Science.gov

Sample records for experience transportation research

  1. Transport Experiments

    NASA Technical Reports Server (NTRS)

    Hall, Timothy M.; Wuebbles, Donald J.; Boering, Kristie A.; Eckman, Richard S.; Lerner, Jean; Plumb, R. Alan; Rind, David H.; Rinsland, Curtis P.; Waugh, Darryn W.; Wei, Chu-Feng

    1999-01-01

    MM II defined a series of experiments to better understand and characterize model transport and to assess the realism of this transport by comparison to observations. Measurements from aircraft, balloon, and satellite, not yet available at the time of MM I [Prather and Remsberg, 1993], provide new and stringent constraints on model transport, and address the limits of our transport modeling abilities. Simulations of the idealized tracers the age spectrum, and propagating boundary conditions, and conserved HSCT-like emissions probe the relative roles of different model transport mechanisms, while simulations of SF6 and C02 make the connection to observations. Some of the tracers are related, and transport diagnostics such as the mean age can be derived from more than one of the experiments for comparison to observations. The goals of the transport experiments are: (1) To isolate the effects of transport in models from other processes; (2) To assess model transport for realistic tracers (such as SF6 and C02) for comparison to observations; (3) To use certain idealized tracers to isolate model mechanisms and relationships to atmospheric chemical perturbations; (4) To identify strengths and weaknesses of the treatment of transport processes in the models; (5) To relate evaluated shortcomings to aspects of model formulation. The following section are included:Executive Summary, Introduction, Age Spectrum, Observation, Tropical Transport in Models, Global Mean Age in Models, Source-Transport Covariance, HSCT "ANOY" Tracer Distributions, and Summary and Conclusions.

  2. Development of a Dynamically Scaled Generic Transport Model Testbed for Flight Research Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas; Langford, William; Belcastro, Christine; Foster, John; Shah, Gautam; Howland, Gregory; Kidd, Reggie

    2004-01-01

    This paper details the design and development of the Airborne Subscale Transport Aircraft Research (AirSTAR) test-bed at NASA Langley Research Center (LaRC). The aircraft is a 5.5% dynamically scaled, remotely piloted, twin-turbine, swept wing, Generic Transport Model (GTM) which will be used to provide an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. The unique design challenges arising from the dimensional, weight, dynamic (inertial), and actuator scaling requirements necessitated by the research community are described along with the specific telemetry and control issues associated with a remotely piloted subscale research aircraft. Development of the necessary operational infrastructure, including operational and safety procedures, test site identification, and research pilots is also discussed. The GTM is a unique vehicle that provides significant research capacity due to its scaling, data gathering, and control characteristics. By combining data from this testbed with full-scale flight and accident data, wind tunnel data, and simulation results, NASA will advance and validate control upset prevention and recovery technologies for transport aircraft, thereby reducing vehicle loss-of-control accidents resulting from adverse and upset conditions.

  3. Commercial Experiment Transporter: COMET

    SciTech Connect

    Wessling, F.C.; Robinson, M.; Martinez, R.S.; Gallimore, T.; Combs, N.

    1994-09-01

    A launch system consisting of ground-support equipment, a four-stage rocket, a service module, a recovery system and a recovery site, and an orbital operations center is being assembled. The system is designed to launch 818 kg (1800 lb) to a 552-km (300-n.mi.) low earth orbit at a 40-deg inclination. Experiment space exists in both the service module and the recovery system. The service module provides space for 68 kg (150 lb) of experiments plus telemetry services, attitude control, and power and uses no consumables to maintain attitude. Consequently, the service module can maintain orbit attitude for years. Power of 400 W is supplied by solar cells and batteries for both experiment operation and housekeeping. The recovery system houses an experiment carrier for 136 kg (300 lb) of experiments, a retro rocket, a heat shield, and a parachute. An orbital operations control center provides tracking, telemetry, and commanding for the satellite. The payloads are also briefly described. The first launch was scheduled for 1995.

  4. Tungsten impurity transport experiments in Alcator C-Mod to address high priority research and development for ITER

    SciTech Connect

    Loarte, A.; Polevoi, A. R.; Hosokawa, M.; Reinke, M. L.; Chilenski, M.; Howard, N.; Hubbard, A.; Hughes, J. W.; Rice, J. E.; Walk, J.; Köchl, F.; Pütterich, T.; Dux, R.; Zhogolev, V. E.

    2015-05-15

    Experiments in Alcator C-Mod tokamak plasmas in the Enhanced D-alpha H-mode regime with ITER-like mid-radius plasma density peaking and Ion Cyclotron Resonant heating, in which tungsten is introduced by the laser blow-off technique, have demonstrated that accumulation of tungsten in the central region of the plasma does not take place in these conditions. The measurements obtained are consistent with anomalous transport dominating tungsten transport except in the central region of the plasma where tungsten transport is neoclassical, as previously observed in other devices with dominant neutral beam injection heating, such as JET and ASDEX Upgrade. In contrast to such results, however, the measured scale lengths for plasma temperature and density in the central region of these Alcator C-Mod plasmas, with density profiles relatively flat in the core region due to the lack of core fuelling, are favourable to prevent inter and intra sawtooth tungsten accumulation in this region under dominance of neoclassical transport. Simulations of ITER H-mode plasmas, including both anomalous (modelled by the Gyro-Landau-Fluid code GLF23) and neoclassical transport for main ions and tungsten and with density profiles of similar peaking to those obtained in Alcator C-Mod show that accumulation of tungsten in the central plasma region is also unlikely to occur in stationary ITER H-mode plasmas due to the low fuelling source by the neutral beam injection (injection energy ∼ 1 MeV), which is in good agreement with findings in the Alcator C-Mod experiments.

  5. Integration and use of Microgravity Research Facility: Lessons learned by the crystals by vapor transport experiment and Space Experiments Facility programs

    NASA Technical Reports Server (NTRS)

    Heizer, Barbara L.

    1992-01-01

    The Crystals by Vapor Transport Experiment (CVTE) and Space Experiments Facility (SEF) are materials processing facilities designed and built for use on the Space Shuttle mid deck. The CVTE was built as a commercial facility owned by the Boeing Company. The SEF was built under contract to the UAH Center for Commercial Development of Space (CCDS). Both facilities include up to three furnaces capable of reaching 850 C minimum, stand-alone electronics and software, and independent cooling control. In addition, the CVTE includes a dedicated stowage locker for cameras, a laptop computer, and other ancillary equipment. Both systems are designed to fly in a Middeck Accommodations Rack (MAR), though the SEF is currently being integrated into a Spacehab rack. The CVTE hardware includes two transparent furnaces capable of achieving temperatures in the 850 to 870 C range. The transparent feature allows scientists/astronauts to directly observe and affect crystal growth both on the ground and in space. Cameras mounted to the rack provide photodocumentation of the crystal growth. The basic design of the furnace allows for modification to accommodate techniques other than vapor crystal growth. Early in the CVTE program, the decision was made to assign a principal scientist to develop the experiment plan, affect the hardware/software design, run the ground and flight research effort, and interface with the scientific community. The principal scientist is responsible to the program manager and is a critical member of the engineering development team. As a result of this decision, the hardware/experiment requirements were established in such a way as to balance the engineering and science demands on the equipment. Program schedules for hardware development, experiment definition and material selection, flight operations development and crew training, both ground support and astronauts, were all planned and carried out with the understanding that the success of the program science

  6. Urban public transportation research, 1990

    SciTech Connect

    Lee, D.A.; Barnum, D.T.; Gleason, J.M.; Mundle, S.R.; Kraus, J.E.

    1990-01-01

    The 30 papers in the Record provide a good cross section of current research in public transportation. They have been grouped into six topics--management, finance, planning, bus operations, rail transit operations, and new technology.

  7. Ridesharing and transportation for the disadvantaged. Transportation research record

    SciTech Connect

    Lauritzen, T.; McKelvey, F.X.; Lyles, R.W.; Lighthizer, D.R.; Hardy, D.K.

    1988-01-01

    The 11 papers in the report deal with the following areas: a 1-year review of performance measures for the Chicago transit authority's special services contracted service for the elderly and handicapped; evaluation of a demonstration small bus program for the elderly and handicapped; travel mode choice behavior and physical barrier constraints among the elderly and handicapped: an examination of travel-mode preferences; the role of private enterprise in elderly and handicapped transportation in Canada; special transportation-service in Sweden--involvement of private operators; role of the private sector in the delivery of transportation services to the elderly and handicapped in the United States; suburban activity center transportation demand management market research study; commuting behavior of Hawaii state workers in Honolulu: implications for transportation system management strategies; mobility and specialized transportation for elderly and for disabled persons: a view from four selected countries; an inventory of twelve paratransit service delivery experiences; integrating social-service client transportation and special needs transportation systems: the Portland experience.

  8. Experiences of Collaborative Research

    ERIC Educational Resources Information Center

    Kahneman, Daniel

    2003-01-01

    The author's personal history of the research that led to his recognition in economics is described, focusing on the process of collaboration and on the experience of controversy. The author's collaboration with Amos Tversky dealt with 3 major topics: judgment under uncertainty, decision making, and framing effects. A subsequent collaboration,…

  9. Transport experiments with Dirac electrons

    NASA Astrophysics Data System (ADS)

    Checkelsky, Joseph George

    This thesis presents transport experiments performed on solid state systems in which the behavior of the charge carriers can be described by the Dirac equation. Unlike the massive carriers in a typical material, in these systems the carriers behave like massless fermions with a photon-like dispersion predicted to greatly modify their spin and charge transport properties. The first system studied is graphene, a crystalline monolayer of carbon arranged in a hexagonal lattice. The band structure calculated from the hexagonal lattice has the form of the massless Dirac Hamiltonian. At the charge neutral Dirac point, we find that application of a magnetic field drives a transition to an insulating state. We also study the thermoelectric properties of graphene and find that the states near the Dirac point have a unique response compared to those at higher charge density. The second system is the 3D topological insulator Bi2Se3, where a Dirac-like dispersion for states on the 2D surface of the insulating 3D crystal arises as a result of the topology of the 3D bands and time reversal symmetry. To access the transport properties of the 2D states, we suppress the remnant bulk conduction channel by chemical doping and electrostatic gating. In bulk crystals we find strong quantum corrections to transport at low temperature when the bulk conduction channel is maximally suppressed. In microscopic crystals we are able better to isolate the surface conduction channel properties. We identify in-gap conducting states that have relatively high mobility compared to the bulk and exhibit weak anti-localization, consistent with predictions for protected 2D surface states with strong spin-orbit coupling.

  10. Electrical Transport Experiments at High Pressure

    SciTech Connect

    Weir, S

    2009-02-11

    High-pressure electrical measurements have a long history of use in the study of materials under ultra-high pressures. In recent years, electrical transport experiments have played a key role in the study of many interesting high pressure phenomena including pressure-induced superconductivity, insulator-to-metal transitions, and quantum critical behavior. High-pressure electrical transport experiments also play an important function in geophysics and the study of the Earth's interior. Besides electrical conductivity measurements, electrical transport experiments also encompass techniques for the study of the optoelectronic and thermoelectric properties of materials under high pressures. In addition, electrical transport techniques, i.e., the ability to extend electrically conductive wires from outside instrumentation into the high pressure sample chamber have been utilized to perform other types of experiments as well, such as high-pressure magnetic susceptibility and de Haas-van Alphen Fermi surface experiments. Finally, electrical transport techniques have also been utilized for delivering significant amounts of electrical power to high pressure samples, for the purpose of performing high-pressure and -temperature experiments. Thus, not only do high-pressure electrical transport experiments provide much interesting and valuable data on the physical properties of materials extreme compression, but the underlying high-pressure electrical transport techniques can be used in a number of ways to develop additional diagnostic techniques and to advance high pressure capabilities.

  11. DHS Research Experience Summary

    SciTech Connect

    Venkatachalam, V

    2008-10-24

    I learned a great deal during my summer internship at Lawrence Livermore National Laboratory (LLNL). I plan to continue a career in research, and I feel that my experience at LLNL has been formative. I was exposed to a new area of research, as part of the Single Particle Aerosol Mass Spectrometry (SPAMS) group, and I had the opportunity to work on projects that I would not have been able to work on anywhere else. The projects both involved the use of a novel mass spectrometer that was developed at LLNL, so I would not have been able to do this research at any other facility. The first project that Zachary and I worked on involved using SPAMS to detect pesticides. The ability to rapidly detect pesticides in a variety of matrices is applicable to many fields including public health, homeland security, and environmental protection. Real-time, or near real-time, detection of potentially harmful or toxic chemical agents can offer significant advantages in the protection of public health from accidental or intentional releases of harmful pesticides, and can help to monitor the environmental effects of controlled releases of pesticides for pest control purposes. The use of organophosphate neurotoxins by terrorists is a possibility that has been described; this is a legitimate threat, considering the ease of access, toxicity, and relatively low cost of these substances. Single Particle Aerosol Mass Spectrometry (SPAMS) has successfully been used to identify a wide array of chemical compounds, including drugs, high explosives, biological materials, and chemical warfare agent simulants. Much of this groundbreaking work was carried out by our group at LLNL. In our work, we had the chance to show that SPAMS fulfills a demonstrated need for a method of carrying out real-time pesticide detection with minimal sample preparation. We did this by using a single particle aerosol mass spectrometer to obtain spectra of five different pesticides. Pesticide samples were chosen to

  12. Research Experiences for Undergraduates.

    ERIC Educational Resources Information Center

    Rettig, Terrence W.; And Others

    1990-01-01

    Reviewed are six programs at different colleges and universities which provide research opportunities for undergraduate students in physics, astronomy, marine biology, meteorology, and anthropology. Background, features, and accomplishments of the programs are discussed. (CW)

  13. Research on advanced transportation systems

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  14. Intervention research: GAO experiences.

    PubMed

    Grasso, P G

    1996-04-01

    This paper describes tools of program evaluation that may prove useful in conducting research on occupational health and safety interventions. It presents examples of three studies conducted by the U.S. General Accounting Office that illustrate a variety of techniques for collecting and analyzing data on program interventions, including analysis of extant data, synthesis of results of existing studies, and combining data from administrative files with survey results. At the same time, it stresses the importance and difficulty of constructing an adequate "theory" of how the intervention is expected to affect outcomes, both for guiding data collection and for allowing adequate interpretation of results. PMID:8728140

  15. Air medical transportation in India: Our experience

    PubMed Central

    Khurana, Himanshu; Mehta, Yatin; Dubey, Sunil

    2016-01-01

    Background and Aims: Long distance air travel for medical needs is on the increase worldwide. The condition of some patients necessitates specially modified aircraft, and monitoring and interventions during transport by trained medical personnel. This article presents our experience in domestic and international interhospital air medical transportation from January 2010 to January 2014. Material and Methods: Hospital records of all air medical transportation undertaken to the institute during the period were analyzed for demographics, primary etiology, and events during transport. Results: 586 patients, 453 (77.3%) males and 133 (22.6%) females of ages 46.7 ± 12.6 years and 53.4 ± 9.7 years were transported by us to the institute. It took 3030 flying hours with an average of 474 ± 72 min for each mission. The most common indication for transport was cardiovascular diseases in 210 (35.8%) and central nervous system disease in 120 (20.4%) cases. The overall complication rate was 5.3% There was no transport related mortality. Conclusion: Cardiac and central nervous system ailments are the most common indication for air medical transportation. These patients may need attention and interventions as any critical patient in the hospital but in a difficult environment lacking space and help. Air medical transport carries no more risk than ground transportation. PMID:27625486

  16. Program plan and summary, remote fluvial experimental (REFLEX) series: Research experiments using advanced remote sensing technologies with emphasis on hydrologic transport, and hydrologic-ecologic interactions

    SciTech Connect

    Wobber, F.J.

    1986-10-01

    This document describes research designed to evaluate advanced remote sensing technologies for environmental research. A series of Remote Fluvial Experiments (REFLEX) - stressing new applications of remote sensing systems and use of advanced digital analysis methods - are described. Program strategy, experiments, research areas, and future initiatives are summarized. The goals of REFLEX are: (1) to apply new and developing aerial and satellite remote sensing technologies - including both advanced sensor systems and digital/optical processing - for interdisciplinary scientific experiments in hydrology and to hydrologic/ecologic interactions; (2) to develop new concepts for processing and analyzing remote sensing data for general scientific application; and (3) to demonstrate innovative analytical technologies that advance the state of the art in applying information from remote sensing systems, for example, supercomputer processing and analysis.

  17. Bacterial Transport Experiments in Fractured Crystalline Bedrock

    USGS Publications Warehouse

    Becker, M.W.; Metge, D.W.; Collins, S.A.; Shapiro, A.M.; Harvey, R.W.

    2003-01-01

    The efficiency of contaminant biodegradation in ground water depends, in part, on the transport properties of the degrading bacteria. Few data exist concerning the transport of bacteria in saturated bedrock, particularly at the field scale. Bacteria and microsphere tracer experiments were conducted in a fractured crystalline bedrock under forced-gradient conditions over a distance of 36 m. Bacteria isolated from the local ground water were chosen on the basis of physicochemical and physiological differences (shape, cell-wall type, motility), and were differentially stained so that their transport behavior could be compared. No two bacterial strains transported in an identical manner, and microspheres produced distinctly different breakthrough curves than bacteria. Although there was insufficient control in this field experiment to completely separate the effects of bacteria shape, reaction to Gram staining, cell size, and motility on transport efficiency, it was observed that (1) the nonmotile, mutant strain exhibited better fractional recovery than the motile parent strain; (2) Gram-negative rod-shaped bacteria exhibited higher fractional recovery relative to the Gram-positive rod-shaped strain of similar size; and (3) coccoidal (spherical-shaped) bacteria transported better than all but one strain of the rod-shaped bacteria. The field experiment must be interpreted in the context of the specific bacterial strains and ground water environment in which they were conducted, but experimental results suggest that minor differences in the physical properties of bacteria can lead to major differences in transport behavior at the field scale.

  18. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry

  19. Airborne Research Experience for Educators

    NASA Astrophysics Data System (ADS)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  20. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry

  1. Designing Effective Undergraduate Research Experiences

    NASA Astrophysics Data System (ADS)

    Severson, S.

    2010-12-01

    I present a model for designing student research internships that is informed by the best practices of the Center for Adaptive Optics (CfAO) Professional Development Program. The dual strands of the CfAO education program include: the preparation of early-career scientists and engineers in effective teaching; and changing the learning experiences of students (e.g., undergraduate interns) through inquiry-based "teaching laboratories." This paper will focus on the carry-over of these ideas into the design of laboratory research internships such as the CfAO Mainland internship program as well as NSF REU (Research Experiences for Undergraduates) and senior-thesis or "capstone" research programs. Key ideas in maximizing student learning outcomes and generating productive research during internships include: defining explicit content, scientific process, and attitudinal goals for the project; assessment of student prior knowledge and experience, then following up with formative assessment throughout the project; setting reasonable goals with timetables and addressing motivation; and giving students ownership of the research by implementing aspects of the inquiry process within the internship.

  2. UCN Transport for the UCNA Experiment

    NASA Astrophysics Data System (ADS)

    Vorndick, Brittney

    2014-03-01

    The UCNA Experiment at Los Alamos National Laboratory utilizes polarized ultracold neutrons (UCN) from a spallation-driven solid deuterium UCN converter. The polarized UCN are bottled in a 1 Tesla 2 × 2 π magnetic spectrometer to measure the β asymmetry parameter A. In order to store the UCN, the materials used for transport and storage of UCN is critical. Diamond-like carbon (DLC) coatings are used in order to minimize depolarization and loss. We discuss the fabrication, characterization, and modeling of DLC-coated guides used in the experiment.

  3. Cryogenics Research and Engineering Experience

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  4. Design of a proof of principle high current transport experiment

    SciTech Connect

    Lund, S.M.; Bangerter, R.O.; Barnard, J.J.; Celata, C.M.; Faltens, A.; Friedman, A.; Kwan, J.W.; Lee, E.P.; Seidl, P.A.

    2000-01-15

    Preliminary designs of an intense heavy-ion beam transport experiment to test issues for Heavy Ion Fusion (HIF) are presented. This transport channel will represent a single high current density beam at full driver scale and will evaluate practical issues such as aperture filling factors, electrons, halo, imperfect vacuum, etc., that cannot be fully tested using scaled experiments. Various machine configurations are evaluated in the context of the range of physics and technology issues that can be explored in a manner relevant to a full scale driver. it is anticipated that results from this experiment will allow confident construction of next generation ''Integrated Research Experiments'' leading to a full scale driver for energy production.

  5. Nevada commercial spent nuclear fuel transportation experience

    SciTech Connect

    1991-09-01

    The purpose of this report is to present an historic overview of commercial reactor spent nuclear fuel (SNF) shipments that have occurred in the state of Nevada, and to review the accident and incident experience for this type of shipments. Results show that between 1964 and 1990, 309 truck shipments covering approximately 40,000 miles moved through Nevada; this level of activity places Nevada tenth among the states in the number of truck shipments of SNF. For the same period, 15 rail shipments moving through the State covered approximately 6,500 miles, making Nevada 20th among the states in terms of number of rail shipments. None of these shipments had an accident or an incident associated with them. Because the data for Nevada are so limited, national data on SNF transportation and the safety of truck and rail transportation in general were also assessed.

  6. Joint University Program for Air Transportation Research, 1985

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.

  7. Express Routing Transportation Surveys. Research Department Report.

    ERIC Educational Resources Information Center

    Bell, Peter D.

    Express routing, under consideration by San Diego (California) Public Schools, is a form of bus transportation that picks up and drops off students at centralized points instead of driving through residential neighborhoods. This report examines other, similar districts' experiences in applying express routing in integration and other school…

  8. Experiment Definition Using the Space Laboratory, Long Duration Exposure Facility, and Space Transportation System Shuttle

    NASA Technical Reports Server (NTRS)

    Sheppard, Albert P.; Wood, Joan M.

    1976-01-01

    Candidate experiments designed for the space shuttle transportation system and the long duration exposure facility are summarized. The data format covers: experiment title, Experimenter, technical abstract, benefits/justification, technical discussion of experiment approach and objectives, related work and experience, experiment facts space properties used, environmental constraints, shielding requirements, if any, physical description, and sketch of major elements. Information was also included on experiment hardware, research required to develop experiment, special requirements, cost estimate, safety considerations, and interactions with spacecraft and other experiments.

  9. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  10. Statistical description of sediment transport experiments

    NASA Astrophysics Data System (ADS)

    Ancey, Christophe; Böhm, Tobias; Jodeau, Magali; Frey, Philippe

    2006-07-01

    A longstanding problem in the study of sediment transport in gravel-bed rivers is related to the physical mechanisms governing bed resistance and particle motion. To study this problem, we investigated the motion of coarse spherical glass beads entrained by a steady shallow turbulent water flow down a steep two-dimensional channel with a mobile bed. This experimental facility is the simplest representation of sediment transport on the laboratory scale, with the tremendous advantages that boundary conditions are perfectly controlled and a wealth of information can be obtained using imaging techniques. Flows were filmed from the side by a high-speed camera. Using image processing software made it possible to determine the flow characteristics such as particle trajectories, their state of motion (rest, rolling, or saltating motion), and flow depth. In accordance with earlier investigations, we observed that over short time periods, sediment transport appeared as a very intermittent process. To interpret these results, we revisited Einstein’s theory on sediment and derived the statistical properties (probability distribution and autocorrelation function) of the key variables such as the solid discharge and the number of moving particles. Analyzing the autocorrelation functions and the probability distributions of our measurements revealed the existence of long-range correlations. For instance, whereas theory predicts a Binomial distribution for the number of moving particles, experiments demonstrated that a negative binomial distribution best fit our data, which emphasized the crucial role played by wide fluctuations. These frequent wide fluctuations stemmed particle entrainment and motion being collective phenomena rather than individual processes, contrary to what is assumed in most theoretical models.

  11. Heavy duty transport research needs assessment

    SciTech Connect

    Not Available

    1991-09-13

    As a result of the desire to decrease the dependence of the US on foreign petroleum as a transportation fuel, this report assesses the research needs to further develop heavy duty engines. The topics covered include diesel engines, alternative fuels, electric vehicle technology, gas turbine engines, and stirling cycle alternative engines. (GHH)

  12. Transport systems research vehicle color display system operations manual

    NASA Technical Reports Server (NTRS)

    Easley, Wesley C.; Johnson, Larry E.

    1989-01-01

    A recent upgrade of the Transport Systems Research Vehicle operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center has resulted in an all-glass panel in the research flight deck. Eight ARINC-D size CRT color displays make up the panel. A major goal of the display upgrade effort was ease of operation and maintenance of the hardware while maintaining versatility needed for flight research. Software is the key to this required versatility and will be the area demanding the most detailed technical design expertise. This document is is intended to serve as a single source of quick reference information needed for routine operation and system level maintenance. Detailed maintenance and modification of the display system will require specific design documentation and must be accomplished by individuals with specialized knowledge and experience.

  13. Partnership in Undergraduate Research Experience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Practical laboratory and work experience has been helpful in reinforcing the undergraduate educational experience. With limited resources, individual organizations may struggle to give a student a well rounded opportunity. Most undergraduates work within internships or cooperative educational fram...

  14. Design Experiments in Educational Research.

    ERIC Educational Resources Information Center

    Cobb, Paul; Confrey, Jere; diSessa, Andrea; Lehrer, Richard; Schauble, Leona

    2003-01-01

    Indicates the range of purposes and variety of settings in which design experiments have been conducted, delineating five crosscutting features that collectively differentiate design experiments from other methodologies. Clarifies what is involved in preparing for and carrying out a design experiment and in conducting a retrospective analysis of…

  15. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Research scientist Greg Goins monitors radish growth under a sulfur-microwave light at Hangar L at the Cape Canaveral Air Force Station. The research he is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long- duration spaceflight and environmental/ecological stewardship.

  16. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Research assistant Trisha Bruno performs an analysis on potato samples at Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.

  17. Experience Effect in E-Learning Research

    NASA Astrophysics Data System (ADS)

    Wu, Bing; Xu, WenXia; Ge, Jun

    This study is a productivity review on the literature gleaned from SSCI, SCIE databases concerning experience in E-Learning research. The result indicates that the number of literature productions on experience effect in ELearning research is still growing from 2005. The main research development country is Croatia, and from the analysis of the publication year, the number of papers is increasing to the peaking in 2010. And the main source title is British Journal of Educational Technology. In addition the subject area concentrated on Education & Educational Research. Moreover the research focuses on are mainly survey research and empirical research, in order to explore experience effect in E-Learning research. Also the limitations and future research of these research were discussed, so that the direction for further research work can be exploited

  18. Research experiments at Hangar L

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Visiting scientist Cheryl Frazier monitors a prototype composting machine in Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.

  19. Transportation planning and automated guideways. Transportation research record

    SciTech Connect

    Not Available

    1988-01-01

    The 8 papers in this report deal with the following areas: Green River Valley transportation action plan: the development of a successful interjurisdictional road-improvement plan; public-involvement process for identifying problems and alternative solutions for the Year 2010 transportation plan; Miami-downtown people mover demand analysis model; traffic-modeling techniques for the developing world: case studies; some issues in transport planning for third world cities; use of models by french consultants for urban transport planning in developing countries; stepwise regression model of development at nonmetropolitan interchanges; transport in rural areas of developing countries: empirical findings from Western Province, Zambia.

  20. Researching the Study Abroad Experience

    ERIC Educational Resources Information Center

    McLeod, Mark; Wainwright, Philip

    2009-01-01

    The authors propose a paradigm for rigorous scientific assessment of study abroad programs, with the focus being on how study abroad experiences affect psychological constructs as opposed to looking solely at study-abroad-related outcomes. Social learning theory is used as a possible theoretical basis for making testable hypotheses and guiding…

  1. Constituting Information Technology Research: The Experience of IT Researchers

    ERIC Educational Resources Information Center

    Pham, Binh; Bruce, Christine; Stoodley, Ian

    2005-01-01

    The collective consciousness of effective groups of researchers is characterized by shared understandings of their research object or territory. In this study, we adopted a phenomenographic approach to investigate information technology (IT) research, and its objects and territories, as they are constituted in the experience of IT researchers.…

  2. Academic Factors that Affect Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Taraban, Roman; Logue, Erin

    2012-01-01

    Undergraduate research experiences are considered an essential component in college curricula, and there is an ideological push to provide these experiences to all students. However, it is not clear whether engagement in research is better suited for higher ability undergraduates late in their programs or for all undergraduates and whether…

  3. Limitations of Experiments in Education Research

    ERIC Educational Resources Information Center

    Schanzenbach, Diane Whitmore

    2012-01-01

    Research based on randomized experiments (along with high-quality quasi-experiments) has gained traction in education circles in recent years. There is little doubt this has been driven in large part by the shift in research funding strategy by the Department of Education's Institute of Education Sciences under Grover Whitehurst's lead, described…

  4. Lessons Learned from Bacterial Transport Experiments at the South Oyster Site

    SciTech Connect

    Scheibe, Timothy D; Hubbard, Susan S; Onstott, Tullis C; Deflaun, Mary F

    2011-09-27

    This paper provides a high-level review of bacterial transport experiments conducted by a multi-investigator, multi-institution, multi-disciplinary team of researchers under the auspices of the U. S. Department of Energy. The experiments considered were conducted during the time period 1999-2001 at a field site near the town of Oyster, Virginia known as the South Oyster Site, and included four major experimental campaigns aimed at understanding and quantifying bacterial transport in the subsurface environment. Several key elements of the research are discussed here: 1) Quantification of bacterial transport in physically and biogeochemically heterogeneous aquifers, 2) evaluation of the efficacy of conventional colloid filtration theory, 3) scale effects in bacterial transport, 4) development of new methods for microbial enumeration and screening for low adhesion strains, 5) application of novel hydrogeophysical techniques for aquifer characterization, and 6) experiences regarding management of a large field research effort.

  5. Designing Effective Research Experiences for Undergraduates (Invited)

    NASA Astrophysics Data System (ADS)

    Jones Whyte, P.; Dalbotten, D. M.

    2009-12-01

    The undergraduate research experience has been recognized as a valuable component of preparation for graduate study. As competition for spaces in graduate schools become more keen students benefit from a formal introduction to the life of a scholar. Over the last twenty years a model of preparing students for graduate study with the research experience as the base has been refined at the University of Minnesota. The experience includes assignment with a faculty member and a series of seminars that support the experience. The seminars cover topics to include academic writing, scholarly literature review, writing of the abstract, research subject protection protocols, GRE test preparation, opportunities to interact with graduate student, preparing the graduate school application, and preparation of a poster to demonstrate the results of the research. The next phase of the process is to determine the role of the undergraduate research experience in the graduate school admission process.

  6. Evaluation of a BSW Research Experience: Improving Student Research Competency

    ERIC Educational Resources Information Center

    Whipple, Ellen E.; Hughes, Anne; Bowden, Susan

    2015-01-01

    This article examines the experience of 24 BSW students in a faculty-mentored undergraduate research experience (URE) over the course of 1 academic year. In particular, we sought to better understand students' self-perceived sense of competency across 15 specific research skills. In addition, we examined the URE's impact on students' knowledge…

  7. Multicomponent reactive transport modeling of uranium bioremediation field experiments

    SciTech Connect

    Fang, Yilin; Yabusaki, Steven B.; Morrison, Stan J.; Amonette, James E.; Long, Philip E.

    2009-10-15

    Biostimulation field experiments with acetate amendment are being performed at a former uranium mill tailings site in Rifle, Colorado, to investigate subsurface processes controlling in situ bioremediation of uranium-contaminated groundwater. An important part of the research is identifying and quantifying field-scale models of the principal terminal electron-accepting processes (TEAPs) during biostimulation and the consequent biogeochemical impacts to the subsurface receiving environment. Integrating abiotic chemistry with the microbially mediated TEAPs in the reaction network brings into play geochemical observations (e.g., pH, alkalinity, redox potential, major ions, and secondary minerals) that the reactive transport model must recognize. These additional constraints provide for a more systematic and mechanistic interpretation of the field behaviors during biostimulation. The reaction network specification developed for the 2002 biostimulation field experiment was successfully applied without additional calibration to the 2003 and 2007 field experiments. The robustness of the model specification is significant in that 1) the 2003 biostimulation field experiment was performed with 3 times higher acetate concentrations than the previous biostimulation in the same field plot (i.e., the 2002 experiment), and 2) the 2007 field experiment was performed in a new unperturbed plot on the same site. The biogeochemical reactive transport simulations accounted for four TEAPs, two distinct functional microbial populations, two pools of bioavailable Fe(III) minerals (iron oxides and phyllosilicate iron), uranium aqueous and surface complexation, mineral precipitation, and dissolution. The conceptual model for bioavailable iron reflects recent laboratory studies with sediments from the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site that demonstrated that the bulk (~90%) of Fe(III) bioreduction is associated with the phyllosilicates rather than the iron oxides

  8. Quadrupole transport experiment with space charge dominated cesium ion beam

    SciTech Connect

    Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.; Warwick, A.

    1984-08-01

    The purpose of the experiment is to investigate the beam current transport limit in a long quadrupole-focussed transport channel in the space charge dominated region where the space charge defocussing force is almost as large as the average focussing force of the channel.

  9. Doctoral Students' Experience of Information Technology Research

    ERIC Educational Resources Information Center

    Bruce, Christine; Stoodley, Ian; Pham, Binh

    2009-01-01

    As part of their journey of learning to research, doctoral candidates need to become members of their research community. In part, this involves coming to be aware of their field in ways that are shared amongst longer-term members of the research community. One aspect of candidates' experience we need to understand, therefore, involves how they…

  10. 46 CFR 393.6 - Research on Marine Highway Transportation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Research on Marine Highway Transportation. 393.6 Section 393.6 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS UNDER PUBLIC LAW 91-469 AMERICA'S MARINE HIGHWAY PROGRAM § 393.6 Research on Marine Highway Transportation. (a) Summary. The Department will work in consultation...

  11. 46 CFR 393.6 - Research on Marine Highway Transportation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Research on Marine Highway Transportation. 393.6 Section 393.6 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REGULATIONS UNDER PUBLIC LAW 91-469 AMERICA'S MARINE HIGHWAY PROGRAM § 393.6 Research on Marine Highway Transportation. (a)...

  12. Transport simulations of ohmic ignition experiment: IGNITEX

    SciTech Connect

    Uckan, N.A.; Howe, H.C.

    1987-12-01

    The IGNITEX device, proposed by Rosenbluth et al., is a compact, super-high-field, high-current, copper-coil tokamak envisioned to reach ignition with ohmic (OH) heating alone. Several simulations of IGNITEX were made with a 0-D global model and with the 1-D PROCTR transport code. It is shown that OH ignition is a sensitive function of the assumptions about density profile, wall reflectivity of synchrotron radiation, impurity radiation, plasma edge conditions, and additional anomalous losses. In IGNITEX, OH ignition is accessible with nearly all scalings based on favorable OH confinement (such as neo-Alcator). Also, OH ignition appears to be accessible for most (not all) L-mode scalings (such as Kaye-Goldston), provided that the density profile is not too broad (parabolic or more peaked profiles are needed), Z/sub eff/ is not too large, and anomalous radiation and alpha losses and/or other enhanced transport losses (eta/sub i/ modes, edge convective energy losses, etc.) are not present. In IGNITEX, because the figure-of-merit parameters are large, ignition can be accessed (either with OH heating alone or with the aid of a small amount of auxiliary power) at relatively low beta, far from stability limits. Once the plasma is ignited, thermal runaway is prevented naturally by a combination of increased synchrotron radiation, burnout of the fuel in the plasma core and replacement by thermal alphas, and the reduction in the thermal plasma confinement assumed in L-mode-like scalings. 12 refs., 5 figs., 1 tab.

  13. My Rewarding Summer Research Experience at NASA

    NASA Technical Reports Server (NTRS)

    Aviles, Andres

    2007-01-01

    My summer research experience at the Kennedy Space Center has been a truly rewarding one. As an electrical engineering student at the University of South Florida, I was blessed with a beneficial opportunity to gain valuable knowledge in my career, and also apply it through working at NASA. One of my inspirations in becoming an engineer is to work at NASA someday, and I was very excited and honored to have this opportunity. My goal in this internship was to strengthen my preparation in becoming an engineer by learning new material, acquiring skills by practicing what I learned, and discovering the expectations of engineering work at NASA. Through this summer research, I was able to learn new computer programs and perform various tasks that gave me experience and skills as an engineer. My primary job was to conduct work on the Constellation Test article, which is a simulation model of the Crew Launch Vehicle (CLV) tanking system. This is a prototype of a launch facility and an Ares I Vehicle, which God willing will transport astronauts to the moon. Construction of the CLV is in progress and a test launch is anticipated for 2010. Moreover, the Test Article serves as a demonstration too, training test bed, and may be expanded for new simulation of launch system elements, which could be applied to real life operations. The test article is operated and run by a Programmable Logic Controller (PLC), which is a digital computer that is used to control all forms of machinery such as those in manufacturing buildings and other industries. PLCs are different than other computers because of the physical protection they have against damaging environmental conditions that would destroy other computers. Also, PLCs are equipped with lots of input and output connections that allow extensive amounts of commands to be executed, which would normally require many computers to do. Therefore, PLCs are small, rugged, and extremely powerful tools that may continue to be employed at NASA

  14. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  15. Faculty Experiences in a Research Learning Community

    ERIC Educational Resources Information Center

    Holmes, Courtney M.; Kozlowski, Kelly A.

    2014-01-01

    The current study examines the experiences of faculty in a research learning community developed to support new faculty in increasing scholarly productivity. A phenomenological, qualitative inquiry was used to portray the lived experiences of faculty within a learning community. Several themes were found including: accountability, belonging,…

  16. Embodied Experience in Educational Practice and Research

    ERIC Educational Resources Information Center

    Bengtsson, Jan

    2013-01-01

    The intention of this article is to make an educational analysis of Merleau-Ponty's theory of experience in order to see what it implicates for educational practice as well as educational research. In this way, we can attain an understanding what embodied experience might mean both in schools and other educational settings and in researching…

  17. Development of the COMmerical Experiment Transporter (COMET)

    NASA Technical Reports Server (NTRS)

    Pawlick, Joseph F., Jr.

    1990-01-01

    In order to commercialize space, this nation must develop a well defined path through which the Centers for the Commercial Development of Space (CCDS's) and their industrial partners and counterparts can exploit the advantages of space manufacturing and processing. Such a capability requires systems, a supporting infrastructure, and funding to become a viable component of this nation's economic strength. This paper follows the development of the COMmercial Experiment Program (COMET) from inception to its current position as the country's first space program dedicated to satisfying the needs of industry: an industry which must investigate the feasibility of space based processes, materials, and prototypes. With proposals now being evaluated, much of the COMET story is yet to be written, however concepts and events which led to it's current status and the plans for implementation may be presented.

  18. 46 CFR 393.6 - Research on Marine Highway Transportation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... The primary objectives of selected research Projects are to: (1) Identify and quantify environmental... 46 Shipping 8 2012-10-01 2012-10-01 false Research on Marine Highway Transportation. 393.6 Section...-469 AMERICA'S MARINE HIGHWAY PROGRAM § 393.6 Research on Marine Highway Transportation. (a)...

  19. 46 CFR 393.6 - Research on Marine Highway Transportation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... The primary objectives of selected research Projects are to: (1) Identify and quantify environmental... 46 Shipping 8 2011-10-01 2011-10-01 false Research on Marine Highway Transportation. 393.6 Section...-469 AMERICA'S MARINE HIGHWAY PROGRAM § 393.6 Research on Marine Highway Transportation. (a)...

  20. Planning for an integrated research experiment

    SciTech Connect

    Barnard, J.J.; Ahle, L.E.; Bangerter, R.O.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Friedman, A.; Grote, D.P.; Haber, I.; Henestroza, E.; Kishek, R.A.; de Hoon, M.J.L.; Karpenko, V.P.; Kirhek, R.A.; Kwan, J.W.; Lee, E.P.; Logan, B.G.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Sangster, T.C.; Seidl, P.A.; Sharp, W.M.

    2001-03-25

    We describe the goals and research program leading to the Heavy Ion Integrated Research Experiment (IRE). We review the basic constraints which lead to a design and give examples of parameters and capabilities of an IRE. We also show design tradeoffs generated by the systems code IBEAM.

  1. NSF program gives research experience to undergrads

    NASA Astrophysics Data System (ADS)

    Swift, Daniel W.

    Research Experience for Undergraduates (REU) is a new National Science Foundation (NSF) program designed to attract talented undergraduates into research careers in science, engineering, and mathematics. The program is intended to provide active research experience to students while they are still in their undergraduate years. There are two categories of support under this program: REU Sites and REU Supplements. The supplement, as the name implies, is to supplement existing NSF grants to permit an investigator to hire an undergraduate assistant. Here, I will report o n the REU site award made to the Geophysical Institute of the University of Alaska for summer 1987.

  2. Participatory Action Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Sample McMeeking, L. B.; Weinberg, A. E.

    2013-12-01

    Research experiences for undergraduates (REU) have been shown to be effective in improving undergraduate students' personal/professional development, ability to synthesize knowledge, improvement in research skills, professional advancement, and career choice. Adding to the literature on REU programs, a new conceptual model situating REU within a context of participatory action research (PAR) is presented and compared with data from a PAR-based coastal climate research experience that took place in Summer 2012. The purpose of the interdisciplinary Participatory Action Research Experiences for Undergraduates (PAREU) model is to act as an additional year to traditional, lab-based REU where undergraduate science students, social science experts, and community members collaborate to develop research with the goal of enacting change. The benefits to traditional REU's are well established and include increased content knowledge, better research skills, changes in attitudes, and greater career awareness gained by students. Additional positive outcomes are expected from undergraduate researchers (UR) who participate in PAREU, including the ability to better communicate with non-scientists. With highly politicized aspects of science, such as climate change, this becomes especially important for future scientists. Further, they will be able to articulate the relevance of science research to society, which is an important skill, especially given the funding climate where agencies require broader impacts statements. Making science relevant may also benefit URs who wish to apply their science research. Finally, URs will gain social science research skills by apprenticing in a research project that includes science and social science research components, which enables them to participate in future education and outreach. The model also positively impacts community members by elevating their voices within and outside the community, particularly in areas severely underserved

  3. Sediment-transport experiments in zero-gravity

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.; Greeley, R.

    1986-01-01

    One of the important parameters in the analysis of sediment entrainment and transport is gravitational attraction. The availability of a laboratory in Earth orbit would afford an opportunity to conduct experiments in zero and variable gravity environments. Elimination of gravitational attraction as a factor in such experiments would enable other critical parameters (such as particle cohesion and aerodynamic forces) to be evaluated much more accurately. A Carousel Wind Tunnel (CWT) is proposed for use in conducting experiments concerning sediment particle entrainment and transport in a space station. In order to test the concept of this wind tunnel design a one third scale model CWT was constructed and calibrated. Experiments were conducted in the prototype to determine the feasibility of studying various aeolian processes and the results were compared with various numerical analysis. Several types of experiments appear to be feasible utilizing the proposed apparatus.

  4. Sediment-transport experiments in zero-gravity

    NASA Technical Reports Server (NTRS)

    Iversen, James D.; Greeley, Ronald

    1987-01-01

    One of the important parameters in the analysis of sediment entrainment and transport is gravitational attraction. The availability of a laboratory in earth orbit would afford an opportunity to conduct experiments in zero and variable gravity environments. Elimination of gravitational attraction as a factor in such experiments would enable other critical parameters (such as particle cohesion and aerodynamic forces) to be evaluated much more accurately. A Carousel Wind Tunnel (CWT) is proposed for use in conducting experiments concerning sediment particle entrainment and transport in a space station. In order to test the concept of this wind tunnel design a one third scale model CWT was constructed and calibrated. Experiments were conducted in the prototype to determine the feasibility of studying various aeolian processes and the results were compared with various numerical analysis. Several types of experiments appear to be feasible utilizing the proposed apparatus.

  5. Research requirements for a real-time flight measurements and data analysis system for subsonic transport high-lift research

    NASA Technical Reports Server (NTRS)

    Whitehead, Julia H.; Harris, Franklin K.; Lytle, Carroll D.

    1993-01-01

    A multiphased research program to obtain detailed flow characteristics on a multielement high-lift flap system is being conducted on the Transport Systems Research Vehicle (B737-100 aircraft) at NASA Langley Research Center. Upcoming flight tests have required the development of a highly capable and flexible flight measurement and data analysis instrumentation system. This instrumentation system will be more comprehensive than any of the systems used on previous high-lift flight experiment at NASA Langley. The system will provide the researcher near-real-time information for decision making needed to modify a flight test in order to further examine unexpected flow conditions. This paper presents the research requirements and instrumentation design concept for an upcoming flight experiment for the subsonic transport high-lift research program. The flight experiment objectives, the measurement requirements, the data acquisition system, and the onboard data analysis and display capabilities are described.

  6. Transportation demand management and ridesharing. Transportation research record

    SciTech Connect

    Solomon, N.

    1996-12-31

    ;Contents: Developing a Travel Time Congestion Index; Measuring and Estimating Congestion Using Travel Time-Based Procedures; Evaluation of Speed Measurement and Prediction Techniques for Signalized Arterials; Estimating the Effect of Operational Improvements in the Houston Area; Toward a Common Parking Policy: A Cross-Jurisdictional Matrix Comparison of Municipal Off-Street Parking Regulations in Metropolitan Dade County, Florida; Optimization Model for Parking in the Campus Environment; and How Do We Know Employer-Based Transportation Demand Mangement Works. The Need for Experimental Design.

  7. 46 CFR 393.6 - Research on Marine Highway Transportation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-469 AMERICA'S MARINE HIGHWAY PROGRAM § 393.6 Research on Marine Highway Transportation. (a) Summary... as appropriate, within the limits of available resources, to conduct research in support of...

  8. Lessons learned from bacterial transport research at the South Oyster Site

    SciTech Connect

    Scheibe, T.; Hubbard, S.S.; Onstott, T.C.; DeFlaun, M.F.

    2011-04-01

    This paper provides a review of bacterial transport experiments conducted by a multi-investigator, multi-institution, multi-disciplinary team of researchers under the auspices of the U. S. Department of Energy (DOE). The experiments were conducted during the time period 1999-2001 at a field site near the town of Oyster, Virginia known as the South Oyster Site, and included four major experimental campaigns aimed at understanding and quantifying bacterial transport in the subsurface environment. Several key elements of the research are discussed here: (1) quantification of bacterial transport in physically, chemically and biologically heterogeneous aquifers, (2) evaluation of the efficacy of conventional colloid filtration theory, (3) scale effects in bacterial transport, (4) development of new methods for microbial enumeration and screening for low adhesion strains, (5) application of novel hydrogeophysical techniques for aquifer characterization, and (6) experiences regarding management of a large field research effort. Lessons learned are summarized in each of these areas. The body of literature resulting from South Oyster Site research has been widely cited and continues to influence research into the controls exerted by aquifer heterogeneity on reactive transport (including microbial transport). It also served as a model (and provided valuable experience) for subsequent and ongoing highly-instrumented field research efforts conducted by DOE-sponsored investigators.

  9. Management Problems in Providing Transportation Services for Rural Child Development Centers. Kentucky Youth Research Center (KYRC) Transportation Study.

    ERIC Educational Resources Information Center

    Perreault, Joe, Comp.; And Others

    Initiating the Rural Child Care Project Monograph Series, this publication details the many factors which affect the selection and operation of a transportation service supporting rural child development centers. Relying upon its 9 years of experience, the Kentucky Youth Research Center (KYRC) presents relative advantages and disadvantages of 4…

  10. Propulsion system for research VTOL transports

    NASA Technical Reports Server (NTRS)

    Gertsma, L. W.; Zigan, S.

    1973-01-01

    In anticipation of an eventual VTOL requirement for civil aviation, NASA has been conducting studies directed toward determining and developing the technology required for a commercial VTOL transport. In this paper, the commercial transport configurations are briefly reviewed; the propulsion system specifications and components developed by the engine study contractor are presented and described; and methods for using the lift-propulsion system for aircraft attitude control are discussed.

  11. Undergraduate Laboratory Experiment Facilitating Active Learning of Concepts in Transport Phenomena: Experiment with a Subliming Solid

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.

    2015-01-01

    An experiment based on the sublimation of a solid was introduced in the undergraduate Transport Phenomena course. The experiment required the students to devise their own apparatus and measurement techniques. The theoretical basis, assignment of the experiment, experimental results, and student/instructor observations are described in this paper.…

  12. Summer Research Experiences with a Laboratory Tokamak

    NASA Astrophysics Data System (ADS)

    Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.

    1998-11-01

    Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.

  13. Assessing Research Participants’ Perceptions of their Clinical Research Experiences

    PubMed Central

    Kost, Rhonda G.; Lee, Laura M.; Yessis, Jennifer; Coller, Barry S.; Henderson, David K.

    2013-01-01

    Introduction Participants’ perceptions of their research experiences provide valuable measures of ethical treatment, yet no validated instruments exist to measure these experiences. We conducted focus groups of research participants and professionals as the initial step in developing a validated instrument. Methods Research participants enrolled in twelve focus groups, consisting of: 1) individuals with disorders undergoing interventions or 2) in natural history studies; or 3) healthy volunteers. Research professionals participated in six separate groups of 1) IRB members, ethicists, Research Subject Advocates, 2) research nurses/coordinators, or 3) investigators. Focus groups used standard methodologies. Results 85 participants and 29 professionals enrolled at 8 academic centers. Altruism and personal relevance of the research were commonly identified motivators; financial compensation was less commonly mentioned. Participants were satisfied with informed consent processes but disappointed if not provided test results, or study outcomes. Positive relationships with research teams were valued highly. Research professionals were concerned about risks, undue influence, and informed consent. Conclusions Participants join studies for varied, complex reasons, notably altruism and personal relevance. They value staff relationships, health gains, new knowledge, and compensation, and expect professionalism and good organization. Based on these insights, we propose specific actions to enhance participant recruitment, retention and satisfaction. PMID:22212221

  14. Research Experiences in Community College Science Programs

    NASA Astrophysics Data System (ADS)

    Beauregard, A.

    2011-12-01

    The benefits of student access to scientific research opportunities and the use of data in curriculum and student inquiry-driven approaches to teaching as effective tools in science instruction are compelling (i.e., Ledley, et al., 2008; Gawel & Greengrove, 2005; Macdonald, et al., 2005; Harnik & Ross. 2003). Unfortunately, these experiences are traditionally limited at community colleges due to heavy faculty teaching loads, a focus on teaching over research, and scarce departmental funds. Without such hands-on learning activities, instructors may find it difficult to stimulate excitement about science in their students, who are typically non-major and nontraditional. I present two different approaches for effectively incorporating research into the community college setting that each rely on partnerships with other institutions. The first of these is a more traditional approach for providing research experiences to undergraduate students, though such experiences are limited at community colleges, and involves student interns working on a research project under the supervision of a faculty member. Specifically, students participate in a water quality assessment study of two local bayous. Students work on different aspects of the project, including water sample collection, bio-assay incubation experiments, water quality sample analysis, and collection and identification of phytoplankton. Over the past four years, nine community college students, as well as two undergraduate students and four graduate students from the local four-year university have participated in this research project. Aligning student and faculty research provides community college students with the unique opportunity to participate in the process of active science and contribute to "real" scientific research. Because students are working in a local watershed, these field experiences provide a valuable "place-based" educational opportunity. The second approach links cutting-edge oceanographic

  15. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Lisa Ruffe and Neil Yorio prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  16. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Neil Yorio and Lisa Ruffe prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  17. Magnetic lattice for the HIF neutralized transport experiment (NTX)

    SciTech Connect

    Shuman, D.; Eylon, S.; Henestroza, E.; Roy, P.K.; Waldron, W.; Yu, S.S.; Houck, T.

    2003-05-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. A pulsed magnetic four-quadrupole transport system for a 400 keV, 80 mA space charge dominated heavy ion beam has been designed, fabricated, tested, measured, and commissioned successfully for the Neutralized Transport Experiment (NTX). We present some generalized multipole decompositions of 3-D finite element calculations, and 2-D transient finite element simulations of eddy currents in the beam tube. Beam envelope calculations along the transport line were performed using superposition of individually 3-D calculated magnetic field maps. Revised quadrupole design parameters and features, plus fabrication and testing highlights are also presented. Magnetic field measurements were made using both Hall probes (low field DC) and inductive loop coil (high field pulsed). Magnet testing consisted of repetitive full current pulsing to determine reliability.

  18. Experiments on Particle Sorting and Partial Bed-load Transport

    NASA Astrophysics Data System (ADS)

    Chen, D.; Sun, H.; Zhang, Y.; Chen, L.

    2014-12-01

    This study explore the complex dynamics of partial bed-load transport in a series of well-controlled laboratory experiments. Observations show that moving particles may experience bimodal transport (i.e., coexistence of long trapping time and large jump length) related to bed coarsening and the formation of clusters on a heterogeneous gravel-bed, which is distinguished from the traditional theory of hiding-exposing interactions among mixed-size particles. A fractional derivative model is finally applied to characterize the overall behavior of partial bed-load transport, including the coexistence of the sub-diffusion and non-local feature caused by turbulence and the micro-relief within an armor layer.

  19. My Experience. My Perspective. Transportation to Work Presents Problems

    ERIC Educational Resources Information Center

    Stegers, Markus

    2008-01-01

    Transportation challenges can often be one of the biggest stumbling blocks to having a successful vocational experience. The author presents a personal account of the difficulties people with disabilities encounter in trying to get themselves to their workplaces due to the limitations of various mobility services.

  20. Change of Collision Efficiency with Distance in Bacterial Transport Experiements

    SciTech Connect

    Dong, Hailiang; Scheibe, Timothy D.; Johnson, William P.; Monkman, Crystal; Fuller, Mark E.

    2006-05-01

    Previous bacterial transport studies have shown decreased bacterial adhesion with transport distance, largely based on laboratory core experiments. An inferred effect of microbial population variability is invoked to interpret experimental data, but there lacks direct measurement at field-scale, especially in correlation of transport distance with change of bacterial surface properties. This study was undertaken to determine change of collision efficiency with transport distance, taking advantage of the bacterial transport experiment in Oyster, VA in the summer of 2001. Upon injection of an adhesion deficient strain, Comamonas sp. DA001 into a up-gradient well, bacterial samples were taken from multi-level samplers along the flow path, and were injected into cores of 40 cm in length and 7.5 cm in diameter packed with homogenized sediment from the same site, South Oyster focus area (SOFA). Bacterial suspension samples were also measured for bacterial electrophoretic mobility distribution. Using filtration theory, collision efficiency, the probability of bacterial attachment to the grain surfaces upon collision and a quantitative measure of bacterial adhesion, was determined using CXTFIT model fitted attachment rate, measured grain size (10th percentile), porosity, flow velocity, and collector efficiency. Collision efficiency was also determined based on the fraction of retention in the cores. Contrary to previous results and interpretation of field-scale breakthrough curves, our experimentally determined collision efficiency increases with transport distance in the core experiments, which correlates with increasingly negative surface charge of the injected bacteria. Therefore we conclude that the apparent decrease in adhesion with transport distance in the field is strongly controlled by field-scale heterogeneity in physical and chemical aquifer properties and not by microbial population heterogeneity.

  1. International Research Students' Experiences in Academic Success

    ERIC Educational Resources Information Center

    Yeoh, Joanne Sin Wei; Terry, Daniel R.

    2013-01-01

    The flow of international students to study in Australia increases each year. It is a challenge for students to study abroad in a different sociocultural environment, especially for postgraduate research students, as they experience numerous difficulties in an unfamiliar and vastly different study environment. A study aimed to investigate the…

  2. NASA's Subsonic Jet Transport Noise Reduction Research

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Preisser, John S.

    2000-01-01

    Although new jet transport airplanes in today s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3-8% growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions.

  3. Lab- and space-based researchers discuss plasma experiments

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Yamada, M.

    Plasma physics provides a common language and set of approaches that tie together all scientists who study the acceleration, transport, and loss processes of the plasma state. Some years ago, researchers from the laboratory and space research communities suggested a workshop to bring together the diverse researchers in the respective fields. A series of workshops on the “Interrelationship between Plasma Experiments in the Laboratory and Space” (IPELS) was established, and the third meeting was held July 24-28, 1995, in the beautiful and historic town of Pitlochry in the Scottish Highlands.The conference reestablished the critical point that plasma physics is an important but surprisingly diversified research discipline. Meetings attendees discussed a number of new approaches to plasma research, including novel diagnostic techniques for use in space, such as active antennas and electric field sounding devices. Detailed discussions covered spacecraft-plasma environment interactions, including vehicle charging and neutral gas release; fundamental aspects of industrial application of dusty plasmas and waves in dusty plasmas; a very distinctive phase transition of coulomb crystals (from solid state to liquid state) in dusty plasmas; and terrella experiments to simulate and study chaotic transport in the ionosphere.

  4. The Microgravity Research Experiments (MICREX) Data Base

    NASA Technical Reports Server (NTRS)

    Winter, C. A.; Jones, J. C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments) was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigator (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the importance of a low-gravity fluids and materials processing data base, (4) describes thE MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  5. Stochastic analysis of transport of conservative solutes in caisson experiments

    SciTech Connect

    Dagan, G.

    1995-02-01

    The Los Alamos National Laboratory has conducted in the past a series of experiments of transport of conservative and reactive solutes. The experimental setup and the experimental results are presented in a series of reports. The main aim of the experiments was to validate models of transport of solutes in unsaturated flow at the caisson intermediate scale, which is much larger than the one pertaining to laboratory columns. First attempts to analyze the experimental results were by one-dimensional convective-dispersion models. These models could not explain the observed solute breakthrough curves and particularly the large solute dispersion in the caisson effluent Since there were some question marks about the uniformity of water distribution at the caisson top, the transport experiments were repeated under conditions of saturated flow. In these experiments constant heads were applied at the top and the bottom of the caisson and the number of concentration monitoring stations was quadrupled. The analysis of the measurements by the same one-dimensional model indicated clearly that the fitted dispersivity is much larger than the pore-sole dispersivity and that it grows with the distance in an approximately linear fashion. This led to the conclusion, raised before, that transport in the caisson is dominated by heterogeneity effects, i.e. by spatial variability of the material Such effects cannot be captured by traditional one-dimensional models. In order to account for the effect of heterogeneity, the saturated flow experiments have been analyzed by using stochastic transport modeling. The apparent linear growth of dispersivity with distance suggested that the system behaves like a stratified one. Consequently, the model of Dagan and Bresier has been adopted in order to interpret concentration measurements. In this simple model the caisson is viewed as a bundle of columns of different permeabilities, which are characterized by a p.d.f. (probability denasity function).

  6. Anomalous reactive transport in porous media: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Edery, Yaniv; Dror, Ishai; Scher, Harvey; Berkowitz, Brian

    2015-05-01

    We analyze dynamic behavior of chemically reactive species in a porous medium, subject to anomalous transport. In this context, we present transport experiments in a refraction-index-matched, three-dimensional, water-saturated porous medium. A pH indicator (Congo red) was used as either a conservative or a reactive tracer, depending on the tracer solution pH relative to that of the background solution. The porous medium consisted of an acrylic polymer material formed as spherical beads that have pH-buffering capacity. The magnitude of reaction during transport through the porous medium was related to the color change of the Congo red, via image analysis. Here, we focused on point injection of the tracer into a macroscopically uniform flow field containing water at a pH different from that of the injected tracer. The setup yielded measurements of the temporally evolving spatial (local-in-space) concentration field. Parallel experiments with the same tracer, but without reactions (no changes in pH), enabled identification of the transport itself to be anomalous (non-Fickian); this was quantified by a continuous time random walk (CTRW) formulation. A CTRW particle tracking model was then used to quantify the spatial and temporal migration of both the conservative and reactive tracer plumes. Model parameters related to the anomalous transport were determined from the conservative tracer experiments. An additional term accounting for chemical reaction was established solely from analysis of the reactant concentrations, and significantly, no other fitting parameters were required. The measurements and analysis emphasized the localized nature of reaction, caused by small-scale concentration fluctuations and preferential pathways. In addition, a threshold radius for pH-controlled reactive transport processes was defined under buffering conditions, which delineated the region in which reactions occurred rapidly.

  7. NASA Lewis Research Center photovoltaic application experiments

    NASA Technical Reports Server (NTRS)

    Ratajczak, A.; Bifano, W.; Martz, J.; Odonnell, P.

    1978-01-01

    The NASA Lewis Research Center has installed 16 geographically dispersed terrestrial photovoltaic systems as part of the DOE National Photovoltaic Program. Four additional experiments are in progress. Currently, operating systems are powering refrigerators, a highway warning sign, forest lookout towers, remote weather stations, a water chiller and insect survey traps. Experiments in progress include the world's first village power system, an air pollution monitor and seismic sensors. Under a separate activity, funded by the U.S. Agency for International Development, a PV-powered water pump and grain grinder is being prepared for an African village. System descriptions and status are included in this report.

  8. Packet radio data link applications in the NASA Langley Research Center Transport Systems Research Vehicle

    NASA Technical Reports Server (NTRS)

    Easley, Wesley C.; Carter, Donald; Mcluer, David G.

    1994-01-01

    An amateur packet radio system operating in the very high frequency (VHF) range has been implemented in the Transport Systems Research Vehicle at the NASA Langley Research Center to provide an economical, bidirectional, real-time, ground-to-air data link. The packet system has been used to support flight research involving air traffic control (ATC), differential global positioning systems (DGPS), and windshear terminal doppler weather radar (TDWR). A data maximum rate of 2400 baud was used. Operational reliability of the packet system has been very good. Also, its versatility permits numerous specific configurations. These features, plus its low cost, have rendered it very satisfactory for support of data link flight experiments that do not require high data transfer rates.

  9. Swashzone Fellowships: a 6-month research experience

    NASA Astrophysics Data System (ADS)

    Raubenheimer, B.

    2011-12-01

    The Swashzone Fellowships funded by the CAREER program were designed to provide sufficient time for undergraduates with little knowledge of ocean processes and minimal prior research experience to participate in observational nearshore oceanographic studies. The fellows learned background material, developed hypotheses, planned field experiments, designed sensor arrays, tested and debugged instrumentation, collected and analyzed data, and communicated the results through oral and written presentations. The program funded 12 undergraduate student fellows (4 male and 8 female), with backgrounds in math (3 students), physics (4), geology (1), and environmental sciences (4). Preference was given to applicants who had not taken oceanography classes and who were unsure of career plans. All the students presented their results at department seminars, and most presented their results at a professional conference (eg, AGU or Ocean Sciences). The results often were incorporated in peer-reviewed manuscripts. Evaluations conducted following the fellowships and again several years after each fellowship indicated that many of the students pursued STEM careers: 5 are pursuing PhD degrees, including bio-mathematics, physics, atmospheric physics, and ocean physics; 2 are employed at environmental engineering and consulting firms; 4 are employed as research technicians at WHOI; and 1 is a lawyer (currently being considered as a clerk for the Supreme Court). Many of the students were excited to learn about the range of oceanographic career options, including engineering and technical staff, as well as science research. The graduating seniors expressed their appreciation for the fellowship opportunity, stating that there were few science positions available to students without significant prior research experience. Several students noted that the fellowships were critical to their later employment and to their decisions to pursue careers in science. In particular, the students noted

  10. Centrifuge Techniques and Apparatus for Transport Experiments in Porous Media

    SciTech Connect

    Earl D. Mattson; Carl D. Paler; Robert W. Smith; Markus Flury

    2010-06-01

    This paper describes experimental approaches and apparatus that we have developed to study solute and colloid transport in porous media using Idaho National Laboratory's 2-m radius centrifuge. The ex-perimental techniques include water flux scaling with applied acceleration at the top of the column and sub-atmospheric pressure control at the column base, automation of data collection, and remote experimental con-trol over the internet. These apparatus include a constant displacement piston pump, a custom designed liquid fraction collector based on switching valve technology, and modified moisture monitoring equipment. Suc-cessful development of these experimental techniques and equipment is illustrated through application to transport of a conservative tracer through unsaturated sand column, with centrifugal acceleration up to 40 gs. Development of such experimental equipment that can withstand high accelerations enhances the centrifuge technique to conduct highly controlled unsaturated solute/colloid transport experiments and allows in-flight liquid sample collection of the effluent.

  11. USING SUBSURFACE TRANSPORT RESEARCH TO ACHIEVE AGENCY OUTCOMES

    EPA Science Inventory

    Gasoline leaks from underground storage tanks can cause ground water contamination because there are a number of organic chemicals in gasoline. These chemicals have varying properties that influence how far contamination extends from the release. Research on transport of these ...

  12. The high current transport experiment for heavy ion inertial fusion

    SciTech Connect

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  13. Vestibular Function Research (VFR) experiment. Phase B: Design definition study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Vestibular Functions Research (VFR) Experiment was established to investigate the neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome and to develop logical means for its prediction, prevention and treatment. The VFR Project consists of ground and spaceflight experimentation using frogs as specimens. The phase B Preliminary Design Study provided for the preliminary design of the experiment hardware, preparation of performance and hardware specification and a Phase C/D development plan, establishment of STS (Space Transportation System) interfaces and mission operations, and the study of a variety of hardware, experiment and mission options. The study consist of three major tasks: (1) mission mode trade-off; (2) conceptual design; and (3) preliminary design.

  14. Comparison of a radial fractional transport model with tokamak experiments

    SciTech Connect

    Kullberg, A. Morales, G. J.; Maggs, J. E.

    2014-03-15

    A radial fractional transport model [Kullberg et al., Phys. Rev. E 87, 052115 (2013)], that correctly incorporates the geometric effects of the domain near the origin and removes the singular behavior at the outer boundary, is compared to results of off-axis heating experiments performed in the Rijnhuizen Tokamak Project (RTP), ASDEX Upgrade, JET, and DIII-D tokamak devices. This comparative study provides an initial assessment of the presence of fractional transport phenomena in magnetic confinement experiments. It is found that the nonlocal radial model is robust in describing the steady-state temperature profiles from RTP, but for the propagation of heat waves in ASDEX Upgrade, JET, and DIII-D the model is not clearly superior to predictions based on Fick's law. However, this comparative study does indicate that the order of the fractional derivative, α, is likely a function of radial position in the devices surveyed.

  15. Comparison of a radial fractional transport model with tokamak experiments

    NASA Astrophysics Data System (ADS)

    Kullberg, A.; Morales, G. J.; Maggs, J. E.

    2014-03-01

    A radial fractional transport model [Kullberg et al., Phys. Rev. E 87, 052115 (2013)], that correctly incorporates the geometric effects of the domain near the origin and removes the singular behavior at the outer boundary, is compared to results of off-axis heating experiments performed in the Rijnhuizen Tokamak Project (RTP), ASDEX Upgrade, JET, and DIII-D tokamak devices. This comparative study provides an initial assessment of the presence of fractional transport phenomena in magnetic confinement experiments. It is found that the nonlocal radial model is robust in describing the steady-state temperature profiles from RTP, but for the propagation of heat waves in ASDEX Upgrade, JET, and DIII-D the model is not clearly superior to predictions based on Fick's law. However, this comparative study does indicate that the order of the fractional derivative, α, is likely a function of radial position in the devices surveyed.

  16. INTEX-NA: Intercontinental Chemical Transport Experiment - North America

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Jacob, D.; Pfister, L.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    characterizing Atlantic-outflow and Pacific-inflow, INTEX-NA will characterize air masses transported between the U.S., Canada, and Mexico. INTEX-NA will be the first continental scale inflow, outflow, and transformation experiment to be performed over North America. It will provide the most comprehensive observational data set to date to understand the O3/NOX/HOX/aerosol photochemical system and the carbon cycle. One of the critical needs of the carbon cycle research is to obtain large-scale vertical and horizontal concentration gradients of CO2, throughout the troposphere over continental source/sink regions. INTEX-NA is ideally suited to perform this role. Coastal and continental operational sites will allow us to develop a curtain profile of greenhouse gases (e. g. CO2,) and other key pollutants across North America. Such information is central to our quantitative understanding of chemical budgets on the continental scale. We expect to provide a number of satellite under-flights over land and water to test and validate observations from the appropriate satellite platform (e. g. Aura). We plan to develop strong collaborations with other national and international observational programs. Results from INTEX-NA should directly benefit the development of environmental policy for air quality and climate change.

  17. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  18. Fluid physics and transport phenomena studies aboard the international space station: Planned experiments

    NASA Astrophysics Data System (ADS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Space Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there are a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with an unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  19. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  20. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  1. REVIEW OF THE NATIONAL SPHERICAL TORUS EXPERIMENT RESEARCH RESULTS

    SciTech Connect

    Mueller, D.; Menard, J. E.; Bell, M. G.; Bell, R. E.; Diem, S.; Fredrickson, E. D.; Gates, D. A.; Hill, K. W.; Hosea, J. C.; Kaye, S. M.; Kessel, C. E.; Kugel, H. W.; LeBlanc, B. P.; Mansfield, D. K.; Majeski, R. P.; Mazzucato, E.; Medley, S. S.; Myra, J. R.; Park, H. K.; Paul, S. F.

    2009-07-26

    The National Spherical Torus Experiment (NSTX) produces plasmas, with toroidal aspect ratio as low as 1.25 and plasma currents up to 1.5 MA, which can be heated by up to 6 MW High-Harmonic Fast Waves and up to 7 MW of deuterium Neutral Beam Injection. With these capabilities, NSTX has already made considerable progress in advancing the scientific understanding of high performance plasmas needed for low-aspect-ratio reactor concepts and for ITER. In transport and turbulence research on NSTX, the role of magnetic shear is being elucidated in discharges in which electron energy transport barriers are observed. Scaling studies indicate a weaker dependence on plasma current than at conventional aspect ratio and a significant dependence on toroidal field (B{sub T}).

  2. Stochastic analysis of a field-scale unsaturated transport experiment

    NASA Astrophysics Data System (ADS)

    Severino, G.; Comegna, A.; Coppola, A.; Sommella, A.; Santini, A.

    2010-10-01

    Modelling of field-scale transport of chemicals is of deep interest to public as well as private sectors, and it represents an area of active theoretical research in many environmentally-based disciplines. However, the experimental data needed to validate field-scale transport models are very limited due to the numerous logistic difficulties that one faces out. In the present paper, the migration of a tracer (Cl -) was monitored during its movement in the unsaturated zone beneath the surface of 8 m × 50 m sandy soil. Under flux-controlled, steady-state water flow ( Jw = 10 mm/day) was achieved by bidaily sprinkler irrigation. A pulse of 105 g/m 2 KCl was applied uniformly to the surface, and subsequently leached downward by the same (chloride-free) flux Jw over the successive two months. Chloride concentration monitoring was carried out in seven measurement campaigns (each one corresponding to a given time) along seven (parallel) transects. The mass recovery was near 100%, therefore underlining the very good-quality of the concentration data-set. The chloride concentrations are used to test two field-scale models of unsaturated transport: (i) the Advection-Dispersion Equation (ADE), which models transport far from the zone of solute entry, and (ii) the Stochastic- Convective Log- normal (CLT) transfer function model, which instead accounts for transport near the release zone. Both the models provided an excellent representation of the solute spreading at z > 0.45 m (being z = 0.45 m the calibration depth). As a consequence, by the depth z ≈ 50 cm one can regard transport as Fickian. The ADE model dramatically underestimates solute spreading at shallow depths. This is due to the boundary effects which are not captured by the ADE. The CLT model appears to be a more robust tool to mimic transport at every depth.

  3. Asphalt and asphalt additives. Transportation research record

    SciTech Connect

    Not Available

    1992-01-01

    Contents: use of asphalt emulsions for in-place recycling: oregon experience; gap-graded cold asphalt concrete: benefits of polymer-modified asphalt cement and fibers; cold in-place recycling for rehabilitation and widening of low-volume flexible pavements in indiana; in situ cold recycling of bituminous pavements with polymer-modified high float emulsions; evaluation of new generation of antistripping additives; correlation between performance-related characteristics of asphalt cement and its physicochemical parameters using corbett's fractions and hpgc; reaction rates and hardening susceptibilities as determined from pressure oxygen vessel aging of asphalts; evaluation of aging characteristics of asphalts by using tfot and rtfot at different temperature levels; summary of asphalt additive performance at selected sites; relating asphalt absorption to properties of asphalt cement and aggregate; study of the effectiveness of styrene-butadiene rubber latex in hot mix asphalt mixes; stability of straight and polymer-modified asphalts.

  4. ABC transporter research: going strong 40 years on

    PubMed Central

    Theodoulou, Frederica L.; Kerr, Ian D.

    2015-01-01

    In most organisms, ABC transporters constitute one of the largest families of membrane proteins. In humans, their functions are diverse and underpin numerous key physiological processes, as well as being causative factors in a number of clinically relevant pathologies. Advances in our understanding of these diseases have come about through combinations of genetic and protein biochemical investigations of these transporters and the power of in vitro and in vivo investigations is helping to develop genotype–phenotype understanding. However, the importance of ABC transporter research goes far beyond human biology; microbial ABC transporters are of great interest in terms of understanding virulence and drug resistance and industrial biotechnology researchers are exploring the potential of prokaryotic ABC exporters to increase the capacity of synthetic biology systems. Plant ABC transporters play important roles in transport of hormones, xenobiotics, metals and secondary metabolites, pathogen responses and numerous aspects of development, all of which are important in the global food security area. For 3 days in Chester, this Biochemical Society Focused Meeting brought together researchers with diverse experimental approaches and with different fundamental questions, all of which are linked by the commonality of ABC transporters. PMID:26517919

  5. European experience in transport/storage cask for vitrified residues

    SciTech Connect

    Otton, Camille; Sicard, Damien

    2007-07-01

    Available in abstract form only. Full text of publication follows: Because of the evolution of burnup of spent fuel to be reprocessed, the high activity vitrified residues would not be transported in the existing cask designs. Therefore, TN International has decided in the late nineties to develop a brand new design of casks with optimized capacity able to store and transport the most active and hottest canisters: the TN{sup TM}81 casks currently in use in Switzerland and the TN{sup TM}85 cask which shall permit in the near future in Germany the storage and the transport of the most active vitrified residues defining a thermal power of 56 kW (kilowatts). The challenges for the TN{sup TM}81 and TN{sup TM}85 cask designs were that the geometry entry data were very restrictive and were combined with a fairly wide range set by the AREVA NC Specification relative to vitrified residue canister. The TN{sup TM}81 and the TN{sup TM}85 casks have been designed to fully anticipate shipment constraints of the present vitrified residue production. It also used the feedback of current shipments and the operational constraints and experience of receiving and shipping facilities. The casks had to fit as much as possible in the existing procedures for the already existing flasks such as the TN{sup TM}28 cask and TS 28 V cask, all along the logistics chain of loading, unloading, transport and maintenance. (authors)

  6. Joint University Program for Air Transportation Research, 1982

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A summary of the research on air transportation is addressed including navigation; guidance, control and display concepts; and hardware, with special emphasis on applications to general aviation aircraft. Completed works and status reports are presented also included are annotated bibliographies of all published research sponsored on these grants since 1972.

  7. Human behavior research and the design of sustainable transport systems

    NASA Astrophysics Data System (ADS)

    Schauer, James J.

    2011-09-01

    reduced carbon emissions are central to the design and optimization of future low carbon transport systems. Gaker et al (2011) suggest a framework, and provide insight into the willingness of transport consumers to pay for emission reductions of carbon dioxide from their personal transport choices within the context of other attributes of transport variables. The results of this study, although limited to a small demographic segment of the US population, demonstrate that people can integrate information on greenhouse gas emissions with other transport attributes including cost and time. Likewise, the research shows that the study group was willing to pay for reduction in greenhouse gas emissions associated with their transport choices. The study examined auto purchase choice, transport mode choice and transport route choice, which represent key decisions associated with transport that impact greenhouse gas emissions. Interestingly, they found that the study group was willing to pay for reductions in greenhouse gas emissions at a relatively consistent price across these transport choices. Clearly, the study results may not broadly apply to all demographics of users of transport, even in the study domain, due to the small demographic segment that was examined and the fact that the study was conducted in the laboratory. However, the methods used by Gaker et al (2011) are cause for optimism that future studies can obtain much needed mapping of transport preferences and willingness to pay for greenhouse gas emission reductions associated with personal transport choices. Although the Gaker et al (2011) study is directed at understanding the promotion of low carbon transport in the context of existing infrastructures, the ability of these studies to elucidate human behavior and preferences within the trade-offs of transport are critical to the design of future transport systems that seek to meet transport demand with constrained greenhouse gas emissions. Additional studies of

  8. Field experiments of nonlocal sediment transport on a steep hillslope

    NASA Astrophysics Data System (ADS)

    DiBiase, R.; Booth, A. M.; Ganti, V.; Scheingross, J. S.; Lamb, M. P.

    2014-12-01

    Steep rocky hillslopes dominate the areal extent of rapidly uplifting mountain ranges, and pose a significant hazard to encroaching population centers. Existing models for hillslope sediment transport developed for soil-mantled landscapes are poorly suited to explain the evolution of steep hillslopes characterized by: (1) intermittent or patchy soil cover, (2) slopes that exceed the angle of repose, and (3) transport events that often involve long travel distances. Recently, nonlocal formulations of hillslope sediment transport laws that account for long travel distances have been proposed to overcome the limitations of traditional continuum-based models. However, their application to natural landscapes has been limited owing to few field constraints on key parameters, and computational difficulties expanding the framework to two-dimensions. To address this knowledge gap, we performed a series of field experiments on natural hillslopes to inform a simple particle-based model of hillslope sediment transport. We compiled the distribution of average velocity and transport distance for over 300 stones ranging in diameter from 2-10 cm using a video camera and laser range-finder. To characterize surface roughness, we used a tripod-based laser scanner to generate a 1 cm-resolution digital elevation model of each 30 m long hillslope. We find that hillslope travel distance follows a heavy-tailed distribution that varies systematically with the ratio of particle diameter to roughness height, in general agreement to published laboratory experiments. Mean particle velocity ranges from 1-3 m/s and scales weakly with distance traveled. Our modeling exercise reveals three key effects that should be included in any treatment of steep hillslope evolution: (1) there is a strong grain-size and surface roughness dependence on sediment transport distance, (2) sediment storage on slopes steeper than the angle of repose is possible due to vegetation or topographic roughness, and (3

  9. H{sup -} beam transport experiments in a solenoid low energy beam transport

    SciTech Connect

    Gabor, C.; Back, J. J.; Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P.; Izaola, Z.

    2012-02-15

    The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H{sup -} ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H{sup -} high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

  10. Joint University Program for Air Transportation Research, 1986

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  11. Joint University Program for Air Transportation Research, 1989-1990

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented.

  12. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1973-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  13. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1974-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  14. Public transportation 1995: Current research in planning, management, technology, and ridesharing. Transportation research record

    SciTech Connect

    1995-12-31

    ;Partial Contents: Long-Range Planning Issues for Small Transit Agencies; Methods and Strategies for Transit Benefit Measurement; Relationships Between Public Transport Finance and National Economy in The Netherlands; Modifying Transit Mode Share in Household Survey Expansion; Measuring Impacts of Transit Financing Policy in Geopolitical Context: Montreal Case; Perspective on Maglev Transit and Introduction of Personal Rapid Transit Maglev; Profile of Employee Transportation Coordinators; Demographics of Carpooling; Carpooling with Co-workers in Los Angeles: Employer Involvement Does Make a Difference; Stated Choice-Based Performance Evaluation of Selected Transportation Control Measures and Their Transfer Across Sites; and Five-Year Results of Employee Commute Options in Southern California.

  15. Charged-Particle Bean Transport for Ion Trapping Experiments.

    NASA Astrophysics Data System (ADS)

    Raichle, Brian W.; Wingfield, Love M.

    2001-11-01

    Electrostatic Einsel lenses are being developed for beam transport for use in two distinct metastable atomic lifetime experiments using two separate rf-ion traps. Each system has been modeled using Simion software, and the lenses have been designed from commercially available eV-parts. The first application is part of an electron gun source. Electrons are produced by a conventional dispenser cathode and are transported 25 cm to the trap. The design goal is to create a beam divergence to fully illuminate the active trap volume, and to provide tunable electron energies from 50 to 500 eV. The second application is to transport ions 1 m from a laser ablation ion source to an rf ion trap. Laser ablation involves essentially boiling ions from a solid target with intense laser pulses. Here, the design goal is to maximize flux by maximizing the solid angle of acceptance to the trap, minimize radial velocity, and minimize the spread in axial velocity. Development of a laser ablation ion source external to the trap volume will allow a very low base pressure in the trap region, which will make possible the study of species with lifetimes approaching 1 s. In addition, laser ablation will produce intermediately-charged ions from non-conductive solid targets.

  16. Boulder transport by tsunamis: A laboratory experiment on incipient motion

    NASA Astrophysics Data System (ADS)

    Bressan, Lidia; Antonini, Alessandro; Gaeta, Maria Gabriella; Guerrero, Massimo; Miani, Marco; Petruzzelli, Valentina; Samaras, Achilleas

    2015-04-01

    Coastal boulders transported inland by high-energy events, such as tsunamis or storms, have been found along several coastal areas worldwide. The importance of these deposits relies on their implications on coastal hazard assessment, since they contribute to the identification of past events and to the study of their magnitude and characteristics. However, the identification of the event responsible of the dislocation of the boulder (tsunami or storm) is not trivial given the complexities of the tsunami and storm phenomena, the coastal environment, the initial boulder conditions, the uncertainties of the problem, etc. The hydrodynamics methods usually adopted are 1) the use of simple hydrodynamics formulae to estimate the minimum flow velocity and height required to move a boulder, and 2) numerical simulations that model the boulder transport together with the specific tsunami (or storm) event. The main shortcomings of the first method are the simplifications adopted, while the second approach implies the simulation of the transport event, which might not be practical because of the amount of uncertainties involved. To contribute to this study field, a laboratory experiment on the flow conditions for boulder transport was carried out at the Hydraulic Engineering Laboratory (LIDR) of the University of Bologna, Italy, in a 11 m long and 0.5 m wide flume. The main objective of this experiment is to provide experimental data for the conditions of the incipient motion for boulders, i.e. to relate the threshold flow velocity and depth for transport with the characteristics of the boulders, i.e. weight and geometry. The experimental channel is divided in three parts: on one end of the channel, a water tank is closed by a gate, followed by a central flat bed and a 1:10 slope, where the boulder is located. A bore, generated by quickly opening the gate (simulating a dam-break), flows in the channel, climbs up the slope and hits the boulder. The impact of the flow on the

  17. Convective transport of trace species observed during the Stratosphere-Troposphere Analyses of Regional Transport 2008 experiment

    NASA Astrophysics Data System (ADS)

    Siu, Leong Wai; Bowman, Kenneth P.; Epifanio, Craig C.

    2015-10-01

    During the Stratosphere-Troposphere Analyses of Regional Transport 2008 experiment (START08) the NCAR/NSF Gulfstream V aircraft observed high concentrations of NO and NOy in the upper troposphere downwind of a weakening squall line in northern Texas, suggesting either convective transport of polluted boundary layer air to the upper troposphere or lightning production of nitrogen oxides in the convection. These hypotheses are tested by computing three-dimensional back trajectories using winds from a high-resolution simulation of the event with the Weather Research and Forecasting (WRF) model. The WRF model simulation reproduces the storm structure and evolution with good fidelity. The back trajectories reveal two distinct layers of outflow air from different mesoscale convective systems (MCSs). Most air in the upper layer is transported northward from an MCS in southern Texas, while the lower layer is from both the northern squall line and the southern MCS. In both layers inconsistencies between observed concentrations of CO, NO, and O3 and predictions from a simple mixing model suggest that there is significant production of NO by lightning in the convective systems. This is consistent with lightning observations from the National Lightning Detection Network. Additionally, the model simulation appears to slightly underestimate the depth of vertical transport by the MCS.

  18. Orbital Acceleration Research Experiment: Calibration Measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.; Larman, Kevin T.

    1995-01-01

    The Orbital Acceleration Research Experiment (OARE), which has flown on STS-40, STS-50, and STS-58, contains a three-axis accelerometer with a single, nonpendulous, electrostatically suspended proofmass, which can resolve accelerations to the 10(sub -9) g level. The experiment also contains a full calibration station to permit in situ bias and scale-factor calibration. This on-orbit calibration capability eliminates the large uncertainty of ground-based calibrations encountered with accelerometers flown in the past on the Orbiter, and thus provides absolute acceleration measurement accuracy heretofore unachievable. This is the first time accelerometer scale-factor measurements have been performed on orbit. A detailed analysis of the calibration process is given, along with results of the calibration factors from the on-orbit OARE flight measurements on STS-58. In addition, the analysis of OARE flight-maneuver data used to validate the scale-factor measurements in the sensor's most sensitive range are also presented. Estimates on calibration uncertainties are discussed. These uncertainty estimates provides bounds on the STS-58 absolute acceleration measurements for future applications.

  19. The Southern Tropical Atlantic Region Experiment (STARE): Transport and Atmospheric Chemistry near the Equator-Atlantic (TRACE A) and Southern African Fire-Atmosphere Research Initiative (SAFARI): An introduction

    NASA Astrophysics Data System (ADS)

    Andreae, Meinrat O.; Fishman, Jack; Lindesay, Janette

    1996-10-01

    In November 1988 some 50 atmospheric scientists met at Dookie College, a small campus in the agricultural lands of Victoria, Australia, to map out the scientific goals of the International Global Atmospheric Chemistry (IGAC) Program, which was to become one of the first operational Core Projects of the International Geosphere-Biosphere Program (IGBP). They identified the tropical regions as one of the priority areas for future international, coordinated research in atmospheric chemistry because of the vast biological activity in the tropics, with a correspondingly large potential for biogenic emissions, and the rapidly growing human populations and resulting land use change in these regions. In view of the prominent role that biomass burning plays in the tropics as a source of atmospheric pollutants and of the important ecological functions of vegetation fires in the tropics, the scientists at Dookie created the Biomass Burning Experiment (BIBEX) with the goals of characterizing the fluxes of gases and aerosols from biomass burning to the global atmosphere and assessing the consequences of pyrogenic emissions on chemical and physical climate. The southern tropical Atlantic region, defined here as the region containing the Amazon basin, the tropical South Atlantic, and southern Africa, was the obvious first focus of research for this project. Large tropical forest and savanna fires had been known to occur here every year. In addition, observations from satellites and from the space shuttle had shown high levels of tropospheric ozone and carbon monoxide to be present over this region every year in the August-to-October period. Results from previous campaigns (ABLE 2A, CITE 3, DECAFE 88) also suggested a widespread impact of vegetation fires on both continents on the trace gas and aerosol content of the troposphere in this region.

  20. Joint University Program for Air Transportation Research, 1983

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1983 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The material was presented at a conference held at the Federal Aviation Administration Technical Center, Altantic City, New Jersey, December 16, 1983. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control, and display concepts. An overview of the year's activities for each of the universities is also presented.

  1. Joint University Program for Air Transportation Research, 1988-1989

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  2. Joint University Program for Air Transportation Research, 1984

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1984 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control and display concepts. An overview of the year's activities for each of the schools is also presented.

  3. Heavy duty transport research needs assessment. Final report

    SciTech Connect

    Not Available

    1991-09-13

    As a result of the desire to decrease the dependence of the US on foreign petroleum as a transportation fuel, this report assesses the research needs to further develop heavy duty engines. The topics covered include diesel engines, alternative fuels, electric vehicle technology, gas turbine engines, and stirling cycle alternative engines. (GHH)

  4. Space Transportation Technology Workshop: Propulsion Research and Technology

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  5. 75 FR 38605 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... implementation of a national research agenda that includes: (1) Conducting research to develop climate change... Federal Highway Administration Surface Transportation Environment and Planning Cooperative Research...-LU) established the Surface Transportation Environment and Planning Cooperative Research...

  6. Experimental investigation of contaminant transport in porous media. Research report

    SciTech Connect

    Wang, J.C.; Booker, J.R.; Carter, J.P.

    1998-10-01

    When numerical methods are applied to simulate a real contaminant transport problem, the values of a number of key parameters such as porosity, hydrodynamic dispersion coefficient or dispersivity and Darcy velocity or seepage velocity or seepage velocity are needed. In this paper, two different experimental programs, involving two types of column test and a well simulation test, were designed to demonstrate that the theory developed to explain contaminant transport in porous media is capable of representing the actual phenomenon of contaminant migration in soil. It is demonstrated that experiments can also be carried out to determine the properties necessary to model a real case of contaminant migration in porous media.

  7. Uranium transport in a crushed granodiorite: Experiments and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Reimus, P. W.

    2015-04-01

    The primary objective of this study was to develop and demonstrate an experimental method to refine and better parameterize process models for reactive contaminant transport in aqueous subsurface environments and to reduce conservatism in such models without attempting to fully describe the geochemical system. Uranium was used as an example of a moderately adsorbing contaminant because of its relevance in geologic disposal of spent nuclear fuel. A fractured granodiorite from the Grimsel Test Site (GTS) in Switzerland was selected because this system has been studied extensively and field experiments have been conducted with radionuclides including uranium. We evaluated the role of pH, porous media size fraction, and flow interruptions on uranium transport. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and optical microscopy, and used in uranium batch sorption and column breakthrough experiments. A synthetic water was prepared that represented the porewater that would be present after groundwater interacts with bentonite backfill material near a nuclear waste package. Uranium was conservatively transported at pH 8.8. Significant adsorption and subsequent desorption was observed at pH ~ 7, with long desorption tails resulting after switching the column injection solution to uranium-free groundwater. Our experiments were designed to better interrogate this slow desorption behavior. A three-site model predicted sorption rate constants for a pH 7.2 solution with a 75-150 μm granodiorite fraction to be 3.5, 0.012, and 0.012 mL/g-h for the forward reactions and 0.49, 0.0025, and 0.001 h- 1 for the reverse reactions. Surface site densities were 1.3, 0.042, and 0.042 μmol/g for the first, second, and third sites, respectively. 10-year simulations show that including a slow binding site increases the arrival time of a uranium pulse by ~ 70%.

  8. Research Status of IEC Experiments at NASA Marshall

    NASA Technical Reports Server (NTRS)

    Dobson, Chris; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    This presentation provides an overview of IEC (Inertial Electrostatic Confinement) research and experiments at NASA's Marshall Space Flight Center. Topics covered include: apparatus involvement, iec schematics, iec plasma images, iec deuterium experiments, thomson scattering, detector options and experiment results.

  9. 78 FR 58575 - Review of Experiments for Research Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... COMMISSION Review of Experiments for Research Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Guide (RG) 2.4, ``Review of Experiments for Research Reactors.'' The guide is being withdrawn because... Experiments for Research Reactors,'' (ADAMS Accession No. ML003740131) because its guidance no longer...

  10. Mitochondrial pyruvate transport: a historical perspective and future research directions

    PubMed Central

    McCommis, Kyle S.; Finck, Brian N.

    2015-01-01

    Pyruvate is the end-product of glycolysis, a major substrate for oxidative metabolism, and a branching point for glucose, lactate, fatty acid and amino acid synthesis. The mitochondrial enzymes that metabolize pyruvate are physically separated from cytosolic pyruvate pools and rely on a membrane transport system to shuttle pyruvate across the impermeable inner mitochondrial membrane (IMM). Despite long-standing acceptance that transport of pyruvate into the mitochondrial matrix by a carrier-mediated process is required for the bulk of its metabolism, it has taken almost 40 years to determine the molecular identity of an IMM pyruvate carrier. Our current understanding is that two proteins, mitochondrial pyruvate carriers MPC1 and MPC2, form a hetero-oligomeric complex in the IMM to facilitate pyruvate transport. This step is required for mitochondrial pyruvate oxidation and carboxylation – critical reactions in intermediary metabolism that are dysregulated in several common diseases. The identification of these transporter constituents opens the door to the identification of novel compounds that modulate MPC activity, with potential utility for treating diabetes, cardiovascular disease, cancer, neurodegenerative diseases, and other common causes of morbidity and mortality. The purpose of the present review is to detail the historical, current and future research investigations concerning mitochondrial pyruvate transport, and discuss the possible consequences of altered pyruvate transport in various metabolic tissues. PMID:25748677

  11. Joint University Program for Air Transportation Research, 1987

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1989-01-01

    The research conducted during 1987 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of 3 grants sponsored by NASA-Langley and the FAA, one each with the MIT, Ohio Univ., and Princeton Univ. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  12. Teacher Experience: What Does the Research Say?

    ERIC Educational Resources Information Center

    TNTP, 2012

    2012-01-01

    Experience makes a difference--especially at the beginning of a teacher's career. On average, teachers with some experience are more effective than brand new teachers. Teachers improve the most early in their careers. One study found that "close to half of the teacher achievement returns to experience arise during the first few years of teaching."…

  13. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically

  14. Anomalous transport in fracture networks: field scale experiments and modelling

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Le Borgne, T.; Bour, O.; Dentz, M.; Juanes, R.

    2012-12-01

    Anomalous transport is widely observed in different settings and scales of transport through porous and fractured geologic media. A common signature of anomalous transport is the late-time power law tailing in breakthrough curves (BTCs) during tracer tests. Various conceptual models of anomalous transport have been proposed, including multirate mass transfer, continuous time random walk, and stream tube models. Since different conceptual models can produce equally good fits to a single BTC, tracer test interpretation has been plagued with ambiguity. Here, we propose to resolve such ambiguity by analyzing BTCs obtained from both convergent and push-pull flow configurations at two different fracture planes. We conducted field tracer tests in a fractured granite formation close to Ploemeur, France. We observe that BTC tailing depends on the flow configuration and the injection fracture. Specifically the tailing disappears under push-pull geometry, and when we injected at a fracture with high flux (Figure 1). This indicates that for this fractured granite, BTC tailing is controlled by heterogeneous advection and not by matrix diffusion. To explain the change in tailing behavior for different flow configurations, we employ a simple lattice network model with heterogeneous conductivity distribution. The model assigns random conductivities to the fractures and solves the Darcy equation for an incompressible fluid, enforcing mass conservation at fracture intersections. The mass conservation constraint yields a correlated random flow through the fracture system. We investigate whether BTC tailing can be explained by the spatial distribution of preferential flow paths and stagnation zones, which is controlled by the conductivity variance and correlation length. By combining the results from the field tests and numerical modeling, we show that the reversibility of spreading is a key mechanism that needs to be captured. We also demonstrate the dominant role of the injection

  15. Experiences performing conceptual design optimization of transport aircraft

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.

    1984-01-01

    Optimum Preliminary Design of Transports (OPDOT) is a computer program developed at NASA Langley Research Center for evaluating the impact of new technologies upon transport aircraft. For example, it provides the capability to look at configurations which have been resized to take advantage of active controls and provide and indication of economic sensitivity to its use. Although this tool returns a conceptual design configuration as its output, it does not have the accuracy, in absolute terms, to yield satisfactory point designs for immediate use by aircraft manufacturers. However, the relative accuracy of comparing OPDOT-generated configurations while varying technological assumptions has been demonstrated to be highly reliable. Hence, OPDOT is a useful tool for ascertaining the synergistic benefits of active controls, composite structures, improved engine efficiencies and other advanced technological developments. The approach used by OPDOT is a direct numerical optimization of an economic performance index. A set of independent design variables is iterated, given a set of design constants and data. The design variables include wing geometry, tail geometry, fuselage size, and engine size. This iteration continues until the optimum performance index is found which satisfies all the constraint functions. The analyst interacts with OPDOT by varying the input parameters to either the constraint functions or the design constants. Note that the optimization of aircraft geometry parameters is equivalent to finding the ideal aircraft size, but with more degrees of freedom than classical design procedures will allow.

  16. Connecting Arctic/Antarctic Researchers and Educators (CARE): Supporting Teachers and Researchers Beyond the Research Experience

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Warnick, W. K.; Breen, K.; Fischer, K.; Wiggins, H.

    2007-12-01

    Teacher research experiences (TREs) require long-term sustained support for successful transfer of research experiences into the classroom. Specifically, a support mechanism that facilitates focused discussion and collaboration among teachers and researchers is critical to improve science content and pedagogical approaches in science education. Connecting Arctic/Antarctic Researchers and Educators (CARE) is a professional development network that utilizes online web meetings to support the integration of science research experiences into classroom curriculum. CARE brings together teachers and researchers to discuss field experiences, current science issues, content, technology resources, and pedagogy. CARE is a component of the Arctic Research Consortium of the U.S. (ARCUS) education program PolarTREC--Teachers and Researchers Exploring and Collaborating. PolarTREC is a three-year (2007-2009) teacher professional development program celebrating the International Polar Year (IPY) that advances polar science education by bringing K-12 educators and polar researchers together in hands-on field experiences in the Arctic and Antarctic. Currently in its second year, the program fosters the integration of research and education to produce a legacy of long-term teacher-researcher collaborations, improved teacher content knowledge through experiences in scientific inquiry, and broad public interest and engagement in polar science. The CARE network was established to develop a sustainable learning community through which teachers and researchers will further their work to bring polar research into classrooms. Through CARE, small groups of educators are formed on the basis of grade-level and geographic region; each group also contains a teacher facilitator. Although CARE targets educators with previous polar research experiences, it is also open to those who have not participated in a TRE but who are interested in bringing real-world polar science to the classroom

  17. Teaching by research at undergraduate schools: an experience

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.

    1997-12-01

    On this communication I will report a pedagogical experience undertaken in the 1995 class of Image Processing of the course of Applied Physics of the University of Minho. The learning process requires always an active critical participation of the student in an experience essentially personal that should and must be rewarding and fulfilling. To us scientists virtually nothing gives us more pleasure and fulfillment than the research processes. Furthermore it is our main way to improve our, and I stress our, knowledge. Thus I decided to center my undergraduate students' learning process of the basics of digital image processing on a simple applied research program. The proposed project was to develop a process of inspection to be introduced in a generic production line. Measured should be the transversal distance between an object and the extremity of a conveyor belt where it is transported. The measurement method was proposed to be optical triangulation combined with shadow analysis. To the students was given almost entire liberty and responsibility. I limited my self to asses the development of the project orienting them and point out different or pertinent points of view only when strictly necessary.

  18. Critical care air transport team (CCATT) nurses' deployed experience.

    PubMed

    Brewer, Theresa L; Ryan-Wenger, Nancy A

    2009-05-01

    The objective of this study was to use descriptive and phenomenological methods with Critical Care Air Transport Team (CCATT) nurses to identify knowledge and skills required to provide care for critically ill patients in a combat environment. Unstructured interviews, focus groups, written narratives, group interviews, participant observation, and review of in-flight documentation of care were used to obtain data from 23 registered nurses who had deployed with CCATT missions. Dimensions that emerged from the data included: clinical and operational competence, personal, physical, and psychosocial readiness, soldier and survival skills, leadership, administrative concerns, group identification and integration, aircraft air and evacuation familiarity, and nurse characteristics. This information should be shared with CCATT trainers and unit personnel to better prepare them for the realities of future deployments. Future research could incorporate these data into a self-assessment scale to evaluate CCATT nurses' readiness for future deployments. PMID:20731282

  19. Theoretical transport modeling of Ohmic cold pulse experiments

    NASA Astrophysics Data System (ADS)

    Kinsey, J. E.; Waltz, R. E.; St. John, H. E.

    1998-11-01

    The response of several theory-based transport models in Ohmically heated tokamak discharges to rapid edge cooling due to trace impurity injection is studied. Results are presented for the Institute for Fusion Studies—Princeton Plasma Physics Laboratory (IFS/PPPL), gyro-Landau-fluid (GLF23), Multi-mode (MM), and the Itoh-Itoh-Fukuyama (IIF) transport models with an emphasis on results from the Texas Experimental Tokamak (TEXT) [K. W. Gentle, Nucl. Technol./Fusion 1, 479 (1981)]. It is found that critical gradient models containing a strong ion and electron temperature ratio dependence can exhibit behavior that is qualitatively consistent with experimental observation while depending solely on local parameters. The IFS/PPPL model yields the strongest response and demonstrates both rapid radial pulse propagation and a noticeable increase in the central electron temperature following a cold edge temperature pulse (amplitude reversal). Furthermore, the amplitude reversal effect is predicted to diminish with increasing electron density and auxiliary heating in agreement with experimental data. An Ohmic pulse heating effect due to rearrangement of the current profile is shown to contribute to the rise in the core electron temperature in TEXT, but not in the Joint European Tokamak (JET) [A. Tanga and the JET Team, in Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 65] and the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk, V. Arunsalam, M. G. Bell et al., in Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 51]. While this phenomenon is not necessarily a unique signature of a critical gradient, there is sufficient evidence suggesting that the apparent plasma response to edge cooling may not require any underlying nonlocal mechanism and may be explained within the context of the intrinsic properties of electrostatic drift

  20. Medical School Research Pipeline: Medical Student Research Experience in Psychiatry

    ERIC Educational Resources Information Center

    Balon, Richard; Heninger, George; Belitsky, Richard

    2006-01-01

    Objective: The authors discuss the importance of introducing research training in psychiatry and neurosciences to medical students. Methods: A review of existing models of research training in psychiatry with focus on those providing research training to medical students is presented. Results: Two research-training models for medical students that…

  1. Light transport and general aviation aircraft icing research requirements

    NASA Technical Reports Server (NTRS)

    Breeze, R. K.; Clark, G. M.

    1981-01-01

    A short term and a long term icing research and technology program plan was drafted for NASA LeRC based on 33 separate research items. The specific items listed resulted from a comprehensive literature search, organized and assisted by a computer management file and an industry/Government agency survey. Assessment of the current facilities and icing technology was accomplished by presenting summaries of ice sensitive components and protection methods; and assessments of penalty evaluation, the experimental data base, ice accretion prediction methods, research facilities, new protection methods, ice protection requirements, and icing instrumentation. The intent of the research plan was to determine what icing research NASA LeRC must do or sponsor to ultimately provide for increased utilization and safety of light transport and general aviation aircraft.

  2. Experiments on hydrodynamic transport in ultra-cold bose gasses

    NASA Astrophysics Data System (ADS)

    Koller, S. B.

    2012-09-01

    At temperatures near the absolut zero, a gas, here atomic sodium vapour, with high enough density cannot be described as tiny balls moving around as in classical physics. Since the temperature is low, the atoms are so slow that the matterwave of each atom starts to extend over the size of the atom and even over the interatomic distance. Therefore, they start to interfere like waves. Quantum mechanics start to dominate the physics in this regime. Further, depending on the sort of atoms (bosons or fermions) the atoms prefer to be in the same state or avoid to be in the same state. In the case of bosons as in the thesis, if the temperature is lowered to sub micro Kelvin temperature, a new state of matter appears after a phase transition - a macroscopic, standing wave, the Bose-Einstein condensate. This leads to a new phenomena: superfluidity - frictionless flow, second sound, vorticity and coherent scattering effects to name a few. The atoms are trapped in a elongated trap as in most of the experiments in ultra cold gasses. Usually experiments are done in a regime where the atoms seldomly collide with each other while travelling from one end to the other end of the cloud. In this experiment, however, the atoms collide many times with each other when they oscillate in the trap. This means that the cloud is hydrodynamic and leads to a very different behaviour. Two different sound waves (first and second sound), heat conduction, and collisional dominated transport can be observed in this case. The fact that the gas is weakly interacting allows comparison with current theory. At very low temperatures as in the experiments described in the thesis, the Bose character strongly alters the collisions of the atoms. The outcome of the collision does not only depend on the colliding atoms, but also on the atoms near by in phase space. The experiments outlined in this thesis cover some aspects of physics involved. Vortices have been created and observed in the Bose

  3. Unique research challenges for high-speed civil transports

    NASA Technical Reports Server (NTRS)

    Jackson, Charlie M., Jr.; Morris, Charles E. K., Jr.

    1987-01-01

    Market growth and technological advances are expected to lead to a generation of long-range transports that cruise at supersonic or even hypersonic speeds. Current NASA/industry studies will define the market windows in terms of time frame, Mach number, and technology requirements for these aircraft. Initial results indicate that, for the years 2000 to 2020, economically attractive vehicles could have a cruise speed up to Mach 6. The resulting research challenges are unique. They must be met with technologies that will produce commercially successful and environmentally compatible vehicles where none have existed. Several important areas of research were identified for the high-speed civil transports. Among these are sonic boom, takeoff noise, thermal management, lightweight structures with long life, unique propulsion concepts, unconventional fuels, and supersonic laminar flow.

  4. Unique research challenges for high-speed civil transports

    NASA Technical Reports Server (NTRS)

    Jackson, Charlie M., Jr.; Morris, E. K., Jr.

    1988-01-01

    Market growth and technological advances are expected to lead to a generation of long-range transports that cruise at supersonic or even hypersonic speeds. Current NASA/industry studies will define the market windows in terms of time frame, Mach number, and technology requirements for these aircraft. Initial results indicate that, for the years 2000 to 2020, economically attractive vehicles could have a cruise speed up to Mach 6. The resulting research challenges are unique. They must be met with technologies that will produce commercially successful and environmentally compatible vehicles where none have existed. Several important areas of research were identified for the high-speed civil transports. Among these are sonic boom, takeoff noise, thermal management, lightweight structures with long life, unique propulsion concepts, unconventional fuels, and supersonic laminar flow.

  5. 77 FR 38709 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... project delivery while improving environmental outcomes; (2) Conducting research to develop climate change... Federal Highway Administration Surface Transportation Environment and Planning Cooperative Research...-LU) established the Surface Transportation Environment and Planning Cooperative Research...

  6. 76 FR 50312 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... research to develop climate change mitigation, adaptation and livability strategies; (2) Developing and/or... Federal Highway Administration Surface Transportation Environment and Planning Cooperative Research...-LU) established the Surface Transportation Environment and Planning Cooperative Research...

  7. Research Note: Transcendent Experiences and Teacher Trasnformation.

    ERIC Educational Resources Information Center

    Hopp, Carolyn Walker

    2001-01-01

    Explores how transformational experiences can change the pathways of one's life and stimulate continual self-discovery, drawing on Arthur Foshay's experience of viewing Moses in a small Italian church. Convergence of personal theories with teaching's spiritual context can greatly influence teachers' curriculum and content choices. (Contains 12…

  8. Perioperative Research Fellowship: Planning, Implementation, Experience

    PubMed Central

    Memtsoudis, Stavros G; Mazumdar, Madhu; Stundner, Ottokar; Hargett, Mary J.

    2014-01-01

    Perioperative outcomes research has gained widespread interest and is viewed as increasingly important among different specialties, including anesthesiology. Outcome research studies serve to help in the adjustment of risk, allocation of resources, and formulation of hypotheses to guide future research. Pursuing high quality research projects requires familiarity with a wide range of research methodologies, and concepts are ideally learned in a dedicated setting. Skills associated with the use of these methodologies as well as with scientific publishing in general, however, are increasingly challenging to acquire. This article is intended to describe the curriculum and implementation of the Perioperative Medicine and Regional Anesthesia Research Fellowship at the Hospital for Special Surgery. We also propose a methodology to evaluate the success of a research fellowship curriculum. PMID:24942850

  9. Research and development of electric vehicles for clean transportation.

    PubMed

    Wada, Masayoshi

    2009-01-01

    This article presents the research and development of an electric vehicle (EV) in Department of Human-Robotics Saitama Institute of Technology, Japan. Electric mobile systems developed in our laboratory include a converted electric automobile, electric wheelchair and personal mobile robot. These mobile systems contribute to realize clean transportation since energy sources and devices from all vehicles, i.e., batteries and electric motors, does not deteriorate the environment. To drive motors for vehicle traveling, robotic technologies were applied. PMID:19803077

  10. Uranium transport in a crushed granodiorite: experiments and reactive transport modeling.

    PubMed

    Dittrich, T M; Reimus, P W

    2015-01-01

    The primary objective of this study was to develop and demonstrate an experimental method to refine and better parameterize process models for reactive contaminant transport in aqueous subsurface environments and to reduce conservatism in such models without attempting to fully describe the geochemical system. Uranium was used as an example of a moderately adsorbing contaminant because of its relevance in geologic disposal of spent nuclear fuel. A fractured granodiorite from the Grimsel Test Site (GTS) in Switzerland was selected because this system has been studied extensively and field experiments have been conducted with radionuclides including uranium. We evaluated the role of pH, porous media size fraction, and flow interruptions on uranium transport. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and optical microscopy, and used in uranium batch sorption and column breakthrough experiments. A synthetic water was prepared that represented the porewater that would be present after groundwater interacts with bentonite backfill material near a nuclear waste package. Uranium was conservatively transported at pH8.8. Significant adsorption and subsequent desorption was observed at pH ~7, with long desorption tails resulting after switching the column injection solution to uranium-free groundwater. Our experiments were designed to better interrogate this slow desorption behavior. A three-site model predicted sorption rate constants for a pH7.2 solution with a 75-150 μm granodiorite fraction to be 3.5, 0.012, and 0.012 mL/g-h for the forward reactions and 0.49, 0.0025, and 0.001 h(-1) for the reverse reactions. Surface site densities were 1.3, 0.042, and 0.042 μmol/g for the first, second, and third sites, respectively. 10-year simulations show that including a slow binding site increases the arrival time of a uranium pulse by ~70%. PMID:25727688

  11. Reduction of Convection in Closed Tube Vapor Transport Experiments

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Tan, Sarwa Bakti; Shin, In-Seok; Kim, Joo Soo

    2002-01-01

    The primary objective of this effort was to develop a method for suppressing convective flows during the growth of mercurous chloride crystals by vapor transport in closed tubes to levels approaching those obtained in the microgravity environment. Mercurous chloride was chosen because it is a technologically interesting acoustical optical material whose optical properties are believed to be affected by convective flows. Since the Grashof number scales as the cube of the smallest dimension in the flow system, reduction of the size scale can be extremely effective in reducing unwanted convective flows. However, since materials of practical interest must be grown at least on the cm scale, reduction of the overall growth system is not feasible. But if the region just above the growing crystal could be restricted to a few mm, considerable reduction in flow velocity would result. By suspending an effusive barrier in the growth ampoule just above the growth interface, it should be possible to reduce the convective velocity in this vicinity to levels approaching flows in microgravity. If successful, this growth technique will offer a screening test for proposed space experiments that involve vapor transport to see if reduction of convection will result in improved material and will set a new standard against which the improvements obtained in microgravity may be judged. In addition, it may provide an improved method for preparing materials on Earth whose growth is affected adversely by convection. If the properties of this material can be improved there is a potential commercial interest from Brimrose Inc., who has agreed to fabricate and test devices from the crystals we have grown. This report describes the development of the growth facility, the purification processes developed for preparing the starting material, and the results from growth experiments with and without the effusive baffle. Mercurous chloride turned out to be a more difficult material to deal with than

  12. Computer-assisted comparison of analysis and test results in transportation experiments

    SciTech Connect

    Knight, R.D.; Ammerman, D.J.; Koski, J.A.

    1998-05-10

    As a part of its ongoing research efforts, Sandia National Laboratories` Transportation Surety Center investigates the integrity of various containment methods for hazardous materials transport, subject to anomalous structural and thermal events such as free-fall impacts, collisions, and fires in both open and confined areas. Since it is not possible to conduct field experiments for every set of possible conditions under which an actual transportation accident might occur, accurate modeling methods must be developed which will yield reliable simulations of the effects of accident events under various scenarios. This requires computer software which is capable of assimilating and processing data from experiments performed as benchmarks, as well as data obtained from numerical models that simulate the experiment. Software tools which can present all of these results in a meaningful and useful way to the analyst are a critical aspect of this process. The purpose of this work is to provide software resources on a long term basis, and to ensure that the data visualization capabilities of the Center keep pace with advancing technology. This will provide leverage for its modeling and analysis abilities in a rapidly evolving hardware/software environment.

  13. Simulation and modeling of the Gamble II self-pinched ion beam transport experiment

    SciTech Connect

    Rose, D.V.; Ottinger, P.F.; Hinshelwood, D.D.

    1999-07-01

    Progress in numerical simulations and modeling of the self-pinched ion beam transport experiment at the Naval Research Laboratory (NRL) is reviewed. In the experiment, a 1.2-MeV, 100-kA proton beam enters a 1-m long, transport region filled with a low pressure gas (30--250 mTorr helium, or 1 Torr air). The time-dependent velocity distribution function of the injected ion beam is determined from an orbit code that uses a pinch-reflex ion diode model and the measured voltage and current from this diode on the Gamble II generator at NRL. This distribution function is used as the beam input condition for numerical simulations carried out using the hybrid particle-in-cell code IPROP. Results of the simulations will be described, and detailed comparisons will be made with various measurements, including line-integrated electron-density, proton-fluence, and beam radial-profile measurements. As observed in the experiment, the simulations show evidence of self-pinching for helium pressures between 35 and 80 mTorr. Simulations and measurements in 1 Torr air show ballistic transport. The relevance of these results to ion-driven inertial confinement fusion will be discussed.

  14. Research on gas transport in chimneys: a progress report

    SciTech Connect

    Hearst, J.R.

    1986-03-18

    The results of the AGRINI and TIERRA experiments have led us to study three general topics: collapse phenomenology, CO/sub 2/ content measurement, and gas transport in chimneys. Our results so far are fragmentary, but we have been able to come to some tentative conclusions: (1) a layer of strong material between depths of 24 and 32 m, and perhaps some relatively strong material deeper, may have caused the AGRINI crater shape. This layer was absent at the nearby LABAN and CROWDIE events. We were unable to locate the layer with a surface penetrometer or surface seismic methods, but it may be possible to measure strength vs depth in situ by examining the penetration depth of a projectile. (2) We can probably improve our knowledge of the in situ CO/sub 2/ content by calibrating a commercial carbon/oxygen logging system for NTS conditions. (3) It is possible to measure the response of the gas in a chimney to changes in atmospheric pressure. There can be significantly different gas transport in chimneys with the same pressure response, depending on the porosity and the distribution of the porosity. It is possible to perform an inexpensive experiment to study the gas transport in an existing chimney.

  15. Joint University Program for Air Transportation Research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1993-01-01

    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented.

  16. Atmospheric Transport During the Transport and Chemical Evolution over the Pacific TRACE-P Experiment

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.; Kiley, C. M.; Hannan, J. R.; Westberg, D. J.; Avery, M. A.; Newell, R. E.

    2003-01-01

    Atmospheric transport over the Pacific Basin is described during NASA's Transport and Chemical Evolution Over the Pacific Experiment (TRACE-P) that was conducted between February - April 2001. The mission included extensive chemical sampling from two aircraft based primarily in Hong Kong and Yokota Air Base, Japan. Meteorological conditions during TRACE-P changed rapidly due to the seasonal winter/spring transition and the decay of prolonged ENSO cold phase (La Nina) conditions. To document these changes, TRACE-P was divided into two halves, and mean flow patterns during each half are presented and discussed. Important circulation features are the semi-permanent Siberian anticyclone and transient middle latitude cyclones that form near eastern Asia and then move eastward over the northern Pacific. Five-day backward trajectories from the various flight tracks show that air sampled by the aircraft had been transported from a variety of locations. Some parcels remained over the tropical western North Pacific during the entire period, while other important origins were Southeast Asia, Africa, and central Asia. Patterns of satellite-derived precipitation and lightning are described. TRACE-P occurs during a neutral to weak La Nina period of relatively cold sea surface temperatures in the tropical Pacific. Compared to climatology, the TRACE-P period exhibits deep convection located west of its typical position; however, tropospheric flow patterns do not exhibit a strong La Nina signal. Circulation patterns during TRACE-P are found to be generally similar to those during NASA's PEM WEST-B mission that occurred in the same region during February - March 1994.

  17. Alumni Perceptions Used To Assess Undergraduate Research Experience.

    ERIC Educational Resources Information Center

    Bauer, Karen W.; Bennett, Joan S.

    2003-01-01

    On a survey of 986 alumni from a research-extensive university, respondents with undergraduate research experience, when compared to those with no research experience, reported greater enhancement of important cognitive and personal skills as well as higher satisfaction with their undergraduate education. They were also more likely to pursue…

  18. Internal transport barriers in the National Spherical Torus Experiment

    SciTech Connect

    Yuh, H. Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; LeBlanc, B. P.; Mazzucato, E.; Peterson, J. L.; Smith, D. R.; Candy, J.; Waltz, R. E.; Domier, C. W.; Luhmann, N. C. Jr.; Lee, W.; Park, H. K.

    2009-05-15

    In the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 41, 1435 (2001)], internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, high harmonic fast wave heating can also produce electron ITBs (e-ITBs) under reversed magnetic shear conditions without momentum input. Interestingly, the location of the e-ITB does not necessarily match that of the ion ITB (i-ITB). The e-ITB location correlates best with the magnetic shear minima location determined by motional Stark effect constrained equilibria, whereas the i-ITB location better correlates with the location of maximum ExB shearing rate. Measured electron temperature gradients in the e-ITB can exceed critical gradients for the onset of electron thermal gradient microinstabilities calculated by linear gyrokinetic codes. A high-k microwave scattering diagnostic shows locally reduced density fluctuations at wave numbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Reductions in fluctuation amplitude are found to be correlated with the local value of magnetic shear. These results are consistent with nonlinear gyrokinetic simulations predicting a reduction in electron turbulence under negative magnetic shear conditions despite exceeding critical gradients.

  19. Aerothermodynamic Analysis of Commercial Experiment Transporter (COMET) Reentry Capsule

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Gnoffo, Peter A.; Rault, Didier F. G.

    1996-01-01

    An aerothermodynamic analysis of the Commercial Experiment Transporter (COMET) reentry capsule has been performed using the laminar thin-layer Navier-Stokes solver Langley Aerothermodynamic Upwind Relaxation Algorithm. Flowfield solutions were obtained at Mach numbers 1.5, 2, 5, 10, 15, 20, 25, and 27.5. Axisymmetric and 5, 10, and 20 degree angles of attack were considered across the Mach-number range, with the Mach 25 conditions taken to 90 degrees angle of attack and the Mach 27.5 cases taken to 60 degrees angle of attack. Detailed surface heat-transfer rates were computed at Mach 20 and 25, revealing that heating rates on the heat-shield shoulder ,can exceed the stagnation-point heating by 230 percent. Finite-rate chemistry solutions were performed above Mach 10, otherwise perfect gas computations were made. Drag, lift, and pitching moment coefficients are computed and details of a wake flow are presented. The effect of including the wake in the solution domain was investigated and base pressure corrections to forebody drag coefficients were numerically determined for the lower Mach numbers. Pitching moment comparisons are made with direct simulation Monte Carlo results in the more rarefied flow at the highest Mach numbers, showing agreement within two-percent. Thin-layer Navier-Stokes computations of the axial force are found to be 15 percent higher across the speed range than the empirical/Newtonian based results used during the initial trajectory analyses.

  20. Transient Transport Experiments in the CDX-U Spherical Torus

    SciTech Connect

    T. Munsat; P.C. Efthimion; B. Jones; R. Kaita; R. Majeski; D. Stutman; and G. Taylor

    2001-06-12

    Electron transport has been measured in the Current Drive Experiment-Upgrade (CDX-U) using two separate perturbative techniques. Gas modulation at the plasma edge was used to introduce cold-pulses which propagate towards the plasma center, providing time-of-flight information leading to a determination of chi(subscript e) as a function of radius. Sawteeth at the q=1 radius (r/a {approx} 0.15) induced heat-pulses which propagated outward towards the plasma edge, providing a complementary time-of-flight based chi(subscript e) profile measurement. This work represents the first localized measurement of chi(subscript e) in a spherical torus. It is found that chi(subscript e) = 1-2 meters squared per second in the plasma core (r/a < 1/3), increasing by an order of magnitude or more outside of this region. Furthermore, the chi(subscript e) profile exhibits a sharp transition near r/a = 1/3. Spectral and profile analyses of the soft X-rays, scanning interferometer, and edge probe data show no evidence of a significant magnetic island causing the high chi(subscript e) region.

  1. Non-intercepting diagnostics for the HIF neutralized transport experiment

    SciTech Connect

    Roy, P.K.; Eylon, S.; Hannik, R.; Henestroza, E.; Ludvig, J.; Shuman, D.; Yu, S.S.

    2003-05-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high purveyance heavy ion beams. We are developing a non-destructive beam diagnostic system to characterize the ion beam during its operation. Ion beam space charge is sensed by measuring deflection of mono energetic electron passing transversely through the ion beam. In this diagnostic system an electron beam of a submillimeter size with 1-5 {micro}A current and 5-8 kV energy will be injected perpendicularly through the ion beam. The position and intensity of the deflected e-beam would be registered on a scintillator for optical analysis to characterize the ion beam. An electron beam of negligible space charge will be deflected at an angle that depends on the charge density and energy distribution of the ion beam along its trajectory. The ebeam current and energy are chosen such that its trajectory will be significantly perturbed without perturbing the ion beam. We present a progress report on this diagnostic system including the characterization of the electron gun, the design of the e-beam transport system, and a study of the scintillator and its associate electronics and photonic components.

  2. NASA Lewis Research Center combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1982-01-01

    The MHD power generation experiments were conducted in a high field strength cryomagnet which was adapted from an existing facility. In its original construction, it consisted of 12 high purity aluminum coils pool cooled in a bath of liquid neon. In this configuration, a peak field of 15 tesla was produced. For the present experiments, the center four coils were removed and a 23 cm diameter transverse warm bore tube was inserted to allow the placement of the MHD experiment between the remaining eight coils. In this configuration, a peak field of 6 tesla should be obtainable. The time duration of the experiment is limited by the neon supply which allows on the order of 1 minute of total operating time followed by an 18-hour reliquefaction period. As a result, the experiments are run in a pulsed mode. The run duration for the data presented here was 5 sec. The magnetic field profile along the MHD duct is shown. Since the working fluid is in essence superheated steam, it is easily water quenched at the exit of the diffuser and the components are designed vacuum tight so that the exhaust pipe and demister an be pumped down to simulate the vacuum of outer space.

  3. Challenges and perspectives of transport cargo vehicles utilization for performing research in free flight

    NASA Astrophysics Data System (ADS)

    Matveeva, T. V.; Belyaev, M. Yu.; Tsvetkov, V. V.

    2014-01-01

    Russian Progress transport cargo vehicles have successfully been used in different space station programs since 1978. At present time, they play an important role in the International Space Station (ISS) project. Main tasks performed by the transport cargo vehicle (TCV) in the station program are the following: refueling of the station, delivery of consumables and equipment, waste removal, station attitude control and orbit correction maneuver execution. At the same time, the cargo vehicle basic systems still retain unused resources after the vehicle finishes its work with the station. It makes sense to use these resources to perform research in free flight of TCV after departure from the ISS when possible. The fields of research can be determined not only on the basis of the vehicle capabilities as a research platform but also taking into account needs of the research community. Possible fields could be the following: experiments on the Earth or other objects remote sensing using additional equipment, Microgravity research aboard TCV, Launch of small satellites and probes after TCV undocking from the station and transfer to the specified orbit, etc. Solution of research tasks using the Progress TCV resources helps to increase efficiency of the ISS research program performance. The paper considers the TCV flight control features and the methods of the solution of the problems arising when various experiments are performed aboard the vehicle.

  4. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  5. The relationship between manual handling performance and recent flying experience in air transport pilots.

    PubMed

    Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney

    2010-02-01

    Modern jet transport aircraft are typically flown using the on-board automation by the pilot programming commands into the auto-flight systems. Anecdotal evidence exists suggesting that pilots of highly automated aircraft experience manual flying skills decay as a result of a lack of opportunity to practise hand-flying during line operations. The ability of a pilot to revert to basic manual control is essential, for example, in cases where the aircraft's automatic capability is diminished or when reconfiguring the automatics is an ineffective use of crew capacity. However, there is a paucity of objective data to substantiate this perceived threat to flight safety. Furthermore, traditional performance measurement techniques may lack the ability to identify subtle but significant differences in pilots' manual handling ability in large transport aircraft. This study examines the relationship between pilot manual handling performance and their recent flying experience using both traditional flight path tracking measures and frequency-based control strategy measures. Significant relationships are identified between pilots' very recent flying experience and their manual control strategy. Statement of Relevance: The study demonstrates a novel application of frequency analysis, which produces a broader and more sensitive analysis of pilot performance than has been offered in previous research. Additionally, the relationships that are found to exist between recent flying experience and manual flying performance will help to guide future pilot assessment and training. PMID:20099179

  6. Preservice Teachers' Research Experiences in Scientists' Laboratories

    ERIC Educational Resources Information Center

    Brown, Sherri; Melear, Claudia

    2007-01-01

    To promote the use of scientific inquiry methods in K-12 classrooms, departments of teacher education must provide science teachers with experiences using such methods. To comply with state and national mandates, an apprenticeship course was designed to afford preservice secondary science teachers opportunities to engage in an authentic, extended,…

  7. Today's research development on the application of the superconductivity transport system in Japan

    NASA Technical Reports Server (NTRS)

    Kyotani, Yoshihiro

    1995-01-01

    At the Miyazaki test track today, the new test vehicle, MLU002N, is under test run to obtain necessary data for Yamanashi test track where the construction is underway, the test vehicle has been ordered and the first tunnel was completed in December 1993. Superconducting magnetohydrodynamic drive ship, MHDS, 'Yamato 1' has completed its experiment in 1992 and it is now under preparation to exhibit to the public in___1994. Furthermore, to promote the research development of MHDS, the detailed discussion is underway on the magnetohydrodynamic drive equipment as well as the research on the future scheme. Neither an automobile nor railway but a new transport system called EQUOS LIM CAR(ELC) has been proposed. By using the rotating magnetic field, it will levitate on the aluminum like reaction plate. On the normal road, it will run by rolling the wheels like an electric car but on the highway, it will levitate on the guideway resulting to less noise, less vibration and pollution free drive. To understand the concept of the ELC, the model was built and experimented by using permanent magnet. The same model was donated to the MUSEUM OF SCIENCE AND INDUSTRY in Chicago and was displayed to the public. Today, the trial superconducting magnet has been made and the research development of the subsystem is underway. Research development of superconducting elevator, equipment for the launching of spaceship, tube transportation system and others are in progress for the superconducting applied transportation system.

  8. Multidisciplinary Education in Transportation. Proceedings of a Conference conducted by the Highway Research Board (University of Pennsylvania, Philadelphia, September 7 and 8, 1973).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Transportation Research Board.

    A discussion of the problem of providing multidisciplinary education in transportation and a means for educators to communicate their approaches and experiences provided the purpose of the conference. Among the areas discussed were the comprehensiveness of transportation education, societal issues, systems aspects, transportation research,…

  9. NASA Langley Research Center's Simulation-To-Flight Concept Accomplished through the Integration Laboratories of the Transport Research Facility

    NASA Technical Reports Server (NTRS)

    Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.

    2004-01-01

    The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.

  10. Aeolian transport of biota with dust: A wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Rivas, J. A., Jr.; Gill, T. E.; Van Pelt, R. S.; Walsh, E.

    2015-12-01

    Ephemeral wetlands are ideal sources for dust emission, as well as repositories for dormant stages of aquatic invertebrates. An important component of invertebrate dispersal and colonization to new areas is the ability to be entrained into the atmosphere. Aquatic invertebrate eggs fall within the size of dust and sand grains (30-600μm), are less dense and aerodynamically shaped. We have shown previously that aquatic invertebrates can be dispersed long distances in dust storms but the extent of transport of taxa based on diapausing egg size/morphology has not been investigated. Here, we control the wind erosion process in a wind tunnel to test entrainment of diapausing stages of brine shrimp, clam shrimp, tadpole shrimp, fairy shrimp, Daphnia, and the rotifers Brachionus plicatilis and B. calyciflorus into the air by saltation. Diapausing eggs were mixed with sterilized wind-erodible soil. The soil/egg mixture was moistened with distilled water and air dried to form a crust. Dust was generated in a wind tunnel by releasing sand grains that act as saltator material similar to wind-entrained natural sands. Maximum wind velocity was 10m/s and entrained particles were sampled through an isokinetic horizontal intake opening. Aeolian sediment was collected from three points in the system; transfer section for coarse sediment, the pan subtending a settling chamber for finer saltation-sized sediment, and two paper filters for suspension-sized sediment. Samples were then passed through 250 and 350 μm sieves to remove abrader sand and rehydrated with various sterile media depending on the type of organism. We retrieved viable brine, fairy, and tadpole shrimp, ostracods, Daphnia, and diapausing eggs of the rotifers after hydration. This experiment demonstrates that resting stages of many invertebrates can be wind-eroded due to size and egg morphology and remain viable under controlled conditions mimicking dust emission.

  11. Postgraduate Students' Experiences in Interdisciplinary Research Studies

    ERIC Educational Resources Information Center

    Winberg, C.; Barnes, V.; Ncube, K.; Tshinu, S.

    2011-01-01

    Many postgraduate interdisciplinary research (IDR) candidates in the applied disciplines work across two or more traditional areas of study. Such candidates often spend considerable time on knowledge-building activities outside their home (or undergraduate) disciplines; IDR candidates venture into new fields and are exposed to the cultures and…

  12. Capturing the carer's experience: a researcher's reflections.

    PubMed

    Whittingham, Katharine; Barnes, Sarah; Dawson, Jeremy

    2016-05-01

    Aim To reflect on the methodological challenges of conducting a study exploring the effects on quality of life of being an informal carer for a person with palliative heart failure, as well as the factors that influence a carer's perception of caring. Background There are multi-faceted influences on the positive and negative effects of being a carer for a patient with palliative heart failure. By conducting a mixed methods study the aim was to examine and explore similarities and differences of the phenomenon of being a carer. Data sources Quantitative data obtained from the Family Quality of Life Questionnaire (FAMQOL), and qualitative data obtained from 14 interviews with informal carers of patients living with palliative heart failure. Review methods The study was conducted as part of a PhD, University of Sheffield, and the supervisory team reviewed the research process throughout the study. Discussion The study had a two-phase sequential mixed methods design. A sample of carers was recruited from heart failure nurse service caseloads in a UK urban setting. Carers were invited to complete the Family Quality of Life Questionnaire, a tool developed for carers of patients with heart failure. Participants were also asked to provide contact details if they were willing to be interviewed for the second phase of the study. Conclusion The study highlights important methodological considerations for recruiting carers. As the intention was to begin the analysis of the questionnaires before beginning the second phase of the study, the researcher was compelled to consider how integration was maintained and how to improve access to carers for research. Implications for practice The complexities associated with the population in this study led the researcher to use a pragmatic design to address research questions. When reflecting on the research and the challenges associated with recruiting to the quantitative phase of the study, the researcher used an iterative approach to

  13. Adsorption and transport of polymaleic acid on Callovo-Oxfordian clay stone: Batch and transport experiments

    NASA Astrophysics Data System (ADS)

    Durce, Delphine; Landesman, Catherine; Grambow, Bernd; Ribet, Solange; Giffaut, Eric

    2014-08-01

    Dissolved Organic Matter (DOM) can affect the mobility of radionuclides in pore water of clay-rich geological formations, such as those intended to be used for nuclear waste disposal. The present work studies the adsorption and transport properties of a polycarboxylic acid, polymaleic acid (PMA, Mw = 1.9 kDa), on Callovo-Oxfordian argillite samples (COx). Even though this molecule is rather different from the natural organic matter found in clay rock, the study of its retention properties on both dispersed and intact samples allows assessing to which extent organic acids may undergo sorption under natural conditions (pH 7) and what could be the impact on their mobility. PMA sorption and desorption were investigated in dispersed systems. The degree of sorption was measured after 1, 8 and 21 days and for a range of PMA initial concentrations from 4.5 × 10- 7 to 1.4 × 10- 3 mol.L- 1. The reversibility of the sorption process was estimated by desorption experiments performed after the sorption experiments. At the sorption steady state, the sorption was described by a two-site Langmuir model. A total sorption capacity of COx for PMA was found to be 1.01×10- 2 mol.kg- 1 distributed on two sorption sites, one weak and one strong. The desorption of PMA was incomplete, independently of the duration of the sorption phase. The amount of desorbable PMA even appeared to decrease for sorption phases from 1 to 21 days. To describe the apparent desorption hysteresis, two conceptual models were applied. The two-box diffusion model accounted for intraparticle diffusion and more generally for nonequilibrium processes. The two-box first-order non-reversible model accounted for a first-order non-reversible sorption and more generally for kinetically-controlled irreversible sorption processes. The use of the two models revealed that desorption hysteresis was not the result of nonequilibrium processes but was due to irreversible sorption. Irreversible sorption on the strong site was

  14. Lessons in collaboration and effective field research from the Appalachian Headwaters Research Experience for Undergraduates Program

    NASA Astrophysics Data System (ADS)

    Jones, A. L.; Fox, J.; Wilder, M. S.

    2009-12-01

    In the summer of 2009, the authors launched year one of a three-year National Science Foundation-funded Research Experience for Undergraduates entitled "Carbon Storage and Headwater Health in the Appalachian Headwaters." Eight undergraduates selected from a nationally competitive field of more than 60 applicants participated in the ten-week field- and laboratory-based program along with three middle- and high-school teachers. Each student developed and completed an independent research project related to coal mining’s impact on soil organic carbon and sediment transport processes. Specifically, they used isotope ratio mass spectrometry to measure the carbon and nitrogen stable isotopic signature of soils and sediments in the Appalachian headwater landscapes and first order streams of Kentucky's southeastern coalfields. Among the program's innovative features was its fundamentally collaborative nature--which was represented in several ways. First, the background of the three program leaders was very different: an environmental planner with an academic background in land use planning and administration (Jones); a civil engineer trained in biogeochemistry and watershed modeling (Fox); and an environmental educator experienced in both formal and nonformal educator training and certification (Wilder). The program was also a collaboration between a Carnegie 1 research-oriented institution and an undergraduate/ teaching -focused regional comprehensive university. Finally, the participants themselves represented a diversity of disciplines and institutional backgrounds--including biology, geology, chemistry, environmental science and civil engineering. The Research Experience for Teachers component was another innovative program element. The teachers participated in all field and laboratory research activities during the first six weeks, then developed a unit of study for their own classrooms to be implemented during the current school year. In addition to the six

  15. Failed Rocket Payload Included Research Experiments

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-11-01

    About an hour and a half before the launch of the Orbital Sciences Corporation's Antares rocket and Cygnus cargo spacecraft at 6:22 p.m. on 28 October, Jeff Goldstein arrived at his vantage point on Arbuckle Neck Road in Assawoman, Va. It was just 1.5 miles from launchpad 0A at NASA's Wallops Flight Facility. Goldstein, director of the National Center for Earth and Space Science Education (NCESSE) had come with about 35 elementary school through college students, as well as some parents, teachers, and school administrators, to watch the liftoff that would deliver the students' microgravity experiments to the International Space Station (ISS).

  16. The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.

  17. Passepartout Sherpa - A low-cost, reusable transportation system into the stratosphere for small experiments

    NASA Astrophysics Data System (ADS)

    Taraba, M.; Fauland, H.; Turetschek, T.; Stumptner, W.; Kudielka, V.; Scheer, D.; Sattler, B.; Fritz, A.; Stingl, B.; Fuchs, H.; Gubo, B.; Hettrich, S.; Hirtl, A.; Unger, E.; Soucek, A.; Frischauf, N.; Grömer, G.

    2014-12-01

    The Passepartout sounding balloon transportation system for low-mass (< 1200 g) experiments or hardware for validation to an altitude of 35 km is described. We present the general flight configuration, set-up of the flight control system, environmental and position sensors, power system, buoyancy considerations as well as the ground control infrastructure including recovery operations. In the telemetry and command module the integrated airborne computer is able to control the experiment, transmit telemetry and environmental data and allows for a duplex communication to a control centre for tele-commanding. The experiment module is mounted below the telemetry and command module and can either work as a standalone system or be controlled by the airborne computer. This spacing between experiment- and control unit allows for a high flexibility in the experiment design. After a parachute landing, the on-board satellite based recovery subsystems allow for a rapid tracking and recovery of the telemetry and command module and the experiment. We discuss flight data and lessons learned from two representative flights with research payloads.

  18. Diversifying Science: Underrepresented Student Experiences in Structured Research Programs

    ERIC Educational Resources Information Center

    Hurtado, Sylvia; Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.

    2009-01-01

    Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma.…

  19. Linguistic analysis of project ownership for undergraduate research experiences.

    PubMed

    Hanauer, D I; Frederick, J; Fotinakes, B; Strobel, S A

    2012-01-01

    We used computational linguistic and content analyses to explore the concept of project ownership for undergraduate research. We used linguistic analysis of student interview data to develop a quantitative methodology for assessing project ownership and applied this method to measure degrees of project ownership expressed by students in relation to different types of educational research experiences. The results of the study suggest that the design of a research experience significantly influences the degree of project ownership expressed by students when they describe those experiences. The analysis identified both positive and negative aspects of project ownership and provided a working definition for how a student experiences his or her research opportunity. These elements suggest several features that could be incorporated into an undergraduate research experience to foster a student's sense of project ownership. PMID:23222833

  20. Human Nutrition Research Conducted at State Agricultural Experiment Stations and 1890/Tuskegee Agricultural Research Programs.

    ERIC Educational Resources Information Center

    Driskell, Judy A.; Myers, John R.

    1989-01-01

    Cooperative State Research Service-administered and state-appropriated State Agriculture Experiment Station funds for human nutrition research increased about two-fold from FY70-FY86, while the percentage of budget expended for this research decreased. (JOW)

  1. Taking Research Experiences for Undergraduates Online

    NASA Astrophysics Data System (ADS)

    Hubenthal, Michael; Judge, Jasmeet

    2013-04-01

    To today's budding scientists, the notion of sharing experiences and working collaboratively with distant peers is not a novelty. Instead, this is what most young scientists expect to achieve through the Internet portals they carry in their pockets and backpacks. They have never known a world without information and communication technologies (ICT) such as laptops, mobile phones, text messaging, and the Internet. As a result, they have grown to rely on uninterrupted access to the Internet for a range of information-gathering and communication activities. Further, this generation of students has fully embraced structured online learning opportunities. For example, in 2011 more than 6.7 million U.S. students in higher education took at least one online course [Allen and Seaman, 2013].

  2. Robotic Scopes & Research Experiences for Secondary Students

    NASA Astrophysics Data System (ADS)

    Gelderman, Richard; Carini, Michael T.; Barnaby, David; Walter, Donald K.

    STARBASE is being developed to connect secondary science students and teachers with cutting edge astronomical research. We regularly operate via remote control over the Internet two telescopes operating in the USA: the 0.6m in Kentucky and the 1.3m RCT in Arizona. Both observatories are being upgraded to provide robotic control executing scripted observations without real-time human oversight. This telescope network is being developed in order to support our growing network of students and teachers from rural public middle and high schools in the southeast United States. Our objective is to work with the teachers to bring to their students the adventure of directly exploring the Universe. We provide professional development workshops one at the introductory level and another in affiliation with Hands-On Universe to provide software and instruction required to introduce image-processing into the curriculum. We continue our involvement with classroom visits and the ability to request observations via our web-based interface. Most of our teachers have selected research projects involving an entire class but we have also worked closely with individual students motivated to pursue a more detailed project (e.g. eclipsing binaries or AGN variability). Our poster presents details of our efforts and results of our program evaluation

  3. Educators' experience of teaching nursing research to undergraduates.

    PubMed

    Mansour, Tamam B; Porter, Eileen J

    2008-11-01

    Most research pertaining to the teaching of nursing research has focused on learning outcomes and students' attitudes toward research. Few scholars have explored what it is like to teach nursing research. The purpose of this study was to describe the experience of teaching undergraduate nursing research. Data were obtained from 12 nurse educators through e-mail interviews and analyzed using Giorgi's method of descriptive phenomenology. Four meaning units describe the experience: marketing research content, introducing the research process, enhancing student abilities to learn about research, and enhancing personal abilities to teach research. The three meaning units that focus on faculty intentions toward students are somewhat consistent with prior research but include interesting new ideas. Concerning the last meaning unit, participants reported an interest in learning about teaching strategies, advanced statistics, and informational technology. Deans and directors should explore the learning needs of such faculty and offer appropriate ongoing education. PMID:18359922

  4. Overview of NASA's Next Generation Air Transportation System (NextGen) Research

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.

    2009-01-01

    This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.

  5. Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Bennett, J. C.

    1981-01-01

    Downstream mixing of coaxial jets discharging in an expanded duct was studied to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inlet jet inlet duct; a shear region further downstream between the inner and annular jets; a recirculation zone; and a reattachment zone. A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color laser velocimeter (LV) system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r-theta planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.). A combination of turbulent mass transport rate, concentration and velocity data were obtained system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid.

  6. Space Station Biological Research Project: Reference Experiment Book

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine (Editor); Wade, Charles (Editor)

    1996-01-01

    The Space Station Biological Research Project (SSBRP), which is the combined efforts of the Centrifuge Facility (CF) and the Gravitational Biology Facility (GBF), is responsible for the development of life sciences hardware to be used on the International Space Station to support cell, developmental, and plant biology research. The SSBRP Reference Experiment Book was developed to use as a tool for guiding this development effort. The reference experiments characterize the research interests of the international scientific community and serve to identify the hardware capabilities and support equipment needed to support such research. The reference experiments also serve as a tool for understanding the operational aspects of conducting research on board the Space Station. This material was generated by the science community by way of their responses to reference experiment solicitation packages sent to them by SSBRP scientists. The solicitation process was executed in two phases. The first phase was completed in February of 1992 and the second phase completed in November of 1995. Representing these phases, the document is subdivided into a Section 1 and a Section 2. The reference experiments contained in this document are only representative microgravity experiments. They are not intended to define actual flight experiments. Ground and flight experiments will be selected through the formal NASA Research Announcement (NRA) and Announcement of Opportunity (AO) experiment solicitation, review, and selection process.

  7. Mission and Design of the Fusion Ignition Research Experiment (FIRE)

    SciTech Connect

    Meade, D. M.; Jardin, S. C.; Schmidt, J. A.; Thome, R. J.; Sauthoff, N. R.; Heitzenroeder, P.; Nelson, Brad E; Ulrickson, M. A.; Kessel, C. E.; Mandrekas, J.; Neumeyer, C. L.; Schultz, J. H.; Rutherford, P. H.; Wesley, J. C.; Young, K. M.; Nevins, W. M.; Houlberg, Wayne A; Uckan, Nermin A; Woolley, R. W.; Baker, C. C.

    2001-01-01

    Experiments are needed to test and extend present understanding of confinement, macroscopic stability, alpha-driven instabilities, and particle/power exhaust in plasmas dominated by alpha heating. A key issue is to what extent pressure profile evolution driven by strong alpha heating will act to self-organize advanced configurations with large bootstrap current fractions and internal transport barriers. A design study of a Fusion Ignition Research Experiment (FIRE) is underway to assess near term opportunities for advancing the scientific understanding of self-heated fusion plasmas. The emphasis is on understanding the behavior of fusion plasmas dominated by alpha heating (Q ≥ 5) that are sustained for durations comparable to the characteristic plasma time scales (≥ 20 τE and ~ τskin, where τskin is the time for the plasma current profile to redistribute at fixed current). The programmatic mission of FIRE is to attain, explore, understand and optimize alphadominated plasmas to provide knowledge for the design of attractive magnetic fusion energy systems. The programmatic strategy is to access the alpha-heating-dominated regime with confidence using the present advanced tokamak data base (e.g., Elmy-H-mode, ≤ 0.75 Greenwald density) while maintaining the flexibility for accessing and exploring other advanced tokamak modes (e. g., reversed shear, pellet enhanced performance) at lower magnetic fields and fusion power for longer durations in later stages of the experimental program. A major goal is to develop a design concept that could meet these physics objectives with a construction cost in the range of $1B.

  8. COLLOID MOBILIZATION AND TRANSPORT IN CONTAMINANT PLUMES: FIELD EXPERIMENTS, LABORATORY EXPERIMENTS, AND MODELING (EPA/600/S-99/001)

    EPA Science Inventory

    The major hypothesis driving this research, that the transport of colloids in a contaminant plume is limited by the advance of the chemical agent causing colloid mobilization, was tested by (1) examining the dependence of colloid transport and mobilization on chemical perturbatio...

  9. Research Administrator Salary: Association with Education, Experience, Credentials and Gender

    ERIC Educational Resources Information Center

    Shambrook, Jennifer; Roberts, Thomas J.; Triscari, Robert

    2011-01-01

    The 2010 Research Administrators Stress Perception Survey (2010 RASPerS) collected data from 1,131 research administrators on salary, years experience, educational level, Certified Research Administrator (CRA) status, and gender. Using these data, comparisons were made to show how salary levels are associated with each of these variables. Using…

  10. Experiments on viscous transport in pure-electron plasmas

    SciTech Connect

    Kriesel, Jason M.; Driscoll, C. Fred

    1999-12-10

    Viscous transport in pure-electron plasmas is a rearrangement of particles due to like-particle interactions, eventually leading to a confined global thermal equilibrium state. The measured transport is observed to be proportional to the shear in the total (ExB+diamagnetic) fluid rotation of the plasma, for both hollow and monotonic rotation profiles. We determine the local kinematic viscosity, {kappa}, from measurements of the local flux of electrons. The measured viscosity is 50-10{sup 4} times larger than expected from classical transport due to short-range velocity-scattering collisions, but is within a factor of 10 of recent theories by O'Neil and Dubin of transport due to long-range drift collisions. The measured viscosity scales with magnetic field and plasma length roughly as {kappa}{proportional_to}B/L. This scaling suggests a finite-length transport enhancement caused by particles interacting multiple times as they bounce axially between the ends of the plasma.

  11. A preliminary assessment of field transport experiments using encapsulated cells

    SciTech Connect

    Petrich, C.R.; Knaebel, D.B.; Ralston, D.R.; Crawford, R.L.; Stormo, K.E.

    1995-12-31

    Microencapsulation of nonindigenous degradative organisms is a technique that enhances microorganism survival. An intermediate-scale field tracer test was conducted to evaluate the transport of encapsulated-cell microbeads and other particles in a shallow, confined, heterogeneous aquifer consisting of unconsolidated silts, sands, and gravels under induced-gradient, uniform flow conditions. Tracers included bromide; 2-, 5-, and 15-{micro}m-diameter polystyrene microspheres; and encapsulated Flavobacterium microbeads ranging in diameter from approximately 2 to 80 {micro}m. Results suggest that aquifer heterogeneity was a dominant factor in bromide- and particle-transport patterns. Encapsulated-cell migration appeared to be retarded with respect to the bromide and microsphere tracers. Results of this study also indicate that encapsulated-cell particle sizes and encapsulation material characteristics may be important factors affecting the transport of encapsulated cells in a subsurface environment.

  12. Near-field radiative thermal transport: From theory to experiment

    SciTech Connect

    Song, Bai Fiorino, Anthony; Meyhofer, Edgar; Reddy, Pramod

    2015-05-15

    Radiative thermal transport via the fluctuating electromagnetic near-field has recently attracted increasing attention due to its fundamental importance and its impact on a range of applications from data storage to thermal management and energy conversion. After a brief historical account of radiative thermal transport, we summarize the basics of fluctuational electrodynamics, a theoretical framework for the study of radiative heat transfer in terms of thermally excited propagating and evanescent electromagnetic waves. Various approaches to modeling near-field thermal transport are briefly discussed, together with key results and proposals for manipulation and utilization of radiative heat flow. Subsequently, we review the experimental advances in the characterization of both near-field heat flow and energy density. We conclude with remarks on the opportunities and challenges for future explorations of radiative heat transfer at the nanoscale.

  13. University Academics' Experience of Research and Its Relationship to Their Experience of Teaching

    ERIC Educational Resources Information Center

    Prosser, Michael; Martin, Elaine; Trigwell, Keith; Ramsden, Paul; Middleton, Heather

    2008-01-01

    There has been a growing research debate over the relations between university teaching and research. This paper contributes to that debate by describing the variation in the way university academics' experience research, then linking that empirical evidence with previous work to explicate the relations between variation in research, teaching, and…

  14. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  15. A radio frequency tracing experiment of bedload transport in a small braided mountain stream

    NASA Astrophysics Data System (ADS)

    Liebault, F.; Chapuis, M.; Bellot, H.; Deschatres, M.

    2009-04-01

    Radio frequency identification technology is used for monitoring the displacement of coarse particles in streams since the beginning of the 2000s. Passive integrated transponders (PIT tags) are small, cheap and long-lasting electronic tags that can be programmed with their own identification code. Initially used in environmental research for animal tracking, they have been deployed successfully in a variety of fluvial environments for coarse sediment tracing. Pioneering studies conducted in both semiarid and humid small upland streams with low intensity bedload transport gave recovery rates above 85% (Nichols 2004; Lamarre et al. 2005). Here we present an experiment of radio frequency sediment tracing implemented on a small braided mountain stream with a high intensity bedload transport and a wide active channel (mean active channel width: about 20 m). The study site is the Bouinenc Torrent, a tributary to the Bléone River in SE France that drains a 39 km² mountainous drainage basin of the Southern Prealps. In spring 2008, we deployed 451 tracers with b-axis ranging from 23 to 520 mm. Tracers were deployed along 8 cross sections located in the upstream part of the lowest 2.3 km of the stream. We developed a RFID detection system composed of an antenna and a reader unit; this system is characterized by a range of detection of 80 cm in optimal configuration. Two small intensity flow events occurred in June 2008 and entrained the tracers deployed in the most active part of the active channel. We mapped the position of the displaced tracers with a dGPS in July 2008. We obtained an overall recovery rate of 88%. The recovery rate calculated for the active tracers (those that were displaced after the flow events) was 76%. The projection of the tracer dispersion cloud on high resolution aerial photographs obtained with a drone allows us to calculate the distance of transport for each tracer. Mean and maximal distances of transport were respectively 796 m (+/- 53 m) and 2

  16. High-current beam dynamics and transport, theory and experiment

    SciTech Connect

    Reiser, M.

    1986-01-01

    Recent progress in the understanding of beam physics and technology factors determining the current and brightness of ion and electron beams in linear accelerators will be reviewed. Topics to be discussed including phase-space density constraints of particle sources, low-energy beam transport include charge neutralization, emittance growth due to mismatch, energy exchange, instabilities, nonlinear effects, and longitudinal bunching.

  17. PIUS boron transport phenomena - A comparison of experiments with simulations

    SciTech Connect

    Bredolt, U.

    1990-01-01

    In the process inherent ultimate safety (PIUS) reactor, the primary system is via thermal barriers in direct contact with a large pool of cold, highly borated water. In severe transients that would normally entail a risk of core damage, this borated water enters the primary system and shuts down the reactor, or reduces its power to a safe level and ensures cooling. The distribution of this inflowing borated water in the primary system is important for the transient behavior of the reactor. An example of such a transport phenomenon encountered in a PIUS reactor is an uncollected boron dilution transient, corresponding to inadvertent control rod withdrawal in a present-day pressurized water reactor. In this transient, a non-uniform boron distribution occurs in the primary system, and it is important to predict the boron distribution correctly in the primary system during the entire transient. A test loop of PIUS at ABB Atom's engineering laboratories was used to investigate large-scale boron transport phenomena. The test loop was used for comparing the standard solution methods in the RIGEL code with the improved model for tracking boron and entalphy front propagation. The test cases have demonstrated and verified the ability of the RIGEL code to predict boron transport phenomena with sufficient accuracy, using the improved transport delay model.

  18. Transport in nanoporous carbon membranes: Experiments and analysis

    SciTech Connect

    Acharya, M.; Foley, H.C.

    2000-05-01

    Single-component permeances of six gases were measured on three different supported nanoporous carbon membranes prepared by spray coating and pyrolysis of poly(furfuryl alcohol) on porous stainless-steel disks. Global activation energies were regressed from data collected as a function of temperature. Permeances and global activation energies were correlated to molecular size, assuming that entropic affects dominated the transport. The permeance was best correlated to the minimum projected area of the molecule computed from first principles. The free-energy barriers to transport within the membranes were derived from the temperature dependence of the permeance data, after accounting for porosity differences between the membranes and differences in molecular adsorption. Using transition-state theory and an entropic model derived, the free energy, enthalpy, and entropic barriers to transport within the membrane were examined as a function of molecular size. Computed on the basis of size, the entropic component of this barrier did not account for the large differences in the transition-state free energies. However, when these entropic barrier values were used to compute the enthalpic portion of the barrier free energies, the minimum projected area of each molecule correlated strongly. Furthermore, these enthalpic components of the barriers were fitted nicely by the Everett-Powl mean field potential, using only the pore size as the adjustable parameter. These results shed light on the underlying mechanism by which shape-selective transport takes place in the NPC membranes and small molecules are separated.

  19. Student Experience of Final-Year Undergraduate Research Projects: An Exploration of "Research Preparedness"

    ERIC Educational Resources Information Center

    Shaw, Kylie; Holbrook, Allyson; Bourke, Sid

    2013-01-01

    During this past decade the level of interest in building research capacity has intensified in Australia and internationally, with a particular emphasis on the development of postgraduate research students, but also extending to undergraduate research experience. This study investigated the student experience across a diverse range of fourth-year…

  20. Academics' Perceptions of the Purpose of Undergraduate Research Experiences in a Research-Intensive Degree

    ERIC Educational Resources Information Center

    Wilson, Anna; Howitt, Susan; Wilson, Kate; Roberts, Pam

    2012-01-01

    The inclusion of research experiences as core components of undergraduate curricula implies that students will be exposed to and situated within the research activities of their university. Such experiences thus provide a new prism through which to view the relations between teaching, research and learning. The intentions and actions of academics…

  1. The solenoidal transport option: IFE drivers, near term research facilities, and beam dynamics

    SciTech Connect

    Lee, E.P.; Briggs, R.J.

    1997-09-01

    Solenoidal magnets have been used as the beam transport system in all the high current electron induction accelerators that have been built in the past several decades. They have also been considered for the front end transport system for heavy ion accelerators for Inertial Fusion Energy (IFE) drivers, but this option has received very little attention in recent years. The analysis reported here was stimulated mainly by the recent effort to define an affordable {open_quotes}Integrated Research Experiment{close_quotes} (IRE) that can meet the near term needs of the IFE program. The 1996 FESAC IFE review panel agreed that an integrated experiment is needed to fully resolve IFE heavy ion driver science and technology issues; specifically, {open_quotes}the basic beam dynamics issues in the accelerator, the final focusing and transport issues in a reactor-relevant beam parameter regime, and the target heating phenomenology{close_quotes}. The development of concepts that can meet these technical objectives and still stay within the severe cost constraints all new fusion proposals will encounter is a formidable challenge. Solenoidal transport has a very favorable scaling as the particle mass is decreased (the main reason why it is preferred for electrons in the region below 50 MeV). This was recognized in a recent conceptual study of high intensity induction linac-based proton accelerators for Accelerator Driven Transmutation Technologies, where solenoidal transport was chosen for the front end. Reducing the ion mass is an obvious scaling to exploit in an IRE design, since the output beam voltage will necessarily be much lower than that of a full scale driver, so solenoids should certainly be considered as one option for this experiment as well.

  2. Physics Basis and Simulation of Burning Plasma Physics for the Fusion Ignition Research Experiment (FIRE)

    SciTech Connect

    C.E. Kessel; D. Meade; S.C. Jardin

    2002-01-18

    The FIRE [Fusion Ignition Research Experiment] design for a burning plasma experiment is described in terms of its physics basis and engineering features. Systems analysis indicates that the device has a wide operating space to accomplish its mission, both for the ELMing H-mode reference and the high bootstrap current/high beta advanced tokamak regimes. Simulations with 1.5D transport codes reported here both confirm and constrain the systems projections. Experimental and theoretical results are used to establish the basis for successful burning plasma experiments in FIRE.

  3. Including health in transport policy agendas: the role of health impact assessment analyses and procedures in the European experience.

    PubMed Central

    Dora, Carlos; Racioppi, Francesca

    2003-01-01

    From the mid-1990s, research began to highlight the importance of a wide range of health impacts of transport policy decisions. The Third Ministerial Conference on Environment and Health adopted a Charter on Transport, Environment and Health based on four main components: bringing awareness of the nature, magnitude and costs of the health impacts of transport into intergovernmental processes; strengthening the arguments for integration of health into transport policies by developing in-depth analysis of the evidence; developing national case studies; and engaging ministries of environment, health and transport as well as intergovernmental and nongovernmental organizations. Negotiation of the Charter was based on two converging processes: the political process involved the interaction of stakeholders in transport, health and environment in Europe, which helped to frame the issues and the approaches to respond to them; the scientific process involved an international group of experts who produced state-of- the-art reviews of the health impacts resulting from transportation activities, identifying gaps in existing knowledge and methodological tools, specifying the policy implications of their findings, and suggesting possible targets for health improvements. Health arguments were used to strengthen environmental ones, clarify costs and benefits, and raise issues of health equity. The European experience shows that HIA can fulfil the need for simple procedures to be systematically applied to decisions regarding transport strategies at national, regional and local levels. Gaps were identified concerning models for quantifying health impacts and capacity building on how to use such tools. PMID:12894322

  4. Exploring perceptions and experiences of Bolivian health researchers with research ethics.

    PubMed

    Sullivan, Sarah; Aalborg, Annette; Basagoitia, Armando; Cortes, Jacqueline; Lanza, Oscar; Schwind, Jessica S

    2015-04-01

    In Bolivia, there is increasing interest in incorporating research ethics into study procedures, but there have been inconsistent application of research ethics practices. Minimal data exist regarding the experiences of researchers concerning the ethical conduct of research. A cross-sectional study was administered to Bolivian health leaders with research experience (n = 82) to document their knowledge, perceptions, and experiences of research ethics committees and infrastructure support for research ethics. Results showed that 16% of respondents reported not using ethical guidelines to conduct their research and 66% indicated their institutions did not consistently require ethics approval for research. Barriers and facilitators to incorporate research ethics into practice were outlined. These findings will help inform a comprehensive rights-based research ethics education program in Bolivia. PMID:25784714

  5. Quantifying the transport properties of lipid mesophases by theoretical modelling of diffusion experiments.

    PubMed

    Antognini, Luca M; Assenza, Salvatore; Speziale, Chiara; Mezzenga, Raffaele

    2016-08-28

    Lyotropic Liquid Crystals (LLCs) are a class of lipid-based membranes with a strong potential for drug-delivery employment. The characterization and control of their transport properties is a central issue in this regard, and has recently prompted a notable volume of research on the topic. A promising experimental approach is provided by the so-called diffusion setup, where the drug molecules diffuse from a feeding chamber filled with water to a receiving one passing through a LLC. In the present work we provide a theoretical framework for the proper description of this setup, and validate it by means of targeted experiments. Due to the inhomogeneity of the system, a rich palette of different diffusion dynamics emerges from the interplay of the different time- and lengthscales thereby present. Our work paves the way to the employment of diffusion experiments to quantitatively characterize the transport properties of LLCs, and provides the basic tools for device diffusion setups with controlled kinetic properties. PMID:27586942

  6. A Community Mentoring Model for STEM Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Kobulnicky, Henry A.; Dale, Daniel A.

    2016-01-01

    This article describes a community mentoring model for UREs that avoids some of the common pitfalls of the traditional paradigm while harnessing the power of learning communities to provide young scholars a stimulating collaborative STEM research experience.

  7. Beam transport experiment with a new kicker control system on the HIRFL

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Yu; Zhou, De-Tai; Luo, Jin-Fu; Zhang, Jian-Chuan; Zhou, Wen-Xiong; Ni, Fa-Fu; Yin, Jun; Yin, Jia; Yuan, You-Jin; Shang-Guan, Jing-Bin

    2016-04-01

    A kicker control system is used for beam extraction and injection between two cooling storage rings (CSRs) at the Heavy Ion Research Facility in Lanzhou (HIRFL). To meet the requirements of special physics experiments, the kicker controller has been upgraded, with a new controller designed based on ARM+DSP+FPGA technology and monolithic circuit architecture, which can achieve a precision time delay of 2.5 ns. In September 2014, the new kicker control system was installed in the kicker field, and the test experiment using the system was completed. In addition, a pre-trigger signal was provided by the controller, which was designed to synchronize the beam diagnostic system and physics experiments. Experimental results indicate that the phenomena of “missed kick” and “inefficient kick” were not observed, and the multichannel trigger signal delay could be adjusted individually for kick power supplies in digitization; thus, the beam transport efficiency was improved compared with that of the original system. The fast extraction and injection experiment was successfully completed based on the new kicker control systems for HIRFL. Supported by National Natural Science Foundation of China (U1232123)

  8. Ballistic electron transport in stubbed quantum waveguides: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Debray, P.; Raichev, O. E.; Vasilopoulos, P.; Rahman, M.; Perrin, R.; Mitchell, W. C.

    2000-04-01

    We present results of experimental and theoretical investigations of electron transport through stub-shaped waveguides or electron stub tuners (ESTs) in the ballistic regime. Measurements of the conductance G as a function of voltages, applied to different gates Vi (i=bottom, top, and side) of the device, show oscillations in the region of the first quantized plateau that we attribute to reflection resonances. The oscillations are rather regular and almost periodic when the height h of the EST cavity is small compared to its width. When h is increased, the oscillations become less regular and broad depressions in G appear. A theoretical analysis, which accounts for the electrostatic potential formed by the gates in the cavity region, and a numerical computation of the transmission probabilities successfully explains the experimental observations. An important finding for real devices, defined by surface Schottky gates, is that the resonance minima result from size quantization along the transport direction of the EST.

  9. 25 CFR 170.941 - May tribes become involved in transportation research?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... tribes become involved in transportation research? Yes. Tribes may: (a) Participate in Transportation Research Board meetings, committees, and workshops sponsored by the National Science Foundation; (b... 25 Indians 1 2010-04-01 2010-04-01 false May tribes become involved in transportation...

  10. 25 CFR 170.941 - May tribes become involved in transportation research?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... tribes become involved in transportation research? Yes. Tribes may: (a) Participate in Transportation Research Board meetings, committees, and workshops sponsored by the National Science Foundation; (b... 25 Indians 1 2011-04-01 2011-04-01 false May tribes become involved in transportation...

  11. Modeling Polymer Stabilized Nano-scale Zero Valent Iron Transport Experiments in Porous Media to Understand the Transport Behavior

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Krol, M.; Sleep, B. E.

    2015-12-01

    A wide variety of groundwater contaminants can be treated with nano-scale zero valent iron (nZVI). However, delivery of nZVI in the subsurface to the treatment zones is challenging as the bare nZVI particles have a higher tendency to agglomerate. The subsurface mobility of nZVI can be enhanced by stabilizing nZVI with polymer, such as carboxymethyl cellulose (CMC). In this study, numerical simulations were conducted to evaluate CMC stabilized nZVI transport behavior in porous media. The numerical simulations were based on a set of laboratory-scale transport experiments that were conducted in a two-dimensional water-saturated glass-walled sandbox (length - 55 cm; height - 45 cm; width - 1.4 cm), uniformly packed with silica sand. In the transport experiments: CMC stabilized nZVI and a non-reactive dye tracer Lissamine Green B (LGB) were used; water specific discharge and CMC concentration were varied; movements of LGB, and CMC-nZVI in the sandbox were tracked using a camera, a light source and a dark box. The concentrations of LGB, CMC, and CMC-nZVI at the sandbox outlet were analyzed. A 2D multiphase flow and transport model was applied to simulate experimental results. The images from LGB dye transport experiments were used to determine the pore water velocities and media permeabilities in various layers in the sand box. These permeability values were used in the subsequent simulations of CMC-nZVI transport. The 2D compositional simulator, modified to include colloid filtration theory (CFT), treated CMC as a solute and nZVI as a colloid. The simulator included composition dependent viscosity to account for CMC injection and mixing, and attachment efficiency as a fitting parameter for nZVI transport modeling. In the experiments, LGB and CMC recoveries were greater than 95%; however, CMC residence time was significantly higher than the LGB residence time and the higher CMC concentration caused higher pressure drops in the sandbox. The nZVI recovery was lower than 40

  12. NASA Office of Aeronautics and Space Technology Summer Workshop. Executive summary. [in-space research using the Space Transportation System

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research and technology investigations are identified in eleven discipline technologies which require or which could significantly benefit from an in-space experiment, systems demonstrations, or component test using the Space Transportation System. Synopses of the eleven technology panels reports are presented.

  13. How to Conduct Clinical Qualitative Research on the Patient's Experience

    ERIC Educational Resources Information Center

    Chenail, Ronald J.

    2011-01-01

    From a perspective of patient-centered healthcare, exploring patients' (a) preconceptions, (b) treatment experiences, (c) quality of life, (d) satisfaction, (e) illness understandings, and (f) design are all critical components in improving primary health care and research. Utilizing qualitative approaches to discover patients' experiences can…

  14. The Importance of Early Experiences: Clinical, Research, and Policy Perspectives

    ERIC Educational Resources Information Center

    Zeanah, Charles H.

    2009-01-01

    The degree to which early adverse experiences exert long term effects on development and how much early adversity may be overcome through subsequent experiences are important mental health questions. The clinical, research and policy perspectives on these questions lead to different answers. From a clinical perspective, change is always possible,…

  15. When Women Are Equal: The Canada Research Chair Experience

    ERIC Educational Resources Information Center

    Grant, Karen R.; Drakich, Janice

    2011-01-01

    This paper focuses on the gendered nature of elite academic careers. Of interest is how similar or different the experiences are of women and men who have been appointed to Canada Research Chairs (CRCs). In particular, we examine the impacts of holding a CRC position and consider the factors that shape that experience for women and men. Based on…

  16. An innovative, interdisciplinary educational experience in field research.

    PubMed

    Smith, M; Barton, J; Baxter, J

    1996-01-01

    Although interdisciplinary practice is necessary to meet the complex health needs of populations, there are few planned interdisciplinary learning experiences within educational programs for the health professions. The authors describe an interdisciplinary learning experience in field research for students and faculty members from schools of nursing and medicine. PMID:8700424

  17. Undergraduate Research, a Little Experience Goes a Long Way.

    ERIC Educational Resources Information Center

    Lanza, Janet; Smith, Garon C.

    1988-01-01

    Provides information on a program that seeks to increase the nation's supply of engineers and scientists by providing experiences with hands-on research. Describes activities, positive outcomes, and the evaluation of achievements. Concludes that participants and faculty members benefited from the experience. (RT)

  18. On Improving the Experiment Methodology in Pedagogical Research

    ERIC Educational Resources Information Center

    Horakova, Tereza; Houska, Milan

    2014-01-01

    The paper shows how the methodology for a pedagogical experiment can be improved through including the pre-research stage. If the experiment has the form of a test procedure, an improvement of methodology can be achieved using for example the methods of statistical and didactic analysis of tests which are traditionally used in other areas, i.e.…

  19. Developing a Fully Integrated Medical Transport Record to Support Comparative Effectiveness Research for Patients Undergoing Medical Transport

    PubMed Central

    Reimer, Andrew P.; Madigan, Elizabeth

    2013-01-01

    The consolidation of health care systems to develop centers of clinical excellence has led to an increased reliance on medical transport to move patients requiring time-sensitive interventions and specialized treatments. There is a paucity of outcomes data, specifically comparative effectiveness research, related to the efficacy of different transport services and the overall morbidity and mortality of patients that undergo medical transfer. The rapid development of electronic medical record (EMR) use has also occurred with transport charting. However, limited studies have incorporated transport chart data in outcomes analyses. We have begun development of a fully integrated medical transport record, combining transport and hospitals EMRs, to support research efforts and develop clinical decision support tools for transported patients. In this paper, we describe the elements necessary to develop a fully integrated medical transport EMR to support the conduct of comparative effectiveness research, outline the current limitations and challenges, and provide insight into the future direction in developing clinical decision support tools for patients requiring transport. PMID:25848576

  20. Preliminary results of column experiments simulating nutrients transport in artificial recharge by treated wastewater

    NASA Astrophysics Data System (ADS)

    Leal, María; Meffe, Raffaella; Lillo, Javier

    2013-04-01

    Nutrients (phosphates, nitrates, nitrites and ammonium) are very often present in treated wastewater as consequence of the inefficient removal capability during wastewater treatments. Such compounds represent an environmental concern since they are responsible for contamination and/or eutrophication problems when reaching the water bodies (groundwater, river, streams…). Therefore, when wastewater reclamation activities such as artificial recharge are planned, special attention should be paid to these compounds to avoid groundwater deterioration. In this context, we proposed the installation of a Horizontal Permeable Reactive Barrier (H-PRB) made of different reactive materials, among them zeolite and palygorskite, to remove nutrients or at least to decrease their concentrations. The overall aim of this research is to evaluate if the application of a H-PRB could represent a feasible solution for the attenuation of nutrients when unconventional water resources (i.e. treated wastewater) are used for recharge activities. Specifically, this study is intended to identify the transport processes affecting nitrates, nitrites, ammonium and phosphates when treated wastewater is infiltrated through the reactive materials of the H-PRB. Column experiments are generally suitable to examine the interactions between reactive materials and treated wastewater that affect the transport behavior of nutrients. For example, processes such as adsorption can be identified and quantified. Thus, laboratory column experiments were carried out using zeolite or palygorskite as column infilling material and synthetic treated wastewater as column influent. The experiments are closely connected to an experimental field study in Carrión de los Céspedes (Seville-Spain) where a pilot H-PRB is currently under evaluation. The columns were operated under saturated conditions applying a constant flow rate of 1.2 mL/min equivalent to the infiltration rate estimated through infiltration experiments at

  1. Dust Transport Across the Atlantic Studied by Airborne Doppler Wind Lidar During the Saltrace Experiment in 2013

    NASA Astrophysics Data System (ADS)

    Chouza, Fernando; Reitebuch, Oliver; Rahm, Stephan; Weinzierl, Bernadett

    2016-06-01

    During the SALTRACE field experiment, conducted during June/July 2013, the Saharan dust transport across the Atlantic was analyzed by a set of ground based, in-situ and airborne instruments, including a 2-μm coherent DWL (Doppler wind lidar) mounted onboard the DLR Falcon 20 research aircraft. An overview of the measurements of aerosol backscatter and extinction, horizontal and vertical winds retrieved from the DWL are presented together with a brief description of the applied methods. The retrieved measurements provide direct observation of Saharan dust transport mechanisms across the Atlantic as well as island induced lee waves in the Barbados region.

  2. Developing Authentic Research Experiences Using EarthScope Data

    NASA Astrophysics Data System (ADS)

    Hall-Wallace, M. K.

    2003-12-01

    EarthScope, a decade-long experiment to understand the formation, structure, and evolution of the North American continent, will carry-out active investigations in nearly every county in the US. The excitement of a huge science experiment in one's own backyard piques interest, but teachers need resources and professional development experiences to capitalize upon this excitement and create opportunities for their students' learning. The EarthScope Education and Outreach Network will provide the interface to make EarthScope science, and the advanced technology and modern approaches used to understand Earth, relevant and beneficial to K-16 educators vested in advancing Earth science education. Three obstacles must be overcome for success in carrying out authentic EarthScope research in the classroom. First, scientists and teachers must work together to identify relevant and developmentally appropriate research questions for the target audience. Second, teachers will need professional development experiences that engage them in authentic research and that provide support for introducing a similar research experience in their own classroom. Third, the outcome of the research experience must have value to the scientist, teacher and student to motivate sustained participation by all. The dense array of seismometers being deployed in the USArray component of EarthScope will permit students and the public to see first-hand Earth's dynamic response to both human and natural events in their hometown and around the country. Targeted local experiments will make EarthScope's scientific investigations and discoveries relevant for educational efforts on a region-by-region basis. Combining the real-time seismic data streams from USArray with data and instrumentation from the growing US Educational Seismic Network (USESN) opens up endless possibilities for student-centered research. In this paper, I will discuss the lessons learned from eight years of leading a high school

  3. Researchers' Experiences, Positive and Negative, in Integrative Landscape Projects

    NASA Astrophysics Data System (ADS)

    Tress, Bärbel; Tress, Gunther; Fry, Gary

    2005-12-01

    Integrative (interdisciplinary and transdisciplinary) landscape research projects are becoming increasingly common. As a result, researchers are spending a larger proportion of their professional careers doing integrative work, participating in shifting interdisciplinary teams, and cooperating directly with non-academic participants. Despite the growing importance of integrative research, few studies have investigated researchers’ experiences in these projects. How do researchers perceive the outcomes of integrative projects, or career effects? Do they view the projects generally as successes or failures? This study analyses researchers’ experiences in integrative landscape studies and investigates what factors shape these experiences. The data stems from 19 semi-structured qualitative interviews and a Web-based survey among 207 participants in integrative landscape research projects. It finds that researchers experience participation in integrative projects as positive, in particular discussions among participants, networking, teamwork, and gaining new insights and skills. Furthermore, most researchers perceive the projects as successful and as having a positive effect on their careers. Less positive aspects of integration relate to publications and merit points. Factors found to contribute to positive experiences include reaching a high degree of integration amongst the involved disciplines, common definitions of integrative research concepts, and projects that include a large share of fundamental research as well as projects with many project outcomes. Based on these findings, we advise future projects to plan for integration, facilitate discussions, and reach agreement on integrative concepts. We suggest that aspects of fundamental research be included in integrative projects. We also suggest that planning be done at an early stage for peer-reviewed publications, to ensure that participants gain merit points from their participation in integrative research

  4. Inverse Modeling of Experiments to Support More Realistic Simulations of Sorbing Radionuclide Transport

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; James, S. C.; Reimus, P. W.

    2012-12-01

    A series of adsorption, desorption, and column transport experiments were conducted to evaluate the transport of uranium (U) and neptunium (Np) through saturated volcanic tuffs. For potential high-level radioactive waste sites, these experiments demonstrate that slow radionuclide desorption processes, which are typically not accounted for in transport models implementing simple partition coefficients (Kd values), may dominate field-scale transport. A complimentary interpretive numerical model couples a simplified geochemical description of the system with transport calculations where heterogeneities are represented as an ensemble of sorption sites with characteristic adsorption and desorption rate constants that have widely varying values. Adsorption and desorption rate constants were estimated through inverse modeling such that reliable upscaled predictions of reactive transport in field settings could be simulated. The inverse modeling software, PEST, was also used to perform advanced uncertainty quantification. The multicomponent model/parameters matching the combined data sets suggest that over much longer time and distance scales the transport of U and Np under the experimental conditions would result in very little transport over field scales because even a small number of strong sorption sites will have an exaggerated retarding influence on the transport of a radionuclide plume. Modeling of combined sorption/desorption experiments and column transport experiments that involve both the measurement of column effluent breakthrough curves and the distribution of radionuclides remaining in the column at the conclusion of the experiments holds significant promise for supporting an improved approach to properly account for mineralogical heterogeneity over long time and distance scales in reactive radionuclide transport models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed

  5. Learning through Research: How a Summer Undergraduate Research Experience Informs College Students' Views of Research and Learning

    ERIC Educational Resources Information Center

    Martinez, Anabella

    2009-01-01

    This study explores undergraduate students' experiences of learning disciplinary research in a summer undergraduate research program (S-UR). The study used a qualitative research design incorporating semi-structured interview, observation, and document analysis methods to analyze the learning experiences of nine study participants from different…

  6. [Experience of stroke prevention-Enlightenment for cancer research].

    PubMed

    You, Weicheng

    2015-08-01

    Cancer, stroke and heart diseases are most common causes of death. This paper summarized the experience of stroke prevention, which is an enlightenment for cancer research. In addition, this paper also described the progress of cancer epidemiological research, particular the primary and second preventions in China. PMID:26733022

  7. Field-Based Research Experience in Earth Science Teacher Education.

    ERIC Educational Resources Information Center

    O'Neal, Michael L.

    2003-01-01

    Describes the pilot of a field-based research experience in earth science teacher education designed to produce well-prepared, scientifically and technologically literate earth science teachers through a teaching- and research-oriented partnership between in-service teachers and a university scientist-educator. Indicates that the pilot program was…

  8. Using Phenomenology to Conduct Environmental Education Research: Experience and Issues

    ERIC Educational Resources Information Center

    Nazir, Joanne

    2016-01-01

    Recently, I applied a phenomenological methodology to study environmental education at an outdoor education center. In this article, I reflect on my experience of doing phenomenological research to highlight issues researchers may want to consider in using this type of methodology. The main premise of the article is that phenomenology, with its…

  9. Evidence in Support of Removing Boundaries to Undergraduate Research Experience

    ERIC Educational Resources Information Center

    Haave, Neil; Audet, Doris

    2013-01-01

    Undergraduate research is one of several high impact educational practices used by educational institutions to increase student engagement and success (Kuh, 2008). Many studies on the impact of undergraduate research have surveyed students or faculty on their personal experience and its influence on students' subsequent degrees and employment…

  10. A Model for an Introductory Undergraduate Research Experience

    ERIC Educational Resources Information Center

    Canaria, Jeffrey A.; Schoffstall, Allen M.; Weiss, David J.; Henry, Renee M.; Braun-Sand, Sonja B.

    2012-01-01

    An introductory, multidisciplinary lecture-laboratory course linked with a summer research experience has been established to provide undergraduate biology and chemistry majors with the skills needed to be successful in the research laboratory. This three-credit hour course was focused on laboratory skills and was designed to reinforce and develop…

  11. Rutgers University Research Experience for Teachers in Engineering: Preliminary Findings

    ERIC Educational Resources Information Center

    Laffey, Evelyn H.; Cook-Chennault, Kimberly; Hirsch, Linda S.

    2013-01-01

    In addressing the nation's need for a more technologically-literate society, the Rutgers University Research Experience for Teachers in Engineering (RU RET-E) is designed to: (1) engage middle and high school math and science teachers in innovative "green" engineering research during the summer, and (2) support teachers in integrating…

  12. Faculty's Degrees, Experience and Research Vary with Specialty.

    ERIC Educational Resources Information Center

    Fedler, Fred; Counts, Tim; Carey, Arlen; Santana, Maria Cristina

    1998-01-01

    Examines issues of professional experience, degrees, research, and productivity for journalism and mass communication faculty members, separating and comparing different specialties. Finds that requirements regarding academic degrees and research vary from specialty to specialty and that 53% of those teaching in advertising, radio/television, and…

  13. NASA Glenn Research Center Experience with "LENR Phenomenon"

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.; Fralick, Gustave C.; Wrbanek, John D.; Niedra, Janis M.

    2012-01-01

    Since 1989 NASA Glenn Research Center (GRC) has performed some small-scale limited experiments that show evidence of effects claimed by some to be evidence of Low Energy Nuclear Reactions (LENR). The research at GRC has involved observations and work on measurement techniques for observing the temperature effects in reactions of isotopes of hydrogen with palladium hydrides. The various experiments performed involved loading Pd with gaseous H2 and D2, and exposing Pd thin films to multi-bubble sonoluminescence in regular and deuterated water. An overview of these experiments and their results will be presented.

  14. NASA Glenn Research Center Experience with LENR Phenomenon

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.; Fralick, Gustave C.; Wrbanek, John D.; Niedra, Janis M.

    2012-01-01

    Since 1989 NASA Glenn Research Center (GRC) has performed some small-scale limited experiments that show evidence of effects claimed by some to be evidence of Low Energy Nuclear Reactions (LENR). The research at GRC has involved observations and work on measurement techniques for observing the temperature effects in reactions of isotopes of hydrogen with palladium hydrides. The various experiments performed involved loading Pd with gaseous H2 and D2, and exposing Pd thin films to multi-bubble sonoluminescence in regular and deuterated water. An overview of these experiments and their results will be presented.

  15. Diversifying Science: Underrepresented Student Experiences in Structured Research Programs

    PubMed Central

    Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.

    2013-01-01

    Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma. Participants spoke of essential factors for becoming a scientist, but their experiences also raised complex issues about the role of race and social stigma in scientific training. Students experienced the collaborative and empowering culture of science, exhibited strong science identities and high self-efficacy, while developing directed career goals as a result of “doing science” in these programs. PMID:23503690

  16. Experience with Mandibular Reconstruction Using Transport-Disc-Distraction Osteogenesis

    PubMed Central

    Pingarrón-Martín, Lorena; Otero, T. González; Gallo, L.J. Arias

    2014-01-01

    The goal of transport-disc-distraction osteogenesis (TDDO) is to restore bone continuity by using in-situ bone. It may be useful following trauma, gunshot injuries, or tumor ablation, especially when there may be contraindications at the donor site or for prolonged surgery. To the best of the authors' knowledge, this is the first time TDDO has been used for mandibular reconstruction reporting additional procedures, which include osseointegrated dental implants rehabilitation and orthognathic surgery. A retrospective study is performed analyzing all mandibular reconstruction cases that may be suitable for distraction from January 2006 to December 2011. A thorough description of the documented cases includes details about sex, gender, complications, duration of hospitalization, etiology, size, and location of the defect. Eight cases of mandibular reconstruction were included. Six cases correspond to mandibular ameloblastoma. The remaining two cases were mandibular gunshot comminuted fractures. Range of the defects was from 45 to 60 mm. Length of the transport disc was 15 to 20 mm. Protocolized technique consisted of 5 days of latency period, 19 to 45 days of activation term (average 30 days), and 8 to 12 weeks for consolidation. Mean distraction length achieved was 40.45 mm. We can conclude that TDDO is an alternative to conventional and more invasive procedures, when we face severe segmental mandibular defects reconstruction. It shows the potential to restore a better anatomical bone regeneration, also providing soft tissues and reducing donor-site morbidity. Patients' education and awareness about the proper use of the transport-disc-distraction device is important to optimize functional outcomes. PMID:26000082

  17. Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

    SciTech Connect

    James E. Saiers

    2012-09-20

    The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

  18. Undergraduate research experiences support science career decisions and active learning.

    PubMed

    Lopatto, David

    2007-01-01

    The present study examined the reliability of student evaluations of summer undergraduate research experiences using the SURE (Survey of Undergraduate Research Experiences) and a follow-up survey disseminated 9 mo later. The survey further examines the hypothesis that undergraduate research enhances the educational experience of science undergraduates, attracts and retains talented students to careers in science, and acts as a pathway for minority students into science careers. Undergraduates participated in an online survey on the benefits of undergraduate research experiences. Participants indicated gains on 20 potential benefits and reported on career plans. Most of the participants began or continued to plan for postgraduate education in the sciences. A small group of students who discontinued their plans for postgraduate science education reported significantly lower gains than continuing students. Women and men reported similar levels of benefits and similar patterns of career plans. Undergraduate researchers from underrepresented groups reported higher learning gains than comparison students. The results replicated previously reported data from this survey. The follow-up survey indicated that students reported gains in independence, intrinsic motivation to learn, and active participation in courses taken after the summer undergraduate research experience. PMID:18056301

  19. Designing Undergraduate Research Experiences: A Multiplicity of Options

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2001-12-01

    Research experiences for undergraduate students can serve many goals including: developing student understanding of the process of science; providing opportunities for students to develop professional skills or test career plans; completing publishable research; enabling faculty professional development; or enhancing the visibility of a science program. The large range of choices made in the design of an undergraduate research program or opportunity must reflect the goals of the program, the needs and abilities of the students and faculty, and the available resources including both time and money. Effective program design, execution, and evaluation can all be enhanced if the goals of the program are clearly articulated. Student research experiences can be divided into four components: 1) defining the research problem; 2) developing the research plan or experiment design; 3) collecting and interpreting data, and 4) communicating results. In each of these components, the program can be structured in a wide variety of ways and students can be given more or less guidance or freedom. While a feeling of ownership of the research project appears to be very important, examples of successful projects displaying a wide range of design decisions are available. Work with the Keck Geology Consortium suggests that four strategies can enhance the likelihood of successful student experiences: 1) students are well-prepared for research experience (project design must match student preparation); 2) timelines and events are structured to move students through intermediate goals to project completion; 3) support for the emotional, financial, academic and technical challenges of a research project is in place; 4) strong communications between students and faculty set clear expectations and enable mid-course corrections in the program or project design. Creating a research culture for the participants or embedding a project in an existing research culture can also assist students in

  20. Authentic Research Immersion Experiences: the Key to Enduring Understandings

    NASA Astrophysics Data System (ADS)

    Klug, S. L.

    2007-12-01

    Do authentic research experiences have a role in today's classrooms? Where do they fit into the constrained curriculum units and high-stakes testing regimen that define a teacher's world? It is possible, even in today's somewhat narrow teaching environment, to integrate authentic research into the classroom and evolve away from the worksheets and lessons that simply "teach to the test"? Authentic research immersion experiences must be carefully packaged the for classroom use with clear alignment to standards and a learning curve that is not too daunting. By helping teachers to see the value in replacing curricular units with authentic research experiences and designing the research program to fit within a teacher's needs, the rate of successful adoption of the research program becomes much higher. As a result, not only do their students reap the educational rewards of becoming active research participants in the process of science and learn it from the inside out, but the opportunity for the teachers to grow professionally in content and science process knowledge is also an additional benefit. NASA has had and continues to have a significant role in providing these data and mission- related immersion experiences for elementary classrooms through graduate school students.

  1. How Design Experiments Can Inform Teaching and Learning: Teacher-Researchers as Collaborators in Educational Research

    ERIC Educational Resources Information Center

    Jitendra, Asha K.

    2005-01-01

    In this commentary, I summarize my own research with colleagues to affirm Dr. Gersten's call for considering design experiments prior to conducting intervention research. I describe how design experiments not only can inform teaching and the learning of innovative approaches, but also hold the promise of effectively bridging the…

  2. CSI flight experiment projects of the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fisher, Shalom

    1993-01-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  3. CSI flight experiment projects of the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  4. Uranium transport in a crushed granodiorite: Experiments and reactive transport modeling

    SciTech Connect

    Dittrich, T. M.; Reimus, P. W.

    2015-02-12

    The primary objective of this study was to develop and demonstrate an experimental method to refine and better parameterize process models for reactive contaminant transport in aqueous subsurface environments and to reduce conservatism in such models without attempting to fully describe the geochemical system.

  5. Developing Authentic Research Experiences in the K-12 Classroom

    NASA Astrophysics Data System (ADS)

    Hall, M. K.

    2004-12-01

    The excitement of an authentic science experiment in one's own backyard piques interest, but teachers need resources and professional development experiences to capitalize upon this excitement and create opportunities for their students' learning. Three obstacles must be overcome for success in carrying out authentic research in the classroom. First, scientists and teachers must work together to identify relevant and developmentally appropriate research questions for the target audience. Second, teachers need professional development experiences that engage them in authentic research and that provide support for introducing a similar research experience in their own classroom. Third, the outcome of the research experience must have value to the scientist, teacher and student to motivate sustained participation by all. I have directed two projects that have opened the door for teachers to conduct authentic research with their students: monitoring earthquakes with educational seismometers and investigating local environmental problems with a GIS. Classroom seismometers permit students and the public to see first-hand Earth's dynamic response to both human and natural events in their hometown and around the country. From plotting earthquakes occurring throughout the school year to reveal plate tectonic relationships, or conducting seismic hazard analysis of the local region, to analyzing patterns of foreshocks and aftershocks of major earthquakes, students have been actively engaged and motivated in their learning. GIS opens the opportunity to investigate problems of land, water and other resource uses, but presents special problems in acquiring appropriate and useful data. I will discuss the lessons learned from working with teachers in educational seismology and GIS programs and how those lessons can be applied to developing research experiences for teachers and students.

  6. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 2: Experiment selection

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The selection and definition of candidate experiments and the associated experiment instrumentation requirements are described. Information is presented that addresses the following study objectives: (1) determine specific research and technology needs in the comm/nav field through a survey of the scientific/technical community; (2) develop manned low earth orbit space screening criteria and compile lists of potential candidate experiments; (3) in Blue Book format, define and describe selected candidate experiments in sufficient detail to develop laboratory configuration designs and layouts; and (4) develop experiment time phasing criteria and recommend a payload for sortie can/early laboratory missions.

  7. Adequacy of transport parameters obtained in soil column experiments for selected chemicals

    NASA Astrophysics Data System (ADS)

    Raymundo-Raymundo, E.; Nikolskii, Yu. N.; Guber, A. K.; Landeros-Sanchez, C.

    2012-07-01

    The transport parameters were determined for the 18O isotope (in the form of H2 18O), the Br- ion, and atrazine in intact columns of allophanic Andosol (Mexico State, Mexico). A one-dimensional model for the convective-dispersive transport of chemicals with account for the decomposition and equilibrium adsorption (HYDRUS-1D), which is widely applied for assessing the risk of the chemical and bacterial contamination of natural waters, was used. The model parameters were obtained by solving the inverse problem on the basis of laboratory experiments on the transport of the 18O isotope, the Br- ion, and atrazine in intact soil columns at a fixed filtration velocity. The hydrodynamic dispersion parameters determined for the 18O and Br- ions in one column were of the same order of magnitude, and those for atrazine were higher by 3-4 times. The obtained parameters were used to calculate the transport of these substances in another column with different values of the water content and filtration velocity. The transport process was adequately described only for the 18O isotope. In the case of the Br- ion, the model significantly underestimated the transport velocity; for atrazine, its peak concentration in the column was overestimated. The column study of the transport of the three chemical compounds showed that transport parameters could not be reliably predicted from the results of a single experiment, even when several compounds were used in this experiment.

  8. The SUPER Program: A Research-based Undergraduate Experience

    NASA Astrophysics Data System (ADS)

    Ernakovich, J. G.; Boone, R. B.; Boot, C. M.; Denef, K.; Lavallee, J. M.; Moore, J. C.; Wallenstein, M. D.

    2014-12-01

    Producing undergraduates capable of broad, independent thinking is one of the grand challenges in science education. Experience-based learning, specifically hands-on research, is one mechanism for increasing students' ability to think critically. With this in mind, we created a two-semester long research program called SUPER (Skills for Undergraduate Participation in Ecological Research) aimed at teaching students to think like scientists and enhancing the student research experience through instruction and active-learning about the scientific method. Our aim was for students to gain knowledge, skills, and experience, and to conduct their own research. In the first semester, we hosted active-learning workshops on "Forming Hypotheses", "Experimental Design", "Collecting and Managing Data", "Analysis of Data", "Communicating to a Scientific Audience", "Reading Literature Effectively", and "Ethical Approaches". Each lesson was taught by different scientists from one of many ecological disciplines so that students were exposed to the variation in approach that scientists have. In the second semester, students paired with a scientific mentor and began doing research. To ensure the continued growth of the undergraduate researcher, we continued the active-learning workshops and the students attended meetings with their mentors. Thus, the students gained technical and cognitive skills in parallel, enabling them to understand both "the how" and "the why" of what they were doing in their research. The program culminated with a research poster session presented by the students. The interest in the program has grown beyond our expectations, and we have now run the program successfully for two years. Many of the students have gone on to campus research jobs, internships and graduate school, and have attributed part of their success in obtaining their positions to their experience with the SUPER program. Although common in other sciences, undergraduate research experiences are

  9. Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay

    SciTech Connect

    Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.

    2008-10-15

    During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.

  10. Implementing Authentic Astronomy Research in the Classroom: The TLRBSE Experience

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Croft, S. K.; Walker, C. E.; Lockwood, J.; McCarthy, D.; Rector, T.; Howell, S.

    2003-12-01

    The Teacher Leaders in Research Based Science Education (TLRBSE) is an NSF-funded program which has as one of its primary goals the implementation of authentic research in the classroom. To achieve this goal, TLRBSE provides an in-depth professional development experience for teachers which includes a semester-long on-line course on research pedagogy, research tools (such as image processing), and astronomy content knowledge. Participants come to the National Optical Astronomy Observatory (NOAO) in Tucson in the summer for two weeks in order to hone their skills and interact with scientists. They also pursue research projects led by a TLRBSE leader in one of several astronomy areas including novae, active galactic nuclei, solar magnetic fields, and spectroscopy of variable stars using research telescopes at Kitt Peak National Observatory. The teachers have access to the data they have taken at the telescope as well as to extensive archival data sets taken by previous TLRBSE teachers. These ongoing research projects are then brought back to the classroom where teachers and students can continue their research in these areas. The student research results are then submitted for review and publication in NOAO's Research Based Science Education Journal. The TLRBSE model is being extended by providing a variety of additional research experiences for teachers and students during the school year, using the same telescopes at Kitt Peak National Observatory used in the summer program. Teachers and students from the program apply for additional research time during the school year and can come to the observatory to make observations for new or continuing projects. As remote telescopes become more widely available, the teachers and students will be able to observe from their home locations and access their observations directly over the internet. Some of the key issues in our program are teacher selection, organization and logistics of the distance learning course, workshop