Science.gov

Sample records for experimental characterization modeling

  1. Experimental Flow Models for SSME Flowfield Characterization

    NASA Technical Reports Server (NTRS)

    Abel, L. C.; Ramsey, P. E.

    1989-01-01

    Full scale flow models with extensive instrumentation were designed and manufactured to provide data necessary for flow field characterization in rocket engines of the Space Shuttle Main Engine (SSME) type. These models include accurate flow path geometries from the pre-burner outlet through the throat of the main combustion chamber. The turbines are simulated with static models designed to provide the correct pressure drop and swirl for specific power levels. The correct turbopump-hot gas manifold interfaces were designed into the flow models to permit parametric/integration studies for new turbine designs. These experimental flow models provide a vehicle for understanding the fluid dynamics associated with specific engine issues and also fill the more general need for establishing a more detailed fluid dynamic base to support development and verification of advanced math models.

  2. Modeling and experimental characterization of electromigration in interconnect trees

    NASA Astrophysics Data System (ADS)

    Thompson, C. V.; Hau-Riege, S. P.; Andleigh, V. K.

    1999-11-01

    Most modeling and experimental characterization of interconnect reliability is focussed on simple straight lines terminating at pads or vias. However, laid-out integrated circuits often have interconnects with junctions and wide-to-narrow transitions. In carrying out circuit-level reliability assessments it is important to be able to assess the reliability of these more complex shapes, generally referred to as `trees.' An interconnect tree consists of continuously connected high-conductivity metal within one layer of metallization. Trees terminate at diffusion barriers at vias and contacts, and, in the general case, can have more than one terminating branch when they include junctions. We have extended the understanding of `immortality' demonstrated and analyzed for straight stud-to-stud lines, to trees of arbitrary complexity. This leads to a hierarchical approach for identifying immortal trees for specific circuit layouts and models for operation. To complete a circuit-level-reliability analysis, it is also necessary to estimate the lifetimes of the mortal trees. We have developed simulation tools that allow modeling of stress evolution and failure in arbitrarily complex trees. We are testing our models and simulations through comparisons with experiments on simple trees, such as lines broken into two segments with different currents in each segment. Models, simulations and early experimental results on the reliability of interconnect trees are shown to be consistent.

  3. Computational modeling and experimental characterization of indoor aerosol transport

    SciTech Connect

    Konecni, S.; Whicker, J. J.; Martin, R. A.

    2002-01-01

    When a hazardous aerosol or gas is inadvertently or deliberately released in an occupied facility, the airborne material presents a hazard to people. Inadvertent accidents and exposures continue to occur in Los Alamos and other nuclear facilities despite state-of-art engineering and administrative controls, and heightened diligence. Despite the obvious need in occupational settings and for homeland defense, the body of research in hazardous aerosol dispersion and control in large, complex, ventilated enclosures is extremely limited. The science governing generation, transport, inhalation, and detection of airborne hazards is lacking and must be developed to where it can be used by engineers or safety professionals in the prediction of worker exposure, in the prevention of accidents, or in the mitigation of terrorist actions. In this study, a commercial computational fluid dynamics (CFD) code, CFX5.4, and experiments were used to assess flow field characteristics, and to investigate aerosol release and transport in a large, ventilated workroom in a facility at Savannah River Site. Steady state CFD results illustrating a complex, ventilation-induced, flow field with vortices, velocity gradients, and quiet zones are presented, as are time-dependent CFD and experimental aerosol dispersion results. The comparison of response times between CFD and experimental results was favorable. It is believed that future applications of CFD and experiments can have a favorable impact on the design of ventilation (HVAC) systems and worker safety with consideration to facility costs. Ultimately, statistical methods will be used in conjunction with CFD calculations to determine the optimal number and location of detectors, as well as optimal egress routes in event of a release.

  4. Characterization of experimental dynamos

    NASA Astrophysics Data System (ADS)

    Peffley, Nicholas L.; Goumilevski, Alexei G.; Cawthrone, A. B.; Lathrop, Daniel P.

    2000-07-01

    Laboratory models of geophysical magnetic field production require new experi-mental characterization methods. Self-generating liquid metal magnetic dynamos are explored using two new experiments. Kinematic dynamo studies lead us to charac-terize the magnetic field dynamics in terms of eigenvalues and eigenfrequencies of the induction equation. Observing the decay of magnetic field pulses indicates the real part of the leading eigenvalue of the induction equation, while a chirp magnetic field diagnoses the imaginary part of the eigenvalue. Finally, a single-frequency applied magnetic field characterizes the structure of the velocity field. These measurements provide a new means to characterize and measure the approach to self-generation. We present data from numerical simulations and laboratory experiments using these techniques.

  5. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results

    PubMed Central

    Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  6. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.

    PubMed

    Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  7. Experimental Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pauly, Christopher C.; Pindera, Marek-Jerzy

    1997-01-01

    The results of an extensive experimental characterization and a preliminary analytical modeling effort for the elastoplastic mechanical behavior of 8-harness satin weave carbon/copper (C/Cu) composites are presented. Previous experimental and modeling investigations of woven composites are discussed, as is the evolution of, and motivation for, the continuing research on C/Cu composites. Experimental results of monotonic and cyclic tension, compression, and Iosipescu shear tests, and combined tension-compression tests, are presented. With regard to the test results, emphasis is placed on the effect of strain gauge size and placement, the effect of alloying the copper matrix to improve fiber-matrix bonding, yield surface characterization, and failure mechanisms. The analytical methodology used in this investigation consists of an extension of the three-dimensional generalized method of cells (GMC-3D) micromechanics model, developed by Aboudi (1994), to include inhomogeneity and plasticity effects on the subcell level. The extension of the model allows prediction of the elastoplastic mechanical response of woven composites, as represented by a true repeating unit cell for the woven composite. The model is used to examine the effects of refining the representative geometry of the composite, altering the composite overall fiber volume fraction, changing the size and placement of the strain gauge with respect to the composite's reinforcement weave, and including porosity within the infiltrated fiber yarns on the in-plane elastoplastic tensile, compressive, and shear response of 8-harness satin C/Cu. The model predictions are also compared with the appropriate monotonic experimental results.

  8. Review of the synergies between computational modeling and experimental characterization of materials across length scales

    SciTech Connect

    Dingreville, Rémi; Karnesky, Richard A.; Puel, Guillaume; Schmitt, Jean -Hubert

    2015-11-16

    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends in which predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure–property relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to “simply” support experimental work. This is illustrated by examples from several application areas on structural materials. In conclusion this manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.

  9. Review of the synergies between computational modeling and experimental characterization of materials across length scales

    DOE PAGESBeta

    Dingreville, Rémi; Karnesky, Richard A.; Puel, Guillaume; Schmitt, Jean -Hubert

    2015-11-16

    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends in which predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure–property relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanicsmore » community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to “simply” support experimental work. This is illustrated by examples from several application areas on structural materials. In conclusion this manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.« less

  10. Review of the synergies between computational modeling and experimental characterization of materials across length scales

    NASA Astrophysics Data System (ADS)

    Dingreville, Rémi; Karnesky, Richard A.; Puel, Guillaume; Schmitt, Jean-Hubert

    2016-02-01

    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends where predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure-properties relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to "simply" support experimental work. This is illustrated by examples from several application areas on structural materials. This manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.

  11. Modeling and experimental study on characterization of micromachined thermal gas inertial sensors.

    PubMed

    Zhu, Rong; Ding, Henggao; Su, Yan; Yang, Yongjun

    2010-01-01

    Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication. PMID:22163655

  12. Modeling and Experimental Study on Characterization of Micromachined Thermal Gas Inertial Sensors

    PubMed Central

    Zhu, Rong; Ding, Henggao; Su, Yan; Yang, Yongjun

    2010-01-01

    Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication. PMID:22163655

  13. Experimental and Mathematical-Modeling Characterization of Trypanosoma cruzi Epimastigote Motility

    PubMed Central

    Arias-del-Angel, Jorge A.; Dévora-Canales, Diego; Manning-Cela, Rebeca G.; Santana-Solano, Jesús; Santillán, Moisés

    2015-01-01

    The present work is aimed at characterizing the motility of parasite T. cruzi in its epimastigote form. To that end, we recorded the trajectories of two strains of this parasite (a wild-type strain and a stable transfected strain, which contains an ectopic copy of LYT1 gene and whose motility is known to be affected). We further extracted parasite trajectories from the recorded videos, and statistically analysed the following trajectory-step features: step length, angular change of direction, longitudinal and transverse displacements with respect to the previous step, and mean square displacement. Based on the resulting observations, we developed a mathematical model to simulate parasite trajectories. The fact that the model predictions closely match most of the experimentally observed parasite-trajectory characteristics, allows us to conclude that the model is an accurate description of T. cruzi motility. PMID:26544863

  14. Experimental comparison of rate-dependent hysteresis models in characterizing and compensating hysteresis of piezoelectric tube actuators

    NASA Astrophysics Data System (ADS)

    Aljanaideh, Omar; Habineza, Didace; Rakotondrabe, Micky; Al Janaideh, Mohammad

    2016-04-01

    An experimental study has been carried out to characterize rate-dependent hysteresis of a piezoelectric tube actuator at different excitation frequencies. The experimental measurements were followed by modeling and compensation of the hysteresis nonlinearities of the piezoelectric tube actuator using both the inverse rate-dependent Prandtl-Ishlinskii model (RDPI) and inverse rate-independent Prandtl-Ishlinskii model (RIPI) coupled with a controller. The comparison of hysteresis modeling and compensation of the actuator with both models is presented.

  15. Experimental characterization and numerical modelling of polymeric film damage, constituting the stratospheric super pressurized balloons

    NASA Astrophysics Data System (ADS)

    Chaabane, Makram; Chaabane, Makram; Dalverny, Olivier; Deramecourt, Arnaud; Mistou, Sébastien

    The super-pressure balloons developed by CNES are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding to the flight level and the lifespan of the balloon. It appears during the working stages of the super pressure balloons that these last can exploded prematurely in the course of the first hours of flight. For this reason CNES and LGP are carrying out research programs about experimentations and modelling in order to predict a good stability of the balloons flight and guarantee a life time in adequacy with the technical requirement. This study deals with multilayered polymeric film damage which induce balloons failure. These experimental and numerical study aims, are a better understanding and predicting of the damage mechanisms bringing the premature explosion of balloons. The following damages phenomena have different origins. The firsts are simple and triple wrinkles owed during the process and the stocking stages of the balloons. The second damage phenomenon is associated to the creep of the polymeric film during the flight of the balloon. The first experimental results we present in this paper, concern the mechanical characterization of three different damage phenomena. The severe damage induced by the wrinkles of the film involves a significant loss of mechanical properties. In a second part the theoretical study, concerns the choice and the development of a non linear viscoelastic coupled damage behavior model in a finite element code.

  16. [Characterization of an experimental model of monosodium- glutamate-induced convulsions in the amphibian Bufo spp].

    PubMed

    Alfaro, F; Blas, O; Gutiérrez-Padilla, R; Feria-Velasco, A

    1990-01-01

    In previous reports, Feria-Velasco et al. characterized an experimental model of convulsions in rats induced by monosodium glutamate (MSG) with evaluation of the motor behavior and neurochemical parameters. In the present work, MSG injected in toads (Bufo spp) reproduced the model of convulsions with some peculiarities. The electrocorticographic recordings in toads after MSG injection were similar to those obtained in rats after administration of convulsant agents. Most of the toads injected with MSG (81.8%) showed convulsions preceded by an episode of stereotyped movements and signs of hyperexcitability. Latency for convulsions and frequency of convulsive episodes were similar to what has been reported in rats injected with MSG. However, the duration of convulsive period was larger than that seen in rats, and no deaths were recorded in toads. The peculiar feature of amphibia regarding their cerebral structures and their blood-brain barrier (BBB) make the amphibian model, an interesting and valuable one in studying experimentally induced convulsions, as well as the role of BBB in these phenomena. PMID:1669233

  17. Experimental characterization and modelling of UO2 behavior at high temperatures and high strain rates

    NASA Astrophysics Data System (ADS)

    Salvo, Maxime; Sercombe, Jérôme; Ménard, Jean-Claude; Julien, Jérôme; Helfer, Thomas; Désoyer, Thierry

    2015-01-01

    This work presents an experimental characterization of uranium dioxide (UO2) in compression under Reactivity Initiated Accident (RIA) conditions. Pellet samples were tested at four temperatures (1100, 1350, 1550 and 1700 °C) and at a strain rate varying over 4 decades (10-4-10-3-10-2-10-1 /s). The experimental results show that the stress-strain curves cannot be fitted with a unique power law as it is the case at smaller strain rates (10-9-10-5 /s). A strain-hardening also appears in most of the tests. The microstructural observations show a pronounced evolution of the porosity at the pellet center during the tests. A hyperbolic sine model which accounts for volume variations (pore compressibility) was therefore proposed to describe the behavior of UO2 on a large range of temperatures (1100 - 1700 °C) and strain rates (10-9-10-1 /s). The Finite Element simulations of the compression tests lead to results (maximum stress, axial and hoop strain distribution, porosity distribution) in good agreement with the measurements. The model was then assessed on a database of more than two hundred creep tests.

  18. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation.

    PubMed

    Hong, Ming; Su, Zhongqing; Wang, Qiang; Cheng, Li; Qing, Xinlin

    2014-03-01

    A dedicated modeling technique for comprehending nonlinear characteristics of ultrasonic waves traversing in a fatigued medium was developed, based on a retrofitted constitutive relation of the medium by considering the nonlinearities originated from material, fatigue damage, as well as the "breathing" motion of fatigue cracks. Piezoelectric wafers, for exciting and acquiring ultrasonic waves, were integrated in the model. The extracted nonlinearities were calibrated by virtue of an acoustic nonlinearity parameter. The modeling technique was validated experimentally, and the results showed satisfactory consistency in between, both revealing: the developed modeling approach is able to faithfully simulate fatigue crack-incurred nonlinearities manifested in ultrasonic waves; a cumulative growth of the acoustic nonlinearity parameter with increasing wave propagation distance exists; such a parameter acquired via a sensing path is nonlinearly related to the offset distance from the fatigue crack to that sensing path; and neither the incidence angle of the probing wave nor the length of the sensing path impacts on the parameter significantly. This study has yielded a quantitative characterization strategy for fatigue cracks using embeddable piezoelectric sensor networks, facilitating deployment of structural health monitoring which is capable of identifying small-scale damage at an embryo stage and surveilling its growth continuously. PMID:24156928

  19. Experimental Hydromechanical Characterization and Numerical Modelling of a Fractured and Porous Sandstone

    NASA Astrophysics Data System (ADS)

    Souley, Mountaka; Lopez, Philippe; Boulon, Marc; Thoraval, Alain

    2015-05-01

    The experimental device previously used to study the hydromechanical behaviour of individual fractures on a laboratory scale, was adapted to make it possible to measure flow through porous rock mass samples in addition to fracture flows. A first series of tests was performed to characterize the hydromechanical behaviour of the fracture individually as well as the porous matrix (sandstone) comprising the fracture walls. A third test in this series was used to validate the experimental approach. These tests showed non-linear evolution of the contact area on the fracture walls with respect to effective normal stress. Consequently, a non-linear relationship was noted between the hydraulic aperture on the one hand, and the effective normal stress and mechanical opening on the other hand. The results of the three tests were then analysed by numerical modelling. The VIPLEF/HYDREF numerical codes used take into account the dual-porosity of the sample (fracture + rock matrix) and can be used to reproduce hydromechanical loading accurately. The analyses show that the relationship between the hydraulic aperture of the fracture and the mechanical closure has a significant effect on fracture flow rate predictions. By taking simultaneous measurements of flow in both fracture and rock matrix, we were able to carry out a global evaluation of the conceptual approach used.

  20. Experimental characterization and modeling of isothermal and nonisothermal physical aging in glassy polymer films

    NASA Astrophysics Data System (ADS)

    Guo, Yunlong

    This dissertation focuses on nonisothermal physical aging of polymers from both experimental and theoretical aspects. The study concentrates on pure polymers rather than fiber-reinforced composites; this step removes several complicating factors to simplify the study. It is anticipated that the findings of this work can then be applied to composite materials applications. The physical aging tests in this work are performed using a dynamic mechanical analyzer (DMA). The viscoelastic response of glassy polymers under various loading and thermal histories are observed as stress-strain data at a series of time points. The first stage of the experimental work involves the characterization of the isothermal physical aging behavior of two advanced thermoplastics. The second stage conducts tests on the same materials with varying thermal histories and with long-term test duration. This forms the basis to assess and modify a nonisothermal physical aging model (KAHR-ate model). Based on the experimental findings, the KAHR-ate model has been revised by new correlations between aging shift factors and volume response; this revised model performed well in predicting the nonisothermal physical aging behavior of glassy polymers. In the work on isothermal physical aging, short-term creep and stress relaxation tests were performed at several temperatures within 15-35°C below the glass transition temperature (Tg) at various aging times, using the short-term test method established by Struik. Stress and strain levels were such that the materials remained in the linear viscoelastic regime. These curves were then shifted together to determine momentary master curves and shift rates. In order to validate the obtained isothermal physical aging behavior, the results of creep and stress relaxation testing were compared and shown to be consistent with one another using appropriate interconversion of the viscoelastic material functions. Time-temperature superposition of the master curves

  1. Computational modeling and experimental characterization of bacterial microcolonies for rapid detection using light scattering

    NASA Astrophysics Data System (ADS)

    Bai, Nan

    A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have

  2. Experimental Characterization and Modeling of the Fracturing Behavior of Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Jin, C.; Li, W.; Sageman, B. B.; Cusatis, G.

    2014-12-01

    Adequate knowledge and prediction of mechanical properties of shale are pivotal to the design of hydraulic fractures. The urgent technical challenge of such an endeavor is how to translate the highly heterogeneous nature of shale into a predictive model of the mechanical properties. Our group addressed this challenge by adopting a combined experimental and numerical approach to investigate fracture processes and failure mechanisms of shale.Lattice Discrete Particle Model (LDPM), having shown superior capabilities in predicting qualitative and quantitative behavior of concrete and concrete-like materials, as shown in Fig. 1, has been adopted to simulate mesoscale behavior of shale. The polyhedral cell system defining the geometric attributes of the rock microstructure is built via a 3D tessellation procedure based on X-ray microtomography results of microstructure and grain size distribution of shale specimens. The adopted tessellation procedure makes use of well-established packing algorithms for no-contact spherical particle placement and non-overlapping volume tessellation. The polyhedral particles interact through triangular facets where appropriate measure of stresses and strains are defined. Especially, LDPM is extended to simulate transversely isotropic materials by using orientation-dependent and strain-dependent strength limits coupled with orientation-dependent normal and shear stiffnesses on each facet. Appropriate interface constitutive equations are formulated to simulate all phenomena occurring at a scale that is smaller than the resolution of LDPM system, including microscopic fracture, frictional contact, particle breakage, pore collapse, and distributed damage. Bedding planes and natural joints are characterized by greatly decreased strength limits for facets within that region. To calibrate/validate the LDPM model, microscopic and mesoscopic experiments, including Brazilian tests, uniaxial compression tests, and three point-bending tests, are

  3. Experimental Verification of Model-Based ECT Signal Interpretation for Quantitative Flaw Characterization in Steam Generator Tubes

    NASA Astrophysics Data System (ADS)

    Song, Sung-Jin; Kim, Young H.; Kim, Eui-Lae; Chung, Tae-Eon; Yim, Chang-Jae

    2003-03-01

    The model-based inversion tools for eddy current signals have been developed by the novel combination of neural networks and finite element modeling for quantitative flaw characterization in steam generator tubes. In the present work, interpretation of experimental eddy current signals was carried out in order to validate the developed inversion tools. A database was constructed using the synthetic flaw signals generated by the finite element modeling. The hybrid neural networks of a PNN classifier and BPNN size estimators were trained using the synthetic signals. Experimental eddy current signals were obtained from axisymmetric artificial flaws. Interpretations of flaws were carried out by feeding experimental signals into the neural networks. The results of interpretations were excellent, so that the developed inversion tools would be applicable to the interpretation of experimental eddy current signals.

  4. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

    SciTech Connect

    Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; Xu, Donghua

    2015-03-02

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly, this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.

  5. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

    DOE PAGESBeta

    Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; Xu, Donghua

    2015-03-02

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly,more » this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.« less

  6. Experimental Characterization and Material-Model Development for Microphase-Segregated Polyurea: An Overview

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; He, T.; Pandurangan, B.; Svingala, F. R.; Settles, G. S.; Hargather, M. J.

    2012-01-01

    Numerous experimental investigations reported in the open literature over the past decade have clearly demonstrated that the use of polyurea external coatings and/or inner layers can substantially enhance both the blast resistance (the ability to withstand shock loading) and the ballistic performance (the ability to defeat various high-velocity projectiles such as bullets, fragments, shrapnel, etc. without penetration, excessive deflection or spalling) of buildings, vehicles, combat-helmets, etc. It is also well established that the observed high-performance of polyurea is closely related to its highly complex submicron scale phase-segregated microstructure and the associated microscale phenomena and processes (e.g., viscous energy dissipation at the internal phase boundaries). As higher and higher demands are placed on blast/ballistic survivability of the foregoing structures, a need for the use of the appropriate transient nonlinear dynamics computational analyses and the corresponding design-optimization methods has become ever apparent. A critical aspect of the tools used in these analyses and methods is the availability of an appropriate physically based, high-fidelity material model for polyurea. There are presently several public domain and highly diverse material models for polyurea. In the present work, an attempt is made to critically assess these models as well as the experimental methods and results used in the process of their formulation. Since these models are developed for use in the high-rate loading regime, they are employed in the present work, to generate the appropriate shock-Hugoniot relations. These relations are subsequently compared with their experimental counterparts in order to assess the fidelity of these models.

  7. Experimental characterization of glass-ceramic seal properties and their constitutive implementation in solid oxide fuel cell stack models

    SciTech Connect

    Stephens, Elizabeth V.; Vetrano, John S.; Koeppel, Brian J.; Chou, Y. S.; Sun, Xin; Khaleel, Mohammad A.

    2009-09-05

    This paper discusses experimental determination of solid oxide fuel cell (SOFC) glass-ceramic seal material properties and seal/interconnect interfacial properties to support development and optimization of SOFC designs through modeling. Material property experiments such as dynamic resonance, dilatometry, flexure, creep, tensile, and shear tests were performed on PNNL’s glass-ceramic sealant material, designated as G18, to obtain property data essential to constitutive and numerical model development. Characterization methods for the physical, mechanical, and interfacial properties of the sealing material, results, and their application to the constitutive implementation in SOFC stack modeling are described.

  8. Modeling and experimental characterization on fatigue behaviour of 1-3 piezocomposites

    NASA Astrophysics Data System (ADS)

    Mohan, Y.; Jayendiran, R.; Arockiarajan, A.

    2015-04-01

    1-3 piezocomposites are very attractive materials in underwater and biomedical applications. These materials may be subjected to high electric field (2kV/mm) under continuous operation leading to deterioration in the output parameters such as remnant, saturation polarization and strain. Hence in this work, an experimental study is carried out to understand the fatigue behavior of 1-3 piezocomposites for various fiber volume fraction subjected to cyclic electric field (2kV/mm, 50Hz) up to 106 cycles. A uni-axial micro-mechanical model is developed to predict the fatigue behaviour of 1-3 piezocomposite. The novelty of this model is, the remnant polarization and strain are chosen as internal variables which is also dependent on the damage.The simulated results are compared with the experimental observations, it is observed that the proposed micro-mechanical model is able to predict the material degradation with increase in number of cycles of operation. A parametric study is also conducted for various fiber volume fraction of 1-3 piezocomposite as function of fatigue cycle it shows that the amplitude of dielectric hysteresis and butterfly loop decreases with increase in the number of cycles. The fatigue behavior has a substantial effect in the performance parameters such as coercive field, remnant polarization and the asymmetric strain behavior of 1-3 piezocomposite. This fatigue study explores the utilities of 1-3 piezocomposites in transducer applications by providing insight into the device design.

  9. Experimental characterization of rotating flow field in a model vortex burner

    SciTech Connect

    Shtork, S.I.; Cala, C.E.; Fernandes, E.C.

    2007-07-15

    Acoustic techniques, high speed filming and LDA were employed to characterize swirling jet flow in a model vortex burner. The isothermal flow conditions studied correspond to Re = 16,000 and swirl number S = 1, resulting in onset of the swirling jet breakdown. The breakdown zone exhibited distinct flow unsteadiness in the form of a precessing vortex core (PVC). Phase-averaged analysis of the LDA data was used to reveal an ''instantaneous'' flow field spatial distribution and to determine the precessing vortex characteristics. These results were compared against the time mean data to reveal the PVC's footprint in the time-averaged flow structure. In particular, this approach was shown to provide access to the precessing structure parameters making use of conventional flow field diagnostics. (author)

  10. Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline {alpha}-Ti.

    SciTech Connect

    Wang, L.; Barabash, R. I.; Yang, Y.; Bieler, T. R.; Crimp, M. A.; Eisenlohr, P.; Liu, W.; Ice, G. E.

    2011-03-01

    Grain-level heterogeneous deformation was studied in a polycrystalline {alpha}-Ti specimen deformed by four-point bending. Dislocation slip activity in the microstructure was investigated by surface slip trace analysis. Three-dimensional-X-ray diffraction (3D-XRD) was used to investigate subsurface lattice rotations and to identify geometrically necessary dislocations (GNDs). The slip systems of local GNDs were analyzed by studying the streaking directions of reflections in corresponding Laue patterns. The analysis performed in one grain indicated that the subsurface GNDs were from the same slip system identified using slip trace analysis in backscattered electron images. A crystal plasticity finite element (CPFE) model was used to simulate deformation of the same microstructural region. The predictions of dislocation slip activity match the general aspects of the experimental observations, including the ability to simulate the activation of different slip systems in grains where multiple slip systems were activated. Prediction of local crystal rotations, however, was the least accurate aspect of the CPFE model.

  11. Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline -Ti

    SciTech Connect

    Wang, Leyun; Barabash, Rozaliya; Yang, Y; Bieler, Prof T R; Crimp, Prof M A; Eisenlohr, P; Liu, W.; Ice, Gene E

    2011-01-01

    Grain-level heterogeneous deformation was studied in a polycrystalline {alpha}-Ti specimen deformed by four-point bending. Dislocation slip activity in the microstructure was investigated by surface slip trace analysis. Three-dimensional-X-ray diffraction (3D-XRD) was used to investigate subsurface lattice rotations and to identify geometrically necessary dislocations (GNDs). The slip systems of local GNDs were analyzed by studying the streaking directions of reflections in corresponding Laue patterns. The analysis performed in one grain indicated that the subsurface GNDs were from the same slip system identified using slip trace analysis in backscattered electron images. A crystal plasticity finite element (CPFE) model was used to simulate deformation of the same microstructural region. The predictions of dislocation slip activity match the general aspects of the experimental observations, including the ability to simulate the activation of different slip systems in grains where multiple slip systems were activated. Prediction of local crystal rotations, however, was the least accurate aspect of the CPFE model.

  12. Characterization of a canine glioma cell line as related to established experimental brain tumor models.

    PubMed

    Rainov, N G; Koch, S; Sena-Esteves, M; Berens, M E

    2000-07-01

    A large animal tumor model for anaplastic glioma has been recently developed using immunotolerant allogeneic Beagle dogs and an established canine glioma cell line, J3T. This model offers advantages in terms of tumor morphology and similarity to human anaplastic glioma. The present study was aimed at evaluating the biological characteristics of the J3T canine glioma cell line as related to experimental gene therapy studies. Furthermore, development and morphology of canine brain tumors in a xenogeneic immunodeficient SCID mouse model was investigated. It was demonstrated that cultured J3T cells can be efficiently infected by adenovirus (AV), herpes-simplex type I (HSV), or retrovirus (RV) vectors, as well as by non-virus vectors such as cationic liposome/DNA complexes. Thus, in terms of infectability and transfectability, J3T cells seem to be closer to human glioma than the 9L rodent gliosarcoma. Cytotoxicity of selection antibiotics such as G418, puromycin, and hygromycin on J3T cells essentially resemble cytotoxicity seen with other established glioma lines, for example, 9L, U87, or U343. RV-mediated HSV-TK/GCV gene therapy demonstrated comparable LD50 for TK-expressing and control (non-expressing) J3T and 9L cells treated with Ganciclovir. Further, it was proven that J3T cells are tumorigenic and may grow heterotopically and orthotopically in a xenogeneic immunodeficient host, the SCID mouse, although morphology and growth pattern of these xenogeneic tumors differ from the demonstrated invasive phenotype in the Beagle dog. PMID:10901232

  13. Optimized method for TAG protein homology modeling: In silico and experimental structural characterization.

    PubMed

    Tomar, Jyoti Singh; Peddinti, Rama Krishna

    2016-07-01

    The DNA glycosylases cleave CN glycosyl bond to release a free base and generate abasic sites concurrently. Function and structure of these enzymes in the pathogenic bacterium Acinetobacter baumannii and its closely related species are not well characterized. Inhibition of TAG enzyme is a promising drug design strategy against A. baumannii. Here optimized molecular modeling approaches were used to provide a structural scaffold of TAG. The recombinant TAG protein was expressed and purified to determine oligomeric state using size exclusion chromatography, which showed the existence of TAG protein as monomer (mwt ∼21kDa). Secondary structure and substrate binding were analyzed using CD are in good agreement with the in silico predictions. Near UV-CD spectrum shows the involvement of Tyr residues in substrate recognition. Molecular docking studies were performed to understand the molecular recognition interactions and this knowledge was used to identify the potent inhibitors using virtual screening. Residues crucial for DNA holding and enzyme catalysis are reconfirmed by the in silico mutational studies. PMID:27017978

  14. Radio-frequency sheaths physics: Experimental characterization on Tore Supra and related self-consistent modeling

    NASA Astrophysics Data System (ADS)

    Jacquot, Jonathan; Milanesio, Daniele; Colas, Laurent; Corre, Yann; Goniche, Marc; Gunn, Jamie; Heuraux, Stéphane; Kubič, Martin

    2014-06-01

    During the 2011 experimental campaign, one of the three ion cyclotron resonance heating (ICRH) antennas in the Tore Supra tokamak was equipped with a new type of Faraday screen (FS). The new design aimed at minimizing the integrated parallel electric field over long field lines as well as increasing the heat exhaust capability of the actively cooled screen. It proved to be inefficient for attenuating the radio-frequency (RF)-sheaths on the screen itself on the contrary to the heat exhaust concept that allowed operation despite higher heat fluxes on the antenna. In parallel, a new approach has been proposed to model self-consistently RF sheaths: the SSWICH (Self-consistent Sheaths and Waves for IC Heating) code. Simulations results from SSWICH coupled with the TOPICA antenna code were able to reproduce the difference between the two FS designs and part of the spatial pattern of heat loads and Langmuir probe floating potential. The poloidal pattern is a reliable result that mainly depends on the electrical design of the antenna while the radial pattern is on the contrary highly sensitive to loosely constrained parameters such as perpendicular conductivity that generates a DC current circulation from the private region inside the antenna limiters to the free scrape off layer outside these limiters. Moreover, the cantilevered bars seem to be the element in the screen design that enhanced the plasma potential.

  15. Radio-frequency sheaths physics: Experimental characterization on Tore Supra and related self-consistent modeling

    SciTech Connect

    Jacquot, Jonathan; Colas, Laurent Corre, Yann; Goniche, Marc; Gunn, Jamie; Kubič, Martin; Milanesio, Daniele; Heuraux, Stéphane

    2014-06-15

    During the 2011 experimental campaign, one of the three ion cyclotron resonance heating (ICRH) antennas in the Tore Supra tokamak was equipped with a new type of Faraday screen (FS). The new design aimed at minimizing the integrated parallel electric field over long field lines as well as increasing the heat exhaust capability of the actively cooled screen. It proved to be inefficient for attenuating the radio-frequency (RF)-sheaths on the screen itself on the contrary to the heat exhaust concept that allowed operation despite higher heat fluxes on the antenna. In parallel, a new approach has been proposed to model self-consistently RF sheaths: the SSWICH (Self-consistent Sheaths and Waves for IC Heating) code. Simulations results from SSWICH coupled with the TOPICA antenna code were able to reproduce the difference between the two FS designs and part of the spatial pattern of heat loads and Langmuir probe floating potential. The poloidal pattern is a reliable result that mainly depends on the electrical design of the antenna while the radial pattern is on the contrary highly sensitive to loosely constrained parameters such as perpendicular conductivity that generates a DC current circulation from the private region inside the antenna limiters to the free scrape off layer outside these limiters. Moreover, the cantilevered bars seem to be the element in the screen design that enhanced the plasma potential.

  16. Radio-frequency sheaths physics: Experimental characterization on Tore Supra and related self-consistent modeling

    NASA Astrophysics Data System (ADS)

    Jacquot, Jonathan; Milanesio, Daniele; Colas, Laurent; Corre, Yann; Goniche, Marc; Gunn, Jamie; Heuraux, Stéphane; Kubic, Martin

    2014-02-01

    During the 2011 experimental campaign, one of the three ion cyclotron resonance heating (ICRH) antennas in the Tore Supra (TS) tokamak was equipped with a new type of Faraday screen (FS). The new design aimed at minimizing RF sheaths as well as increasing the heat exhaust capability of the actively cooled screen. It proved to be inefficient for attenuating the RF-sheaths on the screen itself on the contrary to the heat exhaust concept that allowed operation despite higher heat fluxes on the antenna. In parallel, a new approach has been proposed to model self-consistently RF sheaths: the SSWICH (Self-consistent Sheaths and Waves for IC Heating) code. Simulations results from SSWICH coupled with the TOPICA antenna code were able to reproduce the difference between the two FS designs and part of the spatial pattern of heat loads and floating potential. The poloidal pattern is a reliable result that mainly depends on the electrical design of the antenna while the radial pattern is on the contrary highly sensitive to loosely constrained parameters such as perpendicular conductivity that generates a DC current circulation from the the private region inside the antenna limiters to the free SOL outside these limiters. Moreover the cantilevered bars seem to be the element in the design of the new screen that enhanced RF sheaths.

  17. Experimental characterization of powered Fontan hemodynamics in an idealized total cavopulmonary connection model

    NASA Astrophysics Data System (ADS)

    Kerlo, Anna-Elodie M.; Delorme, Yann T.; Xu, Duo; Frankel, Steven H.; Giridharan, Guruprasad A.; Rodefeld, Mark D.; Chen, Jun

    2013-08-01

    A viscous impeller pump (VIP) based on the Von Karman viscous pump is specifically designed to provide cavopulmonary assist in a univentricular Fontan circulation. The technology will make it possible to biventricularize the univentricular Fontan circulation. Ideally, it will reduce the number of surgeries required for Fontan conversion from three to one early in life, while simultaneously improving physiological conditions. Later in life, it will provide a currently unavailable means of chronic support for adolescent and adult patients with failing Fontan circulations. Computational fluid dynamics simulations demonstrate that the VIP can satisfactorily augment cavopulmonary blood flow in an idealized total cavopulmonary connection (TCPC). When the VIP is deployed at the TCPC intersection as a static device, it stabilizes the four-way flow pattern and is not obstructive to the flow. Experimental studies are carried out to assess performance, hemodynamic characteristics, and flow structures of the VIP in an idealized TCPC model. Stereoscopic particle image velocimetry is applied using index-matched blood analog. Results show excellent performance of the VIP without cavitation and with reduction of the energy losses. The non-rotating VIP smoothes and accelerates flow, and decreases stresses and turbulence in the TCPC. The rotating VIP generates the desired low-pressure Fontan flow augmentation (0-10 mmHg) while maintaining acceptable stress thresholds.

  18. Experimental characterization and constitutive modeling of the mechanical behavior of molybdenum under electromagnetically applied compression-shear ramp loading

    NASA Astrophysics Data System (ADS)

    Alexander, C. S.; Ding, J. L.; Asay, J. R.

    2016-03-01

    Magnetically applied pressure-shear (MAPS) is a new experimental technique that provides a platform for direct measurement of material strength at extreme pressures. The technique employs an imposed quasi-static magnetic field and a pulsed power generator that produces an intense current on a planar driver panel, which in turn generates high amplitude magnetically induced longitudinal compression and transverse shear waves into a planar sample mounted on the drive panel. In order to apply sufficiently high shear traction to the test sample, a high strength material must be used for the drive panel. Molybdenum is a potential driver material for the MAPS experiment because of its high yield strength and sufficient electrical conductivity. To properly interpret the results and gain useful information from the experiments, it is critical to have a good understanding and a predictive capability of the mechanical response of the driver. In this work, the inelastic behavior of molybdenum under uniaxial compression and biaxial compression-shear ramp loading conditions is experimentally characterized. It is observed that an imposed uniaxial magnetic field ramped to approximately 10 T through a period of approximately 2500 μs and held near the peak for about 250 μs before being tested appears to anneal the molybdenum panel. In order to provide a physical basis for model development, a general theoretical framework that incorporates electromagnetic loading and the coupling between the imposed field and the inelasticity of molybdenum was developed. Based on this framework, a multi-axial continuum model for molybdenum under electromagnetic loading is presented. The model reasonably captures all of the material characteristics displayed by the experimental data obtained from various experimental configurations. In addition, data generated from shear loading provide invaluable information not only for validating but also for guiding the development of the material model for

  19. Experimental characterization and constitutive modeling of the mechanical behavior of molybdenum under electromagnetically applied compression-shear ramp loading

    DOE PAGESBeta

    Alexander, C. Scott; Ding, Jow -Lian; Asay, James Russell

    2016-03-09

    Magnetically applied pressure-shear (MAPS) is a new experimental technique that provides a platform for direct measurement of material strength at extreme pressures. The technique employs an imposed quasi-static magnetic field and a pulsed power generator that produces an intense current on a planar driver panel, which in turn generates high amplitude magnetically induced longitudinal compression and transverse shear waves into a planar sample mounted on the drive panel. In order to apply sufficiently high shear traction to the test sample, a high strength material must be used for the drive panel. Molybdenum is a potential driver material for the MAPSmore » experiment because of its high yield strength and sufficient electrical conductivity. To properly interpret the results and gain useful information from the experiments, it is critical to have a good understanding and a predictive capability of the mechanical response of the driver. In this work, the inelastic behavior of molybdenum under uniaxial compression and biaxial compression-shear ramp loading conditions is experimentally characterized. It is observed that an imposed uniaxial magnetic field ramped to approximately 10 T through a period of approximately 2500 μs and held near the peak for about 250 μs before being tested appears to anneal the molybdenum panel. In order to provide a physical basis for model development, a general theoretical framework that incorporates electromagnetic loading and the coupling between the imposed field and the inelasticity of molybdenum was developed. Based on this framework, a multi-axial continuum model for molybdenum under electromagnetic loading is presented. The model reasonably captures all of the material characteristics displayed by the experimental data obtained from various experimental configurations. Additionally, data generated from shear loading provide invaluable information not only for validating but also for guiding the development of the material

  20. Experimental characterization and modeling of non-linear coupling of the LHCD power on Tore Supra

    SciTech Connect

    Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.

    2014-02-12

    To achieve steady state operation on future tokamaks, in particular on ITER, the unique capability of a LHCD system to efficiently drive off-axis non-inductive current is needed. In this context, it is of prime importance to study and master the coupling of LH wave to the core plasma at high power density (tens of MW/m{sup 2}). In some specific conditions, deleterious effects on the LHCD coupling are sometimes observed on Tore Supra. At high power the waves may modify the edge parameters that change the wave coupling properties in a non-linear manner. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the Fully Active Multijunction (FAM) and the new Passive Active Multijunction (PAM) antennas. A nonlinear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient with the LHCD power, leading occasionally to trips in the output power, is not predicted by the standard linear theory of the LH wave coupling. Therefore, it is important to investigate and understand the possible origin of such non-linear effects in order to avoid their possible deleterious consequences. The PICCOLO-2D code, which self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density, is used to simulate Tore Supra discharges. The simulation reproduces very well the occurrence of a non-linear behavior in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive

  1. Modeling Atmospheric Sulfur Over the Northern Hemisphere during the Aerosol Characterization Experiment 2 Experimental Period

    SciTech Connect

    Benkovitz, C; Schwartz, Stephen E.; Jensen, Michael P.; Miller, Mark A.; Easter, Richard C.; Bates, Timothy S.

    2004-11-25

    A high-resolution (1{sup o} x 1{sup o}, 27 vertical levels) Eulerian chemical transport and transformation model for sulfate, SO{sub 2}, and related species driven by analyzed forecast meteorological data has been run for the Northern Hemisphere for June-July 1997 and extensively evaluated with observational data, mainly from air-quality and precipitation chemistry networks. For {approx}5000 evaluations, 50% of the modeled sulfate 24-h mixing ratios were within a factor of 1.85 of the observations; 50% of {approx}328 concurrent subgrid observations were within a factor of 1.33. Much greater subgrid variation for 24-h SO{sub 2} mixing ratios (50% of {approx}3552 observations were within a factor of 2.32) reflects high variability of this primary species; for {approx}12,600 evaluations 50% of modeled mixing ratios were within a factor of 2.54 of the observations. These results indicate that a substantial fraction of the modeled and observed differences is due to subgrid variation and/or measurement error. Sulfate mixing ratios are identified by source type (biogenic, volcanic, and anthropogenic) and production mechanism (primary and by gas-phase and aqueous-phase oxidation). Examination of key diagnostics showed substantial variation for the different types of sulfur, e.g., SO{sub 2} aqueous-phase oxidation rates of 29 to 102% day{sup -1}, sulfate residence times of 4 to 9 days. Volcanic emissions contributed 10% of the sulfate burden and 6% of emissions, because the elevated release allows 2 large fractional conversion of SO{sub 2} and long residence time. Biogenic SO{sub 2} was generally at lower concentrations than H{sub 2}O{sub 2}, resulting in efficient aqueous-phase oxidation; this source type contributed 13% of emissions but only 5% of sulfate burden. Anthropogenic sources were the dominant contributors to sulfur emissions, 80%, and sulfate burden, 84%.

  2. Modeling and experimental characterization of propulsion of a spiral-type microrobot for medical use in gastrointestinal tract.

    PubMed

    Zhou, Hao; Alici, Gursel; Than, Trung Duc; Li, Weihua

    2013-06-01

    In this paper, a spiral-type medical robot based on an endoscopic capsule was propelled in a fluidic and tubular environment using electromagnetic actuation. Both modeling and experimental methods have been employed to characterize the propulsion of the robotic capsule. The experiments were performed not only in a simulated environment (vinyl tube filled with silicone oil) but also in a real small intestine. The effects of the spiral parameters including lead, spiral height, the number of spirals, and cross section of the spirals on the propulsion efficiency of the robot are investigated. Based on the transmission efficiency from rotation to translation as well as the balancing of the microrobot in operation, it is demonstrated that the robot with two spirals could provide the best propulsion performance when its lead is slightly smaller than the perimeter of the capsule. As for the spiral height, it is better to use a larger one as long as the intestine's size allows. Based on the simulation and experimental results presented, this study quantifies the influence of the spiral structure on the capsule's propulsion. It provides a helpful reference for the design and optimization of the traction topology of the microrobot navigating inside the mucus-filled small intestine. PMID:23193447

  3. Corrosion chemistry closing comments: opportunities in corrosion science facilitated by operando experimental characterization combined with multi-scale computational modelling.

    PubMed

    Scully, John R

    2015-01-01

    Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways. PMID:26114392

  4. Computational Modeling and Experimental Characterization of Martensitic Transformations in Nicoal for Self-Sensing Materials

    NASA Technical Reports Server (NTRS)

    Wallace, T. A.; Yamakov, V. I.; Hochhalter, J. D.; Leser, W. P.; Warner, J. E.; Newman, J. A.; Purja Pun, G. P.; Mishin, Y.

    2015-01-01

    Fundamental changes to aero-vehicle management require the utilization of automated health monitoring of vehicle structural components. A novel method is the use of self-sensing materials, which contain embedded sensory particles (SP). SPs are micron-sized pieces of shape-memory alloy that undergo transformation when the local strain reaches a prescribed threshold. The transformation is a result of a spontaneous rearrangement of the atoms in the crystal lattice under intensified stress near damaged locations, generating acoustic waves of a specific spectrum that can be detected by a suitably placed sensor. The sensitivity of the method depends on the strength of the emitted signal and its propagation through the material. To study the transition behavior of the sensory particle inside a metal matrix under load, a simulation approach based on a coupled atomistic-continuum model is used. The simulation results indicate a strong dependence of the particle's pseudoelastic response on its crystallographic orientation with respect to the loading direction and suggest possible ways of optimizing particle sensitivity. The technology of embedded sensory particles will serve as the key element in an autonomous structural health monitoring system that will constantly monitor for damage initiation in service, which will enable quick detection of unforeseen damage initiation in real-time and during onground inspections.

  5. Computational and experimental characterization of dVHL establish a Drosophila model of VHL syndrome.

    PubMed

    Shmueli, Merav D; Schnaider, Lee; Herzog, Gal; Gazit, Ehud; Segal, Daniel

    2014-01-01

    The von Hippel-Lindau (VHL) cancer syndrome is associated with mutations in the VHL gene. The pVHL protein is involved in response to changes in oxygen availability as part of an E3-ligase that targets the Hypoxia-Inducible Factor for degradation. pVHL has a molten globule configuration with marginal thermodynamic stability. The cancer-associated mutations further destabilize it. The Drosophila homolog, dVHL, has relatively low sequence similarity to pVHL, and is also involved in regulating HIF1-α. Using in silico, in vitro and in vivo approaches we demonstrate high similarity between the structure and function of dVHL and pVHL. These proteins have a similar fold, secondary and tertiary structures, as well as thermodynamic stability. Key functional residues in dVHL are evolutionary conserved. This structural homology underlies functional similarity of both proteins, evident by their ability to bind their reciprocal partner proteins, and by the observation that transgenic pVHL can fully maintain normal dVHL-HIF1-α downstream pathways in flies. This novel transgenic Drosophila model is thus useful for studying the VHL syndrome, and for testing drug candidates to treat it. PMID:25310726

  6. Computational and Experimental Characterization of dVHL Establish a Drosophila Model of VHL Syndrome

    PubMed Central

    Shmueli, Merav D.; Schnaider, Lee; Herzog, Gal; Gazit, Ehud; Segal, Daniel

    2014-01-01

    The von Hippel-Lindau (VHL) cancer syndrome is associated with mutations in the VHL gene. The pVHL protein is involved in response to changes in oxygen availability as part of an E3-ligase that targets the Hypoxia-Inducible Factor for degradation. pVHL has a molten globule configuration with marginal thermodynamic stability. The cancer-associated mutations further destabilize it. The Drosophila homolog, dVHL, has relatively low sequence similarity to pVHL, and is also involved in regulating HIF1-α. Using in silico, in vitro and in vivo approaches we demonstrate high similarity between the structure and function of dVHL and pVHL. These proteins have a similar fold, secondary and tertiary structures, as well as thermodynamic stability. Key functional residues in dVHL are evolutionary conserved. This structural homology underlies functional similarity of both proteins, evident by their ability to bind their reciprocal partner proteins, and by the observation that transgenic pVHL can fully maintain normal dVHL-HIF1-α downstream pathways in flies. This novel transgenic Drosophila model is thus useful for studying the VHL syndrome, and for testing drug candidates to treat it. PMID:25310726

  7. Experimental characterization and micromechanical modeling of superelastic response of a porous NiTi shape-memory alloy

    NASA Astrophysics Data System (ADS)

    Nemat-Nasser, Sia; Su, Yu; Guo, Wei-Guo; Isaacs, Jon

    2005-10-01

    Porous shape-memory alloys are usually brittle due to the presence of various nickel-titanium intermetallic compounds that are produced in the course of most commonly used synthesizing techniques. We consider here a porous NiTi shape-memory alloy (SMA), synthesized by spark-plasma sintering, that is ductile and displays full shape-memory effects over the entire appropriate range of strains. The porosity however is only 12% but the basic synthesizing technique has potential for producing shape-memory alloys with greater porosity that still are expected to display superelasticity and shape-memory effects. The current material has been characterized experimentally using quasi-static and dynamic tests at various initial temperatures, mostly within the superelastic strain range, but also into the plastic deformation regime of the stress-induced martensite phase. To obtain a relatively constant strain rate in the high strain-rate tests, a novel pulse-shaping technique is introduced. The results of the quasi-static experiments are compared with the predictions by a model that can be used to calculate the stress-strain response of porous NiTi shape-memory alloys during the austenite-to-martensite and reverse phase transformations in uniaxial quasi-static loading and unloading at constant temperatures. In the austenite-to-martensite transformation, the porous shape-memory alloy is modeled as a three-phase composite with the parent phase (austenite) as the matrix and the product phase (martensite) and the voids as the embedded inclusions, reversing the roles of austenite and martensite during the reverse transformation from fully martensite to fully austenite phase. The criterion of the stress-induced martensitic transformation and its reversal is based on equilibrium thermodynamics, balancing the thermodynamic driving force for the phase transformation, associated with the reduction of Gibbs' free energy, with the resistive force corresponding to the required energy to

  8. Anti-inflammatory activity of Pistacia khinjuk in different experimental models: isolation and characterization of its flavonoids and galloylated sugars.

    PubMed

    Esmat, Ahmed; Al-Abbasi, Fahad A; Algandaby, Mardi M; Moussa, Ashaimaa Y; Labib, Rola M; Ayoub, Nahla A; Abdel-Naim, Ashraf B

    2012-03-01

    The present study aimed at isolating and elucidating the structure of the main components of Pistacia khinjuk L. and exploring its potential anti-inflammatory effect in different experimental models. The extract was evaluated for anti-inflammatory activity by measuring paw volume in three experimental models. Then, prostaglandin E₂ (PGE₂) level, ear edema, tissue myeloperoxidase (MPO) activity, histopathology, nitric oxide (NO) level, and tumor necrosis factor-α (TNF-α) level were assessed. Seven phenolic compounds, mainly flavonoids and galloylated compounds, were isolated from the aqueous methanol extract: gallic acid (1), methyl gallate (2), quercetin-3-O-β-D-⁴C₁-galactopyranoside (hyperin) (3), myricetin-3-O-α-L-¹C₄-rhamnopyranoside (myricitrin) (4), 1,6-digalloyl-β-D-glucose (5), 1,4-digalloyl-β-D-glucopyranoside (6), and 2,3-di-O-galloyl-(α/β)-⁴C₁-glucopyranose (nilocitin) (7). The anti-inflammatory activity was evidenced by decreased carrageenan-induced rat paw edema and PGE₂ elevation. In the croton oil-induced ear edema model, MPO activity was significantly inhibited, and inflammatory histopathological changes were ameliorated. In the rat air pouch model, NO generation and TNF-α release were significantly inhibited. The isolation and nuclear magnetic resonance spectral data of compound 6 from the genus Pistacia are revealed for the first time. Also, P. khinjuk L. aqueous methanol extract possesses anti-inflammatory activity in several experimental models. PMID:22082098

  9. Experimental characterization and modeling of ionic polymer-metal composites as biomimetic actuators, sensors, and artificial muscles

    NASA Astrophysics Data System (ADS)

    Wu, Yongxian

    Ionic polymer-metal composites (IPMCs) are soft bending actuators and sensors. A typical IPMC consists of a thin perfluorinated ionomer membrane, noble metal electrodes plated on both faces, and is neutralized with the necessary amount of cations. They respond to electric stimulus by generating large bending motions and produce electric signals upon sudden bending deformations. These actuation and sensing responses, which result from the coupled chemo-electro-mechanical interactions at the nano-scale level, depend on the structure of the ionomer, the morphology of the metal electrodes, the nature of the cations, and the degree of the hydration. IPMCs have been considered for potential applications in artificial muscles, robotic systems, medical devices, and other biomimetic applications. A series of systematic experimental characterizations are performed on both Nafion- and Flemion-based IPMCs in various cation forms. Compared with Nafion-based IPMCs, Flemion-based IPMCs with fine dendritic gold electrodes have higher ion-exchange capacity, better surface conductivity, higher hydration capacity, and higher longitudinal stiffness. Flemion-based IPMCs show a greater bending deformation towards the anode without back relaxation under a DC voltage. This displacement towards the anode is linearly related to the charge accumulation at the cathode. In contrast, Nafion-based IPMCs in alkali-metal cations initially have a fast bending towards the anode, followed by a slow relaxation in the opposite direction as charges continue to move towards the cathode boundary layer. Based on the understanding of the factors that affect IPMCs' performance, novel methods to tailor the IPMCs' electro-mechanical responses are developed. By modifying the associated cations, i.e., introducing various single cations (including alkali-metal, alkyl-ammonium, or multivalent metal cations) and cation combinations, diverse actuation behaviors can be obtained and optimized. The actuation motions of

  10. Mars Radiator Characterization Experimental Program

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.; Hollingsworth, D. Keith

    2004-01-01

    Radiators are an enabling technology for the human exploration and development of the moon and Mars. As standard components of the heat rejection subsystem of space vehicles, radiators are used to reject waste heat to space and/or a planetary environment. They are typically large components of the thermal control system for a space vehicle or human habitation facility, and in some cases safety factors are used to oversize them when the operating environment cannot be fully characterized. Over-sizing can impose significant weight and size penalties that might be prohibitive for future missions. Radiator performance depends on the size of the radiator surface, its emittance and absorptance, the radiator temperature, the effective sky temperature surrounding the radiator, solar radiation and atmospheric irradiation levels, convection to or from the atmosphere (on Mars), and other conditions that could affect the nature of the radiator surface, such as dust accumulation. Most particularly, dust is expected to be a major contributor to the local environmental conditions on either the lunar or Martian surface. This conclusion regarding Mars is supported by measurements of dust accumulation on the Mars Sojourner Rover solar array during the Pathfinder mission. This Final Report describes a study of the effect of Martian dust accumulation on radiator performance. It is comprised of quantitative measurements of effective emittance for a range of dust accumulation levels on surfaces of known emittance under clean conditions. The test radiator coatings were Z-93P, NS-43G, and Silver Teflon (10 mil) film. The Martian dust simulant was Carbondale Red Clay. Results were obtained under vacuum conditions sufficient to reduce convection effects virtually to zero. The experiments required the development of a calorimetric apparatus that allows simultaneous measurements of the effective emittance for all the coatings at each set of experimental conditions. A method of adding dust to

  11. P2X7 receptor-mediated calcium dynamics in HEK293 cells: experimental characterization and modelling approach

    NASA Astrophysics Data System (ADS)

    Di Garbo, A.; Alloisio, S.; Nobile, M.

    2012-04-01

    The P2X7 receptor (P2X7R) induces ionotropic Ca2 + signalling in different cell types. It plays an important role in the immune response and in the nervous system. Here, the mechanisms underlying intracellular Ca2 + variations evoked by 3‧-O-(4-benzoyl)benzoyl-ATP (BzATP), a potent agonist of the P2X7R, in transfected HEK293 cells, are investigated both experimentally and theoretically. We propose a minimal model of P2X7R that is capable of reproducing, qualitatively and quantitatively, the experimental data. This approach was also adopted for the P2X7R variant, which lacks the entire C-terminus tail (trP2X7R). Then we introduce a biophysical model describing the Ca2 + dynamics in HEK293. Our model gives an account of the ionotropic Ca2 + influx evoked by BzATP on the basis of the kinetics model of P2X7R. To explain the complex Ca2 + responses evoked by BzATP, the model predicted that an impairment in Ca2 + extrusion flux through the plasma membrane is a key factor for Ca2 + homeostasis in HEK293 cells.

  12. 3-D structural modeling of humic acids through experimental characterization, computer assisted structure elucidation and atomistic simulations 1. Chelsea soil humic acid.

    SciTech Connect

    Gassman, Paul; Hatcher, Patrick G.; Faulon, Jean-Loup Michel; Simpson, Andre; Goddard, William A., III; Diallo, Mamadou S.; Johnson, James H. Jr.

    2003-07-01

    This paper describes an integrated experimental and computational framework for developing 3-D structural models for humic acids (HAs). This approach combines experimental characterization, computer assisted structure elucidation (CASE), and atomistic simulations to generate all 3-D structural models or a representative sample of these models consistent with the analytical data and bulk thermodynamic/structural properties of HAs. To illustrate this methodology, structural data derived from elemental analysis, diffuse reflectance FT-IR spectroscopy, 1-D/2-D {sup 1}H and {sup 13}C solution NMR spectroscopy, and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI QqTOF MS) are employed as input to the CASE program SIGNATURE to generate all 3-D structural models for Chelsea soil humic acid (HA). These models are subsequently used as starting 3-D structures to carry out constant temperature-constant pressure molecular dynamics simulations to estimate their bulk densities and Hildebrand solubility parameters. Surprisingly, only a few model isomers are found to exhibit molecular compositions and bulk thermodynamic properties consistent with the experimental data. The simulated {sup 13}C NMR spectrum of an equimolar mixture of these model isomers compares favorably with the measured spectrum of Chelsea soil HA.

  13. Experimental characterization and modeling of UO2 grain boundary cracking at high temperatures and high strain rates

    NASA Astrophysics Data System (ADS)

    Salvo, Maxime; Sercombe, Jérôme; Helfer, Thomas; Sornay, Philippe; Désoyer, Thierry

    2015-05-01

    In this paper, the behavior of a dense UO2 (porosity less than 2%) was studied experimentally on a range of temperatures (1100-1700 °C) and strain rates (10-4-10-1 /s) representative of RIA loading conditions. The yield stress was found to increase with strain rate and to decrease with temperature. Macroscopic cracking of the samples was apparent after the tests at 1100 °C. Scanning Electron Microscopy (SEM) image analyses revealed a pronounced grain boundary cracking in the core of the samples tested at 10-1 /s and at 1550-1700 °C. A hyperbolic sine model for the viscoplastic strain rate with a clear dependency on porosity was first developed. It was completed by a Drucker-Prager yield criterion with associated plastic flow to account for the porosity increase induced by grain boundary cracking. Finite Elements simulations of the compression tests on the dense UO2 were then successfully compared to the stress-strain curves, post-test diameter profiles and porosities at the pellets' center, periphery and top extremity. The response of the grain boundary cracking model was then studied in biaxial compression, this condition being closer to that of the pellet during a RIA power transient.

  14. Experimental characterization and modeling of a nanofiber-based selective emitter for thermophotovoltaic energy conversion: The effect of optical properties

    NASA Astrophysics Data System (ADS)

    Aljarrah, M. T.; Wang, R.; Evans, E. A.; Clemons, C. B.; Young, G. W.

    2011-02-01

    Aluminum oxide nanofibers doped with erbium oxide have been synthesized by calcining polymer fibers made by the electrospinning technique using a mixture of aluminum acetate, erbium acetate and polyvinylpyrrolidone dissolved in ethanol. The resulting ceramic fibers are used to fabricate a free-standing selective emitter. The general equation of radiation transfer coupled with experimentally measured optical properties is used to model the net radiation obtained from these structures. It has been found that the index of refraction and the extinction coefficient are direct functions of the erbia doping level in the fibers. The fibers radiated in a selective manner at ˜1.53 μm with an efficiency of about 90%. For a fiber film on a substrate, the effect of film thickness, extinction coefficient and substrate emissivity on the overall emitter emissivity is also investigated in this study. Results show that the emissivity of the film increases as the thickness of the film increases up to a maximum value, after which increasing the film thickness had no effect on emissivity. Furthermore, it has been found that the substrate emissivity increases the amount of off-band radiation. This effect can be mitigated by controlling the film thickness.

  15. 3-D Structural Modeling of Humic Acids through Experimental Characterization, Computer Assisted Structure Elucidation and Atomistic Simulations. 1. Chelsea Soil Humic Acid

    SciTech Connect

    Diallo, Mamadou S.; Simpson, Andre; Gassman, Paul L.; Faulon, Jean Loup; Johnson, Jr., James H.; Goddard, III, William A.; Hatcher, Patrick G.

    2003-05-01

    This paper describes an integrated experimental and computational framework for developing 3-D structural models for humic acids (HAs). This approach combines experimental characterization, computer assisted structure elucidation (CASE), and atomistic simulations to generate all 3-D structural models or a representative sample of these models consistent with the analytical data and bulk thermodynamic/structural properties of HAs. To illustrate this methodology, structural data derived from elemental analysis, diffuse reflectance FT-IR spectroscopy, 1-D/2-D | 1H and 13C solution NMR spectroscopy, and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI QqTOF MS) are employed as input to the CASE program SIGNATURE to generate all 3-D structural models for Chelsea soil humic acid (HA). These models are subsequently used as starting 3-D structures to carry out constant temperature-constant pressure molecular dynamics simulations to estimate their bulk densities and Hildebrand solubility parameters. Surprisingly, only a few model isomers are found to exhibit molecular compositions and bulk thermodynamic properties consistent with the experimental data. The simulated 13C NMR spectrum of * Corresponding author phone: (626)395-2730; fax: (626)585-0918; e-mail: diallo@wag.caltech.edu and mdiallo@howard.edu. Present address: Materials and Process Simulation Center,BeckmanInstitute 139-74, California Institute of Technology, Pasadena, CA 91125. † California Institute of Technology. ‡ Howard University. § University of Toronto. Pacific Northwest National Laboratory. ^ Sandia National Laboratories. # The Ohio State University. ã xxxx American Chemical Society PAGE EST: 11 10.1021/es0259638 CCC: $25.00 Published on Web 00/00/0000 an equimolar mixture of these model isomers compares favorably with the measured spectrum of Chelsea soil HA.

  16. Experimental Characterization and Modeling Analysis on Npn AlGaN/GaN Hbt with High Ideality Factor in both Collector and Base Current

    NASA Astrophysics Data System (ADS)

    Tan, Shih-Wei; Lai, Shih-Wen

    2012-08-01

    Characterization and modeling analysis on both ideality factor of the collector current (ηC) and the base current (ηB) have higher than the excepted values of 1.0 and 2.0, respectively, for npn AlGaN/GaN heterojunction bipolar transistors (HBTs) have been reported. We employ the rapid thermal process annealing (RTP-annealing) to modify the base parasitical Schottky diode (called A-HBTs) after the as-deposited Ni/Au bilayers on the base layer for electrode with no annealing (called N-HBTs) to compare with each other. For a HBT operated in Gummel-plot configuration, experimental and modeling results indicate that the base parasitical Schottky diode (BPSD) causes the base current (IB) and collector current (IC) with high ideality factor and raise the base-emitter voltage (VBE) to higher operation point, and therefore lead to more power consumption. Furthermore, the extended Ebers-Moll equivalent-circuit model together with the extracted device parameters provided simulated results that were in a good agreement with experimental ones.

  17. Experimental characterization and macro-modeling of mechanical strength of multi-sheets and multi-materials spot welds under pure and mixed modes I and II

    NASA Astrophysics Data System (ADS)

    Chtourou, Rim; Haugou, Gregory; Leconte, Nicolas; Zouari, Bassem; Chaari, Fahmi; Markiewicz, Eric

    2015-09-01

    Resistance Spot Welding (RSW) of multiple sheets with multiple materials are increasingly realized in the automotive industry. The mechanical strength of such new generation of spot welded assemblies is not that much dealt with. This is true in particular for experiments dedicated to investigate the mechanical strength of spot weld made by multi sheets of different grades, and their macro modeling in structural computations. Indeed, the most published studies are limited to two sheet assemblies. Therefore, in the first part of this work an advanced experimental set-up with a reduced mass is proposed to characterize the quasi-static and dynamic mechanical behavior and rupture of spot weld made by several sheets of different grades. The proposed device is based on Arcan test, the plates contribution in the global response is, thus, reduced. Loading modes I/II are, therefore, combined and well controlled. In the second part a simplified spot weld connector element (macroscopic modeling) is proposed to describe the nonlinear response and rupture of this new generation of spot welded assemblies. The weld connector model involves several parameters to be set. The remaining parameters are finally identified through a reverse engineering approach using mechanical responses of experimental tests presented in the first part of this work.

  18. Pretest characterization of WIPP experimental waste

    SciTech Connect

    Johnson, J.; Davis, H.; Drez, P.E.; Devarakonda, M.

    1991-12-31

    The Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, is an underground repository designed for the storage and disposal of transuranic (TRU) wastes from US Department of Energy (DOE) facilities across the country. The Performance Assessment (PA) studies for WIPP address compliance of the repository with applicable regulations, and include full-scale experiments to be performed at the WIPP site. These experiments are the bin-scale and alcove tests to be conducted by Sandia National Laboratories (SNL). Prior to conducting these experiments, the waste to be used in these tests needs to be characterized to provide data on the initial conditions for these experiments. This characterization is referred to as the Pretest Characterization of WIPP Experimental Waste, and is also expected to provide input to other programmatic efforts related to waste characterization. The purpose of this paper is to describe the pretest waste characterization activities currently in progress for the WIPP bin-scale waste, and to discuss the program plan and specific analytical protocols being developed for this characterization. The relationship between different programs and documents related to waste characterization efforts is also highlighted in this paper.

  19. Characterization of atomic-level structure in Fe-based amorphous and nanocrystalline alloy by experimental and modeling methods

    SciTech Connect

    Babilas, Rafał

    2015-09-15

    The atomic structure of Fe{sub 70}Nb{sub 10}B{sub 20} alloy in “as-cast” state and after annealing was investigated using high-energy X-ray diffraction (XRD), Mössbauer spectroscopy (MS) and high resolution transmission electron microscopy (HRTEM). The HRTEM observations allowed to indicate some medium-range order (MRO) regions about 2 nm in size and formation of some kinds of short-range order (SRO) structures represented by atomic clusters with diameter ca. 0.5 nm. The Reverse Monte Carlo (RMC) method basing on the results of XRD measurements was used in modeling the atomic structure of Fe-based alloy. The structural model was described by peak values of partial pair correlation functions and coordination numbers determined by Mössbauer spectroscopy investigations. The three-dimensional configuration box of atoms was obtained from the RMC simulation and the representative Fe-centered clusters were taken from the calculated structure. According to the Gonser et al. approach, the measured spectra of alloy studied were decomposed into 5 subspectra representing average Fe–Fe coordination numbers. Basing on the results of disaccommodation of magnetic permeability, which is sensitive to the short order of the random packing of atoms, it was stated that an occurrence of free volume is not detected after nanocrystallization process. - Highlights: • Atomic cluster model of amorphous structure was proposed for studied glassy alloy. • Short range order (ca. 0.5 nm) regions interpreted as clusters were identified by HREM. • Clusters correspond to coordination numbers (N = 4,6,8,9) calculated by using Gonser approach. • Medium-range order (ca. 2 nm) could be referred to few atomic clusters. • SRO regions are able to grow up as nuclei of crystalline bcc Fe and iron borides. • Crystalline particles have spherical morphology with an average diameter of 20 nm.

  20. Experimental characterization of the perceptron laser rangefinder

    NASA Technical Reports Server (NTRS)

    Kweon, I. S.; Hoffman, Regis; Krotkov, Eric

    1991-01-01

    In this report, we characterize experimentally a scanning laser rangefinder that employs active sensing to acquire three-dimensional images. We present experimental techniques applicable to a wide variety of laser scanners, and document the results of applying them to a device manufactured by Perceptron. Nominally, the sensor acquires data over a 60 deg x 60 deg field of view in 256 x 256 pixel images at 2 Hz. It digitizes both range and reflectance pixels to 12 bits, providing a maximum range of 40 m and a depth resolution of 1 cm. We present methods and results from experiments to measure geometric parameters including the field of view, angular scanning increments, and minimum sensing distance. We characterize qualitatively problems caused by implementation flaws, including internal reflections and range drift over time, and problems caused by inherent limitations of the rangefinding technology, including sensitivity to ambient light and surface material. We characterize statistically the precision and accuracy of the range measurements. We conclude that the performance of the Perceptron scanner does not compare favorably with the nominal performance, that scanner modifications are required, and that further experimentation must be conducted.

  1. Experimental characterization and modeling of the reliability of three-terminal dual-damascene Cu interconnect trees

    NASA Astrophysics Data System (ADS)

    Gan, C. L.; Thompson, C. V.; Pey, K. L.; Choi, W. K.

    2003-07-01

    Electromigration tests on Cu dual-damascene interconnect tree structures consisting of straight via-to-via (or contact-to-contact) lines with an extra via in the middle of the line have been carried out. Like Al-based interconnects, the reliability of a segment in a Cu-based interconnect tree strongly depends on the stress conditions of connected segments. The analytic model based on a nodal analysis developed for Al trees gives a conservative estimate of the lifetime of Cu-based interconnect trees. However, there are important differences in the results obtained under similar test conditions for Al-based and Cu-based interconnect trees. These differences are thought to be associated with variations in the architectural schemes of the two metallization systems. The absence of a conducting electromigration-resistant overlayer in Cu technology and the low critical stress for void nucleation at the Cu/interlevel diffusion barrier interface (e.g., the Cu/Si3N4 interface) leads to different failure modes between Cu and Al interconnects. As a result, the most highly stressed segment in a Cu-based interconnect tree is not always the least reliable. Moreover, the possibility of liner rupture at stressed dual-damascene vias lead to significant differences in tree reliabilities in Cu compared to Al. While an interconnect tree can be treated as a fundamental unit whose reliability is independent of that of other units in Al-based interconnect architectures, interconnect trees cannot be treated as fundamental units for circuit-level reliability analyses for Cu-based interconnects.

  2. Characterization of NiTinol under torsional loads through a numerical implementation of the Boyd Lagoudas constitutive model and comparison of the results with experimental data

    NASA Astrophysics Data System (ADS)

    Vitiello, Antonio; Squillace, Antonino; Prisco, Umberto

    2007-02-01

    Shape memory alloys (SMA) are a particular family of materials, discovered during the 1930s and only now used in technological applications, with the property of returning to an imposed shape after a deformation and heating process. The study of the mechanical behaviour of SMA, through a proper constitutive model, and the possible ensuing applications form the core of an interesting research field, developed in the last few years and still now subject to studies driven by the aim of understanding and characterizing the peculiar properties of these materials. The aim of this work is to study the behaviour of SMA under torsional loads. To obtain a forecast of the mechanical response of the SMA, we utilized a numerical algorithm based on the Boyd-Lagoudas model and then we compared the results with those from some experimental tests. The experiments were conducted by subjecting helicoidal springs with a constant cross section to a traction load. It is well known, in fact, that in such springs the main stress under traction loads is almost completely a pure torsional stress field. The interest in these studies is due to the absence of data on such tests in the literature for SMA, and because there are an increasing number of industrial applications where SMA are subjected to torsional load, in particular in medicine, and especially in orthodontic drills which usually work under torsional loads.

  3. Slot film cooling: A comprehensive experimental characterization

    NASA Astrophysics Data System (ADS)

    Raffan, Fernando

    is due to the mixing strength of each case, as well as the location of regions of strong mixing with respect to the wall. Kinematic and thermal data show that strong mixing occurs in the wall-jet away from the wall (y/s>1), while strong mixing in the wall-wake occurs much closer to the wall (y/s<1). Min-shear cases exhibit noticeably weaker mixing confined to about y/s=1. Additionally to these general observations, the experimental data obtained in this work is analyzed to reveal scaling laws for the inlets, near-wall scaling, detecting and characterizing coherent structures in the flow as well as to provide data reduction strategies for comparison to CFD models (RANS and LES).

  4. Experimental Models for Neurotrauma Research.

    PubMed

    Davidsson, Johan; Risling, Mårten

    2016-01-01

    Physical trauma in the central nervous system (CNS) is usually the result of a number of forces in different directions and dimensions. A large number of experimental models have been developed to improve the possibilities to understand the outcome of CNS trauma. In this chapter, we will describe the need for a variety of experimental models for research on traumatic brain injury (TBI) and spinal cord injury (SCI). Models can serve different needs, such as: to test new treatments for injuries, to reveal thresholds for injuries, to provide a better understanding of injury mechanisms, or to test tools and methods for translation between experiments and clinical data. In this chapter, we will discuss on the validation of models and translation between experimental and clinical studies. PMID:27604724

  5. Experimental characterization of stress relaxation in glass

    NASA Astrophysics Data System (ADS)

    Kadali, Hemanth C.

    Glass viscoelasticity has gained importance in recent years as glass lens molding appeared as a valuable alternative to the traditional grinding and polishing process for manufacturing glass lenses. In the precision lens molding process, knowledge of viscoelastic properties of glass in the transition region, which affect the stress relaxation behavior, is required to precisely predict the final size and shape of molded lenses. The purpose of this study is to establish a step-by-step procedure for characterizing the viscoelastic behavior of glass in the glass transition region using a finite term Prony series of a Generalized Maxwell model. This study focuses on viscoelastic characterization of stabilized glass samples at lower stress levels between 3 and 12 MPa where it demonstrates linearity. Analysis and post-processing of creep data, performed in MATLAB and MAPLE, include displacement-to-strain conversion, determination of viscoelastic moments and constants, normalization, curve fitting and retardation-to-relaxation conversion. The process of curve fitting is carried out using a constrained optimization scheme to satisfy the constraint equations involving viscoelastic constants and functions. A set of relaxation parameters needed in numerical modeling, i.e., weights and times of the Prony series are presented in this thesis for borosilicate glass at different temperatures. Additionally, the issues related to the characterization of optical glasses were identified and discussed.

  6. Experimental characterization of continuous-variable entanglement

    SciTech Connect

    Bowen, W.P.; Schnabel, R.; Lam, P.K.; Ralph, T.C.

    2004-01-01

    We present an experimental analysis of quadrature entanglement produced from a pair of amplitude squeezed beams. The correlation matrix of the state is characterized within a set of reasonable assumptions, and the strength of the entanglement is gauged using measures of the degree of inseparability and the degree of Einstein-Podolsky-Rosen (EPR) paradox. We introduce controlled decoherence in the form of optical loss to the entangled state, and demonstrate qualitative differences in the response of the degrees of inseparability and EPR paradox to this loss. The entanglement is represented on a photon number diagram that provides an intuitive and physically relevant description of the state. We calculate efficacy contours for several quantum information protocols on this diagram, and use them to predict the effectiveness of our entanglement in those protocols.

  7. Experimental characterization of novel microdiffuser elements

    NASA Astrophysics Data System (ADS)

    Ehrlich, L.; Punch, J.; Jeffers, N.; Stafford, J.

    2014-07-01

    Micropumps can play a significant role in thermal management applications, as a component of microfluidic cooling systems. For next-generation high density optical communication systems, in particular, heat flux levels are sufficiently high to require a microfluidic circuit for cooling. Valveless piezoelectrically-actuated micropumps are a particularly promising technology to be deployed for this application. These pumps exploit the asymmetric flow behaviour of microdiffusers to achieve net flow. They feature no rotating or contacting parts, which make them intrinsically reliable in comparison to micropumps with active valves. In this paper, two novel microdiffuser elements are reported and characterized. The micropumps were fabricated using a 3D Printer. Each single diffuser had a length of 1800 pm and a depth of 400 pm. An experimental characterization was conducted in which the flow rate and differential pressure were measured as a function of operating frequency. In comparison with standard diffuser, both elements showed an increase in differential pressure in the range of 40 - 280 %, but only one of the elements exhibited an improved flow rate, of about 85 %.

  8. Experimental characterization of ceramic pebble beds

    NASA Astrophysics Data System (ADS)

    Zaccari, N.; Aquaro, D.

    2009-04-01

    Several materials have been developed in Europe and Japan for the DEMO reactor that will be tested in ITER. The paper describes a solid breeder for nuclear fusion reactor exploiting ceramic pebbles made of Lithium Orthosilicate (Li 4SiO 4) and Lithium metatinate (Li 2TiO 3), with a diameter ranging between 0.5 mm and 1 mm. The main advantages of the pebbles are resistance to thermal stresses and the possibility to easily fill the complex geometries of the blanket. The results of experimental tests are presented, which enable the determination of the behaviour of single pebbles under compression and the parameters of the pebble beds needed to define their constitutive equations. Several standard tests on samples of pebble beds were performed: triaxial, direct shear and compression. The parameters of the Cam-Clay model were obtained from these tests. This model is normally used to describe soil materials (clay, sand) but in our case was used to simulate the triaxial tests with a finite elements computer code. The numerical results show a good agreement with the theoretical ones. Therefore this model could be used to determine the mechanical behaviour of the solid breeding blanket under normal and accidental conditions.

  9. The updated experimental proteinoid model

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Nakashima, T.; Przybylski, A.; Syren, R. M.

    1982-01-01

    The experimental proteinoid model includes new results indicating that polymers sufficiently rich in basic amino acid catalyze the synthesis of peptides from ATP and amino acids and of oligonucleotides from ATP. The need for simulation syntheses of amino acids yielding significant proportions of basic amino acids is now in focus. The modeled simultaneous protocellular synthesis of peptides and polynucleotides is part of a more comprehensive proposal for the origin of the coded genetic mechanism. The finding of membrane and action potentials in proteinoid microspheres, with or without added lecithin, is reported. The crucial nature of a nonrandom matrix for protocells is developed.

  10. Experimental Trauma Models: An Update

    PubMed Central

    Frink, Michael; Andruszkow, Hagen; Zeckey, Christian; Krettek, Christian; Hildebrand, Frank

    2011-01-01

    Treatment of polytrauma patients remains a medical as well as socioeconomic challenge. Although diagnostics and therapy improved during the last decades, multiple injuries are still the major cause of fatalities in patients below 45 years of age. Organ dysfunction and organ failure are major complications in patients with major injuries and contribute to mortality during the clinical course. Profound understanding of the systemic pathophysiological response is crucial for innovative therapeutic approaches. Therefore, experimental studies in various animal models are necessary. This review is aimed at providing detailed information of common trauma models in small as well as in large animals. PMID:21331361

  11. EXPERIMENTAL MODELLING OF AORTIC ANEURYSMS

    PubMed Central

    Doyle, Barry J; Corbett, Timothy J; Cloonan, Aidan J; O’Donnell, Michael R; Walsh, Michael T; Vorp, David A; McGloughlin, Timothy M

    2009-01-01

    A range of silicone rubbers were created based on existing commercially available materials. These silicones were designed to be visually different from one another and have distinct material properties, in particular, ultimate tensile strengths and tear strengths. In total, eleven silicone rubbers were manufactured, with the materials designed to have a range of increasing tensile strengths from approximately 2-4MPa, and increasing tear strengths from approximately 0.45-0.7N/mm. The variations in silicones were detected using a standard colour analysis technique. Calibration curves were then created relating colour intensity to individual material properties. All eleven materials were characterised and a 1st order Ogden strain energy function applied. Material coefficients were determined and examined for effectiveness. Six idealised abdominal aortic aneurysm models were also created using the two base materials of the study, with a further model created using a new mixing technique to create a rubber model with randomly assigned material properties. These models were then examined using videoextensometry and compared to numerical results. Colour analysis revealed a statistically significant linear relationship (p<0.0009) with both tensile strength and tear strength, allowing material strength to be determined using a non-destructive experimental technique. The effectiveness of this technique was assessed by comparing predicted material properties to experimentally measured methods, with good agreement in the results. Videoextensometry and numerical modelling revealed minor percentage differences, with all results achieving significance (p<0.0009). This study has successfully designed and developed a range of silicone rubbers that have unique colour intensities and material strengths. Strengths can be readily determined using a non-destructive analysis technique with proven effectiveness. These silicones may further aid towards an improved understanding of the

  12. Experimental models of hepatocellular carcinoma☆

    PubMed Central

    Newell, Philippa; Villanueva, Augusto; Friedman, Scott L.; Koike, Kazuhiko; Llovet, Josep M.

    2010-01-01

    Hepatocellular carcinoma (HCC) is a common and deadly cancer whose pathogenesis is incompletely understood. Comparative genomic studies from human HCC samples have classified HCCs into different molecular subgroups; yet, the unifying feature of this tumor is its propensity to arise upon a background of inflammation and fibrosis. This review seeks to analyze the available experimental models in HCC research and to correlate data from human populations with them in order to consolidate our efforts to date, as it is increasingly clear that different models will be required to mimic different subclasses of the neoplasm. These models will be instrumental in the evaluation of compounds targeting specific molecular pathways in future preclinical studies. PMID:18314222

  13. Experimental models of hepatocellular carcinoma.

    PubMed

    Newell, Philippa; Villanueva, Augusto; Friedman, Scott L; Koike, Kazuhiko; Llovet, Josep M

    2008-05-01

    Hepatocellular carcinoma (HCC) is a common and deadly cancer whose pathogenesis is incompletely understood. Comparative genomic studies from human HCC samples have classified HCCs into different molecular subgroups; yet, the unifying feature of this tumor is its propensity to arise upon a background of inflammation and fibrosis. This review seeks to analyze the available experimental models in HCC research and to correlate data from human populations with them in order to consolidate our efforts to date, as it is increasingly clear that different models will be required to mimic different subclasses of the neoplasm. These models will be instrumental in the evaluation of compounds targeting specific molecular pathways in future preclinical studies. PMID:18314222

  14. Experimental seismic investigations for porous media characterization

    NASA Astrophysics Data System (ADS)

    Senechal, P.; Bordes, C.; Barrière, J.; Garambois, S.; Brito, D.

    2009-12-01

    During decades, seismic investigations were based on the hypothesis of elastic media which is generally appropriate for geological imaging. Nevertheless, the necessity to improve non destructive geophysical methods for reservoir characterization implies to take into account the role of pore fluids for the seismic propagation. On the one hand, the water saturation modifies porous media bulk moduli and density and implies strong phase velocity variations. On the other hand, mechanical couplings between solid and fluid phases which can have inertial or viscous origin, generates attenuation and dispersion phenomena. In order to study these phenomena, we develop laboratory experiments for the measurement of seismic propagation in controlled porous media. We choose to work in a broad band [100-10 000 Hz] which includes Biot's frequency by using different seismic source (launched ball, pendulum, piezoelectric spherical source). These investigations are performed on various media from suspension (fresh concrete) to continuous framework (sand). Seismic propagation is recorded by accelerometers, discussed in term of frequency content, velocity analyses, attenuation and dispersion and compared to theoretical models. Moreover, seismoelectric measurements are used to study fluid displacements (filtration) associated to the seismic propagation.

  15. Experimental characterization of spin motor nozzle flow.

    SciTech Connect

    Erven, Rocky J.; Peterson, Carl Williams; Henfling, John Francis

    2006-11-01

    The Mach number in the inviscid core of the flow exiting scarfed supersonic nozzles was measured using pitot probes. Nozzle characterization experiments were conducted in a modified section of an obsolete M = 7.3 test section/nozzle assembly on Sandia's Hypersonic Wind Tunnel. By capitalizing on existing hardware, the cost and time required for tunnel modifications were significantly reduced. Repeatability of pitot pressure measurements was excellent, and instrumentation errors were reduced by optimizing the pressure range of the transducers used for each test run. Bias errors in probe position prevented us from performing a successful in situ calibration of probe angle effects using pitot probes placed at an angle to the nozzle centerline. The abrupt throat geometry used in the Baseline and Configuration A and B nozzles modeled the throat geometry of the flight vehicle's spin motor nozzles. Survey data indicates that small (''unmeasurable'') differences in the nozzle throat geometries produced measurable flow asymmetries and differences in the flow fields generated by supposedly identical nozzles. Therefore, data from the Baseline and Configuration A and B nozzles cannot be used for computational fluid dynamics (CFD) code validation. Configuration C and D nozzles replaced the abrupt throat geometry of Baseline and Configuration A and B nozzles with a 0.500-inch streamwise radius of curvature in the throat region. This throat geometry eliminated the flow asymmetries, flow separation in the nozzle throat, and measurable differences between the flow fields from identical nozzles that were observed in Baseline/A/B nozzles. Data from Configuration C and D nozzles can be used for CFD code validation.

  16. Experimental Characterization of Gas/Gas Injector Flowfields

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Cramer, John M.; Pal, Sibtosh; Santoro, Robert J.; Turner, Jim (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on activities pertaining to the experimental characterization of gas/gas injector flowfields. An experimental testbed for uni-element gas/gas injector studies at realistic conditions has been fabricated and verified. Experiments for characterizing mixing/combustion of gas/gas injectors with raman spectroscopy have been initiated.

  17. Experimental "evolutional machines": mathematical and experimental modeling of biological evolution

    NASA Astrophysics Data System (ADS)

    Brilkov, A. V.; Loginov, I. A.; Morozova, E. V.; Shuvaev, A. N.; Pechurkin, N. S.

    Experimentalists possess model systems of two major types for study of evolution continuous cultivation in the chemostat and long-term development in closed laboratory microecosystems with several trophic structure If evolutionary changes or transfer from one steady state to another in the result of changing qualitative properties of the system take place in such systems the main characteristics of these evolution steps can be measured By now this has not been realized from the point of view of methodology though a lot of data on the work of both types of evolutionary machines has been collected In our experiments with long-term continuous cultivation we used the bacterial strains containing in plasmids the cloned genes of bioluminescence and green fluorescent protein which expression level can be easily changed and controlled In spite of the apparent kinetic diversity of evolutionary transfers in two types of systems the general mechanisms characterizing the increase of used energy flow by populations of primer producent can be revealed at their study According to the energy approach at spontaneous transfer from one steady state to another e g in the process of microevolution competition or selection heat dissipation characterizing the rate of entropy growth should increase rather then decrease or maintain steady as usually believed The results of our observations of experimental evolution require further development of thermodynamic theory of open and closed biological systems and further study of general mechanisms of biological

  18. Computational and Experimental Characterization of RNA Cubic Nanoscaffolds

    PubMed Central

    Afonin, Kirill A.; Kasprzak, Wojciech K.; Bindewald, Eckart; Puppala, Praneet S.; Diehl, Alex R.; Hall, Kenneth T.; Kim, Tae Jin; Zimmermann, Michael T.; Jernigan, Robert L.; Jaeger, Luc; Shapiro, Bruce A.

    2014-01-01

    The fast-developing field of RNA nanotechnology requires the adoption and development of novel and faster computational approaches to modeling and characterization of RNA-based nano-objects. We report the first application of Elastic Network Modeling (ENM), a structure-based dynamics model, to RNA nanotechnology. With the use of an Anisotropic Network Model (ANM), a type of ENM, we characterize the dynamic behavior of non-compact, multi-stranded RNA-based nanocubes that can be used as nano-scale scaffolds carrying different functionalities. Modeling the nanocubes with our tool NanoTiler and exploring the dynamic characteristics of the models with ANM suggested relatively minor but important structural modifications that enhanced the assembly properties and thermodynamic stabilities. In silico and in vitro, we compared nanocubes having different numbers of base pairs per side, showing with both methods that the 10 bp-long helix design leads to more efficient assembly, as predicted computationally. We also explored the impact of different numbers of single-stranded nucleotide stretches at each of the cube corners and showed that cube flexibility simulations help explain the differences in the experimental assembly yields, as well as the measured nanomolecule sizes and melting temperatures. This original work paves the way for detailed computational analysis of the dynamic behavior of artificially designed multi-stranded RNA nanoparticles. PMID:24189588

  19. Ultrastructural characterization of craniopharyngioma at the tumor boundary: A structural comparison with an experimental toxic model using "oil machinery" fluid, with emphasis on Rosenthal fibers.

    PubMed

    Tena-Suck, Martha Lilia; Morales-Del Ángel, Andrea Y; Hernández-Campos, María Elena; Fernández-Valverde, Francisca; Ortíz-Plata, Alma; Hernández, Alma Delia; Santamaría, Abel

    2015-10-01

    Craniopharyngiomas (CPs) are cystic, encapsulated, slow-growing epithelial tumors. CPs can be aggressive forms invading and resorting surrounding structures of adjacent brain tissue, where Rosenthal fibers (RFs) are expressed. The aim of this study was to investigate the ultrastructure of these fibers in human biopsies and compare it with an experimental toxic model produced by the cortical infusion of the oil cyst fluid ("Oil machinery" fluid or OMF) from CPs to rats. For this purpose, the CPs from ten patients were examined by light and electron microscopy. OMF was administered to rats intracortically. Immunohistochemical detection of glial fibrillary acidic protein (GFAP) and vimentin was assessed. In both freshly obtained CPs and rat brain tissue, the presence of abundant cellular debris, lipid-laden macrophages, reactive gliosis, inflammation and extracellular matrix destruction were seen. Ultrastructural results suggest focal pathological disturbances and an altered microenvironment surrounding the tumor-brain junction, with an enhanced presence of RFs in human tumors. In contrast, in the rat brain different degrees of cellular disorganization with aberrant filament-filament interactions and protein aggregation were seen, although RFs were absent. Our immunohistochemical findings in CPs also revealed an enhanced expression of GFAP and vimentin in RFs at the peripheral, but not at the central (body) level. Through these findings we hypothesize that the continuous OMF release at the CPs boundary may cause tissue alterations, including damaging of the extracellular matrix, and possibly contributing to RFs formation, a condition that was not possible to reproduce in the experimental model. The presence of RFs at the CPs boundary might be considered as a major criterion for the degree of CPs invasiveness to normal tissue. The lack of RFs reactivity in the experimental model reveals that the invasive component of CPs is not present in the OMF, although the fluid

  20. Experimental Modelling of Debris Flows

    NASA Astrophysics Data System (ADS)

    Paleo Cageao, P.; Turnbull, B.; Bartelt, P.

    2012-04-01

    Debris flows are gravity-driven mass movements typically containing water, sediments, soil and rocks. These elements combine to give a flow complex phenomenology that exhibits characteristics common to diverse geophysical flows from dry granular media (e.g. levee formation) to viscous gravity currents (viscous fingering and surge instabilities). The exceptional speeds and range debris flows can achieve motivate the need for a co-ordinated modelling approach that can provide insight into the key physical processes that dictate the hazard associated with the flows. There has been recent progress in theoretical modelling approaches that capture the details of the multi-component nature of debris flows. The promise of such models is underlined by their qualitatively successful comparison with field-scale experimental data. The aim of the present work is to address the technical difficulties in achieving a controlled and repeatable laboratory-scale experiment for robust testing of these multi-component models. A laboratory experiment has been designed and tested that can provide detailed information of the internal structure of debris flows. This constitutes a narrow Perspex chute that can be tilted to any angle between 0° and ≈ 60°. A mixture of glycerine and glass balls was initially held behind a lock-gate, before being released down the chute. The evolving flow was captured through high speed video, analysed with a Particle Image Velocimetry algorithm to provide the changing velocity field. A wide parameter space has been tested, allowing variations in particle size, dispersity, surface roughness, fluid viscosity, slope angle and solid volume fraction. While matching key similarity criteria, such as Froude number, with a typical field event, these experiments allow close examination of a wide range of physical scenarios for the robust testing of new multi-component flow models. Further diagnostics include force plate and pore pressure measurements, with a view

  1. Experimental modeling of pulmonary barotrauma.

    PubMed

    Siermontowski, Piotr; Kozłowski, Wojciech; Pedrycz, Agnieszka; Krefft, Karolina; Kaczerska, Dorota

    2015-01-01

    The main causes of pulmonary barotrauma include loss of consciousness or panic attack of a diver and emergence from underwater with a constricted glottis. However, numerous publications and our observations indicate that the majority of fully symptomatic cases of pulmonary barotrauma develop without any evident errors in the ascending technique. Therefore, an attempt was made to examine such cases using the experimental model of pulmonary barotrauma designed by the authors. The experiment was conducted on 32 rabbits divided into three groups: Group C--not subjected to any treatment; Group E--with induced pulmonary barotrauma; and Group CT--subjected only to compression followed by quick decompression. In Groups E and CT, the same morphological markers of pulmonary barotrauma were detected in the lungs, although their severity varied. Morphological markers of pulmonary barotrauma were observed both in the group where the tube was not ob-structed (E) and in animals exposed only to rapid decompression (CT) PMID:26094289

  2. Experimental models of liver fibrosis.

    PubMed

    Crespo Yanguas, Sara; Cogliati, Bruno; Willebrords, Joost; Maes, Michaël; Colle, Isabelle; van den Bossche, Bert; de Oliveira, Claudia Pinto Marques Souza; Andraus, Wellington; Alves, Venâncio Avancini; Leclercq, Isabelle; Vinken, Mathieu

    2016-05-01

    Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research. PMID:26047667

  3. Experimental models of liver fibrosis

    PubMed Central

    Willebrords, Joost; Maes, Michaël; Colle, Isabelle; van den Bossche, Bert; de Oliveira, Claudia Pinto Marques Souza; Andraus, Wellington; Alves, Venâncio Avancini Ferreira; Leclercq, Isabelle; Vinken, Mathieu

    2015-01-01

    Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research. PMID:26047667

  4. The water dimer I: Experimental characterization

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Anamika; Cole, William T. S.; Saykally, Richard J.

    2015-07-01

    As the archetype of water hydrogen bonding, the water dimer has been studied extensively by both theory and experiment for nearly seven decades. In this article, we present a detailed chronological review of the experimental dimer studies and the insights into the complex nature of water and hydrogen bonding gained from them. A subsequent letter will review the corresponding theoretical advances.

  5. An experimental characterization of human torso motion

    NASA Astrophysics Data System (ADS)

    Cafolla, Daniele; Chen, I.-Ming; Ceccarelli, Marco

    2015-12-01

    The torso plays an important role in the human-like operation of humanoids. In this paper, a method is proposed to analyze the behavior of the human torso by using inertial and magnetic sensing tools. Experiments are conducted to characterize the motion performance of the human torso during daily routine operations. Furthermore, the forces acting on the human body during these operations are evaluated to design and validate the performance of a humanoid robot.

  6. Experimental and computing strategies in advanced material characterization problems

    NASA Astrophysics Data System (ADS)

    Bolzon, G.

    2015-10-01

    The mechanical characterization of materials relies more and more often on sophisticated experimental methods that permit to acquire a large amount of data and, contemporarily, to reduce the invasiveness of the tests. This evolution accompanies the growing demand of non-destructive diagnostic tools that assess the safety level of components in use in structures and infrastructures, for instance in the strategic energy sector. Advanced material systems and properties that are not amenable to traditional techniques, for instance thin layered structures and their adhesion on the relevant substrates, can be also characterized by means of combined experimental-numerical tools elaborating data acquired by full-field measurement techniques. In this context, parameter identification procedures involve the repeated simulation of the laboratory or in situ tests by sophisticated and usually expensive non-linear analyses while, in some situation, reliable and accurate results would be required in real time. The effectiveness and the filtering capabilities of reduced models based on decomposition and interpolation techniques can be profitably used to meet these conflicting requirements. This communication intends to summarize some results recently achieved in this field by the author and her co-workers. The aim is to foster further interaction between engineering and mathematical communities.

  7. Experimental and computing strategies in advanced material characterization problems

    SciTech Connect

    Bolzon, G.

    2015-10-28

    The mechanical characterization of materials relies more and more often on sophisticated experimental methods that permit to acquire a large amount of data and, contemporarily, to reduce the invasiveness of the tests. This evolution accompanies the growing demand of non-destructive diagnostic tools that assess the safety level of components in use in structures and infrastructures, for instance in the strategic energy sector. Advanced material systems and properties that are not amenable to traditional techniques, for instance thin layered structures and their adhesion on the relevant substrates, can be also characterized by means of combined experimental-numerical tools elaborating data acquired by full-field measurement techniques. In this context, parameter identification procedures involve the repeated simulation of the laboratory or in situ tests by sophisticated and usually expensive non-linear analyses while, in some situation, reliable and accurate results would be required in real time. The effectiveness and the filtering capabilities of reduced models based on decomposition and interpolation techniques can be profitably used to meet these conflicting requirements. This communication intends to summarize some results recently achieved in this field by the author and her co-workers. The aim is to foster further interaction between engineering and mathematical communities.

  8. Experimental Characterization and Modeling of the Anisotropy and Tension-Compression Asymmetry of Polycrystalline Molybdenum for Strain Rates Ranging from Quasi-static to Impact

    NASA Astrophysics Data System (ADS)

    Kleiser, Geremy; Revil-Baudard, Benoit; Cazacu, Oana; Pasiliao, Crystal L.

    2015-11-01

    A systematic experimental investigation of the room-temperature quasi-static behavior and dynamic mechanical response of polycrystalline commercially pure molybdenum is presented. It was established that the material has ductility in tension at 10-5/s and that the failure strain is strongly dependent on the orientation. A specimen taken along the rolling direction (RD) sustains large axial strains (20%), while a specimen taken at an angle of 45° to the RD could only sustain 5% strain. It was observed that irrespective of the loading orientation the yield stress in uniaxial compression is larger than in uniaxial tension. While in tension, the material has a strong anisotropy in Lankford coefficients, while in uniaxial compression, it displays weak strain-anisotropy. Due to the material's limited tensile ductility, successfully acquiring data for impact conditions is very challenging. For the first time, Taylor impact tests were successfully conducted on this material for impact velocities in the range 140-165 m/s. For impact velocities beyond this range, the very high tensile pressures generated in the specimen immediately after impact lead to failure. An elastic-plastic anisotropic model that accounts for all the specificities of the plastic deformation of the material was developed. Validation of the model was done through comparison with data on quasi-static notched specimens and Taylor impact specimens. Quantitative agreement with both global and local strain fields was obtained. In particular, the effect of loading orientation on the response was very well described for all strain rates.

  9. Experimental characterization of CANDELA photo-injector

    NASA Astrophysics Data System (ADS)

    Travier, C.; Devanz, G.; Leblond, B.; Mouton, B.

    1997-02-01

    CANDELA photo-injector is made of a 2-cell S-band RF gun, using a dispenser cathode illuminated by a Ti : sapphire laser. This electron source provides a single bunch (at 12.5 Hz), with a charge of 1 nC and an energy of 2 MeV. After recalling the experimental set-up, this paper presents some results concerning mainly energy and bunch length measurements, and also comparisons with simulations done with the PARMELA code. Measured pulse durations of less than 10 ps show for the first time that dispenser photocathodes are "fast response" cathodes.

  10. Experimental characterization and atomistic modeling of interfacial void formation and detachment in short pulse laser processing of metal surfaces covered by solid transparent overlayers

    NASA Astrophysics Data System (ADS)

    Karim, Eaman T.; Shugaev, Maxim V.; Wu, Chengping; Lin, Zhibin; Matsumoto, Hisashi; Conneran, Maria; Kleinert, Jan; Hainsey, Robert F.; Zhigilei, Leonid V.

    2016-04-01

    The short pulse laser interaction with metal surfaces covered by solid transparent overlayers is investigated in experiments and atomistic simulations, with a particular aim of revealing the mechanisms responsible for structural modification of the metal-overlayer interfacial regions. Experimental characterization of Al-silica targets modified by single-pulse laser irradiation with the pulse duration of 10 ps reveals the transitions from the generation of extended interfacial voids with internal nanoscale surface roughness to the partial detachment of the overlayer from the metal substrate, and to the cracking/chipping or complete removal of the overlayer as the laser fluence increases. The mechanisms responsible for the appearance, growth, and percolation of the interfacial voids leading to the detachment of the overlayer from the metal substrate are investigated in a large-scale atomistic simulation. The results of the simulation demonstrate that the processes of nucleation and growth of the interfacial voids are driven by the dynamic relaxation of laser-induced stresses proceeding simultaneously with rapid phase transformations and temperature variation in the interfacial region. The growth and coalescence of the interfacial voids results in the formation of liquid bridges connecting the overlayer and the metal substrate, whereas solidification of the transient liquid structures produced by the breakup of the liquid bridges may be responsible for the formation of the nanoscale roughness of the interfacial voids observed in experiments. Computational analysis of the effect of preexisting interfacial voids reveals a complex dynamic picture of the initial expansion and subsequent compaction of the surface region of the metal substrate and suggests a possible scenario for the formation of voids below the metal-overlayer interface.

  11. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering.

    PubMed

    Eshraghi, Shaun; Das, Suman

    2012-08-01

    Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite-element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30 vol.% HA. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30, respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical FEA model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any HA loading to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. The results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient- and site-specific composite tissue-engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. PMID:22522129

  12. Micromechanical finite element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone:hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering

    PubMed Central

    Eshraghi, Shaun; Das, Suman

    2012-01-01

    Bioresorbable scaffolds with mechanical properties suitable for bone tissue engineering were fabricated from polycaprolactone (PCL) and hydroxyapatite (HA) by selective laser sintering (SLS) and modeled by finite element analysis (FEA). Both solid gage parts and scaffolds having 1-D, 2-D and 3-D orthogonal, periodic porous architectures were made with 0, 10, 20 and 30% HA by volume. PCL:HA scaffolds manufactured by SLS had nearly full density (99%) in the designed solid regions and had excellent geometric and dimensional control. Through optimization of the SLS process, the compressive moduli for our solid gage parts and scaffolds are the highest reported in the literature for additive manufacturing. The compressive moduli of solid gage parts were 299.3, 311.2, 415.5 and 498.3 MPa for PCL:HA loading at 100:0, 90:10, 80:20 and 70:30 respectively. The compressive effective stiffness tended to increase as the loading of HA was increased and the designed porosity was lowered. In the case of the most 3-D porous scaffold, the compressive modulus more than doubled from 14.9 MPa to 36.2 MPa when changing the material from 100:0 to 70:30 PCL:HA. A micromechanical finite element analysis (FEA) model was developed to investigate the reinforcement effect of HA loading on the compressive modulus of the bulk material. Using a first-principles based approach, the random distribution of HA particles in a solidified PCL matrix was modeled for any loading of HA to predict the bulk mechanical properties of the composites. The bulk mechanical properties were also used for FEA of the scaffold geometries. Results of the FEA were found to be in good agreement with experimental mechanical testing. The development of patient and site-specific composite tissue engineering constructs with tailored properties can be seen as a direct extension of this work on computational design, a priori modeling of mechanical properties and direct digital manufacturing. PMID:22522129

  13. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  14. Experimental and Numerical Characterization of a Cylindrical Blackbody Cavity

    NASA Technical Reports Server (NTRS)

    Abdelmessih, Amanie N.; Horn, Thomas J.

    2000-01-01

    During hypersonic flight, high temperatures and high heat fluxes are generated on the surfaces of vehicles. The Flight Loads Laboratory (FLL) at Dryden Flight Research Center (DFRC) is equipped with a calibration furnace, capable of calibrating heat flux gages up to 1100kW per square meters, and temperature sensors up to 2600 C. One heating configuration of the calibration furnace is a cylindrical blackbody cavity. Throughout the blackbody there are temperature gradients due to various boundary conditions. These boundary conditions include resistance heating, radiant heat transfer, and conduction to water-cooled electrodes. Also, an inert gas is purged through the graphite blackbody to prevent it from oxidizing. Consequently, the various modes of heat transfer present during operation of the blackbody cavity must be well understood in order to produce accurate heat flux gage and temperature sensor calibrations for use in ground testing or flight testing of hypersonic vehicles. The first step towards understanding the heat transfer in the blackbody cavity was to perform experiments at 1100 C, with and without outer surface insulation, while taking detailed temperature measurements inside the blackbody cavity. Steady state thermal models of the blackbody cavity were then developed. These models included detailed thermal analysis using commercial thermal analysis software. Conduction, radiation, and convection were considered in the thermal models for two cases: one with the outside of the blackbody cavity insulated and the second without insulation. This paper describes the experimental and numerical efforts used to characterize the steady state operation of the blackbody cavity. It describes the analysis of the test measurements, the boundary conditions used in the numerical models, and how the models were calibrated to fit the experimental data. Effects of various uncertainties, such as material properties, and convection are discussed.Initial thermal models

  15. Experimental Explosive Characterization for Counterterrorist Investigation

    NASA Astrophysics Data System (ADS)

    Etayo, D.; Maestrojuan, I.; Teniente, J.; Ederra, I.; Gonzalo, R.

    2013-08-01

    A THz spectral characterization of different explosives of special interest for the Spanish National Security Forces "Guardia Civil" is presented in this paper. This forensic analysis has been done in the frequency range from 0.060 THz to 3.5 THz using the Teraview TPS Spectra 3000 system in laboratory conditions. With this equipment the refractive index, absorbance and complex permittivity of the explosive samples have been obtained. In this study, some of the most common used explosives (Bullet gunpowder, mine gunpowder, PETN, TNT, RDX) are analysed paying special attention to differences related to the manufacturing process used to elaborate some of them and to the purity of the samples. The different fabrication processes of the explosives lead to the same spectral behaviour and characteristics. At the same time, the inclusion of some additives in the explosive samples does not alter their main electromagnetic properties. The sensitivity limit of the measurement system has been found to be to 10 mg of explosives. These results will be used to design future THz imaging systems that allow to detect and identify them in security and defence applications and/or to complete laboratory studies after a terrorist action.

  16. Experimental characterization of vegetation uprooting by flow

    NASA Astrophysics Data System (ADS)

    Edmaier, K.; Crouzy, B.; Perona, P.

    2015-09-01

    We investigate vegetation uprooting by flow for Avena sativa seedlings with stem-to-sediment size ratio close to unity and vanishing obstacle-induced scouring. By inducing parallel riverbed erosion within an experimental flume, we measure the time-to-uprooting in relation to root anchoring and flow drag forces. We link the erosion rate to the uprooting timescales for seedlings with varying mean root length. We show that the process of continuous erosion leading to uprooting resembles that of mechanical fatigue where system collapsing occurs after a given exposure time. By this analogy, we also highlight the nonlinear role of the residual root anchoring versus the flow drag acting on the canopy when uprooting occurs. As a generalization, we propose a framework to extend our results to time-dependent erosion rates, which typically occur for real river hydrographs. Finally, we discuss how the characteristic timescale of plant uprooting by flow erosion suggests that vegetation survival is conditioned by multiple erosion events and their interarrival time.

  17. Experimental characterization of marine hydrokinetic (MHK) turbine array performance

    NASA Astrophysics Data System (ADS)

    Stelzenmuller, Nickolas; Aliseda, Alberto

    2013-11-01

    Three scale model horizontal axis MHK turbines (1:45) were tested in a flume at various array spacings. The scale rotors are based on the full-scale Department of Energy Reference Model 1, modified to reproduce the hydrodynamic performance of the full-scale turbine at the reduced experimental Reynolds number (105 vs 106, based on chord length). Flow incident on the turbines and in the wakes was characterized via PIV and ADV measurements. Tip speed ratio (TSR) similarity of the turbines is achieved by controlling the applied load with magnetic particle brakes. Single turbines were characterized at various mean freestream velocities to explore the effect of Reynolds number on turbine performance. Measured turbine efficiencies of ~40% are similar to efficiencies predicted from full-scale simulations, indicating similar energy extraction at scale. Wake characteristics and turbine efficiencies have been investigated at a range of TSRs, with the goal of determining array spacing and operating conditions that maximize overall array efficiency. Free surface deformations were measured near the rotor plane for various vertical positions of the turbine relative to the free surface and compared to numerical simulation results.

  18. Experimental characterization of deployable trusses and joints

    NASA Technical Reports Server (NTRS)

    Ikegami, R.; Church, S. M.; Keinholz, D. A.; Fowler, B. L.

    1987-01-01

    The structural dynamic properties of trusses are strongly affected by the characteristics of joints connecting the individual beam elements. Joints are particularly significant in that they are often the source of nonlinearities and energy dissipation. While the joints themselves may be physically simple, direct measurement is often necessary to obtain a mathematical description suitable for inclusion in a system model. Force state mapping is a flexible, practical test method for obtaining such a description, particularly when significant nonlinear effects are present. It involves measurement of the relationship, nonlinear or linear, between force transmitted through a joint and the relative displacement and velocity across it. An apparatus and procedure for force state mapping are described. Results are presented from tests of joints used in a lightweight, composite, deployable truss built by the Boeing Aerospace Company. The results from the joint tests are used to develop a model of a full 4-bay truss segment. The truss segment was statically and dynamically tested. The results of the truss tests are presented and compared with the analytical predictions from the model.

  19. Experimental realization of the topological Haldane model

    NASA Astrophysics Data System (ADS)

    Messer, Michael; Jotzu, Gregor; Desbuquois, Rémi; Lebrat, Martin; Uehlinger, Thomas; Görg, Frederik; Greif, Daniel; Esslinger, Tilman

    2015-05-01

    The Haldane model is a fundamental example of a Hamiltonian exhibiting topologically distinct phases of matter and featuring a quantum Hall effect without a net magnetic field. We report on the experimental realization of the Haldane model and the characterization of its topological band-structure, using non-interacting ultracold fermionic atoms in a periodically modulated honeycomb lattice. Here the inertial force generated by circular modulation of the lattice position breaks time-reversal symmetry and leads to complex next-nearest-neighbor tunneling. We explore the resulting Berry-curvatures of the lowest band and map out topological phase transitions connecting distinct regimes. Furthermore we extend our method to create spin dependent effective Hamiltonians by periodic modulation of a magnetic field gradient. For each spin state, the differing band structure can be characterized either by measuring the expansion of an atomic cloud in the lattice, or by a measurement of the effective mass through dipole oscillations. Our method can be used to create systems where one state is pinned to the lattice, while the other remains itinerant.

  20. Experimental and numerical characterization of turbulent slot film cooling

    NASA Astrophysics Data System (ADS)

    Cruz, Carlos A.

    This study presents an experimental and numerical characterization of the turbulent mixing in two-dimensional slot film cooling flows. Three different flows are considered by varying the coolant to mainstream velocity ratio (VR): a wall jet case (VR ≈ 2.0), a boundary layer case (VR ≈ 1.0) and a wall-wake case (VR ≈ 0.5). For each flow, detailed measurements of the film cooling effectiveness, the heat flux, and the heat transfer coefficient are obtained for adiabatic and backside cooled wall conditions. Additionally, detailed flow velocity and temperature are measured under hot conditions using Particle Image Velocimetry (PIV) and a micro-thermocouple probe, respectively. These comprehensive measurements provide a unique data set for characterizing the momentum and thermal mixing of the turbulent flows, and for validating turbulence models in Reynolds averaged Navier-Stokes (RANS) simulations and large-eddy simulations (LES). The three flow families display different performances. The mixing of the film is strongly influenced by the mean shear between the coolant and the hot mainstream, thus explaining that the boundary layer case provides the best effectiveness. Initially governed by the film kinematics at the injection point, the convective heat transfer is influence by the mainstream when the film mixes. Additionally, measurements indicate that semi-empirical correlations largely overpredict the mixing of the film. The results obtained with the Spalart-Allmaras RANS model compare favorably with the measurements, thereby proving that this model is a viable alternative to using correlations for the film cooling effectiveness. A Large-Eddy Simulation (LES) with the dynamic models is performed for the wall jet case under adiabatic wall conditions with inflow conditions prescribed from precursor simulations. The LES results show good agreement with measured adiabatic wall temperatures and provide unique insight into the turbulent transport mechanism and

  1. Crystallized Silicon Nanostructures - Experimental Characterization and Atomistic Simulations

    SciTech Connect

    Agbo, Solomon; Sutta, Pavol; Calta, Pavel; Biswas, Rana; Pan, Bicai

    2014-07-01

    We have synthesized silicon nanocrystalline structures from thermal annealing of thin film amorphous silicon-based multilayers. The annealing procedure that was carried out in vacuum at temperatures up to 1100 °C is integrated in a X-ray diffraction (XRD) setup for real-time monitoring of the formation phases of the nanostructures. The microstructure of the crystallized films is investigated through experimental measurements combined with atomistic simulations of realistic nanocrystalline silicon (nc-Si) models. The multilayers consisting of uniformly alternating thicknesses of hydrogenated amorphous silicon and silicon oxide (SiO2) were deposited by plasma enhanced chemical vapor deposition on crystalline silicon and Corning glass substrates. The crystallized structure consisting of nc-Si structures embedded in an amorphous matrix were further characterized through XRD, Raman spectroscopy, and Fourier transform infrared measurements. We are able to show the different stages of nanostructure formation and how the sizes and the crystallized mass fraction can be controlled in our experimental synthesis. The crystallized silicon structures with large crystalline filling fractions exceeding 50% have been simulated with a robust classical molecular dynamics technique. The crystalline filling fractions and structural order of nc-Si obtained from this simulation are compared with our Raman and XRD measurements.

  2. Experimental characterization of a nonlinear vibration absorber using free vibration

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Brennan, M. J.; Gatti, G.; Ferguson, N. S.

    2016-04-01

    Knowledge of the nonlinear characteristics of a vibration absorber is important if its performance is to be predicted accurately when connected to a host structure. This can be achieved theoretically, but experimental validation is necessary to verify the modelling procedure and assumptions. This paper describes the characterization of such an absorber using a novel experimental procedure. The estimation method is based on a free vibration test, which is appropriate for a lightly damped device. The nonlinear absorber is attached to a shaker which is operated such that the shaker works in its mass-controlled regime, which means that the shaker dynamics, which are also included in the measurement, are considerably simplified, which facilitates a simple estimation of the absorber properties. From the free vibration time history, the instantaneous amplitude and instantaneous damped natural frequency are estimated using the Hilbert transform. The stiffness and damping of the nonlinear vibration absorber are then estimated from these quantities. The results are compared with an analytical solution for the free vibration of the nonlinear system with cubic stiffness and viscous damping, which is also derived in the paper using an alternative approach to the conventional perturbation methods. To further verify the approach, the results are compared with a method in which the internal forces are balanced at each measured instant in time.

  3. Experimental Characterization of Wind Turbine Blade Aerodynamic Noise

    NASA Astrophysics Data System (ADS)

    Ingemanson, Megan Lynn

    Wind turbine noise at low frequencies less than 300Hz is not only annoying to humans but has been proven to cause serious health issues. Additionally, animals are severely affected by wind turbines because a small increase in ambient noise (as is produced by wind turbines) significantly reduces their listening ability. In an attempt to better understand and characterize the aerodynamic noise of wind turbine blades, experimental testing was completed on PowerWorks 100kW and GudCraft WG700 blade specimens in the University of California, Davis Transportation Noise Control Center's anechoic chamber. Experimental testing and data analysis proved approximately 4.0dB to 6.0dB was produced due to the blades' geometric design for both blade specimens at low frequencies. This noise was maximized at the blades' leading edge along the central portion of the blades' radius. Theoretical prediction models have been used to determine that, for typical wind speeds and low frequencies, noise generated due to the tip passing frequency is clearly predominant.

  4. Experimental characterization of Gaussian quantum-communication channels

    SciTech Connect

    Di Guglielmo, James; Hage, Boris; Franzen, Alexander; Schnabel, Roman; Fiurasek, Jaromir

    2007-07-15

    We present a full experimental characterization of continuous-variable quantum-communication channels established by shared entanglement together with local operations and classical communication. The resulting teleportation channel was fully characterized by measuring all elements of the covariance matrix of the shared two-mode squeezed Gaussian state. From the experimental data we determined the lower bound to the quantum channel capacity, the teleportation fidelity of coherent states, and the logarithmic negativity and purity of the shared state. Additionally, a positive secret key rate was obtained for two of the established channels.

  5. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  6. In Silico Experimental Modeling of Cancer Treatment

    PubMed Central

    Trisilowati; Mallet, D. G.

    2012-01-01

    In silico experimental modeling of cancer involves combining findings from biological literature with computer-based models of biological systems in order to conduct investigations of hypotheses entirely in the computer laboratory. In this paper, we discuss the use of in silico modeling as a precursor to traditional clinical and laboratory research, allowing researchers to refine their experimental programs with an aim to reducing costs and increasing research efficiency. We explain the methodology of in silico experimental trials before providing an example of in silico modeling from the biomathematical literature with a view to promoting more widespread use and understanding of this research strategy. PMID:22523709

  7. Validation of an Experimentally Derived Uncertainty Model

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Cox, D. E.; Balas, G. J.; Juang, J.-N.

    1996-01-01

    The results show that uncertainty models can be obtained directly from system identification data by using a minimum norm model validation approach. The error between the test data and an analytical nominal model is modeled as a combination of unstructured additive and structured input multiplicative uncertainty. Robust controllers which use the experimentally derived uncertainty model show significant stability and performance improvements over controllers designed with assumed ad hoc uncertainty levels. Use of the identified uncertainty model also allowed a strong correlation between design predictions and experimental results.

  8. An Experimental Study and Constitutive Modeling of Saturated Porous Rocks

    NASA Astrophysics Data System (ADS)

    Xie, S. Y.; Shao, J. F.

    2015-01-01

    This paper is devoted to the experimental characterization and constitutive modeling of saturated porous rocks. A typical porous chalk is investigated. Drained hydrostatic and triaxial compression tests are first performed to characterize the basic mechanical behavior of chalk. Drained triaxial tests with constant interstitial pressure are then carried out to study the effects of interstitial pressure on the plastic deformation and failure criterion. Finally, undrained triaxial compression tests are performed to investigate poromechanical coupling in saturated conditions. Based on the experimental data and some relevant micromechanical considerations, a micromechanics-based plastic model is proposed and extended to poroplastic coupling using the effective stress concept. The proposed model is verified through comparisons between the numerical results and experimental data for both drained and undrained tests.

  9. EXPERIMENTAL CHARACTERIZATION OF SEEDED FEL AMPLIFIER AT THE NSLS SDL.

    SciTech Connect

    WATANABE, T.; LIU, D.; MURPHY, J.B.; ROSE, J.; SHAFTAN, T.; TSANG, T.; WANG, X.J.; YU, L.H.

    2005-08-21

    Experimental characterization of a near-IR FEL amplifier at the NSLS SDL is presented in this report. SASE was observed from 0.8-1 {micro}m with 5 orders of magnitude gain. We have experimentally demonstrated saturation of a laser seeded FEL amplifier and control of the FEL output by the seed laser. Nonlinear harmonics have also been explored. The FEL pulse length for the first three harmonics was experimentally characterized and the increase of the FEL pulse length with harmonic number was observed for the first time. Computer simulation confirmed that the observed wide spectrum of the laser seeded FEL is due to the positive chirp of the seed laser.

  10. Characterization of Highly Nonlinear and Anisotropic Vascular Tissues from Experimental Inflation Data: a Validation Study Towards the Use of Clinical Data for In-vivo Modeling and Analysis

    SciTech Connect

    Kinon, Chen; Fata, Bahar; Einstein, Daniel R.

    2008-10-01

    A new ¯nite element (FE) modeling approach is proposed to model blood vessel by using data from blood vessel during in°ation instead of using data from biaxial test to estimate the tissue property. A particular constitutive equation is used to model the tissue property as a dispersed transverse isotropic hyperelastic material under both single-layer and multi-layer assumption for comparison. In order to compensate the drawback of using this type of data that does not provide su±cient information to estimate the tissue property in axial direction, the axial/circumferential elastic moduli ratio is being constrained in a typical range. The semi-global inverse method is applied with the pressure-diameter test data from porcine thoracic aorta to esti- mate the optimal tissue property. The simulated data of all cases is then compared with the biaxial test data. It is found that the single-layer model without the con- straint ¯ts well with the pressure-diameter test data but not with the biaxial test data at the axial direction, so it is suitable only for pressure-diameter analysis. The multi-layer model with the constraint ¯ts well with the pressure-diameter data and also the biaxial test data, so it is suitable to estimate the tissue property and for stress-strain analysis. The constitutive equation and the semi-global inverse method are found e±cient in this study. We believe that this new approach that uses this type of data, such as magnetic resonance imaging (MRI) data that could be ob- tained non-invasive in vivo, is time-e±cient and would be bene¯cial for pre-surgical analysis.

  11. High heat flux measurements and experimental calibrations/characterizations

    NASA Technical Reports Server (NTRS)

    Kidd, Carl T.

    1992-01-01

    Recent progress in techniques employed in the measurement of very high heat-transfer rates in reentry-type facilities at the Arnold Engineering Development Center (AEDC) is described. These advances include thermal analyses applied to transducer concepts used to make these measurements; improved heat-flux sensor fabrication methods, equipment, and procedures for determining the experimental time response of individual sensors; performance of absolute heat-flux calibrations at levels above 2,000 Btu/cu ft-sec (2.27 kW/cu cm); and innovative methods of performing in-situ run-to-run characterizations of heat-flux probes installed in the test facility. Graphical illustrations of the results of extensive thermal analyses of the null-point calorimeter and coaxial surface thermocouple concepts with application to measurements in aerothermal test environments are presented. Results of time response experiments and absolute calibrations of null-point calorimeters and coaxial thermocouples performed in the laboratory at intermediate to high heat-flux levels are shown. Typical AEDC high-enthalpy arc heater heat-flux data recently obtained with a Calspan-fabricated null-point probe model are included.

  12. ESA Intermediate Experimental Vehicle. Independent Aerothermodynamic Characterization And Aerodatabase Development

    NASA Astrophysics Data System (ADS)

    Rufolo, Giuseppe C.; Di Benedetto, Sara; Walpot, Louis; Roncioni, Pietro; Marini, Marco

    2011-05-01

    In the frame of the Intermediate eXperimental Vehicle (IXV) project, the European Space Agency (ESA) is coordinating a series of technical assistance activities aimed at verifying and supporting the IXV industrial design and development process. The technical assistance is operated with the support of the Italian Space Agency (ASI), by means of the Italian Aerospace Research Center (CIRA), and the European Space Research and Technology Centre (ESTEC) under the super visioning and coordination of ESA IXV team. One of the purposes of the activity is to develop an independent capability for the assessment and verification of the industrial results with respect to the aerothermodynamic characterization of the IXV vehicle. To this aim CIRA is developing and independent AeroThermodynamics DataBase (ATDB), intended as a tool generating in output the time histories of local quantities (heat flux, pressure, skin friction) for each point of the IXV vehicle and for each trajectory (in a pre-defined envelope), together with an uncertainties model. The reference Computational Fluid Dynamics (CFD) solutions needed for the development of the tool have been provided by ESA-ESTEC (with the CFD code LORE) and CIRA (with the CFD code H3NS).

  13. Experimental Modeling of Proliferative Vitreoretinopathy. An Experimental Morphological Study.

    PubMed

    Khoroshilova-Maslova, I P; Leparskaya, N L; Nabieva, M M; Andreeva, L D

    2015-05-01

    A model of proliferative vitreoretinopathy induced by simultaneous intravitreal injection of recombinant IL-1β and platelet concentrate is created and its main morphological manifestations are studied on Chinchilla rabbits. The model reflects pathogenesis of proliferative vitreoretinopathy: epiretinal membrane with the formation of retinal plication, traction detachment of the retina; moderate inflammatory reaction in the uveal tract, in the optic nerve infundibulum, in the vitreous body; intact structural elements of the retina, dissociation of the retinal pigmented epithelium cells with their subsequent migration. The model is adequate to the clinical picture of proliferative vitreoretinopathy in humans, which recommends it for experimental studies of the efficiency of drug therapy and prevention of this disease. PMID:26033599

  14. Enhancement of soil retention for phenanthrene in binary cationic gemini and nonionic surfactant mixtures: characterizing two-step adsorption and partition processes through experimental and modeling approaches.

    PubMed

    Zhao, Shan; Huang, Gordon; An, Chunjiang; Wei, Jia; Yao, Yao

    2015-04-01

    The enhancement of soil retention for phenanthrene (PHE) through the addition of a binary mixture of cationic gemini (12-2-12) and nonionic surfactants (C12E10) was investigated. The maximum apparent sorption coefficient Kd(*) reached 4247.8 mL/g through the addition of mixed 12-2-12 gemini and C12E10 surfactants, which was markedly higher than the summed individual results in the presence of individual 12-2-12 gemini (1148.6 mL/g) or C12E10 (210.0 mL/g) surfactant. However, the sorption of 12-2-12 gemini was inhibited by the increasing C12E10 dose; and a higher initial 12-2-12 gemini dose showed a higher "desorption" rate. The present study also addressed the sorption behavior of the single 12-2-12 gemini surfactant at the soil/aqueous interface. The sorption isotherm was divided into two steps to elucidate the sorption process; and the sorption schematics were proposed to elaborate the growth of surfactant aggregates corresponding to the various steps of the sorption isotherm. Finally, a two-step adsorption and partition model (TAPM) was developed to simulate the sorption process. Analysis of the equilibrium data indicated that the sorption isotherms of 12-2-12 gemini fitted the TAPM model better. Thermodynamic calculations confirmed that the 12-2-12 gemini sorption at the soil/aqueous interface was spontaneous and exothermic from 288 to 308K. PMID:25576782

  15. Improving the physiological realism of experimental models.

    PubMed

    Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L

    2016-04-01

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease. PMID:27051507

  16. Transitional Employment Experimental Model (TEEM). Final Report.

    ERIC Educational Resources Information Center

    California State Personnel Board, Sacramento.

    The final report of the Transitional Employemnt Experimental Model (TEEM) Project, a research and development project providing a potential model for a large scale manpower absorption program in times of economic need, is presented. One major purpose of the project was to demonstrate the viability of providing suitable job placement for the…

  17. Comparing fluid mechanics models with experimental data.

    PubMed Central

    Spedding, G R

    2003-01-01

    The art of modelling the physical world lies in the appropriate simplification and abstraction of the complete problem. In fluid mechanics, the Navier-Stokes equations provide a model that is valid under most circumstances germane to animal locomotion, but the complexity of solutions provides strong incentive for the development of further, more simplified practical models. When the flow organizes itself so that all shearing motions are collected into localized patches, then various mathematical vortex models have been very successful in predicting and furthering the physical understanding of many flows, particularly in aerodynamics. Experimental models have the significant added convenience that the fluid mechanics can be generated by a real fluid, not a model, provided the appropriate dimensionless groups have similar values. Then, analogous problems can be encountered in making intelligible but independent descriptions of the experimental results. Finally, model predictions and experimental results may be compared if, and only if, numerical estimates of the likely variations in the tested quantities are provided. Examples from recent experimental measurements of wakes behind a fixed wing and behind a bird in free flight are used to illustrate these principles. PMID:14561348

  18. Experimental and analytical characterization of triaxially braided textile composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Fedro, Mark J.; Ifju, Peter G.

    1993-01-01

    There were two components, experimental and analytical, to this investigation of triaxially braided textile composite materials. The experimental portion of the study centered on measuring the materials' longitudinal and transverse tensile moduli, Poisson's ratio, and strengths. The identification of the damage mechanisms exhibited by these materials was also a prime objective of the experimental investigation. The analytical portion of the investigation utilized the Textile Composites Analysis (TECA) model to predict modulus and strength. The analytical and experimental results were compared to assess the effectiveness of the analysis. The figures contained in this paper reflect the presentation made at the conference. They may be divided into four sections: a definition of the material system tested; followed by a series of figures summarizing the experimental results (these figures contain results of a Moire interferometry study of the strain distribution in the material, examples and descriptions of the types of damage encountered in these materials, and a summary of the measured properties); a description of the TECA model follows the experimental results (this includes a series of predicted results and a comparison with measured values); and finally, a brief summary completes the paper.

  19. Experimental models of hepatic encephalopathy: ISHEN guidelines.

    PubMed

    Butterworth, Roger F; Norenberg, Michael D; Felipo, Vicente; Ferenci, Peter; Albrecht, Jan; Blei, Andres T

    2009-07-01

    Objectives of the International Society for Hepatic Encephalopathy and Nitrogen Metabolism Commission were to identify well-characterized animal models of hepatic encephalopathy (HE) and to highlight areas of animal modelling of the disorder that are in need of development. Features essential to HE modelling were identified. The best-characterized animal models of HE in acute liver failure, the so-called Type A HE, were found to be the hepatic devascularized rat and the rat with thioacetamide-induced toxic liver injury. In case of chronic liver failure, surgical models in the rat involving end-to-side portacaval anastomosis or bile duct ligation were considered to best model minimal/mild (Type B) HE. Unfortunately, at this time, there are no satisfactory animal models of Type C HE resulting from end-stage alcoholic liver disease or viral hepatitis, the most common aetiologies encountered in patients. The commission highlighted the urgent need for such models and of improved models of HE in chronic liver failure in general as well as a need for models of post-transplant neuropsychiatric disorders. Studies of HE pathophysiology at the cellular and molecular level continue to benefit from in vitro and or ex vivo models involving brain slices or exposure of cultured cells (principally cultured astrocytes) to toxins such as ammonia, manganese and pro-inflammatory cytokines. More attention could be paid in the future to in vitro models involving the neurovascular unit, microglia and neuronal co-cultures in relation to HE pathogenesis. PMID:19638106

  20. Experimental Models of Abdominal Aortic Aneurysms

    PubMed Central

    Tsui, Janice C

    2010-01-01

    Despite being a leading cause of death in the West, the pathophysiology of abdominal aortic aneurysms (AAA) is still incompletely understood. Pharmacotherapy to reduce the growth of small AAAs is limited and techniques for repairing aneurysms continue to evolve. Experimental models play a key role in AAA research, as they allow a detailed evaluation of the pathogenesis of disease progression. This review focuses on in vivo experimental models, which have improved our understanding of the potential mechanisms of AAA development and contributed to the advancement of new treatments. PMID:21270944

  1. Experimental and Modeling Studies of Massif Anorthosites

    NASA Technical Reports Server (NTRS)

    Longhi, John

    1999-01-01

    This termination report covers the latter part of a single research effort spanning several grant cycles. During this time there was a single title, "Experimental and Modeling Studies of Massif Anorthosites", but there were several contract numbers as the mode and location of NASA contract administration changed. Initially, the project was funded as an increment to the PI's other grant, "Early Differentiation of the Moon: Experimental and Modeling Studies", but subsequently it became an independent grant. Table 1 contains a brief summary of the dates and contract numbers.

  2. Analytical and experimental characterization of metasurfaces with normal polarizability

    NASA Astrophysics Data System (ADS)

    Zaluški, Davor; Grbic, Anthony; Hrabar, Silvio

    2016-04-01

    To date, research on metasurfaces has predominantly focused on those with polarizabilities that are tangent to the metasurface. Only a few theoretical works have characterized metasurfaces with normal polarizabilities. Here, we provide full analytical, numerical, and experimental characterizations of a metasurface that can be described with polarizabilities in all three spatial directions. First, a set of equations is derived that allows a surface distribution of scatterers to be replaced by a sheet boundary condition. It is shown that the extraction of unknown polarizabilities in the normal direction necessarily requires scattering parameters obtained from oblique incidence. Closed-form expressions that relate scattering parameters to surface susceptibilities in all three spatial directions are given. It is shown that the reflection and transmission properties of the metasurface can be predicted, for an arbitrary angle of incidence, from the sheet parameters. In addition, we report the experimental characterization of a metasurface with polarizabilities in the normal direction. The free-space measurements were performed on a recently proposed DB metasurface at 10 GHz. Experiments confirmed that the sheet parameters do not change with angle of incidence. Consequently, it was possible to extract surface susceptibilities in the normal direction from measured transmission parameters alone.

  3. Experimental and modeling study on char combustion

    SciTech Connect

    J. Yu; M.C. Zhang

    2009-05-15

    In this study, on the basis of experimental verifications with an FTIR online measurement system, theoretical calculations by using the strict continuous-film model were first compared with those by the simple single-film model that is still widely used in mathematical modeling of pulverized coal flames. The results indicated that the single-film model has some significant errors in its predictions of the ignition temperature and the combustion following ignition and hence should have some restrictions on its application. Then an improved char combustion model has been presented, taking into consideration the influence of the finite-rate heterogeneous reduction and oxidation reactions. This model gives the explicit algebraic expressions for the overall rate of combustion, the surface temperature of the particle, and the gas temperature at the flame sheet. Compared with the single-film model, predictions by the present model were in much better agreement with those predicted by the continuous-film model and the experimental data. The novel model is also much easier to be integrated into the comprehensive computing codes for industrial pulverized coal flame than the continuous-film model. 21 refs., 14 figs.

  4. Experimental characterization of peripheral photocurrent in CMOS photodiodes down to 65 nm technology

    NASA Astrophysics Data System (ADS)

    Blanco-Filgueira, B.; López, P.; Roldán, J. B.

    2013-04-01

    In this work, an in-depth experimental characterization of submicron CMOS p-n+ junction photodiodes operating under uniform illumination in the visible range is performed. The experimental measurements are used to validate a previous two-dimensional analytical model for the photoresponse estimation of these structures, which pays special attention to the lateral collection and was verified by means of device simulations. To do so, square p-n+ junction photodiodes with different sizes down to an active area of 0.56 μm wide have been fabricated in 180 and 65 nm technological nodes and characterized under blue, green and red light sources. As a result, the importance of the lateral collection in the overall response for small photodiodes that was previously theoretically reported is confirmed. The experimentally validated two-dimensional analytical model is a powerful tool that can be employed for the design of CMOS imagers and related electronics circuits.

  5. [Experimental models of human skin aging].

    PubMed

    Nikolakis, G; Zoschke, C; Makrantonaki, E; Hausmann, C; Schäfer-Korting, M; Zouboulis, C C

    2016-02-01

    The skin is a representative model for the study of human aging. Despite the high regenerative capacity of the skin, skin physiology changes over the course of life. Medical and cosmetic research is trying to prevent aging, to slow, to stop, or to reverse it. Effects of age-related DNA damage and of changing skin structure on pharmacological parameters are largely unknown. This review article summarizes the state of scientific knowledge in the field of experimental models of human skin aging and shows approaches to improve organotypic skin models, to develop predictive models of aging, and improve aging research. PMID:26743051

  6. Direct experimental characterization of photoemission charge-transfer satellites

    NASA Astrophysics Data System (ADS)

    Weiland, Conan; Rumaiz, Abdul; Woicik, Joseph

    Energy-loss satellites in photoelectron spectroscopy often arise due to different charge-transfer states in condensed matter systems. The specific characterization of these satellites, however, has been controversial, and different theoretical approaches may lead to contradictory characterizations. Here we demonstrate the ability of high energy resonant photoelectron spectroscopy to provide direct experimental evidence of the nature of charge transfer satellites. Analysis of the Ti 1 s core line in SrTiO3 reveals two satellites, located approximately 5 eV and 13 eV lower kinetic energy than the main line. High energy resonant photoelectron spectroscopy reveals that these two peaks originate from ligand 2 p t2 g to metal 3 d t2 g and ligand 2 p eg to metal 3 d eg charge-transfer excitations.

  7. Optimal Experimental Design for Model Discrimination

    PubMed Central

    Myung, Jay I.; Pitt, Mark A.

    2009-01-01

    Models of a psychological process can be difficult to discriminate experimentally because it is not easy to determine the values of the critical design variables (e.g., presentation schedule, stimulus structure) that will be most informative in differentiating them. Recent developments in sampling-based search methods in statistics make it possible to determine these values, and thereby identify an optimal experimental design. After describing the method, it is demonstrated in two content areas in cognitive psychology in which models are highly competitive: retention (i.e., forgetting) and categorization. The optimal design is compared with the quality of designs used in the literature. The findings demonstrate that design optimization has the potential to increase the informativeness of the experimental method. PMID:19618983

  8. Optimal Experimental Design for Model Discrimination

    ERIC Educational Resources Information Center

    Myung, Jay I.; Pitt, Mark A.

    2009-01-01

    Models of a psychological process can be difficult to discriminate experimentally because it is not easy to determine the values of the critical design variables (e.g., presentation schedule, stimulus structure) that will be most informative in differentiating them. Recent developments in sampling-based search methods in statistics make it…

  9. Modeling, Robust Control, and Experimental Validation of a Supercavitating Vehicle

    NASA Astrophysics Data System (ADS)

    Escobar Sanabria, David

    This dissertation considers the mathematical modeling, control under uncertainty, and experimental validation of an underwater supercavitating vehicle. By traveling inside a gas cavity, a supercavitating vehicle reduces hydrodynamic drag, increases speed, and minimizes power consumption. The attainable speed and power efficiency make these vehicles attractive for undersea exploration, high-speed transportation, and defense. However, the benefits of traveling inside a cavity come with difficulties in controlling the vehicle dynamics. The main challenge is the nonlinear force that arises when the back-end of the vehicle pierces the cavity. This force, referred to as planing, leads to oscillatory motion and instability. Control technologies that are robust to planing and suited for practical implementation need to be developed. To enable these technologies, a low-order vehicle model that accounts for inaccuracy in the characterization of planing is required. Additionally, an experimental method to evaluate possible pitfalls in the models and controllers is necessary before undersea testing. The major contribution of this dissertation is a unified framework for mathematical modeling, robust control synthesis, and experimental validation of a supercavitating vehicle. First, we introduce affordable experimental methods for mathematical modeling and controller testing under planing and realistic flow conditions. Then, using experimental observations and physical principles, we create a low-order nonlinear model of the longitudinal vehicle motion. This model quantifies the planing uncertainty and is suitable for robust controller synthesis. Next, based on the vehicle model, we develop automated tools for synthesizing controllers that deliver a certificate of performance in the face of nonlinear and uncertain planing forces. We demonstrate theoretically and experimentally that the proposed controllers ensure higher performance when the uncertain planing dynamics are

  10. Design and experimental characterization of a multifrequency flexural ultrasonic actuator.

    PubMed

    Iula, Antonio

    2009-08-01

    In this work, a multifrequency flexural ultrasonic actuator is proposed, designed, and experimentally characterized. The actuator is composed of a Langevin transducer and of a displacement amplifier. The displacement amplifier is able to transform the almost flat axial displacement provided by the Langevin transducer at its back end into a flexural deformation that produces the maximum axial displacement at the center of its front end. Design and analysis of the actuator have been performed by using finite element method software. In analogy to classical power actuators that use sectional concentrators, the design criterion that has been followed was to design the Langevin transducer and the flexural amplifier separately at the same working frequency. As opposed to sectional concentrators, the flexural amplifier has several design parameters that allow a wide flexibility in the design. The flexural amplifier has been designed to produce a very high displacement amplification. It has also been designed in such a way that the whole actuator has 2 close working frequencies (17.4 kHz and 19.2 kHz), with similar flexural deformations of the front surface. A first prototype of the actuator has been manufactured and experimentally characterized to validate the numerical analysis. PMID:19686988

  11. Damage Characterization in Copper Deformed Under Hydrostatic Stress - Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Flater, Philip; de Angelis, Robert; House, Joel

    2005-07-01

    This paper presents an experimental investigation to characterize the effect of damage created by hydrostatic tensile loading on the properties of copper. Three metallurgical conditions were investigated: half-hard OFHC copper in the as worked, annealed 2hr at 400°C (˜40 micron grain diameter), and annealed 2hr at 800^ oC (˜80 micron grain diameter). Quasi-static testing of each condition included uniaxial tension and compression, round notched bar tension, and flat tapered bar tension. Dynamic properties under uniaxial tension and compression were tested using a split-Hopkinson pressure bar. Damaged structures were created employing Taylor impact tests and rod-on-rod impact experiments. The resulting damage was characterized employing optical and scanning electron microscopy. Quasi-static compression samples machined from recovered samples were tested to determine the influence of damage on deformation behavior and elastic modulus. The compression experimental results will be discussed in relationship to the starting microstructure and subsequent damaged material.

  12. Review: avian models for experimental myopia.

    PubMed

    Lauber, J K

    1991-01-01

    Myopia poses a serious threat to unaided vision among the human population, affecting as much as fifty per cent or more of individuals in some subpopulations and at some age levels. Because the etiology of the condition remains obscure, attention has been directed toward a search for experimental animal models for myopia: the hope is that any environmental or experimental intervention found to increase eye size, especially axial length, or to lead to negative refractive error, may suggest some parallels in clinical experience. As well, the availability of myopic animal subjects affords the opportunity to test the efficacy of both preventative and pharmacological measures as they become available. PMID:1783857

  13. Macrophages and Uveitis in Experimental Animal Models

    PubMed Central

    Mérida, Salvador; Palacios, Elena; Bosch-Morell, Francisco

    2015-01-01

    Resident and infiltrated macrophages play relevant roles in uveitis as effectors of innate immunity and inductors of acquired immunity. They are major effectors of tissue damage in uveitis and are also considered to be potent antigen-presenting cells. In the last few years, experimental animal models of uveitis have enabled us to enhance our understanding of the leading role of macrophages in eye inflammation processes, including macrophage polarization in experimental autoimmune uveoretinitis and the major role of Toll-like receptor 4 in endotoxin-induced uveitis. This improved knowledge should guide advantageous iterative research to establish mechanisms and possible therapeutic targets for human uveitis resolution. PMID:26078494

  14. Integrated pollutant removal: modeling and experimentation

    SciTech Connect

    Ochs, Thomas L.; Oryshchyn, Danylo B.; Summers, Cathy A.

    2005-01-01

    Experimental and computational work at the Albany Research Center, USDOE is investigating an integrated pollutant removal (IPR) process which removes all pollutants from flue gas, including SOX, NOX, particulates, CO2, and Hg. In combination with flue gas recirculation, heat recovery, and oxy-fuel combustion, the process produces solid, gas, and liquid waste streams. The gas exhaust stream comprises O2 and N2. Liquid streams contain H2O, SOX, NOX, and CO2. Computer modeling and low to moderate pressure experimentation are defining system chemistry with respect to SOX and H2O as well as heat and mass transfer for the IPR process.

  15. Irradiation Design for an Experimental Murine Model

    SciTech Connect

    Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Celis, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Rubio-Osornio, M. C.; Custodio-Ramirez, V.; Paz, C.

    2010-12-07

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  16. Experimental Diabetes Mellitus in Different Animal Models.

    PubMed

    Al-Awar, Amin; Kupai, Krisztina; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba

    2016-01-01

    Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. PMID:27595114

  17. Experimental Diabetes Mellitus in Different Animal Models

    PubMed Central

    Al-awar, Amin; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba

    2016-01-01

    Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. PMID:27595114

  18. Modeling biomedical experimental processes with OBI

    PubMed Central

    2010-01-01

    Background Experimental descriptions are typically stored as free text without using standardized terminology, creating challenges in comparison, reproduction and analysis. These difficulties impose limitations on data exchange and information retrieval. Results The Ontology for Biomedical Investigations (OBI), developed as a global, cross-community effort, provides a resource that represents biomedical investigations in an explicit and integrative framework. Here we detail three real-world applications of OBI, provide detailed modeling information and explain how to use OBI. Conclusion We demonstrate how OBI can be applied to different biomedical investigations to both facilitate interpretation of the experimental process and increase the computational processing and integration within the Semantic Web. The logical definitions of the entities involved allow computers to unambiguously understand and integrate different biological experimental processes and their relevant components. Availability OBI is available at http://purl.obolibrary.org/obo/obi/2009-11-02/obi.owl PMID:20626927

  19. Experimental Animal Models in Periodontology: A Review

    PubMed Central

    Struillou, Xavier; Boutigny, Hervé; Soueidan, Assem; Layrolle, Pierre

    2010-01-01

    In periodontal research, animal studies are complementary to in vitro experiments prior to testing new treatments. Animal models should make possible the validation of hypotheses and prove the safety and efficacy of new regenerating approaches using biomaterials, growth factors or stem cells. A review of the literature was carried out by using electronic databases (PubMed, ISI Web of Science). Numerous animal models in different species such as rats, hamsters, rabbits, ferrets, canines and primates have been used for modeling human periodontal diseases and treatments. However, both the anatomy and physiopathology of animals are different from those of humans, making difficult the evaluation of new therapies. Experimental models have been developed in order to reproduce major periodontal diseases (gingivitis, periodontitis), their pathogenesis and to investigate new surgical techniques. The aim of this review is to define the most pertinent animal models for periodontal research depending on the hypothesis and expected results. PMID:20556202

  20. Experimental tests of proton spin models

    SciTech Connect

    Ramsey, G.P. . Dept. of Physics Argonne National Lab., IL . High Energy Physics Div.)

    1989-11-03

    We have developed models for the spin-weighted quark and gluon distribution in a longitudinally polarized proton. The model parameters are determined from current algebra sum rules and polarized deep-inelastic scattering data. A number of different scenarios are presented for the fraction of spin carried the constituent parton distributions. A possible long-range experimental program is suggested for measuring various hard scattering processes using polarized lepton and proton beams. With the knowledge gained from these experiments, we can begin to understand the parton contributions to the proton spin. 28 refs., 5 figs.

  1. Modeling Graves' Orbitopathy in Experimental Graves' Disease.

    PubMed

    Banga, J P; Moshkelgosha, S; Berchner-Pfannschmidt, U; Eckstein, A

    2015-09-01

    Graves' orbitopathy (GO), also known as thyroid eye disease is an inflammatory disease of the orbital tissue of the eye that arises as a consequence of autoimmune thyroid disease. The central feature of the disease is the production of antibodies to the thyrotropin hormone receptor (TSHR) that modulate the function of the receptor leading to autoimmune hyperthyroidism and GO. Over the years, all viable preclinical models of Graves' disease have been incomplete and singularly failed to progress in the treatment of orbital complications. A new mouse model of GO based upon immunogenic presentation of human TSHR A-subunit plasmid by close field electroporation is shown to lead to induction of prolonged functional antibodies to TSHR resulting in chronic disease with subsequent progression to GO. The stable preclinical GO model exhibited pathologies reminiscent of human disease characterized by orbital remodeling by inflammation and adipogenesis. Inflammatory lesions characterized by CD3+ T cells and macrophages were localized in the orbital muscle tissue. This was accompanied by extensive adipogenesis of orbital fat in some immune animals. Surprisingly, other signs of orbital involvement were reminiscent of eyelid inflammation involving chemosis, with dilated and congested orbital blood vessels. More recently, the model is replicated in the author's independent laboratories. The pre-clinical model will provide the basis to study the pathogenic and regulatory roles of immune T and B cells and their subpopulations to understand the initiation, pathophysiology, and progression of GO. PMID:26287396

  2. [Experimental model of ocular ischemic diseases].

    PubMed

    Kiseleva, T N; Chudin, A V

    2014-01-01

    The review presents the most common methods of modeling of retinal ischemia in vitro (chemical ischemia with iodoacetic acid, incubation of the retinal pigment epithelium cells with oligomycin, deprivation of oxygen and glucose) and in vivo (a model with increased intraocular pressure, cerebral artery occlusion, chronic ligation of the carotid arteries, photocoagulation of the retinal vessels, occlusion of the central retinal artery, endothelin-1 administration). Modeling ischemic injury in rats is the most frequently used method in studies, because the blood supply of their eyes is similar to blood flow in the human eyes. Each method has its own advantages and disadvantages. Application of methods depends on the purpose of the experimental study. Currently model of ocular ischemic disease can be obtained easily by injecting vasoconstrictive drug endothelin-1. It is the most widely used method of high intraocular pressure induced ocular ischemic damage similar to glaucoma, occlusion of central retinal artery or ophthalmic artery in human. The development of experimental models of ocular ischemic diseases and detailed investigation of mechanisms of impairment of microcirculation are useful for improve the efficiency of diagnostic and treatment of ischemic diseases of retina and optic nerve. PMID:25971134

  3. Current Experimental Methods for Characterizing Protein-Protein Interactions.

    PubMed

    Zhou, Mi; Li, Qing; Wang, Renxiao

    2016-04-19

    Protein molecules often interact with other partner protein molecules in order to execute their vital functions in living organisms. Characterization of protein-protein interactions thus plays a central role in understanding the molecular mechanism of relevant protein molecules, elucidating the cellular processes and pathways relevant to health or disease for drug discovery, and charting large-scale interaction networks in systems biology research. A whole spectrum of methods, based on biophysical, biochemical, or genetic principles, have been developed to detect the time, space, and functional relevance of protein-protein interactions at various degrees of affinity and specificity. This article presents an overview of these experimental methods, outlining the principles, strengths and limitations, and recent developments of each type of method. PMID:26864455

  4. Metallurgical characterization of experimental Ag-based soldering alloys

    PubMed Central

    Ntasi, Argyro; Al Jabbari, Youssef S.; Silikas, Nick; Al Taweel, Sara M.; Zinelis, Spiros

    2014-01-01

    Aim To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Materials and methods Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Results Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627–762 °C for AgGa and 631–756 °C for AgGaSn. Conclusion The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys. PMID:25382945

  5. Characterization and electrical modeling of semiconductors bridges

    SciTech Connect

    Marx, K.D.; Bickes, R.W. Jr.; Wackerbarth, D.E.

    1997-03-01

    Semiconductor bridges (SCBs) are finding increased use as initiators for explosive and pyrotechnic devices. They offer advantages in reduced voltage and energy requirements, coupled with excellent safety features. The design of explosive systems which implement either SCBs or metal bridgewires can be facilitated through the use of electrical simulation software such as the PSpice{reg_sign} computer code. A key component in the electrical simulation of such systems is an electrical model of the bridge. This report has two objectives: (1) to present and characterize electrical data taken in tests of detonators which employ SCBs with BNCP as the explosive powder; and (2) to derive appropriate electrical models for such detonators. The basis of such models is a description of the resistance as a function of energy deposited in the SCB. However, two important features which must be added to this are (1) the inclusion of energy loss through such mechanisms as ohmic heating of the aluminum lands and heat transfer from the bridge to the surrounding media; and (2) accounting for energy deposited in the SCB through heat transfer to the bridge from the explosive powder after the powder ignites. The modeling procedure is entirely empirical; i.e., models for the SCB resistance and the energy gain and loss have been estimated from experimental data taken over a range of firing conditions. We present results obtained by applying the model to the simulation of SCB operation in representative tests.

  6. Nonlinear hierarchical modeling of experimental infection data.

    PubMed

    Singleton, Michael D; Breheny, Patrick J

    2016-08-01

    In this paper, we propose a nonlinear hierarchical model (NLHM) for analyzing longitudinal experimental infection (EI) data. The NLHM offers several improvements over commonly used alternatives such as repeated measures analysis of variance (RM-ANOVA) and the linear mixed model (LMM). It enables comparison of relevant biological properties of the course of infection including peak intensity, duration and time to peak, rather than simply comparing mean responses at each observation time. We illustrate the practical benefits of this model and the insights it yields using data from experimental infection studies on equine arteritis virus. Finally, we demonstrate via simulation studies that the NLHM substantially reduces bias and improves the power to detect differences in relevant features of the infection response between two populations. For example, to detect a 20% difference in response duration between two groups (n=15) in which the peak time and peak intensity were identical, the RM-ANOVA test had a power of just 11%, and LMM a power of just 12%. By comparison, the nonlinear model we propose had a power of 58% in the same scenario, while controlling the Type I error rate better than the other two methods. PMID:27435656

  7. Modelling an experimental methane fuel processor

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Tin; Chen, Yih-Hang; Yu, Cheng-Ching; Liu, Yen-Chun; Lee, Chiou-Hwang

    Steady-state models are developed to describe an experimental methane fuel processor that is intended to provide hydrogen for a fuel cell system for power generation (2-3 kW). First-principle reactor models are constructed to describe a series of reactions, i.e., steam and autothermal reforming (SR/ATR), high- and low-temperature water-gas shift (HTS/LTS) reactions and preferential oxidation (PROX) reactions, at different sectors of the reactor system for methane reforming as well as gas cleaning. The pre-exponential factors of the rate constants are adjusted to fit the experimental data and the resultant reactor model provides a reasonably good description of steady-state behaviour. Next, sensitivity analyses are performed to locate the optimum operating point of the fuel processor. The objective function of the optimization is fuel processor efficiency. The dominating optimization variables include: the ratios of water and oxygen to the hydrocarbon feed to the autothermal reforming reactor and the inlet temperature of the reactor. The results indicate that further improvement in fuel processor efficiency can be made with a reliable process model.

  8. [New experimental models in microbial ecology].

    PubMed

    Liz'ko, N N

    1989-06-01

    Peculiar features of dysbiosis development in persons under extreme conditions were studied. It was shown that a number of extreme factors participated in formation of dysbiotic disorders in intestinal microflora. Of paramount importance was the neuro-emotional stress. Lability of bifido- and lactoflora was considered as the starting mechanism in dysbacteriosis under the extreme conditions. In the experimental models with rats SPF and Primates during flights of biosatellites of the Kosmos series the role of indigenous++ microflora in maintaining the microecological homeostasis, as well as the need for development of artificial and controlled intestinal microflora promising in prophylaxis of dysbacteriosis under extreme conditions was shown. The theoretical and experimentally grounded necessity of maintaining constant intestine microbiocenosis was confirmed by the practice of using the system of measures for recovery, stabilization and optimization of microflora in persons under extreme conditions. PMID:2802876

  9. Experimental characterization of vertical-axis wind turbine noise.

    PubMed

    Pearson, C E; Graham, W R

    2015-01-01

    Vertical-axis wind turbines are wind-energy generators suitable for use in urban environments. Their associated noise thus needs to be characterized and understood. As a first step, this work investigates the relative importance of harmonic and broadband contributions via model-scale wind-tunnel experiments. Cross-spectra from a pair of flush-mounted wall microphones exhibit both components, but further analysis shows that the broadband dominates at frequencies corresponding to the audible range in full-scale operation. This observation has detrimental implications for noise-prediction reliability and hence also for acoustic design optimization. PMID:25618090

  10. Multifragment emission and the experimental characterization of breakup reactions

    SciTech Connect

    Martinez Heimann, D.; Pacheco, A. J.; Arazi, A.; Fernandez Niello, J. O.; Figueira, J. M.; Negri, A.; Capurro, O. A.; Carnelli, P.; Cardona, M. A.; Barbara, E. de; Fimiani, L.; Hojman, D. L.; Marti, G. V.

    2010-08-04

    The production of three or more particles in nuclear reactions is discussed in terms of physically meaningful variables for the description of the asymptotic exit-channel configuration. The emphasis is placed in a direct comparison between these basic variables obtained in a purely experimental way and the corresponding results of generic model calculations. Applications of this approach to a few examples of recent inclusive and exclusive measurements of breakup reactions in the {sup 6,7}Li+{sup 144}Sm systems are presented.

  11. A mechanical diode: Comparing numerical and experimental characterizations

    SciTech Connect

    Simmermacher, T.; Segalman, D.; Sagartz, M.

    1997-12-01

    The predictive modeling of vibration of many structural systems is crippled by an inability to predictively model the mechanics of joints. The lack of understanding of joint dynamics is evidenced by the substantial uncertainty of joint compliances in the numerical models and by the complete inability to predict joint damping. The lore is that at low amplitudes, joint mechanics are associated with Coulomb friction and stick-slip phenomena and that at high amplitudes, impact processes result in dissipation as well as shift of energy to other frequencies. Inadequate understanding of the physics precludes reliable predictions. In this introductory work, joint compliance is studied in both a numerical and experimental setting. A simple bolted interface is used as the test article and compliance is measured for the joint in both compression and in tension. This simple interface is shown to exhibit a strong non-linearity near the transition from compression to tension (or vice-versa). Modeling issues pertaining to numerically solving for the compliance are addressed. It is shown that the model predicts the experimental strains and compliance fairly well. It will be seen that the joint behavior is a mechanical analogy to a diode. In compression, the joint is very stiff, acting almost as a rigid link, while in tension the joint is soft, acting as a soft spring. Although there have been many other studies performed on bolted joints, the variety of joint geometries has demonstrated large variations in behavior. This study is an attempt to quantify the behavior of typical joints found in today`s weapon systems.

  12. Experimental alveolitis in rats: microbiological, acute phase response and histometric characterization of delayed alveolar healing

    PubMed Central

    RODRIGUES, Moacyr Tadeu Vicente; CARDOSO, Camila Lopes; de CARVALHO, Paulo Sérgio Perri; CESTARI, Tânia Mary; FERES, Magda; GARLET, Gustavo Pompermaier; FERREIRA JÚNIOR, Osny

    2011-01-01

    The pathogenesis of alveolitis is not well known and therefore experimental situations that mimic some features of this disease should be developed. Objective In this study, the evolution of the experimentally induced infection in rat sockets is characterized, which leads to clinical signs of suppurative alveolitis with remarkable wound healing disturbs. Material and methods Non-infected (Group I) and experimentally infected sockets in Rattus novergicus (Group II) were histometrically evaluated regarding the kinetics of alveolar healing. In addition, the characterization of the present bacteria in inoculation material and the serum levels of C-reactive protein (CRP) were performed. The detected species were Capnocytophaga ochracea, Fusobacterium nucleatum ss nucleatum, Prevotella melaninogenica, Streptococcus anginosus, Treponema socranskii and Streptococcus sanguis. Results All experimentally infected rats developed suppurative alveolitis, showing higher levels of CRP in comparison to those non-infected ones. Furthermore, infected rats presented a significant delayed wound healing as measured by the histometric analysis (higher persistent polymorphonuclear infiltrate and lower density of newly formed bone). Conclusion These findings indicate that rat sockets with experimentally induced infection produced higher levels of serum CRP, showing the potential of disseminated infection and a disturb in the alveolar repair process in an interesting experimental model for alveolitis studies. PMID:21625744

  13. Visceral leishmaniasis: experimental models for drug discovery.

    PubMed

    Gupta, Suman

    2011-01-01

    Visceral leishmaniasis (VL) or kala-azar is a chronic protozoan infection in humans associated with significant global morbidity and mortality. The causative agent is a haemoflagellate protozoan Leishmania donovani, an obligate intracellular parasite that resides and multiplies within macrophages of the reticulo-endothelial system. Most of the existing anti-leishmanial drugs have serious side effects that limit their clinical application. As an alternate strategy, vaccination is also under experimental and clinical trials. The in vitro evaluation designed to facilitate rapid testing of a large number of drugs has been focussed on the promastigotes milt little attention on the clinically relevant parasite stage, amastigotes. Screening designed to closely reflect the situation in vivo is currently time consuming, laborious, and expensive, since it requires intracellular amastigotes and animal model. The ability to select transgenic Leishmania expressing reporter proteins, such as the green fluorescent proteins (GFP) or the luciferase opened up new possibilities for the development of drug screening models. Many experimental animal models like rodents, dogs and monkeys have been developed, each with specific features, but none accurately reproduces what happens in humans. Available in vitro and in vivo methodologies for antileishmanial drug screening and their respective advantages and disadvantages are reviewed. PMID:21321417

  14. Modeling of Experimental Atherosclerotic Plaque Delamination.

    PubMed

    Leng, Xiaochang; Chen, Xin; Deng, Xiaomin; Sutton, Michael A; Lessner, Susan M

    2015-12-01

    A cohesive zone model (CZM) approach is applied to simulate atherosclerotic plaque delamination experiments in mouse abdominal aorta specimens. A three-dimensional finite element model is developed for the experiments. The aortic wall is treated as a fiber-reinforced, highly deformable, incompressible material, and the Holzapfel-Gasser-Ogden (HGO) model is adopted for the aortic bulk material behavior. Cohesive elements are placed along the plaque-media interface along which delamination occurs. The 3D specimen geometry is created based on images from the experiments and certain simplifying approximations. A set of HGO and CZM parameter values is determined based on values suggested in the literature and through matching simulation predictions of the load vs. load-point displacement curve with experimental measurements for one loading-delamination-unloading cycle. Using this set of parameter values, simulation predictions for four other loading-delamination-unloading cycles are obtained, which show good agreement with experimental measurements. The findings of the current study demonstrate the applicability of the CZM approach in arterial tissue failure simulations. PMID:26101030

  15. Analysis, design and experimental characterization of electrostatically actuated gas micropumps

    NASA Astrophysics Data System (ADS)

    Astle, Aaron A.

    This work goal is to realize a high-performance, multi-stage micropump integrated within a wireless micro gas chromatograph (muGC) for measuring airborne environment pollutants. The work described herein focuses on the development of high-fidelity mathematical and physical design models, and the testing and validation of the most promising models with large-scale and micro-scale (MEMS) pump prototypes. It is shown that an electrostatically-actuated, multistage, diaphragm micropump with active valve control provides the best expected performance for this application. A hierarchy of models is developed to characterize the various factors governing micropump performance. This includes a thermodynamic model, an idealized reduced-order model and a reduced-order model that incorporates realistic valve flow effects and accounts for fluidic load. The reduced-order models are based on fundamental fluid dynamic principles and allow predictions of flow rate and pressure rise as a function of geometric design variables, and drive signal. The reduced order models are validated in several tests. Two-stage, 20x scale pump results reveal the need to incorporate realistic valve flow effects and the output load for accurate modeling. The more realistic reduced order model is then validated using micropumps with two and four pumping stages. The reduced order model captures the micropump performance accurately, provided that separate measurements of valve pressure losses and pump geometry are used. The four-stage micropump fabricated using theoretical model guidelines from this research provides a maximum flow rate and pressure rise of 3 cm 3/min and 1.75 kPa/stage respectively with a power consumption of only 4 mW per stage. The four-stage micropump occupies and area of 54 mm 2. Each pumping cavity has a volume of 6x10-6 m 3. This performance indicates that this pump design will be sufficient to meet the requirements for extended field operation of a wireless integrated muGC. During

  16. ProGlycProt: a repository of experimentally characterized prokaryotic glycoproteins

    PubMed Central

    Bhat, Aadil H.; Mondal, Homchoru; Chauhan, Jagat S.; Raghava, Gajendra P. S.; Methi, Amrish; Rao, Alka

    2012-01-01

    ProGlycProt (http://www.proglycprot.org/) is an open access, manually curated, comprehensive repository of bacterial and archaeal glycoproteins with at least one experimentally validated glycosite (glycosylated residue). To facilitate maximum information at one point, the database is arranged under two sections: (i) ProCGP—the main data section consisting of 95 entries with experimentally characterized glycosites and (ii) ProUGP—a supplementary data section containing 245 entries with experimentally identified glycosylation but uncharacterized glycosites. Every entry in the database is fully cross-referenced and enriched with available published information about source organism, coding gene, protein, glycosites, glycosylation type, attached glycan, associated oligosaccharyl/glycosyl transferases (OSTs/GTs), supporting references, and applicable additional information. Interestingly, ProGlycProt contains as many as 174 entries for which information is unavailable or the characterized glycosites are unannotated in Swiss-Prot release 2011_07. The website supports a dedicated structure gallery of homology models and crystal structures of characterized glycoproteins in addition to two new tools developed in view of emerging information about prokaryotic sequons (conserved sequences of amino acids around glycosites) that are never or rarely seen in eukaryotic glycoproteins. ProGlycProt provides an extensive compilation of experimentally identified glycosites (334) and glycoproteins (340) of prokaryotes that could serve as an information resource for research and technology applications in glycobiology. PMID:22039152

  17. Hazards Response of Energetic Materials - Initiation Mechanisms, Experimental Characterization, and Development of Predictive Capability

    SciTech Connect

    Maienschein, J; Nichols III, A; Reaugh, J; McClelland, M; Hsu, P C

    2005-04-15

    We present our approach to develop a predictive capability for hazards -- thermal and non-shock impact -- response of energetic material systems based on: (A) identification of relevant processes; (B) characterization of the relevant properties; (C) application of property data to predictive models; and (D) application of the models into predictive simulation. This paper focuses on the first two elements above, while a companion paper by Nichols et al focuses on the final two elements. We outline the underlying mechanisms of hazards response and their interactions, and present our experimental work to characterize the necessary material parameters, including thermal ignition, thermal and mechanical properties, fracture/fragmentation behavior, deflagration rates, and the effect of material damage. We also describe our validation test, the Scaled Thermal Explosion Experiment. Finally, we integrate the entire collection of data into a qualitative understanding that is useful until such time as the predictive models become available.

  18. Experimental application of ultrafast imaging to spectral tissue characterization.

    PubMed

    Garcia-Duitama, Julian; Chayer, Boris; Han, Aiguo; Garcia, Damien; Oelze, Michael L; Cloutier, Guy

    2015-09-01

    Ultrasound ultrafast imaging (UI) allows acquisition of thousands of frames per second with a sustained image quality at any depth in the field of view. Therefore, it would be ideally suited to obtain good statistical sampling of fast-moving tissues using spectral-based techniques to derive the backscatter coefficient (BSC) and associated quantitative parameters. In UI, an image is formed by insonifying the medium with plane waves steered at different angles, beamforming them and compounding the resulting radiofrequency images. We aimed at validating, experimentally, the effect of these beamforming protocols on the BSC, under both isotropic and anisotropic conditions. Using UI techniques with a linear array transducer (5-14 MHz), we estimated the BSCs of tissue-mimicking phantoms and flowing porcine blood at depths up to 35 mm with a frame rate reaching 514 Hz. UI-based data were compared with those obtained using single-element transducers and conventional focusing imaging. Results revealed that UI compounded images can produce valid estimates of BSCs and effective scatterer size (errors less than 2.2 ± 0.8 and 0.26 ± 0.2 dB for blood and phantom experiments, respectively). This work also describes the use of pre-compounded UI images (i.e., steered images) to assess the angular dependency of circulating red blood cells. We have concluded that UI data sets can be used for BSC spectral tissue analysis and anisotropy characterization. PMID:26119459

  19. Experimental characterization of nonlinear processes of whistler branch waves

    NASA Astrophysics Data System (ADS)

    Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Ganguli, G.; Rudakov, L.

    2016-05-01

    Experiments in the Space Physics Simulation Chamber at the Naval Research Laboratory isolated and characterized important nonlinear wave-wave and wave-particle interactions that can occur in the Earth's Van Allen radiation belts by launching predominantly electrostatic waves in the intermediate frequency range with wave normal angle greater than 85 ° and measuring the nonlinearly generated electromagnetic scattered waves. The scattered waves have a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Calculations of scattering efficiency from experimental measurements demonstrate that the scattering efficiency is inversely proportional to the damping rate and trends towards unity as the damping rate approaches zero. Signatures of both wave-wave and wave-particle scatterings are also observed in the triggered emission process in which a launched wave resonant with a counter-propagating electron beam generates a large amplitude chirped whistler wave. The possibility of nonlinear scattering or three wave decay as a saturation mechanism for the triggered emission is suggested. The laboratory experiment has inspired the search for scattering signatures in the in situ data of chorus emission in the radiation belts.

  20. Experimental High Temperature Characterization of a Magnetic Bearing for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Montague, Gerald; Jansen, Mark; Provenza, Andrew; Palazzolo, Alan; Jansen, Ralph; Ebihara, Ben

    2003-01-01

    Open loop, experimental force and power measurements of a radial, redundant-axis, magnetic bearing at temperatures to 1000 F (538 C) and rotor speeds to 15,000 RPM along with theoretical temperature and force models are presented in this paper. The experimentally measured force produced by a single C-core using 22A was 600 lb. (2.67 kN) at room temperature and 380 lb. (1.69 kN) at 1000 F (538 C). These values were compared with force predictions based on a 1D magnetic circuit analysis and a thermal analysis of gap growth as a function of temperature. Tests under rotating conditions showed that rotor speed has a negligible effect on the bearing s load capacity. One C-core required approximately 340 W of power to generate 190 lb. (8.45 kN) of magnetic force at 1000 F (538 C); however the magnetic air gap was much larger than at room temperature. The data presented is after the bearing had already operated six thermal cycles and eleven total (not consecutive) hours at 1000 F (538 C).

  1. Experimental Flow Characterization of a Flow Diverting Device

    NASA Astrophysics Data System (ADS)

    Sparrow, Eph; Chow, Ricky; Campbell, Gary; Divani, Afshin; Sheng, Jian

    2012-11-01

    Flow diverters, such as the Pipeline Embolization Device, are a new class of endovascular devices for the treatment of intracranial aneurysms. While clinical studies have demonstrated safety and efficacy, their impact on intra-aneurysmal flow is not confirmed experimentally. As such, optimization of the flow diversion behavior is not currently possible. A quasi-3D PIV technique was developed and applied in various glass models at Re = 275 and 550 to determine the changes to flow characteristics due to the deployment of a flow diverter across the aneurysm neck. Outcomes such as mean velocity, wall shear stress, and others metrics will be presented. Glass models with varying radii of curvature and aneurysm locations will be examined. Experiments were performed in a fully index-matched flow facility using ~10 μm diameter polystyrene particles doped with Rhodium 6G dye. The particles were illuminated with a 532nm laser sheet and observed with a CCD camera and a 592nm +/-43 nm bandpass filter. A quasi 3D flow field was reconstructed from multiple orthogonal planes (spaced 0.4mm apart) encompassing the entire glass model. Wall stresses were evaluated from the near-wall flow viscous stresses.

  2. Experimental characterization of extra-focal radiation in CT scanners

    NASA Astrophysics Data System (ADS)

    Whiting, Bruce R.; Porras-Chaverri, Mariela A.; Evans, Joshua D.; Williamson, Jeffrey F.

    2016-03-01

    Quantitative computed tomography (CT) applications based on statistical iterative reconstruction algorithms require accurate models of the CT acquisition process, with a key component being the x-ray fan beam intensity. We present a method to experimentally determine the extra-focal radiation profile incident on individual CT detectors. Using a tungsten cylinder as a knife edge, a super-sampled signal was created from sinogram data, which traced the "occlusion" of the x-ray source as seen by a detector. By differentiating this signal and correcting for finite detector size and motion blur, the effective source profile can be recovered. Extra-focal scatter was found to be on the order of 1-3 percent of the focal beam intensity, with lower relative magnitude at the isocenter and increasing towards the edge of the fan beam, with its profile becoming asymmetric at large angles. The implications for reconstruction algorithms and QCT applications will be discussed.

  3. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics.

    PubMed

    Dagdeviren, Canan; Shi, Yan; Joe, Pauline; Ghaffari, Roozbeh; Balooch, Guive; Usgaonkar, Karan; Gur, Onur; Tran, Phat L; Crosby, Jessi R; Meyer, Marcin; Su, Yewang; Chad Webb, R; Tedesco, Andrew S; Slepian, Marvin J; Huang, Yonggang; Rogers, John A

    2015-07-01

    Mechanical assessment of soft biological tissues and organs has broad relevance in clinical diagnosis and treatment of disease. Existing characterization methods are invasive, lack microscale spatial resolution, and are tailored only for specific regions of the body under quasi-static conditions. Here, we develop conformal and piezoelectric devices that enable in vivo measurements of soft tissue viscoelasticity in the near-surface regions of the epidermis. These systems achieve conformal contact with the underlying complex topography and texture of the targeted skin, as well as other organ surfaces, under both quasi-static and dynamic conditions. Experimental and theoretical characterization of the responses of piezoelectric actuator-sensor pairs laminated on a variety of soft biological tissues and organ systems in animal models provide information on the operation of the devices. Studies on human subjects establish the clinical significance of these devices for rapid and non-invasive characterization of skin mechanical properties. PMID:25985458

  4. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Canan; Shi, Yan; Joe, Pauline; Ghaffari, Roozbeh; Balooch, Guive; Usgaonkar, Karan; Gur, Onur; Tran, Phat L.; Crosby, Jessi R.; Meyer, Marcin; Su, Yewang; Chad Webb, R.; Tedesco, Andrew S.; Slepian, Marvin J.; Huang, Yonggang; Rogers, John A.

    2015-07-01

    Mechanical assessment of soft biological tissues and organs has broad relevance in clinical diagnosis and treatment of disease. Existing characterization methods are invasive, lack microscale spatial resolution, and are tailored only for specific regions of the body under quasi-static conditions. Here, we develop conformal and piezoelectric devices that enable in vivo measurements of soft tissue viscoelasticity in the near-surface regions of the epidermis. These systems achieve conformal contact with the underlying complex topography and texture of the targeted skin, as well as other organ surfaces, under both quasi-static and dynamic conditions. Experimental and theoretical characterization of the responses of piezoelectric actuator-sensor pairs laminated on a variety of soft biological tissues and organ systems in animal models provide information on the operation of the devices. Studies on human subjects establish the clinical significance of these devices for rapid and non-invasive characterization of skin mechanical properties.

  5. Colonic perianastomotic carcinogenesis in an experimental model

    PubMed Central

    Pérez-Holanda, Sergio; Rodrigo, Luis; Pinyol-Felis, Carme; Vinyas-Salas, Joan

    2008-01-01

    Background To examine the effect of anastomosis on experimental carcinogenesis in the colon of rats. Methods Forty-three 10-week-old male and female Sprague-Dawley rats were operated on by performing an end-to-side ileorectostomy. Group A:16 rats received no treatment. Group B: 27 rats received 18 subcutaneous injections weekly at a dose of 21 mg/kg wt of 1–2 dimethylhydrazine (DMH), from the eighth day after the intervention. Animals were sacrificed between 25–27 weeks. The number of tumours, their localization, size and microscopic characteristics were recorded. A paired chi-squared analysis was performed comparing tumoral induction in the perianastomotic zone with the rest of colon with faeces. Results No tumours appeared in the dimethylhydrazine-free group. The percentage tumoral area was greater in the perianastomotic zone compared to tumours which had developed in the rest of colon with faeces (p = 0.014). Conclusion We found a cocarcinogenic effect due to the creation of an anastomosis, when using an experimental model of colonic carcinogenesis induced by DMH in rats. PMID:18667092

  6. Experimental source characterization techniques for studying the acoustic properties of perforates under high level acoustic excitation.

    PubMed

    Bodén, Hans

    2011-11-01

    This paper discusses experimental techniques for obtaining the acoustic properties of in-duct samples with non-linear acoustic characteristic. The methods developed are intended both for studies of non-linear energy transfer to higher harmonics for samples only accessible from one side such as wall treatment in aircraft engine ducts or automotive exhaust systems and for samples accessible from both sides such as perforates or other top sheets. When harmonic sound waves are incident on the sample nonlinear energy transfer results in sound generation at higher harmonics at the sample (perforate) surface. The idea is that these sources can be characterized using linear system identification techniques similar to one-port or two-port techniques which are traditionally used for obtaining source data for in-duct sources such as IC-engines or fans. The starting point will be so called polyharmonic distortion modeling which is used for characterization of nonlinear properties of microwave systems. It will be shown how acoustic source data models can be expressed using this theory. Source models of different complexity are developed and experimentally tested. The results of the experimental tests show that these techniques can give results which are useful for understanding non-linear energy transfer to higher harmonics. PMID:22087890

  7. Numerical modeling of experimental human fibrous cap delamination.

    PubMed

    Leng, Xiaochang; Davis, Lindsey A; Deng, Xiaomin; Sutton, Michael A; Lessner, Susan M

    2016-06-01

    Fibrous cap delamination is a critical process during the rupture of atherosclerotic plaque, which often leads to severe life-threatening clinical consequences such as myocardial infarction or stroke. In this study a finite element modeling and simulation approach is presented that enables the study of fibrous cap delamination experiments for the purpose of understanding the fibrous cap delamination process. A cohesive zone model (CZM) approach is applied to simulate delamination of the fibrous cap from the underlying plaque tissue. A viscoelastic anisotropic (VA) model for the bulk arterial material behavior is extended from existing studies so that the hysteresis phenomenon observed in the fibrous cap delamination experiments can be captured. A finite element model is developed for the fibrous cap delamination experiments, in which arterial layers (including the fibrous cap and the underlying plaque tissue) are represented by solid elements based on the VA model and the fibrous cap-underlying plaque tissue interface is characterized by interfacial CZM elements. In the CZM, the delamination process is governed by an exponential traction-separation law which utilizes critical energy release rates obtained directly from the fibrous cap delamination experiments. A set of VA model parameter values and CZM parameter values is determined based on values suggested in the literature and through matching simulation predictions of the load vs. load-point displacement curve with one set of experimental measurements. Using this set of parameter values, simulation predictions for other sets of experimental measurements are obtained and good agreement between simulation predictions and experimental measurements is observed. Results of this study demonstrate the applicability of the viscoelastic anisotropic model and the CZM approach for the simulation of diseased arterial tissue failure processes. PMID:26897094

  8. Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.

    2011-11-01

    Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.

  9. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity.

    PubMed

    Thyparambil, Aby A; Wei, Yang; Latour, Robert A

    2015-01-01

    Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure-function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems. PMID:25708632

  10. Experimental characterization of adsorbed protein orientation, conformation, and bioactivity

    PubMed Central

    Thyparambil, Aby A.; Wei, Yang; Latour, Robert A.

    2015-01-01

    Protein adsorption on material surfaces is a common phenomenon that is of critical importance in many biotechnological applications. The structure and function of adsorbed proteins are tightly interrelated and play a key role in the communication and interaction of the adsorbed proteins with the surrounding environment. Because the bioactive state of a protein on a surface is a function of the orientation, conformation, and accessibility of its bioactive site(s), the isolated determination of just one or two of these factors will typically not be sufficient to understand the structure–function relationships of the adsorbed layer. Rather a combination of methods is needed to address each of these factors in a synergistic manner to provide a complementary dataset to characterize and understand the bioactive state of adsorbed protein. Over the past several years, the authors have focused on the development of such a set of complementary methods to address this need. These methods include adsorbed-state circular dichroism spectropolarimetry to determine adsorption-induced changes in protein secondary structure, amino-acid labeling/mass spectrometry to assess adsorbed protein orientation and tertiary structure by monitoring adsorption-induced changes in residue solvent accessibility, and bioactivity assays to assess adsorption-induced changes in protein bioactivity. In this paper, the authors describe the methods that they have developed and/or adapted for each of these assays. The authors then provide an example of their application to characterize how adsorption-induced changes in protein structure influence the enzymatic activity of hen egg-white lysozyme on fused silica glass, high density polyethylene, and poly(methyl-methacrylate) as a set of model systems. PMID:25708632

  11. Numerical and experimental characterizations of low frequency MEMS AE sensors

    NASA Astrophysics Data System (ADS)

    Saboonchi, Hossain; Ozevin, Didem

    2013-04-01

    In this paper, new MEMS Acoustic Emission (AE) sensors are introduced. The transduction principle of the sensors is capacitance due to gap change. The sensors are numerically modeled using COMSOL Multiphysics software in order to estimate the resonant frequencies and capacitance values, and manufactured using MetalMUMPS process. The process includes thick metal layer (20 μm) made of nickel for freely vibration layer and polysilicon layer as the stationary layer. The metal layer provides a relatively heavy mass so that the spring constant can be designed high for low frequency sensor designs in order to increase the collapse voltage level (proportional to the stiffness), which increases the sensor sensitivity. An insulator layer is deposited between stationary layer and freely vibration layer, which significantly reduces the potential of stiction as a failure mode. As conventional AE sensors made of piezoelectric materials cannot be designed for low frequencies (<300 kHz) with miniature size, the MEMS sensor frequencies are tuned to 50 kHz and 200 kHz. The each sensor contained several parallel-connected cells with an overall size of approximately 250μm × 500 μm. The electromechanical characterizations are performed using high precision impedance analyzer and compared with the numerical results, which indicate a good fit. The initial mechanical characterization tests in atmospheric pressure are conducted using pencil lead break simulations. The proper sensor design reduces the squeeze film damping so that it does not require any vacuum packaging. The MEMS sensor responses are compared with similar frequency piezoelectric AE sensors.

  12. Effects of Anethole in Nociception Experimental Models

    PubMed Central

    Ritter, Alessandra Mileni Versuti; Ames, Franciele Queiroz; Otani, Fernando; de Oliveira, Rubia Maria Weffort; Cuman, Roberto Kenji Nakamura; Bersani-Amado, Ciomar Aparecida

    2014-01-01

    This study investigated the antinociceptive activity of anethole (anethole 1-methoxy-4-benzene (1-propenyl)), major compound of the essential oil of star anise (Illicium verum), in different experimental models of nociception. The animals were pretreated with anethole (62.5, 125, 250, and 500 mg/kg) one hour before the experiments. To eliminate a possible sedative effect of anethole, the open field test was conducted. Anethole (62.5, 125, 250, and 500 mg/kg) showed an antinociceptive effect in the writhing model induced by acetic acid, in the second phase of the formalin test (125 and 250 mg/kg) in the test of glutamate (62.5, 125, and 250 mg/kg), and expresses pain induced by ACF (250 mg/kg). In contrast, anethole was not able to increase the latency time on the hot plate and decrease the number of flinches during the initial phase of the formalin test in any of the doses tested. It was also demonstrated that anethole has no association with sedative effects. Therefore, these data showed that anethole, at all used doses, has no sedative effect and has an antinociceptive effect. This effect may be due to a decrease in the production/release of inflammatory mediators. PMID:25506382

  13. Effects of anethole in nociception experimental models.

    PubMed

    Ritter, Alessandra Mileni Versuti; Ames, Franciele Queiroz; Otani, Fernando; de Oliveira, Rubia Maria Weffort; Cuman, Roberto Kenji Nakamura; Bersani-Amado, Ciomar Aparecida

    2014-01-01

    This study investigated the antinociceptive activity of anethole (anethole 1-methoxy-4-benzene (1-propenyl)), major compound of the essential oil of star anise (Illicium verum), in different experimental models of nociception. The animals were pretreated with anethole (62.5, 125, 250, and 500 mg/kg) one hour before the experiments. To eliminate a possible sedative effect of anethole, the open field test was conducted. Anethole (62.5, 125, 250, and 500 mg/kg) showed an antinociceptive effect in the writhing model induced by acetic acid, in the second phase of the formalin test (125 and 250 mg/kg) in the test of glutamate (62.5, 125, and 250 mg/kg), and expresses pain induced by ACF (250 mg/kg). In contrast, anethole was not able to increase the latency time on the hot plate and decrease the number of flinches during the initial phase of the formalin test in any of the doses tested. It was also demonstrated that anethole has no association with sedative effects. Therefore, these data showed that anethole, at all used doses, has no sedative effect and has an antinociceptive effect. This effect may be due to a decrease in the production/release of inflammatory mediators. PMID:25506382

  14. Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact

    NASA Astrophysics Data System (ADS)

    Avdeev, Ilya; Gilaki, Mehdi

    2014-12-01

    We report on modeling mechanical response of cylindrical lithium-ion battery cells that are commonly used in automotive applications when subjected to impact testing. The developed homogenized model that accurately captures mechanical response of a cell to lateral crash is reported. The proposed model was validated using static and dynamic experimental testing. Highly nonlinear mechanical deformations of the cells were captured experimentally using a high-speed camera and later characterized through computer tomography. Numerically, we have investigated the feasibility of using explicit finite element code for accurate modeling of impact on one cell, so it can be used for an entire battery pack that consists of hundreds or thousands of cells. In this study, we have developed and compared two homogenization methods for the jellyroll in a cylindrical lithium-ion battery cell. Homogenization was conducted in a lateral/radial direction. Based on the results of the homogenization, the material model utilizing crushable foam constitutive behavior was then developed for simulations. Experimental results showed a very good agreement with simulations, thus validating the proposed approach and giving us confidence to move forward with the crush simulations of an entire battery pack. Zones of potential electric shortages were determined based on the experiments and simulations.

  15. Experimental characterization of collision avoidance in pedestrian dynamics.

    PubMed

    Parisi, Daniel R; Negri, Pablo A; Bruno, Luciana

    2016-08-01

    In the present paper, the avoidance behavior of pedestrians was characterized by controlled experiments. Several conflict situations were studied considering different flow rates and group sizes in crossing and head-on configurations. Pedestrians were recorded from above, and individual two-dimensional trajectories of their displacement were recovered after image processing. Lateral swaying amplitude and step lengths were measured for free pedestrians, obtaining similar values to the ones reported in the literature. Minimum avoidance distances were computed in two-pedestrian experiments. In the case of one pedestrian dodging an arrested one, the avoidance distance did not depend on the relative orientation of the still pedestrian with respect to the direction of motion of the first. When both pedestrians were moving, the avoidance distance in a perpendicular encounter was longer than the one obtained during a head-on approach. It was found that the mean curvature of the trajectories was linearly anticorrelated with the mean speed. Furthermore, two common avoidance maneuvers, stopping and steering, were defined from the analysis of the acceleration and curvature in single trajectories. Interestingly, it was more probable to observe steering events than stopping ones, also the probability of simultaneous steering and stopping occurrences was negligible. The results obtained in this paper can be used to validate and calibrate pedestrian dynamics models. PMID:27627328

  16. Experimental characterization of Fresnel-Köhler concentrators

    NASA Astrophysics Data System (ADS)

    Zamora, Pablo; Benítez, Pablo; Mohedano, Rubén; Cvetković, Aleksandra; Vilaplana, Juan; Li, Yang; Hernández, Maikel; Chaves, Julio; Miñano, Juan C.

    2012-01-01

    Most cost-effective concentrated photovoltaics (CPV) systems are based on an optical train comprising two stages, the first being a Fresnel lens. Among them, the Fresnel-Köhler (FK) concentrator stands out owing to both performance and practical reasons. We describe the experimental measurements procedure for FK concentrator modules. This procedure includes three main types of measurements: electrical efficiency, acceptance angle, and irradiance uniformity at the solar cell plane. We have collected here the performance features of two different FK prototypes (ranging different f-numbers, concentration ratios, and cell sizes). The electrical efficiencies measured in both prototypes are high and fit well with the models, achieving values up to 32.7% (temperature corrected, and with no antireflective coating on SOE or POE surfaces) in the best case. The measured angular transmission curves show large acceptance angles, again perfectly matching the expected values [measured concentration acceptance product (CAP) values over 0.56]. The irradiance pattern on the cell (obtained with a digital camera) shows an almost perfectly uniform distribution, as predicted by raytrace simulations. All these excellent on-sun results confirm the FK concentrator as a potentially cost-effective solution for the CPV market.

  17. Dynamic Characterization and Modeling of Potting Materials for Electronics Assemblies

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Lee, Gilbert; Santiago, Jaime

    2015-06-01

    Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling. Both static and dynamic characterization of encapsulation material is needed to generate a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, encapsulation scheme consists of layers of polymeric material Sylgard 184 and Triggerbond Epoxy-20-3001. Experiments conducted for characterization of materials include conventional tension and compression tests, Hopkinson bar, dynamic material analyzer (DMA) and a non-conventional accelerometer based resonance tests for obtaining high frequency data. For an ideal material, data can be fitted to Williams-Landel-Ferry (WLF) model. A new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor (WLF model) with experimental incremental shift factors. Deviations can be observed by comparison of experimental data with the model fit to determine the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests indicates deviations from experimental high strain rate data. In this paper, experimental results for different materials used for mitigating impact, and ways to combine data from resonance, DMA and Hopkinson bar together with modeling refinements will be presented.

  18. Experimental, Numerical and Observational Models in Geodynamics

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, Carolina

    2015-04-01

    Geodynamics, the study of the forces that drives all Earth's processes is a rich field that deeply connects all aspects of geological and geophysical studies, from surface observations of the sedimentary record to knowledge of deep Earth structure from mineral physics and seismology. In the context of the solid Earth geodynamics primarily focuses on lithosphere and mantle dynamics, while core dynamics is the purview of geomagnetism. I will focus this talk on the former, its historical context and future developments. We have known the equations of motion and mechanics for ~200 years, but only relatively recently can they be solved with enough accuracy and resolution to do geology. We have made great strides since Arthur Holmes conceptual models of mantle flow, thanks to computational and experimental advances. We can know model plate boundaries globally with resolutions in the order of a few kms and image temperature and velocity simultaneously in the laboratory in 3D and non-intrusively. We have also learned a great deal about the physics of the Earth, from composition to rheology. New theories on plate boundary rheology are paving the way for self-consistent generation of plates from mantle flow. New computational methods allow for adaptive meshing, fabric development and history, so we can study deformation and compare directly to geological observations in mountain ranges and continental rifts. We can use ever more sophisticated images of mantle structure from seismic and other geophysical data to probe the relationship between melting, flow and dynamical processes. We can reconstruct landscapes and relief, plate motions and sedimentation and ask how much the mantle has contributed to drainage reversal, sedimentation and climate change. The future of the field is ever brighter.

  19. A human experimental model of episodic pain.

    PubMed

    Petrini, Laura; Hennings, Kristian; Li, Xi; Negro, Francesco; Arendt-Nielsen, Lars

    2014-12-01

    An experimental model of daily episodic pain was developed to investigate peripheral sensitization and cortical reorganization in healthy individuals. Two experiments (A and B) were conducted. Experiments A and B consisted of one and five consecutive days, respectively, in which the participants were subjected to 45 min of intense painful cutaneous electrical stimulation (episodic pain session), using a stimulus paradigm that in animals has been shown to induce long-term potentiation. These electrical stimulations produced a verbal pain rating of approximately 85 on a 0-100 verbal rating scale (VRS). Physiological (blood flow and axon flare reflex), psychophysical (perception threshold and verbal pain ratings) and electrophysiological (128 channels recorded somatosensory evoked potential (SEP)) measurements were recorded. The stimulation evoked a visible axon flare reflex and caused significantly increased cutaneous blood flow around the site of the stimulation. Axon flare reflex and blood flow reached a plateau on day one in all the subjects and no significant changes between the days were observed. The results showed that the effect of the electrical stimulations changed over the five days; pain potentiation was induced on the first day (significant increase in the verbal pain ratings during the 45 min stimulation) but not on any of the subsequent days. After five days of subsequent pain induction, the global field power showed a significant reduction in P2 amplitude in the late stage (200-370 ms, in the central-parietal area). In conclusion, the results suggest that in healthy individuals this model of episodic pain produces a rapid adaptation after day one and that generates significant SEP changes at day five. PMID:25128903

  20. Experimental characterization of the transfer function for a Silver-dielectric superlens.

    PubMed

    Moore, Ciaran P; Blaikie, Richard J

    2012-03-12

    We describe a technique for experimentally determining the spatial-frequency modulation transfer function for near-field super-resolution imaging systems and present such a modulation transfer function for a 20|40|20 nm poly(vinyl alcohol)~(PVA)|Silver|PVA superlens exposed to 365 nm wavelength (i-line) radiation through a 50-nm thick tungsten mask. An extensive spectral characterization is achieved from only two exposures, with transmission coefficients determined for spatial frequencies as high as 13 µm-1, corresponding to λ / 4.75. The resulting transfer function is in good agreement with analytical models that incorporate the effects of mask-superlens interactions. PMID:22418523

  1. Experimental, Numerical and Analytical Characterization of Slosh Dynamics Applied to In-Space Propellant Storage, Management and Transfer

    NASA Technical Reports Server (NTRS)

    Storey, Jedediah M.; Kirk, Daniel; Gutierrez, Hector; Marsell, Brandon; Schallhorn, Paul; Lapilli, Gabriel D.

    2015-01-01

    Experimental and numerical results are presented from a new cryogenic fluid slosh program at the Florida Institute of Technology (FIT). Water and cryogenic liquid nitrogen are used in various ground-based tests with an approximately 30 cm diameter spherical tank to characterize damping, slosh mode frequencies, and slosh forces. The experimental results are compared to a computational fluid dynamics (CFD) model for validation. An analytical model is constructed from prior work for comparison. Good agreement is seen between experimental, numerical, and analytical results.

  2. Experimental modelling of outburst flood - bed interactions

    NASA Astrophysics Data System (ADS)

    Carrivick, J. L.; Xie, Z.; Sleigh, A.; Hubbard, M.

    2009-04-01

    Outburst floods are a sudden release and advancing wave of water and sediment, with a peak discharge that is often several orders of magnitude greater than perennial flows. Common outburst floods from natural sources include those from glacial and moraine-impounded lakes, freshwater dyke and levee bursts, volcanic debris dams, landslides, avalanches, coastal bay-bars, and those from tree or vegetation dams. Outburst flood hazards are regularly incorporated into risk assessments for urban, coastal and mountainous areas, for example. Outburst flood hazards are primarily due to direct impacts, caused by a frontal surge wave, from debris within a flow body, and from the mass and consistency of the flows. A number of secondary impacts also pose hazards, including widespread deposition of sediment and blocked tributary streams. It is rapid landscape change, which is achieved the mobilization and redistribution of sediment that causes one of the greatest hazards due to outburst floods. The aim of this project is therefore to parameterise hydrodynamic - sedimentary interactions in experimental outburst floods. Specifically, this project applies laboratory flume modelling, which offers a hitherto untapped opportunity for examining complex interactions between water and sediment within outburst floods. The experimental set-up is of a tradition lock-gate design with a straight 4 m long tank. Hydraulics are scaled at 1:20 froude scale and the following controls on frontal wave flow-bed interactions and hence on rapid landscape change are being investigated: 1. Pre-existing mobile sediment effects, fixed bed roughness effects, sediment concentration effects, mobile bed effects. An emphasis is being maintained on examining the downstream temporal and spatial change in physical character of the water / sediment frontal wave. Facilities are state-of-the-art with a fully-automated laser bed-profiler to measure bed elevation after a run, Seatek arrays to measure transient flow

  3. Recycle polymer characterization and adhesion modeling

    NASA Astrophysics Data System (ADS)

    Holbery, James David

    Contaminants from paper product producers that adversely affect fiber yield have been collected from mills located in three North American geographic regions. Samples have been fractionated using a modified solvent extraction process and subsequently quantitatively characterized and it was found that agglomerates were comprised of the following: approximately 30% extractable polymeric material, 25--35% fiber, 12--15% inorganic material, 15% non-extractable high molecular-weight polyethylene or cross-linked polymers, and 2--4% starch residue. Three representative polymers, paraffin, low-molecular weight polyethylene, and a commercial hot-melt adhesive were selected for further analysis to model the attractive and repulsive behavior using Scanning Probe Microscopy in an aqueous cell. Scanning force probes were characterized using an original technique utilizing a nano-indentation apparatus that is non-destructive and is accurate to within 10% for probes with force constants as low as 1 N/m. Surface force measurements were performed between a Poly (Styrene/30% Butyl Methacrylate) sphere and substrates produced from paraffin, polyethylene, and a commercial hot-melt adhesive in solutions ranging in NaF ionic concentrations from 0.001M to 1M. Reasonable theoretical agreement with experimental data has been shown between a combined model applying van der Waals force contributions using the Derjaguin approximation and electrostatic contributions as predicted by a Debye-Huckel linearization of the Poisson-Boltzmann equation utilizing Hamaker constants derived from critical surface energies determined from Zisman and Lifshitz-van der Waals energy approaches. This model has been applied to measured data and indicates the strength of adhesion for the hot-melt to be 0.14 nN while that of paraffin is 1.9 nN and polyethylene 2.8 nN. Paraffin and polyethylene are 13.5 and 20 times greater in attraction than the hot-melt adhesive. Hot-melt adhesive repulsion is predicted to be 220

  4. Distributed-Channel Bipolar Device: Experimentation, Analytical Modeling and Applications.

    NASA Astrophysics Data System (ADS)

    Jiang, Fenglai

    Experimental results and theoretical modeling for four terminal distributed channel bipolar devices (DCBD) are presented. The DCBD device is comprised of an interwoven BJT and MOSFET. The device may be characterized as a MOSFET with a bipolar transistor source distributed under the MOSFET channel. Alternatively, the device may be represented as a BJT where a MOSFET channel provides the current collection function. The physical layout of the device is that of a n-channel MOSFET placed above a p-Si epitaxial base region which was grown on an n^+-Si substrate emitter. Distributed electronic behavior exhibits itself through self-biasing influences of the channel-collected current on the channel-base junction bias. For appropriate biasing, the MOSFET channel divides itself into two regions exhibiting forward active and saturation BJT behavior. Both experimental results and theoretical modeling are provided. Experimental results for "large area" rectangular gate, circular gate and trapezoidal gate DCBD are reported. The experimental results exhibit the transconductance threshold voltage, beta fall off and transconductance fall-off features reported previously by others. A "large area" trapezoidal gate structure is incorporated to illustrate the gate area influences on the electrical characteristics and to provide a model sensitive structure for evaluating the validity of the theory developed in the dissertation. An analytical model based on conventional MOSFET and bipolar theories is developed. The analytical model is applied to the large gate area devices (example: 0.127 mm rectangular gate length) and smaller dimensional gate devices down to 0.9 micron rectangular gate length. The theoretical results show good agreement with the large gate area experimental results. Application examples are provided. The use of the base current invariant transconductance threshold voltage as a reference voltage is discussed. Comparison of the transconductance threshold voltage

  5. Robustness and modeling error characterization

    NASA Technical Reports Server (NTRS)

    Lehtomaki, N. A.; Castanon, D. A.; Sandell, N. R., Jr.; Levy, B. C.; Athans, M.; Stein, G.

    1984-01-01

    The results on robustness theory presented here are extensions of those given in Lehtomaki et al., (1981). The basic innovation in these new results is that they utilize minimal additional information about the structure of the modeling error, as well as its magnitude, to assess the robustness of feedback systems for which robustness tests based on the magnitude of modeling error alone are inconclusive.

  6. Characterizing and Modeling Ferrite-Core Probes

    NASA Astrophysics Data System (ADS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.

    2010-02-01

    In this paper, we accurately and carefully characterize a ferrite-core probe that is widely used for aircraft inspections. The characterization starts with the development of a model that can be executed using the proprietary volume-integral code, VIC-3D©, and then the model is fitted to measured multifrequency impedance data taken with the probe in freespace and over samples of a titanium alloy and aluminum. Excellent results are achieved, and will be discussed.

  7. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation

    PubMed Central

    Miocinovic, Svjetlana; Lempka, Scott F.; Russo, Gary S.; Maks, Christopher B.; Butson, Christopher R.; Sakaie, Ken E.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2008-01-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson’s disease and shows great promise for numerous other disorders. While the fundamental purpose of DBS is to modulate neural activity with electric fields, little is known about the actual voltage distribution generated in the brain by DBS electrodes and as a result it is difficult to accurately predict which brain areas are directly affected by the stimulation. The goal of this study was to characterize the spatial and temporal characteristics of the voltage distribution generated by DBS electrodes. We experimentally recorded voltages around active DBS electrodes in either a saline bath or implanted in the brain of a non-human primate. Recordings were made during voltage-controlled and current-controlled stimulation. The experimental findings were compared to volume conductor electric field models of DBS parameterized to match the different experiments. Three factors directly affected the experimental and theoretical voltage measurements: 1) DBS electrode impedance, primarily dictated by a voltage drop at the electrode-electrolyte interface and the conductivity of the tissue medium, 2) capacitive modulation of the stimulus waveform, and 3) inhomogeneity and anisotropy of the tissue medium. While the voltage distribution does not directly predict the neural response to DBS, the results of this study do provide foundational building blocks for understanding the electrical parameters of DBS and characterizing its effects on the nervous system. PMID:19118551

  8. Thermomechanical characterization and modeling for TSV structures

    SciTech Connect

    Jiang, Tengfei; Zhao, Qiu; Im, Jay; Ho, Paul S.; Ryu, Suk-Kyu; Huang, Rui

    2014-06-19

    Continual scaling of devices and on-chip wiring has brought significant challenges for materials and processes beyond the 32-nm technology node in microelectronics. Recently, three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to meet the future technology requirements. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper presents experimental measurements of the thermal stresses in TSV structures and analyses of interfacial reliability. The micro-Raman measurements were made to characterize the local distribution of the near-surface stresses in Si around TSVs. On the other hand, the precision wafer curvature technique was employed to measure the average stress and deformation in the TSV structures subject to thermal cycling. To understand the elastic and plastic behavior of TSVs, the microstructural evolution of the Cu vias was analyzed using focused ion beam (FIB) and electron backscattering diffraction (EBSD) techniques. Furthermore, the impact of thermal stresses on interfacial reliability of TSV structures was investigated by a shear-lag cohesive zone model that predicts the critical temperatures and critical via diameters.

  9. Selective experimental review of the Standard Model

    SciTech Connect

    Bloom, E.D.

    1985-02-01

    Before disussing experimental comparisons with the Standard Model, (S-M) it is probably wise to define more completely what is commonly meant by this popular term. This model is a gauge theory of SU(3)/sub f/ x SU(2)/sub L/ x U(1) with 18 parameters. The parameters are ..cap alpha../sub s/, ..cap alpha../sub qed/, theta/sub W/, M/sub W/ (M/sub Z/ = M/sub W//cos theta/sub W/, and thus is not an independent parameter), M/sub Higgs/; the lepton masses, M/sub e/, M..mu.., M/sub r/; the quark masses, M/sub d/, M/sub s/, M/sub b/, and M/sub u/, M/sub c/, M/sub t/; and finally, the quark mixing angles, theta/sub 1/, theta/sub 2/, theta/sub 3/, and the CP violating phase delta. The latter four parameters appear in the quark mixing matrix for the Kobayashi-Maskawa and Maiani forms. Clearly, the present S-M covers an enormous range of physics topics, and the author can only lightly cover a few such topics in this report. The measurement of R/sub hadron/ is fundamental as a test of the running coupling constant ..cap alpha../sub s/ in QCD. The author will discuss a selection of recent precision measurements of R/sub hadron/, as well as some other techniques for measuring ..cap alpha../sub s/. QCD also requires the self interaction of gluons. The search for the three gluon vertex may be practically realized in the clear identification of gluonic mesons. The author will present a limited review of recent progress in the attempt to untangle such mesons from the plethora q anti q states of the same quantum numbers which exist in the same mass range. The electroweak interactions provide some of the strongest evidence supporting the S-M that exists. Given the recent progress in this subfield, and particularly with the discovery of the W and Z bosons at CERN, many recent reviews obviate the need for further discussion in this report. In attempting to validate a theory, one frequently searches for new phenomena which would clearly invalidate it. 49 references, 28 figures.

  10. Biomass thermochemical gasification: Experimental studies and modeling

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  11. Peripapillary and posterior scleral mechanics--part II: experimental and inverse finite element characterization.

    PubMed

    Girard, Michaël J A; Downs, J Crawford; Bottlang, Michael; Burgoyne, Claude F; Suh, J-K Francis

    2009-05-01

    The posterior sclera likely plays an important role in the development of glaucoma, and accurate characterization of its mechanical properties is needed to understand its impact on the more delicate optic nerve head--the primary site of damage in the disease. The posterior scleral shells from both eyes of one rhesus monkey were individually mounted on a custom-built pressurization apparatus. Intraocular pressure was incrementally increased from 5 mm Hg to 45 mm Hg, and the 3D displacements were measured using electronic speckle pattern interferometry. Finite element meshes of each posterior scleral shell were reconstructed from data generated by a 3D digitizer arm (shape) and a 20 MHz ultrasound transducer (thickness). An anisotropic hyperelastic constitutive model described in a companion paper (Girard, Downs, Burgoyne, and Suh, 2009, "Peripapillary and Posterior Scleral Mechanics--Part I: Development of an Anisotropic Hyperelastic Constitutive Model," ASME J. Biomech. Eng., 131, p. 051011), which includes stretch-induced stiffening and multidirectional alignment of the collagen fibers, was applied to each reconstructed mesh. Surface node displacements of each model were fitted to the experimental displacements using an inverse finite element method, which estimated a unique set of 13 model parameters. The predictions of the proposed constitutive model matched the 3D experimental displacements well. In both eyes, the tangent modulus increased dramatically with IOP, which indicates that the sclera is mechanically nonlinear. The sclera adjacent to the optic nerve head, known as the peripapillary sclera, was thickest and exhibited the lowest tangent modulus, which might have contributed to the uniform distribution of the structural stiffness for each entire scleral shell. Posterior scleral deformation following acute IOP elevations appears to be nonlinear and governed by the underlying scleral collagen microstructure as predicted by finite element modeling. The

  12. Experimental characterization of high speed centrifugal compressor aerodynamic forcing functions

    NASA Astrophysics Data System (ADS)

    Gallier, Kirk

    The most common and costly unexpected post-development gas turbine engine reliability issue is blade failure due to High Cycle Fatigue (HCF). HCF in centrifugal compressors is a coupled nonlinear fluid-structure problem for which understanding of the phenomenological root causes is incomplete. The complex physics of this problem provides significant challenges for Computational Fluid Dynamics (CFD) techniques. Furthermore, the available literature fails to address the flow field associated with the diffuser potential field, a primary cause of forced impeller vibration. Because of the serious nature of HCF, the inadequacy of current design approaches to predict HCF, and the fundamental lack of benchmark experiments to advance the design practices, there exists a need to build a database of information specific to the nature of the diffuser generated forcing function as a foundation for understanding flow induced blade vibratory failure. The specific aim of this research is to address the fundamental nature of the unsteady aerodynamic interaction phenomena inherent in high-speed centrifugal compressors wherein the impeller exit flow field is dynamically modulated by the vaned diffuser potential field or shock structure. The understanding of this unsteady aerodynamic interaction is fundamental to characterizing the impeller forcing function. Unsteady static pressure measurement at several radial and circumferential locations in the vaneless space offer a depiction of pressure field radial decay, circumferential variation and temporal fluctuation. These pressure measurements are coupled with high density, full field measurement of the velocity field within the diffuser vaneless space at multiple spanwise positions. The velocity field and unsteady pressure field are shown to be intimately linked. A strong momentum gradient exiting the impeller is shown to extend well across the vaneless space and interact with the diffuser vane leading edge. The deterministic unsteady

  13. Characterization of animal models for primary sclerosing cholangitis (PSC)

    PubMed Central

    Fickert, Peter; Pollheimer, Marion J.; Beuers, Ulrich; Lackner, Carolin; Hirschfield, Gideon; Housset, Chantal; Keitel, Verena; Schramm, Christoph; Marschall, Hanns-Ulrich; Karlsen, Tom H.; Melum, Espen; Kaser, Arthur; Eksteen, Bertus; Strazzabosco, Mario; Manns, Michael; Trauner, Michael

    2015-01-01

    Summary Primary sclerosing cholangitis (PSC) is a chronic cholangiopathy characterized by biliary fibrosis, development of cholestasis and end stage liver disease, high risk of malignancy, and frequent need for liver transplantation. The poor understanding of its pathogenesis is also reflected in the lack of effective medical treatment. Well-characterized animal models are utterly needed to develop novel pathogenetic concepts and study new treatment strategies. Currently there is no consensus on how to evaluate and characterize potential PSC models, which makes direct comparison of experimental results and effective exchange of study material between research groups difficult. The International Primary Sclerosing Cholangitis Study Group (IPSCSG) has therefore summarized these key issues in a position paper proposing standard requirements for the study of animal models of PSC. PMID:24560657

  14. Tupaia belangeri as an experimental animal model for viral infection.

    PubMed

    Tsukiyama-Kohara, Kyoko; Kohara, Michinori

    2014-01-01

    Tupaias, or tree shrews, are small mammals that are similar in appearance to squirrels. The morphological and behavioral characteristics of the group have been extensively characterized, and despite previously being classified as primates, recent studies have placed the group in its own family, the Tupaiidae. Genomic analysis has revealed that the genus Tupaia is closer to humans than it is to rodents. In addition, tupaias are susceptible to hepatitis B virus and hepatitis C virus. The only other experimental animal that has been demonstrated to be sensitive to both of these viruses is the chimpanzee, but restrictions on animal testing have meant that experiments using chimpanzees have become almost impossible. Consequently, the development of the tupaia for use as an animal infection model could become a powerful tool for hepatitis virus research and in preclinical studies on drug development. PMID:25048261

  15. Combined numerical and experimental biomechanical characterization of soft collagen hydrogel substrate.

    PubMed

    Castro, A P G; Laity, P; Shariatzadeh, M; Wittkowske, C; Holland, C; Lacroix, D

    2016-04-01

    This work presents a combined experimental-numerical framework for the biomechanical characterization of highly hydrated collagen hydrogels, namely with 0.20, 0.30 and 0.40% (by weight) of collagen concentration. Collagen is the most abundant protein in the extracellular matrix of animals and humans. Its intrinsic biocompatibility makes collagen a promising substrate for embedding cells within a highly hydrated environment mimicking natural soft tissues. Cell behaviour is greatly influenced by the mechanical properties of the surrounding matrix, but the biomechanical characterization of collagen hydrogels has been challenging up to now, since they present non-linear poro-viscoelastic properties. Combining the stiffness outcomes from rheological experiments with relevant literature data on collagen permeability, poroelastic finite element (FE) models were developed. Comparison between experimental confined compression tests available in the literature and analogous FE stress relaxation curves showed a close agreement throughout the tests. This framework allowed establishing that the dynamic shear modulus of the collagen hydrogels is between 0.0097 ± 0.018 kPa for the 0.20% concentration and 0.0601 ± 0.044 kPa for the 0.40% concentration. The Poisson's ratio values for such conditions lie within the range of 0.495-0.485 for 0.20% and 0.480-0.470 for 0.40%, respectively, showing that rheology is sensitive enough to detect these small changes in collagen concentration and thus allowing to link rheology results with the confined compression tests. In conclusion, this integrated approach allows for accurate constitutive modelling of collagen hydrogels. This framework sets the grounds for the characterization of related hydrogels and to the use of this collagen parameterization in more complex multiscale models. PMID:26914710

  16. Experimentally Induced Mammalian Models of Glaucoma

    PubMed Central

    Yoshitomi, Takeshi; Zorumski, Charles F.; Izumi, Yukitoshi

    2015-01-01

    A wide variety of animal models have been used to study glaucoma. Although these models provide valuable information about the disease, there is still no ideal model for studying glaucoma due to its complex pathogenesis. Animal models for glaucoma are pivotal for clarifying glaucoma etiology and for developing novel therapeutic strategies to halt disease progression. In this review paper, we summarize some of the major findings obtained in various glaucoma models and examine the strengths and limitations of these models. PMID:26064891

  17. Global Characterization of Model Parameter Space Using Information Topology

    NASA Astrophysics Data System (ADS)

    Transtrum, Mark

    A generic parameterized model is a mapping between parameters and data and is naturally interpreted as a prediction manifold embedded in data space. In this interpretation, known as Information Geometry, the Fisher Information Matrix (FIM) is a Riemannian metric that measures the identifiability of the model parameters. Varying the experimental conditions (e.g., times at which measurements are made) alters both the FIM and the geometric properties of the model. However, several global features of the model manifold (e.g., edges and corners) are invariant to changes in experimental conditions as long as the FIM is not singular. Invariance of these features to changing experimental conditions generates an ''Information Topology'' that globally characterizes a model's parameter space and reflects the underlying physical principles from which the model was derived. Understanding a model's information topology can give insights into the emergent physics that controls a system's collective behavior, identify reduced models and describe the relationship among them, and determine which parameter combinations will be difficult to identify for various experimental conditions.

  18. Experimental characterization of edge force on the Crookes radiometer

    SciTech Connect

    Ventura, Austin L.; Ketsdever, Andrew D.; Gimelshein, Natalia E.; Gimelshein, Sergey F.

    2014-12-09

    The contribution of edge force on the Crookes radiometer is experimentally investigated with three vane geometries. This work examines increasing the force per unit weight of a radiometer vane for applications such as near-space propulsion by increasing the vane’s perimeter while decreasing the total surface area of the vane by means of machined holes in the vanes. Experimental results are given for three vane geometries. These results indicate that although force to vane weight ratios can be improved, the maximum force is achieved by a vane geometry that contains no hole features.

  19. Combined experimental/analytical modeling using component mode synthesis

    SciTech Connect

    Martinez, D.R.; Carne, T.G.; Gregory, D.L.; Miller, A.K.

    1984-01-01

    This study evaluates the accuracy of computed model frequencies and mode shapes obtained from a combined experimental/analytical model for a simple beam structure. The structure was divided into two subsystems, and one subsystem was tested to obtain its free-free modes. Using a Component Mode Synthesis (CMS) technique, the experimental model data base for one subsystem was directly coupled with a finite element model of the other subsystem to create an experimental/analytical model of the total structure. Both the translational and rotational elements of the residual flexibilities and mode shapes at the interface of the experimental subsystem were measured and used in the coupling. The modal frequencies and mode shapes obtained for the combined experimental/analytical model are compared to those for a reference finite element model of the entire structure. The sensitivity of the CMS model predictions to errors in the modal parameters and residual flexibilities, which are required to define a subsystem, is also examined.

  20. Dual-porosity poroviscoelasticity and quantitative hydromechanical characterization of the brain tissue with experimental hydrocephalus data.

    PubMed

    Mehrabian, Amin; Abousleiman, Younane N; Mapstone, Timothy B; El-Amm, Christian A

    2015-11-01

    Hydromechanical brain models often involve constitutive relations which must account for soft tissue deformation and creep, together with the interstitial fluid movement and exchange through capillaries. The interaction of rather unknown mechanisms which produce, absorb, and circulate the cerebrospinal fluid within the central nervous system can further add to their complexity. Once proper models for these phenomena or processes are selected, estimation of the associated parameters could be even more challenging. This paper presents the results of a consistent, coupled poroviscoelastic modeling and characterization of the brain tissue as a dual-porosity system. The model draws from Biot's theory of poroviscoelasticity, and adopts the generalized Kelvin's rheological description of the viscoelastic tissue behavior. While the interstitial space serves as the primary porosity through which the bulk flow of the interstitial fluid occurs, a secondary porosity network comprising the capillaries and venous system allows for its partial absorption into the blood. The correspondence principle is used in deriving a time-dependent analytical solution to the proposed model. It allows for identical poroelastic formulation of the original poroviscoelastic problem in the Laplace transform space. Hydrocephalus generally refers to a class of medical conditions which share the ventricles enlargement as a common feature. A set of published data from induced hydrocephalus and follow-up perfusion of cats' brains is used for quantitative characterization of the proposed model. A selected portion of these data including the ventricular volume and rate of fluid absorption from the perfused brain, together with the forward model solution, is utilized via an inverse problem technique to find proper estimations of the model parameters. Results show significant improvement in model predictions of the experimental data. The convoluted and coupled solution results are presented through the time

  1. Experimental characterization of West African Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four West African strains and one South African strain of virulent Newcastle disease virus (NDV) were characterized through a two-phase experiment. Strains investigated were Burkina Faso/2415-580/2008, Nigeria/228-7/2006, Niger/1377/2006, and Goose/South Africa/08100426/2008. Phylogenetic analysis s...

  2. Topological Characterization of Extended Quantum Ising Models

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Song, Z.

    2015-10-01

    We show that a class of exactly solvable quantum Ising models, including the transverse-field Ising model and anisotropic X Y model, can be characterized as the loops in a two-dimensional auxiliary space. The transverse-field Ising model corresponds to a circle and the X Y model corresponds to an ellipse, while other models yield cardioid, limacon, hypocycloid, and Lissajous curves etc. It is shown that the variation of the ground state energy density, which is a function of the loop, experiences a nonanalytical point when the winding number of the corresponding loop changes. The winding number can serve as a topological quantum number of the quantum phases in the extended quantum Ising model, which sheds some light upon the relation between quantum phase transition and the geometrical order parameter characterizing the phase diagram.

  3. Topological Characterization of Extended Quantum Ising Models.

    PubMed

    Zhang, G; Song, Z

    2015-10-23

    We show that a class of exactly solvable quantum Ising models, including the transverse-field Ising model and anisotropic XY model, can be characterized as the loops in a two-dimensional auxiliary space. The transverse-field Ising model corresponds to a circle and the XY model corresponds to an ellipse, while other models yield cardioid, limacon, hypocycloid, and Lissajous curves etc. It is shown that the variation of the ground state energy density, which is a function of the loop, experiences a nonanalytical point when the winding number of the corresponding loop changes. The winding number can serve as a topological quantum number of the quantum phases in the extended quantum Ising model, which sheds some light upon the relation between quantum phase transition and the geometrical order parameter characterizing the phase diagram. PMID:26551140

  4. Toxin-Induced Experimental Models of Learning and Memory Impairment.

    PubMed

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-01-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders. PMID:27598124

  5. Experimental studies toward the characterization of Inmetro's circulating water channel

    NASA Astrophysics Data System (ADS)

    Santos, A. M.; Alho, A. T. P.; Garcia, D. A.; Farias, M. H.; Massari, P. L.; Silva, V. V. S.

    2016-07-01

    Circulating water channels are facilities which can be used for conducting environmental, metrological and engineering studies. The Brazilian National Institute of Metrology-INMETRO has a water channel of innovative design, and the present work deals with the prior experimental investigation of its hydrodynamics performance. By using the optical technique PIV - Particle Image Velocimetry, under certain conditions, the velocity profile behavior in a region inside the channel was analyzed in order to evaluate the scope of applicability of such bench.

  6. Experimental Characterization of Piezoelectric Radial Field Diaphragms for Fluidic Control

    NASA Technical Reports Server (NTRS)

    Bryant, R. G.; Kavli, S. E.; Thomas, R. A., Jr.; Darji, K. J.; Mossi, K. M.

    2004-01-01

    NASA has recently developed a new piezoelectric actuator, the Radial Field Diaphragm or RFD. This actuator uses a radially-directed electric field to generate concentric out-of-plane (Z-axis) motion that allows this packaged device to be used as a pump or valve diaphragm. In order to efficiently use this new active device, experimental determination of pressure, flow rate, mechanical work, power consumption and overall efficiency needs to be determined by actually building a pump. However, without an optimized pump design, it is difficult to assess the quality of the data, as these results are inherent to the actual pump. Hence, separate experiments must be conducted in order to generate independent results to help guide the design criteria and pump quality. This paper focuses on the experiments used to generate the RFD's operational parameters and then compares these results to the experimentally determined results of several types of ball pumps. Also discussed are how errors are inherently introduced into the experiments, the pump design, experimental hardware and their effects on the overall system efficiency.

  7. Combined experimental/analytical modeling using component mode synthesis

    SciTech Connect

    Martinez, D.R.; Carne, T.G.; Gregory, D.L.; Miller, A.K.

    1984-04-01

    This study evaluates the accuracy of computed modal frequencies and mode shapes obtained from a combined experimental/analytical model for a simple beam structure. The structure was divided into two subsystems and one subsystem was tested to obtain its free-free modes. Using a Component Mode Synthesis (CMS) technique, the experimental modal data base for one subsystem was directly coupled with a finite element model of the other subsystem to create an experimental/analytical model of the total structure. Both the translational and rotational elements of the residual flexibilities and mode shapes at the interface of the experimental subsystem were measured and used in the coupling. The modal frequencies and mode shapes obtained for the combined experimental/analytical model are compared to those for a reference finite element model of the entire structure. The sensitivity of the CMS model predictions to errors in the modal parameters and residual flexibilities, which are required to define a subsystem, is also examined.

  8. Experimental characterization of solid propellants combustion by digital holography

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Powell, Michael; Gao, Jian; Gunduz, Ibrahim; Guildenbecher, Daniel; Son, Steve

    2014-11-01

    Aluminum and other additions are widely used in solid propellants to improve performance. In this study, we apply digital holography as a three-dimensional diagnostic tool to characterize the burning of composite solid propellants with addition of different composite particles. Structures around the burning surfaces and reaction zones are identified, whereas the drop morphologies and their size/velocity distributions are quantified. The nano-second exposure of this imaging technique enables time-freezing measurements of the highly dynamic combustion process. The results are compared with discoveries from high-speed imaging. This technique is also applied to study the combustions of solid propellants under high-pressure environment.

  9. Experimental techniques in ultrasonics for NDE and material characterization

    NASA Astrophysics Data System (ADS)

    Tittmann, B. R.

    A development status evaluation is presented for ultrasonics NDE characterization of aerospace alloys and composites in such application as the Space Shuttle, Space Station Freedom, and hypersonic aircraft. The use of such NDE techniques extends to composite-cure monitoring, postmanufacturing quality assurance, and in-space service inspection of such materials as graphite/epoxy, Ti alloys, and Al honeycomb. Attention is here given to the spectroscopy of elastically scattered wave pulses from flaws, the acoustical imaging of flaws in honeycomb structures, and laser-based ultrasonics for the noncontact inspection of composite structures.

  10. Analytical and experimental studies of leak location and environment characterization for the international space station

    SciTech Connect

    Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin; Abel, Joshua; Hawk, Doug; Autrey, David; Glenn, Jodie; Bond, Tim; Buffington, Jesse; Cheng, Edward; Ma, Jonathan; Rossetti, Dino; DeLatte, Danielle; Garcia, Kelvin; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford; Tull, Kimathi; Warren, Eric

    2014-12-09

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH{sub 3} coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb{sub m/}/yr. to about 1 lb{sub m}/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  11. Analytical and Experimental Studies of Leak Location and Environment Characterization for the International Space Station

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; Glenn, Jodie; Hawk, Doug; Ma, Jonathan; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford; Rossetti, Dino; Tull, Kimathi; Warren, Eric

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb-mass/yr. to about 1 lb-mass/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  12. Analytical and Experimental Studies of Leak Location and Environment Characterization for the International Space Station

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.; Abel, Joshua C.; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; Glenn, Jodie; Hawk, Doug; Ma, Jonathan; Mohammed, Jelila; de Garcia, Kristina Montt; Perry, Radford; Rossetti, Dino; Tull, Kimathi; Warren, Eric

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system.An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (directionality).The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lbmyr. to about 1 lbmday. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ramwake flows and structural shadowing within low Earth orbit.

  13. Analytical and experimental studies of leak location and environment characterization for the international space station

    NASA Astrophysics Data System (ADS)

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; Glenn, Jodie; Hawk, Doug; Ma, Jonathan; Mohammed, Jelila; de Garcia, Kristina Montt; Perry, Radford; Rossetti, Dino; Tull, Kimathi; Warren, Eric

    2014-12-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lbm//yr. to about 1 lbm/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  14. Experimental characterization of commercially practical magnetorheological fluid damper technology

    NASA Astrophysics Data System (ADS)

    Kelso, Shawn P.

    2001-06-01

    As technologies for magnetorheological (MR) fluid hardware further evolve towards commercial adoption, the appeal for simpler, more cost-effective solutions becomes evident. While the skills involved in methods of manufacturing and cost-reduction efforts for mass production lie with the manufacturing community, practical and cost-effective MR technologies must first exist. As part of a 'whole approach' MR solution, the MR damper technology presented in this paper illustrates the development of a fast-response, low-power, cost-effective solution. Fundamentally, a competitive 'whole approach' active or semi-active MR solution can be viewed as system of separate components: parameter sensing, intelligent control, power delivery, and MR hardware technology. The development of any one single component should not successfully evolve without the addressing the cost efficiency and commercialization concerns of the other three. The MR hardware component should be predictable in performance behavior, capable of high damping force at minimal power, and fast in time response to complement simplified control schemes. The design effort is further challenged to meet these requirements within a simple, cost-effective package that holds commercial development appeal. This research includes the characterization of a new prototype MR damper including a description of the device technology, characterization test results and current work. It is evident by these results that this MR technology, comprising simple, commercial-off-the-shelf (COTS) components where possible, presents an attractive, practical and cost effective component of the 'whole approach' MR solution.

  15. Experimental characterization of variable output refractive beamshapers using freeform elements

    NASA Astrophysics Data System (ADS)

    Shultz, Jason A.; Smilie, Paul J.; Dutterer, Brian S.; Davies, Matthew A.; Suleski, Thomas J.

    2014-09-01

    We present experimental results from variable output refractive beam shapers based on freeform optical surfaces. Two freeform elements in close proximity comprise a beam shaper that maps a circular Gaussian input to a circular `flat-top' output. Different lateral relative shifts between the elements result in a varying output diameter while maintaining the uniform irradiance distribution. We fabricated the beam shaping elements in PMMA using multi-axis milling on a Moore Nanotech 350FG diamond machining center and tested with a 632.8 nm Gaussian input. Initial optical testing confirmed both the predicted beam shaping and variable functionality, but with poor output uniformity. The effects of surface finish on optical performance were investigated using LightTrans VirtualLabTM to perform physical optics simulations of the milled freeform surfaces. These simulations provided an optimization path for determining machining parameters to improve the output uniformity of the beam shaping elements. A second variable beam shaper based on a super-Gaussian output was designed and fabricated using the newly determined machining parameters. Experimental test results from the second beam shaper showed outputs with significantly higher quality, but also suggest additional areas of study for further improvements in uniformity.

  16. Experimental verification of the SP-100 TEM pump analytical models

    SciTech Connect

    Salamah, S.A.; Miller, D.D.; Sinha, U.N.; Narkiewicz, R.S. )

    1993-01-15

    Validation of the TEM pump analytical model is conducted via experimental verification of the model prediction. Two key tests that have provided essential information toward this objective are the Magnetic Bench Test (MBT) and the ElectroMagnetic Integration Test (EMIT). The tests are briefly described and experimental results are compared with predictions of simulation models that form part of overall TEM pump performance model.

  17. Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617

    SciTech Connect

    Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J.

    2014-02-18

    Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, β) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.

  18. Experimental characterization of a binary actuated parallel manipulator

    NASA Astrophysics Data System (ADS)

    Giuseppe, Carbone

    2016-05-01

    This paper describes the BAPAMAN (Binary Actuated Parallel MANipulator) series of parallel manipulators that has been conceived at Laboratory of Robotics and Mechatronics (LARM). Basic common characteristics of BAPAMAN series are described. In particular, it is outlined the use of a reduced number of active degrees of freedom, the use of design solutions with flexural joints and Shape Memory Alloy (SMA) actuators for achieving miniaturization, cost reduction and easy operation features. Given the peculiarities of BAPAMAN architecture, specific experimental tests have been proposed and carried out with the aim to validate the proposed design and to evaluate the practical operation performance and the characteristics of a built prototype, in particular, in terms of operation and workspace characteristics.

  19. Experimental Dynamic Characterization of a Reconfigurable Adaptive Precision Truss

    NASA Technical Reports Server (NTRS)

    Hinkle, J. D.; Peterson, L. D.

    1994-01-01

    The dynamic behavior of a reconfigurable adaptive truss structure with non-linear joints is investigated. The objective is to experimentally examine the effects of the local non-linearities on the global dynamics of the structure. Amplitude changes in the frequency response functions are measured at micron levels of motion. The amplitude and frequency variations of a number of modes indicate a non-linear Coulomb friction response. Hysteretic bifurcation behavior is also measured at an amplitude approximately equal to the specified free-play in the joint. Under the 1 g pre-load, however, the non-linearity was dominantly characteristic of Coulomb friction with little evidence of free-play stiffening.

  20. Accurate theoretical and experimental characterization of optical grating coupler.

    PubMed

    Fesharaki, Faezeh; Hossain, Nadir; Vigne, Sebastien; Chaker, Mohamed; Wu, Ke

    2016-09-01

    Periodic structures, acting as reflectors, filters, and couplers, are a fundamental building block section in many optical devices. In this paper, a three-dimensional simulation of a grating coupler, a well-known periodic structure, is conducted. Guided waves and leakage characteristics of an out-of-plane grating coupler are studied in detail, and its coupling efficiency is examined. Furthermore, a numerical calibration analysis is applied through a commercial software package on the basis of a full-wave finite-element method to calculate the complex propagation constant of the structure and to evaluate the radiation pattern. For experimental evaluation, an optimized grating coupler is fabricated using electron-beam lithography technique and plasma etching. An excellent agreement between simulations and measurements is observed, thereby validating the demonstrated method. PMID:27607706

  1. Experimental characterization of a binary actuated parallel manipulator

    NASA Astrophysics Data System (ADS)

    Giuseppe, Carbone

    2016-04-01

    This paper describes the BAPAMAN (Binary Actuated Parallel MANipulator) series of parallel manipulators that has been conceived at Laboratory of Robotics and Mechatronics (LARM). Basic common characteristics of BAPAMAN series are described. In particular, it is outlined the use of a reduced number of active degrees of freedom, the use of design solutions with flexural joints and Shape Memory Alloy (SMA) actuators for achieving miniaturization, cost reduction and easy operation features. Given the peculiarities of BAPAMAN architecture, specific experimental tests have been proposed and carried out with the aim to validate the proposed design and to evaluate the practical operation performance and the characteristics of a built prototype, in particular, in terms of operation and workspace characteristics.

  2. Experimental characterization of the water transport properties of PEM fuel cells diffusion media

    NASA Astrophysics Data System (ADS)

    Ramos-Alvarado, Bladimir; Sole, Joshua D.; Hernandez-Guerrero, Abel; Ellis, Michael W.

    2012-11-01

    A full experimental characterization of the liquid water transport properties of Toray TGP-090 paper is carried out in this work. Porosity, capillary pressure curves (capillary pressure-saturation relationships), absolute permeability, and relative permeability are obtained via experimental procedures. Porosity was determined using two methods, both aimed to obtain the solid volume of the network of fibers comprising the carbon paper. Capillary pressure curves were obtained using a gas displacement porosimeter where liquid water is injected using a syringe pump and the capillary pressure is recorded using a differential pressure transducer. Absolute and relative permeability were also measured with an apparatus designed at Virginia Tech. Absolute permeability was calculated at different flow rates using nitrogen. On the other hand, relative permeability was a more complicated task to carry out giving the complexity (two-phase flow condition) of this property. All of the water transport properties of Toray TGP-090 were studied under the effects of wet-proofing (PTFE treatment) and compression. Some observations were that wet-proofing reduces the porosity of the raw material, increases the hydrophobicity (Pc-S curves), and reduces the permeability of the material. Similar effects were observed for compression, where compressed material exhibited trends similar to those of wet-proofing effects. The results presented here will allow a more accurate modeling of PEMFCs, providing an experimentally verified alternative to the assumptions frequently employed.

  3. Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection

    NASA Astrophysics Data System (ADS)

    Schöniger, Anneli; Illman, Walter A.; Wöhling, Thomas; Nowak, Wolfgang

    2015-12-01

    Groundwater modelers face the challenge of how to assign representative parameter values to the studied aquifer. Several approaches are available to parameterize spatial heterogeneity in aquifer parameters. They differ in their conceptualization and complexity, ranging from homogeneous models to heterogeneous random fields. While it is common practice to invest more effort into data collection for models with a finer resolution of heterogeneities, there is a lack of advice which amount of data is required to justify a certain level of model complexity. In this study, we propose to use concepts related to Bayesian model selection to identify this balance. We demonstrate our approach on the characterization of a heterogeneous aquifer via hydraulic tomography in a sandbox experiment (Illman et al., 2010). We consider four increasingly complex parameterizations of hydraulic conductivity: (1) Effective homogeneous medium, (2) geology-based zonation, (3) interpolation by pilot points, and (4) geostatistical random fields. First, we investigate the shift in justified complexity with increasing amount of available data by constructing a model confusion matrix. This matrix indicates the maximum level of complexity that can be justified given a specific experimental setup. Second, we determine which parameterization is most adequate given the observed drawdown data. Third, we test how the different parameterizations perform in a validation setup. The results of our test case indicate that aquifer characterization via hydraulic tomography does not necessarily require (or justify) a geostatistical description. Instead, a zonation-based model might be a more robust choice, but only if the zonation is geologically adequate.

  4. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    SciTech Connect

    Smith, N. A. S. E-mail: maciej.rokosz@npl.co.uk Correia, T. M. E-mail: maciej.rokosz@npl.co.uk; Rokosz, M. K. E-mail: maciej.rokosz@npl.co.uk

    2014-07-28

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.

  5. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    NASA Astrophysics Data System (ADS)

    Smith, N. A. S.; Rokosz, M. K.; Correia, T. M.

    2014-07-01

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.

  6. Multimode model based defect characterization in composites

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Holland, S.; Gregory, E.

    2016-02-01

    A newly-initiated research program for model-based defect characterization in CFRP composites is summarized. The work utilizes computational models of the interaction of NDE probing energy fields (ultrasound and thermography), to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of performance-critical defect properties from analysis of measured NDE signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing delamination and porosity. Forward predictions of measurement response are presented, as well as examples of model-based inversion of measured data for the estimation of defect parameters.

  7. Dynamic mechanical characterization and modelling of polypropylene based organoclay nanocomposite

    NASA Astrophysics Data System (ADS)

    Wang, Kui; Matadi Boumbimba, Rodrigue; Bahlouli, Nadia; Ahzi, Said; Muller, René

    2015-09-01

    In order to investigate the dynamic behaviour of polypropylene based organoclay nanocomposite, the polypropylene matrix and a master batch of polypropylene modified anhydrid maleic were mixed by means of melt mixing technique. The experimental characterization was performed by using split Hopkinson pressure bars (SHPB), at different strain rates and temperatures. A significant increase of the yield stress of nanocomposite was shown with the present of organoclay, comparing to neat PP. A three-phase approach based on the micromechanical formulation of the cooperative model is proposed to model the yield behaviour of the polymer nanocomposite. Our proposed approach accounts for strain rate and temperature effects as well as the organoclay exfoliation effect. The predictions of models for the nanocomposite yield behaviour showed a good agreement with experimental data.

  8. Preform Characterization in VARTM Process Model Development

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal; Loos, Alfred C.; Kellen, Charles B.; Jensen, Brian J.

    2004-01-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) is a Liquid Composite Molding (LCM) process where both resin injection and fiber compaction are achieved under pressures of 101.3 kPa or less. Originally developed over a decade ago for marine composite fabrication, VARTM is now considered a viable process for the fabrication of aerospace composites (1,2). In order to optimize and further improve the process, a finite element analysis (FEA) process model is being developed to include the coupled phenomenon of resin flow, preform compaction and resin cure. The model input parameters are obtained from resin and fiber-preform characterization tests. In this study, the compaction behavior and the Darcy permeability of a commercially available carbon fabric are characterized. The resulting empirical model equations are input to the 3- Dimensional Infiltration, version 5 (3DINFILv.5) process model to simulate infiltration of a composite panel.

  9. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    NASA Astrophysics Data System (ADS)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  10. Computational Fluid Dynamics and Experimental Characterization of the Pediatric Pump-Lung

    PubMed Central

    Wu, Zhongjun J; Gellman, Barry; Zhang, Tao; Taskin, M Ertan; Dasse, Kurt A.; Griffith, Bartley P.

    2014-01-01

    The pediatric pump-lung (PediPL) is a miniaturized integrated pediatric pump-oxygenator specifically designed for cardiac or cardiopulmonary support for patients weighing 5-20 kg to allow mobility and extended use for 30 days. The PediPL incorporates a magnetically levitated impeller with uniquely configured hollow fiber membranes into a single unit capable of performing both pumping and gas exchange. A combined computational and experimental study was conducted to characterize the functional and hemocompatibility performances of this newly developed device. The three-dimensional flow features of the PediPL and its hemolytic characteristics were analyzed using computational fluid dynamics based modeling. The oxygen exchange was modeled based on a convection-diffusion-reaction process. The hollow fiber membranes were modeled as a porous medium which incorporates the flow resistance in the bundle by an added momentum sink term. The pumping function was evaluated for the required range of operating conditions (0.5-2.5 L/min and 1000-3000 rpm). The blood damage potentials were further analyzed in terms of flow and shear stress fields, and the calculations of hemolysis index. In parallel, the hydraulic pump performance, oxygen transfer and hemolysis level were quantified experimentally. Based on the computational and experimental results, the PediPL device is found to be functional to provide necessary oxygen transfer and blood pumping requirements for the pediatric patients. Smooth blood flow characteristics and low blood damage potential were observed in the entire device. The in-vitro tests further confirmed that the PediPL can provide adequate blood pumping and oxygen transfer over the range of intended operating conditions with acceptable hemolytic performance. The rated flow rate for oxygenation is 2.5 L/min. The normalized index of hemolysis is 0.065 g/100L at 1.0 L/min and 3000 rpm. PMID:24839468

  11. Experimental characterization of wingtip vortices in the near field using smoke flow visualizations

    NASA Astrophysics Data System (ADS)

    Serrano-Aguilera, J. J.; García-Ortiz, J. Hermenegildo; Gallardo-Claros, A.; Parras, L.; del Pino, C.

    2016-08-01

    In order to predict the axial development of the wingtip vortices strength, an accurate theoretical model is required. Several experimental techniques have been used to that end, e.g. PIV or hot-wire anemometry, but they imply a significant cost and effort. For this reason, we have performed experiments using the smoke-wire technique to visualize smoke streaks in six planes perpendicular to the main stream flow direction. Using this visualization technique, we obtained quantitative information regarding the vortex velocity field by means of Batchelor's model for two chord-based Reynolds numbers, Re_c=3.33× 10^4 and 10^5. Therefore, this theoretical vortex model has been introduced in the integration of ordinary differential equations which describe the temporal evolution of streak lines as function of two parameters: the swirl number, S, and the virtual axial origin, overline{z_0}. We have applied two different procedures to minimize the distance between experimental and theoretical flow patterns: individual curve fitting at six different control planes in the streamwise direction and the global curve fitting which corresponds to all the control planes simultaneously. Both sets of results have been compared with those provided by del Pino et al. (Phys Fluids 23(013):602, 2011b. doi: 10.1063/1.3537791), finding good agreement. Finally, we have observed a weak influence of the Reynolds number on the values S and overline{z_0} at low-to-moderate Re_c. This experimental technique is proposed as a low cost alternative to characterize wingtip vortices based on flow visualizations.

  12. A new experimental method for the accelerated characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Yeow, Y. T.; Morris, D. H.; Brinson, H. F.

    1978-01-01

    The use of composite materials for a variety of practical structural applications is presented and the need for an accelerated characterization procedure is assessed. A new experimental and analytical method is presented which allows the prediction of long term properties from short term tests. Some preliminary experimental results are presented.

  13. Material characterization and modeling with shear ography

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Callahan, Virginia

    1993-01-01

    Shearography has emerged as a useful technique for nondestructible evaluation and materials characterization of aerospace materials. A suitable candidate for the technique is to determine the response of debonds on foam-metal interfaces such as the TPS system on the External Tank. The main thrust is to develop a model which allows valid interpretation of shearographic information on TPS type systems. Confirmation of the model with shearographic data will be performed.

  14. Gear Windage Modeling Progress - Experimental Validation Status

    NASA Technical Reports Server (NTRS)

    Kunz, Rob; Handschuh, Robert F.

    2008-01-01

    In the Subsonics Rotary Wing (SRW) Project being funded for propulsion work at NASA Glenn Research Center, performance of the propulsion system is of high importance. In current rotorcraft drive systems many gearing components operate at high rotational speed (pitch line velocity > 24000 ft/ min). In our testing of high speed helical gear trains at NASA Glenn we have found that the work done on the air - oil mist within the gearbox can become a significant part of the power loss of the system. This loss mechanism is referred to as windage. The effort described in this presentation is to try to understand the variables that affect windage, develop a good experimental data base to validate, the analytical project being conducted at Penn State University by Dr. Rob Kunz under a NASA SRW NRA. The presentation provides an update to the status of these efforts.

  15. The experimental determination of coal models

    SciTech Connect

    Bollinger, K.; Snowden, H.

    1983-06-01

    This paper describes the experimental measurement of coal-mill transfer functions at a 380 Mw steam turbine generator of TransAlta Utilities in Canada. Measurement equipment was used that estimated the parameters of the transfer functions from digitized transients obtained during on-site tests. These preliminary tests were part of a sequence of tests that were undertaken to evaluate the use of feedforward control to maintain the output temperature of the coal-air mixture at a fixed level. The measurement technique used to obtain the coal-mill transfer functions utilizes Least Squares Parameter Estimation (LSPE) concepts. The microprocessor-based system with the LSPE algorithm enabled the parameters to be obtained while the coal-mill was operating online. The transfer functions obtained during these field tests allowed feedforward controllers to be designed that gave improved performance of the coal-mill.

  16. Experimental characterization of PZT fibers using IDE electrodes

    NASA Astrophysics Data System (ADS)

    Wyckoff, Nicholas; Ben Atitallah, Hassene; Ounaies, Zoubeida

    2016-04-01

    Lead zirconate titanate (PZT) fibers are mainly used in active fiber composites (AFC) where they are embedded in a polymer matrix. Interdigitated electrodes (IDE) along the direction of the fibers are used to achieve planar actuation, hereby exploiting the d33 coefficient of PZT. When embedded in the AFC, the PZT fibers are subjected to mechanical loading as well as non-uniform electric field as a result of the IDEs. Therefore, it is important to characterize the electrical and electromechanical behavior of these fibers ex-situ using the IDE electrodes to assess the impact of nonuniform electric field on the properties of the fibers. For that reason, this work aims at quantifying the impact of IDE electrodes on the electrical and electromechanical behavior of PZT fibers, which is necessary for their successful implementation in devices like AFC. The tested fibers were purchased from Advanced Cerametrics and they have an average diameter of 250 micrometers. The IDE electrodes were screen printed on an acrylic substrate. The PZT fibers were subjected to frequency sweeps at low voltages to determine permittivity for parallel and interdigitated electrodes. The piezoelectric e33 constant is determined from electromechanical testing of PZT fibers in parallel electrodes to compare the electromechanical behavior for PZT in bulk and fiber form. The dielectric constant and e33 were found to be lower for the IDE and parallel electrodes compared to bulk but comparable to results published in literature.

  17. Characterization of experimentally induced, nonaflatoxigenic variant strains of Aspergillus parasiticus.

    PubMed Central

    Kale, S P; Cary, J W; Bhatnagar, D; Bennett, J W

    1996-01-01

    Six previously isolated, nonaflatoxigenic variants of Aspergillus parasiticus, designated sec mutants, were characterized morphologically by electron microscopy, biochemically by biotransformation studies with an aflatoxin precursor, and genetically by Northern (RNA) hybridization analysis of aflatoxin biosynthetic gene transcripts. Scanning electron micrographs clearly demonstrated that compared with the parental sec+ forms, the variant sec forms had an abundance of vegetative mycelia, orders of magnitude reduced number of conidiophores and conidia, and abnormal metulae. Conidiospores were detected in sec cultures only at higher magnifications (x 500), in contrast to the sec+ (wild-type) strain, in which abundant conidiospores (masking the vegetative mycelia) were observed at even lower magnifications (x 300). All sec+ forms, but none of the sec forms, showed bioconversion of sterigmatocystin to aflatoxins. Northern blots probed with pathway genes demonstrated lack of expression of both the aflatoxin biosynthetic pathway structural (nor-1 and omtA) and regulatory (aflR) genes in the sec forms; PCR and Southern hybridization analysis confirmed the presence of the genes in the sec genomes. Thus, the loss of aflatoxigenic capabilities in the sec form is correlated with alterations in the conidial morphology of the fungus, suggesting that the regulation of aflatoxin synthesis and conidiogenesis may be interlinked. PMID:8795232

  18. High temperature experimental characterization of microscale thermoelectric effects

    NASA Astrophysics Data System (ADS)

    Favaloro, Tela

    Thermoelectric devices have been employed for many years as a reliable energy conversion technology for applications ranging from the cooling of sensors or charge coupled devices to the direct conversion of heat into electricity for remote power generation. However, its relatively low conversion efficiency has limited the implementation of thermoelectric materials for large scale cooling and waste heat recovery applications. Recent advances in semiconductor growth technology have enabled the precise and selective engineering of material properties to improve the thermoelectric figure of merit and thus the efficiency of thermoelectric devices. Accurate characterization at the intended operational temperature of novel thermoelectric materials is a crucial component of the optimization process in order to fundamentally understand material behavior and evaluate performance. The objective of this work is to provide the tools necessary to characterize high efficiency bulk and thin-film materials for thermoelectric energy conversion. The techniques developed here are not bound to specific material or devices, but can be generalized to any material system. Thermoreflectance imaging microscopy has proven to be invaluable for device thermometry owing to its high spatial and temporal resolutions. It has been utilized in this work to create two-dimensional temperature profiles of thermoelectric devices during operation used for performance analysis of novel materials, identification of defects, and visualization of high speed transients in a high-temperature imaging thermostat. We report the development of a high temperature imaging thermostat capable of high speed transient thermoelectric characterization. In addition, we present a noninvasive method for thermoreflectance coefficient calibration ideally suited for vacuum and thus high temperature employment. This is the first analysis of the thermoreflectance coefficient of commonly used metals at high-temperatures. High

  19. Ideal Experimental Rat Models for Liver Diseases.

    PubMed

    Lee, Sang Woo; Kim, Sung Hoon; Min, Seon Ok; Kim, Kyung Sik

    2011-05-01

    There are many limitations for conducting liver disease research in human beings due to the high cost and potential ethical issues. For this reason, conducting a study that is difficult to perform in humans using appropriate animal models, can be beneficial in ascertaining the pathological physiology, and in developing new treatment modalities. However, it is difficult to determine the appropriate animal model which is suitable for research purposes, since every patient has different and diverse clinical symptoms, adverse reactions, and complications due to the pathological physiology. Also, it is not easy to reproduce identically various clinical situations in animal models. Recently, the Guide for the Care and Use of Laboratory Animals has tightened up the regulations, and therefore it is advisable to select the appropriate animals and decide upon the appropriate quantities through scientific and systemic considerations before conducting animal testing. Therefore, in this review article the authors examined various white rat animal testing models and determined the appropriate usable rat model, and the pros and cons of its application in liver disease research. The authors believe that this review will be beneficial in selecting proper laboratory animals for research purposes. PMID:26421020

  20. Experimental evaluations of the microchannel flow model

    NASA Astrophysics Data System (ADS)

    Parker, K. J.

    2015-06-01

    Recent advances have enabled a new wave of biomechanics measurements, and have renewed interest in selecting appropriate rheological models for soft tissues such as the liver, thyroid, and prostate. The microchannel flow model was recently introduced to describe the linear response of tissue to stimuli such as stress relaxation or shear wave propagation. This model postulates a power law relaxation spectrum that results from a branching distribution of vessels and channels in normal soft tissue such as liver. In this work, the derivation is extended to determine the explicit link between the distribution of vessels and the relaxation spectrum. In addition, liver tissue is modified by temperature or salinity, and the resulting changes in tissue responses (by factors of 1.5 or greater) are reasonably predicted from the microchannel flow model, simply by considering the changes in fluid flow through the modified samples. The 2 and 4 parameter versions of the model are considered, and it is shown that in some cases the maximum time constant (corresponding to the minimum vessel diameters), could be altered in a way that has major impact on the observed tissue response. This could explain why an inflamed region is palpated as a harder bump compared to surrounding normal tissue.

  1. Experimental Design and Multiplexed Modeling Using Titrimetry and Spreadsheets

    NASA Astrophysics Data System (ADS)

    Harrington, Peter De B.; Kolbrich, Erin; Cline, Jennifer

    2002-07-01

    The topics of experimental design and modeling are important for inclusion in the undergraduate curriculum. Many general chemistry and quantitative analysis courses introduce students to spreadsheet programs, such as MS Excel. Students in the laboratory sections of these courses use titrimetry as a quantitative measurement method. Unfortunately, the only model that students may be exposed to in introductory chemistry courses is the working curve that uses the linear model. A novel experiment based on a multiplex model has been devised for titrating several vinegar samples at a time. The multiplex titration can be applied to many other routine determinations. An experimental design model is fit to titrimetric measurements using the MS Excel LINEST function to estimate concentration from each sample. This experiment provides valuable lessons in error analysis, Class A glassware tolerances, experimental simulation, statistics, modeling, and experimental design.

  2. Experimental Studies on Magnetorheological Model Suspensions

    NASA Astrophysics Data System (ADS)

    Trendler, Alexandra-Maria; Böse, Holger

    Magnetorheological model suspensions with different contents of iron particles have been investigated. The results show an increase of the shear stress by increasing the magnetic field and the solid content, which was mathematically modelled. The influence of the solid content is approximately exponential without magnetic field and linear in strong magnetic fields. The effect of the temperature and of the base oil viscosity on the shear stress is negligible in the field but decisive without field. The sedimentation behavior also strongly depends on the iron particle content, where MR fluids with a higher concentration settle with a lower intensity due to the higher sediment height. The response time of the magnetorheological model suspensions could not be clearly determined, but it is less than 10 milliseconds.

  3. Cholinesterase in porcine saliva: Analytical characterization and behavior after experimental stress.

    PubMed

    Tecles, Fernando; Escribano, Damián; Martínez-Miró, Silvia; Hernández, Fuensanta; Contreras, María Dolores; Cerón, José Joaquín

    2016-06-01

    The purpose of this study was to measure and characterize the enzyme cholinesterase (ChE) in porcine saliva, as well as to evaluate its behavior in experimental stressful conditions. The results of ChE characterization by using different substrates and the selective inhibitors ethopropazine and physostigmine showed that the main enzyme existing in porcine saliva was butyrylcholinesterase (BChE). An automated assay using butyrylthiocholine iodide as substrate was validated providing adequate reproducibility, linearity results and limit of detection. Salivary ChE was measured using the validated assay in two models of acute stress: twenty pigs stressed for 2min with a nasal snare and other twenty pigs subjected to a short-term road transport. Salivary ChE significantly increased after restraint and transport stress in pigs, as well as the ChE to total protein ratio. In conclusion, BChE is the predominant isoenzyme in porcine saliva, it can be measured by the fast, simple and automated method described in this paper and it increases in the models of stress used in this study. PMID:27234531

  4. Scaled Experimental Modeling of VHTR Plenum Flows

    SciTech Connect

    ICONE 15

    2007-04-01

    Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.

  5. Experimental and Numerical Characterization of High Heat Fluxes During Transient Blackbody Calibrations

    NASA Technical Reports Server (NTRS)

    Abdelmessih, Amanie N.; Horn, Thomas J.

    2008-01-01

    High heat fluxes are encountered in numerous applications, such as hypersonic vehicles in flight, fires, and engines, Calibration of heat flux gages may be performed in a dual cavity cylindrical blackbody resulting in a transient calibration environment. To characterize the transient heat fluxes. experiments were performed on a dual cavity cylindrical blackbody at nominal temperatures varying from 800 C to 1900 C in increments of 100 C. Based on experiments, the optimum heat flux sensor insertion location as measured from the center partition was determined. The pre-insertion steady state axial temperature profile is compared experimentally, numerically, and analytically. The effect of convection in the blackbody cavity during the insertion is calculated and found to be less than 2 per cent. Also, an empirical correlation for predicting the emissivity of the blackbody is included. Detailed transient thermal models have been developed to simulate the heat flux calibration process at two extreme fluxes. The high (1MW/sq m) and relatively low (70 kw/sq m) fluxes are reported in this article. The transient models show the effect of inserting a heat flux gage at room temperature on the thermal equilibrium of the blackbody at 1800 C and 800 C nominal temperatures, respectively. Also, heat flux sensor outputs are derived from computed sensor temperature distributions and compared to experimental results.

  6. New experimental correlations to characterize compressible flow losses at 90-degree T-junctions

    SciTech Connect

    Perez-Garcia, J.; Viedma, A.

    2009-01-15

    New experimental correlations to characterize energy losses in adiabatic compressible flow at 90-degree T-junctions and their expanded uncertainties are presented. These new correlations are based on a new linking between branches coefficient definition, K, and show a logarithmic relationship with mass flow rate ratio between branches, q, and the extrapolated Mach number in the common branch, M{sub 3}{sup *}, for all the different flow types studied. The extrapolated properties up to the junction are calculated, from measurement sections, subtracting the frictional losses using the Fanno fluid flow model. These two parameters or global correlations, K = K(M{sub 3}{sup *},q), can be easily implemented as boundary conditions into 1-D global simulation codes. (author)

  7. Software reliability: Repetitive run experimentation and modeling

    NASA Technical Reports Server (NTRS)

    Nagel, P. M.; Skrivan, J. A.

    1982-01-01

    A software experiment conducted with repetitive run sampling is reported. Independently generated input data was used to verify that interfailure times are very nearly exponentially distributed and to obtain good estimates of the failure rates of individual errors and demonstrate how widely they vary. This fact invalidates many of the popular software reliability models now in use. The log failure rate of interfailure time was nearly linear as a function of the number of errors corrected. A new model of software reliability is proposed that incorporates these observations.

  8. Determining the representative volume element size for three-dimensional microstructural material characterization. Part 2: Application to experimental data

    NASA Astrophysics Data System (ADS)

    Harris, William M.; Chiu, Wilson K. S.

    2015-05-01

    Improved microstructural imaging and characterization methods have recently opened the door for quantitative evaluation of microstructures of such functional materials as solid oxide fuel cell and battery electrodes and composite gas separation membranes. Accurate quantitative characterization of these structures relies on the concept of a representative volume element (RVE) to provide a sufficiently large sample to be statistically representative of the material. In Part 1 of this work, several models were described to determine the RVE size for several common microstructural properties: volume fraction, particle size, and network contiguity. In this work, extensive synchrotron X-ray nanotomography imaging of a multiphase composite gas separation membrane is used to provide an experimental comparison to the model predictions. Results suggest that the models provide a reasonable estimate of RVE size, and can serve as a starting point for researchers planning imaging and characterization experiments.

  9. Experimental Control of Simple Pendulum Model

    ERIC Educational Resources Information Center

    Medina, C.

    2004-01-01

    This paper conveys information about a Physics laboratory experiment for students with some theoretical knowledge about oscillatory motion. Students construct a simple pendulum that behaves as an ideal one, and analyze model assumption incidence on its period. The following aspects are quantitatively analyzed: vanishing friction, small amplitude,…

  10. Experimental and numerical characterization of the structural dynamics of flapping beams

    NASA Astrophysics Data System (ADS)

    Ozcelik, Orhan; Attar, Peter J.; Altan, M. Cengiz; Johnston, Jordan W.

    2013-10-01

    The nonlinear structural dynamics of a slender beam in flapping motion is examined both experimentally and computationally. In the experiments the periodic flapping motion is imposed on the clamped edge of the cantilever beam using a 4-bar crank-and-rocker mechanism. Aluminum beams with nominal dimensions of 150 mm×25 mm×0.4 mm are tested in air over a range of flapping frequencies up to 1.3 times the linear first modal frequency at two different flapping amplitudes, 15° and 30°. The response of the beam is characterized experimentally through bending strain and tip displacement data obtained from foil strain gage and high-speed camera, respectively. It was determined that for the particular combination of beam specimen (dimensions, material properties) and forcing parameters investigated, all experimental responses were periodic. The frequency response curves based upon the experimental bending strain data reveal a secondary superharmonic peak in addition to the primary resonance peak. As the flapping frequency is increased, the response of the beam is observed to change from symmetric (with respect to equilibrium position) periodic vibrations with a period equal to the flapping period to asymmetric periodic vibrations with higher harmonic content featuring local oscillations in the time histories. Experimental tip displacement results show that the beam spends more time during stroke reversals when the flapping frequency is near primary and secondary resonance regions. In addition to experiment, numerical simulations are performed using two-node, isoparametric degenerate-continuum based geometrically nonlinear beam elements. The HHT-α version of the Newmark finite difference scheme is used to discretize the problem in time and a linear viscous damping model is assumed. Overall the numerical simulations agree well with the experiments and capture most of the nonlinear dynamical features of the beam response. It is, however, found that in resonance regions the

  11. Experimental Characterization of Plasma Detachment from Magnetic Nozzles

    NASA Astrophysics Data System (ADS)

    Olsen, Christopher Scott

    Magnetic nozzles, like Laval nozzles, are observed in several natural systems and have application in areas such as electric propulsion and plasma processing. Plasma flowing through these nozzles is inherently tied to the field lines and must separate for momentum redirection or particle transport to occur. Plasma detachment and associated mechanisms from a magnetic nozzle are investigated. Experimental results are presented from the plume of the VASIMRRTM VX-200 device flowing along an axisymmetric magnetic nozzle and operated at two ion energies to explore momentum dependent detachment. The argon plume expanded into a 150m3 vacuum chamber where the background pressure was low enough that charge-exchange mean-free-paths were longer than experiment scale lengths. This magnetic nozzle system is demonstrated to hydrodynamically scale up to astrophysical plasmas, particularly the solar chromosphere, implying general relevance to many systems. Plasma parameters were mapped over a large spatial range using measurements from multiple plasma diagnostics. The data show that the plume does not follow the magnetic field lines. A mapped integration of the ion flux shows the plume may be divided into three regions where 1) the plume briefly follows the magnetic flux, 2) diverges quadratically before 3) expanding with linear trajectories. Transitioning from region 1→2, the ion flux departs from the magnetic flux suggesting ion detachment. An instability forms in region 2 driving an oscillating electric field that causes ions to expand before enhancing electron cross-field transport through anomalous resistivity. Transitioning from region 2→3 the electric field dissipates, the trajectories linearize, and the plume effectively detaches. A delineation of sub-to-super Alfvenic flow aligns well with the inflection points of the linearization without a change in magnetic topology. The detachment process is best described as a two part process: First, ions detach by a breakdown of

  12. Experimental characterization of energetic material dynamics for multiphase blast simulation.

    SciTech Connect

    Beresh, Steven Jay; Wagner, Justin L.; Kearney, Sean Patrick; Wright, Elton K.; Baer, Melvin R.; Pruett, Brian Owen Matthew

    2011-09-01

    experiments. The development of the Multiphase Shock Tube and associated diagnostic capabilities offers experimental capability to a previously inaccessible regime, which can provide unprecedented data concerning particle dynamics of dense gas-solid flows.

  13. Performance Modeling of Experimental Laser Lightcrafts

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.; Turner, Jim (Technical Monitor)

    2001-01-01

    A computational plasma aerodynamics model is developed to study the performance of a laser propelled Lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure-based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibrium thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literatures. The predicted coupling coefficients for the Lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.

  14. Source characterization refinements for routine modeling applications

    NASA Astrophysics Data System (ADS)

    Paine, Robert; Warren, Laura L.; Moore, Gary E.

    2016-03-01

    Steady-state dispersion models recommended by various environmental agencies worldwide have generally been evaluated with traditional stack release databases, including tracer studies. The sources associated with these field data are generally those with isolated stacks or release points under relatively ideal conditions. Many modeling applications, however, involve sources that act to modify the local dispersion environment as well as the conditions associated with plume buoyancy and final plume rise. The source characterizations affecting plume rise that are introduced and discussed in this paper include: 1) sources with large fugitive heat releases that result in a local urbanized effect, 2) stacks on or near individual buildings with large fugitive heat releases that tend to result in buoyant "liftoff" effects counteracting aerodynamic downwash effects, 3) stacks with considerable moisture content, which leads to additional heat of condensation during plume rise - an effect that is not considered by most dispersion models, and 4) stacks in a line that result in at least partial plume merging and buoyancy enhancement under certain conditions. One or more of these effects are appropriate for a given modeling application. We present examples of specific applications for one or more of these procedures in the paper. This paper describes methods to introduce the four source characterization approaches to more accurately simulate plume rise to a variety of dispersion models. The authors have focused upon applying these methods to the AERMOD modeling system, which is the United States Environmental Protection Agency's preferred model in addition to being used internationally, but the techniques are applicable to dispersion models worldwide. While the methods could be installed directly into specific models such as AERMOD, the advantage of implementing them outside the model is to allow them to be applicable to numerous models immediately and also to allow them to

  15. Experimental Forelimb Allotransplantation in Canine Model.

    PubMed

    Hong, Sa-Hyeok; Eun, Seok-Chan

    2016-01-01

    As reconstructive transplantation is gaining popularity as a viable alternative for upper limb amputees, it is becoming increasingly important for plastic surgeons to renew surgical skills and knowledge of this area. Forelimb allotransplantation research has been performed previously in rodent and swine models. However, preclinical canine forelimb allotransplantation studies are lacking in the literature. The purpose of this paper is to provide an overview of the surgical skills necessary to successfully perform forelimb transplantation in canines as a means to prepare for clinical application. A total of 18 transplantation operations on canines were performed. The recipient limb was shortened at the one-third proximal forearm level. The operation was performed in the following order: bones (two reconstructive plates), muscles and tendons (separately sutured), nerves (median, ulnar, and radial nerve), arteries (two), and veins (two). The total mean time of transplantation was 5 hours ± 30 minutes. All of the animals that received transplantation were treated with FK-506 (tacrolimus, 2 mg/kg) for 7 days after surgery. Most allografts survived with perfect viability without vascular problems during the early postoperative period. The canine forelimb allotransplantation model is well qualified to be a suitable training model for standard transplantation and future research work. PMID:27597952

  16. Experimental Forelimb Allotransplantation in Canine Model

    PubMed Central

    2016-01-01

    As reconstructive transplantation is gaining popularity as a viable alternative for upper limb amputees, it is becoming increasingly important for plastic surgeons to renew surgical skills and knowledge of this area. Forelimb allotransplantation research has been performed previously in rodent and swine models. However, preclinical canine forelimb allotransplantation studies are lacking in the literature. The purpose of this paper is to provide an overview of the surgical skills necessary to successfully perform forelimb transplantation in canines as a means to prepare for clinical application. A total of 18 transplantation operations on canines were performed. The recipient limb was shortened at the one-third proximal forearm level. The operation was performed in the following order: bones (two reconstructive plates), muscles and tendons (separately sutured), nerves (median, ulnar, and radial nerve), arteries (two), and veins (two). The total mean time of transplantation was 5 hours ± 30 minutes. All of the animals that received transplantation were treated with FK-506 (tacrolimus, 2 mg/kg) for 7 days after surgery. Most allografts survived with perfect viability without vascular problems during the early postoperative period. The canine forelimb allotransplantation model is well qualified to be a suitable training model for standard transplantation and future research work. PMID:27597952

  17. Different experimental approaches in modelling cataractogenesis

    PubMed Central

    Kyselova, Zuzana

    2010-01-01

    Cataract, the opacification of eye lens, is the leading cause of blindness worldwide. At present, the only remedy is surgical removal of the cataractous lens and substitution with a lens made of synthetic polymers. However, besides significant costs of operation and possible complications, an artificial lens just does not have the overall optical qualities of a normal one. Hence it remains a significant public health problem, and biochemical solutions or pharmacological interventions that will maintain the transparency of the lens are highly required. Naturally, there is a persistent demand for suitable biological models. The ocular lens would appear to be an ideal organ for maintaining culture conditions because of lacking blood vessels and nerves. The lens in vivo obtains its nutrients and eliminates waste products via diffusion with the surrounding fluids. Lens opacification observed in vivo can be mimicked in vitro by addition of the cataractogenic agent sodium selenite (Na2SeO3) to the culture medium. Moreover, since an overdose of sodium selenite induces also cataract in young rats, it became an extremely rapid and convenient model of nuclear cataract in vivo. The main focus of this review will be on selenium (Se) and its salt sodium selenite, their toxicological characteristics and safety data in relevance of modelling cataractogenesis, either under in vivo or in vitro conditions. The studies revealing the mechanisms of lens opacification induced by selenite are highlighted, the representatives from screening for potential anti-cataract agents are listed. PMID:21217865

  18. Experimental characterization of radio frequency microthermal thruster performance

    NASA Astrophysics Data System (ADS)

    Williams, Shae E.

    Microsatellite (<100 kg) propulsion is a young field that has not yet produced technologies more commercially viable than cold gas thrusters. Design constraints rule out much of traditional propulsion, requiring new and nonobvious technologies to advance the state of the art and enable longer and more flexible missions. The radio frequency microthermal thruster is shown to be worth thorough study for this application. A basic analytical model is constructed to look at expected performance, and the theory behind that model is explained. Calibration and the challenges in working with extremely low forces and displacements are also examined. The results of extensive testing on this thruster type are presented. Important trends are confirmed and validated, such as a linearity of specific impulse with power, and consistent nonlinearities with frequency and mass flow rate. Additionally, tests indicate a nonlinear relationship between applied frequency and thruster internal geometry that can more than triple the heating occurring in the thruster. Further tests focus on this relationship, and find more information about how these parameters couple are found to be primarily due to induced inefficiencies in stochastic heating and the inability of a vibrating voltage sheath to transfer energy into the flow. Additionally, first steps towards optimizing a design for performance are taken, such as analyzing the effect of adding a converging/diverging nozzle and finding an optimal length of inner electrode to be exposed to plasma. Overall, specific impulses of up to 85 seconds are found with argon as the propellant, doubling cold gas specific impulse, and an error on specific impulse is calculated to be less than 3% in either direction. These results after only slight efforts at design optimization indicate much more improvement is possible with this technology that would make an RF microthermal thruster viable as a commercial product.

  19. Experimentally testing the standard cosmological model

    SciTech Connect

    Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )

    1990-11-01

    The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.

  20. Modeling the dynamical systems on experimental data

    SciTech Connect

    Janson, N.B.; Anishchenko, V.S.

    1996-06-01

    An attempt is made in the work to create qualitative models of some real biological systems, i.e., isolated frog{close_quote}s heart, a human{close_quote}s heart and a blood circulation system of a white rat. Sampled one-dimensional realizations of these systems were taken as the initial data. Correlation dimensions were calculated to evaluate the embedding dimensions of the systems{close_quote} attractors. The result of the work are the systems of ordinary differential equations which approximately describe the dynamics of the systems under investigation. {copyright} {ital 1996 American Institute of Physics.}

  1. Numerical characterization and modeling of adiabatic slot film cooling

    NASA Astrophysics Data System (ADS)

    Voegele, Andrew

    Film cooling is a technique used to protect critical surfaces in combustors, thrust chambers, turbines and nozzles from hot, chemically reacting gases. Accurately predicting the film's performance is especially challenging in the vicinity of the wall and the film injection plane due to the complex interactions of two highly turbulent, shearing, boundary layer flows. Properly characterizing the streams at the inlet of a numerical simulation and the choice of turbulence model are crucial to accurately predicting the decay of the film. To address these issues, this study employs a RANS solver that is used to model a film cooled wall. Menter's baseline model, and shear-stress transport model and the Spalart-Allmaras model are employed to determine the effect on film cooling predictions. Several methods for prescribing the inlet planes are explored. These numerical studies are compared with experimental data obtained in a UMD film cooling wind tunnel.

  2. Nab: toward a precise experimental characterization of neutron beta decay

    NASA Astrophysics Data System (ADS)

    Pocanic, Dinko; Nab Collaboration

    2013-10-01

    Nab, a new program of measurements at the Spallation Neutron Source, Oak Ridge, TN, will study unpolarized neutron beta decays, with the goal to determine a, the electron-neutrino correlation with precision of δa / a =10-3 , and b, the Fierz interference term, with uncertainty δb ~= 3 ×10-3 . Neutron beta decay offers a means to study the weak interaction with great precision; its relatively simple theoretical description in the Standard Model (SM) is overconstrained by the set of available observables. Projected Nab results will lead to a new precise determination of the ratio λ =GA /GV , and to significant reductions in the allowed limits for both right- and left-handed scalar and tensor currents. Alternatively, the experiment may detect a discrepancy from SM predictions consistent with certain realizations of supersymmetry. An optimized, asymmetric spectrometer has been designed to achieve the narrow proton momentum response function required to meet the physics goals of the experiment. The apparatus is to be used in a follow-up measurement (abBA) of observables A and B in polarized neutron decay. Nab is fully funded, and is in the construction stage. We discuss the experiment's motivation, expected reach, and method. Work supported by NSF grants PHY-0970013, 1126683, and others.

  3. Experimental photoallergic contact dermatitis: a mouse model

    SciTech Connect

    Maguire, H.C. Jr.; Kaidbey, K.

    1982-09-01

    We have induced photoallergic contact dermatitis in mice to 3,3',4',5 tetrachlorosalicylanilide (TCSA), chlorpromazine and 6-methylcoumarin. These compounds are known to produce photoallergic contact dermatitis in humans. The photoallergic contact dermatitis reaction in the mouse is immunologically specific viz. mice photosensitized to TCSA react, by photochallenge, to that compound and not to chlorpromazine, and conversely. The reaction requires UVA at both sensitization and challenge. It appears to be T-cell mediated in that it can be passively transferred to syngeneic mice by lymph node cells from actively sensitized mice, the histology of the reactions resembles that of classic allergic contact dermatitis in mice, challenge reactions are seen at 24 but not at 4 hr, and photoallergic contact dermatitis can be induced in B-cell deficient mice. The availability of a mouse model for the study of photo-ACD will facilitate the identification of pertinent control mechanisms and may aid in the management of the disease. It is likely that a bioassay for photoallergens of humans can be based on this mouse model.

  4. Experimental and analytical generic space station dynamic models

    NASA Technical Reports Server (NTRS)

    Belvin, W. K.; Edighoffer, H. H.

    1986-01-01

    A dynamic model used for verification of analytical and experimental methods is documented. The model consists of five substructures to simulate the multibody, low frequency nature of large space structures. Design considerations which led to a fundamental vibration frequency of less than one Hz are described. Finite element analysis used to predict the vibration modes and frequencies of the experimental model is presented. In addition, modeling of cable suspension effects using prestressed vibration analysis is described. Details of the expermental and analytical models are included to permit replication of the study. Results of the modal vibration tests and analysis are presented in a separate document.

  5. Segmented Polynomial Models in Quasi-Experimental Research.

    ERIC Educational Resources Information Center

    Wasik, John L.

    1981-01-01

    The use of segmented polynomial models is explained. Examples of design matrices of dummy variables are given for the least squares analyses of time series and discontinuity quasi-experimental research designs. Linear combinations of dummy variable vectors appear to provide tests of effects in the two quasi-experimental designs. (Author/BW)

  6. Experimental investigation of a flapping wing model

    NASA Astrophysics Data System (ADS)

    Hubel, Tatjana Y.; Tropea, Cameron

    2009-05-01

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.

  7. Experimental investigation of a flapping wing model

    NASA Astrophysics Data System (ADS)

    Hubel, Tatjana Y.; Tropea, Cameron

    The main objective of this research study was to investigate the aerodynamic forces of an avian flapping wing model system. The model size and the flow conditions were chosen to approximate the flight of a goose. Direct force measurements, using a three-component balance, and PIV flow field measurements parallel and perpendicular to the oncoming flow, were performed in a wind tunnel at Reynolds numbers between 28,000 and 141,000 (3-15 m/s), throughout a range of reduced frequencies between 0.04 and 0.20. The appropriateness of quasi-steady assumptions used to compare 2D, time-averaged particle image velocimetry (PIV) measurements in the wake with direct force measurements was evaluated. The vertical force coefficient for flapping wings was typically significantly higher than the maximum coefficient of the fixed wing, implying the influence of unsteady effects, such as delayed stall, even at low reduced frequencies. This puts the validity of the quasi-steady assumption into question. The (local) change in circulation over the wing beat cycle and the circulation distribution along the wingspan were obtained from the measurements in the tip and transverse vortex planes. Flow separation could be observed in the distribution of the circulation, and while the circulation derived from the wake measurements failed to agree exactly with the absolute value of the circulation, the change in circulation over the wing beat cycle was in excellent agreement for low and moderate reduced frequencies. The comparison between the PIV measurements in the two perpendicular planes and the direct force balance measurements, show that within certain limitations the wake visualization is a powerful tool to gain insight into force generation and the flow behavior on flapping wings over the wing beat cycle.

  8. Mathematical Models and the Experimental Analysis of Behavior

    ERIC Educational Resources Information Center

    Mazur, James E.

    2006-01-01

    The use of mathematical models in the experimental analysis of behavior has increased over the years, and they offer several advantages. Mathematical models require theorists to be precise and unambiguous, often allowing comparisons of competing theories that sound similar when stated in words. Sometimes different mathematical models may make…

  9. The experimental characterization of particle dynamics in solid composite propellants

    NASA Astrophysics Data System (ADS)

    Moore, Joseph Elijah

    There are many parameters affecting the size and behavior of aluminum (Al) droplets on and near the burning surface of composite solid propellants. Multiple points of view are studied in the current investigation. The first is in the development of a Statistical Image Correlation Velocimeter (SICV) to analyze the velocity of exhaust particles and gases leaving the burning surface. Many of the analysis techniques used in the validation of the SICV software are then used to conduct further analysis including additional propellants. The next portion of the study looks at the effect of changing two of the formulation parameters in the propellant: the metal fuel content, and the polymer binder composition. Al/Nickel (Ni) clad particles are used as an additive to the conventional Al powder. Titanium-Boron (Ti-B) is also studied as another potential intermetallic additive. The nature of the binder is studied by examining the differences between propellants made with hydroxyl-terminated polybutadiene (HTPB) and dicyclopentadiene (DCPD) binders. Strand burns are conducted in the open atmosphere as well as in a windowed combustion vessel at pressures ranging from atmospheric to 700 psig. The burning surface linear regression rate, as well as size of the agglomerated metal fuel particles leaving the surface is measured using macro- and microscopic high speed imaging followed by video analysis using modeling tools and digital particle sizing algorithms. It is shown that the partial replacement of Al with Al/Ni clad particles decreases the average size of the agglomerated particles and increases the propellant burning rate. An optimum fraction likely exists. It is also shown that ball milling, or mechanical activation, of the Al/Ni particles leads to a further increase in the burning rate of the propellant. This is likely due to a decrease in the ignition temperature of the material after it has undergone mechanical activation. Analysis of binder-specific samples reveals that

  10. A systematic review of animal models for experimental neuroma.

    PubMed

    Toia, Francesca; Giesen, Thomas; Giovanoli, Pietro; Calcagni, Maurizio

    2015-10-01

    Peripheral neuromas can result in an unbearable neuropathic pain and functional impairment. Their treatment is still challenging, and their optimal management is to be defined. Experimental research still plays a major role, but - although numerous neuroma models have been proposed on different animals - there is still no single model recognised as being the reference. Several models show advantages over the others in specific aspects of neuroma physiopathology, prevention or treatment, making it unlikely that a single model could be of reference. A reproducible and standardised model of peripheral neuroma would allow better comparison of results from different studies. We present a systematic review of the literature on experimental in vivo models, analysing advantages and disadvantages, specific features and indications, with the goal of providing suggestions to help their standardisation. Published models greatly differ in the animal and the nerve employed, the mechanisms of nerve injury and the evaluation methods. Specific experimental models exist for terminal neuromas and neuromas in continuity (NIC). The rat is the most widely employed animal, the rabbit being the second most popular model. NIC models are more actively researched, but it is more difficult to generate such studies in a reproducible manner. Nerve transection is considered the best method to cause terminal neuromas, whereas partial transection is the best method to cause NIC. Traditional histomorphology is the historical gold-standard evaluation method, but immunolabelling, reverse transcriptase-polymerase chain reaction (RT-PCR) and proteomics are gaining increasing popularity. Computerised gait analysis is the gold standard for motor-recovery evaluation, whereas mechanical testing of allodynia and hyperalgesia reproducibly assesses sensory recovery. This review summarises current knowledge on experimental neuroma models, and it provides a useful tool for defining experimental protocols

  11. Experimental study of rocket engine model with gaseous polyethylene fuel

    NASA Astrophysics Data System (ADS)

    Yemets, V. V.

    Experimental results for liquid rocket engine models with gaseous polyethylene fuel that is hard before its consumption are considered. The possibility of hard design element combustion in a liquid rocket engine is demonstrated.

  12. Experimental basis for the models of cascade propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    The picture of the hadron nucleus collision process is presented as it emerges on the basis of newly obtained experimental data. The picture is applicable to models of cascade propagation in Earth atmosphere.

  13. Experimental validation of a Monte Carlo model for determining the temporal response of the underwater optical communications channel

    NASA Astrophysics Data System (ADS)

    Cochenour, Brandon M.; Laux, Alan E.

    2015-05-01

    Recent interest in high speed laser communications underwater has restimulated theoretical studies in laser propagation in turbid media. In particular, the characterization of temporal dispersion is of paramount importance in order to predict the bandwidth and capacity of underwater optical channels. While the temporal aspects of underwater laser propagation have received attention from the modeling community in the past, few if any of these models have been validated with experimental data. However recent advances in hardware technology now enable experimental characterization at high speeds (~GHz). Such measurements have been made by the authors.1 In this work, we develop a Monte Carlo model, and present initial results validated against the aforementioned experimental data.

  14. Mutant mice: experimental organisms as materialised models in biomedicine.

    PubMed

    Huber, Lara; Keuck, Lara K

    2013-09-01

    Animal models have received particular attention as key examples of material models. In this paper, we argue that the specificities of establishing animal models-acknowledging their status as living beings and as epistemological tools-necessitate a more complex account of animal models as materialised models. This becomes particularly evident in animal-based models of diseases that only occur in humans: in these cases, the representational relation between animal model and human patient needs to be generated and validated. The first part of this paper presents an account of how disease-specific animal models are established by drawing on the example of transgenic mice models for Alzheimer's disease. We will introduce an account of validation that involves a three-fold process including (1) from human being to experimental organism; (2) from experimental organism to animal model; and (3) from animal model to human patient. This process draws upon clinical relevance as much as scientific practices and results in disease-specific, yet incomplete, animal models. The second part of this paper argues that the incompleteness of models can be described in terms of multi-level abstractions. We qualify this notion by pointing to different experimental techniques and targets of modelling, which give rise to a plurality of models for a specific disease. PMID:23545252

  15. Experimental tests of the standard model.

    SciTech Connect

    Nodulman, L.

    1998-11-11

    The title implies an impossibly broad field, as the Standard Model includes the fermion matter states, as well as the forces and fields of SU(3) x SU(2) x U(1). For practical purposes, I will confine myself to electroweak unification, as discussed in the lectures of M. Herrero. Quarks and mixing were discussed in the lectures of R. Aleksan, and leptons and mixing were discussed in the lectures of K. Nakamura. I will essentially assume universality, that is flavor independence, rather than discussing tests of it. I will not pursue tests of QED beyond noting the consistency and precision of measurements of {alpha}{sub EM} in various processes including the Lamb shift, the anomalous magnetic moment (g-2) of the electron, and the quantum Hall effect. The fantastic precision and agreement of these predictions and measurements is something that convinces people that there may be something to this science enterprise. Also impressive is the success of the ''Universal Fermi Interaction'' description of beta decay processes, or in more modern parlance, weak charged current interactions. With one coupling constant G{sub F}, most precisely determined in muon decay, a huge number of nuclear instabilities are described. The slightly slow rate for neutron beta decay was one of the initial pieces of evidence for Cabbibo mixing, now generalized so that all charged current decays of any flavor are covered.

  16. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review.

    PubMed

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-02-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  17. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review

    PubMed Central

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-01-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  18. Experimental congenital syphilis: guinea pig model.

    PubMed Central

    Wicher, K; Baughn, R E; Wicher, V; Nakeeb, S

    1992-01-01

    Neonates born to female guinea pigs of either a highly susceptible (C4D) or a resistant (Albany) strain, infected prior to or during pregnancy with a single dose of Treponema pallidum, showed in their sera from the first day of life immunoglobulin M (IgM) antibodies to T. pallidum, circulating immune complexes consisting of IgM antibodies and treponemal antigens, and IgM rheumatoid factor. Although the animals were asymptomatic for a 6-month observation period, several lines of evidence indicated that they were infected in utero. Molecular analysis of whole sera, purified serum IgM fraction, or dissociated immune complexes demonstrated IgM reactivity against one (47 kDa) or more of several T. pallidum peptides (15, 17, 37, 42, 45, and 87 kDa) recognized as integral membrane components. Sequential analysis of the neonates' sera by immunoblot and enzyme-linked immunosorbent assay, using alcohol-treated T. pallidum, T. phagedenis biotype Reiter, and T. vincentii, demonstrated early IgM antibodies followed 3 to 4 months later by IgG2- and IgG1-specific antibodies to T. pallidum. Moreover, an infectivity test done in five rabbits with pooled tissue extracts prepared from liveborn or stillborn animals evoked a seroconversion in two rabbits (reactive Venereal Disease Research Laboratory and fluorescent treponemal antibody tests), suggesting the presence of T. pallidum in the organs. Sera from neonates born to either T. phagedenis biotype Reiter-injected mothers or three normal pregnant females were all serologically negative. The model offers new possibilities for exploration of factors responsible for asymptomatic infection often observed in human congenital syphilis. Images PMID:1729190

  19. Seismic velocities to characterize the soil-aquifer continuum on the Orgeval experimental basin (France)

    NASA Astrophysics Data System (ADS)

    Pasquet, S.; Ludovic, B.; Dhemaied, A.; Flipo, N.; Guérin, R.; Mouhri, A.; Faycal, R.; Vitale, Q.

    2013-12-01

    Among geophysical methods applied to hydrogeology, seismic prospecting is frequently confined to the characterization of aquifers geometry. The combined study of pressure- (P) and shear- (SH) wave velocities (respectively Vp and Vs) can however provide information about the aquifer parameters, as it is commonly done for most fluids in hydrocarbon exploration. This approach has recently been proposed in sandy aquifers with the estimation of Vp/Vs ratio. In order to address such issues in more complex aquifer systems (e.g. unconsolidated, heterogeneous or low-permeability media) we carried out P- and SH-wave seismic surveys on the Orgeval experimental basin (70 km east from Paris, France). This basin drains a multi-layer aquifer system monitored by a network of piezometers. The upper part of the aquifer system is characterized by tabular layers well delineated all over the basin thanks to Electrical Resistivity Tomography (ERT), Time Domain ElectroMagnetic (TDEM) soundings and wells. But the lateral variability of the intrinsic properties in each layer raises questions regarding the hydrodynamics of the upper aquifer and the validity of interpolations between piezometers. A simple interpretation of P- and SH-wave first arrivals for tabular models provides 1D velocity structures in very good agreement with the stratification anticipated from ERT and nearby geological logs. Vp/Vs ratios show a strong contrast at a depth consistent with the observed water table level, reinforcing the assumption of a free upper aquifer in the area. Similar experiments have to be conducted under different hydrological conditions to validate these observations. Anticipating the need to propose lateral applications of the method, we additionally performed tomographic inversions of the recorded data to retrieve 2D Vp and Vs models. If interpreted independently, both models fail to depict the stratification of the medium and the water table level cannot be straightforwardly identified

  20. In silico simulations of experimental protocols for cardiac modeling.

    PubMed

    Carro, Jesus; Rodriguez, Jose Felix; Pueyo, Esther

    2014-01-01

    A mathematical model of the AP involves the sum of different transmembrane ionic currents and the balance of intracellular ionic concentrations. To each ionic current corresponds an equation involving several effects. There are a number of model parameters that must be identified using specific experimental protocols in which the effects are considered as independent. However, when the model complexity grows, the interaction between effects becomes increasingly important. Therefore, model parameters identified considering the different effects as independent might be misleading. In this work, a novel methodology consisting in performing in silico simulations of the experimental protocol and then comparing experimental and simulated outcomes is proposed for parameter model identification and validation. The potential of the methodology is demonstrated by validating voltage-dependent L-type calcium current (ICaL) inactivation in recently proposed human ventricular AP models with different formulations. Our results show large differences between ICaL inactivation as calculated from the model equation and ICaL inactivation from the in silico simulations due to the interaction between effects and/or to the experimental protocol. Our results suggest that, when proposing any new model formulation, consistency between such formulation and the corresponding experimental data that is aimed at being reproduced needs to be first verified considering all involved factors. PMID:25571288

  1. The Standard Solar Model versus Experimental Observations

    NASA Astrophysics Data System (ADS)

    Manuel, O.

    2000-12-01

    The standard solar model (ssm) assumes the that Sun formed as a homogeneous body, its interior consists mostly of hydrogen, and its radiant energy comes from H-fusion in its core. Two sets of measurements indicate the ssm is wrong: 1. Analyses of material in the planetary system show that - (a) Fe, O, Ni, Si, Mg, S and Ca have high nuclear stability and comprise 98+% of ordinary meteorites that formed at the birth of the solar system; (b) the cores of inner planets formed in a central region consisting mostly of heavy elements like Fe, Ni and S; (c) the outer planets formed mostly from elements like H, He and C; and (d) isotopic heterogeneities accompanied these chemical gradients in debris of the supernova that exploded here 5 billion years ago to produce the solar system (See Origin of the Elements at http://www.umr.edu/õm/). 2. Analyses of material coming from the Sun show that - (a) there are not enough neutrinos for H-fusion to be its main source of energy; (b) light-weight isotopes (mass =L) of He, Ne, Ar, Kr and Xe in the solar wind are enriched relative to heavy isotopes (mass = H) by a factor, f, where log f = 4.56 log [H/L] -- - Eq. (1); (c) solar flares by-pass 3.4 of these 9-stages of diffusion and deplete the light-weight isotopes of He, Ne, Mg and Ar by a factor, f*, where log f* = -1.7 log [H/L] --- Eq. (2); (d) proton-capture on N-14 increased N-15 in the solar wind over geologic time; and (e) solar flares dredge up nitrogen with less N-15 from this H-fusion reaction. Each observation above is unexplained by ssm. After correcting photospheric abundances for diffusion [Observation 2(b)], the most abundant elements in the bulk sun are Fe, Ni, O, Si, S, Mg and Ca, the same elements that comprise ordinary meteorites [Observation 1(a)]. The probability that Eq. (1) would randomly select these elements from the photosphere, i.e., the likelihood for a meaningless agreement between observations 2(b) and 1(a), is < 2.0E(-33). Thus, ssm does not describe the

  2. Current Experimental Basis for Modeling Ice Accretions on Swept Wings

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2005-01-01

    This work presents a review of the experimental basis for modeling ice accretions on swept wings. Experimental work related to ice accretion physics on swept wings conducted between 1954 and 2004 is reviewed. Proposed models or explanations of scallop formations are singled out and discussed. Special emphasis is placed on reviewing the work done to determine the basic macroscopic mechanisms of scallop formation. The role of feather growth and its connection to scallop growth is discussed. Conceptual steps in modeling scallop formations are presented. Research elements needed for modeling are discussed.

  3. Dynamic material characterization of the human heel pad based on in vivo experimental tests and numerical analysis.

    PubMed

    Kardeh, M; Vogl, T J; Huebner, F; Nelson, K; Stief, F; Silber, G

    2016-09-01

    A numerical-experimental, proof-of-concept approach is described to characterize the mechanical material behavior of the human heel pad under impact conditions similar to a heel strike while running. A 3D finite-element model of the right foot of a healthy female subject was generated using magnetic resonance imaging. Based on quasi-static experimental testing of the subject's heel pad, force-displacement data was obtained. Using this experimental data as well as a numerical optimization algorithm, an inverse finite-element analysis and the 3D model, heel pad hyperelastic (long-term) material parameters were determined. Applying the same methodology, based on the dynamic experimental data from the impact test and obtained long-term parameters, linear viscoelastic parameters were established with a Prony series. Model validation was performed employing quasi-static and dynamic force-displacement data. Coefficients of determination when comparing model to experimental data during quasi-static and dynamic (initial velocity: 1480mm/s) procedure were R(2) = 0.999 and R(2) = 0.990, respectively. Knowledge of these heel pad material parameters enables realistic numerical analysis to evaluate internal stress and strain in the heel pad during different quasi-static or dynamic load conditions. PMID:27387903

  4. Characterization of Turbulent Flows for Turbulence Modeling

    NASA Astrophysics Data System (ADS)

    Reynolds, W. C.; Haire, S. L.

    1998-11-01

    A diagram for the characterization of turbulent flows using the invariants of the mean velocity gradient tensor is introduced. All mean flows, from irrotationally strained flows to shearing flows, to purely rotational flows, can be identified on this diagram. Different flow fields which occupy the same region on the diagram are said to be comprised of the same topological features. The current state of turbulence modeling can be identified on the diagram based on the type of mean flow fields which can be accurately computed. Regions on the diagram can be shown for which current capabilities in turbulence modeling fail to accurately resolve the turbulent structures. Relevant mean field topology is identified for future work in turbulence modeling. Using this analysis, we suggest a number of flows to be computed by DNS or LES and used as testing cases for new models.

  5. Experimental method for characterizing CVOC removal from fractured clays during boiling.

    PubMed

    Liu, Xiaoling; Tan, Tianwu; Falta, Ronald W; Murdoch, Lawrence C

    2013-09-01

    Conventional remediation methods that rely on contact with contaminants can be ineffective in fractured media, but thermal methods of remediation involving CVOC stripping at boiling temperature show promise. However, limited experimental data are available to characterize thermal remediation because of challenges associated with high temperature. This research reports an experimental method using uniformly contaminated clay packed into two types of experimental cells, a rigid-wall stainless steel tube and a flexible-wall Teflon tube in a pressurized chamber. Both tubes are 5 cm in diameter and approximately 25 cm long. This laboratory apparatus was developed as a 1D physical model for contaminant transport in a cylindrical matrix towards a fracture, which is represented by one end of the cylinder and serves as the outlet of vapor and contaminant. The clay was contaminated with dissolved 1,2-dichloroethane (DCA) and bromide, and the columns were heated to more than 100 °C and then the top end was depressurized to atmospheric pressure to induce boiling. The outflow was condensed and analyzed for contaminant mass. The flexible-wall cell was confined to 100 kPa (gage), allowing equilibrium boiling temperatures of approximately 120 °C to be maintained. The clay was sampled before and after heating and extracted to determine the DCA distribution along the length of the column. During a typical test in the rigid-wall cell, internal temperatures and pressures along the column during heating reached the saturated vapor pressure curve. DCA concentrations in the recovered condensate were up to 12 times of the initial pore concentration in the clay. Less than 5% of non-volatile bromide was recovered. Significant removal of DCA and water occurred along the entire length of the clay column. This suggests that boiling was occurring in the clay matrix. PMID:23872027

  6. Characterizing a partially ordered miniprotein through folding molecular dynamics simulations: Comparison with the experimental data.

    PubMed

    Baltzis, Athanasios S; Glykos, Nicholas M

    2016-03-01

    The villin headpiece helical subdomain (HP36) is one of the best known model systems for computational studies of fast-folding all-α miniproteins. HP21 is a peptide fragment-derived from HP36-comprising only the first and second helices of the full domain. Experimental studies showed that although HP21 is mostly unfolded in solution, it does maintain some persistent native-like structure as indicated by the analysis of NMR-derived chemical shifts. Here we compare the experimental data for HP21 with the results obtained from a 15-μs long folding molecular dynamics simulation performed in explicit water and with full electrostatics. We find that the simulation is in good agreement with the experiment and faithfully reproduces the major experimental findings, namely that (a) HP21 is disordered in solution with <10% of the trajectory corresponding to transiently stable structures, (b) the most highly populated conformer is a native-like structure with an RMSD from the corresponding portion of the HP36 crystal structure of <1 Å, (c) the simulation-derived chemical shifts-over the whole length of the trajectory-are in reasonable agreement with the experiment giving reduced χ(2) values of 1.6, 1.4, and 0.8 for the Δδ(13) C(α) , Δδ(13) CO, and Δδ(13) C(β) secondary shifts, respectively (becoming 0.8, 0.7, and 0.3 when only the major peptide conformer is considered), and finally, (d) the secondary structure propensity scores are in very good agreement with the experiment and clearly indicate the higher stability of the first helix. We conclude that folding molecular dynamics simulations can be a useful tool for the structural characterization of even marginally stable peptides. PMID:26609791

  7. Optimizing experimental design for comparing models of brain function.

    PubMed

    Daunizeau, Jean; Preuschoff, Kerstin; Friston, Karl; Stephan, Klaas

    2011-11-01

    This article presents the first attempt to formalize the optimization of experimental design with the aim of comparing models of brain function based on neuroimaging data. We demonstrate our approach in the context of Dynamic Causal Modelling (DCM), which relates experimental manipulations to observed network dynamics (via hidden neuronal states) and provides an inference framework for selecting among candidate models. Here, we show how to optimize the sensitivity of model selection by choosing among experimental designs according to their respective model selection accuracy. Using Bayesian decision theory, we (i) derive the Laplace-Chernoff risk for model selection, (ii) disclose its relationship with classical design optimality criteria and (iii) assess its sensitivity to basic modelling assumptions. We then evaluate the approach when identifying brain networks using DCM. Monte-Carlo simulations and empirical analyses of fMRI data from a simple bimanual motor task in humans serve to demonstrate the relationship between network identification and the optimal experimental design. For example, we show that deciding whether there is a feedback connection requires shorter epoch durations, relative to asking whether there is experimentally induced change in a connection that is known to be present. Finally, we discuss limitations and potential extensions of this work. PMID:22125485

  8. Combustion modeling for experimentation in a space environment

    NASA Technical Reports Server (NTRS)

    Berlad, A. L.

    1974-01-01

    The merits of combustion experimentation in a space environment are assessed, and the impact of such experimentation on current theoretical models is considered. It is noted that combustion theory and experimentation for less than normal gravitational conditions are incomplete, inadequate, or nonexistent. Extensive and systematic experimentation in a space environment is viewed as essential for more adequate and complete theoretical models of such processes as premixed flame propagation and extinction limits, premixed flame propagation in droplet and particle clouds, ignition and autoignition in premixed combustible media, and gas jet combustion of unpremixed reactants. Current theories and models in these areas are described, and some combustion studies that can be undertaken in the Space Shuttle Program are proposed, including crossed molecular beam, turbulence, and upper pressure limit (of gases) studies.

  9. Combined experimental/analytical modeling of shell/payload structures

    SciTech Connect

    Martinez, D.R.; Miller, A.K.; Carne, T.G.

    1985-12-01

    This study evaluates the accuracy of computed modal frequencies obtained from a combined experimental/analytical model of a shell/payload structure. A component mode synthesis technique was used which incorporated free modes and residual effects. The total structure is physically divided into the two subsystems which are connected through stiff joints. The payload was tested to obtain its free-free modes, while a finite element model of the shell was analyzed to obtain its modal description. Both the translational and rotational components of the experimental mode shapes at the payload interface were used in the coupling. Sensitivity studies were also performed to determine the effect of neglecting the residual terms of the payload. Results from a previous study of a combined experimental/analytical model for a beam structure are also given. The beam structure was used to examine the basic procedures and difficulties in experimentally measuring, and analytically accounting for the rotational and residual quantities.

  10. Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces

    SciTech Connect

    James A. Smith; Jeffrey M. Lacy; Barry H. Rabin

    2014-07-01

    12. Other advances in QNDE and related topics: Preferred Session Laser-ultrasonics Developing A Laser Shockwave Model For Characterizing Diffusion Bonded Interfaces 41st Annual Review of Progress in Quantitative Nondestructive Evaluation Conference QNDE Conference July 20-25, 2014 Boise Centre 850 West Front Street Boise, Idaho 83702 James A. Smith, Jeffrey M. Lacy, Barry H. Rabin, Idaho National Laboratory, Idaho Falls, ID ABSTRACT: The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) which is assigned with reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU. The new LEU fuel is based on a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to complete the fuel qualification process, the laser shock technique is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. The Laser Shockwave Technique (LST) is being investigated to characterize interface strength in fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However the deposition of laser energy into the containment layer on specimen’s surface is intractably complex. The shock wave energy is inferred from the velocity on the backside and the depth of the impression left on the surface from the high pressure plasma pulse created by the shock laser. To help quantify the stresses and strengths at the interface, a finite element model is being developed and validated by comparing numerical and experimental results for back face velocities and front face depressions with experimental results. This paper will report on initial efforts to develop a finite element model for laser

  11. A refined model for characterizing x-ray multilayers

    SciTech Connect

    Oren, A.L.; Henke, B.L.

    1987-12-01

    The ability to quickly and accurately characterize arbitrary multilayers is very valuable for not only can we use the characterizations to predict the reflectivity of a multilayer for any soft x-ray wavelength, we also can generalize the results to apply to other multilayers of the same type. In addition, we can use the characterizations as a means of evaluating various sputtering environments and refining sputtering techniques to obtain better multilayers. In this report we have obtained improved characterizations for sample molybdenum-silicon and vanadium-silicon multilayers. However, we only examined five crystals overall, so the conclusions that we could draw about the structure of general multilayers is limited. Research involving many multilayers manufactured under the same sputtering conditions is clearly in order. In order to best understand multilayer structures it may be necessary to further refine our model, e.g., adopting a Gaussian form for the interface regions. With such improvements we can expect even better agreement with experimental values and continued concurrence with other characterization techniques. 18 refs., 30 figs., 7 tabs.

  12. Experimental and Numerical Characterization of a Hybrid Fabry-Pérot Cavity for Temperature Sensing

    PubMed Central

    Lopez-Aldaba, Aitor; Pinto, Ana Margarida Rodrigues; Lopez-Amo, Manuel; Frazão, Orlando; Santos, José Luís; Baptista, José Manuel; Baierl, Hardy; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe

    2015-01-01

    A hybrid Fabry-Pérot cavity sensing head based on a four-bridge microstructured fiber is characterized for temperature sensing. The characterization of this cavity is performed numerically and experimentally in the L-band. The sensing head output signal presents a linear variation with temperature changes, showing a sensitivity of 12.5 pm/°C. Moreover, this Fabry-Pérot cavity exhibits good sensitivity to polarization changes and high stability over time. PMID:25853404

  13. Analytical and Experimental Characterization of a Linear-Array Thermopile Scanning Radiometer for Geo-Synchronous Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Sorensen, Ira J.

    1998-01-01

    The Thermal Radiation Group, a laboratory in the department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently working towards the development of a new technology for cavity-based radiometers. The radiometer consists of a 256-element linear-array thermopile detector mounted on the wall of a mirrored wedgeshaped cavity. The objective of this research is to provide analytical and experimental characterization of the proposed radiometer. A dynamic end-to-end opto-electrothermal model is developed to simulate the performance of the radiometer. Experimental results for prototype thermopile detectors are included. Also presented is the concept of the discrete Green's function to characterize the optical scattering of radiant energy in the cavity, along with a data-processing algorithm to correct for the scattering. Finally, a parametric study of the sensitivity of the discrete Green's function to uncertainties in the surface properties of the cavity is presented.

  14. Hysteretic effects of dry friction: modelling and experimental studies.

    PubMed

    Wojewoda, Jerzy; Stefański, Andrzej; Wiercigroch, Marian; Kapitaniak, Tomasz

    2008-03-13

    In this paper, the phenomena of hysteretic behaviour of friction force observed during experiments are discussed. On the basis of experimental and theoretical analyses, we argue that such behaviour can be considered as a representation of the system dynamics. According to this approach, a classification of friction models, with respect to their sensitivity on the system motion characteristic, is introduced. General friction modelling of the phenomena accompanying dry friction and a simple yet effective approach to capture the hysteretic effect are proposed. Finally, the experimental results are compared with the numerical simulations for the proposed friction model. PMID:17947206

  15. Design and Implementation of an Experimental Segway Model

    NASA Astrophysics Data System (ADS)

    Younis, Wael; Abdelati, Mohammed

    2009-03-01

    The segway is the first transportation product to stand, balance, and move in the same way we do. It is a truly 21st-century idea. The aim of this research is to study the theory behind building segway vehicles based on the stabilization of an inverted pendulum. An experimental model has been designed and implemented through this study. The model has been tested for its balance by running a Proportional Derivative (PD) algorithm on a microprocessor chip. The model has been identified in order to serve as an educational experimental platform for segways.

  16. Recent developments in experimental animal models of Henipavirus infection.

    PubMed

    Rockx, Barry

    2014-07-01

    Hendra (HeV) and Nipah (NiV) viruses (genus Henipavirus (HNV; family Paramyxoviridae) are emerging zoonotic agents that can cause severe respiratory distress and acute encephalitis in humans. Given the lack of effective therapeutics and vaccines for human use, these viruses are considered as public health concerns. Several experimental animal models of HNV infection have been developed in recent years. Here, we review the current status of four of the most promising experimental animal models (mice, hamsters, ferrets, and African green monkeys) and their suitability for modeling the clinical disease, transmission, pathogenesis, prevention, and treatment for HNV infection in humans. PMID:24488776

  17. Experimental and Theoretical Characterization of the ANDE Wind and Temperature Spectrometer (WATS)

    NASA Astrophysics Data System (ADS)

    Fenn, D.; Syrstad, E. A.; Dyer, J. S.; Vancil, B.; Roman, P.; Jones, H.; Herrero, F.; Finne, T. T.; Nicholas, A. C.

    2009-12-01

    The Wind and Temperature Spectrometer (WATS), developed at NASA-GSFC and NRL, is currently flying aboard the Atmospheric Neutral Density Experiment (ANDE). The primary mission objective of ANDE is validation and improvement of spacecraft drag and thermospheric models by measurement of the total atmospheric density. Drag determination also requires accurate measurements of neutral wind, temperature, and composition (O/N2 ratio). WATS provides the unprecedented capability to simultaneously measure all of these parameters in situ, by analyzing the angular and energy distribution of the gas stream passing its entrance aperture. WATS imposes very low power and size requirements on the host spacecraft, and is suitable for integration with small satellite platforms such as CubeSat. After passing through a pair of mutually-perpendicular collimating slits, neutrals are ionized by electron impact and energy analyzed by a crossed Small Deflection Energy Analyzer (SDEA) pair. The angular distribution of ions exiting the SDEA pair is measured by a microchannel plate (MCP) detector with linear spatial readout. The peak of this distribution indicates the neutral stream velocity vector in spectrometer coordinates, while the energy distribution yields the magnitude of this vector. Specification of the full neutral wind follows from knowledge of the satellite pointing angle. The width and shape of the angular distribution allows determination of the neutral temperature. Additionally, the high satellite velocity allows mass separation of the major thermospheric constituents by energy analysis. For example, at 7500 m/s, O and N2 have kinetic energies of 4.7 and 8.2 eV, respectively, and are readily resolved by the SDEA. This paper describes theoretical and experimental efforts aimed to characterize WATS performance, validate instrument and component functionality, augment sensor calibration, and improve data analysis. Much of this work has involved ion trajectory simulations (SIMION 3

  18. Experimental study and modeling of a novel magnetorheological elastomer isolator

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Du, Haiping; Li, Weihua; Li, Yancheng; Li, Jianchun; Sun, Shuaishuai; Deng, H. X.

    2013-11-01

    This paper reports an experimental setup aiming at evaluating the performance of a newly designed magnetorheological elastomer (MRE) seismic isolator. As a further effort to explore the field-dependent stiffness/damping properties of the MRE isolator, a series of experimental testing were conducted. Based upon the analysis of the experimental responses and the characteristics of the MRE isolator, a new model that is capable of reproducing the unique MRE isolator dynamics behaviors is proposed. The validation results verify the model’s effectiveness to portray the MRE isolator. A study on the field-dependent parameters is then provided to make the model valid with fluctuating magnetic fields. To fully explore the mechanism of the proposed model, an investigation relating the dependence of the proposed model on every parameter is carried out.

  19. Characterization and modeling of weighted networks

    NASA Astrophysics Data System (ADS)

    Barthélemy, Marc; Barrat, Alain; Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2005-02-01

    We review the main tools which allow for the statistical characterization of weighted networks. We then present two case studies, the airline connection network and the scientific collaboration network which are representatives of critical infrastructure and social system, respectively. The main empirical results are (i) the broad distributions of various quantities and (ii) the existence of weight-topology correlations. These measurements show that weights are relevant and that in general the modeling of complex networks must go beyond topology. We review a model which provides an explanation for the features observed in several real-world networks. This model of weighted network formation relies on the dynamical coupling between topology and weights, considering the rearrangement of new links are introduced in the system.

  20. Computational modeling of epilepsy for an experimental neurologist

    PubMed Central

    Holt, Abbey B.; Netoff, Theoden I.

    2013-01-01

    Computational modeling can be a powerful tool for an experimentalist, providing a rigorous mathematical model of the system you are studying. This can be valuable in testing your hypotheses and developing experimental protocols prior to experimenting. This paper reviews models of seizures and epilepsy at different scales, including cellular, network, cortical region, and brain scales by looking at how they have been used in conjunction with experimental data. At each scale, models with different levels of abstraction, the extraction of physiological detail, are presented. Varying levels of detail are necessary in different situations. Physiologically realistic models are valuable surrogates for experimental systems because, unlike in an experiment, every parameter can be changed and every variable can be observed. Abstract models are useful in determining essential parameters of a system, allowing the experimentalist to extract principles that explain the relationship between mechanisms and the behavior of the system. Modeling is becoming easier with the emergence of platforms dedicated to neuronal modeling and databases of models that can be downloaded. Modeling will never be a replacement for animal and clinical experiments, but it should be a starting point in designing experiments and understanding their results. PMID:22617489

  1. Modelling and experimental analysis of hormonal crosstalk in Arabidopsis

    PubMed Central

    Liu, Junli; Mehdi, Saher; Topping, Jennifer; Tarkowski, Petr; Lindsey, Keith

    2010-01-01

    An important question in plant biology is how genes influence the crosstalk between hormones to regulate growth. In this study, we model POLARIS (PLS) gene function and crosstalk between auxin, ethylene and cytokinin in Arabidopsis. Experimental evidence suggests that PLS acts on or close to the ethylene receptor ETR1, and a mathematical model describing possible PLS–ethylene pathway interactions is developed, and used to make quantitative predictions about PLS–hormone interactions. Modelling correctly predicts experimental results for the effect of the pls gene mutation on endogenous cytokinin concentration. Modelling also reveals a role for PLS in auxin biosynthesis in addition to a role in auxin transport. The model reproduces available mutants, and with new experimental data provides new insights into how PLS regulates auxin concentration, by controlling the relative contribution of auxin transport and biosynthesis and by integrating auxin, ethylene and cytokinin signalling. Modelling further reveals that a bell-shaped dose–response relationship between endogenous auxin and root length is established via PLS. This combined modelling and experimental analysis provides new insights into the integration of hormonal signals in plants. PMID:20531403

  2. An experimentally determined evolutionary model dramatically improves phylogenetic fit.

    PubMed

    Bloom, Jesse D

    2014-08-01

    All modern approaches to molecular phylogenetics require a quantitative model for how genes evolve. Unfortunately, existing evolutionary models do not realistically represent the site-heterogeneous selection that governs actual sequence change. Attempts to remedy this problem have involved augmenting these models with a burgeoning number of free parameters. Here, I demonstrate an alternative: Experimental determination of a parameter-free evolutionary model via mutagenesis, functional selection, and deep sequencing. Using this strategy, I create an evolutionary model for influenza nucleoprotein that describes the gene phylogeny far better than existing models with dozens or even hundreds of free parameters. Emerging high-throughput experimental strategies such as the one employed here provide fundamentally new information that has the potential to transform the sensitivity of phylogenetic and genetic analyses. PMID:24859245

  3. Improvement on the polynomial modeling of digital camera colorimetric characterization

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoqiao; Yu, Hongfei; Shi, Junsheng; Tai, Yonghang

    2014-11-01

    The digital camera has become a requisite for people's life, also essential in imaging applications, and it is important to get more accurate colors with digital camera. The colorimetric characterization of digital camera is the basis of image copy and color management process. One of the traditional methods for deriving a colorimetric mapping between camera RGB signals and the tristimulus values CIEXYZ is to use polynomial modeling with 3×11 polynomial transfer matrices. In this paper, an improved polynomial modeling is presented, in which the normalized luminance replaces the camera inherent RGB values in the traditional polynomial modeling. The improved modeling can be described by a two stage model. The first stage, relationship between the camera RGB values and normalized luminance with six gray patches in the X-rite ColorChecker 24-color card was described as "Gamma", camera RGB values were converted into normalized luminance using Gamma. The second stage, the traditional polynomial modeling was improved to the colorimetric mapping between normalized luminance and the CIEXYZ. Meanwhile, this method was used under daylight lighting environment, the users can not measure the CIEXYZ of the color target char using professional instruments, but they can accomplish the task of the colorimetric characterization of digital camera. The experimental results show that: (1) the proposed method for the colorimetric characterization of digital camera performs better than traditional polynomial modeling; (2) it's a feasible approach to handle the color characteristics using this method under daylight environment without professional instruments, the result can satisfy for request of simple application.

  4. Characterization and adsorption modeling of silicon carbide-derived carbons.

    PubMed

    Nguyen, T X; Bae, J-S; Bhatia, S K

    2009-02-17

    We present characterization results of silicon carbide-derived carbons (Si-CDCs) prepared from both nano- and micron-sized betaSiC particles by oxidation in pure chlorine atmosphere at various synthesis temperatures (600-1000 degrees C). Subsequently, the adsorption modeling study of simple gases (CH4 and CO2) in these Si-CDC samples for a wide range of pressures and temperatures using our Finite Wall Thickness model [Nguyen, T. X.; Bhatia, S. K. Langmuir 2004, 20, 3532] was also carried out. In general, characterization results showed that the core of Si-CDC particles contains predominantly amorphous material while minor graphitization was also observed on the surface of these particles for all the investigated synthesis temperatures (600-1000 degrees C). Furthermore, postsynthetic heat treatment at 1000 degrees C for 3 days, as well as particle size of precursor (betaSiC) were shown to have slight impact on the graphitization. In spite of the highly disordered nature of Si-CDC samples, the adsorption modeling results revealed that the Finite Wall Thickness model provides reasonably good prediction of experimental adsorption data of CO2 and CH4 in all the investigated Si-CDC samples at the temperatures of 273 K, 313 K, and 333 K for a wide range of pressure up to 200 bar. Furthermore, the impact of the difference in molecular size and geometry between analysis and probing gases on the prediction of the experimental adsorption isotherm in a disordered carbon using the slit-pore model is also found. Finally, the correlation between compressibility of the Si-CDC samples under high pressure adsorption and their synthesis temperature was deduced from the adsorption modeling. PMID:19123908

  5. Experimentally induced rodent models of type 2 diabetes.

    PubMed

    Islam, Md Shahidul; Wilson, Rachel Dorothy

    2012-01-01

    Diabetes is one of the major global public health problems and is gradually getting worse particularly in developing nations where 95% of patients are suffering from type 2 diabetes (T2D). Animal models in diabetes research are very common where rodents are the best choice of use due to being smaller in size, easy to handle, omnivorous in nature, and non-wild tranquil behavior. Normally rodent models are classified into two major classes namely: (1) genetic or spontaneously induced models and (2) non-genetic or experimentally induced models. Non-genetic models are more popular compared to genetic models due to lower cost, wider availability, easier to induce diabetes, and of course easier to maintain compared to genetic models. A number of non-genetic models have been developed in last three decades for diabetes research including adult alloxan/streptozotocin (STZ) models, partial pancreatectomy model, high-fat (HF) diet-fed models, fructose-fed models, HF diet-fed STZ models, nicotinamide-STZ models, monosodium-glutamate (MSG) induced models, and intrauterine growth retardation (IUGR) models. A T2D model should have the all major pathogenesis of the disease usually found in humans; however, none of the above-mentioned models are without limitations. This chapter comparatively evaluates most of the experimentally induced rodent models of T2D with their limitations, advantages, disadvantages, and criticality of development in order to help diabetes research groups to more appropriately select the animal models to work on their specific research question. PMID:22893406

  6. Characterizing Variability in Smestad and Gratzel's Nanocrystalline Solar Cells: A Collaborative Learning Experience in Experimental Design

    ERIC Educational Resources Information Center

    Lawson, John; Aggarwal, Pankaj; Leininger, Thomas; Fairchild, Kenneth

    2011-01-01

    This article describes a collaborative learning experience in experimental design that closely approximates what practicing statisticians and researchers in applied science experience during consulting. Statistics majors worked with a teaching assistant from the chemistry department to conduct a series of experiments characterizing the variation…

  7. Experimental and modeling studies of caesium sorption on illite

    SciTech Connect

    Poinssot, C.; Baeyens, B.; Bradbury, M.H.

    1999-10-01

    A natural illite (illite du Puy) was purified and converted to the homo-ionic Na form. The conditioned Na-illite was characterized in terms of its mineralogy, chemical inventory, and surface properties. The structural formula was determined from EDS analyses (SEM/TEM) and bulk chemistry. A cation exchange capacity of 127 mEq/kg was determined by the Na isotope dilution method at neutral pH. The sorption of Cs was measured as a function of NaClO{sub 4} background electrolyte concentration (1.0, 0.1 and 0.01 M), Cs concentration and pH in the range {approx}3 to {approx}10. Before obtaining these measurements the kinetics of Cs uptake were determined at initial concentrations of 2 x 10{sup {minus}8} M and 7 x 10{sup {minus}5} M, representing the extremes of the range investigated, and was found to be concentration dependent. The supernatant solutions after centrifugation were analyzed for major cations in all of the sorption tests. A two-site cation exchange model was developed to describe the sorption of Cs over the whole range of experimental conditions. The two-site types were termed frayed edge sites, FES (high affinity/low capacity) and type 2 sites (low affinity/high capacity). At low NaClO{sub 4} concentrations, Cs sorption decreased at pH values less than neutral. This was interpreted in terms of competitive effects from H, and K released by the partial dissolution of illite, which cannot be avoided at low and high pH values. Selectivity coefficient values for Cs-Na, Cs-K, K-Na, and H-Na exchange equilibria on the FES sites, and Cs-Na exchange on the type 2 sites are given for illite together with the corresponding site capacities.

  8. Experimental and Modeling Studies of Particles in Plasmas

    NASA Astrophysics Data System (ADS)

    Daugherty, John Edward

    Particles that are generated during plasma processing are an important source of contamination in microelectronic device fabrication. In this work we investigate the transport of plasma-generated particles in a radiofrequency (rf) diode plasma reactor, and we characterize this transport in terms of the forces that act on particles in the plasma environment. In this way we determine the mechanisms by which particles transport to critical processing surfaces. Aluminum and copper particles are formed in a radiofrequency argon sputtering system. The spatial distribution of these particles is observed with elastic laser light scattering. The distribution of particles in the discharge is found to depend most strongly on discharge power and particle size. Large particles and particles in high power discharges tend to segregate near the plasma sheath boundary. Small particles and particles in very low power discharges tend to accumulate in the center of the discharge. The spatial distributions that are observed experimentally are consistent with a model of the forces on particles in a plasma environment. The model includes the electrostatic force, the thermophoretic force, gravity, and momentum transfer from drifting plasma ions and from drifting neutral gas. In addition, the charging of small particles is investigated. We find that the particle charge can usually be predicted using simplified theory rather than the full plasma kinetic theory. Also, the electrostatic potential distribution in the vicinity of a charged particle is found to resemble a Debye-Huckel potential profile. Particles are observed to affect the discharge structure. Spatially- and temporally-resolved optical emission intensities take on characteristics that are associated with discharges in electronegative gases. We take this as evidence that the particles act as heavy, multiply charged negative ions. Plasmas with particles have a smaller self bias, and they are more resistive than discharges in pure

  9. Synthesis, Experimental Characterization and Parametric Identification of Ionic-Polymer Metal Composite Bending Actuators

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Li, Huibiao; Chen, Hualing; Zhou, Jinxiong

    2012-03-01

    Ionic polymer metal composite (IPMC) actuator is a sandwiched structure with a thin polyelectrolyte strip or membrane plated with metal electrodes on both sides. Under a low applied voltage the IPMC strip bends toward either electrode depending on its polarity, forming a soft actuator for potential diverse applications. We report in details our methodologies for synthesizing IPMC with high quality electrode morphologies. We describe our experimental setup for measuring the physical and mechanical properties of IPMC. In conjunction with the experimental characterization, we finally present a parameter identification scheme to identify two key parameters for establishing relationship between unbalanced charge density and the associated electrostatic eigenstress, a constitutive law widely used in IPMC literature. The experimental and simulation procedures presented herein pave the avenue for fabrication, characterization and development of novel IPMC-based sensors and actuators.

  10. Patterning and characterization of model phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Kassu, Aschalew; Calzzani, Fernando A., Jr.; Taguenang, Jean M.; Sileshi, Redahegn K.; Sharma, Anup

    2008-08-01

    Phospholipid, which is a building block of biological membranes, plays an important role in compartmentalization of cellular reaction environment and control of the physicochemical conditions inside the reaction environment. Phospholipid bilayer membrane has been proposed as a natural biocompatible platform for attaching biological molecules like proteins for biosensing related application. Due to the enormous potential applications of biomimetic model biomembranes, various techniques for depositions and patterning of these membranes onto solid supports and their possible biotechnological applications have been reported by different groups. In this work, patterning of phospholipid thin-films is accomplished by interferometric lithography as well as using lithographic masks in liquid phase. Surface Enhanced Raman Spectroscopy and Atomic Force microscopy are used to characterize the model phospholipid membrane and the patterning technique. We describe an easy and reproducible technique for direct patterning of azo-dye (NBD)-labeled phospholipid (phosphatidylcholine) in aqueous medium using a low-intensity 488 nm Ar+ laser and various kinds of lithographic masks.

  11. Experimental models of hepatotoxicity related to acute liver failure.

    PubMed

    Maes, Michaël; Vinken, Mathieu; Jaeschke, Hartmut

    2016-01-01

    Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposure or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure. PMID:26631581

  12. Experimental models of hepatotoxicity related to acute liver failure

    PubMed Central

    Maes, Michaël; Vinken, Mathieu; Jaeschke, Hartmut

    2015-01-01

    Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposure or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure. PMID:26631581

  13. Nonlinear oscillator metamaterial model: numerical and experimental verification.

    PubMed

    Poutrina, E; Huang, D; Urzhumov, Y; Smith, D R

    2011-04-25

    We verify numerically and experimentally the accuracy of an analytical model used to derive the effective nonlinear susceptibilities of a varactor-loaded split ring resonator (VLSRR) magnetic medium. For the numerical validation, a nonlinear oscillator model for the effective magnetization of the metamaterial is applied in conjunction with Maxwell equations and the two sets of equations solved numerically in the time-domain. The computed second harmonic generation (SHG) from a slab of a nonlinear material is then compared with the analytical model. The computed SHG is in excellent agreement with that predicted by the analytical model, both in terms of magnitude and spectral characteristics. Moreover, experimental measurements of the power transmitted through a fabricated VLSRR metamaterial at several power levels are also in agreement with the model, illustrating that the effective medium techniques associated with metamaterials can accurately be transitioned to nonlinear systems. PMID:21643082

  14. Experimental validation of flexible robot arm modeling and control

    NASA Technical Reports Server (NTRS)

    Ulsoy, A. Galip

    1989-01-01

    Flexibility is important for high speed, high precision operation of lightweight manipulators. Accurate dynamic modeling of flexible robot arms is needed. Previous work has mostly been based on linear elasticity with prescribed rigid body motions (i.e., no effect of flexible motion on rigid body motion). Little or no experimental validation of dynamic models for flexible arms is available. Experimental results are also limited for flexible arm control. Researchers include the effects of prismatic as well as revolute joints. They investigate the effect of full coupling between the rigid and flexible motions, and of axial shortening, and consider the control of flexible arms using only additional sensors.

  15. Experimental characterization of porosity structure and transport properties changes in limestone undergoing different dissolution regimes

    NASA Astrophysics Data System (ADS)

    Gouze, P.; Luquot, L.; Rodriguez, O.; Mangane, P. O.

    2013-12-01

    Limestone rock dissolution induces geometrical parameters changes such as porosity, pore size distribution (connectivity), or tortuosity which may consequently modify transport properties (permeability, diffusion coefficient). Characterizing these changes is essential for modeling flow and CO2 transport during and after the CO2 injection. Indeed, these changes can affect the storage capacity and the injectivity of the formation. We report experimental results from CO2 rich-brine injection into limestone core samples of 9 mm diameter, 18 mm length. Experiments were performed at in situ conditions (T = 100°C and P = 12 MPa) and with four different CO2 partial pressures (PCO2) varying from 0.034 to 3.4 MPa. X-ray microtomography (XMT) images are used to characterize, from pore scale to Darcy scale, the changes in the structural properties induced by the percolation of the CO2-rich brine. Coupling imaging techniques with sample scale measurements of the time-resolved permeability and chemical fluxes, allows determining the change in the chemical and physical parameters of the sample induced by the dissolution processes. The experiment results show localized dissolution features (wormhole formation) for the highest PCO2, whereas homogeneous dissolution is observed for the lower. The higher the CO2 concentration is the more ramifications at macro scale have growth into the sample and consequently the higher the permeability has increased. During low CO2 concentration injections, the dissolution processes may include transport of fine particles, which locally clog the porous space. This process is controlled by the differential dissolution rate of the calcite cement and calcite grains. This mechanism induces a decrease of permeability (while porosity increases) that may alter the CO2 injectivity.

  16. Development of FEM/BEM and Sea Models from Experimental Results for Structural Elements with Attached Equipment

    NASA Astrophysics Data System (ADS)

    Martinez-Calvo, B.; Roibas-Millan, E.; Chimeno-Manguan, M.; Fajardo, P.; Rioboo, J. L.; Simon, F.; Lopez-Diez, J.

    2012-07-01

    This work focuses on the analysis of a structural element of MetOP-A satellite. Given the special interest in the influence of equipment installed on structural elements, the paper studies one of the lateral faces on which the Advanced SCATterometer (ASCAT) is installed. The work is oriented towards the modal characterization of the specimen, describing the experimental set-up and the application of results to the development of a Finite Element Method (FEM) model to study the vibro-acoustic response. For the high frequency range, characterized by a high modal density, a Statistical Energy Analysis (SEA) model is considered, and the FEM model is used when modal density is low. The methodology for developing the SEA model and a compound FEM and Boundary Element Method (BEM) model to provide continuity in the medium frequency range is presented, as well as the necessary updating, characterization and coupling between models required to achieve numerical models that match experimental results.

  17. Experimental Evaluation and Workload Characterization for High-Performance Computer Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.

    1995-01-01

    This research is conducted in the context of the Joint NSF/NASA Initiative on Evaluation (JNNIE). JNNIE is an inter-agency research program that goes beyond typical.bencbking to provide and in-depth evaluations and understanding of the factors that limit the scalability of high-performance computing systems. Many NSF and NASA centers have participated in the effort. Our research effort was an integral part of implementing JNNIE in the NASA ESS grand challenge applications context. Our research work under this program was composed of three distinct, but related activities. They include the evaluation of NASA ESS high- performance computing testbeds using the wavelet decomposition application; evaluation of NASA ESS testbeds using astrophysical simulation applications; and developing an experimental model for workload characterization for understanding workload requirements. In this report, we provide a summary of findings that covers all three parts, a list of the publications that resulted from this effort, and three appendices with the details of each of the studies using a key publication developed under the respective work.

  18. An investigation on characterizing dense coal-water slurry with ultrasound: theoretical and experimental method

    SciTech Connect

    Xue, M.H.; Su, M.X.; Dong, L.L.; Shang, Z.T.; Cai, X.S.

    2010-07-01

    Particle size distribution and concentration in particulate two-phase flow are important parameters in a wide variety of industrial areas. For the purpose of online characterization in dense coal-water slurries, ultrasonic methods have many advantages such as avoiding dilution, the capability for being used in real time, and noninvasive testing, while light-based techniques are not capable of providing information because optical methods often require the slurry to be diluted. In this article, the modified Urick equation including temperature modification, which can be used to determine the concentration by means of the measurement of ultrasonic velocity in a coal-water slurry, is evaluated on the basis of theoretical analysis and experimental study. A combination of the coupled-phase model and the Bouguer-Lambert-Beer law is employed in this work, and the attenuation spectrum is measured within the frequency region from 3 to 12 MHz. Particle size distributions of the coal-water slurry at different volume fractions are obtained with the optimum regularization technique. Therefore, the ultrasonic technique presented in this work brings the possibility of using ultrasound for online measurements of dense slurries.

  19. Synthesis and characterization of three novel Schiff base compounds: Experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Taslı, P. T.; Bayrakdar, A.; Karakus, O. O.; Kart, H. H.; Koc, Y.

    2015-09-01

    In this study, three novel Schiff base compounds such as N-(4-nitrobenzyl)-4-methyl bromo aniline ( 1a), N-(2,4-dimethoxybenzyl)-4-methyl bromoaniline ( 2a), SN-((1H-indol-3-yl) methylene)-4- methyl bromoaniline ( 3a) are synthesized and characterized by using the spectroscopic methods of UV, IR and 1H-NMR. Molecular geometry and spectroscopic properties of synthesized compounds are also analyzed by using ab initio calculation methods based on the density functional theory (DFT) in the ground state. The extensive theoretical and experimental FT-IR and UV-vis spectrometry studies of synthesized compounds are performed. The optimized molecular structure and harmonic vibrational frequencies are studied by using B3LYP/6-311++G(d,p) method. Moreover, electronic structures are investigated by using the time dependent density functional theory (TD-DFT) while the energy changes of the parent compounds are examined in a solvent medium by using the polarizable continuum model (PCM). Additionally, the frontier molecular orbital analysis is performed for the Schiff base compounds. The electronic properties of each compound such as; chemical hardness, chemical softness, ionization potential, electron affinity, electronegativity and chemical potential are investigated by utilizing the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies.

  20. Computer model for characterizing, screening, and optimizing electrolyte systems

    SciTech Connect

    Gering, Kevin L.

    2015-06-15

    Electrolyte systems in contemporary batteries are tasked with operating under increasing performance requirements. All battery operation is in some way tied to the electrolyte and how it interacts with various regions within the cell environment. Seeing the electrolyte plays a crucial role in battery performance and longevity, it is imperative that accurate, physics-based models be developed that will characterize key electrolyte properties while keeping pace with the increasing complexity of these liquid systems. Advanced models are needed since laboratory measurements require significant resources to carry out for even a modest experimental matrix. The Advanced Electrolyte Model (AEM) developed at the INL is a proven capability designed to explore molecular-to-macroscale level aspects of electrolyte behavior, and can be used to drastically reduce the time required to characterize and optimize electrolytes. Although it is applied most frequently to lithium-ion battery systems, it is general in its theory and can be used toward numerous other targets and intended applications. This capability is unique, powerful, relevant to present and future electrolyte development, and without peer. It redefines electrolyte modeling for highly-complex contemporary systems, wherein significant steps have been taken to capture the reality of electrolyte behavior in the electrochemical cell environment. This capability can have a very positive impact on accelerating domestic battery development to support aggressive vehicle and energy goals in the 21st century.

  1. Characterization and modeling of the heat source

    SciTech Connect

    Glickstein, S.S.; Friedman, E.

    1993-10-01

    A description of the input energy source is basic to any numerical modeling formulation designed to predict the outcome of the welding process. The source is fundamental and unique to each joining process. The resultant output of any numerical model will be affected by the initial description of both the magnitude and distribution of the input energy of the heat source. Thus, calculated weld shape, residual stresses, weld distortion, cooling rates, metallurgical structure, material changes due to excessive temperatures and potential weld defects are all influenced by the initial characterization of the heat source. Understandings of both the physics and the mathematical formulation of these sources are essential for describing the input energy distribution. This section provides a brief review of the physical phenomena that influence the input energy distributions and discusses several different models of heat sources that have been used in simulating arc welding, high energy density welding and resistance welding processes. Both simplified and detailed models of the heat source are discussed.

  2. Model-based target and background characterization

    NASA Astrophysics Data System (ADS)

    Mueller, Markus; Krueger, Wolfgang; Heinze, Norbert

    2000-07-01

    Up to now most approaches of target and background characterization (and exploitation) concentrate solely on the information given by pixels. In many cases this is a complex and unprofitable task. During the development of automatic exploitation algorithms the main goal is the optimization of certain performance parameters. These parameters are measured during test runs while applying one algorithm with one parameter set to images that constitute of image domains with very different domain characteristics (targets and various types of background clutter). Model based geocoding and registration approaches provide means for utilizing the information stored in GIS (Geographical Information Systems). The geographical information stored in the various GIS layers can define ROE (Regions of Expectations) and may allow for dedicated algorithm parametrization and development. ROI (Region of Interest) detection algorithms (in most cases MMO (Man- Made Object) detection) use implicit target and/or background models. The detection algorithms of ROIs utilize gradient direction models that have to be matched with transformed image domain data. In most cases simple threshold calculations on the match results discriminate target object signatures from the background. The geocoding approaches extract line-like structures (street signatures) from the image domain and match the graph constellation against a vector model extracted from a GIS (Geographical Information System) data base. Apart from geo-coding the algorithms can be also used for image-to-image registration (multi sensor and data fusion) and may be used for creation and validation of geographical maps.

  3. Modeling and characterization of recompressed damaged materials

    SciTech Connect

    Becker, R; Cazamias, J U; Kalantar, D H; LeBlanc, M M; Springer, H K

    2004-02-11

    Experiments have been performed to explore conditions under which spall damage is recompressed with the ultimate goal of developing a predictive model. Spall is introduced through traditional gas gun techniques or with laser ablation. Recompression techniques producing a uniaxial stress state, such as a Hopkinson bar, do not create sufficient confinement to close the porosity. Higher stress triaxialities achieved through a gas gun or laser recompression can close the spall. Characterization of the recompressed samples by optical metallography and electron microscopy reveal a narrow, highly deformed process zone. At the higher pressures achieved in the gas gun, little evidence of spall remains other than differentially etched features in the optical micrographs. With the very high strain rates achieved with laser techniques there is jetting from voids and other signs of turbulent metal flow. Simulations of spall and recompression on micromechanical models containing a single void suggest that it might be possible to represent the recompression using models similar to those employed for void growth. Calculations using multiple, randomly distributed voids are needed to determine if such models will yield the proper behavior for more realistic microstructures.

  4. Experimental verification of Jeffcott rotor model with preloaded snubber ring

    NASA Astrophysics Data System (ADS)

    Karpenko, E. V.; Wiercigroch, M.; Pavlovskaia, E. E.; Neilson, R. D.

    2006-12-01

    This paper describes the experimental verification of a nonlinear Jeffcott rotor model with a preloaded snubber ring. The nonlinearity, in the form of a discontinuous stiffness, is caused by the radial clearance between rotor and the snubber ring. The rotor is placed eccentrically within the snubber ring and the eccentricity can be varied. For purpose of clarity the mathematical model of the rotor system with the preloaded snubber ring developed in Pavlovskaia et al. [Nonlinear dynamics of a Jeffcott rotor with a preloaded snubber ring, Journal of Sound and Vibration 276 (2004) 361-379] is presented briefly. Theoretical results obtained from analytical approximate solutions and numerical simulations of the model are verified by the experimental study. A detailed description of the experimental rig and the data acquisition system developed are presented, along with the experimental procedures used to investigate the dynamical responses of the system. The results concentrate on the dynamic responses caused by interactions between the whirling rotor and the massless snubber ring, which has much higher support stiffness than the rotor. Bifurcation diagrams, Poincaré maps and phase plane diagrams are used to compare the results obtained from the experiment and the theory. Good correlation between the experimental and theoretical results is found.

  5. Comparison of hybrid Hall thruster model to experimental measurements

    SciTech Connect

    Scharfe, Michelle K.; Gascon, Nicolas; Cappelli, Mark A.; Fernandez, Eduardo

    2006-08-15

    A two-dimensional hybrid particle-in-cell numerical model has been constructed in the radial-axial plane with the intent of examining the physics governing Hall thruster operation. The electrons are treated as a magnetized quasi-one-dimensional fluid and the ions are treated as collisionless, unmagnetized discrete particles. The anomalously high electron conductivity experimentally observed in Hall thrusters is accounted for using experimental measurements of electron mobility in the Stanford Hall Thruster. While an experimental mobility results in improved simulation of electron temperature and electric potential relative to a Bohm-type model, results suggest that energy losses due to electron wall interactions may also be an important factor in accurately simulating plasma properties. Using a simplified electron wall damping model modified to produce general agreement with experimental measurements, an evaluation is made of differing treatments of electron mobility, background gas, neutral wall interactions, and charge exchange collisions. Although background gas results in two populations of neutrals, the increased neutral density has little effect on other plasma properties. Diffuse neutral wall interactions are in better agreement with experimental measurements than specular scattering. Also, charge exchange collisions result in an increase in average neutral velocity of 11% and a decrease in average ion velocity of 4% near the exit plane. The momentum exchange that occurs during charge exchange collisions is found to be negligible.

  6. Experimental, numerical and analytical models of mantle starting plumes

    NASA Astrophysics Data System (ADS)

    Coulliette, D. L.; Loper, D. E.

    1995-12-01

    The results of a combined experimental, numerical and analytical investigation of starting thermal plumes are described, to obtain a better perspective on plumes within the Earth's mantle. Thermal plumes were generated experimentally in a tank of corn syrup by means of an electrical heater. Viscosity ratios of 400, 30 000, and 10 8 were generated by varying the temperature of the tank. Plumes for the smaller ratios had the traditional 'balloon-on-astring' shape, but that at the highest ratio had a novel morphology. The plume heads in the first two cases were observed to rise at roughly a constant speed, in contrast to most previous studies which found the plume heads to accelerate. Loss of buoyancy from the plume head owing to heat loss is believed to be responsible for this difference. Starting plumes were simulated numerically using an axisymmetric, finite-element code to solve the Boussinesq equations at finite Prandtl numbers. The constant rise speed observed experimentally was confirmed by the numerical simulation for the viscosity ratios of 400 and 30 000, but numerical instability prevented simulation of the case with a viscosity ratio of 10 8. There was very good agreement between the experimental and numerical rise speeds. An analytical model was developed which reduces to previous models in limiting cases. This parameterization gives better agreement with the experimental and numerical results than does any previous model.

  7. Pathological characterization and morphometric analysis of hepatic lesions in SHRSP5/Dmcr, an experimental non-alcoholic steatohepatitis model, induced by high-fat and high-cholesterol diet.

    PubMed

    Horai, Yasushi; Utsumi, Hiroyuki; Ono, Yuko; Kishimoto, Toshimitsu; Ono, Yuuichi; Fukunari, Atsushi

    2016-02-01

    SHRSP5/Dmcr is a newly established substrain of stroke-prone spontaneously hypertensive rat (SHRSP). Recently, high-fat and high-cholesterol (HFC) diet-fed SHRSP5/Dmcr has been reported as a novel rat model of developing hepatic lesions similar to human non-alcoholic steatohepatitis (NASH). The aim of this study was to investigate the detailed pathological conditions induced by HFC diet in SHRSP5/Dmcr rats using molecular biological methods and morphometric analysis. SHRSP5/Dmcr rats at 6 weeks of age were fed on either HFC diet or stroke-prone (SP) diet for 2, 4, 6, 8 and 16 weeks and histopathological changes in the liver, blood chemistry and mRNA expression levels in the liver were investigated. As evidenced by the histopathological examination of the liver of the SHRSP5/Dmcr rats, hepatic steatosis and lobular inflammation were present, with gradual increasing severity from 2 weeks after the introduction of the HFC diet. Partial hepatic fibrosis was detected at 6 weeks and spread over the entire region of the liver with more severe bridging formation by 16 weeks. The degrees of NASH-like hepatic lesions such as steatosis (the size distribution of lipid droplets), inflammation and fibrosis were quantified by morphometric analysis. Eosinophilic inclusion bodies encountered in the hepatocytes had immunoreactivity with Cox-4 and double-membrane walls, identified as mega-mitochondria. Serum ALT and bilirubins, and the mRNA expression levels related to fibrosis were closely correlated with hepatic histopathological changes. The clear feeding time-dependent progression of NASH-like hepatic lesion in HFC diet-fed SHRSP5/Dmcr rats reinforced the conclusion that this strain might be a useful model of NASH and of inflammatory fibrotic liver disease. PMID:27037502

  8. Development and experimental verification of an intraocular scattering model

    NASA Astrophysics Data System (ADS)

    Jiang, Chong-Jhih; Jhong, Tian-Siang; Chen, Yi-Chun; Sun, Ching-Cherng

    2011-10-01

    An intraocular scattering model was constructed in human eye model and experimentally verified. According to the biometric data, the volumetric scattering in crystalline lens and diffusion at retina fundus were developed. The scattering parameters of cornea, including particle size and obscuration ratio, were varied to make the veiling luminance of the eye model matching the CIE disability glare general formula. By replacing the transparent lens with a cataractous lens, the disability glare curve of cataracts was generated and compared with that of transparent lenses. The MTF of the intraocular scattering model showed nice correspondence with the data measured by a double-pass experiment.

  9. A numerical cloud model for the support of laboratory experimentation

    NASA Technical Reports Server (NTRS)

    Hagen, D. E.

    1979-01-01

    A numerical cloud model is presented which can describe the evolution of a cloud starting from moist aerosol-laden air through the diffusional growth regime. The model is designed for the direct support of cloud chamber laboratory experimentation, i.e., experiment preparation, real-time control and data analysis. In the model the thermodynamics is uncoupled from the droplet growth processes. Analytic solutions for the cloud droplet growth equations are developed which can be applied in most laboratory situations. The model is applied to a variety of representative experiments.

  10. Experimental Models of Microvascular Immunopathology: The Example of Cerebral Malaria

    PubMed Central

    El-Assaad, Fatima; Combes, Valery; Grau, Georges ER

    2015-01-01

    Human cerebral malaria is a severe and often lethal complication of Plasmodium falciparum infection. Complex host and parasite interactions should the precise mechanisms involved in the onset of this neuropathology. Adhesion of parasitised red blood cells and host cells to endothelial cells lead to profound endothelial alterations that trigger immunopathological changes, varying degrees of brain oedema and can compromise cerebral blood flow, cause cranial nerve dysfunction and hypoxia. Study of the cerebral pathology in human patients is limited to clinical and genetic field studies in endemic areas, thus cerebral malaria (CM) research relies heavily on experimental models. The availability of malaria models allows study from the inoculation of Plasmodium to the onset of disease and permit invasive experiments. Here, we discuss some aspects of our current understanding of CM, the experimental models available and some important recent findings extrapolated from these models. PMID:26430675

  11. Seismo-acoustic ray model benchmarking against experimental tank data.

    PubMed

    Camargo Rodríguez, Orlando; Collis, Jon M; Simpson, Harry J; Ey, Emanuel; Schneiderwind, Joseph; Felisberto, Paulo

    2012-08-01

    Acoustic predictions of the recently developed traceo ray model, which accounts for bottom shear properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic Parabolic Equation Experiment) experiments. Both experiments are representative of signal propagation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where significant interaction of the signal with the bottom can be expected. The benchmarks show, in particular, that the ray model can be as accurate as a parabolic approximation model benchmarked in similar conditions. The results of benchmarking are important, on one side, as a preliminary experimental validation of the model and, on the other side, demonstrates the reliability of the ray approach for seismo-acoustic applications. PMID:22894193

  12. Diclofenac evaluated in a human experimental model of central pain.

    PubMed

    Björkman, R; Elam, M

    1993-08-01

    The putative central analgesic activity of diclofenac was investigated in a human experimental pain model using intraneural electrical stimulation in the median nerve. Since pain is induced proximal to the peripheral nociceptors, the model can be used to test central analgesic properties of i.a. pharmacological interventions performed during series of repeated stimulations. A single intravenous dose of 50 mg diclofenac or saline was administered during an ongoing series of painful intraneural stimulations in a double-blind cross-over study in 10 healthy volunteers. Neither diclofenac nor saline caused any significant change in the level of pain experienced during stimulation. Thus, no central analgesic effect of diclofenac could be demonstrated in this model. The stability of individual visual analogue scale (VAS) scores throughout the experimental sessions, also after administration of the potent peripheral analgesic agent diclofenac, underlines the validity of intraneural stimulation as a central pain model in humans. PMID:8233534

  13. Experimental Models of Anxiety for Drug Discovery and Brain Research.

    PubMed

    Hart, Peter C; Bergner, Carisa L; Smolinsky, Amanda N; Dufour, Brett D; Egan, Rupert J; LaPorte, Justin L; Kalueff, Allan V

    2016-01-01

    Animal models have been vital to recent advances in experimental neuroscience, including the modeling of common human brain disorders such as anxiety, depression, and schizophrenia. As mice express robust anxiety-like behaviors when exposed to stressors (e.g., novelty, bright light, or social confrontation), these phenotypes have clear utility in testing the effects of psychotropic drugs. Of specific interest is the extent to which mouse models can be used for the screening of new anxiolytic drugs and verification of their possible applications in humans. To address this problem, the present chapter will review different experimental models of mouse anxiety and discuss their utility for testing anxiolytic and anxiogenic drugs. Detailed protocols will be provided for these paradigms, and possible confounds will be addressed accordingly. PMID:27150096

  14. Numerical and experimental verification of physical blast thermodynamic model

    NASA Astrophysics Data System (ADS)

    Chorowski, Maciej; Iluk, Artur; Grabowski, Maciej; Jędrusyna, Artur

    2015-12-01

    Helium inventory in big cryogenic systems may be of the order of hundred tons. During the warm up of the machine the helium has to be stored in warm pressurized tanks. A potential rupture of the tank may create a danger to adjacent objects. In order to formulate recommendations concerning storage of compressed gases in close vicinity of nuclear installations, a thermodynamic model of physical blast has been formulated. The model has been experimentally verified in a laboratory scale test rig. To simulate rupture of compressed gas storage tanks, plastic tanks have been used. Scaling of the results to real cases like ITER compressed gas inventory requires good understanding of potential rupture of high volume gas storage tanks. Numerical model of tanks rupture have been elaborated and verified against experimental results. The model allows scaling of thermodynamic simplified description to real gas storage installations.

  15. Microbiome and Asthma: What Have Experimental Models Already Taught Us?

    PubMed

    Bonamichi-Santos, R; Aun, M V; Agondi, R C; Kalil, J; Giavina-Bianchi, P

    2015-01-01

    Asthma is a chronic inflammatory disease that imposes a substantial burden on patients, their families, and the community. Although many aspects of the pathogenesis of classical allergic asthma are well known by the scientific community, other points are not yet understood. Experimental asthma models, particularly murine models, have been used for over 100 years in order to better understand the immunopathology of asthma. It has been shown that human microbiome is an important component in the development of the immune system. Furthermore, the occurrence of many inflammatory diseases is influenced by the presence of microbes. Again, experimental models of asthma have helped researchers to understand the relationship between the microbiome and respiratory inflammation. In this review, we discuss the evolution of murine models of asthma and approach the major studies involving the microbiome and asthma. PMID:26266269

  16. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    EPA Science Inventory

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  17. Experimental Models of Ocular Infection with Toxoplasma Gondii

    PubMed Central

    Dukaczewska, Agata; Tedesco, Roberto; Liesenfeld, Oliver

    2015-01-01

    Ocular toxoplasmosis is a vision-threatening disease and the major cause of posterior uveitis worldwide. In spite of the continuing global burden of ocular toxoplasmosis, many critical aspects of disease including the therapeutic approach to ocular toxoplasmosis are still under debate. To assist in addressing many aspects of the disease, numerous experimental models of ocular toxoplasmosis have been established. In this article, we present an overview on in vitro, ex vivo, and in vivo models of ocular toxoplasmosis available to date. Experimental studies on ocular toxoplasmosis have recently focused on mice. However, the majority of murine models established so far are based on intraperitoneal and intraocular infection with Toxoplasma gondii. We therefore also present results obtained in an in vivo model using peroral infection of C57BL/6 and NMRI mice that reflects the natural route of infection and mimics the disease course in humans. While advances have been made in ex vivo model systems or larger animals to investigate specific aspects of ocular toxoplasmosis, laboratory mice continue to be the experimental model of choice for the investigation of ocular toxoplasmosis. PMID:26716018

  18. Inference of Mix from Experimental Data and Theoretical Mix Models

    SciTech Connect

    Welser-Sherrill, L.; Haynes, D. A.; Cooley, J. H.; Mancini, R. C.; Haan, S. W.; Golovkin, I. E.

    2007-08-02

    The mixing between fuel and shell materials in Inertial Confinement Fusion implosion cores is a topic of great interest. Mixing due to hydrodynamic instabilities can affect implosion dynamics and could also go so far as to prevent ignition. We have demonstrated that it is possible to extract information on mixing directly from experimental data using spectroscopic arguments. In order to compare this data-driven analysis to a theoretical framework, two independent mix models, Youngs' phenomenological model and the Haan saturation model, have been implemented in conjunction with a series of clean hydrodynamic simulations that model the experiments. The first tests of these methods were carried out based on a set of indirect drive implosions at the OMEGA laser. We now focus on direct drive experiments, and endeavor to approach the problem from another perspective. In the current work, we use Youngs' and Haan's mix models in conjunction with hydrodynamic simulations in order to design experimental platforms that exhibit measurably different levels of mix. Once the experiments are completed based on these designs, the results of a data-driven mix analysis will be compared to the levels of mix predicted by the simulations. In this way, we aim to increase our confidence in the methods used to extract mixing information from the experimental data, as well as to study sensitivities and the range of validity of the mix models.

  19. Experimental verification of a pendant ice formation model

    SciTech Connect

    Szilder, K.; Forest, T.; Lozowski, E.P.

    1995-12-31

    A random walk model has been developed to predict the growth of pendant ice formations and icicles. The model allows an efficient representation of water flow along the surface, dripping from lower extremities, and freezing of water. Using a simple analysis, the microscopic model parameters are expressed as functions of the macroscopic physical conditions. To verify the random walk model, a series of laboratory experiments was conducted in an icing wind tunnel. A horizontal thin wire was exposed to vertically falling supercooled spray and the formation of icicles underneath the wire was examined. Model verification based on a comparison with the experimental results demonstrates quantitatively and qualitatively the credibility and value of this model approach. Future model development will involve the quantitative simulation of ice accretion on objects of complex geometry, such as offshore structures, ships, and transmission lines.

  20. Theories linguistiques, modeles informatiques, experimentation psycholinguistique (Linguistic Theories, Information-Processing Models, Psycholinguistic Experimentation)

    ERIC Educational Resources Information Center

    Dubois, Daniele

    1975-01-01

    Delineates and elaborates upon the underlying psychological postulates in linguistic and information-processing models, and shows the interdependence of psycholinguistics and linguistic analysis. (Text is in French.) (DB)

  1. Experimental and Measurement Uncertainty Associated with Characterizing Slurry Mixing Performance of Pulsating Jets at Multiple Scales

    SciTech Connect

    Bamberger, Judith A.; Piepel, Gregory F.; Enderlin, Carl W.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2015-09-10

    Understanding how uncertainty manifests itself in complex experiments is important for developing the testing protocol and interpreting the experimental results. This paper describes experimental and measurement uncertainties, and how they can depend on the order of performing experimental tests. Experiments with pulse-jet mixers in tanks at three scales were conducted to characterize the performance of transient-developing periodic flows in Newtonian slurries. Other test parameters included the simulant, solids concentration, and nozzle exit velocity. Critical suspension velocity and cloud height were the metrics used to characterize Newtonian slurry flow associated with mobilization and mixing. During testing, near-replicate and near-repeat tests were conducted. The experimental results were used to quantify the combined experimental and measurement uncertainties using standard deviations and percent relative standard deviations (%RSD) The uncertainties in critical suspension velocity and cloud height tend to increase with the values of these responses. Hence, the %RSD values are the more appropriate summary measure of near-replicate testing and measurement uncertainty.

  2. Individual Hearing Loss: Characterization, Modelling, Compensation Strategies.

    PubMed

    Santurette, Sébastien; Dau, Torsten; Christensen-Dalsgaard, Jakob; Tranebjærg, Lisbeth; Andersen, Ture; Poulsen, Torben

    2016-01-01

    It is well-established that hearing loss does not only lead to a reduction of hearing sensitivity. Large individual differences are typically observed among listeners with hearing impairment in a wide range of suprathreshold auditory measures. In many cases, audiometric thresholds cannot fully account for such individual differences, which make it challenging to find adequate compensation strategies in hearing devices. How to characterize, model, and compensate for individual hearing loss were the main topics of the fifth International Symposium on Auditory and Audiological Research (ISAAR), held in Nyborg, Denmark, in August 2015. The following collection of papers results from some of the work that was presented and discussed at the symposium. PMID:27566802

  3. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes

    PubMed Central

    Abidian, Mohammad Reza; Martin, David C.

    2009-01-01

    Neural prostheses transduce bioelectric signals to electronic signals at the interface between neural tissue and neural microelectrodes. A low impedance electrode-tissue interface is important for the quality of signal during recording as well as quantity of applied charge density during stimulation. However, neural microelectrode sites exhibit high impedance because of their small geometric surface area. Here we analyze nanostructured-conducting polymers that can be used to significantly decrease the impedance of microelectrode typically by about two orders of magnitude and increase the charge transfer capacity of microelectrodes by three orders of magnitude. In this study poly(pyrrole) (PPy) and poly(3, 4- ethylenedioxythiophene) (PEDOT) nanotubes were electrochemically polymerized on the surface of neural microelectrode sites (1250 μm2). An equivalent circuit model comprising a coating capacitance in parallel with a pore resistance and interface impedance in series was developed and fitted to experimental results to characterize the physical and electrical properties of the interface. To confirm that the fitting parameters correlate with physical quantities of interface, theoretical equations were used to calculate the parameter values thereby validating the proposed model. Finally, an apparent diffusion coefficient was calculated for PPy film (29.2 ± 1.1 cm2/s), PPy nanotubes (72.4 ± 3.3 cm2/s), PEDOT film (7.4 ± 2.1 cm2/s), and PEDOT nanotubes (13.0 ± 1.8 cm2/s). The apparent diffusion coefficient of conducting polymer nanotubes was larger than the corresponding conducting polymer films. PMID:18093644

  4. Experimental testing procedures and dynamic model validation for vanadium redox flow battery storage system

    NASA Astrophysics Data System (ADS)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per; Silvestro, Federico

    2014-05-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing procedure consists of analyzing the voltage and current values during a power reference step-response and evaluating the relevant electrochemical parameters such as the internal resistance. The results of different tests are presented and used to define the electrical characteristics and the overall efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs are compared with experimental measurements during a discharge-charge sequence.

  5. Experimental model of myocardial infarction: Histopathology and reperfusion damage revisited.

    PubMed

    Kren, Leos; Meluzin, Jaroslav; Pavlovsky, Zdenek; Mayer, Jiri; Kala, Petr; Groch, Ladislav; Hornacek, Ivan; Rauser, Petr; Vlasin, Michal

    2010-09-15

    The goal of this pilot study was to create an experimental model of myocardial infarction (for subsequent evaluation of the effectiveness of an alternative way of stem cell application - intracoronary cell infusion in the management of acute myocardial infarction). Four experimental animals, female pigs weighing between 30 and 40 kg, were used in the initial phase of this study to create an experimental model of acute myocardial infarction. An experimental myocardial infarction was performed via occlusion of the interventricular arm of the left coronary artery for 90 min. The hearts were examined 1 h, 3 days, 5 days, and 7 days after the procedure. Macroscopically, red infarction characteristic of reperfusion was found. Microscopically, the healing process with granulation tissue production/collagen deposition was remarkably accelerated compared to literature data. Repair processes in reperfused experimental myocardial infarction and/or reperfused autopsy specimens should not be evaluated on the basis of literature data only. Large collections of extracellular calcium were present. This phenomenon is not well described in the literature and probably has the potential for significantly interfering with the repair process. The histopathology of reperfused acute myoardial infarction deserves to be studied in further investigations. PMID:20451332

  6. Behavioral Characterization of Mouse Models of Neuroferritinopathy

    PubMed Central

    Buffoli, Barbara; Rodella, Luigi F.; Cremona, Ottavio; Arosio, Paolo; Cirulli, Francesca

    2015-01-01

    Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing

  7. Behavioral characterization of mouse models of neuroferritinopathy.

    PubMed

    Capoccia, Sara; Maccarinelli, Federica; Buffoli, Barbara; Rodella, Luigi F; Cremona, Ottavio; Arosio, Paolo; Cirulli, Francesca

    2015-01-01

    Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing

  8. Complex dynamics of a dc glow discharge tube: Experimental modeling and stability diagrams

    PubMed Central

    Pugliese, Eugenio; Meucci, Riccardo; Euzzor, Stefano; Freire, Joana G.; Gallas, Jason A. C.

    2015-01-01

    We report a detailed experimental study of the complex behavior of a dc low-pressure plasma discharge tube of the type commonly used in commercial illuminated signs, in a microfluidic chip recently proposed for visible analog computing, and other practical devices. Our experiments reveal a clear quasiperiodicity route to chaos, the two competing frequencies being the relaxation frequency and the plasma eigenfrequency. Based on an experimental volt-ampere characterization of the discharge, we propose a macroscopic model of the current flowing in the plasma. The model, governed by four autonomous ordinary differential equations, is used to compute stability diagrams for periodic oscillations of arbitrary period in the control parameter space of the discharge. Such diagrams show self-pulsations to emerge remarkably organized into intricate mosaics of stability phases with extended regions of multistability (overlap). Specific mosaics are predicted for the four dynamical variables of the discharge. Their experimental observation is an open challenge. PMID:25677058

  9. Experimental dynamical characterization of five autonomous chaotic oscillators with tunable series resistance.

    PubMed

    Minati, Ludovico

    2014-09-01

    In this paper, an experimental characterization of the dynamical properties of five autonomous chaotic oscillators, based on bipolar-junction transistors and obtained de-novo through a genetic algorithm in a previous study, is presented. In these circuits, a variable resistor connected in series to the DC voltage source acts as control parameter, for a range of which the largest Lyapunov exponent, correlation dimension, approximate entropy, and amplitude variance asymmetry are calculated, alongside bifurcation diagrams and spectrograms. Numerical simulations are compared to experimental measurements. The oscillators can generate a considerable variety of regular and chaotic sine-like and spike-like signals. PMID:25273190

  10. Experimental Characterization of Nonlinear Harmonic Radiation from a Visible SASE FEL at Saturation

    NASA Astrophysics Data System (ADS)

    Tremaine, A.; Wang, X. J.; Babzien, M.; Ben-Zvi, I.; Cornacchia, M.

    2002-08-01

    Nonlinear harmonic radiation was observed using the VISA SASE FEL at saturation. The gain lengths, spectra and energies of the three lowest SASE FEL modes were experimentally characterized. Both the measured harmonic gain lengths and center spectral wavelengths are shown to decrease with harmonic number, n, which is consistent with nonlinear harmonic theory. The measured energies for both second and third harmonics are about 1% of the fundamental; the strong second harmonic radiation (approximately 1 microJ) observed is unique for low energy SASE FELs. These experimental results demonstrate for the first time the feasibility of using nonlinear harmonic SASE FEL radiation to produce coherent, femtosecond X-rays.

  11. Experimental Characterization of Nonlinear Harmonic Radiation from a Visible SASE FEL at Saturation

    SciTech Connect

    Cornacchia, Massimo

    2002-08-19

    Nonlinear harmonic radiation was observed using the VISA SASE FEL at saturation. The gain lengths, spectra and energies of the three lowest SASE FEL modes were experimentally characterized. Both the measured harmonic gain lengths and center spectral wavelengths are shown to decrease with harmonic number, n, which is consistent with nonlinear harmonic theory. The measured energies for both second and third harmonics are about 1% of the fundamental; the strong second harmonic radiation ({approx} 1 {micro}J) observed is unique for low energy SASE FELs. These experimental results demonstrate for the first time the feasibility of using nonlinear harmonic SASE FEL radiation to produce coherent, femtosecond X-rays.

  12. Experimental dynamical characterization of five autonomous chaotic oscillators with tunable series resistance

    SciTech Connect

    Minati, Ludovico E-mail: ludovico.minati@unitn.it

    2014-09-01

    In this paper, an experimental characterization of the dynamical properties of five autonomous chaotic oscillators, based on bipolar-junction transistors and obtained de-novo through a genetic algorithm in a previous study, is presented. In these circuits, a variable resistor connected in series to the DC voltage source acts as control parameter, for a range of which the largest Lyapunov exponent, correlation dimension, approximate entropy, and amplitude variance asymmetry are calculated, alongside bifurcation diagrams and spectrograms. Numerical simulations are compared to experimental measurements. The oscillators can generate a considerable variety of regular and chaotic sine-like and spike-like signals.

  13. Characterization Of Multilayer X-Ray Analyzers: Models And Measurements

    NASA Astrophysics Data System (ADS)

    Henke, B. L.; Uejio, J. Y.; Yamada, H. T.; Tackaberry, R. E.

    1986-08-01

    A procedure is described for a detailed characterization of multilayer analyzers that can be effectively applied to their design, optimization, and application for absolute x-ray spectrometry in the 100 to 10,000 eV photon energy region. An accurate analytical model has been developed that is based upon a simple modification of the dynamical Darwin-Prins theory to extend its application to finite multilayer systems and to the low energy x-ray region. Its equivalence to the optical E&M solution of the Fresnel equations at each interface is demonstrated by detailed comparisons for the reflectivity of a multilayer throughout the angular range of incidence of 0° to 90°. A special spectrograph and an experimental method are described for the measurement of the absolute reflectivity characteristics of the multilayer. The experimental measurements at three photon energies in the 100 to 2000 eV region are fit by the analytical modified Darwin-Prins equation (MDP) for 1(0), generating a detailed characterization of two state-of-the-art multilayers: sputtered tungsten-carbon with 2d 70 A and a molecular lead stearate with 2d 100 A. The fitting parameters that are determined by this procedure are applied to help establish the structural characteristics of these multilayers.

  14. Computer model for characterizing, screening, and optimizing electrolyte systems

    Energy Science and Technology Software Center (ESTSC)

    2015-06-15

    Electrolyte systems in contemporary batteries are tasked with operating under increasing performance requirements. All battery operation is in some way tied to the electrolyte and how it interacts with various regions within the cell environment. Seeing the electrolyte plays a crucial role in battery performance and longevity, it is imperative that accurate, physics-based models be developed that will characterize key electrolyte properties while keeping pace with the increasing complexity of these liquid systems. Advanced modelsmore » are needed since laboratory measurements require significant resources to carry out for even a modest experimental matrix. The Advanced Electrolyte Model (AEM) developed at the INL is a proven capability designed to explore molecular-to-macroscale level aspects of electrolyte behavior, and can be used to drastically reduce the time required to characterize and optimize electrolytes. Although it is applied most frequently to lithium-ion battery systems, it is general in its theory and can be used toward numerous other targets and intended applications. This capability is unique, powerful, relevant to present and future electrolyte development, and without peer. It redefines electrolyte modeling for highly-complex contemporary systems, wherein significant steps have been taken to capture the reality of electrolyte behavior in the electrochemical cell environment. This capability can have a very positive impact on accelerating domestic battery development to support aggressive vehicle and energy goals in the 21st century.« less

  15. Multiscale Modeling of Gastrointestinal Electrophysiology and Experimental Validation

    PubMed Central

    Du, Peng; O'Grady, Greg; Davidson, John B.; Cheng, Leo K.; Pullan, Andrew J.

    2011-01-01

    Normal gastrointestinal (GI) motility results from the coordinated interplay of multiple cooperating mechanisms, both intrinsic and extrinsic to the GI tract. A fundamental component of this activity is an omnipresent electrical activity termed slow waves, which is generated and propagated by the interstitial cells of Cajal (ICCs). The role of ICC loss and network degradation in GI motility disorders is a significant area of ongoing research. This review examines recent progress in the multiscale modeling framework for effectively integrating a vast range of experimental data in GI electrophysiology, and outlines the prospect of how modeling can provide new insights into GI function in health and disease. The review begins with an overview of the GI tract and its electrophysiology, and then focuses on recent work on modeling GI electrical activity, spanning from cell to body biophysical scales. Mathematical cell models of the ICCs and smooth muscle cell are presented. The continuum framework of monodomain and bidomain models for tissue and organ models are then considered, and the forward techniques used to model the resultant body surface potential and magnetic field are discussed. The review then outlines recent progress in experimental support and validation of modeling, and concludes with a discussion on potential future research directions in this field. PMID:21133835

  16. Naturalness of unknown physics: Theoretical models and experimental signatures

    NASA Astrophysics Data System (ADS)

    Kilic, Can

    In the last few decades collider experiments have not only spectacularly confirmed the predictions of the Standard Model but also have not revealed any direct evidence for new physics beyond the SM, which has led theorists to devise numerous models where the new physics couples weakly to the SM or is simply beyond the reach of past experiments. While phenomenologically viable, many such models appear finely tuned, even contrived. This work illustrates three attempts at coming up with explanations to fine-tunings we observe in the world around us, such as the gauge hierarchy problem or the cosmological constant problem, emphasizing both the theoretical aspects of model building as well as possible experimental signatures. First we investigate the "Little Higgs" mechanism and work on a specifical model, the "Minimal Moose" to highlight its impact on precision observables in the SM, and illustrate that it does not require implausible fine-tuning. Next we build a supersymmetric model, the "Fat Higgs", with an extended gauge structure which becomes confining. This model, aside from naturally preserving the unification of the SM gauge couplings at high energies, also makes it possible to evade the bounds on the lightest Higgs boson mass which are quite restrictive in minimal SUSY scenarios. Lastly we take a look at a possible resolution of the cosmological constant problem through the mechanism of "Ghost Condensation" and dwell on astrophysical observables from the Lorentz Violating sector in this model. We use current experimental data to constrain the coupling of this sector to the SM.

  17. Regression Model Optimization for the Analysis of Experimental Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2009-01-01

    A candidate math model search algorithm was developed at Ames Research Center that determines a recommended math model for the multivariate regression analysis of experimental data. The search algorithm is applicable to classical regression analysis problems as well as wind tunnel strain gage balance calibration analysis applications. The algorithm compares the predictive capability of different regression models using the standard deviation of the PRESS residuals of the responses as a search metric. This search metric is minimized during the search. Singular value decomposition is used during the search to reject math models that lead to a singular solution of the regression analysis problem. Two threshold dependent constraints are also applied. The first constraint rejects math models with insignificant terms. The second constraint rejects math models with near-linear dependencies between terms. The math term hierarchy rule may also be applied as an optional constraint during or after the candidate math model search. The final term selection of the recommended math model depends on the regressor and response values of the data set, the user s function class combination choice, the user s constraint selections, and the result of the search metric minimization. A frequently used regression analysis example from the literature is used to illustrate the application of the search algorithm to experimental data.

  18. Optimization of Regression Models of Experimental Data Using Confirmation Points

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2010-01-01

    A new search metric is discussed that may be used to better assess the predictive capability of different math term combinations during the optimization of a regression model of experimental data. The new search metric can be determined for each tested math term combination if the given experimental data set is split into two subsets. The first subset consists of data points that are only used to determine the coefficients of the regression model. The second subset consists of confirmation points that are exclusively used to test the regression model. The new search metric value is assigned after comparing two values that describe the quality of the fit of each subset. The first value is the standard deviation of the PRESS residuals of the data points. The second value is the standard deviation of the response residuals of the confirmation points. The greater of the two values is used as the new search metric value. This choice guarantees that both standard deviations are always less or equal to the value that is used during the optimization. Experimental data from the calibration of a wind tunnel strain-gage balance is used to illustrate the application of the new search metric. The new search metric ultimately generates an optimized regression model that was already tested at regression model independent confirmation points before it is ever used to predict an unknown response from a set of regressors.

  19. Experimental, statistical, and biological models of radon carcinogenesis

    SciTech Connect

    Cross, F.T.

    1991-09-01

    Risk models developed for underground miners have not been consistently validated in studies of populations exposed to indoor radon. Imprecision in risk estimates results principally from differences between exposures in mines as compared to domestic environments and from uncertainties about the interaction between cigarette-smoking and exposure to radon decay products. Uncertainties in extrapolating miner data to domestic exposures can be reduced by means of a broad-based health effects research program that addresses the interrelated issues of exposure, respiratory tract dose, carcinogenesis (molecular/cellular and animal studies, plus developing biological and statistical models), and the relationship of radon to smoking and other copollutant exposures. This article reviews experimental animal data on radon carcinogenesis observed primarily in rats at Pacific Northwest Laboratory. Recent experimental and mechanistic carcinogenesis models of exposures to radon, uranium ore dust, and cigarette smoke are presented with statistical analyses of animal data. 20 refs., 1 fig.

  20. Characterization of a developmental toxicity dose-response model.

    PubMed Central

    Faustman, E M; Wellington, D G; Smith, W P; Kimmel, C A

    1989-01-01

    The Rai and Van Ryzin dose-response model proposed for teratology experiments has been characterized for its appropriateness and applicability in modeling the dichotomous response data from developmental toxicity studies. Modifications were made in the initial probability statements to reflect more accurately biological events underlying developmental toxicity. Data sets used for the evaluation were obtained from the National Toxicology Program and U.S. EPA laboratories. The studies included developmental evaluations of ethylene glycol, diethylhexyl phthalate, di- and triethylene glycol dimethyl ethers, and nitrofen in rats, mice, or rabbits. Graphic examination and statistical evaluation demonstrate that this model is sensitive to the data when compared to directly measured experimental outcomes. The model was used to interpolate to low-risk dose levels, and comparisons were made between the values obtained and the no-observed-adverse-effect levels (NOAELs) divided by an uncertainty factor. Our investigation suggests that the Rai and Van Ryzin model is sensitive to the developmental toxicity end points, prenatal deaths, and malformations, and appears to model closely their relationship to dose. PMID:2707204

  1. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.

  2. Numerical and experimental modelling of the radial compressor stage

    NASA Astrophysics Data System (ADS)

    Syka, Tomáš; Matas, Richard; LuÅáček, Ondřej

    2016-06-01

    This article deals with the description of the numerical and experimental model of the new compressor stage designed for process centrifugal compressors. It's the first member of the new stages family developed to achieve the state of the art thermodynamic parameters. This stage (named RTK01) is designed for high flow coefficient with 3D shaped impeller blades. Some interesting findings were gained during its development. The article is focused mainly on some interesting aspects of the development methodology and numerical simulations improvement, not on the specific stage properties. Conditions and experimental equipment, measured results and their comparison with ANSYS CFX and NUMECA FINE/Turbo CFD simulations are described.

  3. Damping formulas and experimental values of damping in flutter models

    NASA Technical Reports Server (NTRS)

    Coleman, Robert P

    1940-01-01

    The problem of determining values of structural damping for use in flutter calculations is discussed. The concept of equivalent viscous damping is reviewed and its relation to the structural damping coefficient g introduced in NACA Technical Report No. 685 is shown. The theory of normal modes is reviewed and a number of methods are described for separating the motions associated with different modes. Equations are developed for use in evaluating the damping parameters from experimental data. Experimental results of measurements of damping in several flutter models are presented.

  4. The History and Evolution of Experimental Traumatic Brain Injury Models.

    PubMed

    Povlishock, John

    2016-01-01

    This narrative provides a brief history of experimental animal model development for the study of traumatic brain injury. It draws upon a relatively rich history of early animal modeling that employed higher order animals to assess concussive brain injury while exploring the importance of head movement versus stabilization in evaluating the animal's response to injury. These themes are extended to the development of angular/rotational acceleration/deceleration models that also exploited brain movement to generate both the morbidity and pathology typically associated with human traumatic brain injury. Despite the significance of these early model systems, their limitations and overall practicality are discussed. Consideration is given to more contemporary rodent animal models that replicate individual/specific features of human injury, while via various transgenic technologies permitting the evaluation of injury-mediated pathways. The narrative closes on a reconsideration of higher order, porcine animal models of injury and their implication for preclinical/translational research. PMID:27604709

  5. Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam

    NASA Technical Reports Server (NTRS)

    Allen, Albert R.; Schiller, Noah H.

    2016-01-01

    Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.

  6. Design and modeling considerations for experimental railgun armatures

    NASA Astrophysics Data System (ADS)

    Sink, D. A.; Krzastek, L. J.

    1991-01-01

    A calculational model for obtaining detailed armature parameters associated with railgun launches has been developed. Calculated parameters are obtained for device features and operating conditions supplied as input parameters. The model was validated by reproducing several sets of experimental data from a variety of devices. Model parameters associated with armature mass loss and plasma axial profiles were obtained as part of anchoring the calculations. The data included complete sets of dynamics, armature lengths, and muzzle voltages for each case studied. From the calculations, several differences between the various types of armatures (i.e., solid, hybrids, and plasma) and bore sizes were identified and found to account for the resulting performance features.

  7. Electromagnetic diagnostic techniques for hypervelocity projectile detection, velocity measurement, and size characterization: Theoretical concept and first experimental test

    SciTech Connect

    Uhlig, W. Casey; Heine, Andreas

    2015-11-14

    A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signal to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.

  8. Electromagnetic diagnostic techniques for hypervelocity projectile detection, velocity measurement, and size characterization: Theoretical concept and first experimental test

    NASA Astrophysics Data System (ADS)

    Uhlig, W. Casey; Heine, Andreas

    2015-11-01

    A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signal to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.

  9. Experimental method of optical coherence characterization in phase-space measurement

    NASA Astrophysics Data System (ADS)

    Li, Jie-En; Fu, Jhih-Syuan; Hsiao, Ming-Shu; Tien, Chung-Hao

    2015-09-01

    A novel approach of phase-space measurement made its debut with the experimental result. We first designed an experiment based on the Young's interferometer to characterization the optical coherence property of light source. A well-known algorithm called Hough transformation was applied to deal with the misalignment of micro-lens array by post-processing. The phase-space image of plane wave was then reconstructed from the realigned raw image. Finally, the properties of this system were discussed.

  10. Highlighting the Need for Systems-Level Experimental Characterization of Plant Metabolic Enzymes.

    PubMed

    Engqvist, Martin K M

    2016-01-01

    The biology of living organisms is determined by the action and interaction of a large number of individual gene products, each with specific functions. Discovering and annotating the function of gene products is key to our understanding of these organisms. Controlled experiments and bioinformatic predictions both contribute to functional gene annotation. For most species it is difficult to gain an overview of what portion of gene annotations are based on experiments and what portion represent predictions. Here, I survey the current state of experimental knowledge of enzymes and metabolism in Arabidopsis thaliana as well as eleven economically important crops and forestry trees - with a particular focus on reactions involving organic acids in central metabolism. I illustrate the limited availability of experimental data for functional annotation of enzymes in most of these species. Many enzymes involved in metabolism of citrate, malate, fumarate, lactate, and glycolate in crops and forestry trees have not been characterized. Furthermore, enzymes involved in key biosynthetic pathways which shape important traits in crops and forestry trees have not been characterized. I argue for the development of novel high-throughput platforms with which limited functional characterization of gene products can be performed quickly and relatively cheaply. I refer to this approach as systems-level experimental characterization. The data collected from such platforms would form a layer intermediate between bioinformatic gene function predictions and in-depth experimental studies of these functions. Such a data layer would greatly aid in the pursuit of understanding a multiplicity of biological processes in living organisms. PMID:27516767

  11. Highlighting the Need for Systems-Level Experimental Characterization of Plant Metabolic Enzymes

    PubMed Central

    Engqvist, Martin K. M.

    2016-01-01

    The biology of living organisms is determined by the action and interaction of a large number of individual gene products, each with specific functions. Discovering and annotating the function of gene products is key to our understanding of these organisms. Controlled experiments and bioinformatic predictions both contribute to functional gene annotation. For most species it is difficult to gain an overview of what portion of gene annotations are based on experiments and what portion represent predictions. Here, I survey the current state of experimental knowledge of enzymes and metabolism in Arabidopsis thaliana as well as eleven economically important crops and forestry trees – with a particular focus on reactions involving organic acids in central metabolism. I illustrate the limited availability of experimental data for functional annotation of enzymes in most of these species. Many enzymes involved in metabolism of citrate, malate, fumarate, lactate, and glycolate in crops and forestry trees have not been characterized. Furthermore, enzymes involved in key biosynthetic pathways which shape important traits in crops and forestry trees have not been characterized. I argue for the development of novel high-throughput platforms with which limited functional characterization of gene products can be performed quickly and relatively cheaply. I refer to this approach as systems-level experimental characterization. The data collected from such platforms would form a layer intermediate between bioinformatic gene function predictions and in-depth experimental studies of these functions. Such a data layer would greatly aid in the pursuit of understanding a multiplicity of biological processes in living organisms. PMID:27516767

  12. Recapitulating Human Gastric Cancer Pathogenesis: Experimental Models of Gastric Cancer.

    PubMed

    Ding, Lin; El Zaatari, Mohamad; Merchant, Juanita L

    2016-01-01

    This review focuses on the various experimental models to study gastric cancer pathogenesis, with the role of genetically engineered mouse models (GEMMs) used as the major examples. We review differences in human stomach anatomy compared to the stomachs of the experimental models, including the mouse and invertebrate models such as Drosophila and C. elegans. The contribution of major signaling pathways, e.g., Notch, Hedgehog, AKT/PI3K is discussed in the context of their potential contribution to foregut tumorigenesis. We critically examine the rationale behind specific GEMMs, chemical carcinogens, dietary promoters, Helicobacter infection, and direct mutagenesis of relevant oncogenes and tumor suppressor that have been developed to study gastric cancer pathogenesis. Despite species differences, more efficient and effective models to test specific genes and pathways disrupted in human gastric carcinogenesis have yet to emerge. As we better understand these species differences, "humanized" versions of mouse models will more closely approximate human gastric cancer pathogenesis. Towards that end, epigenetic marks on chromatin, the gut microbiota, and ways of manipulating the immune system will likely move center stage, permitting greater overlap between rodent and human cancer phenotypes thus providing a unified progression model. PMID:27573785

  13. Experimental and mathematical modeling of flow in headboxes

    NASA Astrophysics Data System (ADS)

    Shariati, Mohammad Reza

    The fluid flow patterns in a paper-machine headbox have a strong influence on the quality of the paper produced by the machine. Due to increasing demand for high quality paper there is a need to investigate the details of the fluid flow in the paper machine headbox. The objective of this thesis is to use experimental and computational methods of modeling the flow inside a typical headbox in order to evaluate and understand the mean flow patterns and turbulence created there. In particular, spatial variations of the mean flow and of the turbulence quantities and the turbulence generated secondary flows are studied. In addition to the flow inside the headbox, the flow leaving the slice is also modeled both experimentally and computationally. Comparison of the experimental and numerical results indicated that streamwise mean components of the velocities in the headbox are predicted well by all the turbulence models considered in this study. However, the standard k-epsilon model and the algebraic turbulence models fail to predict the turbulence quantities accurately. Standard k-epsilon-model also fails to predict the direction and magnitude of the secondary flows. Significant improvements in the k-epsilon model predictions were achieved when the turbulence production term was artificially set to zero. This is justified by observations of the turbulent velocities from the experiments and by a consideration of the form of the kinetic energy equation. A better estimation of the Reynolds normal stress distribution and the degree of anisotropy of turbulence was achieved using the Reynolds stress turbulence model. Careful examination of the measured turbulence velocity results shows that after the initial decay of the turbulence in the headbox, there is a short region close to the exit, but inside the headbox, where the turbulent kinetic energy actually increases as a result of the distortion imposed by the contraction. The turbulence energy quickly resumes its decay in the

  14. Modeling and experimental result analysis for high-power VECSELs

    NASA Astrophysics Data System (ADS)

    Zakharian, Aramais R.; Hader, Joerg; Moloney, Jerome V.; Koch, Stephan W.; Lutgen, Stephan; Brick, Peter; Albrecht, Tony; Grotsch, Stefan; Luft, Johann; Spath, Werner

    2003-06-01

    We present a comparison of experimental and microscopically based model results for optically pumped vertical external cavity surface emitting semiconductor lasers. The quantum well gain model is based on a quantitative ab-initio approach that allows calculation of a complex material susceptibility dependence on the wavelength, carrier density and lattice temperature. The gain model is coupled to the macroscopic thermal transport, spatially resolved in both the radial and longitudinal directions, with temperature and carrier density dependent pump absorption. The radial distribution of the refractive index and gain due to temperature variation are computed. Thermal managment issues, highlighted by the experimental data, are discussed. Experimental results indicate a critical dependence of the input power, at which thermal roll-over occurs, on the thermal resistance of the device. This requires minimization of the substrate thickness and optimization of the design and placement of the heatsink. Dependence of the model results on the radiative and non-radiative carrier recombination lifetimes and cavity losses are evaluated.

  15. Experimental assessment of subgrid mixing models for LES

    NASA Astrophysics Data System (ADS)

    Sun, O. S.; Su, L. K.

    2003-11-01

    Large eddy simulation (LES) models for subgrid scalar flux and dissipation include dynamic structure models,(Chumakov, S. and Rutland, C.J., submitted to phAIAA J.) based on scale similarity ideas, as well as one-equation models that relate subgrid variance and dissipation.(Jiménez, C. phet al.) phPhys. Fluids 13 (2001) Previously, these models have only been tested a posteriori, or a priori using data from direct numerical simulations. Here, these models are evaluated a priori using simultaneous planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) measurements in a turbulent crossflowing jet. The models are tested by filtering the experimental data and comparing the results with computed model quantities. The measurements have sufficient resolution to permit accurate determination of subgrid quantities. Of primary interest is the structural accuracy of the models, which can be assessed by computing a correlation coefficient between exact and modeled terms. Preliminary results suggest that the assumptions of scale similarity underlying the dynamic structure models are more valid for modeling subgrid scalar flux than subgrid scalar dissipation.

  16. Experimental Models Combining TBI, Hemorrhagic Shock, and Hypoxemia.

    PubMed

    Leung, Lai Yee; Deng-Bryant, Ying; Shear, Deborah; Tortella, Frank

    2016-01-01

    Animal models of traumatic brain injury (TBI) provide important tools for studying the pathobiology of brain trauma and for evaluating therapeutic or diagnostic targets. Incorporation of additional insults such as hemorrhagic shock (HS) and/or hypoxemia (HX) into these models more closely recreates clinical scenarios as TBI often occurs in conjunction with these systemic insults (i.e., polytrauma). We have developed a rat model of polytrauma that combines penetrating TBI, HS and HX. Following brain trauma, HX was induced by reducing the inspired oxygen while HS was induced by withdrawing blood to lower the mean arterial pressure. The physiological, histological, and behavioral aspects of this animal model have been characterized and have demonstrated exacerbating effects of systemic insults on penetrating TBI. As such, this model may facilitate the use of simultaneous assessments of multiple mechanisms and provide a platform for testing novel diagnostic and therapeutic targets. PMID:27604733

  17. Experimental characterization of Fabry-Perot resonances of magnetostatic volume waves in near-field metamaterials

    NASA Astrophysics Data System (ADS)

    Chabalko, Matthew J.; Ricketts, David S.

    2015-02-01

    In this work, we report on the experimental demonstration of magnetoquasistatic volume wave resonances in a 2-dimensional near field metamaterial (MM). Previous works have described only theoretically the magnetostatic waves in near field MMs and have reported peaks and valleys in the mutual coupling of MM enhanced wireless power transfer that they have attributed to Fabry-Perot resonances, however, neither has been experimentally measured nor characterized. We report on the direct magnetic field measurement of magnetostatic volume waves in a 2D near-field MM and show that the periodic peaks and valleys in mutual coupling observed previously are indeed due to a Fabry-Perot oscillation. In addition, we show that these resonances can be predicted from experimentally extracted permeability and the dimensions of the system.

  18. Experimental characterization of veering crossing and lock-in in simple mechanical systems

    NASA Astrophysics Data System (ADS)

    Giannini, O.; Sestieri, A.

    2016-05-01

    In this paper, mode veering, crossing and lock-in phenomena are experimentally analyzed and characterized. Their occurrence is generally found, under different conditions, when there is a parameter variation in the system that produces a change in its behaviour. It often happens that, when the natural frequencies of two modes approach each other, they can cross, veer and eventually present a lock-in state. The problem is analytically investigated for general weakly-coupled two-degrees of freedom systems and experiments, appropriately designed to highlight these phenomena, are presented. In particular, experimental evidence of the damping-dependent transition from veering to crossing is investigated for a two beam system, and experimental lock-in is recalled to show how the gyroscopic systems become unstable when two coupled mechanical parts have the same eigenvalue.

  19. Elements of a flexible approach for conceptual hydrological modeling: 2. Application and experimental insights

    NASA Astrophysics Data System (ADS)

    Kavetski, Dmitri; Fenicia, Fabrizio

    2011-11-01

    In this article's companion paper, flexible approaches for conceptual hydrological modeling at the catchment scale were motivated, and the SUPERFLEX framework, based on generic model components, was introduced. In this article, the SUPERFLEX framework and the "fixed structure" GR4H model (an hourly version of the popular GR4J model) are applied to four hydrologically distinct experimental catchments in Europe and New Zealand. The estimated models are scrutinized using several diagnostic measures, ranging from statistical metrics, such as the statistical reliability and precision of the predictive distribution of streamflow, to more process-oriented diagnostics based on flow-duration curves and the correspondence between model states and groundwater piezometers. Model performance was clearly catchment specific, with a single fixed structure unable to accommodate intercatchment differences in hydrological behavior, including seasonality and thresholds. This highlights an important limitation of any "fixed" model structure. In the experimental catchments, the ability of competing model hypotheses to reproduce hydrological signatures of interest could be interpreted on the basis of independent fieldwork insights. The potential of flexible frameworks such as SUPERFLEX is then examined with respect to systematic and stringent hypothesis-testing in hydrological modeling, for characterizing catchment diversity, and, more generally, for aiding progress toward a more unified formulation of hydrological theory at the catchment scale. When interpreted in physical process-oriented terms, the flexible approach can also serve as a language for dialogue between modeler and experimentalist, facilitating the understanding, representation, and interpretation of catchment behavior.

  20. Experimental animal data and modeling of late somatic effects

    SciTech Connect

    Fry, R.J.M.

    1988-01-01

    This section is restricted to radiation-induced life shortening and cancer and mainly to studies with external radiation. The emphasis will be on the experimental data that are available and the experimental systems that could provide the type of data with which to either formulate or test models. Genetic effects which are of concern are not discussed in this section. Experimental animal radiation studies fall into those that establish general principles and those that demonstrate mechanisms. General principles include the influence of dose, radiation quality, dose rate, fractionation, protraction and such biological factors as age and gender. The influence of these factors are considered as general principles because they are independent, at least qualitatively, of the species studied. For example, if an increase in the LET of the radiation causes an increased effectiveness in cancer induction in a mouse a comparable increase in effectiveness can be expected in humans. Thus, models, whether empirical or mechanistic, formulated from experimental animal data should be generally applicable.

  1. Experimental characterisation and modelling of deformation- induced microstructure in an A6061 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kreyca, J. F.; Falahati, A.; Kozeschnik, E.

    2016-03-01

    For industry, the mechanical properties of a material in form of flow curves are essential input data for finite element simulations. Current practice is to obtain flow curves experimentally and to apply fitting procedures to obtain constitutive equations that describe the material response to external loading as a function of temperature and strain rate. Unfortunately, the experimental procedure for characterizing flow curves is complex and expensive, which is why the prediction of flow-curves by computer modelling becomes increasingly important. In the present work, we introduce a state parameter based model that is capable of predicting the flow curves of an A6061 aluminium alloy in different heat-treatment conditions. The model is implemented in the thermo-kinetic software package MatCalc and takes into account precipitation kinetics, subgrain formation, dynamic recovery by spontaneous annihilation and dislocation climb. To validate the simulation results, a series of compression tests is performed on the thermo-mechanical simulator Gleeble 1500.

  2. Spectral Analysis and Experimental Modeling of Ice Accretion Roughness

    NASA Technical Reports Server (NTRS)

    Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.

    1996-01-01

    A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.

  3. Experimental investigation and modeling of scale effects in jet ejectors

    NASA Astrophysics Data System (ADS)

    Gardner, W. G.; Wang, I.; Jaworski, J. W.; Brikner, N. A.; Protz, J. M.

    2010-08-01

    Three microscale jet ejectors were designed and tested to induce a suction draft using a supersonic micronozzle. Each axisymmetric nozzle was fabricated using three-dimensional electro-discharge machining to create throat diameters of 64, 187 and 733 µm with design expansion ratios of 2.5:1 and design ejector area ratios of 8. The experimental data using nitrogen gas for the motive fluid indicate that the ejector can produce a sufficient suction draft to enable its substitution for high-speed turbomachinery in micro engine applications. A pumping power density of 308 kW L-1 is observed experimentally, which agrees well with a theoretical model including losses associated with the suction flow inlet and viscous effects in the motive nozzle and mixing regions. The present theoretical model further predicts a maximum achievable power density of 1 MW L-1 for microscale ejectors with a throat diameter of 10 µm and throat Reynolds number of 1300.

  4. Experimental characterization of cement-bentonite interaction using core infiltration techniques and 4D computed tomography

    NASA Astrophysics Data System (ADS)

    Dolder, F.; Mäder, U.; Jenni, A.; Schwendener, N.

    Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel drums, and as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predict significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this project is to characterize and quantify the cement/bentonite skin effects spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used, which allows performing X-ray computed tomography (CT) periodically without interrupting a running experiment. A pre-saturated cylindrical MX-80 bentonite sample (1920 kg/m3 average wet density) is subjected to a confining pressure as a constant total pressure boundary condition. The infiltration of a hyperalkaline (pH 13.4), artificial OPC (ordinary Portland cement) pore water into the bentonite plug alters the mineral assemblage over time as an advancing reaction front. The related changes in X-ray attenuation values are related to changes in phase densities, porosity and local bulk density and are tracked over time periodically by non-destructive CT scans. Mineral precipitation is observed in the inflow filter. Mineral alteration in the first millimeters of the bentonite sample is clearly detected and the reaction front is presently progressing with an average linear velocity that is 8 times slower than that for anions. The reaction zone is characterized by a higher X-ray attenuation compared to the signal of the pre-existing mineralogy. Chemical analysis of the outflow fluid showed initially elevated anion and cation concentrations compared to the infiltration fluid due to anion exclusion effects related to compaction of

  5. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    SciTech Connect

    Lacy, Jeffrey M. Smith, James A. Rabin, Barry H.

    2015-03-31

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.

  6. Modeling and Characterization of Damage Processes in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Smith, S. W.; Hochhalter, J. D.; Yamakov, V. I.; Gupta, V.

    2011-01-01

    This paper describes a broad effort that is aimed at understanding the fundamental mechanisms of crack growth and using that understanding as a basis for designing materials and enabling predictions of fracture in materials and structures that have small characteristic dimensions. This area of research, herein referred to as Damage Science, emphasizes the length scale regimes of the nanoscale and the microscale for which analysis and characterization tools are being developed to predict the formation, propagation, and interaction of fundamental damage mechanisms. Examination of nanoscale processes requires atomistic and discrete dislocation plasticity simulations, while microscale processes can be examined using strain gradient plasticity, crystal plasticity and microstructure modeling methods. Concurrent and sequential multiscale modeling methods are being developed to analytically bridge between these length scales. Experimental methods for characterization and quantification of near-crack tip damage are also being developed. This paper focuses on several new methodologies in these areas and their application to understanding damage processes in polycrystalline metals. On-going and potential applications are also discussed.

  7. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    NASA Astrophysics Data System (ADS)

    Lacy, Jeffrey M.; Smith, James A.; Rabin, Barry H.

    2015-03-01

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.

  8. Experimental testing and computational modeling of flat oval duct deflection

    SciTech Connect

    Smolinski, P.J.; Palmer, G.S.

    1998-10-01

    The deflection characteristics of spiral seam flat oval HVAC duct are examined in this study, and the effects of duct size, wall thickness, and the size spacing, and type of external reinforcement on the duct deformation are investigated. A duct test setup and a deflection measurement frame were developed for measuring the deformation of flat oval duct, and experimental testing was performed on a variety of duct configurations to measure the duct deflections at various positive and negative internal pressures. Finite element computer models of the ducts were developed to predict the deflections. The correlation between the predictions of the computer model and the data from the experimental testing is highly variable with differences ranging from a few percent to several hundred percent. In general, it was found that there was closer agreement between the finite element results and the experimental measurements for smaller duct and at locations of type 2 external reinforcements. This may be due to the fact that the finite element model assumed the idealized flat oval shape and this shape was better matched by smaller ducts and near the external reinforcement. It was also found that in some cases, unreinforced duct could achieve higher pressures than type 1 reinforced duct before exceeding the deflection limits. Sources of error include the uneven surface of the mastic in the measurement of the duct joint deflection and the variance of the actual duct shape from the idealized shape used in the finite element model. This study did not examine the variability of the experimental results due to differences in duct shape or manufacture.

  9. Experimental and numerical characterization of sea-state and coastal currents close to the Giglio island.

    NASA Astrophysics Data System (ADS)

    Brandini, Carlo; Taddei, Stefano; Doronzo, Bartolomeo; Costanza, Letizia; Fattorini, Maria; Serafino, Francesco; Ludeno, Giovanni; Ciarravano, Alessandro

    2015-04-01

    The study of sub-mesoscale circulation phenomena in coastal areas is complicated by the high resolution requested for both the observation and the simulation of such currents, and by the difficulty of appropriately validating the remote sensing and the numerical data. In this work we present the results of a long period of waves and coastal currents observations, produced by the X-band radar that was implemented in 2012 at the Giglio Island, after the accident of the Costa Concordia ship. The radar installation has allowed to verify the structure of particular sea states and hydrodynamic phenomena that can be reproduced also by means of some numerical models implemented in the area: in particular, SWAN for waves prediction, and ROMS for coastal circulation . The models were configured through multiple nesting in order to reach resolutions comparable to coastal radar observations. The measurements have been validated independently through the use of drifters in experimental campaigns around the island. The complete view of the 2D spectrum, as recorded by the radar, allowed to fully characterize sea states with crossed-seas and also coastal refraction phenomena (due to the southwest sea that turns all around the island), diffracted and even reflected wave patterns (Ludeno et al., 2014). The circulation phenomena are even more complex, as they are produced by a combination of local forcing conditions and tides, and by the interaction of the large-scale circulation with the local conformation of the bathymetry and the coastline. Circulation cells have been often observed, even in the form of a double-gyre configuration, also due to the non-stationarity of the atmospheric forcing and to multiple interaction effects. In our work we attempt to reproduce some of these phenomena, which are difficult to model also for their inherent non-linearity. We have considered the use of the native ROMS algorithm for multiple nested domains, by implementing it up to 50 m resolution

  10. Amplified energy harvester from footsteps: design, modeling, and experimental analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Chen, Wusi; Guzman, Plinio; Zuo, Lei

    2014-04-01

    This paper presents the design, modeling and experimental analysis of an amplified footstep energy harvester. With the unique design of amplified piezoelectric stack harvester the kinetic energy generated by footsteps can be effectively captured and converted into usable DC power that could potentially be used to power many electric devices, such as smart phones, sensors, monitoring cameras, etc. This doormat-like energy harvester can be used in crowded places such as train stations, malls, concerts, airport escalator/elevator/stairs entrances, or anywhere large group of people walk. The harvested energy provides an alternative renewable green power to replace power requirement from grids, which run on highly polluting and global-warming-inducing fossil fuels. In this paper, two modeling approaches are compared to calculate power output. The first method is derived from the single degree of freedom (SDOF) constitutive equations, and then a correction factor is applied onto the resulting electromechanically coupled equations of motion. The second approach is to derive the coupled equations of motion with Hamilton's principle and the constitutive equations, and then formulate it with the finite element method (FEM). Experimental testing results are presented to validate modeling approaches. Simulation results from both approaches agree very well with experimental results where percentage errors are 2.09% for FEM and 4.31% for SDOF.

  11. Experimental model of heterotopic ossification in Wistar rats

    PubMed Central

    Zotz, T.G.G.; de Paula, J.B.; Moser, A.D.L.

    2012-01-01

    Heterotopic ossification (HO) is a metaplastic biological process in which there is newly formed bone in soft tissues adjacent to large joints, resulting in joint mobility deficit. In order to determine which treatment techniques are more appropriate for such condition, experimental models of induced heterotopic bone formation have been proposed using heterologous demineralized bone matrix implants and bone morphogenetic protein and other tissues. The objective of the present experimental study was to identify a reliable protocol to induce HO in Wistar rats, based on autologous bone marrow (BM) implantation, comparing 3 different BM volumes and based on literature evidence of this HO induction model in larger laboratory animals. Twelve male Wistar albino rats weighing 350/390 g were used. The animals were anesthetized for blood sampling before HO induction in order to quantify serum alkaline phosphatase (ALP). HO was induced by BM implantation in both quadriceps muscles of these animals, experimental group (EG). Thirty-five days after the induction, another blood sample was collected for ALP determination. The results showed a weight gain in the EG and no significant difference in ALP levels when comparing the periods before and after induction. Qualitative histological analysis confirmed the occurrence of heterotopic ossification in all 12 EG rats. In conclusion, the HO induction model was effective when 0.35 mL autologous BM was applied to the quadriceps of Wistar rats. PMID:22473322

  12. Effects of exercise in experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis)

    PubMed Central

    Klaren, Rachel E.; Motl, Robert W.; Woods, Jeffrey A.; Miller, Stephen D.

    2015-01-01

    Exercise training has improved many outcomes in “clinical” research involving persons with multiple sclerosis (MS), but there is limited understanding of the underlying “basic” pathophysiological mechanisms. The animal model of MS, experimental autoimmune encephalomyelitis (EAE), seems ideal for examining the effects of exercise training on MS-disease pathophysiology. EAE is an autoimmune T-helper cell-mediated disease characterized by T-cell and monocyte infiltration and inflammation in the CNS. To that end, this paper briefly describes common models of EAE, reviews existing research on exercise and EAE, and then identifies future research directions for understanding the consequences of exercise training using EAE. PMID:24999244

  13. Effects of exercise in experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis).

    PubMed

    Klaren, Rachel E; Motl, Robert W; Woods, Jeffrey A; Miller, Stephen D

    2014-09-15

    Exercise training has improved many outcomes in "clinical" research involving persons with multiple sclerosis (MS), but there is limited understanding of the underlying "basic" pathophysiological mechanisms. The animal model of MS, experimental autoimmune encephalomyelitis (EAE), seems ideal for examining the effects of exercise training on MS-disease pathophysiology. EAE is an autoimmune T-helper cell-mediated disease characterized by T-cell and monocyte infiltration and inflammation in the CNS. To that end, this paper briefly describes common models of EAE, reviews existing research on exercise and EAE, and then identifies future research directions for understanding the consequences of exercise training using EAE. PMID:24999244

  14. The intensity of knock in an internal combustion engine: An experimental and modeling study

    NASA Astrophysics Data System (ADS)

    Cowart, J. S.; Haghooie, M.; Newman, C. E.; Davis, G. C.; Pitz, W. J.; Westbrook, C. K.

    1992-09-01

    Experimental data have been obtained that characterize knock occurrence times and knock intensities in a spark ignition engine operating on indolene and 91 primary reference fuel, as spark timing and inlet temperature were varied. Individual, in-cylinder pressure histories measured under knocking conditions were conditioned and averaged to obtain representative pressure traces. These averaged pressure histories were used as input to a reduced and detailed chemical kinetic model. The time derivative of CO concentration and temperature were correlated with the measured knock intensity and percent cycles knocking. The goal was to evaluate the potential of using homogeneous, chemical kinetic models as predictive tools for knock intensity.

  15. New Experimental Models of Diabetic Nephropathy in Mice Models of Type 2 Diabetes: Efforts to Replicate Human Nephropathy

    PubMed Central

    Soler, María José; Riera, Marta; Batlle, Daniel

    2012-01-01

    Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. The use of experimental models of DN has provided valuable information regarding many aspects of DN, including pathophysiology, progression, implicated genes, and new therapeutic strategies. A large number of mouse models of diabetes have been identified and their kidney disease was characterized to various degrees. Most experimental models of type 2 DN are helpful in studying early stages of DN, but these models have not been able to reproduce the characteristic features of more advanced DN in humans such as nodules in the glomerular tuft or glomerulosclerosis. The generation of new experimental models of DN created by crossing, knockdown, or knockin of genes continues to provide improved tools for studying DN. These models provide an opportunity to search for new mechanisms involving the development of DN, but their shortcomings should be recognized as well. Moreover, it is important to recognize that the genetic background has a substantial effect on the susceptibility to diabetes and kidney disease development in the various models of diabetes. PMID:22461787

  16. Hybrid hierarchical bio-based materials: Development and characterization through experimentation and computational simulations

    NASA Astrophysics Data System (ADS)

    Haq, Mahmoodul

    Environmentally friendly bio-based composites with improved properties can be obtained by harnessing the synergy offered by hybrid constituents such as multiscale (nano- and micro-scale) reinforcement in bio-based resins composed of blends of synthetic and natural resins. Bio-based composites have recently gained much attention due to their low cost, environmental appeal and their potential to compete with synthetic composites. The advantage of multiscale reinforcement is that it offers synergy at various length scales, and when combined with bio-based resins provide stiffness-toughness balance, improved thermal and barrier properties, and increased environmental appeal to the resulting composites. Moreover, these hybrid materials are tailorable in performance and in environmental impact. While the use of different concepts of multiscale reinforcement has been studied for synthetic composites, the study of mukiphase/multiscale reinforcements for developing new types of sustainable materials is limited. The research summarized in this dissertation focused on development of multiscale reinforced bio-based composites and the effort to understand and exploit the synergy of its constituents through experimental characterization and computational simulations. Bio-based composites consisting of petroleum-based resin (unsaturated polyester), natural or bio-resin (epoxidized soybean and linseed oils), natural fibers (industrial hemp), and nanosilicate (nanoclay) inclusions were developed. The work followed the "materials by Mahmoodul Haq design" philosophy by incorporating an integrated experimental and computational approach to strategically explore the design possibilities and limits. Experiments demonstrated that the drawbacks of bio-resin addition, which lowers stiffness, strength and increases permeability, can be counter-balanced through nanoclay reinforcement. Bio-resin addition yields benefits in impact strength and ductility. Conversely, nanoclay enhances stiffness

  17. Survey of Experimental Tests of the IBA Model

    SciTech Connect

    Casten, R. F.

    1980-01-01

    A survey of experimental tests of the Interacting Boson Approximation (IBA) Model is presented covering even and odd mass nuclei in the region from A ≈ 80 to A ≈ 230. Both positive and negative parity states with both high and low spin are discussed. Topics included concern energy levels, electromagnetic transition rates, two nucleon transfer and inelastic scattering. Special attention is given to nuclear symmetries and transitional regions. Comparison with other models is made where appropriate. The distinction between IBA-1 and IBA-2 is discussed including their respective areas of applicability.

  18. Salmonellosis in cattle: advantages of being an experimental model.

    PubMed

    Costa, Luciana F; Paixão, Tatiane A; Tsolis, Renée M; Bäumler, Andreas J; Santos, Renato L

    2012-08-01

    Salmonellosis is an important disease of cattle caused predominantly by Salmonella enterica serotypes Typhimurium (S. typhimurium) and Dublin (S. dublin). S. typhimurium causes acute enteritis and exudative diarrhea in calves. In addition to enteric disease, S. dublin can cause systemic infections, and may cause abortion in pregnant cows. Calves are considered a relevant model for non-typhoidal salmonellosis in humans. Experimental oral infections or inoculation of ligated ileal loops in calves have been extensively studied recently. This article reviews relevant published results regarding bovine salmonellosis as a natural disease or as an animal model. PMID:22483382

  19. Finite element modeling and experimentation of bone drilling forces

    NASA Astrophysics Data System (ADS)

    Lughmani, W. A.; Bouazza-Marouf, K.; Ashcroft, I.

    2013-07-01

    Bone drilling is an essential part of many orthopaedic surgery procedures, including those for internal fixation and for attaching prosthetics. Estimation and control of bone drilling forces are critical to prevent drill breakthrough, excessive heat generation, and mechanical damage to the bone. This paper presents a 3D finite element (FE) model for prediction of thrust forces experienced during bone drilling. The model incorporates the dynamic characteristics involved in the process along with the accurate geometrical considerations. The average critical thrust forces and torques obtained using FE analysis, for set of machining parameters are found to be in good agreement with the experimental results.

  20. Model free control for differential pneumatic pistons: experimental comparison

    NASA Astrophysics Data System (ADS)

    Weist, Jens; Arteaga, Marco A.; de la Cruz, Leonardo R.; Hebisch, Holger

    2011-01-01

    PID controllers are widely used in industry. While this may be appropriate for many systems, eventually a more complex or reliable algorithm has to be designed to improve performance. Common praxis is to take advantage either of physical properties (e.g. passivity) or of a mathematical model. For this last case it may prove to be hard to get an accurate description of the system dynamics. In this article we experimentally analyse the behaviour of pneumatic actuators by employing control algorithms available in the literature with little or no model information at all, including an adaptation of a robot control law which is shown to work very well for the test bed.

  1. CFD modeling of pharmaceutical isolators with experimental verification of airflow.

    PubMed

    Nayan, N; Akay, H U; Walsh, M R; Bell, W V; Troyer, G L; Dukes, R E; Mohan, P

    2007-01-01

    Computational fluid dynamics (CFD) models have been developed to predict the airflow in a transfer isolator using a commercial CFD code. In order to assess the ability of the CFD approach in predicting the flow inside an isolator, hot wire anemometry measurements and a novel experimental flow visualization technique consisting of helium-filled glycerin bubbles were used. The results obtained have been shown to agree well with the experiments and show that CFD can be used to model barrier systems and isolators with practical fidelity. This indicates that CFD can and should be used to support the design, testing, and operation of barrier systems and isolators. PMID:17933207

  2. Systematic effects in CALOR simulation code to model experimental configurations

    SciTech Connect

    Job, P.K.; Proudfoot, J. ); Handler, T. . Dept. of Physics and Astronomy); Gabriel, T.A. )

    1991-03-27

    CALOR89 code system is being used to simulate test beam results and the design parameters of several calorimeter configurations. It has been bench-marked against the ZEUS, D{theta} and HELIOS data. This study identifies the systematic effects in CALOR simulation to model the experimental configurations. Five major systematic effects are identified. These are the choice of high energy nuclear collision model, material composition, scintillator saturation, shower integration time, and the shower containment. Quantitative estimates of these systematic effects are presented. 23 refs., 6 figs., 7 tabs.

  3. Mathematical Models and the Experimental Analysis of Behavior

    PubMed Central

    Mazur, James E

    2006-01-01

    The use of mathematical models in the experimental analysis of behavior has increased over the years, and they offer several advantages. Mathematical models require theorists to be precise and unambiguous, often allowing comparisons of competing theories that sound similar when stated in words. Sometimes different mathematical models may make equally accurate predictions for a large body of data. In such cases, it is important to find and investigate situations for which the competing models make different predictions because, unless two models are actually mathematically equivalent, they are based on different assumptions about the psychological processes that underlie an observed behavior. Mathematical models developed in basic behavioral research have been used to predict and control behavior in applied settings, and they have guided research in other areas of psychology. A good mathematical model can provide a common framework for understanding what might otherwise appear to be diverse and unrelated behavioral phenomena. Because psychologists vary in their quantitative skills and in their tolerance for mathematical equations, it is important for those who develop mathematical models of behavior to find ways (such as verbal analogies, pictorial representations, or concrete examples) to communicate the key premises of their models to nonspecialists. PMID:16673829

  4. The Mouse Median Nerve Experimental Model in Regenerative Research

    PubMed Central

    Buskbjerg Jager, Sara

    2014-01-01

    Sciatic nerve crush injury in rat animal model is one of the most common experimental models used in regenerative research. However, the availability of transgenic mouse for nerve regeneration studies is constantly increasing and, therefore, the shift from rat model to mouse model is, in some cases, necessary. Moreover, since most of the human nerve lesions occur in the upper limb, it is also advantageous to shift from sciatic nerve to median nerve. In this study we described an experimental model which involves lesions of the median nerve in the mouse. Data showed that the finger flexor muscle contraction strength, assessed to evaluate the motor function recovery, and reached values not different from the control already 20 days after injury. The degree of nerve regeneration evaluated with stereological methods in light microscopy showed that, 25 days after injury, the number of regenerated myelinated fibers was comparable to the control, but they were smaller with a thinner myelin thickness. Stereological analysis made in electron microscopy confirmed these results, although the total number of fibers quantified was significantly higher compared to light microscopy analysis, due to the very small size of some fibers that can be detected only in electron microscopy. PMID:25180190

  5. Non-shock initiation model for explosive families : experimental results.

    SciTech Connect

    Anderson, Mark U.; Jensen, Charles B.; Todd, Steven N.; Hugh, Chance G.; Caipen, Terry L.

    2010-03-01

    The 'DaMaGe-Initiated-Reaction' (DMGIR) computational model has been developed to predict the response of high explosives to non-shock mechanical insults. The distinguishing feature of this model is the introduction of a damage variable, which relates the evolution of damage to the initiation of a reaction in the explosive, and its growth to detonation. Specifically designed experiments were used to study the initiation process of each explosive family with embedded shock sensors and optical diagnostics. The experimental portion of this model development began with a study of PBXN-5 to develop DMGIR model coefficients for the rigid plastic bonded family, followed by studies of the cast, and bulk-moldable explosive families. The experimental results show an initiation mechanism that is related to input energy and material damage, with well defined initiation thresholds for each explosive family. These initiation details will extend the predictive capability of the DMGIR model from the rigid family into the cast and bulk-moldable families.

  6. Experimental investigation on single person's jumping load model

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Wang, Haoqi; Wang, Ling

    2015-12-01

    This paper presents a modified half-sine-squared load model of the jumping impulses for a single person. The model is based on a database of 22,921 experimentally measured single jumping load cycles from 100 test subjects. Threedimensional motion capture technology in conjunction with force plates was employed in the experiment to record jumping loads. The variation range and probability distribution of the controlling parameters for the load model such as the impact factor, jumping frequency and contact ratio, are discussed using the experimental data. Correlation relationships between the three parameters are investigated. The contact ratio and jumping frequency are identified as independent model parameters, and an empirical frequency-dependent function is derived for the impact factor. The feasibility of the proposed load model is established by comparing the simulated load curves with measured ones, and by comparing the acceleration responses of a single-degree-of-freedom system to the simulated and measured jumping loads. The results show that a realistic individual jumping load can be generated by the proposed method. This can then be used to assess the dynamic response of assembly structures.

  7. Cure characterization and process modeling of soy-based composites

    NASA Astrophysics Data System (ADS)

    Liang, Guanghui

    This work deals with cure characteristics of soy-based resin system, fabrication of pultruded soy-based composites, and analysis of flexible polymeric foams. In the first part of this work, the cure kinetics and rheology of the soy-based resin system were studied. The cure kinetics models of the different resin formulations were developed. A neural network based model was developed to provide an efficient approach for rheology characterization. The analytical expressions of cure kinetics and rheology developed for soy-based epoxy resin system can be readily applied into numerical modeling of composite manufacturing processes. In the second part of this work, the analytical cure kinetics model developed for the soy-based epoxy resin system was applied in pultrusion process modeling. A finite element model was established and implemented in the commercial ABAQUS code to predict the temperature and the degree of cure of the pultruded soy-based composites. An on-line cure monitoring system was developed to measure the temperature profile in the pultrusion die. The numerical results show good agreement with the experimental findings. The soy-based resin system is a viable alternative to petroleum based epoxy resins for the pultrusion process. In the third part of this work, a novel constitutive model for elastomeric foam material based on neural network is presented. The neural network approach provides an efficient constitutive model and can be readily implemented into commercial finite element packages. It has the potential to be used in various applications related to analysis of polymeric foam materials.

  8. Precisely parameterized experimental and computational models of tissue organization†

    PubMed Central

    Sekar, Rajesh B.; Blake, Robert; Park, JinSeok; Trayanova, Natalia A.; Tung, Leslie; Levchenko, Andre

    2016-01-01

    Patterns of cellular organization in diverse tissues frequently display a complex geometry and topology tightly related to the tissue function. Progressive disorganization of tissue morphology can lead to pathologic remodeling, necessitating the development of experimental and theoretical methods of analysis of the tolerance of normal tissue function to structural alterations. A systematic way to investigate the relationship of diverse cell organization to tissue function is to engineer two-dimensional cell monolayers replicating key aspects of the in vivo tissue architecture. However, it is still not clear how this can be accomplished on a tissue level scale in a parameterized fashion, allowing for a mathematically precise definition of the model tissue organization and properties down to a cellular scale with a parameter dependent gradual change in model tissue organization. Here, we describe and use a method of designing precisely parameterized, geometrically complex patterns that are then used to control cell alignment and communication of model tissues. We demonstrate direct application of this method to guiding the growth of cardiac cell cultures and developing mathematical models of cell function that correspond to the underlying experimental patterns. Several anisotropic patterned cultures spanning a broad range of multicellular organization, mimicking the cardiac tissue organization of different regions of the heart, were found to be similar to each other and to isotropic cell monolayers in terms of local cell–cell interactions, reflected in similar confluency, morphology and connexin-43 expression. However, in agreement with the model predictions, different anisotropic patterns of cell organization, paralleling in vivo alterations of cardiac tissue morphology, resulted in variable and novel functional responses with important implications for the initiation and maintenance of cardiac arrhythmias. We conclude that variations of tissue geometry and

  9. Precisely parameterized experimental and computational models of tissue organization.

    PubMed

    Molitoris, Jared M; Paliwal, Saurabh; Sekar, Rajesh B; Blake, Robert; Park, JinSeok; Trayanova, Natalia A; Tung, Leslie; Levchenko, Andre

    2016-02-01

    Patterns of cellular organization in diverse tissues frequently display a complex geometry and topology tightly related to the tissue function. Progressive disorganization of tissue morphology can lead to pathologic remodeling, necessitating the development of experimental and theoretical methods of analysis of the tolerance of normal tissue function to structural alterations. A systematic way to investigate the relationship of diverse cell organization to tissue function is to engineer two-dimensional cell monolayers replicating key aspects of the in vivo tissue architecture. However, it is still not clear how this can be accomplished on a tissue level scale in a parameterized fashion, allowing for a mathematically precise definition of the model tissue organization and properties down to a cellular scale with a parameter dependent gradual change in model tissue organization. Here, we describe and use a method of designing precisely parameterized, geometrically complex patterns that are then used to control cell alignment and communication of model tissues. We demonstrate direct application of this method to guiding the growth of cardiac cell cultures and developing mathematical models of cell function that correspond to the underlying experimental patterns. Several anisotropic patterned cultures spanning a broad range of multicellular organization, mimicking the cardiac tissue organization of different regions of the heart, were found to be similar to each other and to isotropic cell monolayers in terms of local cell-cell interactions, reflected in similar confluency, morphology and connexin-43 expression. However, in agreement with the model predictions, different anisotropic patterns of cell organization, paralleling in vivo alterations of cardiac tissue morphology, resulted in variable and novel functional responses with important implications for the initiation and maintenance of cardiac arrhythmias. We conclude that variations of tissue geometry and topology

  10. Experimental assessment of presumed filtered density function models

    NASA Astrophysics Data System (ADS)

    Stetsyuk, V.; Soulopoulos, N.; Hardalupas, Y.; Taylor, A. M. K. P.

    2015-06-01

    Measured filtered density functions (FDFs) as well as assumed beta distribution model of mixture fraction and "subgrid" scale (SGS) scalar variance z '' 2 ¯ , used typically in large eddy simulations, were studied by analysing experimental data, obtained from two-dimensional planar, laser induced fluorescence measurements in isothermal swirling turbulent flows at a constant Reynolds number of 29 000 for different swirl numbers (0.3, 0.58, and 1.07). Two-dimensional spatial filtering, by using a box filter, was performed in order to obtain the filtered variables, namely, resolved mean and "subgrid" scale scalar variance. These were used as inputs for assumed beta distribution of mixture fraction and top-hat FDF shape estimates. The presumed beta distribution model, top-hat FDF, and the measured filtered density functions were used to integrate a laminar flamelet solution in order to calculate the corresponding resolved temperature. The experimentally measured FDFs varied with the flow swirl number and both axial and radial positions in the flow. The FDFs were unimodal at flow regions with low SGS scalar variance, z '' 2 ¯ < 0.01, and bimodal at regions with high SGS variance, z '' 2 ¯ > 0.02. Bimodal FDF could be observed for a filter size of approximately 1.5-2 times the Batchelor scale. Unimodal FDF could be observed for a filter size as large as four times the Batchelor scale under well-mixed conditions. In addition, two common computational models (a gradient assumption and a scale similarity model) for the SGS scalar variance were used with the aim to evaluate their validity through comparison with the experimental data. It was found that the gradient assumption model performed generally better than the scale similarity one.

  11. Experimental modelling of aortic aneurysms: novel applications of silicone rubbers.

    PubMed

    Doyle, Barry J; Corbett, Timothy J; Cloonan, Aidan J; O'Donnell, Michael R; Walsh, Michael T; Vorp, David A; McGloughlin, Timothy M

    2009-10-01

    A range of silicone rubbers were created based on existing commercially available materials. These silicones were designed to be visually different from one another and have distinct material properties, in particular, ultimate tensile strengths and tear strengths. In total, eleven silicone rubbers were manufactured, with the materials designed to have a range of increasing tensile strengths from approximately 2 to 4 MPa, and increasing tear strengths from approximately 0.45 to 0.7 N/mm. The variations in silicones were detected using a standard colour analysis technique. Calibration curves were then created relating colour intensity to individual material properties. All eleven materials were characterised and a 1st order Ogden strain energy function applied. Material coefficients were determined and examined for effectiveness. Six idealised abdominal aortic aneurysm models were also created using the two base materials of the study, with a further model created using a new mixing technique to create a rubber model with randomly assigned material properties. These models were then examined using videoextensometry and compared to numerical results. Colour analysis revealed a statistically significant linear relationship (p<0.0009) with both tensile strength and tear strength, allowing material strength to be determined using a non-destructive experimental technique. The effectiveness of this technique was assessed by comparing predicted material properties to experimentally measured methods, with good agreement in the results. Videoextensometry and numerical modelling revealed minor percentage differences, with all results achieving significance (p<0.0009). This study has successfully designed and developed a range of silicone rubbers that have unique colour intensities and material strengths. Strengths can be readily determined using a non-destructive analysis technique with proven effectiveness. These silicones may further aid towards an improved understanding of

  12. Simplest stick-slip experimental set up to model a seismic fault

    NASA Astrophysics Data System (ADS)

    Flores-Marquez, Leticia; Vargas, Carlos; Ramirez-Rojas, Alejandro

    2014-05-01

    In order to model the seismicity produced by the tectonic plate's interaction, we present an experimental device to mimic these phenomena. The experimental device is characterized by the interface of two sandpapers, one of them is stick in a solid block and the other is fixed in a track. This track has a free friction suspension. The solid block is pulled with constant and slow velocity by a rope connected to a DC motor. As the friction between the two sandpapers is opposed to the displacement of the block, the potential energy is accumulated till the force driven by the motor is able to pull, producing a suddenly displacement, that is the stick-slip phenomenon. Some statistical analysis of the experimental data series has been already published, displaying some dynamical features analogous to the natural seismicity.

  13. Experimental determination and thermodynamic modeling of the Ni-Re binary system

    NASA Astrophysics Data System (ADS)

    Yaqoob, Khurram; Joubert, Jean-Marc

    2012-12-01

    The phase diagram of the Ni-Re binary system has been partially reinvestigated by chemical, structural and thermal characterization of the arc melted alloys. The experimental results obtained during the present investigation were combined with the literature data and a new phase diagram of the Ni-Re binary system is proposed. In comparison with the Ni-Re phase diagram proposed by Nash et al. in 1985 [1], significant differences in the homogeneity domains, freezing ranges and peritectic reaction temperature were evidenced. On the other hand, thermodynamic modeling of the studied system by using the new experimental information has also been carried out with the help of the CALPHAD method. The calculated Ni-Re phase diagram showed a good agreement with the selected experimental information.

  14. Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation

    NASA Astrophysics Data System (ADS)

    Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred

    2005-08-01

    In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.

  15. Optogenetic cell control in experimental models of neurological disorders.

    PubMed

    Tønnesen, Jan

    2013-10-15

    The complexity of the brain, in which different neuronal cell types are interspersed and complexly interconnected, has posed a major obstacle in identifying pathophysiological mechanisms underlying prevalent neurological disorders. This is largely based in the inability of classical experimental approaches to target defined neural populations at sufficient temporal and spatial resolution. As a consequence, effective clinical therapies for prevalent neurological disorders are largely lacking. Recently developed optogenetic probes are genetically expressed photosensitive ion channels and pumps that in principal overcome these limitations. Optogenetic probes allow millisecond resolution functional control over selected optogenetically transduced neuronal populations targeted based on promoter activity. This optical cell control scheme has already been applied to answer fundamental questions pertaining to neurological disorders by allowing researchers to experimentally intercept, or induce, pathophysiological neuronal signaling activity in a highly controlled manner. Offering high temporal resolution control over neural activity at high cellular specificity, optogenetic tools constitute a game changer in research aiming at understanding pathophysiological signaling mechanisms in neurological disorders and in developing therapeutic strategies to correct these. In this regard, recent experimental work has provided new insights in underlying mechanisms, as well as preliminary proof-of-principle for optogenetic therapies, of several neurological disorders, including Parkinson's disease, epilepsy and progressive blindness. This review synthesizes experimental work where optogenetic tools have been applied to explore pathologic neural network activity in models of neurological disorders. PMID:23871610

  16. Experimental characterization of Polaroid ultrasonic sensors in single and phased array configuration

    NASA Astrophysics Data System (ADS)

    Cao, Alex; Borenstein, Johann

    2002-07-01

    Many mobile robots use Polaroid ultrasonic sensors for obstacle avoidance. This paper describes the experimental characterization of these sensors using a unique, fully automated testbed system. Using this testbed, we gathered large data sets of 5,000-16,000 data points in every experiment for characterization purposes; in a repeatable fashion and without human supervision. In the experimental characterization reported in this paper we focused on a comparison of the beamwidth of a single sonar with that of a dual sonar phased array. For the single sonar we found that flat walls trigger echo signals up to an angle of +/- 42 degree(s), which is well beyond the traditional assumed beamwidth of +/- 15 degree(s). We determined that these echoes result from the secondary and tertiary lobe of the well known multi-lobed propagation patterns of Polaroid ultrasonic sensors. In contrast, with the dual sonar phased array echo signals were triggered only up to beamwidths of 4-6 degree(s). The results in this paper were obtained for two test targets: a specular surface and a cylindrical object.

  17. Experimental refutation of a class of ψ-epistemic models

    NASA Astrophysics Data System (ADS)

    Patra, M. K.; Olislager, L.; Duport, F.; Safioui, J.; Pironio, S.; Massar, S.

    2013-09-01

    The quantum state ψ is a mathematical object used to determine the outcome probabilities of measurements on physical systems. Its fundamental nature has been the subject of discussions since the origin of the theory: Is it ontic, that is, does it correspond to a real property of the physical system? Or is it epistemic, that is, does it merely represent our knowledge about the system? Recent advances in the foundations of quantum theory show that epistemic models that obey a simple continuity condition are in conflict with quantum theory already at the level of a single system. Here we report an experimental test of continuous epistemic models using high-dimensional attenuated coherent states of light traveling in an optical fiber. Due to nonideal state preparation (of coherent states with imperfectly known phase) and nonideal measurements (arising from losses and inefficient detection), this experiment tests only epistemic models that satisfy additional constraints which we discuss in detail. Our experimental results are in agreement with the predictions of quantum theory and provide constraints on a class of ψ-epistemic models.

  18. Sheet Hydroforming Process Numerical Model Improvement Through Experimental Results Analysis

    NASA Astrophysics Data System (ADS)

    Gabriele, Papadia; Antonio, Del Prete; Alfredo, Anglani

    2010-06-01

    The increasing application of numerical simulation in metal forming field has helped engineers to solve problems one after another to manufacture a qualified formed product reducing the required time [1]. Accurate simulation results are fundamental for the tooling and the product designs. The wide application of numerical simulation is encouraging the development of highly accurate simulation procedures to meet industrial requirements. Many factors can influence the final simulation results and many studies have been carried out about materials [2], yield criteria [3] and plastic deformation [4,5], process parameters [6] and their optimization. In order to develop a reliable hydromechanical deep drawing (HDD) numerical model the authors have been worked out specific activities based on the evaluation of the effective stiffness of the blankholder structure [7]. In this paper after an appropriate tuning phase of the blankholder force distribution, the experimental activity has been taken into account to improve the accuracy of the numerical model. In the first phase, the effective capability of the blankholder structure to transfer the applied load given by hydraulic actuators to the blank has been explored. This phase ended with the definition of an appropriate subdivision of the blankholder active surface in order to take into account the effective pressure map obtained for the given loads configuration. In the second phase the numerical results obtained with the developed subdivision have been compared with the experimental data of the studied model. The numerical model has been then improved, finding the best solution for the blankholder force distribution.

  19. Of mice and men: modelling post-stroke depression experimentally

    PubMed Central

    Kronenberg, G; Gertz, K; Heinz, A; Endres, M

    2014-01-01

    At least one-third of stroke survivors suffer from depression. The development of comorbid depression after stroke is clinically highly significant because post-stroke depression is associated with increased mortality, slows recovery and leads to worse functional outcomes. Here, we review the evidence that post-stroke depression can be effectively modelled in experimental rodents via a variety of approaches. This opens an exciting new window onto the neurobiology of depression and permits probing potential underlying mechanisms such as disturbed cellular plasticity, neuroendocrine dysregulation, neuroinflammation, and neurodegeneration in a novel context. From the point of view of translational stroke research, extending the scope of experimental investigations beyond the study of short-term end points and, in particular, acute lesion size, may help improve the relevance of preclinical results to human disease. Furthermore, accumulating evidence from both clinical and experimental studies offers the tantalizing prospect of 5-hydroxytryptaminergic antidepressants as the first pharmacological therapy for stroke that would be available during the subacute and chronic phases of recovery. Interdisciplinary neuropsychiatric research will be called on to dissect the mechanisms underpinning the beneficial effects of antidepressants on stroke recovery. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24838087

  20. Identification of Computational and Experimental Reduced-Order Models

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Hong, Moeljo S.; Bartels, Robert E.; Piatak, David J.; Scott, Robert C.

    2003-01-01

    The identification of computational and experimental reduced-order models (ROMs) for the analysis of unsteady aerodynamic responses and for efficient aeroelastic analyses is presented. For the identification of a computational aeroelastic ROM, the CFL3Dv6.0 computational fluid dynamics (CFD) code is used. Flutter results for the AGARD 445.6 Wing and for a Rigid Semispan Model (RSM) computed using CFL3Dv6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are computed using the CFL3Dv6.0 code and transformed into state-space form. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is then used to rapidly compute aeroelastic transients, including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly. For the identification of experimental unsteady pressure ROMs, results are presented for two configurations: the RSM and a Benchmark Supercritical Wing (BSCW). Both models were used to acquire unsteady pressure data due to pitching oscillations on the Oscillating Turntable (OTT) system at the Transonic Dynamics Tunnel (TDT). A deconvolution scheme involving a step input in pitch and the resultant step response in pressure, for several pressure transducers, is used to identify the unsteady pressure impulse responses. The identified impulse responses are then used to predict the pressure responses due to pitching oscillations at several frequencies. Comparisons with the experimental data are then presented.

  1. Experimental Investigation and Computational Modeling of Hydrodynamics in Bifurcating Microchannels

    PubMed Central

    Janakiraman, Vijayakumar; Sastry, Sudeep; Kadambi, Jaikrishnan R.; Baskaran, Harihara

    2008-01-01

    Methods involving microfluidics have been used in several chemical, biological and medical applications. In particular, a network of bifurcating microchannels can be used to distribute flow in a large space. In this work, we carried out experiments to determine hydrodynamic characteristics of bifurcating microfluidic networks. We measured pressure drop across bifurcating networks of various complexities for various flow rates. We also measured planar velocity fields in these networks by using particle image velocimetry. We further analyzed hydrodynamics in these networks using mathematical and computational modeling. Our results show that the experimental frictional resistances of complex bifurcating microchannels are about 30% greater than that predicted by Navier-Stokes’ equations. Experimentally measured velocity profiles indicate that flow distributes equally at a bifurcation regardless of the complexity of the network. Flow division other than bifurcation such as trifurcation or quadruplication can lead to heterogeneities. These findings were verified by the results from the numerical simulations. PMID:18175219

  2. Huntington's disease and mitochondrial alterations: emphasis on experimental models.

    PubMed

    Pérez-De la Cruz, Verónica; Carrillo-Mora, Paul; Santamaría, Abel

    2010-06-01

    Huntington's disease (HD) is an inheritable neurological disorder coursing with degeneration of basal ganglia and producing chorea and dementia. One common factor accounting for neurodegeneration in this disorder is mitochondrial deterioration at both morphologic and functional levels. The development of experimental models in animals or cell preparations to resemble pathologic and pathogenic conditions of this disorder has served for more than four decades to describe part of the mechanistic alterations that could be occurring in mitochondria of HD patients, and the subsequent design of therapeutic alternatives where mitochondrial alterations are the primary target. In this minireview we describe some of the most relevant studies at the experimental level, giving support to the hypothesis that mitochondria play a central role in HD pathogenesis. PMID:20524050

  3. Increasing the validity of experimental models for depression.

    PubMed

    Dzirasa, Kafui; Covington, Herbert E

    2012-08-01

    Major depressive disorder (MDD) is a central nervous system disorder characterized by the culmination of profound disturbances in mood and affective regulation. Animal models serve as a powerful tool for investigating the neurobiological mechanisms underlying this disorder; however, little standardization exists across the wide range of available modeling approaches most often employed. This review will illustrate some of the most challenging obstacles faced by investigators attempting to associate depressive-like behaviors in rodents with symptoms expressed in MDD. Furthermore, a novel series of depressive-like criteria based on correlating behavioral endophenotypes, novel in vivo neurophysiological measurements, and molecular/cellular analyses within multiple brain are proposed as a potential solution to overcoming this barrier. Ultimately, linking the neurophysiological and cellular/biochemical actions that contribute to the expression of a defined MDD-like syndrome will dramatically extend the translational value of the most valid animal models of MDD. PMID:22823549

  4. A two-Higgs-doublet model facing experimental hints

    NASA Astrophysics Data System (ADS)

    Crivellin, Andreas; Heeck, Julian; Stoffer, Peter

    2016-04-01

    Physics beyond the Standard Model has so far eluded our experimental probes. Nevertheless, a number of interesting anomalies have accumulated that can be taken as hints towards new physics: BaBar, Belle, and LHCb have found deviations of approximately 3:8σ in B → Dτν and B → D*τν; the anomalous magnetic moment of the muon differs by about 3σ from the theoretic prediction; the branching ratio for τ → μνν is about 2σ above the Standard Model expectation; and CMS and ATLAS found hints for a non-zero decay rate of h → μτ at 2.6σ. Here we consider these processes within a lepton-specific two-Higgs doublet model with additional non-standard Yukawa couplings and show how (and which of) these excesses can be accommodated.

  5. Colorimetric characterization models based on colorimetric characteristics evaluation for active matrix organic light emitting diode panels.

    PubMed

    Gong, Rui; Xu, Haisong; Tong, Qingfen

    2012-10-20

    The colorimetric characterization of active matrix organic light emitting diode (AMOLED) panels suffers from their poor channel independence. Based on the colorimetric characteristics evaluation of channel independence and chromaticity constancy, an accurate colorimetric characterization method, namely, the polynomial compensation model (PC model) considering channel interactions was proposed for AMOLED panels. In this model, polynomial expressions are employed to calculate the relationship between the prediction errors of XYZ tristimulus values and the digital inputs to compensate the XYZ prediction errors of the conventional piecewise linear interpolation assuming the variable chromaticity coordinates (PLVC) model. The experimental results indicated that the proposed PC model outperformed other typical characterization models for the two tested AMOLED smart-phone displays and for the professional liquid crystal display monitor as well. PMID:23089779

  6. Experimental and theoretical study of Pseudomonas putida transport in a three-dimensional model aquifer

    NASA Astrophysics Data System (ADS)

    Vasiliadou, I. A.; Katzourakis, V. E.; Syngouna, V. I.; Chrysikopoulos, C. V.

    2012-04-01

    This study is focused on the transport of Pseudomonas (P.) putida bacterial cells in a three-dimensional model aquifer. The pilot-scale aquifer consisted of a rectangular glass tank with internal dimensions: 120 cm length, 48 cm width, and 50 cm height, carefully packed with well-characterized quartz sand. The P. putida attachment onto the aquifer sand was determined with batch experiments, and was adequately described by a linear isotherm. Transport experiments with a conservative tracer and P. putida were conducted to characterize the aquifer and to investigate the bacterial behavior during transport in water saturated porous media. A three-dimensional, finite-difference numerical model for bacterial transport in saturated, homogeneous porous media was developed and was used to successfully fit the experimental data. Furthermore, theoretical interaction energy calculations suggested that the extended DLVO theory seems to predict bacteria attachment onto the aquifer sand better than the classical DLVO theory.

  7. Physical modeling of interference enhanced imaging and characterization of single nanoparticles.

    PubMed

    Avci, Oguzhan; Adato, Ronen; Ozkumur, Ayca Yalcin; Ünlü, M Selim

    2016-03-21

    Interferometric imaging schemes have gained significant interest due to their superior sensitivity over imaging techniques that are solely based on scattered signal. In this study, we outline the theoretical foundations of imaging and characterization of single nanoparticles in an interferometric microscopy scheme, examine key parameters that influence the signal, and benchmark the model against experimental findings. PMID:27136804

  8. Experimentally driven atomistic model of 1,2 polybutadiene

    NASA Astrophysics Data System (ADS)

    Gkourmpis, Thomas; Mitchell, Geoffrey R.

    2014-02-01

    We present an efficient method of combining wide angle neutron scattering data with detailed atomistic models, allowing us to perform a quantitative and qualitative mapping of the organisation of the chain conformation in both glass and liquid phases. The structural refinement method presented in this work is based on the exploitation of the intrachain features of the diffraction pattern and its intimate linkage with atomistic models by the use of internal coordinates for bond lengths, valence angles, and torsion rotations. Atomic connectivity is defined through these coordinates that are in turn assigned by pre-defined probability distributions, thus allowing for the models in question to be built stochastically. Incremental variation of these coordinates allows for the construction of models that minimise the differences between the observed and calculated structure factors. We present a series of neutron scattering data of 1,2 polybutadiene at the region 120-400 K. Analysis of the experimental data yields bond lengths for CC and C  C of 1.54 Å and 1.35 Å, respectively. Valence angles of the backbone were found to be at 112° and the torsion distributions are characterised by five rotational states, a three-fold trans-skew± for the backbone and gauche± for the vinyl group. Rotational states of the vinyl group were found to be equally populated, indicating a largely atactic chan. The two backbone torsion angles exhibit different behaviour with respect to temperature of their trans population, with one of them adopting an almost all trans sequence. Consequently, the resulting configuration leads to a rather persistent chain, something indicated by the value of the characteristic ratio extrapolated from the model. We compare our results with theoretical predictions, computer simulations, RIS models and previously reported experimental results.

  9. Experimentally driven atomistic model of 1,2 polybutadiene

    SciTech Connect

    Gkourmpis, Thomas; Mitchell, Geoffrey R.

    2014-02-07

    We present an efficient method of combining wide angle neutron scattering data with detailed atomistic models, allowing us to perform a quantitative and qualitative mapping of the organisation of the chain conformation in both glass and liquid phases. The structural refinement method presented in this work is based on the exploitation of the intrachain features of the diffraction pattern and its intimate linkage with atomistic models by the use of internal coordinates for bond lengths, valence angles, and torsion rotations. Atomic connectivity is defined through these coordinates that are in turn assigned by pre-defined probability distributions, thus allowing for the models in question to be built stochastically. Incremental variation of these coordinates allows for the construction of models that minimise the differences between the observed and calculated structure factors. We present a series of neutron scattering data of 1,2 polybutadiene at the region 120–400 K. Analysis of the experimental data yields bond lengths for Cî—¸C and C î—» C of 1.54 Å and 1.35 Å, respectively. Valence angles of the backbone were found to be at 112° and the torsion distributions are characterised by five rotational states, a three-fold trans-skew± for the backbone and gauche± for the vinyl group. Rotational states of the vinyl group were found to be equally populated, indicating a largely atactic chan. The two backbone torsion angles exhibit different behaviour with respect to temperature of their trans population, with one of them adopting an almost all trans sequence. Consequently, the resulting configuration leads to a rather persistent chain, something indicated by the value of the characteristic ratio extrapolated from the model. We compare our results with theoretical predictions, computer simulations, RIS models and previously reported experimental results.

  10. Propagation effects for land mobile satellite systems: Overview of experimental and modeling results

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1992-01-01

    Models developed and experiments performed to characterize the propagation environment associated with land mobile communication using satellites are discussed. Experiments were carried out with transmitters on stratospheric balloons, remotely piloted aircraft, helicopters, and geostationary satellites. This text is comprised of compiled experimental results for the expressed use of communications engineers, designers of planned Land Mobile Satellite Systems (LMSS), and modelers of propagation effects. The results presented here are mostly derived from systematic studies of propagation effects for LMSS geometries in the United States associated with rural and suburban regions. Where applicable, the authors also draw liberally from the results of other related investigations in Canada, Europe, and Australia. Frequencies near 1500 MHz are emphasized to coincide with frequency bands allocated for LMSS by the International Telecommunication Union, although earlier experimental work at 870 MHz is also included.

  11. Structural and spectroscopic characterization of a thiosemicarbazidatodioxouranium(VI) complex: a combined experimental and DFT study.

    PubMed

    Şahin, Musa; Özdemir, Namık; Bal-Demirci, Tülay; Ülküseven, Bahri; Dinçer, Muharrem; Soylu, Mustafa Serkan

    2015-01-25

    The title thiosemicarbazidatodioxouranium(VI) compound was synthesized and characterized by FT-IR, NMR and UV-vis spectroscopies. Solid-state structure of the compound was confirmed by X-ray crystallography. Besides, the molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) (1)H and (13)C NMR chemical shift values of the compound in the ground state have been calculated using the density functional theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set for the C, H, Cl, N, O, S atoms and SDD pseudo-potential for the U atom, and compared with the experimental data. Using the TD-DFT method, electronic absorption spectra of the compound have been predicted at same level. As a result, a good agreement is obtained between the experimental and theoretical ones. PMID:25168237

  12. Experimental characterization of thin films, droplets and rivulets using LED fluorescence

    NASA Astrophysics Data System (ADS)

    Hagemeier, Thomas; Hartmann, Michael; Kühle, Martin; Thévenin, Dominique; Zähringer, Katharina

    2012-02-01

    Imaging based on fluorescence has been used in the past to investigate, mostly in a qualitative manner, liquid films occurring in various applications. In the present paper, a simple quantitative experimental setup and the associated calibration procedure are detailed for a configuration involving Rhodamin B or Rhodamin 101 excited with light-emitting diodes (LEDs). The measurement procedure has been first validated for an open-channel flow considering different Reynolds numbers around 550 and has then been applied to the characterization of thin films, isolated droplets and rivulets. Using this technique the film thickness, film velocity and contact angle have been evaluated accurately for a variety of flow conditions.

  13. Infrared spectroscopic characterization of carbonated apatite: a combined experimental and computational study.

    PubMed

    Ren, Fuzeng; Ding, Yonghui; Leng, Yang

    2014-02-01

    A combined experimental and computational approach was employed to investigate the feasibility and effectiveness of characterizing carbonated apatite (CAp) by infrared (IR) spectroscopy. First, an experimental comparative study was conducted to identify characteristic IR vibrational bands of carbonate substitution in the apatite lattice. The IR spectra of pure hydroxyapatite (HA), carbonate adsorbed on the HA surface, a physical mixture of HA and sodium carbonate monohydrate, a physical mixture of HA and calcite, synthetic CAps prepared using three methods (precipitation method, hydrothermal route, and solid-gas reaction at high temperature) and biological apatites (human enamel, human cortical bone, and two animal bones) were compared. Then, the IR vibrational bands of carbonate in CAp were calculated with density functional theory. The experimental study identified characteristic IR bands of carbonate that cannot be generated from surface adsorption or physical mixtures and the results show that the bands at ∼880, 1413, and 1450 cm(-1) should not be used as characteristic bands of CAp since they could result from carbonate adsorbed on the apatite crystals surface or present as a separate phase. The combined experimental and computational study reveals that the carbonate v3 bands at ∼1546 and 1465 cm(-1) are, respectively, the IR signature bands for type A CAp and type B CAp. PMID:23533194

  14. Hepatoprotective activity of Musa paradisiaca on experimental animal models

    PubMed Central

    Nirmala, M; Girija, K; Lakshman, K; Divya, T

    2012-01-01

    Objective To investigate the hepatoprotective activity of stem of Musa paradisiaca (M. paradisiaca) in CCl4 and paracetamol induced hepatotoxicity models in rats. Methods Hepatoprotective activity of alcoholic and aqueous extracts of stem of M. paradisiaca was demonstrated by using two experimentally induced hepatotoxicity models. Results Administration of hepatotoxins (CCl4 and paracetamol) showed significant biochemical and histological deteriorations in the liver of experimental animals. Pretreatment with alcoholic extract (500 mg/kg), more significantly and to a lesser extent the alcoholic extract (250 mg/kg) and aqueous extract (500 mg/kg), reduced the elevated levels of the serum enzymes like serum glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP) and bilirubin levels and alcoholic and aqueous extracts reversed the hepatic damage towards the normal, which further evidenced the hepatoprotective activity of stem of M. paradisiaca. Conclusions The alcoholic extract at doses of 250 and 500 mg/kg, p.o. and aqueous extract at a dose of 500 mg/kg, p.o. of stem of M. paradisiaca have significant effect on the liver of CCl4 and paracetamol induced hepatotoxicity animal models. PMID:23569826

  15. Electromechanical properties of smart aggregate: theoretical modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Kong, Qingzhao; Shi, Zhifei; Song, Gangbing

    2016-09-01

    Smart aggregate (SA), as a piezoceramic-based multi-functional device, is formed by sandwiching two lead zirconate titanate (PZT) patches with copper shielding between a pair of solid-machined cylindrical marble blocks with epoxy. Previous researches have successfully demonstrated the capability and reliability of versatile SAs to monitor the structural health of concrete structures. However, the previous works concentrated mainly on the applications of SAs in structural health monitoring; no reasonable theoretical model of SAs was proposed. In this paper, electromechanical properties of SAs were investigated using a proposed theoretical model. Based on one dimensional linear theory of piezo-elasticity, the dynamic solutions of a SA subjected to an external harmonic voltage were solved. Further, the electric impedance of the SA was computed, and the resonance and anti-resonance frequencies were calculated based on derived equations. Numerical analysis was conducted to discuss the effects of the thickness of epoxy layer and the dimension of PZT patch on the fundamental resonance and anti-resonance frequencies as well as the corresponding electromechanical coupling factor. The dynamic solutions based on the proposed theoretical model were further experimentally verified with two SA samples. The fundamental resonance and anti-resonance frequencies of SAs show good agreements in both theoretical and experimental results. The presented analysis and results contribute to the overall understanding of SA properties and help to optimize the working frequencies of SAs in structural health monitoring of civil structures.

  16. Tyre tread-block friction: modelling, simulation and experimental validation

    NASA Astrophysics Data System (ADS)

    Wallaschek, Jörg; Wies, Burkard

    2013-07-01

    Pneumatic tyres are used in vehicles since the beginning of the last century. They generate braking and steering forces for bicycles, motor cycles, cars, busses, trucks, agricultural vehicles and aircraft. These forces are generated in the usually very small contact area between tyre and road and their performance characteristics are of eminent importance for safety and comfort. Much research has been addressed to optimise tyre design with respect to footprint pressure and friction. In this context, the development of virtual tyre prototypes, that is, simulation models for the tyre, has grown to a science in its own. While the modelling of the structural dynamics of the tyre has reached a very advanced level, which allows to take into account effects like the rate-independent inelasticity of filled elastomers or the transient 3D deformations of the ply-reinforced tread, shoulder and sidewalls, little is known about the friction between tread-block elements and road. This is particularly obvious in the case when snow, ice, water or a third-body layer are present in the tyre-road contact. In the present paper, we give a survey on the present state of knowledge in the modelling, simulation and experimental validation of tyre tread-block friction processes. We concentrate on experimental techniques.

  17. Serially heterotransplanted human prostate tumours as an experimental model

    PubMed Central

    Lopez-Barcons, Lluis-A

    2010-01-01

    Abstract Preclinical research on prostate cancer (PC) therapies uses several models to represent the human disease accurately. A common model uses patient prostate tumour biopsies to develop a cell line by serially passaging and subsequent implantation, in immunodeficient mice. An alternative model is direct implantation of patient prostate tumour biopsies into immunodeficient mice, followed by serial passage in vivo. The purpose of this review is to compile data from the more than 30 years of human PC serial heterotransplantation research. Serially heterotransplanted tumours are characterized by evaluating the histopathology of the resulting heterotransplants, including cellular differentiation, karyotype, marker expression, hormone sensitivity, cellular proliferation, metastatic potential and stromal and vascular components. These data are compared with the initial patient tumour specimen and, depending on available information, the patient’s clinical outcome was compared with the heterotransplanted tumour. The heterotansplant model is a more accurate preclinical model than older generation serially passaged or genetic models to investigate current and newly developed androgen-deprivation agents, antitumour compounds, anti-angiogenic drugs and positron emission tomography radiotracers, as well as new therapeutic regimens for the treatment of PC. PMID:19874422

  18. A slender-body micromechanical model for viscoelasticity of magnetic colloids: comparison with preliminary experimental data.

    PubMed

    de Vicente, J; López-López, M T; Durán, J D G; Bossis, G

    2005-02-01

    The storage modulus, G', together with the yield stress, is an essential quantity characterizing the rheological properties of magnetic field-responsive suspensions (magnetorheological fluids or MRF). In this work, we present both experimental and theoretical results on the viscoelastic properties of MRFs. Two MRFs are used: In one the solid phase consists of cobalt ferrite particles + silica gel, with silicone oil as liquid phase. The second system is formed by carbonyl iron + silica gel also dispersed in silicone oil. The cobalt ferrite particles are synthesized as monodisperse colloidal spheres with an average diameter of 850 nm. We describe a new model based on the slender-body approach for hydrodynamic interactions. The predictions of the model are compared to preliminary experimental G' data obtained in a controlled stress plate-plate rheometer. It is found that the model gives the correct order of magnitude for the highest fields in iron suspensions, but underestimates the experimental results obtained in ferrite ones. In the case of high permeability materials such as carbonyl iron, by the inclusion of high-order multipolar interactions and saturation effects we also predict the order of magnitude of the experimental results. When dealing with low permeability cobalt ferrite based MRFs, other effects, such as remanence (at low fields) and saturation (at high fields), must be considered. PMID:15576099

  19. Size exclusion deep bed filtration: Experimental and modelling uncertainties

    SciTech Connect

    Badalyan, Alexander You, Zhenjiang; Aji, Kaiser; Bedrikovetsky, Pavel; Carageorgos, Themis; Zeinijahromi, Abbas

    2014-01-15

    A detailed uncertainty analysis associated with carboxyl-modified latex particle capture in glass bead-formed porous media enabled verification of the two theoretical stochastic models for prediction of particle retention due to size exclusion. At the beginning of this analysis it is established that size exclusion is a dominant particle capture mechanism in the present study: calculated significant repulsive Derjaguin-Landau-Verwey-Overbeek potential between latex particles and glass beads is an indication of their mutual repulsion, thus, fulfilling the necessary condition for size exclusion. Applying linear uncertainty propagation method in the form of truncated Taylor's series expansion, combined standard uncertainties (CSUs) in normalised suspended particle concentrations are calculated using CSUs in experimentally determined parameters such as: an inlet volumetric flowrate of suspension, particle number in suspensions, particle concentrations in inlet and outlet streams, particle and pore throat size distributions. Weathering of glass beads in high alkaline solutions does not appreciably change particle size distribution, and, therefore, is not considered as an additional contributor to the weighted mean particle radius and corresponded weighted mean standard deviation. Weighted mean particle radius and LogNormal mean pore throat radius are characterised by the highest CSUs among all experimental parameters translating to high CSU in the jamming ratio factor (dimensionless particle size). Normalised suspended particle concentrations calculated via two theoretical models are characterised by higher CSUs than those for experimental data. The model accounting the fraction of inaccessible flow as a function of latex particle radius excellently predicts normalised suspended particle concentrations for the whole range of jamming ratios. The presented uncertainty analysis can be also used for comparison of intra- and inter-laboratory particle size exclusion data.

  20. Barchan dunes in two dimensions: experimental tests for minimal models.

    PubMed

    Groh, Christopher; Wierschem, Andreas; Aksel, Nuri; Rehberg, Ingo; Kruelle, Christof A

    2008-08-01

    A well-defined two-dimensional single barchan dune under the force of a shearing water flow is investigated experimentally. From an initially prepared triangular heap a rapid relaxation to a steady-state solution is observed with constant mass, shape, and velocity. This attractor exhibits all characteristic features of barchan dunes found in nature, namely a gently inclined windward side, crest, brink, and steep lee face. The relaxation time towards the steady state increases with mass. For small dunes we find significant deviations from a fixed height-length aspect ratio. As predicted by recent theoretical models, the migration velocity scales reciprocal to the length of the dune. PMID:18850828

  1. Experimental models for cellular radiation targets: LET, RBE and radioprotectors

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    The topics of this presentation are: a brief review of the early research, the ideas it stimulated and the ways they are used in current efforts to explain cellular radiosensitivity; an analysis of the strengths and weaknesses of two experimental models used in vitro for simulating the induction of double strand breaks (DSB) and single strand breaks (SSB) in situ. Note that when alkali is used to denature cellular DNA for the determination of strand breaks, both overt SSB and the SSB that result from DSB in the denaturation process are recorded as total strand breaks (TSB). All information is taken from published literature.

  2. Rhabdomyosarcomas: an overview on the experimental animal models

    PubMed Central

    Zanola, Alessandra; Rossi, Stefania; Faggi, Fiorella; Monti, Eugenio; Fanzani, Alessandro

    2012-01-01

    Abstract Rhabdomyosarcomas (RMS) are aggressive childhood soft-tissue malignancies deriving from mesenchymal progenitors that are committed to muscle-specific lineages. Despite the histopathological signatures associated with three main histological variants, termed embryonal, alveolar and pleomorphic, a plethora of genetic and molecular changes are recognized in RMS. Over the years, exposure to carcinogens or ionizing radiations and gene-targeting approaches in vivo have greatly contributed to disclose some of the mechanisms underlying RMS onset. In this review, we describe the principal distinct features associated with RMS variants and focus on the current available experimental animal models to point out the molecular determinants cooperating with RMS development and progression. PMID:22225829

  3. Experimental Method for Characterizing Electrical Steel Sheets in the Normal Direction

    PubMed Central

    Hihat, Nabil; Lecointe, Jean Philippe; Duchesne, Stephane; Napieralska, Ewa; Belgrand, Thierry

    2010-01-01

    This paper proposes an experimental method to characterise magnetic laminations in the direction normal to the sheet plane. The principle, which is based on a static excitation to avoid planar eddy currents, is explained and specific test benches are proposed. Measurements of the flux density are made with a sensor moving in and out of an air-gap. A simple analytical model is derived in order to determine the permeability in the normal direction. The experimental results for grain oriented steel sheets are presented and a comparison is provided with values obtained from literature. PMID:22163394

  4. Experimental modelling of ground deformation associated with shallow magma intrusions

    NASA Astrophysics Data System (ADS)

    Galland, Olivier

    2012-02-01

    Active volcanoes experience ground deformation as a response to the dynamics of underground magmatic systems. The analysis of ground deformation patterns may provide important constraints on the dynamics and shape of the underlying volcanic plumbing systems. Nevertheless, these analyses usually take into account simplistic shapes (sphere, dykes, sills) and the results cannot be verified as the modelled systems are buried. In this paper, I present new results from experimental models of magma intrusion, in which both the evolution of ground deformation during intrusion and the shape of the underlying intrusion are monitored. The models consisted of a molten vegetable oil, simulating low viscosity magma, injected into cohesive fine-grained silica flour, simulating the brittle upper crust; oil injection resulted is sheet intrusions (dykes, sills and cone sheets). The initial topography in the models was flat. While the oil was intruding, the surface of the models slightly lifted up to form a smooth relief, which was mapped through time. After an initial symmetrical development, the uplifted area developed asymmetrically; at the end of the experiments, the oil always erupted at the steepest edge of the uplifted area. After the experiment, the oil solidified, the intrusion was excavated and the shape of its top surface mapped. The comparison between the uplifted zone and the underlying intrusions showed that (1) the complex shapes of the uplifted areas reflected the complex shapes of the underlying intrusions, (2) the time evolution of the uplifted zone was correlated with the evolution of the underlying intrusion, and (3) the early asymmetrical evolution of the uplifted areas can be used to predict the location of the eruption of the oil. The experimental results also suggest that complex intrusion shapes (inclined sheet, cone sheet, complex sill) may have to be considered more systematically in the analyses of ground deformation patterns on volcanoes.

  5. Experimental modelling of ground deformation associated with shallow magma intrusions

    NASA Astrophysics Data System (ADS)

    Galland, O.

    2012-04-01

    Active volcanoes experience ground deformation as a response to the dynamics of underground magmatic systems. The analysis of ground deformation patterns may provide important constraints on the dynamics and shape of the underlying volcanic plumbing systems. Nevertheless, these analyses usually take into account simplistic shapes (sphere, dykes, sills) and the results cannot be verified as the modelled systems are buried. In this contribution, I will present new results from experimental models of magma intrusion, in which both the evolution of ground deformation during intrusion and the shape of the underlying intrusion are monitored in 3D. The models consisted of a molten vegetable oil, simulating low viscosity magma, injected into cohesive fine-grained silica flour, simulating the brittle upper crust; oil injection resulted is sheet intrusions (dykes, sills and cone sheets). The initial topography in the models was flat. While the oil was intruding, the surface of the models slightly lifted up to form a smooth relief, which was mapped through time. After an initial symmetrical development, the uplifted area developed asymmetrically; at the end of the experiments, the oil always erupted at the steepest edge of the uplifted area. After the experiment, the oil solidified, the intrusion was excavated and the shape of its top surface mapped. The comparison between the uplifted zone and the underlying intrusions showed that (1) the complex shapes of the uplifted areas reflected the complex shapes of the underlying intrusions, (2) the time evolution of the uplifted zone was correlated with the evolution of the underlying intrusion, and (3) the early asymmetrical evolution of the uplifted areas can be used to predict the location of the eruption of the oil. The experimental results also suggest that complex intrusion shapes (inclined sheet, cone sheet, complex sill) may have to be considered more systematically in analyses of ground deformation patterns on volcanoes.

  6. Non-invasive experimental determination of a CT source model.

    PubMed

    Alikhani, Babak; Büermann, Ludwig

    2016-01-01

    Non-invasive methods to determine equivalent X-ray source models of a CT scanner are presented. A high-precision technique called TRIC ("Time Resolved Integrated Charge") was developed and used to characterize the bow tie filters (BT) of the CT scanner installed at Physikalisch-Technische Bundesanstalt (PTB). Aluminum (Al) and polymethyl methacrylate (PMMA) equivalent thicknesses of the BT filters at all tube high voltages were evaluated, assuming that those consist of only one material. Thereby two different dose probes were used, a solid state detector and an ionization chamber, the former characterized by a significant and the latter by an almost negligible energy dependence of the air kerma response. A method was developed to correct for the energy dependence of the solid state dose probe. Next, a two-component material was assumed and equivalent BT filters were evaluated. The latter method was also applied using the known real BT filter materials and compared with the shape of the real BT filters. Finally, the results obtained by the TRIC method were compared with those obtained by using the so-called COBRA method ("Characterization Of Bow tie Relative Attenuation"), the latter being more suitable for measurements in a clinical environment. PMID:26602858

  7. Experimental validation of a kilovoltage x-ray source model for computing imaging dose

    SciTech Connect

    Poirier, Yannick; Kouznetsov, Alexei; Koger, Brandon; Tambasco, Mauro

    2014-04-15

    computed counterparts resulting in an agreement within 2.5%, 5%, and 8% within solid water, bone, and lung, respectively. Conclusions: The proposed virtual point source model and characterization method can be used to compute absorbed dose in both the homogeneous and heterogeneous block phantoms within of 2%–8% of measured values, depending on the phantom and the beam quality. The authors’ results also provide experimental validation for their kV dose computation software, kVDoseCalc.

  8. Evaluation of advanced materials through experimental mechanics and modelling

    NASA Astrophysics Data System (ADS)

    Yang, Yii-Ching

    1993-11-01

    Composite materials have been frequently used in aerospace vehicles. Very often defects are inherited during the manufacture and damages are inherited during the construction and services. It becomes critical to understand the mechanical behavior of such composite structure before it can be further used. One good example of these composite structures is the cylindrical bottle of solid rocket motor case with accidental impact damages. Since the replacement of this cylindrical bottle is expensive, it is valuable to know how the damages affects the material, and how it can be repaired. To reach this goal, the damage must be characterized and the stress/strain field must be carefully analyzed. First the damage area, due to impact, is surveyed and identified with a shearography technique which uses the principle of speckle shearing interferometry to measure displacement gradient. Within the damage area of a composite laminate, such as the bottle of solid rocket motor case, all layers are considered to be degraded. Once a lamina being degraded the stiffness as well as strength will be drastically decreased. It becomes a critical area of failure to the whole bottle. And hence the stress/strain field within and around a damage should be accurately evaluated for failure prediction. To investigate the stress/strain field around damages a Hybrid-Numerical method which combines experimental measurement and finite element analysis is used. It is known the stress or strain at the singular point can not be accurately measured by an experimental technique. Nevertheless, if the location is far away from the singular spot, the displacement can be found accurately. Since it reflects the true displacement field locally regardless of the boundary conditions, it is an excellent input data for a finite element analysis to replace the usually assumed boundary conditions. Therefore, the Hybrid-Numerical method is chosen to avoid the difficulty and to take advantage of both experimental

  9. Evaluation of advanced materials through experimental mechanics and modelling

    NASA Technical Reports Server (NTRS)

    Yang, Yii-Ching

    1993-01-01

    Composite materials have been frequently used in aerospace vehicles. Very often defects are inherited during the manufacture and damages are inherited during the construction and services. It becomes critical to understand the mechanical behavior of such composite structure before it can be further used. One good example of these composite structures is the cylindrical bottle of solid rocket motor case with accidental impact damages. Since the replacement of this cylindrical bottle is expensive, it is valuable to know how the damages affects the material, and how it can be repaired. To reach this goal, the damage must be characterized and the stress/strain field must be carefully analyzed. First the damage area, due to impact, is surveyed and identified with a shearography technique which uses the principle of speckle shearing interferometry to measure displacement gradient. Within the damage area of a composite laminate, such as the bottle of solid rocket motor case, all layers are considered to be degraded. Once a lamina being degraded the stiffness as well as strength will be drastically decreased. It becomes a critical area of failure to the whole bottle. And hence the stress/strain field within and around a damage should be accurately evaluated for failure prediction. To investigate the stress/strain field around damages a Hybrid-Numerical method which combines experimental measurement and finite element analysis is used. It is known the stress or strain at the singular point can not be accurately measured by an experimental technique. Nevertheless, if the location is far away from the singular spot, the displacement can be found accurately. Since it reflects the true displacement field locally regardless of the boundary conditions, it is an excellent input data for a finite element analysis to replace the usually assumed boundary conditions. Therefore, the Hybrid-Numerical method is chosen to avoid the difficulty and to take advantage of both experimental

  10. Experimental observation, theoretical models, and biomechanical inference in the study of mandibular form.

    PubMed

    Daegling, D J; Hylander, W L

    2000-08-01

    Experimental studies and mathematical models are disparate approaches for inferring the stress and strain environment in mammalian jaws. Experimental designs offer accurate, although limited, characterization of biomechanical behavior, while mathematical approaches (finite element modeling in particular) offer unparalleled precision in depiction of strain magnitudes, directions, and gradients throughout the mandible. Because the empirical (experimental) and theoretical (mathematical) perspectives differ in their initial assumptions and their proximate goals, the two methods can yield divergent conclusions about how masticatory stresses are distributed in the dentary. These different sources of inference may, therefore, tangibly influence subsequent biological interpretation. In vitro observation of bone strain in primate mandibles under controlled loading conditions offers a test of finite element model predictions. Two issues which have been addressed by both finite element models and experimental approaches are: (1) the distribution of torsional shear strains in anthropoid jaws and (2) the dissipation of bite forces in the human alveolar process. Not surprisingly, the experimental data and mathematical models agree on some issues, but on others exhibit discordance. Achieving congruence between these methods is critical if the nature of the relationship of masticatory stress to mandibular form is to be intelligently assessed. A case study of functional/mechanical significance of gnathic morphology in the hominid genus Paranthropus offers insight into the potential benefit of combining theoretical and experimental approaches. Certain finite element analyses claim to have identified a biomechanical problem unrecognized in previous comparative work, which, in essence, is that the enlarged transverse dimensions of the postcanine corpus may have a less important role in resisting torsional stresses than previously thought. Experimental data have identified

  11. An experimental methodology for a fuzzy set preference model

    NASA Technical Reports Server (NTRS)

    Turksen, I. B.; Willson, Ian A.

    1992-01-01

    models and vague linguistic preferences has greatly limited the usefulness and predictive validity of existing preference models. A fuzzy set preference model that uses linguistic variables and a fully interactive implementation should be able to simultaneously address these issues and substantially improve the accuracy of demand estimates. The parallel implementation of crisp and fuzzy conjoint models using identical data not only validates the fuzzy set model but also provides an opportunity to assess the impact of fuzzy set definitions and individual attribute choices implemented in the interactive methodology developed in this research. The generalized experimental tools needed for conjoint models can also be applied to many other types of intelligent systems.

  12. Experimental verification of a portal dose prediction model

    SciTech Connect

    Elmpt, W.J.C. van; Nijsten, S.M.J.J.G.; Mijnheer, B.J.; Minken, A.W.H.

    2005-09-15

    Electronic portal imaging devices (EPIDs) can be used to measure a two-dimensional (2D) dose distribution behind a patient, thus allowing dosimetric treatment verification. For this purpose we experimentally assessed the accuracy of a 2D portal dose prediction model based on pencil beam scatter kernels. A straightforward derivation of these pencil beam scatter kernels for portal dose prediction models is presented based on phantom measurements. The model is able to predict the 2D portal dose image (PDI) behind a patient, based on a PDI without the patient in the beam in combination with the radiological thickness of the patient, which requires in addition a PDI with the patient in the beam. To assess the accuracy of portal dose and radiological thickness values obtained with our model, various types of homogeneous as well as inhomogeneous phantoms were irradiated with a 6 MV photon beam. With our model we are able to predict a PDI with an accuracy better than 2% (mean difference) if the radiological thickness of the object in the beam is symmetrically situated around the isocenter. For other situations deviations up to 3% are observed for a homogeneous phantom with a radiological thickness of 17 cm and a 9 cm shift of the midplane-to-detector distance. The model can extract the radiological thickness within 7 mm (maximum difference) of the actual radiological thickness if the object is symmetrically distributed around the isocenter plane. This difference in radiological thickness is related to a primary portal dose difference of 3%. It can be concluded that our model can be used as an easy and accurate tool for the 2D verification of patient treatments by comparing predicted and measured PDIs. The model is also able to extract the primary portal dose with a high accuracy, which can be used as the input for a 3D dose reconstruction method based on back-projection.

  13. Elastase-induced pulmonary emphysema: insights from experimental models.

    PubMed

    Antunes, Mariana A; Rocco, Patricia R M

    2011-12-01

    Several distinct stimuli can be used to reproduce histological and functional features of human emphysema, a leading cause of disability and death. Since cigarette smoke is the main cause of emphysema in humans, experimental researches have attempted to reproduce this situation. However, this is an expensive and cumbersome method of emphysema induction, and simpler, more efficacious alternatives have been sought. Among these approaches, elastolytic enzymes have been widely used to reproduce some characteristics of human cigarette smoke-induced disease, such as: augmentation of airspaces, inflammatory cell influx into the lungs, and systemic inflammation. Nevertheless, the use of elastase-induced emphysema models is still controversial, since the disease pathways involved in elastase induction may differ from those occurring in smoke-induced emphysema. This indicates that the choice of an emphysema model may impact the results of new therapies or drugs being tested. The aim of this review is to compare the mechanisms of disease induction in smoke and elastase emphysema models, to describe the differences among various elastase models, and to establish the advantages and disadvantages of elastase-induced emphysema models. More studies are required to shed light on the mechanisms of elastase-induced emphysema. PMID:22159348

  14. Pressure compensated fiber laser hydrophone: modeling and experimentation.

    PubMed

    Chandrika, Unnikrishnan Kuttan; Pallayil, Venugopalan; Lim, Kian Meng; Chew, Chye Heng

    2013-10-01

    A pressure compensated metal diaphragm based fiber laser hydrophone configuration that can provide good sensitivity, large bandwidth, and sea state zero noise floor is proposed in this paper. A simplified theoretical model of the proposed sensor configuration is developed in which the acoustic elements of the sensor configuration are modeled using a four-pole acoustic transfer matrix and the structural elements are modeled as second order single degree of freedom elements. This model is then used to optimize the design parameters of the sensor system to achieve the performance objectives. An axisymmetric finite element analysis of the sensor configuration is also carried out to validate the results from the simplified theoretical model. Prototype sensors were fabricated and hydrostatic testing in a pressure vessel validated the static pressure compensation performance of the sensor. Frequency dependent sensitivity of the sensor system was measured through acoustic testing in a water tank. The prototype sensor gave a flat frequency response up to 5 kHz and experimental results compared well with theoretical predictions. The sensor has an acceleration rejection figure on the order of 0 dB ref 1 m/s(2) Pa and the pressure compensation approach worked reasonably well up to a hydrostatic pressures equivalent to a depth of 50 m. PMID:24116409

  15. Immunology and Homeopathy. 3. Experimental Studies on Animal Models

    PubMed Central

    Bellavite, Paolo; Ortolani, Riccardo; Conforti, Anita

    2006-01-01

    A search of the literature and the experiments carried out by the authors of this review show that there are a number of animal models where the effect of homeopathic dilutions or the principles of homeopathic medicine have been tested. The results relate to the immunostimulation by ultralow doses of antigens, the immunological models of the ‘simile’, the regulation of acute or chronic inflammatory processes and the use of homeopathic medicines in farming. The models utilized by different research groups are extremely etherogeneous and differ as the test medicines, the dilutions and the outcomes are concerned. Some experimental lines, particularly those utilizing mice models of immunomodulation and anti-inflammatory effects of homeopathic complex formulations, give support to a real effect of homeopathic high dilutions in animals, but often these data are of preliminary nature and have not been independently replicated. The evidence emerging from animal models is supporting the traditional ‘simile’ rule, according to which ultralow doses of compounds, that in high doses are pathogenic, may have paradoxically a protective or curative effect. Despite a few encouraging observational studies, the effectiveness of the homeopathic prevention or therapy of infections in veterinary medicine is not sufficiently supported by randomized and controlled trials. PMID:16786046

  16. Effect of cyclosporine in a murine model of experimental colitis.

    PubMed

    Banić, Marko; Anić, Branimir; Brkić, Tomislav; Ljubicić, Neven; Plesko, Sanja; Dohoczky, Csaba; Erceg, Damir; Petrovecki, Mladen; Stipancić, Igor; Rotkvić, Ivo

    2002-06-01

    The use of immunosuppressive therapy may be associated with significant toxicity. The aim of this study was to investigate the effect of cyclosporine A (CsA) in murine model of experimental colitis. Experimental colitis was induced in NMRI mice using an enema of 0.2% solution of dinitrofluorobenzene, combined with skin sensitization. After inducing colitis, experimental groups of animals were treated with CsA (1, 3, 5, 10, 25, 50 mg/kg/day) intraperitoneally (i.p.) or intracolonically (i.c.), and control groups were treated with phosphate-buffered saline intraperitoneally or intracolonically, respectively. Colonic inflammatory changes were assessed using a histopathologic score of 0-30, and pooled whole blood samples were processed with monoclonal antibodies for cyclosporine concentration. In addition, two groups of animals with experimental colitis were treated intraperitoneally or intracolonically with 3 mg/kg/day of CsA, and the colons were also taken for immunohistochemistry for CD25. CsA diminished the extent of colitis in groups treated with 3, 5, 10, or 25 mg/kg intraperitoneally or intracolonically, and in groups treated with 1 and 50 mg/kg intracolonically (P < 0.05). The effect of intracolonic application of CsA was not related to whole blood cyclosporine concentrations. In addition, the effect of CsA at 3 mg/kg, applied intraperitoneally or intracolonically was, in part, expressed in decreasing the numbers of CD25+ cells within colonic mucosa/submucosa (P < 0.05). In conclusions, the results of this study indicate the possibility of intracolonic application of cyclosporine in order to widen the therapeutic window for effective, but possibly toxic drug, such as cyclosporine. PMID:12064814

  17. Experimental and theoretical characterization of deep penetration welding threshold induced by 1-μm laser

    NASA Astrophysics Data System (ADS)

    Zou, J. L.; He, Y.; Wu, S. K.; Huang, T.; Xiao, R. S.

    2015-12-01

    The deep penetration-welding threshold (DPWT) is the critical value that describes the welding mode transition from the thermal conduction to the deep penetration. The objective of this research is to clarify the DPWT induced by the lasers with wavelength of 1 μm (1-μm laser), based on experimental observation and theoretical analysis. The experimental results indicated that the DPWT was the ratio between laser power and laser spot diameter (P/d) rather than laser power density (P/S). The evaporation threshold was smaller than the DPWT, while the jump threshold of the evaporated mass flux in the molten pool surface was consistent with the DPWT. Based on the force balance between the evaporation recoil pressure and the surface tension pressure at the gas-liquid interface of the molten pool as well as the temperature field, we developed a self-focusing model, which further confirmed the experimental results.

  18. Interactive simulation of embolization coils: modeling and experimental validation.

    PubMed

    Dequidt, Jérémie; Marchal, Maud; Duriez, Christian; Kerien, Erwan; Cotin, Stéphane

    2008-01-01

    Coil embolization offers a new approach to treat aneurysms. This medical procedure is namely less invasive than an open-surgery as it relies on the deployment of very thin platinum-based wires within the aneurysm through the arteries. When performed intracranially, this procedure must be particularly accurate and therefore carefully planned and performed by experienced radiologists. A simulator of the coil deployment represents an interesting and helpful tool for the physician by providing information on the coil behavior. In this paper, an original modeling is proposed to obtain interactive and accurate simulations of coil deployment. The model takes into account geometric nonlinearities and uses a shape memory formulation to describe its complex geometry. An experimental validation is performed in a contact-free environment to identify the mechanical properties of the coil and to quantitatively compare the simulation with real data. Computational performances are also measured to insure an interactive simulation. PMID:18979807

  19. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    PubMed Central

    Fellin, Tommaso; Ellenbogen, Jeffery M.; De Pittà, Maurizio; Ben-Jacob, Eshel; Halassa, Michael M.

    2012-01-01

    Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges introduced by these results from a conceptual and computational perspective. We further provide modeling directions on how these data might extend our knowledge of astrocytic properties and sleep function. Given our evolving understanding of how local cellular activities during sleep lead to functional outcomes for the brain, further mechanistic and theoretical understanding of astrocytic contribution to these dynamics will undoubtedly be of great basic and translational benefit. PMID:22973222

  20. Experimental validation of a finite-element model updating procedure

    NASA Astrophysics Data System (ADS)

    Kanev, S.; Weber, F.; Verhaegen, M.

    2007-02-01

    This paper validates an approach to damage detection and localization based on finite-element model updating (FEMU). The approach has the advantage over other existing methods to FEMU that it simultaneously updates all three finite-element model matrices at the same time preserving their structure (connectivity), symmetry and positive-definiteness. The approach is tested in this paper on an experimental setup consisting of a steel cable, where local mass changes and global change in the tension of the cable are introduced. The new algorithm is applied to identify the size and location of different changes in the structural parameters (mass, stiffness and damping). The obtained results clearly indicate that even small structural changes can be detected and localized with the new method. Additionally, a comparison with many other FEMU-based methods has been performed to show the superiority of the considered method.

  1. Performance Modeling of an Experimental Laser Propelled Lightcraft

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.

    2000-01-01

    A computational plasma aerodynamics model is developed to study the performance of an experimental laser propelled lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure- based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibn'um thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and equi refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literature. The predicted coupling coefficients for the lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.

  2. Modeling and Experimentation on a Two-dimensional Synthetic jet

    NASA Astrophysics Data System (ADS)

    Wang, Yunfei; Mohseni, Kamran

    2007-11-01

    Hotwire anemometry is employed in order to investigate the spatial development of a two-dimensional synthetic jet. Flow velocity at various locations downstream from a slit is measured. A self similar behavior in the measured velocity is observed. An analytical model for a steady synthetic jet is developed that accurately matches the experimental data. As observed by other groups, the two-dimensional synthetic jet spreads at a rate higher than a continuous jet. This rate is accurately predicted by our model. It is identified that the main difference between a continuous jet and a synthetic jet is the higher value of the virtual viscosity (eddy viscosity) in a synthetic jet. This is attributed to the pulsate nature of a synthetic jet that makes it more susceptible to turbulence.

  3. Experimental investigation and model development for a harmonic drive transmission.

    SciTech Connect

    Preissner, C.; Shu, D.; Royston, T. J.; Univ. of Illinois at Chicago

    2007-01-01

    Harmonic drive transmissions (HDTs) are compact, low-backlash, high-ratio, high-resolution rotary motion transmissions. One application to benefit from these attributes is the revolute joint robot. Engineers at the Advanced Photon Source (APS) are investigating the use of this type of robot for the positioning of an x-ray detector; understanding the properties of the robot components is crucial to modeling positioner behavior. The robot bearing elements had been investigated previously, leaving the transmission as the missing component. While the benefits of HDTs are well known, the disadvantages, including fluctuating dissipation characteristics and nonlinear stiffness, are not understood as well. These characteristics can contribute uncontrolled dynamics to the overall robot performance. A dynamometer has been constructed at the APS to experimentally measure the HDT's response. Empirical torque and position data were recorded for multiple transmission load cases and input conditions. In turn, a computer model of the dynamometer HDT system was constructed to approximate the observed response.

  4. Comparison of fluid dynamic numerical models for a clinical ventricular assist device and experimental validation

    PubMed Central

    Zhang, Jiafeng; Zhang, Pei; Fraser, Katharine H.; Griffith, Bartley P.; Wu, Zhongjun J.

    2012-01-01

    With the recent advances in computer technology, computational fluid dynamics (CFD) has become an important tool to design and improve blood contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST (Menter’s Shear Stress Transport), and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, CentriMag® centrifugal blood pump (Thoratec, MA). In parallel, a transparent replica of the CentriMag® pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε RNG models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended. PMID:23441681

  5. Comparison and experimental validation of fluid dynamic numerical models for a clinical ventricular assist device.

    PubMed

    Zhang, Jiafeng; Zhang, Pei; Fraser, Katharine H; Griffith, Bartley P; Wu, Zhongjun J

    2013-04-01

    With the recent advances in computer technology, computational fluid dynamics (CFDs) has become an important tool to design and improve blood-contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST [Menter's Shear Stress Transport], and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, the CentriMag centrifugal blood pump. In parallel, a transparent replica of the CentriMag pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε renormalization group theory models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than the laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended. PMID:23441681

  6. Contaminant plume configuration and movement: an experimental model

    NASA Astrophysics Data System (ADS)

    Alencoao, A.; Reis, A.; Pereira, M. G.; Liberato, M. L. R.; Caramelo, L.; Amraoui, M.; Amorim, V.

    2009-04-01

    The relevance of Science and Technology in our daily routines makes it compulsory to educate citizens who have both scientific literacy and scientific knowledge. These will allow them to be intervening citizens in a constantly changing society. Thus, physical and natural sciences are included in school curricula, both in primary and secondary education, with the fundamental aim of developing in the students the skills, attitudes and knowledge needed for the understanding of the planet Earth and its real problems. On the other hand, teaching in Geosciences is more and more based on practical methodologies which use didactic material, sustaining teachers' pedagogical practices and facilitating students' learning tasks suggested on the syllabus defined for each school level. Themes related to exploring the different components of the Hydrological Cycle and themes related to natural environment protection and preservation, namely water resources and soil contamination by industrial and urban sewage are examples of subject matters included on the Portuguese syllabus. These topics motivated the conception and construction of experimental models for the study of the propagation of pollutants on a porous medium. The experimental models allow inducing a horizontal flux of water though different kinds of permeable substances (e.g. sand, silt), with contamination spots on its surface. These experimental activities facilitate the student to understand the flow path of contaminating substances on the saturated zone and to observe the contaminant plume configuration and movement. The activities are explored in a teaching and learning process perspective where the student builds its own knowledge through real question- problem based learning which relate Science, Technology and Society. These activities have been developed in the framework of project ‘Water in the Environment' (CV/PVI/0854) of the POCTI Program (Programa Operacional "Ciência, Tecnologia, Inovação") financed

  7. The KSR1: Experimentation and modeling of poststore

    SciTech Connect

    Rosti, E. . Dipt. di Scienze dell'Informazione); Smirni, E.; Wagner, T.D.; Apon, A.W.; Dowdy, L.W. . Dept. of Computer Science)

    1993-02-01

    Kendall Square Research introduced the KSR1 system in 1991. The architecture is based on a ring of rings of 64-bit microprocessors. It is a distributed, shared memory system and is scalable. The memory structure is unique and is the key to understanding the system. Different levels of caching eliminates physical memory addressing and leads to the ALLCACHE[trademark] scheme. Since requested data may be found in any of several caches, the initial access time is variable. Once pulled into the local (sub)cache, subsequent access times are fixed and minimal. Thus, the KSR1 is a Cache-Only Memory Architecture (COMA) system.This paper describes experimentation and an analytic model of the KSR1. The focus is on the poststore programmer option. With the poststore option, the programmer can elect to broadcast the updated value of a variable to all processors that might have a copy. This may save time for threads on other processors, but delays the broadcasting thread and places additional traffic on the ring. The specific issue addressed is to determine under what conditions poststore is beneficial. The analytic model and the experimental observations are in good agreement. They indicate that the decision to use poststore depends both on the application and the current system load.

  8. The KSR1: Experimentation and modeling of poststore

    SciTech Connect

    Rosti, E.; Smirni, E.; Wagner, T.D.; Apon, A.W.; Dowdy, L.W.

    1993-02-01

    Kendall Square Research introduced the KSR1 system in 1991. The architecture is based on a ring of rings of 64-bit microprocessors. It is a distributed, shared memory system and is scalable. The memory structure is unique and is the key to understanding the system. Different levels of caching eliminates physical memory addressing and leads to the ALLCACHE{trademark} scheme. Since requested data may be found in any of several caches, the initial access time is variable. Once pulled into the local (sub)cache, subsequent access times are fixed and minimal. Thus, the KSR1 is a Cache-Only Memory Architecture (COMA) system.This paper describes experimentation and an analytic model of the KSR1. The focus is on the poststore programmer option. With the poststore option, the programmer can elect to broadcast the updated value of a variable to all processors that might have a copy. This may save time for threads on other processors, but delays the broadcasting thread and places additional traffic on the ring. The specific issue addressed is to determine under what conditions poststore is beneficial. The analytic model and the experimental observations are in good agreement. They indicate that the decision to use poststore depends both on the application and the current system load.

  9. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention.

    PubMed

    Brioche, Thomas; Pagano, Allan F; Py, Guillaume; Chopard, Angèle

    2016-08-01

    Identification of cost-effective interventions to maintain muscle mass, muscle strength, and physical performance during muscle wasting and aging is an important public health challenge. It requires understanding of the cellular and molecular mechanisms involved. Muscle-deconditioning processes have been deciphered by means of several experimental models, bringing together the opportunities to devise comprehensive analysis of muscle wasting. Studies have increasingly recognized the importance of fatty infiltrations or intermuscular adipose tissue for the age-mediated loss of skeletal-muscle function and emphasized that this new important factor is closely linked to inactivity. The present review aims to address three main points. We first mainly focus on available experimental models involving cell, animal, or human experiments on muscle wasting. We next point out the role of intermuscular adipose tissue in muscle wasting and aging and try to highlight new findings concerning aging and muscle-resident mesenchymal stem cells called fibro/adipogenic progenitors by linking some cellular players implicated in both FAP fate modulation and advancing age. In the last part, we review the main data on the efficiency and molecular and cellular mechanisms by which exercise, replacement hormone therapies, and β-hydroxy-β-methylbutyrate prevent muscle wasting and sarcopenia. Finally, we will discuss a potential therapeutic target of sarcopenia: glucose 6-phosphate dehydrogenase. PMID:27106402

  10. Experimental measurements of seismoelectric signals in borehole models

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Hu, Hengshan; Guan, Wei

    2015-12-01

    An experimental system is built for the electrokinetic measurements with a small scaled seismoelectric detector and a high resolution digitizer (1 MS s-1, 22 bits). The acoustic and seismoelectric experiments are carried out in different borehole models at the high frequency of 90 kHz in the laboratory. All the localized seismoelectric signals that accompany compressional wave, shear wave and Stoneley wave are first clearly observed with a monopole source in sandstone boreholes that are saturated by tap water. The amplitudes of these signals are measured in the range of 1-120 μV, which is useful for designing the seismoelectric logging instruments. Then the amplitude ratio of electric signal to acoustic pressure (REP) for each of the three waves is calculated and compared with the theoretical simulations. Based on the experimental data, we find that seismoelectric logging signals as well as REP become stronger at the more permeable borehole model. We also find that seismoelectric logging signals are more sensitive to permeability and porosity compared with acoustic logging signals. Therefore, this study verifies the feasibility of seismoelectric well logging, and further indicates that the seismoelectric logging technique might be a preferable method to estimate formation parameters in the field measurements.

  11. Taenia solium: Development of an Experimental Model of Porcine Neurocysticercosis

    PubMed Central

    Fleury, Agnès; Trejo, Armando; Cisneros, Humberto; García-Navarrete, Roberto; Villalobos, Nelly; Hernández, Marisela; Villeda Hernández, Juana; Hernández, Beatriz; Rosas, Gabriela; Bobes, Raul J.; S. de Aluja, Aline; Sciutto, Edda; Fragoso, Gladis

    2015-01-01

    Human neurocysticercosis (NC) is caused by the establishment of Taenia solium larvae in the central nervous system. NC is a severe disease still affecting the population in developing countries of Latin America, Asia, and Africa. While great improvements have been made on NC diagnosis, treatment, and prevention, the management of patients affected by extraparenchymal parasites remains a challenge. The development of a T. solium NC experimental model in pigs that will allow the evaluation of new therapeutic alternatives is herein presented. Activated oncospheres (either 500 or 1000) were surgically implanted in the cerebral subarachnoid space of piglets. The clinical status and the level of serum antibodies in the animals were evaluated for a 4-month period after implantation. The animals were sacrificed, cysticerci were counted during necropsy, and both the macroscopic and microscopic characteristics of cysts were described. Based on the number of established cysticerci, infection efficiency ranged from 3.6% (1000 oncospheres) to 5.4% (500 oncospheres). Most parasites were caseous or calcified (38/63, 60.3%) and were surrounded by an exacerbated inflammatory response with lymphocyte infiltration and increased inflammatory markers. The infection elicited specific antibodies but no neurological signs. This novel experimental model of NC provides a useful tool to evaluate new cysticidal and anti-inflammatory approaches and it should improve the management of severe NC patients, refractory to the current treatments. PMID:26252878

  12. Taenia solium: Development of an Experimental Model of Porcine Neurocysticercosis.

    PubMed

    Fleury, Agnès; Trejo, Armando; Cisneros, Humberto; García-Navarrete, Roberto; Villalobos, Nelly; Hernández, Marisela; Villeda Hernández, Juana; Hernández, Beatriz; Rosas, Gabriela; Bobes, Raul J; de Aluja, Aline S; Sciutto, Edda; Fragoso, Gladis

    2015-01-01

    Human neurocysticercosis (NC) is caused by the establishment of Taenia solium larvae in the central nervous system. NC is a severe disease still affecting the population in developing countries of Latin America, Asia, and Africa. While great improvements have been made on NC diagnosis, treatment, and prevention, the management of patients affected by extraparenchymal parasites remains a challenge. The development of a T. solium NC experimental model in pigs that will allow the evaluation of new therapeutic alternatives is herein presented. Activated oncospheres (either 500 or 1000) were surgically implanted in the cerebral subarachnoid space of piglets. The clinical status and the level of serum antibodies in the animals were evaluated for a 4-month period after implantation. The animals were sacrificed, cysticerci were counted during necropsy, and both the macroscopic and microscopic characteristics of cysts were described. Based on the number of established cysticerci, infection efficiency ranged from 3.6% (1000 oncospheres) to 5.4% (500 oncospheres). Most parasites were caseous or calcified (38/63, 60.3%) and were surrounded by an exacerbated inflammatory response with lymphocyte infiltration and increased inflammatory markers. The infection elicited specific antibodies but no neurological signs. This novel experimental model of NC provides a useful tool to evaluate new cysticidal and anti-inflammatory approaches and it should improve the management of severe NC patients, refractory to the current treatments. PMID:26252878

  13. Experimental assessment of a schist hillslope in Luxembourg with a view to modelling

    NASA Astrophysics Data System (ADS)

    Scaini, Anna; Fenicia, Fabrizio; Beven, Keith

    2014-05-01

    Although modelling is often the logical complement of fieldwork, experimenting and modelling are regularly carried out separately, which often causes a mismatch between the data that are available and those that are necessary. Our research aims to generate insights into flowpaths and mixing processes through a combined experimental and modelling approach. Experiments are therefore targeted to estimate relevant model parameters and test model assumptions. The experiments take place on a hillslope in the Weierbach catchment in Luxembourg. The Weierbach is a forested catchment underlain by schist, and is characterized by marked threshold behaviour. The schist formation tends to be fractured towards the surface, forming a system of local reservoirs where water can be stored. Lateral flow can therefore be interpreted as a movement of water across multiple temporarily connected reservoirs. We carried out a sprinkling experiment with the use of deuterium-enriched water. We use ERT measurements and Thermal Infrared data are used to spatially characterize the heterogeneity of the subsurface at the experimental site. Observational data in the hillslope are used to estimate the response at the bottom of the hillslope. The signal distributed through time will help estimate the percentage of flow we expect. Flow and concentrations are measured at a fine enough time scale to capture the response of the hillslope at event scale. The objective of collecting the experimental data is to capture the downslope lateral component effect and estimate the residence times of water during wet conditions. Up to this phase, experimental results in wet conditions are analysed. The information presented will be used for testing the Multiple Interacting Pathways (MIPs) concept in the 2D version, in order to try to reproduce the movement of water through the soil. The main characteristic of MIPs model is that it tracks the movement of individual water particles. The movement of these particles is

  14. Active vibration absorber for the CSI evolutionary model - Design and experimental results. [Controls Structures Interaction

    NASA Technical Reports Server (NTRS)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstrations to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility has been developed to study practical implementation of new control technologies under realistic conditions. The paper discusses the design of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. Experimental results in the presence of these factors are presented and discussed. The robustness of this design under model uncertainty is demonstrated.

  15. Simulation model for the Closed Plant Experimental Facilities of CEEF

    NASA Astrophysics Data System (ADS)

    Abe, K.; Ishikawa, Y.; Kibe, S.; Nitta, K.

    The Closed Ecology Experiment Facilities (CEEF) is a testbed for CELSS investigations. CEEF including the physico-chemical material regenerative system has been constructed for the experiments of material circulation among plants, breeding animals, humans (crew of the CEEF). Because CEEF is a complex system, an appropriate schedule for the operation must be prepared in advance. The CEEF behavioral Prediction System, CPS, that will help to confirm the operation schedule, is under development. CPS will simulate CEEF's behavior with data (conditions of equipments, quantity of materials in tanks, etc.) of CEEF and an operation schedule that will be made by the operation team everyday, before the schedule will be carried out. The result of the simulation will show whether the operation schedule is appropriate or not. In order to realize CPS, models of the simulation program that is installed in CPS must mirror the real facilities of CEEF. A flexible algorithm for the first step of development of the simulation program was already investigated. The next step was development of a replicate simulation model of the material circulation system for the Closed Plant Experimental Facilities (CPEF) that is a part of CEEF. All the parts of real material circulation system for CPEF are connected together and work as a complex mechanism. In the simulation model, the system was separated into 38 units according to its operational segmentation. In order to develop each model for its corresponding unit, specifications for the model were fixed based on the specifications of the real part. These models were put into a simulation model for the system.

  16. Characterization of an Experimental Referee Broadened Specification (ERBS) aviation turbine fuel and ERBS fuel blends

    NASA Technical Reports Server (NTRS)

    Seng, G. T.

    1982-01-01

    Characterization data and comparisons of these data are presented for three individual lots of a research test fuel designated as an Experimental Referee Broadened Specification (ERBS) aviation turbine fuel. This research fuel, which is a blend of kerosene and hydrotreated catalytic gas oil, is a representation of a kerojet fuel with broadened properties. To lower the hydrogen content of the ERBS fuel, a blending stock, composed of xylene bottoms and hydrotreated catalytic gas oil, was developed and employed to produce two different ERBS fuel blends. The ERBS fuel blends and the blending stock were also characterized and the results for the blends are compared to those of the original ERBS fuel. The characterization results indicate that with the exception of the freezing point for ERBS lot 2, which was slightly high, the three lots, produced over a 2 year period, met all general fuel requirements. However, although the properties of the fuels were found to be fairly consistent, there were differences in composition. Similarly, all major requirements for the ERBS fuel blends were met or closely approached, and the properties of the blended fuels were found to generally reflect those expected for the proportions of ERBS fuel and blending stock used in their production.

  17. Toxicity of Nanoparticles and an Overview of Current Experimental Models

    PubMed Central

    Bahadar, Haji; Maqbool, Faheem; Niaz, Kamal; Abdollahi, Mohammad

    2016-01-01

    Nanotechnology is a rapidly growing field having potential applications in many areas. Nanoparticles (NPs) have been studied for cell toxicity, immunotoxicity, and genotoxicity. Tetrazolium-based assays such as MTT, MTS, and WST-1 are used to determine cell viability. Cell inflammatory response induced by NPs is checked by measuring inflammatory biomarkers, such as IL-8, IL-6, and tumor necrosis factor, using ELISA. Lactate dehydrogenase (LDH) assay is used for cell membrane integrity. Different types of cell cultures, including cancer cell lines have been employed as in vitro toxicity models. It has been generally agreed that NPs interfere with either assay materials or with detection systems. So far, toxicity data generated by employing such models are conflicting and inconsistent. Therefore, on the basis of available experimental models, it may be difficult to judge and list some of the more valuable NPs as more toxic to biological systems and vice versa. Considering the potential applications of NPs in many fields and the growing apprehensions of FDA about the toxic potential of nanoproducts, it is the need of the hour to look for new internationally agreed free of bias toxicological models by focusing more on in vivo studies. PMID:26286636

  18. Toxicity of Nanoparticles and an Overview of Current Experimental Models.

    PubMed

    Bahadar, Haji; Maqbool, Faheem; Niaz, Kamal; Abdollahi, Mohammad

    2016-01-01

    Nanotechnology is a rapidly growing field having potential applications in many areas. Nanoparticles (NPs) have been studied for cell toxicity, immunotoxicity, and genotoxicity. Tetrazolium-based assays such as MTT, MTS, and WST-1 are used to determine cell viability. Cell inflammatory response induced by NPs is checked by measuring inflammatory biomarkers, such as IL-8, IL-6, and tumor necrosis factor, using ELISA. Lactate dehydrogenase (LDH) assay is used for cell membrane integrity. Different types of cell cultures, including cancer cell lines have been employed as in vitro toxicity models. It has been generally agreed that NPs interfere with either assay materials or with detection systems. So far, toxicity data generated by employing such models are conflicting and inconsistent. Therefore, on the basis of available experimental models, it may be difficult to judge and list some of the more valuable NPs as more toxic to biological systems and vice versa. Considering the potential applications of NPs in many fields and the growing apprehensions of FDA about the toxic potential of nanoproducts, it is the need of the hour to look for new internationally agreed free of bias toxicological models by focusing more on in vivo studies. PMID:26286636

  19. Esophageal aerodynamics in an idealized experimental model of tracheoesophageal speech

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Hemsing, Frank S.

    2016-03-01

    Flow behavior is investigated in the esophageal tract in an idealized experimental model of tracheoesophageal speech. The tracheoesophageal prosthesis is idealized as a first-order approximation using a straight, constant diameter tube. The flow is scaled according to Reynolds, Strouhal, and Euler numbers to ensure dynamic similarity. Flow pulsatility is produced by a driven orifice that approximates the kinematics of the pharyngoesophageal segment during tracheoesophageal speech. Particle image velocimetry data are acquired in three orthogonal planes as the flow exits the model prosthesis and enters the esophageal tract. Contrary to prior investigations performed in steady flow with the prosthesis oriented in-line with the flow direction, the fluid dynamics are shown to be highly unsteady, suggesting that the esophageal pressure field will be similarly complex. A large vortex ring is formed at the inception of each phonatory cycle, followed by the formation of a persistent jet. This vortex ring appears to remain throughout the entire cycle due to the continued production of vorticity resulting from entrainment between the prosthesis jet and the curved esophageal walls. Mean flow in the axial direction of the esophagus produces significant stretching of the vortex throughout the phonatory cycle. The stagnation point created by the jet impinging on the esophageal wall varies throughout the cycle due to fluctuations in the jet trajectory, which most likely arises due to flow separation within the model prosthesis. Applications to tracheoesophageal speech, including shortcomings of the model and proposed future plans, are discussed.

  20. Autoimmune Diabetes: An Overview of Experimental Models and Novel Therapeutics.

    PubMed

    You, Sylvaine; Chatenoud, Lucienne

    2016-01-01

    Type 1 diabetes (T1D) results from a chronic and selective destruction of insulin-secreting β-cells within the islets of Langerhans of the pancreas by autoreactive CD4(+) and CD8(+) T lymphocytes. The use of animal models of T1D was instrumental for deciphering the steps of the autoimmune process leading to T1D. The non-obese diabetic (NOD) mouse and the bio-breeding (BB) rat spontaneously develop the disease similar to the human pathology in terms of the immune responses triggering autoimmune diabetes and of the genetic and environmental factors influencing disease susceptibility. The generation of genetically modified models allowed refining our understanding of the etiology and the pathogenesis of the disease. In the present review, we provide an overview of the experimental models generated and used to gain knowledge on the molecular and cellular mechanisms underlying the breakdown of self-tolerance in T1D and the progression of the autoimmune response. Immunotherapeutic interventions designed in these animal models and translated into the clinical arena in T1D patients will also be discussed. PMID:26530798

  1. Flooding of the diffusion layer in a polymer electrolyte fuel cell: Experimental and modelling analysis

    NASA Astrophysics Data System (ADS)

    Casalegno, A.; Bresciani, F.; Groppi, G.; Marchesi, R.

    Water management is widely investigated because it affects both the performance and the lifetime of polymer electrolyte fuel cells. Membrane hydration is necessary to ensure the high proton conductivity, but too much water can cause flooding and pore obstruction within the cathode gas diffusion layer and the electrode. Experimental studies prove that the characteristics of the diffusion layer have great influence on water transport; the introduction of a micro-porous layer between the gas diffusion layer and the electrode reduces flooding and stabilizes the performance of the fuel cell, although the reason is not fully explained. A quantitative method to characterize water transport through the diffusion layers was proposed in our previous work, and the present work aims to further understand the flooding phenomenon and the role of the micro-porous layer. The improved experimental setup and methodology allow an accurate and reliable evaluation of water transport through the diffusion layer in a wide range of operating conditions. The proposed 1D + 1D model faithfully reproduces the experimental data adopting effective diffusivity values in agreement with literature. The presented experimental and modelling analysis allows us to evaluate the influence of pore obstruction on the effective diffusivity, the overall transport coefficient and water flow through the diffusion layer, elucidating the effect of the micro-porous layer on fuel cell performance and operation stability.

  2. Characterization of 8-cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Williamson, W. S.

    1984-01-01

    Development of 8 cm ion thruster technology which was conducted in support of the Ion Auxiliary Propulsion System (IAPS) flight contract (Contract NAS3-21055) is discussed. The work included characterization of thruster performance, stability, and control; a study of the effects of cathode aging; environmental qualification testing; and cyclic lifetesting of especially critical thruster components.

  3. A SIMPLE HYDROLOGICAL MODEL FOR WATERSHED CHARACTERIZATION

    EPA Science Inventory

    Catchment behavior is characterized with a variety of metrics - discharge, chemical export, biological activity, to name a few. Catchments have complex temporal behavior, e.g., summer and winter storm recessions and nutrient export may look nothing alike. Further, catchment res...

  4. Role of breathing in cardiac performance: experimental and mathematical models

    NASA Astrophysics Data System (ADS)

    Tran, Binh Q.; Hoffman, Eric A.

    1999-05-01

    Due to the close proximity of the heart and lungs within a closed chest environment, we expect breathing to affect various cardiac performance parameters and hence cardiac output. We present an integrative approach to study heart-lung interactions, combining a mathematical formulation of the circulation system with imaging techniques using echo-planar magnetic resonance imaging (EPI) and dynamic x-ray CT (EBCT). We hypothesize that appropriate synchronization of mechanical ventilation to cardiac-cycle specific events can improve cardiac function, i.e. stroke volume (SV) and cardiac output (CO). Computational and experimental results support the notion that heart-lung interaction, leading to altered cardiac output associated with inspiration/expiration, is not directly associated with lung inflation/deflation and thus is felt to be more influenced by pleural pressure changes. The mathematical model of the circulation demonstrates the importance of cardiac-cycle specific timing of ventilation on cardiac function and matches with experimentally observed relationships found in animal models studied via EBCT and human studies using EPI. Results show that positive pressure mechanical ventilation timed to systolic events may increase SV and CO by up to 30%, mainly by increased filling of the ventricles during diastole. Similarly, negative pressure (spontaneous) respiration has its greatest effect on ventricular diastolic filling. Cardiac-gated mechanical ventilation may provide sufficient cardiac augmentation to warrant further investigation as a minimally-invasive technique for temporary cardiac assist. Through computational modeling and advanced imaging protocols, we were able to uniquely study heart-lung interactions within the intact milieu of the never-invaded thorax.

  5. Autonomous learning derived from experimental modeling of physical laws.

    PubMed

    Grabec, Igor

    2013-05-01

    This article deals with experimental description of physical laws by probability density function of measured data. The Gaussian mixture model specified by representative data and related probabilities is utilized for this purpose. The information cost function of the model is described in terms of information entropy by the sum of the estimation error and redundancy. A new method is proposed for searching the minimum of the cost function. The number of the resulting prototype data depends on the accuracy of measurement. Their adaptation resembles a self-organized, highly non-linear cooperation between neurons in an artificial NN. A prototype datum corresponds to the memorized content, while the related probability corresponds to the excitability of the neuron. The method does not include any free parameters except objectively determined accuracy of the measurement system and is therefore convenient for autonomous execution. Since representative data are generally less numerous than the measured ones, the method is applicable for a rather general and objective compression of overwhelming experimental data in automatic data-acquisition systems. Such compression is demonstrated on analytically determined random noise and measured traffic flow data. The flow over a day is described by a vector of 24 components. The set of 365 vectors measured over one year is compressed by autonomous learning to just 4 representative vectors and related probabilities. These vectors represent the flow in normal working days and weekends or holidays, while the related probabilities correspond to relative frequencies of these days. This example reveals that autonomous learning yields a new basis for interpretation of representative data and the optimal model structure. PMID:22840918

  6. Experimental and Numerical Analysis of Triaxially Braided Composites Utilizing a Modified Subcell Modeling Approach

    NASA Technical Reports Server (NTRS)

    Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.

    2015-01-01

    A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles [0deg, 30deg, 45deg, 60deg and 90deg] relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.

  7. Experimental and Numerical Analysis of Triaxially Braided Composites Utilizing a Modified Subcell Modeling Approach

    NASA Technical Reports Server (NTRS)

    Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.

    2015-01-01

    A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles of 0deg, 30deg, 45deg, 60deg and 90deg relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.

  8. Characterization of scatter in cone-beam CT breast imaging: Comparison of experimental measurements and Monte Carlo simulation

    PubMed Central

    Chen, Yu; Liu, Bob; O’Connor, J. Michael; Didier, Clay S.; Glick, Stephen J.

    2009-01-01

    It is commonly understood that scattered radiation in x-ray computed tomography (CT) degrades the reconstructed image. As a precursor to developing scatter compensation methods, it is important to characterize this scatter using both empirical measurements and Monte Carlo simulations. Previous studies characterizing scatter using both experimental measurements and Monte Carlo simulations have been reported in diagnostic radiology and conventional mammography. The emerging technology of cone-beam CT breast imaging (CTBI) differs significantly from conventional mammography in the breast shape and imaging geometry, aspects that are important factors impacting the measured scatter. This study used a bench-top cone-beam CTBI system with an indirect flat-panel detector. A cylindrical phantom with equivalent composition of 50% fibroglandular and 50% adipose tissues was used, and scatter distributions were measured by beam stop and aperture methods. The GEANT4-based simulation package GATE was used to model x-ray photon interactions in the phantom and detector. Scatter to primary ratio (SPR) measurements using both the beam stop and aperture methods were consistent within 5% after subtraction of nonbreast scatter contributions and agree with the low energy electromagnetic model simulation in GATE. The validated simulation model was used to characterize the SPR in different CTBI conditions. In addition, a realistic, digital breast phantom was simulated to determine the characteristics of various scatter components that cannot be separated in measurements. The simulation showed that the scatter distribution from multiple Compton and Rayleigh scatterings, as well as from the single Compton scattering, has predominantly low-frequency characteristics. The single Rayleigh scatter was observed to be the primary contribution to the spatially variant scatter component. PMID:19378746

  9. An experimental characterization of damping properties of thermal barrier coatings at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Easterday, Oliver T.

    Modern gas turbine engines have routinely utilized thermal barrier coatings for the past three decades to coax greater thermodynamic efficiency out of jet engines. In service, it has been noted that these ceramic materials are also effective at suppressing high cycle fatigue in the engine components, increasing their respective fatigue life. Recent efforts have been made to mechanically characterize these materials; this has been a challenge as they are thin coatings, prone to history effects, and are materially nonlinear. Refinement of the apparatus have occurred and it is now desired to characterize them across a range of likely service temperatures. A free-free beam apparatus has been adapted to accomplish this. Important to achieving viable results is the design, analysis, and experimental validation of the chamber in regards to the free-free specimen being heat-able, modally detuned and free-hanging, and the preservation of a non-contacting excitation method. Critical to success is ensuring a near-isothermal heated beam specimen. After successful validation and calibration of the chamber, a common thermal barrier coating, 8-YSZ, was tested, primarily using the free-decay, logarithmic decrement method, using the chamber from 70-900degF. Materially non-linear behavior was observed and findings of material storage modulus and loss coefficient that are consistent with previous studies were obtained. The chamber was also used to characterize the bare metal beam blanks and bond-coat only specimens. The apparatus was found to be sensitive when determining the storage modulus and damping, more so than the baseline configuration. This was due to changes in design to proof it against high temperature. Resulting, it clearly characterized the anisotropic modulus of titanium and determined that bond coating had a negligible contribution to the beam system. Design life criteria with the properties of the coating could now be adopted across a range of temperatures.

  10. The hamster (Mesocricetus auratus) as an experimental model of toxocariasis: histopathological, immunohistochemical, and immunoelectron microscopic findings.

    PubMed

    da Silva, Ana Maria Gonçalves; Chieffi, Pedro Paulo; da Silva, Wellington Luiz Ferreira; Kanashiro, Edite Hatsumi Yamashiro; Rubinsky-Elefant, Guita; Cunha-Neto, Edécio; Mairena, Eliane Conti; De Brito, Thales

    2015-03-01

    Toxocariasis is a globally distributed parasitic infection caused by the larval stage of Toxocara spp. The typical natural hosts of the parasite are dogs and cats, but humans can be infected by the larval stage of the parasite after ingesting embryonated eggs in soil or from contaminated hands or fomites. The migrating larvae are not adapted to complete their life cycle within accidental or paratenic hosts like humans and laboratory animals, respectively, but they are capable of invading viscera or other tissues where they may survive and induce disease. In order to characterize hamsters (Mesocricetus auratus) as a model for Toxocara canis infection, histopathological and immunohistochemistry procedures were used to detect pathological lesions and the distribution of toxocaral antigens in the liver, lungs, and kidneys of experimentally infected animals. We also attempted to characterize the immunological parameters of the inflammatory response and correlate them with the histopathological findings. In the kidney, a correlation between glomerular changes and antigen deposits was evaluated using immunoelectron microscopy. The hamster is an adequate model of experimental toxocariasis for short-term investigations and has a good immunological and pathological response to the infection. Lung and liver manifestations of toxocariasis in hamsters approximated those in humans and other experimental animal models. A mixed Th2 immunological response to T. canis infection was predominant. The hamster model displayed a progressive rise of anti-toxocaral antibodies with the formation of immune complexes. Circulating antigens, immunoglobulin, and complement deposits were detected in the kidney without the development of a definite immune complex nephropathy. PMID:25518818

  11. Experimental modeling of Wiener filters estimated on an operating diesel engine

    NASA Astrophysics Data System (ADS)

    Drouet, Julie; Leclère, Quentin; Parizet, Etienne

    2015-01-01

    Sound source separation in diesel engines can be implemented using a Wiener filter, or spectrofilter, that can extract the combustion contribution in the overall noise. In this study this filter characterizes the transfer function between a cylinder pressure and a measurement point. An engine is characterized by several filters (one for each cylinder) which are estimated for many operating conditions (engine speed and load). The purpose of this work is to obtain an averaged spectrofilter allowing the synthesis of combustion noise in all operating conditions. This synthesis should be accurate enough to be used in perceptive studies. In order to refine the spectrofilter estimation in the medium frequency band, this paper consists in taking advantage of the multitude of information given by the estimations from different operating conditions. To do this, an experimental model is adopted so modal parameters are extracted from a great number of measured filters. Different procedures such as the ESPRIT method or the LSCE method (modal analysis) are used to decompose the impulse responses on a complex exponential basis. The spectrofilters estimated from different operating conditions are analyzed and compared in this reduced basis, in order to identify the underlying structural parameters. These parameters are compared to the results of an experimental characterization of the stopped engine. The accuracy of the synthesis (number of components of the filter) is an important issue because these filters will be used in perceptive applications, extracting combustion noises. This paper is an extended version of the work initially presented at the conference Surveillance 6 in November 2011 in Compiègne, France [1] (J. Drouet, Quentin Leclere, Etienne Parizet. Experimental modeling of Wiener filters estimated on an operating diesel engine, in: Proceedings of the Surveillance, vol. 6, Compi'egne, France, 2011.).

  12. Experimental characterization of Cis-acting elements important for translation and transcription in halophilic archaea.

    PubMed

    Brenneis, Mariam; Hering, Oliver; Lange, Christian; Soppa, Jörg

    2007-12-01

    The basal transcription apparatus of archaea is well characterized. However, much less is known about the mechanisms of transcription termination and translation initation. Recently, experimental determination of the 5'-ends of ten transcripts from Pyrobaculum aerophilum revealed that these are devoid of a 5'-UTR. Bioinformatic analysis indicated that many transcripts of other archaeal species might also be leaderless. The 5'-ends and 3'-ends of 40 transcripts of two haloarchaeal species, Halobacterium salinarum and Haloferax volcanii, have been determined. They were used to characterize the lengths of 5'-UTRs and 3'-UTRs and to deduce consensus sequence-elements for transcription and translation. The experimental approach was complemented with a bioinformatics analysis of the H. salinarum genome sequence. Furthermore, the influence of selected 5'-UTRs and 3'-UTRs on transcript stability and translational efficiency in vivo was characterized using a newly established reporter gene system, gene fusions, and real-time PCR. Consensus sequences for basal promoter elements could be refined and a novel element was discovered. A consensus motif probably important for transcriptional termination was established. All 40 haloarchaeal transcripts analyzed had a 3'-UTR (average size 57 nt), and their 3'-ends were not posttranscriptionally modified. Experimental data and genome analyses revealed that the majority of haloarchaeal transcripts are leaderless, indicating that this is the predominant mode for translation initiation in haloarchaea. Surprisingly, the 5'-UTRs of most leadered transcripts did not contain a Shine-Dalgarno (SD) sequence. A genome analysis indicated that less than 10% of all genes are preceded by a SD sequence and even most proximal genes in operons lack a SD sequence. Seven different leadered transcripts devoid of a SD sequence were efficiently translated in vivo, including artificial 5'-UTRs of random sequences. Thus, an interaction of the 5'-UTRs of

  13. Experimental Validation of a Tibiofemoral Model for Analyzing Joint Force Distribution

    PubMed Central

    Miller, Emily J.; Riemer, Rose F.; Haut Donahue, Tammy L.; Kaufman, Kenton R.

    2009-01-01

    A computational model of the tibiofemoral joint utilizing the discrete element analysis method has been developed and validated with human cadaveric knees. The computational method can predict load distributions to within a Root Mean Square Error (RMSE) of 3.6%. The model incorporates subject-specific joint geometry and the health of the subjects’ articular cartilage to determine the cartilage stiffness. It also includes the collateral and cruciate ligaments and utilizes stiffness values derived from literature for these elements. Comparisons of the total load, peak load, and peak load location for axial, varus, and valgus loading conditions confirmed that there was less than 4% RMSE between the analytical and experimental results. The model presented in this paper can generate results with minimal computational time and it can be used as a non-invasive method for characterizing and monitoring subject-specific knee loading patterns. PMID:19389677

  14. Optical actuation of silicon cantilevers: modelling and experimental investigation

    NASA Astrophysics Data System (ADS)

    Jiang, Fei; Keating, Adrian; Martyuink, Mariusz; Silva, Dilusha; Faraone, Lorenzo; Dell, John M.

    2013-05-01

    This paper reports on the modeling and experimental investigation of optical excitation of silicon cantilevers. In this work, the silicon cantilevers fabricated have dimensions with width of 15 μm, thickness of 0.26 μm, and variable length from 50 to 120 μm. In order to investigate the effect of the laser modulation frequency and position on the temperature at the anchor edge and displacements at the tip of cantilevers, a transient thermal ANSYS simulation and a steady-state static thermal mechanical ANSYS simulation were undertaken using a structure consisting of silicon device layer, SiO2 sacrificial layer and silicon substrate. The dynamic properties of silicon cantilevers were undertaken by a series of experiments. The period optical driving signal with controlled modulation amplitude was provided by a 405 nm diode laser with a 2.9 μW/μm2 laser power and variable frequencies. The laser spot was located through the longitude direction of silicon cantilevers. In factor, simulation results well matched with experimental observation, including: 1) for untreated silicon cantilevers, the maximum of displacement is observed when the laser beam was located half a diameter way from the anchor on the silicon suspended cantilever side; 2) for the both cantilevers, maximum displacement occurs when the optical actuation frequency is equal to the resonant frequency of cantilevers. Understanding the optical excitation on silicon cantilevers, as waveguides, can potentially increase sensing detection sensitivity (ratio of transmission to cantilever deflection).

  15. Combined Neurotrauma Models: Experimental Models Combining Traumatic Brain Injury and Secondary Insults.

    PubMed

    Simon, Dennis W; Vagni, Vincent M; Kochanek, Patrick M; Clark, Robert S B

    2016-01-01

    Patients with severe traumatic brain injury (TBI) frequently present with concomitant injuries that may cause secondary brain injury and impact outcomes. Animal models have been developed that combine contemporary models of TBI with a secondary neurologic insult such as hypoxia, shock, long bone fracture, and radiation exposure. Combined injury models may be particularly useful when modeling treatment strategies and in efforts to map basic research to a heterogeneous patient population. Here, we review these models and their collective contribution to the literature on TBI. In addition, we provide protocols and notes for two well-characterized models of TBI plus hemorrhagic shock. PMID:27604730

  16. In vivo irreversible electroporation kidney ablation: experimentally correlated numerical models.

    PubMed

    Neal, Robert E; Garcia, Paulo A; Kavnoudias, Helen; Rosenfeldt, Franklin; Mclean, Catriona A; Earl, Victoria; Bergman, Joanne; Davalos, Rafael V; Thomson, Kenneth R

    2015-02-01

    Irreversible electroporation (IRE) ablation uses brief electric pulses to kill a volume of tissue without damaging the structures contraindicated for surgical resection or thermal ablation, including blood vessels and ureters. IRE offers a targeted nephron-sparing approach for treating kidney tumors, but the relevant organ-specific electrical properties and cellular susceptibility to IRE electric pulses remain to be characterized. Here, a pulse protocol of 100 electric pulses, each 100 μs long, is delivered at 1 pulse/s to canine kidneys at three different voltage-to-distance ratios while measuring intrapulse current, completed 6 h before humane euthanasia. Numerical models were correlated with lesions and electrical measurements to determine electrical conductivity behavior and lethal electric field threshold. Three methods for modeling tissue response to the pulses were investigated (static, linear dynamic, and asymmetrical sigmoid dynamic), where the asymmetrical sigmoid dynamic conductivity function most accurately and precisely matched lesion dimensions, with a lethal electric field threshold of 575 ± 67 V/cm for the protocols used. The linear dynamic model also attains accurate predictions with a simpler function. These findings can aid renal IRE treatment planning under varying electrode geometries and pulse strengths. Histology showed a wholly necrotic core lesion at the highest electric fields, surrounded by a transitional perimeter of differential tissue viability dependent on renal structure. PMID:25265626