded, indicates the presence of a flaw. The detection criterion is successfully implemented on both synthetic and experimental data. The datasets arising from welds containing a flaw are further interrogated using the decomposition of the time-reversal operator (DORT) method and the total focusing method (TFM), and it is shown that images constructed via the DORT algorithm typically exhibit a higher signal-to-noise ratio than those constructed by the TFM algorithm. PMID:27274683

  15. Phase Field Modeling of Cyclic Austenite-Ferrite Transformations in Fe-C-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhu, Benqiang; Militzer, Matthias

    2016-08-01

    Three different approaches for considering the effect of Mn on the austenite-ferrite interface migration in an Fe-0.1C-0.5Mn alloy have been coupled with a phase field model (PFM). In the first approach (PFM-I), only long-range C diffusion is considered while Mn is assumed to be immobile during the phase transformations. Both long-range C and Mn diffusions are considered in the second approach (PFM-II). In the third approach (PFM-III), long-range C diffusion is considered in combination with the Gibbs energy dissipation due to Mn diffusion inside the interface instead of solving for long-range diffusion of Mn. The three PFM approaches are first benchmarked with isothermal austenite-to-ferrite transformation at 1058.15 K (785 °C) before considering cyclic phase transformations. It is found that PFM-II can predict the stagnant stage and growth retardation experimentally observed during cycling transformations, whereas PFM-III can only replicate the stagnant stage but not the growth retardation and PFM-I predicts neither the stagnant stage nor the growth retardation. The results of this study suggest a significant role of Mn redistribution near the interface on reducing transformation rates, which should, therefore, be considered in future simulations of austenite-ferrite transformations in steels, particularly at temperatures in the intercritical range and above.

  16. Development of a twin crystal membrane coupled conformable phased array for the inspection of austenitic welds

    SciTech Connect

    Russell, J.; Long, R.; Cawley, P.

    2011-06-23

    The inspection of welded austenitic stainless steel components can be challenging. Austenitic welds contain an anisotropic, inhomogeneous grain structure which causes attenuation, scattering and beam bending. The inspection of components where the weld cap has not been removed is even more difficult due to the irregularity of the surface geometry. A twin crystal membrane coupled device has now been produced containing two linear phased arrays positioned adjacent to one another within the same housing. The arrays are angled relative to one another so that the transducer provides a pseudo-focusing effect at a depth corresponding to the beam crossing point. This type of design is used to improve the signal to noise ratio of the defect response in comparison to simple linear phased array transducer designs and to remove an internal noise signal found in linear phased array devices. Experimental results obtained from the through weld inspection of an austenitic stainless steel component with an undressed weld cap using the twin crystal membrane device are presented. These results demonstrate that small lack of side wall fusion defects can be reliably detected in large complex structures.

  17. A simplified LBB evaluation procedure for austenitic and ferritic steel piping

    SciTech Connect

    Gamble, R.M.; Wichman, K.R.

    1997-04-01

    The NRC previously has approved application of LBB analysis as a means to demonstrate that the probability of pipe rupture was extremely low so that dynamic loads associated with postulated pipe break could be excluded from the design basis (1). The purpose of this work was to: (1) define simplified procedures that can be used by the NRC to compute allowable lengths for circumferential throughwall cracks and assess margin against pipe fracture, and (2) verify the accuracy of the simplified procedures by comparison with available experimental data for piping having circumferential throughwall flaws. The development of the procedures was performed using techniques similar to those employed to develop ASME Code flaw evaluation procedures. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austentic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials.

  18. Effect of material heat treatment on fatigue crack initiation in austenitic stainless steels in LWR environments.

    SciTech Connect

    Chopra, O. K.; Alexandreanu, B.; Shack, W. J.; Energy Technology

    2005-07-31

    The ASME Boiler and Pressure Vessel Code provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify design curves for applicable structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. The existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. Under certain environmental and loading conditions, fatigue lives of austenitic stainless steels (SSs) can be a factor of 20 lower in water than in air. This report presents experimental data on the effect of heat treatment on fatigue crack initiation in austenitic Type 304 SS in LWR coolant environments. A detailed metallographic examination of fatigue test specimens was performed to characterize the crack morphology and fracture morphology. The key material, loading, and environmental parameters and their effect on the fatigue life of these steels are also described. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves for austenitic SSs as a function of material, loading, and environmental parameters. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented.

  19. Stable atomic structure of NiTi austenite

    NASA Astrophysics Data System (ADS)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2014-08-01

    Nitinol (NiTi), the most widely used shape-memory alloy, exhibits an austenite phase that has yet to be identified. The usually assumed austenitic structure is cubic B2, which has imaginary phonon modes, hence it is unstable. We suggest a stable austenitic structure that "on average" has B2 symmetry (observed by x-ray and neutron diffraction), but it exhibits finite atomic displacements from the ideal B2 sites. The proposed structure has a phonon spectrum that agrees with that from neutron scattering, has diffraction spectra in agreement with x-ray diffraction, and has an energy relative to the ground state that agrees with calorimetry data.

  20. Bainitic stabilization of austenite in low alloy sheet steels

    NASA Astrophysics Data System (ADS)

    Brandt, Mitchell L.

    The stabilization of retained austenite in 'triple phase' ferrite/bainite/austenite sheet steels by isothermal bainite transformation after intercritical annealing has been studied in 0.27C-1.5Si steels with 0.8 to 2.4Mn. Dilatometric studies show that cooling rates comparable to CAPL processing result in approximately 30% conversion of austenite to epitaxial ferrite, but the reaction can be suppressed by the faster cooling rate of salt bath quenching. Measured isothermal transformation kinetics at 350 to 450sp°C shows a maximum overall rate near 400sp°C. X-ray diffraction shows that the amount of austenite retained from 400sp°C treatment peaks at 3 minutes but the carbon content increases monotonically to a saturation level. The stability of austenite in this type of steel has been quantified for the first time by direct measurement of the characteristic Msbsps{sigma} temperature. With variations in processing conditions and test temperatures, the tensile uniform ductility has been correlated with the amount and stability of retained austenite, while maintaining a constant 3% flow of 83 ksi. Consistent with previous transformations plasticity studies an optimal austenite stability is found at approximately 10 K above the Msbsps{sigma} temperature, demonstrating a maximum uniform ductility of 44% for an austenite content of 16%. Correlations indicate that desired uniform ductility levels of 20 to 25% could be achieved with only approximately 5% austenite if stability is optimized by placing Msbsps{sigma} 10 K below ambient temperature. Measured uniform ductility in plane strain tension shows similar trends with processing conditions, but models predict that stress state effects will shift the Msbsps{sigma} temperature approximately 5 K higher than that for uniaxial tension. The measured dependence of Msbsps{sigma} on austenite composition and particle size has been modeled via heterogeneous nucleation theory. The composition dependence is consistent with

  1. Carbon content of austenite in austempered ductile iron

    SciTech Connect

    Chang, L.C.

    1998-06-05

    The development of austempered ductile iron (ADI) is a major achievement in cast iron technology. The austempering heat treatment enables the ductile cast iron containing mainly strong bainitic ferrite and ductile carbon-enriched austenite, with some martensite transforms from austenite during cooling down to room temperature. A key factor controlling the stability of the retained austenite can be evaluated soundly using the thermodynamics principles. It is the purpose here to demonstrate that the data of ADI from numerous sources have a similar trend.

  2. Stable atomic structure of NiTi austenite

    SciTech Connect

    Zarkevich, Nikolai A; Johnson, Duane D

    2014-08-01

    Nitinol (NiTi), the most widely used shape-memory alloy, exhibits an austenite phase that has yet to be identified. The usually assumed austenitic structure is cubic B2, which has imaginary phonon modes, hence it is unstable. We suggest a stable austenitic structure that “on average” has B2 symmetry (observed by x-ray and neutron diffraction), but it exhibits finite atomic displacements from the ideal B2 sites. The proposed structure has a phonon spectrum that agrees with that from neutron scattering, has diffraction spectra in agreement with x-ray diffraction, and has an energy relative to the ground state that agrees with calorimetry data.

  3. Expanded Roles for HRD.

    ERIC Educational Resources Information Center

    1998

    This document contains three papers from a symposium on expanded roles for human resource development (HRD). "The Roles of Consultants in Gainsharing Firms: Empirical Results" (Eunsang Cho, Gary N. McLean) reports findings that consultants are moderately involved at the separation, preparation, evaluation, and design stages and have low…

  4. EXPANDED BED BIOLOGICAL TREATMENT

    EPA Science Inventory

    A three-year pilot-scale research investigation at the EPA Lebanon Pilot Plant was conducted to evaluate the feasibility of a unique biological secondary treatment process, designated the Expanded Bed Biological Treatment Process (EBBT). The EBBT process is a three-phase (oxygen/...

  5. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  6. Austenitic alloy and reactor components made thereof

    DOEpatents

    Bates, John F.; Brager, Howard R.; Korenko, Michael K.

    1986-01-01

    An austenitic stainless steel alloy is disclosed, having excellent fast neutron irradiation swelling resistance and good post irradiation ductility, making it especially useful for liquid metal fast breeder reactor applications. The alloy contains: about 0.04 to 0.09 wt. % carbon; about 1.5 to 2.5 wt. % manganese; about 0.5 to 1.6 wt. % silicon; about 0.030 to 0.08 wt. % phosphorus; about 13.3 to 16.5 wt. % chromium; about 13.7 to 16.0 wt. % nickel; about 1.0 to 3.0 wt. % molybdenum; and about 0.10 to 0.35 wt. % titanium.

  7. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  8. High temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, Philip J.; Swindeman, Robert W.; Goodwin, Gene M.

    1989-01-01

    An improved austenitic alloy having in wt % 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150.degree.-1200.degree. C. and then cold deforming 5-15 %. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700.degree. C.

  9. Improved high temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, P.J.; Swindeman, R.W.; Goodwin, G.M.

    1988-05-13

    An improved austenitic alloy having in wt% 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150-1200/degree/C and then cold deforming 5-15%. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700/degree/C. 2 figs.

  10. ExpandED Options: Learning beyond High School Walls

    ERIC Educational Resources Information Center

    ExpandED Schools, 2014

    2014-01-01

    Through ExpandED Options by TASC, New York City high school students get academic credit for learning career-related skills that lead to paid summer jobs. Too many high school students--including those most likely to drop out--are bored or see classroom learning as irrelevant. ExpandED Options students live the connection between mastering new…

  11. Computation of Phase Fractions in Austenite Transformation with the Dilation Curve for Various Cooling Regimens in Continuous Casting

    NASA Astrophysics Data System (ADS)

    Dong, Zhihua; Chen, Dengfu; Long, Mujun; Li, Wei; Chen, Huabiao; Vitos, Levente

    2016-03-01

    A concise model is applied to compute the microstructure evolution of austenite transformation by using the dilation curve of continuously cast steels. The model is verified by thermodynamic calculations and microstructure examinations. When applying the model, the phase fractions and the corresponding transforming rates during austenite transformation are investigated at various cooling rates and chemical compositions. In addition, ab initio calculations are performed for paramagnetic body-centered-cubic Fe to understand the thermal expansion behavior of steels at an atomic scale. Results indicate that by increasing the cooling rate, the final volume fraction of ferrite/pearlite will gradually increase/decrease with a greater transforming rate of ferrite. The ferrite fraction increases after austenite transformation with lowering of the carbon content and increasing of the substitutional alloying fractions. In the austenite transformation, the thermal expansion coefficient is sequentially determined by the forming rate of ferrite and pearlite. According to the ab initio theoretical calculations for the single phase of ferrite, thermal expansion emerges from magnetic evolution and lattice vibration, the latter playing the dominant role. The theoretical predictions for volume and thermal expansion coefficient are in good agreement with the experimental data.

  12. Computation of Phase Fractions in Austenite Transformation with the Dilation Curve for Various Cooling Regimens in Continuous Casting

    NASA Astrophysics Data System (ADS)

    Dong, Zhihua; Chen, Dengfu; Long, Mujun; Li, Wei; Chen, Huabiao; Vitos, Levente

    2016-06-01

    A concise model is applied to compute the microstructure evolution of austenite transformation by using the dilation curve of continuously cast steels. The model is verified by thermodynamic calculations and microstructure examinations. When applying the model, the phase fractions and the corresponding transforming rates during austenite transformation are investigated at various cooling rates and chemical compositions. In addition, ab initio calculations are performed for paramagnetic body-centered-cubic Fe to understand the thermal expansion behavior of steels at an atomic scale. Results indicate that by increasing the cooling rate, the final volume fraction of ferrite/pearlite will gradually increase/decrease with a greater transforming rate of ferrite. The ferrite fraction increases after austenite transformation with lowering of the carbon content and increasing of the substitutional alloying fractions. In the austenite transformation, the thermal expansion coefficient is sequentially determined by the forming rate of ferrite and pearlite. According to the ab initio theoretical calculations for the single phase of ferrite, thermal expansion emerges from magnetic evolution and lattice vibration, the latter playing the dominant role. The theoretical predictions for volume and thermal expansion coefficient are in good agreement with the experimental data.

  13. The mechanical stability of precipitated austenite in 9Ni steel

    NASA Astrophysics Data System (ADS)

    Fultz, B.; Morris, J. W.

    1985-12-01

    The strains inherent to the martensitic transformation of austenite particles in 9Ni steel create dislocation structures in the tempered martensite. These dislocation structures were studied by the complementary techniques of X-ray line profile analysis and transmission electron microscopy. The energy required to form these dislocation structures affects the thermodynamics of the transformation. We propose that changes in these dislocation structures reduce the “mechanical stability” of the austenite particles as they grow larger during isothermal tempering.

  14. Array imaging of austenitic welds by measuring weld material map

    NASA Astrophysics Data System (ADS)

    Fan, Z.; Lowe, M.

    2014-02-01

    It is difficult to inspect for defects in austenitic welds ultrasonically due to complicated material properties inside the weld. Weld microstructures typically lead to weld stiffnesses that are both anisotropic and inhomogeneous, so that ultrasonic waves tend to deviate and scatter. A weld performance map is commonly used to describe how the material properties vary throughout the weld, and this idea has been applied to wave propagation models. In this work, we developed a non-destructive method to measure this map using ultrasonic arrays. A material model (previously published by others) with a small number of parameters has been applied to describe the weld performance map. It uses the information of the welding procedure and rules for crystalline growth to predict the orientations, therefore it has a good physical foundation. An inverse model has then been developed to measure the weld performance map based on the matching of predictions by the ray tracing method to selected experimental array measurements. The process is validated by both finite element models and experiments. The results have been applied to correct array images to compensate for deviations of the ultrasonic rays.

  15. Discovering the Expanding Universe

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Harry; Bieri, Lydia; Sandage, Foreword by Allan

    2009-03-01

    Acknowledgments; Foreword; 1. Introduction; 2. Cosmological concepts at the end of the Middle Ages; 3. Nebulae as a new astronomical phenomenon; 4. On the construction of the Heavens; 5. Island universes turn into astronomical facts: a universe of galaxies; 6. The early cosmology of Einstein and de Sitter; 7. The dynamical universe of Friedmann; 8. Redshifts: how to reconcile Slipher and de Sitter?; 9. Lemaître discovers the expanding universe; 10. Hubble's contribution of 1929; 11. The breakthrough for the expanding universe; 12. Hubble's anger about de Sitter; 13. Robertson and Tolman join the game; 14. The Einstein-de Sitter universe; 15. Are Sun and Earth older than the universe?; 16. In search of alternative tracks; 17. The seed for the Big Bang; 18. Summary and Postscript; Appendix; References; Index.

  16. Expandable LED array interconnect

    DOEpatents

    Yuan, Thomas Cheng-Hsin; Keller, Bernd

    2011-03-01

    A light emitting device that can function as an array element in an expandable array of such devices. The light emitting device comprises a substrate that has a top surface and a plurality of edges. Input and output terminals are mounted to the top surface of the substrate. Both terminals comprise a plurality of contact pads disposed proximate to the edges of the substrate, allowing for easy access to both terminals from multiple edges of the substrate. A lighting element is mounted to the top surface of the substrate. The lighting element is connected between the input and output terminals. The contact pads provide multiple access points to the terminals which allow for greater flexibility in design when the devices are used as array elements in an expandable array.

  17. Grazing incidence beam expander

    SciTech Connect

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  18. Evolution of secondary phases in austenitic stainless steels during long-term exposures at 600, 650 and 800 deg. C

    SciTech Connect

    Vach, Marian Kunikova, Terezia; Domankova, Maria; Sevc, Peter; Caplovic, Lubomir; Gogola, Peter; Janovec, Jozef

    2008-12-15

    Three austenitic steels (18Cr-8Ni, 18Cr-10Ni, 21Cr-30Ni), used for long-term applications at temperatures between 600 and 800 deg. C were investigated. In the investigation, metallography, transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectroscopy, and scanning electron microscopy were used. In additional to the experimental measurements, thermodynamic predictions were done using the ThermoCalc software and the non-commercial database STEEL16F. Various combinations of M{sub 23}C{sub 6}, sigma, and MC phases were identified in the austenite matrix of these steels. It was confirmed experimentally that extra large particles (up to 10 {mu}m) observed in the 21Cr-30Ni steel are M{sub 23}C{sub 6}, even though this carbide was not predicted as the equilibrium carbide at service temperature (800 deg. C). The analytical-experimental approach, combining thermodynamic predictions and experimental measurements, was found to be reliable for the characterization of austenitic steels.

  19. The calculation of T{sub {delta}} and V{sub {delta}} in austenitic steel

    SciTech Connect

    Dai Qixun; Yang Ruzeng

    1997-03-01

    The relation between the {gamma}/{gamma} + {delta} boundary temperature, T{sub {delta}}, of austenitic steels and the equivalent weights, [Cr] and [Ni], has been studied, as has the law of variation of the {delta} phase volume, V{sub {delta}}, with temperature. With the aid of a computer, the following regression expressions have been derived from the experimental results: T{sub {delta}} ({degree}C) =- T{sub 4} {minus} 21.2[Cr] + 15.8[Ni] {minus} 223; V{sub {delta}} (%) = 0.715 exp [0.015(T {minus} T{sub {delta}})]. Satisfactory results have been obtained by using these regression expressions.

  20. Machining and Phase Transformation Response of Room-Temperature Austenitic NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Kaynak, Yusuf

    2014-09-01

    This experimental work reports the results of a study addressing tool wear, surface topography, and x-ray diffraction analysis for the finish cutting process of room-temperature austenitic NiTi alloy. Turning operation of NiTi alloy was conducted under dry, minimum quantity lubrication (MQL) and cryogenic cooling conditions at various cutting speeds. Findings revealed that cryogenic machining substantially reduced tool wear and improved surface topography and quality of the finished parts in comparison with the other two approaches. Phase transformation on the surface of work material was not observed after dry and MQL machining, but B19' martensite phase was found on the surface of cryogenically machined samples.

  1. Migration and accumulation at dislocations of transmutation helium in austenitic steels upon neutron irradiation

    NASA Astrophysics Data System (ADS)

    Kozlov, A. V.; Portnykh, I. A.

    2016-04-01

    The model of the migration and accumulation at dislocations of transmutation helium and the formation of helium-vacancy pore nuclei in austenitic steels upon neutron irradiation has been proposed. As illustrations of its application, the dependences of the characteristics of pore nuclei on the temperature of neutron irradiation have been calculated. The results of the calculations have been compared with the experimental data in the literature on measuring the characteristics of radiation-induced porosity that arises upon the irradiation of shells of fuel elements of a 16Cr-19Ni-2Mo-2Mn-Si-Ti-Nb-V-B steel in a fast BN600 neutron reactor at different temperatures.

  2. Phase stability in austenitic stainless steels -- New approaches, results, and their relation to properties

    SciTech Connect

    Vitek, J.M.; David, S.A.

    1995-12-31

    In recent years, the phase stability of austenitic stainless steels, and its effect on the mechanical properties of stainless steels, have been the subject of much interest. With the availability of new experimental techniques, new theoretical methods, and new computational procedures, significant advances have been made in understanding, and being able to predict, phase stability and mechanical properties of stainless steel welds. This paper reviews some of these developments, with an emphasis on recent work that has been done at Oak Ridge National Laboratory.

  3. Influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel films

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Anderoglu, O.; Misra, A.; Wang, H.

    2007-04-01

    The authors have studied the influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel thin films. Transmission electron microscopy shows that the volume fraction of twinned grains increases with increasing deposition rate, whereas the average columnar grain size and twin spacing stay approximately unchanged. These experimental results agree qualitatively with their analytical model that predicts deposition rate dependent formation of growth twins. The film hardness increases monotonically with increasing volume fraction of twinned grains.

  4. Influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel films

    SciTech Connect

    Zhang, X.; Anderoglu, O.; Misra, A.; Wang, H.

    2007-04-09

    The authors have studied the influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel thin films. Transmission electron microscopy shows that the volume fraction of twinned grains increases with increasing deposition rate, whereas the average columnar grain size and twin spacing stay approximately unchanged. These experimental results agree qualitatively with their analytical model that predicts deposition rate dependent formation of growth twins. The film hardness increases monotonically with increasing volume fraction of twinned grains.

  5. Bauschinger Effect in an Austenitic Steel: Neutron Diffraction and a Multiscale Approach

    NASA Astrophysics Data System (ADS)

    Fajoui, Jamal; Gloaguen, David; Legrand, Vincent; Oum, Guy; Kelleher, Joe; Kockelmann, Winfried

    2016-05-01

    The generation of internal stresses/strains arising from mechanical deformations in single-phase engineering materials was studied. Neutron diffraction measurements were performed to study the evolution of intergranular strains in austenitic steel during sequential loadings. Intergranular strains expand due to incompatibilities between grains and also resulting from single-crystal elastic and plastic anisotropy. A two-level homogenization approach was adopted in order to predict the mechanical state of deformed polycrystals in relation to the microstructure during Bauschinger tests. A mechanical description of the grain was developed through a micro-meso transition based on the Kröner model. The meso-macro transition using a self-consistent approach was applied to deduce the global behavior. Mechanical tests and neutron diffraction measurements were used to validate and assess the model.

  6. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel.

    PubMed

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-01-01

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α'-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α' → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α'N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance. PMID:27492862

  7. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel

    NASA Astrophysics Data System (ADS)

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-08-01

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α‧-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α‧ → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α‧N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance.

  8. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel

    PubMed Central

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-01-01

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α′-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α′ → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α′N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance. PMID:27492862

  9. Weldability of neutron irradiated austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Asano, Kyoichi; Nishimura, Seiji; Saito, Yoshiaki; Sakamoto, Hiroshi; Yamada, Yuji; Kato, Takahiko; Hashimoto, Tsuneyuki

    1999-01-01

    Degradation of weldability in neutron irradiated austenitic stainless steel is an important issue to be addressed in the planning of proactive maintenance of light water reactor core internals. In this work, samples selected from reactor internal components which had been irradiated to fluence from 8.5 × 10 22 to 1.4 × 10 26 n/m 2 ( E > 1 MeV) corresponding to helium content from 0.11 to 103 appm, respectively, were subjected to tungsten inert gas arc (TIG) welding with heat input ranged 0.6-16 kJ/cm. The weld defects were characterized by penetrant test and cross-sectional metallography. The integrity of the weld was better when there were less helium and at lower heat input. Tensile properties of weld joint containing 0.6 appm of helium fulfilled the requirement for unirradiated base metal. Repeated thermal cycles were found to be very hazardous. The results showed the combination of material helium content and weld heat input where materials can be welded with little concern to invite cracking. Also, the importance of using properly selected welding procedures to minimize thermal cycling was recognized.

  10. Microstructural studies of advanced austenitic steels

    SciTech Connect

    Todd, J. A.; Ren, Jyh-Ching

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  11. Austenitic stainless steel for high temperature applications

    DOEpatents

    Johnson, Gerald D.; Powell, Roger W.

    1985-01-01

    This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; 0.01-0.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; 0.03 maximum, As; 0.01 maximum, O; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P+wt. % B+wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.

  12. Weldable, age hardenable, austenitic stainless steel

    DOEpatents

    Brooks, J.A.; Krenzer, R.W.

    1975-07-22

    An age hardenable, austenitic stainless steel having superior weldability properties as well as resistance to degradation of properties in a hydrogen atmosphere is described. It has a composition of from about 24.0 to about 34.0 weight percent (w/o) nickel, from about 13.5 to about 16.0 w/o chromium, from about 1.9 to about 2.3 w/o titanium, from about 1.0 to about 1.5 w/ o molybdenum, from about 0.01 to about 0.05 w/o carbon, from about 0 to about 0.25 w/o manganese, from about 0 to about 0.01 w/o phosphorous and preferably about 0.005 w/o maximum, from about 0 to about 0.010 w/o sulfur and preferably about 0.005 w/o maximum, from about 0 to about 0.25 w/o silicon, from about 0.1 to about 0.35 w/o aluminum, from about 0.10 to about 0.50 w/o vanadium, from about 0 to about 0.0015 w/o boron, and the balance essentially iron. (auth)

  13. Laser etching of austenitic stainless steels for micro-structural evaluation

    NASA Astrophysics Data System (ADS)

    Baghra, Chetan; Kumar, Aniruddha; Sathe, D. B.; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd

    2015-06-01

    Etching is a key step in metallography to reveal microstructure of polished specimen under an optical microscope. A conventional technique for producing micro-structural contrast is chemical etching. As an alternate, laser etching is investigated since it does not involve use of corrosive reagents and it can be carried out without any physical contact with sample. Laser induced etching technique will be beneficial especially in nuclear industry where materials, being radioactive in nature, are handled inside a glove box. In this paper, experimental results of pulsed Nd-YAG laser based etching of few austenitic stainless steels such as SS 304, SS 316 LN and SS alloy D9 which are chosen as structural material for fabrication of various components of upcoming Prototype Fast Breeder Reactor (PFBR) at Kalpakkam India were reported. Laser etching was done by irradiating samples using nanosecond pulsed Nd-YAG laser beam which was transported into glass paneled glove box using optics. Experiments were carried out to understand effect of laser beam parameters such as wavelength, fluence, pulse repetition rate and number of exposures required for etching of austenitic stainless steel samples. Laser etching of PFBR fuel tube and plug welded joint was also carried to evaluate base metal grain size, depth of fusion at welded joint and heat affected zone in the base metal. Experimental results demonstrated that pulsed Nd-YAG laser etching is a fast and effortless technique which can be effectively employed for non-contact remote etching of austenitic stainless steels for micro-structural evaluation.

  14. Solidification behavior of austenitic stainless steel filler metals

    SciTech Connect

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + ..gamma.. ..-->.. ..gamma.. + delta, and for type 310 stainless steel filler metal, L ..-->.. L + ..gamma.. ..-->.. ..gamma... In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions.

  15. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    NASA Astrophysics Data System (ADS)

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  16. Mechanically expandable annular seal

    DOEpatents

    Gilmore, Richard F.

    1983-01-01

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluidtight barrier. A counterrotation removes the barrier.

  17. Mechanically expandable annular seal

    DOEpatents

    Gilmore, R.F.

    1983-07-19

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.

  18. Expanding hollow metal rings

    DOEpatents

    Peacock, Harold B.; Imrich, Kenneth J.

    2009-03-17

    A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.

  19. On the Constitutive Model of Nitrogen-Containing Austenitic Stainless Steel 316LN at Elevated Temperature

    PubMed Central

    Zhang, Lei; Feng, Xiao; Wang, Xin; Liu, Changyong

    2014-01-01

    The nitrogen-containing austenitic stainless steel 316LN has been chosen as the material for nuclear main-pipe, which is one of the key parts in 3rd generation nuclear power plants. In this research, a constitutive model of nitrogen-containing austenitic stainless steel is developed. The true stress-true strain curves obtained from isothermal hot compression tests over a wide range of temperatures (900–1250°C) and strain rates (10−3–10 s−1), were employed to study the dynamic deformational behavior of and recrystallization in 316LN steels. The constitutive model is developed through multiple linear regressions performed on the experimental data and based on an Arrhenius-type equation and Zener-Hollomon theory. The influence of strain was incorporated in the developed constitutive equation by considering the effect of strain on the various material constants. The reliability and accuracy of the model is verified through the comparison of predicted flow stress curves and experimental curves. Possible reasons for deviation are also discussed based on the characteristics of modeling process. PMID:25375345

  20. Ultrasonic Examination of AN Austenitic Weld: Illustration of the Disturbances of the Ultrasonic Beam

    NASA Astrophysics Data System (ADS)

    Chassignole, B.; Dupond, O.; Doudet, L.; Duwig, V.; Etchegaray, N.

    2009-03-01

    The ultrasonic examination of the primary coolant piping of Pressurized Water Reactors (PWR) is an important challenge for the nuclear industry. Numerous studies were undertaken by EDF R&D for a few years to improve the NDT process on these applications and to help to their qualification. More particularly, a great deal was made on the examination of the austenitic stainless steel welds. Indeed, the anisotropic, heterogeneous and coarse granular structures of these welds lead to important disturbances of the ultrasonic propagation. This paper presents some examples of the experimental and numerical studies which allowed to highlight the different disturbances (beam deviation, division and attenuation). We pay more attention on spurious echoes which may appear when a plane defect is located in an austenitic weld. The experimental approach is based on tests on mock-ups containing artificial defects. On the other hand, a numerical approach with the finite element code ATHENA, developed by EDF, allows to explain the origin of the disturbances. We show the interest of this tool to carry out a close analysis of the ultrasonic mode conversions in the complex structure of the weld which produce the spurious echoes. Finally, the influence of the ultrasonic disturbances on performances in term of detection of the defects is discussed.

  1. Low Temperature Nitriding of 304 Austenitic Stainless Steel Using RF-ICP Method: the Role of Ion Beam Flux Density

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Ba, Dechun; Ming, Yue; Xu, Lin; Guo, Deyu

    2014-10-01

    The significant role of ion beam flux during nitriding 304 austenitic stainless steel has been investigated by using a radio frequency inductively-coupled plasma reactor into which a sample with negative bias voltage was inserted. A milliammeter is used to detect the current of ions which collide with the sample and optical emission spectroscopy is used to discern the reactive species included in the nitrogen plasma. The nitriding efficiency is indicated by X-ray diffraction and the microhardness test. The reported data reveal that the ion beam flux density as well as the deposition pressure, bias voltage and time can strongly affect the nitriding of stainless steel via the expanded multiphase microstructure inside the nitrided layer. The increase in the density of ion flux results in an ascent in the intensity of the expanded peak and a simultaneous decline in the intensity of the γ austenite peak. The evolution trend of ion beam flux density is described as a function of the operating pressure and the bias voltage. The maximum ion flux density has been achieved at 10 Pa pressure and -500 V bias voltage. A reasonable nitriding region has been, consequently, suggested after comparing this work with previously reported results.

  2. Biocompatibility studies of low temperature nitrided and collagen-I coated AISI 316L austenitic stainless steel.

    PubMed

    Martinesi, M; Stio, M; Treves, C; Borgioli, F

    2013-06-01

    The biocompatibility of austenitic stainless steels can be improved by means of surface engineering techniques. In the present research it was investigated if low temperature nitrided AISI 316L austenitic stainless steel may be a suitable substrate for bioactive protein coating consisting of collagen-I. The biocompatibility of surface modified alloy was studied using as experimental model endothelial cells (human umbilical vein endothelial cells) in culture. Low temperature nitriding produces modified surface layers consisting mainly of S phase, the supersaturated interstitial solid solution of nitrogen in the austenite lattice, which allows to enhance surface microhardness and corrosion resistance in PBS solution. The nitriding treatment seems to promote the coating with collagen-I, without chemical coupling agents, in respect of the untreated alloy. For biocompatibility studies, proliferation, lactate dehydrogenase levels and secretion of two metalloproteinases (MMP-2 and MMP-9) were determined. Experimental results suggest that the collagen protection may be favourable for endothelial cell proliferation and for the control of MMP-2 release. PMID:23471501

  3. Simulation of an Austenite-Twinned-Martensite Interface

    PubMed Central

    Kearsley, A.J.; Melara, L. A.

    2003-01-01

    Developing numerical methods for predicting microstructure in materials is a large and important research area. Two examples of material microstructures are Austenite and Martensite. Austenite is a microscopic phase with simple crystallographic structure while Martensite is one with a more complex structure. One important task in materials science is the development of numerical procedures which accurately predict microstructures in Martensite. In this paper we present a method for simulating material microstructure close to an Austenite-Martensite interface. The method combines a quasi-Newton optimization algorithm and a nonconforming finite element scheme that successfully minimizes an approximation to the total stored energy near the interface of interest. Preliminary results suggest that the minimizers of this energy functional located by the developed numerical algorithm appear to display the desired characteristics.

  4. Prediction of Austenite Formation Temperatures Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Schulze, P.; Schmidl, E.; Grund, T.; Lampke, T.

    2016-03-01

    For the modeling and design of heat treatments, in consideration of the development/ transformation of the microstructure, different material data depending on the chemical composition, the respective microstructure/phases and the temperature are necessary. Material data are, e.g. the thermal conductivity, heat capacity, thermal expansion and transformation data etc. The quality of thermal simulations strongly depends on the accuracy of the material data. For many materials, the required data - in particular for different microstructures and temperatures - are rare in the literature. In addition, a different chemical composition within the permitted limits of the considered steel alloy cannot be predicted. A solution for this problem is provided by the calculation of material data using Artificial Neural Networks (ANN). In the present study, the start and finish temperatures of the transformation from the bcc lattice to the fcc lattice structure of hypoeutectoid steels are calculated using an Artificial Neural Network. An appropriate database containing different transformation temperatures (austenite formation temperatures) to train the ANN is selected from the literature. In order to find a suitable feedforward network, the network topologies as well as the activation functions of the hidden layers are varied and subsequently evaluated in terms of the prediction accuracy. The transformation temperatures calculated by the ANN exhibit a very good compliance compared to the experimental data. The results show that the prediction performance is even higher compared to classical empirical equations such as Andrews or Brandis. Therefore, it can be assumed that the presented ANN is a convenient tool to distinguish between bcc and fcc phases in hypoeutectoid steels.

  5. Corrosion Behavior of Platinum-Enhanced Radiopaque Stainless Steel (PERSS®) for Dilation-Baloon Expandable Coronary Stents

    SciTech Connect

    Covino, Jr., Bernard S.; Craig, Charles H.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; Jablonski, Paul D.; Turner, Paul C.; Radisch, Jr., Herbert R.; Gokcen, Nev A.; Friend, Clifford M.; Edwards, Michael R.

    2002-05-01

    Dilation-balloon expandable coronary stents are commonly made of implant grade stainless steels conforming to ASTM F138/F139, e.g., Biodur? 316LS (UNS S31673). Typical of such stents is the Boston Scientific/Interventional Technologies? (BS/IVT) LP-StentTM. In 2000, BS/IVT determined that the addition of 5 to 6 wt % platinum to Biodur 316LS produced a stainless steel with enhanced radiopacity to make their stents more visible radiographically and thus more effective clinically. A goal of the program was to ensure platinum additions would not adversely affect the corrosion resistance of Biodur 316LS. The corrosion resistance of 5-6 wt % PERSS? alloys and Biodur 316LS was determined using electrochemical tests for general, pitting, crevice and intergranular corrosion. Experimental methods included ASTM A262E, F746, F2129, and potentiodynamic polarization. The 6 wt % PERSS? alloy (IVT 78) had a resistance to pitting, crevice and intergranular corrosion that was similar to the Biodur 316LS base material. IVT 78 was a single-phase austenitic alloy with no evidence of inclusions or precipitates. It was more resistant to pitting corrosion than 5 wt % PERSS? alloys. Performance of the PERSS? alloys was not a function of alloy oxygen content in the range 0.01 to 0.03 wt %.

  6. In situ x-ray diffraction investigations during low energy ion nitriding of austenitic stainless steel grade 1.4571

    NASA Astrophysics Data System (ADS)

    Manova, D.; Mändl, S.; Gerlach, J. W.; Hirsch, D.; Neumann, H.; Rauschenbach, B.

    2014-09-01

    Insertion of nitrogen into austenitic stainless steel leads to anomalously fast nitrogen diffusion and the formation of an expanded face-centred cubic phase which is known to contain a large amount of mechanical stress. In situ x-ray diffraction (XRD) measurements during low energy nitrogen ion implantation into steel 316Ti at 300-550 °C allow a direct view into diffusion and phase formation. While the layer growth is directly observable from the decreasing substrate reflection intensity, the time evolution of the intensities for the expanded phase reflection is much more complex: several mechanisms including at least formation and annealing of defects, twinning, reduction of the crystal symmetry, or grain rotation may be active inside the expanded phase, besides the thermally activated decay of the metastable expanded phase. This locally varying coherence length or scattering intensity from the expanded phase is furthermore a function of temperature and time, additionally complicating the deconvolution of XRD spectra for stress and concentration gradients. As no concise modelling of this coherence length is possible at present, a simple qualitative model assuming a dependence of the scattering intensity on the depth, influence by stress and plastic flow during the nitriding process is proposed for understanding the underlying processes.

  7. Corrosion performance of laser-welded austenitic-ferritic connections

    NASA Astrophysics Data System (ADS)

    Weigl, M.; Schmidt, M.

    2013-02-01

    In order to reduce the material costs of white-goods made of stainless steels, tailored constructions with unequally alloyed stainless steels shall be used. For that purpose nickel-alloyed austenitic stainless steels are supposed to be limited to zones with demanding needs for corrosions resistance, whereas nickel-free ferritic stainless steels provide an attractive cost-performance ratio for the remaining components of a system. Particularly the present article discusses the corrosion performance of austenitic-ferritic connections, welded with high-power disc lasers at accelerated feed rates, as a function of the shielding gas composition and the surface condition.

  8. Hardenability of austenite in a dual-phase steel

    SciTech Connect

    Sarwar, M.; Priestner, R.

    1999-06-01

    A low-carbon, low-alloy steel was intercritically heat treated and thermomechanically processed to study the martensitic hardenability of austenite present. Rolling of the two-phase ({alpha} + {gamma}) microstructure elongated austenite particles and reduced their martensitic hardenability because the {alpha}/{gamma} interface where new ferrite forms during cooling was increased by the particle elongation. The martensite particles obtained in rolled material were also elongated or fibered in the rolling direction. Therefore, the thermomechanical processing of a two-phase ({alpha} + {gamma}) mixture has the detrimental effect of increasing the quenching power needed to yield a specific amount of martensite.

  9. Oxidation resistant high creep strength austenitic stainless steel

    DOEpatents

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  10. Phase control of austenitic chrome-nickel steel

    SciTech Connect

    Korkh, M. K. Davidov, D. I. Korkh, J. V. Rigmant, M. B. Nichipuruk, A. P. Kazantseva, N. V.

    2015-10-27

    The paper presents the results of the comparative study of the possibilities of different structural and magnetic methods for detection and visualization of the strain-induced martensitic phase in low carbon austenitic chromium-nickel steel. Results of TEM, SEM, optical microscopy, atomic and magnetic force microscopy, and magnetic measurements are presented. Amount of the magnetic strain-induced martensite was estimated. We pioneered magnetic force microscopic images of the single domain cluster distribution of the strain-induced martensite in austenite-ferrite materials.

  11. Examination of carbon partitioning into austenite during tempering of bainite

    SciTech Connect

    Clarke, Amy J; Caballero, Francisca G; Miller, Michael K; Garcia - Mateo, C

    2010-01-01

    The redistribution of carbon after tempering of a novel nanocrystalline bainitic steel consisting of a mixture of supersaturated ferrite and retained austenite, has been analyzed by atom probe tomography. Direct supporting evidence of additional austenite carbon enrichment beyond that initially achieved during the bainite heat treatment was not obtained during subsequent tempering of this high carbon, high silicon steel. Evidence of competing reactions during tempering, such as the formation of carbon clusters in bainitic ferrite that signify the onset of the transitional carbides precipitation, was observed.

  12. Expander chunked codes

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Yang, Shenghao; Ye, Baoliu; Yin, Yitong; Lu, Sanglu

    2015-12-01

    Chunked codes are efficient random linear network coding (RLNC) schemes with low computational cost, where the input packets are encoded into small chunks (i.e., subsets of the coded packets). During the network transmission, RLNC is performed within each chunk. In this paper, we first introduce a simple transfer matrix model to characterize the transmission of chunks and derive some basic properties of the model to facilitate the performance analysis. We then focus on the design of overlapped chunked codes, a class of chunked codes whose chunks are non-disjoint subsets of input packets, which are of special interest since they can be encoded with negligible computational cost and in a causal fashion. We propose expander chunked (EC) codes, the first class of overlapped chunked codes that have an analyzable performance, where the construction of the chunks makes use of regular graphs. Numerical and simulation results show that in some practical settings, EC codes can achieve rates within 91 to 97 % of the optimum and outperform the state-of-the-art overlapped chunked codes significantly.

  13. The Artful Universe Expanded

    NASA Astrophysics Data System (ADS)

    Barrow, John D.

    2005-07-01

    Our love of art, writes John Barrow, is the end product of millions of years of evolution. How we react to a beautiful painting or symphony draws upon instincts laid down long before humans existed. Now, in this enhanced edition of the highly popular The Artful Universe , Barrow further explores the close ties between our aesthetic appreciation and the basic nature of the Universe. Barrow argues that the laws of the Universe have imprinted themselves upon our thoughts and actions in subtle and unexpected ways. Why do we like certain types of art or music? What games and puzzles do we find challenging? Why do so many myths and legends have common elements? In this eclectic and entertaining survey, Barrow answers these questions and more as he explains how the landscape of the Universe has influenced the development of philosophy and mythology, and how millions of years of evolutionary history have fashioned our attraction to certain patterns of sound and color. Barrow casts the story of human creativity and thought in a fascinating light, considering such diverse topics as our instinct for language, the origins and uses of color in nature, why we divide time into intervals as we do, the sources of our appreciation of landscape painting, and whether computer-generated fractal art is really art. Drawing on a wide variety of examples, from the theological questions raised by St. Augustine and C.S. Lewis to the relationship between the pure math of Pythagoras and the music of the Beatles, The Artful Universe Expanded covers new ground and enters a wide-ranging debate about the meaning and significance of the links between art and science.

  14. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  15. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  16. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bojack, A.; Zhao, L.; Morris, P. F.; Sietsma, J.

    2016-05-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two stages. This is probably due to inhomogeneous distribution of the austenite-stabilizing elements Ni and Mn, resulting from their slow diffusion from martensite into austenite and carbide and nitride dissolution during the second, higher temperature, stage. A better homogenization of the material causes an increase in the transformation temperatures for the martensite-to-austenite transformation and a lower retained austenite fraction with less variability after tempering. Furthermore, the martensite-to-austenite transformation was found to be incomplete at the target temperature of 1223 K (950 °C), which is influenced by the previous austenitization treatment and the heating rate. The activation energy for martensite-to-austenite transformation was determined by a modified Kissinger equation to be approximately 400 and 500 kJ/mol for the first and the second stages of transformation, respectively. Both values are much higher than the activation energy found during isothermal treatment in a previous study and are believed to be effective activation energies comprising the activation energies of both mechanisms involved, i.e., nucleation and growth.

  17. Effect of re-austenitization on the transformation texture inheritance

    NASA Astrophysics Data System (ADS)

    Kaijalainen, A.; Suikkanen, P.; Porter, D. A.

    2015-04-01

    Bainitic-martensitic microstructures produced by direct quenching austenite subjected to different degrees of pancaking have been re-austenitized and quenched to fully martensitic structures in order to investigate the effect of prior texture on the final martensite texture. Three different prior austenite pancaking states varying from convex-like to highly pancaked were investigated using an ultrahigh-strength strip steel hot rolled with various finish rolling temperatures followed by direct quenching. Microstructures were characterized using FESEM and transformation texture analysed using FESEM-EBSD at the strip surface, quarter- thickness and mid-thickness positions. The results show that an increase in rolling reduction below the non-recrystallization temperature increases the intensities of ∼{554}<225>α and ∼{112}<110>α texture components in the ferrite along the strip mid-thickness and of the ∼{112}<111>α component at the surface. The re-austenitization of the materials at 910°C for 30 min led to an inheritance of the same components from the parent specimens, but also increased the intensity of {001}<110>α, {110}<110>α and {011}<100>α components.

  18. Solidification and solid state transformations of austenitic stainless steel welds

    SciTech Connect

    Brooks, J A; Williams, J C; Thompson, A W

    1982-05-01

    The microstructure of austenitic stainless steel welds can contain a large variety of ferrite morphologies. It was originally thought that many of these morphologies were direct products of solidification. Subsequently, detailed work on castings suggested the structures can solidify either as ferrite or austenite. However, when solidification occurs by ferrite, a large fraction of the ferrite transforms to austenite during cooling via a diffusion controlled transformation. It was also shown by Arata et al that welds in a 304L alloy solidified 70-80% as primary ferrite, a large fraction of which also transformed to austenite upon cooling. More recently it was suggested that the cooling rates in welds were sufficiently high that diffusionless transformations were responsible for several commonly observed ferrite morphologies. However, other workers have suggested that even in welds, delta ..-->.. ..gamma.. transformations are diffusion controlled. A variety of ferrite morphologies have more recently been characterized by Moisio and coworkers and by David. The purpose of this paper is to provide further understanding of the evaluation of the various weld microstructures which are related to both the solidification behavior and the subsequent solid state transformations. To accomplish this, both TEM and STEM (Scanning Transmission Electron Microscopy) techniques were employed.

  19. Advanced austenitic alloys for fossil power systems. CRADA final report

    SciTech Connect

    Swindeman, R.W.; Cole, N.C.; Canonico, D.A.; Henry, J.F.

    1998-08-01

    In 1993, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory and ABB Combustion Engineering t examine advanced alloys for fossil power systems. Specifically, the use of advanced austenitic stainless steels for superheater/reheater construction in supercritical boilers was examined. The strength of cold-worked austenitic stainless steels was reviewed and compared to the strength and ductility of advanced austenitic stainless steels. The advanced stainless steels were found to retain their strength to very long times at temperatures where cold-worked standard grades of austenitic stainless steels became weak. Further, the steels exhibited better long-time stability than the stabilized 300 series stainless steels in either the annealed or cold worked conditions. Type 304H mill-annealed tubing was provided to ORNL for testing of base metal and butt welds. The tubing was found to fall within range of expected strength for 304H stainless steel. The composite 304/308 stainless steel was found to be stronger than typical for the weldment. Boiler tubing was removed from a commercial boiler for replacement by newer steels, but restraints imposed by the boiler owners did not permit the installation of the advanced steels, so a standard 32 stainless steel was used as a replacement. The T91 removed from the boiler was characterized.

  20. Deformation and thermal fatigue in high temperature austenitic alloys

    SciTech Connect

    Ferro, P.D.; Yost, B.; Swindeman, R.W.; Li, Che-Yu . Dept. of Materials Science and Engineering)

    1991-03-01

    The flow properties of modified austenitic alloys are reviewed. The important strengthening mechanisms discussed include precipitation hardening produced by a combination of cold work and aging and by creep aging. Grain boundary sliding enhanced by reduced grain size is shown to reduce the flow strength of these alloys. 5 refs., 11 figs., 2 tabs.

  1. Austenite recrystallization and carbonitride precipitation in niobium microalloyed steels

    SciTech Connect

    Speer, J.G.; Hansen, S.S. )

    1989-01-01

    The response of austenite to thermomechanical treatment is investigated in two series of niobium microalloyed steels. Optical and electron metallographic techniques were used to follow the austenite recystallizaiton and carbonitride precipitation reactions in these steels. The first series of steels contained a constant level of 0.05Nb, with carbon levels varying from 0.008 to 0.25 pct. It was found that a lower carbon concentration results in faster austenite recrystallization due to a smaller carbonitride supersaturation which leads to a reduced precipitate nucleation rate. The second series of steels was designed with a constant carbonitride supersaturation by simultaneously varying the Nb and C concentrations while maintaining a constant solubility product. In these steels, the recrystallization kinetics increase as the volume fraction of Nb(C,N) is reduced and/or as the precipitate coarsening rate is increased. The volume fraction of carbonitrides increases as the Nb:(C + 12/14 N) ratio approaches the stoichiometric ratio of approximately 8:1. An experiment to determine whether Nb atoms dissolved in the austenite could exert a significant solute-drag effect on the recrystallization reaction indicated that 0.20Nb in solution could reduce the rate of recrystallization compared to a Nb-free C-Mn steel.

  2. The stability of precipitated austenite and the toughness of 9Ni steel

    NASA Astrophysics Data System (ADS)

    Fultz, B.; Kim, J. I.; Kim, Y. H.; Kim, H. J.; Fior, G. O.; Morris, J. W.

    1985-12-01

    A correlation was confirmed between the good low temperature Charpy toughness of 9Ni steel and the stability of its precipitated austenite against the martensitic transformation. Changes in the microstructure during isothermal tempering were studied in detail. The austenite/martensite interface is originally quite coherent over ˜100 A distances. With further tempering, however, the dislocation structure at the austenite/martensite interface changes, and this change may be related to the increased instability of the austenite particles. The reduction in austenite carbon concentration does not seem large enough to account for the large reduction in austenite stability with tempering time. The strains inherent to the transformation of austenite particles create dislocation structures in the tempered martensite. The large deterioration of the Charpy toughness of overtempered material is attributed, in part, to these dislocation structures.

  3. Atomistic simulation of martensite-austenite phase transition in nanoscale nickel-titanium crystals

    NASA Astrophysics Data System (ADS)

    Kexel, Christian; Schramm, Stefan; Solov'yov, Andrey V.

    2015-09-01

    Shape-memory (SM) alloys can, after initial inelastic deformation, reconstruct their pristine lattice structure upon heating. The underlying phenomenon is the structural solid-solid phase transition from low-temperature lower-symmetry martensite to the high-temperature higher-symmetry austenite. Conventional nickel-titanium (NiTi) with near-equiatomic concentration already possesses an eminent importance for many applications, whereas the nanostructured equivalent can exhibit yet enhanced thermomechanical properties. However, no plausible microscopic theory of the SM effect in NiTi exists, especially for nanoscale systems. We investigate the thermally induced martensite-austenite phase transition in free equiatomic nanocrystals, comprising up to approximately 40 000 atoms, by means of molecular-dynamics simulations (MD) using a classical Gupta-type many-body scheme. Thereby we complement and extend a previously published study [D. Mutter, P. Nielaba, Eur. Phys. J. B 84, 109 (2011)]. The structural transition, revealing features of a first-order phase transition, is demonstrated. It is contrasted with the melting phase transition, a quantum solid model and bulk experimental findings. Moreover, a nucleation-growth process is observed as well as the irreversibility of the transition upon cooling.

  4. Mechanical and metallurgical properties of ion-nitrided austenitic-stainless steel welds

    NASA Astrophysics Data System (ADS)

    Çetinarslan, C. S.; Sahin, M.; Karaman Genç, S.; Sevil, C.

    2012-12-01

    Ion nitriding is an operation widely used in industry to harden materials surface. Nowadays, friction welding is one of the special welding methods used for welding the same or different kinds of materials. Especially in industry, it can be necessary to use materials after having operated them with different techniques or to use materials obtained by different manufacturing techniques. Investigating the mechanical and metallurgical properties of this kind of materials can be crucial. In this study, austenitic-stainless steel was used as an experimental material. Additionally, the samples of austenitic stainless steel with a diameter of 10 mm were joined by friction welding. The samples were subjected to ion nitriding process at 550 °C for 24 and 60 h. Then, tensile, fatigue, notch-impact and hardness tests were applied to the weldless and welded parts, and metallographic examinations were carried out. It was found that chromium and iron nitrides precipitated along the grain boundaries and in the middle of the grains. Spectrum patterns revealed that the most dominant phases resulted from the formation of CrN, Fe4N and Fe3N. However, the tests revealed that high temperature and longer time of ion nitriding caused a decrease in the values of fatigue and tensile strengths as well as in the notch-impact toughness in the ion nitrided joints.

  5. Analysis of tensile deformation and failure in austenitic stainless steels: Part II - Irradiation dose dependence

    NASA Astrophysics Data System (ADS)

    Kim, Jin Weon; Byun, Thak Sang

    2010-01-01

    Irradiation effects on the stable and unstable deformation and fracture behavior of austenitic stainless steels (SSs) have been studied in detail based on the equivalent true stress versus true strain curves. An iterative finite element simulation technique was used to obtain the equivalent true stress-true strain data from experimental tensile curves. The simulation result showed that the austenitic stainless steels retained high strain hardening rate during unstable deformation even after significant irradiation. The strain hardening rate was independent of irradiation dose up to the initiation of a localized necking. Similarly, the equivalent fracture stress was nearly independent of dose before the damage (embrittlement) mechanism changed. The fracture strain and tensile fracture energy decreased with dose mostly in the low dose range <˜2 dpa and reached nearly saturation values at higher doses. It was also found that the fracture properties for EC316LN SS were less sensitive to irradiation than those for 316 SS, although their uniform tensile properties showed almost the same dose dependencies. It was confirmed that the dose dependence of tensile fracture properties evaluated by the linear approximation model for nominal stress was accurate enough for practical use without elaborate calculations.

  6. Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel.

    PubMed

    Buhagiar, Joseph; Dong, Hanshan

    2012-02-01

    The corrosion properties of S-phase surface layers formed in AISI 316LVM (ASTM F138) and High-N (ASTM F1586) medical grade austenitic stainless steels by plasma surface alloying with nitrogen (at 430°C), carbon (at 500°C) and both carbon and nitrogen (at 430°C) has been investigated. The corrosion behaviour of the S-phase layers in Ringer's solutions was evaluated using potentiodynamic and immersion corrosion tests. The corrosion damage was evaluated using microscopy, hardness testing, inductive coupled plasma mass spectroscopy and X-ray diffraction. The experimental results have demonstrated that low-temperature nitriding, carburising and carbonitriding can improve the localised corrosion resistance of both industrial and medical grade austenitic stainless steels as long as the threshold sensitisation temperature is not reached. Carburising at 500°C has proved to be the best hardening treatment with the least effect on the corrosion resistance of the parent alloy. PMID:22160745

  7. Role of microstructure and heat treatments on the desorption kinetics of tritium from austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Chêne, J.; Brass, A.-M.; Trabuc, P.; Gastaldi, O.

    2007-02-01

    The liquid scintillation counting of solid samples (LSC-SS technique) was successfully used to study the role of microstructure and heat treatments on the behavior of residual tritium in several austenitic stainless steels (as-cast remelted tritiated waste, 316LN and 321 steels). The role of desorption annealing in the 100-600 °C range on the residual amount of tritium in tritiated waste was investigated. The residual tritium concentration computed from surface activity measurements is in good agreement with experimental values measured by liquid scintillation counting after full dissolution of the samples. The kinetics of tritium desorption recorded with the LSC-SS technique shows a significant desorption of residual tritium at room temperature, a strong barrier effect of thermal oxide films on the tritium desorption and a dependance of the tritium release on the steels microstructure. Annealing in the 300-600 °C range allows to desorb a large fraction of the residual tritium. However a significant trapping of tritium is evidenced. The influence of trapping phenomena on the concentration of residual tritium and on its dependance with the annealing temperature was investigated with different recrystallized and sensitized microstructures. Trapping is evidenced mainly below 150 °C and concerns a small fraction of the total amount of tritium introduced in austenitic steels. It presumably occurs preferentially on precipitates such as Ti(CN) or on intermetallic phases.

  8. The effect of dose rate on the response of austenitic stainless steels to neutron radiaiton

    SciTech Connect

    Allen, T. R.; Cole, J I.; Trybus, Carole L.; Porter, D. L.; Tsai, Hanchung; Garner, Francis A.; Kenik, E A.; Yoshitake, T.; Ohta, Joji

    2006-01-01

    Depending on reactor design and component location, austenitic stainless steels may experience significantly different irradiation dose rates in the same reactor. Understanding the effect of dose rate on radiation performance is important to predicting component lifetime. This study examined the effect of dose rate on swelling, grain boundary segregation, and tensile properties in austenitic stainless steels through the examination of components retrieved from the Experimental Breeder Reactor-II (EBR-II) following its shutdown. Annealed 304 stainless steel, stress-relieved 304 stainless steel, 12% cold-worked 316 stainless steel, and 20% cold-worked 316 stainless steel were irradiated over a dose range of 1-56 dpa at temperatures from 371 to 440 C and dose rates from 0.5 to 5.8 ? 10*7 dpa/s. Density and tensile properties were measured for 304 and 316 stainless steel. Changes in grain boundary composition were examined for 304 stainless steel. Swelling appears to increase at lower dose rates in both 304 and 316 stainless steel, although the effect was not always statistically significant. Grain boundary segregation also appears to increase at lower dose rate in 304 stainless steel. For the range of dose rates examined, no measurable dose rate effect on tensile properties was noted for any of the steels.

  9. Effect of Alloying Element Partition in Pearlite on the Growth of Austenite in High-Carbon Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Yang, Z. N.; Xia, Y.; Enomoto, M.; Zhang, C.; Yang, Z. G.

    2016-03-01

    The growth of austenite from pearlite in high-carbon low alloy steel occurs with and without alloy element redistribution depending on the amount of superheating above the eutectoid temperature. The transition temperature of austenite growth (denoted PNTT) is calculated as a function of pearlite transformation temperature and subsequent holding time, which affect the degree of partitioning in pearlite, using experimental partition coefficients k θ/ α of Mn, Cr, Co, Si, and Ni reported in the literature. PNTT is the highest in Cr-containing alloys which have the largest k θ/ α in pearlite. Post-transformation aging, usually accompanied by cementite spheroidization, leads to a marked increase of PNTT in Mn and Cr alloys. PNTT of Ni alloy does not depend on pearlite transformation temperature because practically the formation of partitioned pearlite is severely limited in this alloy for kinetic reasons. Above PNTT, austenite growth occurs fast initially, but slows down in the order of ten seconds when the ferrite disappears, and the remaining small carbide particles dissolve very slowly under the control of alloy element diffusion.

  10. Predicting the onset of transformation under noncontinuous cooling conditions. Part 2: Application to the austenite pearlite transformation

    SciTech Connect

    Pham, T.T.; Hawbolt, E.B.; Brimacombe, J.K.

    1995-08-01

    A detailed review of the additivity principle with respect to the incubation of the austenite decomposition was summarized in Part 1 of this two-part series and led to the concept of an ideal time-temperature-transformation (TTT) diagram. This curve is characteristic of the chemistry and austenite grain size in the steel and allows nonisothermal behavior to be described assuming additivity holds. The derivation of mathematical relationships between the ideal and experimental cooling data was presented in the first article. In this second article, an ideal curve for the austenite-to-pearlite transformation was derived from cooling data. The applicability of the ideal TTT curve for predicting the start of transformation under continuous cooling conditions was assessed for a range of cooling rates. Experiments were conducted under both isothermal and varying temperature conditions, including an industrial cooling schedule, using a Gleeble Thermal Simulator. Reasonable agreement was found between the predictions and the observed transformation start temperatures; predictions were consistent and compared favorably against other methods which have been frequently used to estimate the transformation start temperature for nonisothermal conditions.

  11. Subgrain lath martensite mechanics: A numerical-experimental analysis

    NASA Astrophysics Data System (ADS)

    Maresca, F.; Kouznetsova, V. G.; Geers, M. G. D.

    2014-12-01

    Lath martensite reveals a specific hierarchical subgrain structure, with laths, blocks and packets of particular crystallography. The presence of interlath retained austenite layers has been reported in the literature. This paper investigates the potential influence of the interlath retained austenite on the mechanical behaviour of lath martensite subgrains. To this purpose, a martensite grain substructure is modelled using a crystal plasticity framework, with a BCC lath-FCC austenite bicrystal at the fine scale. The main novel contribution of this work is the validation of the hypothesis on the role of the interlath retained austenite in lath martensite using the experimental results reported in the literature. The main features of the experimentally observed deformation behaviour (stress-strain curve, slip activity and roughness pattern) are qualitatively well reproduced by the model. It is shown that the presence of austenite interlath films has the potential to remarkably enhance the local deformation of martensite. In spite of its minor volume fraction, it plays a major role in the orientation dependent mechanical behaviour of the aggregate. It is also shown that if the presence of interlath austenite is neglected, the observed experimental flow curves are not captured.

  12. Application of advanced austenitic alloys to fossil power system components

    SciTech Connect

    Swindeman, R.W.

    1996-06-01

    Most power and recovery boilers operating in the US produce steam at temperatures below 565{degrees}C (1050{degrees}F) and pressures below 24 MPa (3500 psi). For these operating conditions, carbon steels and low alloy steels may be used for the construction of most of the boiler components. Austenitic stainless steels often are used for superheater/reheater tubing when these components are expected to experience temperatures above 565{degrees}C (1050{degrees}F) or when the environment is too corrosive for low alloys steels. The austenitic stainless steels typically used are the 304H, 321H, and 347H grades. New ferritic steels such as T91 and T92 are now being introduced to replace austenitic: stainless steels in aging fossil power plants. Generally, these high-strength ferritic steels are more expensive to fabricate than austenitic stainless steels because the ferritic steels have more stringent heat treating requirements. Now, annealing requirements are being considered for the stabilized grades of austenitic stainless steels when they receive more than 5% cold work, and these requirements would increase significantly the cost of fabrication of boiler components where bending strains often exceed 15%. It has been shown, however, that advanced stainless steels developed at ORNL greatly benefit from cold work, and these steels could provide an alternative to either conventional stainless steels or high-strength ferritic steels. The purpose of the activities reported here is to examine the potential of advanced stainless steels for construction of tubular components in power boilers. The work is being carried out with collaboration of a commercial boiler manufacturer.

  13. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  14. Quantitative prediction of deformed austenite and transformed ferrite texture in hot-rolled steel sheet

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Tomida, T.; Mohles, V.

    2015-04-01

    A model to quantitatively predict ferrite (α) textures in hot-rolled steel sheets has been developed. In this model, the crystal plasticity model, called “Grain Interaction model (GIA)”, and the transformation texture model, called “Double K-S relation (DKS)”, are linked together. The deformed austenite (γ) texture is predicted by GIA with taking not only the standard {111}<110> slip system but also non-octahedral slip systems into account. Then the transformed a texture is calculated by DKS, in which a nucleated α prefers to have orientation relationship near the Kurdjumov-Sachs relation with both of two neighboring γ grains. For validation, single pass hot-rolling tests on a C-Si-Mn steel were carried out. The comparison between the predicted and the experimental textures shows that the linked model (GIA & DKS) can lead to a remarkable reproduction of the texture of hot-rolled steel sheets.

  15. Optimization of tensile strength of ferritic/austenitic laser-welded components

    NASA Astrophysics Data System (ADS)

    Anawa, E. M.; Olabi, A. G.

    2008-08-01

    Ferritic/austenitic (F/A) joints are a popular dissimilar metal combination used in many applications. F/A joints are usually produced using conventional processes. Laser beam welding (LBW) has recently been successfully used for the production of F/A joints with suitable mechanical properties. In this study, a statistical design of experiment (DOE) was used to optimize selected LBW parameters (laser power, welding speed and focus length). Taguchi approach was used for the selected factors, each having five levels (L-25; 5×3). Joint strength was determined using the notched-tensile strength (NTS) method. The results were analysed using analyses of variance (ANOVA) and the signal-to-noise (S/N) ratios for the optimal parameters, and then compared with the base material. The experimental results indicate that the F/A laser-welded joints are improved effectively by optimizing the input parameters using the Taguchi approach.

  16. Effects of low temperature neutron irradiation on deformation behavior of austenitic stainless steels

    SciTech Connect

    Pawel, J.E.; Rowcliffe, A.F.; Alexander, D.J.; Grossbeck, M.L.; Shiba, K.

    1996-04-01

    An austenitic stainless steel, designated 316LN-IG, has been chosen for the first wall/shield (FW/S) structure for the International Thermonuclear Experimental Reactor (ITER). The proposed operational temperature range for the structure (100 to 250{degree}C) is below the temperature regimes for void swelling (400-600{degree}C) and for helium embrittlement (500-700{degree}C). However, the proposed neutron dose is such that large changes in yield strength, deformation mode, and strain hardening capacity could be encountered which could significantly affect fracture properties. Definition of the irradiation regimes in which this phenomenon occurs is essential to the establishment of design rules to protect against various modes of failure.

  17. Post-irradiation annealing effect on helium diffusivity in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Katsura, R.; Morisawa, J.; Kawano, S.; Oliver, B. M.

    2004-08-01

    As an experimental basis for helium induced weld cracking of neutron irradiated austenitic stainless steels, helium diffusivity has been evaluated by measuring helium release at high temperature. Isochronal and isothermal experiments were performed at temperatures between 700 and 1300 °C for 304 and 316L stainless steels. In 1 h isochronal experiments, helium was released beginning at ˜900 °C and reaching almost 100% at 1300 °C. No apparent differences in helium release were observed between the two stainless steel types. At temperatures between 900 and 1300 °C, the diffusion rate was calculated from the time dependence of the helium release rate to be: D0=4.91 cm 2/s, E=289 kJ/mol. The observed activation energy suggests that the release of helium from the steels is associated with the removal of helium from helium bubbles and/or from vacancy diffusion.

  18. A study on corrosion behavior of austenitic stainless steel in liquid metals at high temperature

    NASA Astrophysics Data System (ADS)

    Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Choi, Kyoung Joon; Bang, In Cheol; Kim, Ji Hyun

    2012-03-01

    The purpose of this study is to investigate the interaction between austenitic stainless steel, AISI 316L, and gallium liquid metal at a high temperature, for the potential application to advanced fast reactor coolants. Test specimens of AISI 316L were exposed to static gallium at 500 °C for up to 700 h in two different cover-gas conditions, including air and vacuum. Similar experimental tests were conducted in gallium alloy liquid metal environments, including Ga-14Sn-6Zn and Ga-8Sn-6Zn, in order to study the effect of addition of alloying elements. The results have shown that the weight change and metal loss of specimens were generally reduced in Ga-14Sn-6Zn and Ga-8Sn-6Zn compared to those in pure gallium at a high temperature.

  19. Post-Irradiation Annealing Effect on Helium Diffusivity in Austenitic Stainless Steels

    SciTech Connect

    Katsura, Ryoei; Morisawa, J; Kawano, S; Oliver, Brian M.

    2004-08-01

    As an experimental basis for helium induced weld cracking of neutron irradiated austenitic stainless steels, helium diffusivity has been evaluated by measuring helium release rates at high temperature. Isochronal and isothermal experiment were performed at temperatures between 700 and 1300 for Type 304 and 316L stainless steels. In 1 hour isochronal experiments, helium was released beginning at {approx}900 and reaching near 100% at 1300. No apparent differences in helium release rate were observed between Type 304 and 316L stainless steels. At temperatures between 1100 and 1300, the diffusion rate was calculated from the time dependence of the helium release rate to be:?D0=3.42?104 cm2/s, E=173.2 kJ/mol. The observed activation energy suggests that the release of helium from the steels is associated with the removal of helium from helium bubbles.

  20. First-principles study of helium, carbon, and nitrogen in austenite, dilute austenitic iron alloys, and nickel

    NASA Astrophysics Data System (ADS)

    Hepburn, D. J.; Ferguson, D.; Gardner, S.; Ackland, G. J.

    2013-07-01

    An extensive set of first-principles density functional theory calculations have been performed to study the behavior of He, C, and N solutes in austenite, dilute Fe-Cr-Ni austenitic alloys, and Ni in order to investigate their influence on the microstructural evolution of austenitic steel alloys under irradiation. The results show that austenite behaves much like other face-centered cubic metals and like Ni in particular. Strong similarities were also observed between austenite and ferrite. We find that interstitial He is most stable in the tetrahedral site and migrates with a low barrier energy of between 0.1 and 0.2 eV. It binds strongly into clusters as well as overcoordinated lattice defects and forms highly stable He-vacancy (VmHen) clusters. Interstitial He clusters of sufficient size were shown to be unstable to self-interstitial emission and VHen cluster formation. The binding of additional He and V to existing VmHen clusters increases with cluster size, leading to unbounded growth and He bubble formation. Clusters with n/m around 1.3 were found to be most stable with a dissociation energy of 2.8 eV for He and V release. Substitutional He migrates via the dissociative mechanism in a thermal vacancy population but can migrate via the vacancy mechanism in irradiated environments as a stable V2He complex. Both C and N are most stable octahedrally and exhibit migration energies in the range from 1.3 to 1.6 eV. Interactions between pairs of these solutes are either repulsive or negligible. A vacancy can stably bind up to two C or N atoms with binding energies per solute atom up to 0.4 eV for C and up to 0.6 eV for N. Calculations in Ni, however, show that this may not result in vacancy trapping as VC and VN complexes can migrate cooperatively with barrier energies comparable to the isolated vacancy. This should also lead to enhanced C and N mobility in irradiated materials and may result in solute segregation to defect sinks. Binding to larger vacancy clusters

  1. Investigation of fatigue behavior of two austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Kalnaus, Sergiy

    2009-12-01

    Fatigue of two stainless steels, AISI 304L and AL6-XN, was systematically investigated. While AISI 304L is well known in industry and has been used in engineering applications over the years, AL6-XN is a relatively new alloy and fatigue properties of this material have not been fully investigated by researchers. Both materials belong to one group of austenitic stainless steels. Tension-compression, torsion, and axial-torsion fatigue experiments were conducted on the two alloys to experimentally investigate the cyclic plasticity behavior and the fatigue behavior. Both materials are found to display significant non-proportional hardening. While AISI 304L exhibits cyclic hardening, the AL6-XN alloy displays overall softening under applied cyclic load. Under tension-compression, the cracking plane is perpendicular to the axial loading direction regardless of the loading amplitude for both alloys. The strain-life curves under fully reversed tension-compression and pure torsion for AISI 304L steel are smooth as expected for most metallic materials and can be described by a three-parameter power equation. However, the shear strain-life curve under pure torsion loading for AL6-XN alloy displays a distinct plateau in the fatigue life range approximately from 20,000 to 60,000 loading cycles. The shear strain amplitude corresponding to the plateau is approximately 1.0%. When the shear strain amplitude is above 1.0% under pure shear, the material displays shear cracking. When the shear strain amplitude is below 1.0%, the material displays tensile cracking. A transition from shear cracking to tensile cracking is associated with the plateau in the shear strain-life curve. Three different multiaxial fatigue criteria were evaluated based upon the experimental results on the material for the capability of the criteria to predict fatigue life and the cracking direction. Despite the difference in theory, all the three multiaxial criteria can reasonably correlate the experiments in

  2. Physical and mechanical modelling of neutron irradiation effect on ductile fracture. Part 1. Prediction of fracture strain and fracture toughness of austenitic steels

    NASA Astrophysics Data System (ADS)

    Margolin, Boris; Sorokin, Alexander; Smirnov, Valeriy; Potapova, Vera

    2014-09-01

    A physical-and-mechanical model of ductile fracture has been developed to predict fracture toughness and fracture strain of irradiated austenitic steels taking into account stress-state triaxiality and radiation swelling. The model is based on criterion of plastic collapse of a material unit cell controlled by strain hardening of a material and criterion of voids coalescence due to channel shearing of voids. The model takes into account deformation voids nucleation and growth of deformation and vacancy voids. For justification of the model experimental data on fracture strain and fracture toughness of austenitic steel 18Cr-10Ni-Ti grade irradiated up to maximal dose 150 dpa with various swelling were used. Experimental data on fracture strain and fracture toughness were compared with the results predicted by the model. It has been shown that for prediction of the swelling effect on fracture toughness the dependence of process zone size on swelling should be taken into account.

  3. On the Mechanical Stability of Austenite Matrix After Martensite Formation in a Medium Mn Steel

    NASA Astrophysics Data System (ADS)

    He, B. B.; Huang, M. X.

    2016-04-01

    The present work employs the nanoindentation technique to investigate the effect of prior martensite formation on the mechanical stability of a retained austenite matrix. It is found that the small austenite grains that were surrounded by martensite laths have higher mechanical stability than the large austenite grains that were free of martensite laths. The higher mechanical stability of small austenite grains is due to its higher amount of defects resulting from the prior martensite formation. These defects act as barriers for the later martensite formation and therefore contribute to the higher mechanical stability of small austenite grains. As a result, the present work suggests that the formation of martensite tends to stabilize the surrounding austenite matrix. Therefore, it may explain the lower transformed amount of martensite after quenching as compared to the theoretical calculation using the Koistinen and Marburger (K-M) equation.

  4. On the Mechanical Stability of Austenite Matrix After Martensite Formation in a Medium Mn Steel

    NASA Astrophysics Data System (ADS)

    He, B. B.; Huang, M. X.

    2016-07-01

    The present work employs the nanoindentation technique to investigate the effect of prior martensite formation on the mechanical stability of a retained austenite matrix. It is found that the small austenite grains that were surrounded by martensite laths have higher mechanical stability than the large austenite grains that were free of martensite laths. The higher mechanical stability of small austenite grains is due to its higher amount of defects resulting from the prior martensite formation. These defects act as barriers for the later martensite formation and therefore contribute to the higher mechanical stability of small austenite grains. As a result, the present work suggests that the formation of martensite tends to stabilize the surrounding austenite matrix. Therefore, it may explain the lower transformed amount of martensite after quenching as compared to the theoretical calculation using the Koistinen and Marburger (K-M) equation.

  5. Grain Boundary Strengthening in High Mn Austenitic Steels

    NASA Astrophysics Data System (ADS)

    Kang, Jee-Hyun; Duan, Shanghong; Kim, Sung-Joon; Bleck, Wolfgang

    2016-05-01

    The Hall-Petch relationship is investigated to find the yield strengths of two high Mn austenitic steels. The Hall-Petch coefficient is found to depend on the overall C concentration and cooling rate, which suggests that the C concentration at the grain boundaries is an important factor. The pile-up model suggests that C raises the stress for the dislocation emission, while the ledge model predicts that C increases the density of ledges which act as dislocation sources.

  6. A discrete dislocation transformation model for austenitic single crystals

    NASA Astrophysics Data System (ADS)

    Shi, J.; Turteltaub, S.; Van der Giessen, E.; Remmers, J. J. C.

    2008-07-01

    A discrete model for analyzing the interaction between plastic flow and martensitic phase transformations is developed. The model is intended for simulating the microstructure evolution in a single crystal of austenite that transforms non-homogeneously into martensite. The plastic flow in the untransformed austenite is simulated using a plane-strain discrete dislocation model. The phase transformation is modeled via the nucleation and growth of discrete martensitic regions embedded in the austenitic single crystal. At each instant during loading, the coupled elasto-plasto-transformation problem is solved using the superposition of analytical solutions for the discrete dislocations and discrete transformation regions embedded in an infinite homogeneous medium and the numerical solution of a complementary problem used to enforce the actual boundary conditions and the heterogeneities in the medium. In order to describe the nucleation and growth of martensitic regions, a nucleation criterion and a kinetic law suitable for discrete regions are specified. The constitutive rules used in discrete dislocation simulations are supplemented with additional evolution rules to account for the phase transformation. To illustrate the basic features of the model, simulations of specimens under plane-strain uniaxial extension and contraction are analyzed. The simulations indicate that plastic flow reduces the average stress at which transformation begins, but it also reduces the transformation rate when compared with benchmark simulations without plasticity. Furthermore, due to local stress fluctuations caused by dislocations, martensitic systems can be activated even though transformation would not appear to be favorable based on the average stress. Conversely, the simulations indicate that the plastic hardening behavior is influenced by the reduction in the effective austenitic grain size due to the evolution of transformation. During cyclic simulations, the coupled plasticity

  7. Intermetallic strengthened alumina-forming austenitic steels for energy applications

    NASA Astrophysics Data System (ADS)

    Hu, Bin

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, materials required are strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe 2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. This research starts with microstructural and microchemical analyses of these intermetallic strengthened alumina-forming austenitic steels in a scanning electron microscope. The microchemistry of precipitates, as determined by energy-dispersive x-ray spectroscopy and transmission electron microscope, is also studied. Different thermo-mechanical treatments were carried out to these stainless steels in an attempt to further improve their mechanical properties. The microstructural and microchemical analyses were again performed after the thermo-mechanical processing. Synchrotron X-ray diffraction was used to measure the lattice parameters of these steels after different thermo-mechanical treatments. Tensile tests at both room and elevated temperatures were performed to study mechanical behaviors of this novel alloy system; the deformation mechanisms were studied by strain rate jump tests at elevated temperatures. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these alumina-forming austenitic steels after creep tests. Experiments were carried out to study the effects of boron and carbon additions in the aged alumina-forming austenitic steels.

  8. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-01-01

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  9. Manganese-stabilized austenitic stainless steels for fusion applications

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1990-08-07

    An austenitic stainless steel that is comprised of Fe, Cr, Mn, C but no Ni or Nb and minimum N. To enhance strength and fabricability minor alloying additions of Ti, W, V, B and P are made. The resulting alloy is one that can be used in fusion reactor environments because the half-lives of the elements are sufficiently short to allow for handling and disposal.

  10. Method for residual stress relief and retained austenite destabilization

    DOEpatents

    Ludtka, Gerard M.

    2004-08-10

    A method using of a magnetic field to affect residual stress relief or phase transformations in a metallic material is disclosed. In a first aspect of the method, residual stress relief of a material is achieved at ambient temperatures by placing the material in a magnetic field. In a second aspect of the method, retained austenite stabilization is reversed in a ferrous alloy by applying a magnetic field to the alloy at ambient temperatures.

  11. Grouping of \\{15 3 10\\} and \\{225\\} martensite crystals and 3-D geometrical model of filling austenite grains by martensite

    NASA Astrophysics Data System (ADS)

    Pankova, M. N.

    2003-10-01

    New variant of grouping of martensite platelets was observed experimentally for the \\{15. 10. 3\\} and \\{522\\} martensites. This variant represents a closed rhombic bipyramid faced eight habit planes of the same type united around one common direction ⪉ngle 110rangle. The space of an austenite grain is filled by joining bipyramids with common edges into larger bipyramids of the next hierarhical level. Different variants of outgrowing faces in pyramidal groups in combination with different sectioning plane of the specimen allow to explain all observed morphological variants of the grouping martensite.

  12. Researches upon the cavitation erosion behaviour of austenite steels

    NASA Astrophysics Data System (ADS)

    Bordeasu, I.; Popoviciu, M. O.; Mitelea, I.; Salcianu, L. C.; Bordeasu, D.; Duma, S. T.; Iosif, A.

    2016-02-01

    Paper analyzes the cavitation erosion behavior of two stainless steels with 100% austenitic structure but differing by the chemical composition and the values of mechanical properties. The research is based on the MDE(t) and MDER(t) characteristic curves. We studied supplementary the aspect of the eroded areas by other to different means: observations with performing optical microscopes and roughness measurements. The tests were done in the T2 vibratory facility in the Cavitation Laboratory of the Timisoara Polytechnic University. The principal purpose of the study is the identification of the elements influencing significantly the cavitation erosion resistance. It was established the effect of the principal chemical components (determining the proportion of the structural components in conformity the Schaffler diagram) upon the cavitation erosion resistance. The results of the researches present the influence of the proportion of unstable austenite upon cavitation erosion resistance. The stainless steel with the great proportion of unstable austenite has the best behavior. The obtained conclusion are important for the metallurgists which realizes the stainless steels used for manufacturing the runners of hydraulic machineries (turbines and pumps) with increased resistance to cavitation attack.

  13. Development of Alumina-Forming Austenitic Stainless Steels

    SciTech Connect

    Brady, Michael P; Yamamoto, Yukinori; Bei, Hongbin; Santella, Michael L; Maziasz, Philip J

    2009-01-01

    This paper presents the results of the continued development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides and intermetallic precipitates. Efforts in fiscal year 2009 focused on the characterization and understanding of long-term oxidation resistance and tensile properties as a function of alloy composition and microstructure. Computational thermodynamic calculations of the austenitic matrix phase composition and the volume fraction of MC, B2-NiAl, and Fe2(Mo,Nb) base Laves phase precipitates were used to interpret oxidation behavior. Of particular interest was the enrichment of Cr in the austenitic matrix phase by additions of Nb, which aided the establishment and maintenance of alumina. Higher levels of Nb additions also increased the volume fraction of B2-NiAl precipitates, which served as an Al reservoir during long-term oxidation. Ageing studies of AFA alloys were conducted at 750 C for times up to 2000 h. Ageing resulted in near doubling of yield strength at room temperature after only 50 h at 750 C, with little further increase in yield strength out to 2000 h of ageing. Elongation was reduced on ageing; however, levels of 15-25% were retained at room temperature after 2000 h of total ageing.

  14. Retained austenite thermal stability in a nanostructured bainitic steel

    SciTech Connect

    Avishan, Behzad; Garcia-Mateo, Carlos; Yazdani, Sasan; Caballero, Francisca G.

    2013-07-15

    The unique microstructure of nanostructured bainite consists of very slender bainitic ferrite plates and high carbon retained austenite films. As a consequence, the reported properties are opening a wide range of different commercial uses. However, bainitic transformation follows the T{sub 0} criteria, i.e. the incomplete reaction phenomena, which means that the microstructure is not thermodynamically stable because the bainitic transformation stops well before austenite reaches an equilibrium carbon level. This article aims to study the different microstructural changes taking place when nanostructured bainite is destabilized by austempering for times well in excess of that strictly necessary to end the transformation. Results indicate that while bainitic ferrite seems unaware of the extended heat treatment, retained austenite exhibits a more receptive behavior to it. - Highlights: • Nanostructured bainitic steel is not thermodynamically stable. • Extensive austempering in these microstructures has not been reported before. • Precipitation of cementite particles is unavoidable at longer austempering times. • TEM, FEG-SEM and XRD analysis were used for microstructural characterization.

  15. Corrosion resistance of kolsterised austenitic 304 stainless steel

    SciTech Connect

    Abudaia, F. B. Khalil, E. O. Esehiri, A. F. Daw, K. E.

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  16. Corrosion resistance of kolsterised austenitic 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Abudaia, F. B.; Khalil, E. O.; Esehiri, A. F.; Daw, K. E.

    2015-03-01

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe2C5. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  17. Enhancing Hydrogen Embrittlement Resistance of Lath Martensite by Introducing Nano-Films of Interlath Austenite

    NASA Astrophysics Data System (ADS)

    Wang, Meimei; Tasan, C. Cem; Koyama, Motomichi; Ponge, Dirk; Raabe, Dierk

    2015-09-01

    Partial reversion of interlath austenite nano-films is investigated as a potential remedy for hydrogen embrittlement susceptibility of martensitic steels. We conducted uniaxial tensile tests on hydrogen-free and pre-charged medium-Mn transformation-induced plasticity-maraging steels with different austenite film thicknesses. Mechanisms of crack propagation and microstructure interaction are quantitatively analyzed using electron channelling contrast imaging and electron backscatter diffraction, revealing a promising strategy to utilize austenite reversion for hydrogen-resistant martensitic steel design.

  18. Retained austenite characteristics in thermomechanically processed Si-Mn transformation-induced plasticity steels

    SciTech Connect

    Hanzaki, A.Z.; Hodgson, P.D.; Yue, S.

    1997-11-01

    It is well known that a significant amount of retained austenite can be obtained in steels containing high additions (>1 pct) of Si, where bainite is the predominant microconstituent. Furthermore, retained austenite with optimum characteristics (volume fraction, composition, morphology, size, and distribution), when present in ferrite plus bainite microstructures, can potentially increase strength and ductility, such that formability and final properties are greatly improved. These beneficial properties can be obtained largely by transformation-induced plasticity (TRIP). In this work, the effect of a microalloy addition (0.035 pct Nb) in a 0.22 pct C-1.55 pct Si-1.55 pct Mn TRIP steel was investigated. Niobium was added to enable the steel to be processed by a variety of thermomechanical processing (TMP) routes, thus allowing the effects of prior austenite grain size, austenite recrystallization temperature, Nb in austenite solid solution, and Nb as a precipitate to be studied. The results, which were compared with those of the same steel without Nb, indicate that the retained austenite volume fraction is strongly influenced by both prior austenite grain size and the state of Nb in austenite. Promoting Nb(CN) precipitation by the change in TMP conditions resulted in a decrease in the V{sub RA}. These findings are rationalized by considering the effects of changes in the TMP conditions on the subsequent transformation characteristics of the parent austenite.

  19. Effects of focused ion beam milling on austenite stability in ferrous alloys

    SciTech Connect

    Knipling, K.E.; Rowenhorst, D.J.; Fonda, R.W.; Spanos, G.

    2010-01-15

    The susceptibility of fcc austenite to transform to bcc during focused ion beam milling was studied in three commercial stainless steels. The alloys investigated, in order of increasing austenite stability, were: (i) a model maraging steel, Sandvik 1RK91; (ii) an AISI 304 austenitic stainless steel; and (iii) AL-6XN, a super-austenitic stainless steel. Small trenches were milled across multiple austenite grains in each alloy using a 30 kV Ga{sup +} ion beam at normal incidence to the specimen surface. The ion beam dose was controlled by varying the trench depth and the beam current. The factors influencing the transformation of fcc austenite to bcc (listed in order of decreasing influence) were found to be: (i) alloy composition (i.e., austenite stability), (ii) ion beam dose (or trench depth), and (iii) crystallographic orientation of the austenite grains. The ion beam current had a negligible influence on the FIB-induced transformation of austenite in these alloys.

  20. Defect and solute properties in dilute Fe-Cr-Ni austenitic alloys from first principles

    NASA Astrophysics Data System (ADS)

    Klaver, T. P. C.; Hepburn, D. J.; Ackland, G. J.

    2012-05-01

    We present results of an extensive set of first-principles density functional theory calculations of point defect formation, binding, and clustering energies in austenitic Fe with dilute concentrations of Cr and Ni solutes. A large number of possible collinear magnetic structures were investigated as appropriate reference states for austenite. We found that the antiferromagnetic single- and double-layer structures with tetragonal relaxation of the unit cell were the most suitable reference states and highlighted the inherent instabilities in the ferromagnetic states. Test calculations for the presence and influence of noncollinear magnetism were performed but proved mostly negative. We calculate the vacancy formation energy to be between 1.8 and 1.95 eV. Vacancy cluster binding was initially weak at 0.1 eV for divacancies but rapidly increased with additional vacancies. Clusters of up to six vacancies were studied and a highly stable octahedral cluster and stacking fault tetrahedron were found with total binding energies of 2.5 and 2.3 eV, respectively. The <100> dumbbell was found to be the most stable self-interstitial with a formation energy of between 3.2 and 3.6 eV and was found to form strongly bound clusters, consistent with other fcc metals. Pair interaction models were found to be capable of capturing the trends in the defect cluster binding energy data. Solute-solute interactions were found to be weak in general, with a maximal positive binding of 0.1 eV found for Ni-Ni pairs and maximum repulsion found for Cr-Cr pairs of -0.1 eV. Solute cluster binding was found to be consistent with a pair interaction model, with Ni-rich clusters being the most stable. Solute-defect interactions were consistent with Ni and Cr being modestly oversized and undersized solutes, respectively, which is exactly opposite to the experimentally derived size factors for Ni and Cr solutes in type 316 stainless steel and in the pure materials. Ni was found to bind to the vacancy and

  1. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    SciTech Connect

    Karaman, Ibrahim; Arroyave, Raymundo

    2015-07-31

    -forming austenitic stainless steel, is fully austenitic, but possesses carbides that were not dissolvable and could not be controlled. This alloy also did not show deformation twinning. Alloy 2 was designed based on alloy 1, but was not fully austenitic and had significant traces of uncontrollable precipitates as well. Alloy 3, also designed based on alloy 1, was mainly austenitic with evolution of a second phase along the grain boundaries, but also had precipitates that were not controllable. Based on the knowledge gained from the first generation of the designed steels, two more steels, called PGAA1 and PGAA2, were proposed using genetic algorithms that, based on the modelling, were supposed to exhibit alumina-scale formation. PGAA1, however, did not demonstrate a fully austenitic structure. PGAA2 could achieve a mostly austenitic structure through thermo-mechanical processing, and was then used for oxidation tests. The oxidation tests of PGAA2, with and without nitrogen impurities, along with alloy 1, suggested that PGAA2 can form alumina-scale similar to alloy 1, but N impurity will prevent formation of such a scale, probably through formation of aluminum nitrides. For the above mentioned genetic algorithm framework of alloy design, separate models were developed for specific design criteria. For prediction of alumina formation in stainless steels, a model was constructed based off of two criteria – effective valence and third element effect. These criteria capture the thermodynamics and kinetics of alumina formation in steels. To test the efficacy and robustness of this model, they were tested against alloys in the literature which had been experimentally verified to exhibit alumina formation and the predictions were in excellent agreement with the experiments. Another meta-model for prediction of twinning in unknown steel compositions was developed by an informatics based machine learning/data mining approach. Stacking Fault Energy data was captured from the literature for a

  2. Mechanism of Austenite Formation from Spheroidized Microstructure in an Intermediate Fe-0.1C-3.5Mn Steel

    NASA Astrophysics Data System (ADS)

    Lai, Qingquan; Gouné, Mohamed; Perlade, Astrid; Pardoen, Thomas; Jacques, Pascal; Bouaziz, Olivier; Bréchet, Yves

    2016-05-01

    The austenitization from a spheroidized microstructure during intercritical annealing was studied in a Fe-0.1C-3.5Mn alloy. The austenite grains preferentially nucleate and grow from intergranular cementite. The nucleation at intragranular cementite is significantly retarded or even suppressed. The DICTRA software, assuming local equilibrium conditions, was used to simulate the austenite growth kinetics at various temperatures and for analyzing the austenite growth mechanism. The results indicate that both the mode and the kinetics of austenite growth strongly depend on cementite composition. With sufficiently high cementite Mn content, the austenite growth is essentially composed of two stages, involving the partitioning growth controlled by Mn diffusion inside ferrite, followed by a stage controlled by Mn diffusion within austenite for final equilibration. The partitioning growth results in a homogeneous distribution of carbon within austenite, which is supported by NanoSIMS carbon mapping.

  3. Mechanism of Austenite Formation from Spheroidized Microstructure in an Intermediate Fe-0.1C-3.5Mn Steel

    NASA Astrophysics Data System (ADS)

    Lai, Qingquan; Gouné, Mohamed; Perlade, Astrid; Pardoen, Thomas; Jacques, Pascal; Bouaziz, Olivier; Bréchet, Yves

    2016-07-01

    The austenitization from a spheroidized microstructure during intercritical annealing was studied in a Fe-0.1C-3.5Mn alloy. The austenite grains preferentially nucleate and grow from intergranular cementite. The nucleation at intragranular cementite is significantly retarded or even suppressed. The DICTRA software, assuming local equilibrium conditions, was used to simulate the austenite growth kinetics at various temperatures and for analyzing the austenite growth mechanism. The results indicate that both the mode and the kinetics of austenite growth strongly depend on cementite composition. With sufficiently high cementite Mn content, the austenite growth is essentially composed of two stages, involving the partitioning growth controlled by Mn diffusion inside ferrite, followed by a stage controlled by Mn diffusion within austenite for final equilibration. The partitioning growth results in a homogeneous distribution of carbon within austenite, which is supported by NanoSIMS carbon mapping.

  4. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-11-17

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  5. Expanding the Universe of Education.

    ERIC Educational Resources Information Center

    Parsons, Elizabeth

    1996-01-01

    Definitions of "education" and "rural" are debunked and expanded. The three major tasks of rural education are educating people to understand their own needs, the unavoidable changes that will transform rural Australia within their lifetimes, and the range of technologies that can enhance their well-being. Presents a strategy for educating…

  6. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  7. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2012-02-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  8. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G

    2015-02-03

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  9. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2012-05-08

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  10. Emotional Giftedness: An Expanded View.

    ERIC Educational Resources Information Center

    Piechowski, Michael M.

    This paper discusses an expanded definition of the concept of emotional giftedness in children as defined by Annemarie Roeper. In contrast to examples of academic and artistic prodigies, cases are reviewed that illustrate less tangibly measured examples of children's giftedness, such as expressions of compassion, moral sensitivity, positive…

  11. Common Ground: Expanding Our Horizons.

    ERIC Educational Resources Information Center

    McDevitt, Michele J.

    In "Common Ground: Dialogue, Understanding, and the Teaching of Composition," Kurt Spellmeyer seeks to familiarize students and teachers with the linguistic and cultural no-man's-land separating them. Reinstating the value of two writing conventions often used by traditional students--expressive and commonplaces--can help expand on the horizons of…

  12. Paul Hanna and "Expanding Communities"

    ERIC Educational Resources Information Center

    Stallones, Jared R.

    2004-01-01

    The development and promotion of the "expanding communities" curriculum design model for teaching elementary school social studies was a crucial episode in the history of social studies. This article profiles how the model developed in the mind of its most effective promoter, Paul Robert Hanna. Paul Hanna understood early in his career the…

  13. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-12-01

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  14. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-10-27

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  15. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2010-09-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  16. 75 FR 70908 - Circular Welded Austenitic Stainless Pressure Pipe From the People's Republic of China: Extension...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... for Revocation in Part, 75 FR 22107 (April 27, 2010). The period of review (``POR'') is September 5... International Trade Administration Circular Welded Austenitic Stainless Pressure Pipe From the People's Republic... of the antidumping duty order on circular welded austenitic stainless pressure pipe from the...

  17. Market Opportunities for Austenitic Stainless Steels in SO2 Scrubbers

    NASA Astrophysics Data System (ADS)

    Michels, Harold T.

    1980-10-01

    Recent U.S. federal legislation has created new opportunities for SO2 scrubbers because all coals, even low-sulfur western coals, will probably require scrubbing to remove SO2 from gaseous combustion products. Scrubbing, the chemical absorption of SO2 by vigorous contact with a slurry—usually lime or limestone—creates an aggressive acid-chloride solution. This presents a promising market for pitting-resistant austenitic stainless steels, but there is active competition from rubber and fiberglass-lined carbon steel. Since the latter are favored on a first-cost basis, stainless steels must be justified on a cost/performance or life-cost basis. Nickel-containing austenitic alloys are favored because of superior field fabricability. Ferritic stainless steels have little utility in this application because of limitations in weldability and resulting poor corrosion resistance. Inco corrosion test spools indicate that molybdenum-containing austenitic alloys are needed. The leanest alloys for this application are 316L and 317L. Low-carbon grades of stainless steel are specified to minimize corrosion in the vicinity of welds. More highly alloyed materials may be required in critical areas. At present, 16,000 MW of scrubber capacity is operational and 17,000 MW is under construction. Another 29,000 MW is planned, bringing the total to 62,000 MW. Some 160,000 MW of scrubber capacity is expected to be placed in service over the next 10 years. This could translate into a total potential market of 80,000 tons of alloy plate for new power industry construction in the next decade. Retrofitting of existing power plants plus scrubbers for other applications such as inert gas generators for oil tankers, smelters, municipal incinerators, coke ovens, the pulp and paper industry, sulfuric acid plants, and fluoride control in phosphoric acid plants will add to this large market.

  18. Austenite Static Recrystallization Kinetics in Microalloyed B Steels

    NASA Astrophysics Data System (ADS)

    Larrañaga-Otegui, Ane; Pereda, Beatriz; Jorge-Badiola, Denis; Gutiérrez, Isabel

    2016-04-01

    Boron is added to steels to increase hardenability, substituting of more expensive elements. Moreover, B acts as a recrystallization delaying element when it is in solid solution. However, B can interact with N and/or C to form nitrides and carbides at high temperatures, limiting its effect on both phase transformation and recrystallization. On the other hand, other elements like Nb and Ti are added due to the retarding effect that they exert on the austenite softening processes, which results in pancaked austenite grains and refined room microstructures. In B steels, Nb and Ti are also used to prevent B precipitation. However, the complex interaction between these elements and its effect on the austenite microstructure evolution during hot working has not been investigated in detail. The present work is focused on the effect the B exerts on recrystallization when added to microalloyed steels. Although B on its own leads to retarded static recrystallization kinetics, when Nb is added a large delay in the static recrystallization times is observed in the 1273 K to 1373 K (1000 °C to 1100 °C) temperature range. The effect is larger than that predicted by a model developed for Nb-microalloyed steels, which is attributed to a synergistic effect of both elements. However, this effect is not so prominent for Nb-Ti-B steels. The complex effect of the composition on recrystallization kinetics is explained as a competition between the solute drag and precipitation pinning phenomena. The effect of the microalloying elements is quantified, and a new model for the predictions of recrystallization kinetics that accounts for the B and Nb+B synergetic effects is proposed.

  19. Austenite Static Recrystallization Kinetics in Microalloyed B Steels

    NASA Astrophysics Data System (ADS)

    Larrañaga-Otegui, Ane; Pereda, Beatriz; Jorge-Badiola, Denis; Gutiérrez, Isabel

    2016-06-01

    Boron is added to steels to increase hardenability, substituting of more expensive elements. Moreover, B acts as a recrystallization delaying element when it is in solid solution. However, B can interact with N and/or C to form nitrides and carbides at high temperatures, limiting its effect on both phase transformation and recrystallization. On the other hand, other elements like Nb and Ti are added due to the retarding effect that they exert on the austenite softening processes, which results in pancaked austenite grains and refined room microstructures. In B steels, Nb and Ti are also used to prevent B precipitation. However, the complex interaction between these elements and its effect on the austenite microstructure evolution during hot working has not been investigated in detail. The present work is focused on the effect the B exerts on recrystallization when added to microalloyed steels. Although B on its own leads to retarded static recrystallization kinetics, when Nb is added a large delay in the static recrystallization times is observed in the 1273 K to 1373 K (1000 °C to 1100 °C) temperature range. The effect is larger than that predicted by a model developed for Nb-microalloyed steels, which is attributed to a synergistic effect of both elements. However, this effect is not so prominent for Nb-Ti-B steels. The complex effect of the composition on recrystallization kinetics is explained as a competition between the solute drag and precipitation pinning phenomena. The effect of the microalloying elements is quantified, and a new model for the predictions of recrystallization kinetics that accounts for the B and Nb+B synergetic effects is proposed.

  20. Pitting corrosion detection of austenitic stainless steel EN 1.4404 in MgCl2 solutions using a machine learning approach

    NASA Astrophysics Data System (ADS)

    Jiménez-Come, M. J.; Muñoz, E.; García, R.; Matres, V.; Martín, M. L.; Trujillo, F.; Turias, I.

    2012-04-01

    Different classification techniques such as Classification Tree (CT), Discriminant Analysis (DA), K-Nearest Neighbour (KNN) and Back-Propagation Neural Networks (BPNN) have been used to model pitting corrosion behaviour of austenitic stainless steel EN 1.4404. The main purpose is to predict the corrosion status of this material in different environmental conditions. Samples of this alloy have been subjected to polarization tests in order to determine pitting potentials values (Epit) with different aqueous conditions: chloride concentration (from MgCl2 solutions), pH values and temperature. In this way, the classification methods employed try to simulate the relation between corrosion status and those various environmental parameters studied. These techniques have generally been regarded as successful, giving a good correlation between experimental and predicted data. High values for precision have been obtained for all the models making these techniques an useful tool to know the behaviour of austenitic stainless steel in different environmental conditions.

  1. Microstructures of laser deposited 304L austenitic stainless steel

    SciTech Connect

    BROOKS,JOHN A.; HEADLEY,THOMAS J.; ROBINO,CHARLES V.

    2000-05-22

    Laser deposits fabricated from two different compositions of 304L stainless steel powder were characterized to determine the nature of the solidification and solid state transformations. One of the goals of this work was to determine to what extent novel microstructure consisting of single-phase austenite could be achieved with the thermal conditions of the LENS [Laser Engineered Net Shape] process. Although ferrite-free deposits were not obtained, structures with very low ferrite content were achieved. It appeared that, with slight changes in alloy composition, this goal could be met via two different solidification and transformation mechanisms.

  2. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi[sub 5-x]Al[sub x] (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  3. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi{sub 5-x}Al{sub x} (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  4. Materials compatibility of hydride storage materials with austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Clark, E. A.

    1992-09-01

    This task evaluated the materials compatibility of LaNi(5-x)Al(x) (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  5. Influence of interface mobility on the evolution of Austenite-Martensite grain assemblies during annealing

    SciTech Connect

    Clarke, Amy J; Santofimia, Maria J; Speer, John G; Zhao, L; Sietsma, Jilt

    2009-01-01

    The quenching and partitioning (Q&P) process is a new heat treatment for the creation of advanced high-strength steels. This treatment consists of an initial partial or full austenitization, followed by a quench to form a controlled amount of martensite and an annealing step to partition carbon atoms from the martensite to the austenite. In this work, the microstructural evolution during annealing of martensite-austenite grain assemblies has been analyzed by means of a modeling approach that considers the influence of martensite-austenite interface migration on the kinetics of carbon partitioning. Carbide precipitation is precluded in the model, and three different assumptions about interface mobility are considered, ranging from a completely immobile interface to the relatively high mobility of an incoherent ferrite-austenite interface. Simulations indicate that different interface mobilities lead to profound differences in the evolution of microstructure that is predicted during annealing.

  6. Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel

    SciTech Connect

    Stasko, Renata . E-mail: rstasko@ap.Cracow.pl; Adrian, Henryk . E-mail: adrian@uci.agh.edu.pl; Adrian, Anna . E-mail: adrian@metal.agh.edu.pl

    2006-06-15

    Austenite grain growth kinetics in a steel containing 0.4% C, 1.8% Cr with different nitrogen contents (in the range 0.0038-0.0412%) and a micralloying addition of 0.078% V were investigated. The investigations were carried out in an austenitising temperature range of 840-1200 deg. C for 30 min. The results of investigations showed that N promotes the grain growth of austenite. The microalloying addition of vanadium protects the austenite grain growth because of carbonitride V(C,N) precipitation and the grain boundary pinning effect of undissolved particles of V(C,N). Using a thermodynamic model, the carbonitride V(C,N) content, undissolved at the austenitising temperature was calculated. At temperatures when a coarsening and dissolution of carbonitride occurs, the austenite grains start to growth. The effect of nitrogen on the type of chord length distribution of austenite grains was analysed.

  7. Effects of Retained Austenite Stability and Volume Fraction on Deformation Behaviors of TRIP Steels

    SciTech Connect

    Choi, Kyoo Sil; Soulami, Ayoub; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2010-10-02

    In this paper, the separate effects of austenite stability and its volume fraction on the deformation behaviors of transformation-induced plasticity (TRIP) steels are investigated based on the microstructure-based finite element modeling method. The effects of austenite stability on the strength, ductility and formability of TRIP steels are first examined based on the microstructure of a commercial TRIP 800 steel. Then, the separate effects of the austenite volume fraction on the overall deformation behaviors of TRIP steels are examined based on the various representative volume elements (RVEs). The computational results suggest that the higher austenite stability is helpful to increase the ductility and formability, but not the UTS. However, the increase of austenite volume fraction alone is not helpful in improving the performance of TRIP steels. This may indicate that various other material factors should also be concurrently adjusted during thermo-mechanical manufacturing process in a way to increase the performance of TRIP steels, which needs further investigation.

  8. Effect of hydrogen on internal friction and Young`s modulus of Fe-Cr-Mn austenitic stainless steel

    SciTech Connect

    Usui, Makoto; Asano, Shigeru

    1996-06-01

    The internal friction technique has so far been applied to studies on hydrogen behavior in iron and steel. The hydrogen cold-work peak is well known for pure iron and has also been observed in BCC iron alloys such as ferritic stainless steel and maraging steel. It provides important information about the hydrogen- dislocation interaction in the BCC iron lattice. Meanwhile, for FCC iron alloys such as austenitic stainless steel, another characteristic hydrogen internal friction peak has been found by authors` group and confirmed by several other investigators. In the present study, type 205 austenitic stainless steel (Fe-17Cr-15Mn) was chosen as a nickel-free FCC iron alloy, in which manganese is totally substituted for nickel in type 304 steel. This steel has an unstable FCC lattice as is the case of type 304 steel, in which hydrogen-induced phase transformation depends on the austenite stability. However, the present steel was confirmed to form the {var_epsilon}{sub H} phase after cathodic hydrogen charging in a similar manner to the stable FCC lattice of type 310 steel. In addition, the Fe-Cr-Mn alloy shows a marked anomaly in the temperature dependence of Young`s modulus: an abrupt drop near the Neel temperature T{sub N} and successive lowering below T{sub N}, as has been reported in the literature for some antiferromagnetic materials. The effect of hydrogen on Young`s modulus was studied by several investigators, but there was great inconsistency among their experimental results. The purpose of this paper is to confirm the hydrogen peak of internal friction in type 205 steel and to examine the effect of hydrogen on Young`s modulus of this steel.

  9. Helical screw expander evaluation project

    NASA Astrophysics Data System (ADS)

    McKay, R.

    1982-03-01

    A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  10. Seal-less cryogenic expander

    SciTech Connect

    Faria, L.E.; Christopher, E.H.

    1987-12-08

    In an expander for use in a split Stirling cycle refrigeration system of the type wherein a displacer moves with reciprocating motion inside an expander housing, and wherein a plunger force and a regenerator force are formed on the displacer, the plunger force cyclically varying and having a time of minimum and maximum plunger force amplitude, and the regenerator force cyclically varying and having a time of minimum and maximum regenerator force amplitude, the improvement is described comprising: (a) means for maintaining displacer forces, such that the maximum plunger force amplitude is substantially equal to the maximum regenerator force amplitude; and (b) means for adjusting a time difference, the time difference being the time between the time of maximum plunger force and the time of maximum regenerator force such that a measure of the cooling power of the refrigeration system is maximized.