Sample records for experimentally determined volumetric

  1. Volumetric blood flow via time-domain correlation: experimental verification.

    PubMed

    Embree, P M; O'Brien, W R

    1990-01-01

    A novel ultrasonic volumetric flow measurement method using time-domain correlation of consecutive pairs of echoes has been developed. An ultrasonic data acquisition system determined the time shift between a pair of range gated echoes by searching for the time shift with the maximum correlation between the RF sampled waveforms. Experiments with a 5-MHz transducer indicate that the standard deviation of the estimate of steady fluid velocity through 6-mm-diameter tubes is less than 10% of the mean. Experimentally, Sephadex (G-50; 20-80 mum dia.) particles in water and fresh porcine blood have been used as ultrasound scattering fluids. Two-dimensional (2-D) flow velocity can be estimated by slowly sweeping the ultrasonic beam across the blood vessel phantom. Volumetric flow through the vessel is estimated by integrating the 2-D flow velocity field and then is compared to hydrodynamic flow measurements to assess the overall experimental accuracy of the time-domain method. Flow rates from 50-500 ml/min have been estimated with an accuracy better than 10% under the idealized characteristics used in this study, which include straight circular thin-walled tubes, laminar axially-symmetric steady flow, and no intervening tissues.

  2. Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue

    NASA Astrophysics Data System (ADS)

    González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.

    2013-04-01

    Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.

  3. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    NASA Astrophysics Data System (ADS)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  4. Determining soil volumetric moisture content using time domain reflectometry

    DOT National Transportation Integrated Search

    1998-02-01

    Time domain reflectometry (TDR) is a technique used to measure indirectly the in situ volumetric moisture content of soil. Current research provides a variety of prediction equations that estimate the volumetric moisture content using the dielectric ...

  5. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    NASA Astrophysics Data System (ADS)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  6. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    NASA Astrophysics Data System (ADS)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  7. Volumetric calibration of a plenoptic camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert

    Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less

  8. Volumetric calibration of a plenoptic camera.

    PubMed

    Hall, Elise Munz; Fahringer, Timothy W; Guildenbecher, Daniel R; Thurow, Brian S

    2018-02-01

    The volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creation of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.

  9. Volumetric calibration of a plenoptic camera

    DOE PAGES

    Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert; ...

    2018-02-01

    Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less

  10. Volumetric Titrations Using Electrolytically Generated Reagents for the Determination of Ascorbic Acid and Iron in Dietary Supplement Tablets: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.

    2014-01-01

    An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…

  11. Volumetric determination of uranium titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, J.S.; Skinner, D.L.; Rader, L.F.

    1957-01-01

    Need for a more rapid volumetric method for the routine determination of uranium in uranium-rich materials has led to the development of a method that uses titanous sulfate as a reductant before oxidimetric titration. Separation of the hydrogen sulfide group is not necessary. Interfering elements precipitated by cupferron are removed by automatic filtrations made simultaneously rather than by the longer chloroform extraction method. Uranium is reduced from VI to IV by addition of an excess of titanous sulfate solution, cupric ion serving as an indicator by forming red metallic copper when reduction is complete. The copper is reoxidized by addition of mercuric perchlorate. The reduced uranium is then determined by addition of excess ferric sulfate and titration with ceric sulfate. The method has proved to be rapid, accurate, and economical.

  12. Inkjet printing-based volumetric display projecting multiple full-colour 2D patterns

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Suzuki, Tomotaka; Shimobaba, Tomoyoshi; Shiraki, Atsushi; Naruse, Makoto; Nakayama, Hirotaka; Kakue, Takashi; Ito, Tomoyoshi

    2017-04-01

    In this study, a method to construct a full-colour volumetric display is presented using a commercially available inkjet printer. Photoreactive luminescence materials are minutely and automatically printed as the volume elements, and volumetric displays are constructed with high resolution using easy-to-fabricate means that exploit inkjet printing technologies. The results experimentally demonstrate the first prototype of an inkjet printing-based volumetric display composed of multiple layers of transparent films that yield a full-colour three-dimensional (3D) image. Moreover, we propose a design algorithm with 3D structures that provide multiple different 2D full-colour patterns when viewed from different directions and experimentally demonstrate prototypes. It is considered that these types of 3D volumetric structures and their fabrication methods based on widely deployed existing printing technologies can be utilised as novel information display devices and systems, including digital signage, media art, entertainment and security.

  13. Simulations of the Richtmyer-Meshkov Instability with experimentally measured volumetric initial conditions

    NASA Astrophysics Data System (ADS)

    Ferguson, Kevin; Sewell, Everest; Krivets, Vitaliy; Greenough, Jeffrey; Jacobs, Jeffrey

    2016-11-01

    Initial conditions for the Richtmyer-Meshkov instability (RMI) are measured in three dimensions in the University of Arizona Vertical Shock Tube using a moving magnet galvanometer system. The resulting volumetric data is used as initial conditions for the simulation of the RMI using ARES at Lawrence-Livermore National Laboratory (LLNL). The heavy gas is sulfur hexafluoride (SF6), and the light gas is air. The perturbations are generated by harmonically oscillating the gasses vertically using two loudspeakers mounted to the shock tube which cause Faraday resonance, producing a random short wavelength perturbation on the interface. Planar Mie scattering is used to illuminate the flow field through the addition of propylene glycol particles seeded in the heavy gas. An M=1.2 shock impulsively accelerates the interface, initiating instability growth. Images of the initial condition and instability growth are captured at a rate of 6 kHz using high speed cameras. Comparisons between experimental and simulation results, mixing diagnostics, and mixing zone growth are presented.

  14. Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-01

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  15. Design, implementation and characterization of a quantum-dot-based volumetric display.

    PubMed

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-16

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  16. Uncertainty quantification in volumetric Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sayantan; Charonko, John; Vlachos, Pavlos

    2016-11-01

    Particle Image Velocimetry (PIV) uncertainty quantification is challenging due to coupled sources of elemental uncertainty and complex data reduction procedures in the measurement chain. Recent developments in this field have led to uncertainty estimation methods for planar PIV. However, no framework exists for three-dimensional volumetric PIV. In volumetric PIV the measurement uncertainty is a function of reconstructed three-dimensional particle location that in turn is very sensitive to the accuracy of the calibration mapping function. Furthermore, the iterative correction to the camera mapping function using triangulated particle locations in space (volumetric self-calibration) has its own associated uncertainty due to image noise and ghost particle reconstructions. Here we first quantify the uncertainty in the triangulated particle position which is a function of particle detection and mapping function uncertainty. The location uncertainty is then combined with the three-dimensional cross-correlation uncertainty that is estimated as an extension of the 2D PIV uncertainty framework. Finally the overall measurement uncertainty is quantified using an uncertainty propagation equation. The framework is tested with both simulated and experimental cases. For the simulated cases the variation of estimated uncertainty with the elemental volumetric PIV error sources are also evaluated. The results show reasonable prediction of standard uncertainty with good coverage.

  17. Volumetric PIV with a Plenoptic Camera

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Fahringer, Tim

    2012-11-01

    Plenoptic cameras have received attention recently due to their ability to computationally refocus an image after it has been acquired. We describe the development of a robust, economical and easy-to-use volumetric PIV technique using a unique plenoptic camera built in our laboratory. The tomographic MART algorithm is used to reconstruct pairs of 3D particle volumes with velocity determined using conventional cross-correlation techniques. 3D/3C velocity measurements (volumetric dimensions of 2 . 8 ' ' × 1 . 9 ' ' × 1 . 6 ' ') of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. This work has been supported by the Air Force Office of Scientific Research,(Grant #FA9550-100100576).

  18. Effect of low-shrinkage monomers on the physicochemical properties of experimental composite resin

    PubMed Central

    He, Jingwei; Garoushi, Sufyan; Vallittu, Pekka K.; Lassila, Lippo

    2018-01-01

    Abstract This study was conducted to determine whether novel experimental low-shrinkage dimethacrylate co-monomers could provide low polymerization shrinkage composites without sacrifice to degree of conversion, and mechanical properties of the composites. Experimental composites were prepared by mixing 28.6 wt% of bisphenol-A-glycidyl dimethacrylate based resin matrix (bis-GMA) with various weight-fractions of co-monomers; tricyclo decanedimethanol dacrylate (SR833s) and isobornyl acrylate (IBOA) to 71.4 wt% of particulate-fillers. A composite based on bis-GMA/TEGDMA (triethylene glycol dimethacrylate) was used as a control. Fracture toughness and flexural strength were determined for each experimental material following international standards. Degree of monomer-conversion (DC%) was determined by FTIR spectrometry. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes’ principle. Polymerization shrinkage-strain and -stress of the specimens were measured using the strain-gage technique and tensilometer, respectively with respect to time. Statistical analysis revealed that control group had the highest double-bond conversion (p < .05) among the experimental resins tested. All of the experimental composite resins had comparable flexural strength, modulus, and fracture toughness (p > .05). Volumetric shrinkage and shrinkage stress decreased with increasing IBOA concentration. Replacing TEGDMA with SR833s and IBOA can decrease the volumetric shrinkage, shrinkage strain, and shrinkage stress of composite resins without affecting the mechanical properties. However, the degree of conversion was also decreased. PMID:29536025

  19. Effect of low-shrinkage monomers on the physicochemical properties of experimental composite resin.

    PubMed

    He, Jingwei; Garoushi, Sufyan; Vallittu, Pekka K; Lassila, Lippo

    2018-01-01

    This study was conducted to determine whether novel experimental low-shrinkage dimethacrylate co-monomers could provide low polymerization shrinkage composites without sacrifice to degree of conversion, and mechanical properties of the composites. Experimental composites were prepared by mixing 28.6 wt% of bisphenol-A-glycidyl dimethacrylate based resin matrix ( bis -GMA) with various weight-fractions of co-monomers; tricyclo decanedimethanol dacrylate (SR833s) and isobornyl acrylate (IBOA) to 71.4 wt% of particulate-fillers. A composite based on bis -GMA/TEGDMA (triethylene glycol dimethacrylate) was used as a control. Fracture toughness and flexural strength were determined for each experimental material following international standards. Degree of monomer-conversion (DC%) was determined by FTIR spectrometry. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes' principle. Polymerization shrinkage-strain and -stress of the specimens were measured using the strain-gage technique and tensilometer, respectively with respect to time. Statistical analysis revealed that control group had the highest double-bond conversion ( p  < .05) among the experimental resins tested. All of the experimental composite resins had comparable flexural strength, modulus, and fracture toughness ( p  > .05). Volumetric shrinkage and shrinkage stress decreased with increasing IBOA concentration. Replacing TEGDMA with SR833s and IBOA can decrease the volumetric shrinkage, shrinkage strain, and shrinkage stress of composite resins without affecting the mechanical properties. However, the degree of conversion was also decreased.

  20. Monitoring of experimental rat lung transplants by high-resolution flat-panel volumetric computer tomography (fpVCT).

    PubMed

    Greschus, Susanne; Kuchenbuch, Tim; Plötz, Christian; Obert, Martin; Traupe, Horst; Padberg, Winfried; Grau, Veronika; Hirschburger, Markus

    2009-01-01

    Noninvasive assessment of experimental lung transplants with high resolution would be favorable to exclude technical failure and to follow up graft outcome in the living animal. Here we describe a flat-panel Volumetric Computed Tomography (fpVCT) technique using a prototype scanner. Lung transplantation was performed in allogeneic as well as in corresponding syngeneic rat strain combinations. At different time points post-transplantation, fpVCT was performed. Lung transplants can be visualized in the living rat with high-spatial resolution. FpVCT allows a detailed analysis of the lung and the bronchi. Infiltrates developing during rejection episodes can be diagnosed and follow-up studies can easily be performed. With fpVCT it is possible to control the technical success of the surgical procedure. Graft rejection can be visualized individually in the living animal noninvasively, which is highly advantageous for studying the pathogenesis of chronic rejection or to monitor new therapies.

  1. Experiments and simulations of Richtmyer-Meshkov Instability with measured,volumetric initial conditions

    NASA Astrophysics Data System (ADS)

    Sewell, Everest; Ferguson, Kevin; Jacobs, Jeffrey; Greenough, Jeff; Krivets, Vitaliy

    2016-11-01

    We describe experiments of single-shock Richtmyer-Meskhov Instability (RMI) performed on the shock tube apparatus at the University of Arizona in which the initial conditions are volumetrically imaged prior to shock wave arrival. Initial perturbations play a major role in the evolution of RMI, and previous experimental efforts only capture a single plane of the initial condition. The method presented uses a rastered laser sheet to capture additional images throughout the depth of the initial condition immediately before the shock arrival time. These images are then used to reconstruct a volumetric approximation of the experimental perturbation. Analysis of the initial perturbations is performed, and then used as initial conditions in simulations using the hydrodynamics code ARES, developed at Lawrence Livermore National Laboratory (LLNL). Experiments are presented and comparisons are made with simulation results.

  2. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-01

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  3. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display.

    PubMed

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-16

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  4. Hologlyphics: volumetric image synthesis performance system

    NASA Astrophysics Data System (ADS)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  5. Volumetric runoff coefficients for experimental rural catchments in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Taguas, Encarnación V.; Molina, Cecilio; Nadal-Romero, Estela; Ayuso, José L.; Casalí, Javier; Cid, Patricio; Dafonte, Jorge; Duarte, Antonio C.; Farguell, Joaquim; Giménez, Rafael; Giráldez, Juan V.; Gómez, Helena; Gómez, Jose A.; González-Hidalgo, J. Carlos; Keizer, J. Jacob; Lucía, Ana; Mateos, Luciano; Rodríguez-Blanco, M. Luz; Schnabel, Sussane; Serrano-Muela, M. Pilar

    2015-04-01

    crucial for designing appropriate decision making tools for water management. REFERENCES Chow V.T., Maidment D.R. and Mays, L.W. 1988. Applied Hydrology. MCGraw Hill, Nueva York. Dhakal, N., Fang, X., Cleveland, T., Thompson, D., Asquith, W., and Marzen, L. (2012). "Estimation of Volumetric Runoff Coefficients for Texas Watersheds Using Land-Use and Rainfall-Runoff Data." Journal of Irrigation and Drainage Engineering, 1(2012):43-54. Schaake JC, Geyer JC,Knapp JW. 1967. Experimental examination of the rational method. J. Hydr.Div. 93(6),353-70

  6. Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV)

    NASA Astrophysics Data System (ADS)

    Falahatpisheh, Ahmad; Kheradvar, Arash

    2015-11-01

    Measurement of 3D flow field inside the cardiac chambers has proven to be a challenging task. Current laser-based 3D PIV methods estimate the third component of the velocity rather than directly measuring it and also cannot be used to image the opaque heart chambers. Modern echocardiography systems are equipped with 3D probes that enable imaging the entire 3D opaque field. However, this feature has not yet been employed for 3D vector characterization of blood flow. For the first time, we introduce a method that generates velocity vector field in 4D based on volumetric echocardiographic images. By assuming the conservation of brightness in 3D, blood speckles are tracked. A hierarchical 3D PIV method is used to account for large particle displacement. The discretized brightness transport equation is solved in a least square sense in interrogation windows of size 163 voxels. We successfully validate the method in analytical and experimental cases. Volumetric echo data of a left ventricle is then processed in the systolic phase. The expected velocity fields were successfully predicted by V-Echo-PIV. In this work, we showed a method to image blood flow in 3D based on volumetric images of human heart using no contrast agent.

  7. Experiments and simulations of single shock Richtmeyer-Meshkov Instability with measured, volumetric initial conditions

    NASA Astrophysics Data System (ADS)

    Sewell, Everest; Ferguson, Kevin; Greenough, Jeffrey; Jacobs, Jeffrey

    2014-11-01

    We describe new experiments of single shock Richtmeyer-Meshkov Instability (RMI) performed on the shock tube apparatus at the University of Arizona in which the initial conditions are volumetrically imaged prior to shock wave arrival. Initial perturbation plays a major role in the evolution of RMI, and previous experimental efforts only capture a narrow slice of the initial condition. The method presented uses a rastered laser sheet to capture additional images in the depth of the initial condition shortly before the experimental start time. These images are then used to reconstruct a volumetric approximation of the experimental perturbation, which is simulated using the hydrodynamics code ARES, developed at Lawrence Livermore National Laboratory (LLNL). Comparison is made between the time evolution of the interface width and the mixedness ratio measured from the experiments against the predictions from the numerical simulations.

  8. AISLE: an automatic volumetric segmentation method for the study of lung allometry.

    PubMed

    Ren, Hongliang; Kazanzides, Peter

    2011-01-01

    We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.

  9. Exploring Volumetrically Indexed Cups

    ERIC Educational Resources Information Center

    Jones, Dustin L.

    2011-01-01

    This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup "n" is equal to "n" times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to…

  10. Adaptive controller for volumetric display of neuroimaging studies

    NASA Astrophysics Data System (ADS)

    Bleiberg, Ben; Senseney, Justin; Caban, Jesus

    2014-03-01

    Volumetric display of medical images is an increasingly relevant method for examining an imaging acquisition as the prevalence of thin-slice imaging increases in clinical studies. Current mouse and keyboard implementations for volumetric control provide neither the sensitivity nor specificity required to manipulate a volumetric display for efficient reading in a clinical setting. Solutions to efficient volumetric manipulation provide more sensitivity by removing the binary nature of actions controlled by keyboard clicks, but specificity is lost because a single action may change display in several directions. When specificity is then further addressed by re-implementing hardware binary functions through the introduction of mode control, the result is a cumbersome interface that fails to achieve the revolutionary benefit required for adoption of a new technology. We address the specificity versus sensitivity problem of volumetric interfaces by providing adaptive positional awareness to the volumetric control device by manipulating communication between hardware driver and existing software methods for volumetric display of medical images. This creates a tethered effect for volumetric display, providing a smooth interface that improves on existing hardware approaches to volumetric scene manipulation.

  11. Gradients estimation from random points with volumetric tensor in turbulence

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoaki; Nagata, Koji

    2017-12-01

    We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.

  12. Genetic and environmental determinants of volumetric and areal BMD in multi-generational families of African ancestry: the Tobago Family Health Study.

    PubMed

    Wang, Xiaojing; Kammerer, Candace M; Wheeler, Victor W; Patrick, Alan L; Bunker, Clareann H; Zmuda, Joseph M

    2007-04-01

    BMD is higher and fracture risk is lower among individuals of African versus European descent, but little is known about the genetic architecture of BMD in the former group. Heritabilities of areal and volumetric BMD were moderate in our large families of African descent but differed for trabecular and cortical BMD. Populations of African ancestry have lower osteoporotic fracture risk and higher BMD than other ethnic groups. However, there is a paucity of information regarding the genetic and environmental influences on bone health among populations of African heritage. We dissected the genetic architecture of areal BMD measured by DXA at the proximal femur, lumbar spine, and whole body and volumetric BMD measured by pQCT at the distal and proximal radius and tibia in 283 women and 188 men > or =18 years of age (mean, 43 years) from eight multigenerational Afro-Caribbean families (mean family size > 50). Using quantitative genetic methods, we estimated the residual heritability and the effects of anthropometric, demographic, lifestyle, and medical variables on areal and volumetric BMD. Compared with U.S. non-Hispanic blacks and whites, areal BMD at the femoral neck was highest in the Afro-Caribbean men and women at all ages. Trabecular volumetric BMD decreased linearly with increasing age, whereas cortical volumetric BMD did not decrease until age 40-49, especially in women. Anthropometric, lifestyle, and medical factors accounted for 12-32% of the variation in areal and volumetric BMD, and residual heritabilities (range, 0.23-0.52) were similar to those reported in other ethnic groups. Heritability of cortical BMD was substantially lower than that of areal or trabecular volumetric BMD, although the measured covariates accounted for a similar proportion of the total phenotypic variation. Our study is the first comprehensive genetic epidemiologic analysis of volumetric BMD measured by QCT and the first analysis of these traits in extended families of African descent

  13. VOLUMETRIC TANK TESTING: AN OVERVIEW

    EPA Science Inventory

    This report summarizes the technical findings of an EPA study on volumetric tank testing. The results of this study, which evaluated the viability of volumetric tank tests as a means of detecting leaks in underground storage tanks, are described. Also, the accuracy requirements s...

  14. A volumetric flow sensor for automotive injection systems

    NASA Astrophysics Data System (ADS)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  15. SUMCOR: Cascade summing correction for volumetric sources applying MCNP6.

    PubMed

    Dias, M S; Semmler, R; Moreira, D S; de Menezes, M O; Barros, L F; Ribeiro, R V; Koskinas, M F

    2018-04-01

    The main features of code SUMCOR developed for cascade summing correction for volumetric sources are described. MCNP6 is used to track histories starting from individual points inside the volumetric source, for each set of cascade transitions from the radionuclide. Total and FEP efficiencies are calculated for all gamma-rays and X-rays involved in the cascade. Cascade summing correction is based on the matrix formalism developed by Semkow et al. (1990). Results are presented applying the experimental data sent to the participants of two intercomparisons organized by the ICRM-GSWG and coordinated by Dr. Marie-Cristine Lépy from the Laboratoire National Henri Becquerel (LNE-LNHB), CEA, in 2008 and 2010, respectively and compared to the other participants in the intercomparisons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Volumetric three-dimensional intravascular ultrasound visualization using shape-based nonlinear interpolation

    PubMed Central

    2013-01-01

    Background Intravascular ultrasound (IVUS) is a standard imaging modality for identification of plaque formation in the coronary and peripheral arteries. Volumetric three-dimensional (3D) IVUS visualization provides a powerful tool to overcome the limited comprehensive information of 2D IVUS in terms of complex spatial distribution of arterial morphology and acoustic backscatter information. Conventional 3D IVUS techniques provide sub-optimal visualization of arterial morphology or lack acoustic information concerning arterial structure due in part to low quality of image data and the use of pixel-based IVUS image reconstruction algorithms. In the present study, we describe a novel volumetric 3D IVUS reconstruction algorithm to utilize IVUS signal data and a shape-based nonlinear interpolation. Methods We developed an algorithm to convert a series of IVUS signal data into a fully volumetric 3D visualization. Intermediary slices between original 2D IVUS slices were generated utilizing the natural cubic spline interpolation to consider the nonlinearity of both vascular structure geometry and acoustic backscatter in the arterial wall. We evaluated differences in image quality between the conventional pixel-based interpolation and the shape-based nonlinear interpolation methods using both virtual vascular phantom data and in vivo IVUS data of a porcine femoral artery. Volumetric 3D IVUS images of the arterial segment reconstructed using the two interpolation methods were compared. Results In vitro validation and in vivo comparative studies with the conventional pixel-based interpolation method demonstrated more robustness of the shape-based nonlinear interpolation algorithm in determining intermediary 2D IVUS slices. Our shape-based nonlinear interpolation demonstrated improved volumetric 3D visualization of the in vivo arterial structure and more realistic acoustic backscatter distribution compared to the conventional pixel-based interpolation method. Conclusions This

  17. Volumetric dimensional change of six direct core materials.

    PubMed

    Chutinan, Supattriya; Platt, Jeffrey A; Cochran, Michael A; Moore, B Keith

    2004-05-01

    This study evaluated the influence of water on the volumetric dimensional change of six direct placement core build-up materials by using Archimedes' principle. The effect on dimensional change due to the setting reaction was determined through the use of a silicone oil storage medium. The materials used were two dual-cured resin composites (CoreStore and Build-It FR), two chemically activated resin composites (CorePaste and Ti-Core), one metal-reinforced glass ionomer cement (Ketac-Silver), and one resin-modified glass ionomer (Fuji II LC Core). Using the manufacturers' instructions for each material, cylindrical specimens were prepared with dimensions of 7+/-0.1 mm in diameter and 2+/-0.1 mm in height. Each material had four groups (n = 5) based on storage conditions; silicone oil at 23 and 37 degrees C and distilled water at 23 and 37 degrees C. A 0.01 mg resolution balance was used to determine volumetric dimensional change using an Archimedean equation. Measurements were made 30 min after mixing, and at the time intervals of 1, 14, and 56 days. All materials exhibited dimensional change. Ketac-Silver had the most shrinkage in silicone oil and Fuji II LC showed the highest expansion in distilled water. The glass ionomer materials showed more change than did any of the resin composite materials. Current direct placement core materials show variation in the amount of volumetric dimensional change seen over a period of 56 days.

  18. Efficient threshold for volumetric segmentation

    NASA Astrophysics Data System (ADS)

    Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel

    2015-07-01

    Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.

  19. Exploring volumetrically indexed cups

    NASA Astrophysics Data System (ADS)

    Jones, Dustin L.

    2011-03-01

    This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup n is equal to n times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to geometry, algebra and differential calculus. Students with an understanding of these topics should be able to complete the analysis and related exercises contained herein.

  20. Microfluidic volumetric flow determination using optical coherence tomography speckle: An autocorrelation approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Pretto, Lucas R., E-mail: lucas.de.pretto@usp.br; Nogueira, Gesse E. C.; Freitas, Anderson Z.

    2016-04-28

    Functional modalities of Optical Coherence Tomography (OCT) based on speckle analysis are emerging in the literature. We propose a simple approach to the autocorrelation of OCT signal to enable volumetric flow rate differentiation, based on decorrelation time. Our results show that this technique could distinguish flows separated by 3 μl/min, limited by the acquisition speed of the system. We further perform a B-scan of gradient flow inside a microchannel, enabling the visualization of the drag effect on the walls.

  1. Architecture of the Suprahyoid Muscles: A Volumetric Musculoaponeurotic Analysis

    ERIC Educational Resources Information Center

    Shaw, Stephanie M.; Martino, Rosemary; Mahdi, Ali; Sawyer, Forrest Kip; Mathur, Sunita; Hope, Andrew; Agur, Anne M.

    2017-01-01

    Purpose: Suprahyoid muscles play a critical role in swallowing. The arrangement of the fiber bundles and aponeuroses has not been investigated volumetrically, even though muscle architecture is an important determinant of function. Thus, the purpose was to digitize, model in three dimensions, and quantify the architectural parameters of the…

  2. Volumetric breast density affects performance of digital screening mammography.

    PubMed

    Wanders, Johanna O P; Holland, Katharina; Veldhuis, Wouter B; Mann, Ritse M; Pijnappel, Ruud M; Peeters, Petra H M; van Gils, Carla H; Karssemeijer, Nico

    2017-02-01

    To determine to what extent automatically measured volumetric mammographic density influences screening performance when using digital mammography (DM). We collected a consecutive series of 111,898 DM examinations (2003-2011) from one screening unit of the Dutch biennial screening program (age 50-75 years). Volumetric mammographic density was automatically assessed using Volpara. We determined screening performance measures for four density categories comparable to the American College of Radiology (ACR) breast density categories. Of all the examinations, 21.6% were categorized as density category 1 ('almost entirely fatty') and 41.5, 28.9, and 8.0% as category 2-4 ('extremely dense'), respectively. We identified 667 screen-detected and 234 interval cancers. Interval cancer rates were 0.7, 1.9, 2.9, and 4.4‰ and false positive rates were 11.2, 15.1, 18.2, and 23.8‰ for categories 1-4, respectively (both p-trend < 0.001). The screening sensitivity, calculated as the proportion of screen-detected among the total of screen-detected and interval tumors, was lower in higher density categories: 85.7, 77.6, 69.5, and 61.0% for categories 1-4, respectively (p-trend < 0.001). Volumetric mammographic density, automatically measured on digital mammograms, impacts screening performance measures along the same patterns as established with ACR breast density categories. Since measuring breast density fully automatically has much higher reproducibility than visual assessment, this automatic method could help with implementing density-based supplemental screening.

  3. Snapshot Hyperspectral Volumetric Microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-04-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens.

  4. Volumetric CT-images improve testing of radiological image interpretation skills.

    PubMed

    Ravesloot, Cécile J; van der Schaaf, Marieke F; van Schaik, Jan P J; ten Cate, Olle Th J; van der Gijp, Anouk; Mol, Christian P; Vincken, Koen L

    2015-05-01

    Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Two groups of medical students (n=139; n=143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students' test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p<.001). The volumetric CT-image testing program was considered user-friendly. This study shows that volumetric image questions can be successfully integrated in students' radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME I

    EPA Science Inventory

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems whe...

  6. A volumetric ablation model of EPDM considering complex physicochemical process in porous structure of char layer

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Xiao-Jing, Yu; Jian-Ming, Ma; Yi-Wen, Guan; Jiang, Li; Qiang, Li; Sa, Yang

    2017-06-01

    A volumetric ablation model for EPDM (ethylene- propylene-diene monomer) is established in this paper. This model considers the complex physicochemical process in the porous structure of a char layer. An ablation physics model based on a porous structure of a char layer and another model of heterogeneous volumetric ablation char layer physics are then built. In the model, porosity is used to describe the porous structure of a char layer. Gas diffusion and chemical reactions are introduced to the entire porous structure. Through detailed formation analysis, the causes of the compact or loose structure in the char layer and chemical vapor deposition (CVD) reaction between pyrolysis gas and char layer skeleton are introduced. The Arrhenius formula is adopted to determine the methods for calculating carbon deposition rate C which is the consumption rate caused by thermochemical reactions in the char layer, and porosity evolution. The critical porosity value is used as a criterion for char layer porous structure failure under gas flow and particle erosion. This critical porosity value is obtained by fitting experimental parameters and surface porosity of the char layer. Linear ablation and mass ablation rates are confirmed with the critical porosity value. Results of linear ablation and mass ablation rate calculations generally coincide with experimental results, suggesting that the ablation analysis proposed in this paper can accurately reflect practical situations and that the physics and mathematics models built are accurate and reasonable.

  7. Comparative Study of the Volumetric Methods Calculation Using GNSS Measurements

    NASA Astrophysics Data System (ADS)

    Şmuleac, Adrian; Nemeş, Iacob; Alina Creţan, Ioana; Sorina Nemeş, Nicoleta; Şmuleac, Laura

    2017-10-01

    This paper aims to achieve volumetric calculations for different mineral aggregates using different methods of analysis and also comparison of results. To achieve these comparative studies and presentation were chosen two software licensed, namely TopoLT 11.2 and Surfer 13. TopoLT program is a program dedicated to the development of topographic and cadastral plans. 3D terrain model, level courves and calculation of cut and fill volumes, including georeferencing of images. The program Surfer 13 is produced by Golden Software, in 1983 and is active mainly used in various fields such as agriculture, construction, geophysical, geotechnical engineering, GIS, water resources and others. It is also able to achieve GRID terrain model, to achieve the density maps using the method of isolines, volumetric calculations, 3D maps. Also, it can read different file types, including SHP, DXF and XLSX. In these paper it is presented a comparison in terms of achieving volumetric calculations using TopoLT program by two methods: a method where we choose a 3D model both for surface as well as below the top surface and a 3D model in which we choose a 3D terrain model for the bottom surface and another 3D model for the top surface. The comparison of the two variants will be made with data obtained from the realization of volumetric calculations with the program Surfer 13 generating GRID terrain model. The topographical measurements were performed with equipment from Leica GPS 1200 Series. Measurements were made using Romanian position determination system - ROMPOS which ensures accurate positioning of reference and coordinates ETRS through the National Network of GNSS Permanent Stations. GPS data processing was performed with the program Leica Geo Combined Office. For the volumetric calculating the GPS used point are in 1970 stereographic projection system and for the altitude the reference is 1975 the Black Sea projection system.

  8. Experimental analysis of volumetric wear behavioural and mechanical properties study of as cast and 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy at constant load

    NASA Astrophysics Data System (ADS)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the current study, an experimental analysis of volumetric wear behaviour and mechanical properties of aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 1Hr homogenized with T6 heat treatment is carried out at constant load. Pin-on-disc apparatus was used to carry out sliding wear test. Mechanical properties such as tensile, hardness and compression test on as-cast and 1 hr homogenized samples are measured. Universal testing machine was used to conduct the tensile and compressive test at room temperature. Brinell hardness tester was used to conduct the hardness test. The scanning electron microscope was used to analyze the worn-out wear surfaces. Wear results and mechanical properties shows that 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance, hardness, tensile and compressive strength as compared to as cast samples.

  9. Determination of volumetric gas-liquid mass transfer coefficient of carbon monoxide in a batch cultivation system using kinetic simulations.

    PubMed

    Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Lovitt, Robert W; Chang, In Seop

    2017-09-01

    A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (k L a) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (C ace ), headspace gas (N co and [Formula: see text] ), dissolved CO concentration in the fermentation medium (C co ), and mass transfer rate (R) were simulated using a variety of k L a values. The simulated results showed excellent agreement with the experimental data for a k L a of 13/hr. The C co values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Volumetric Properties and Fluid Phase Equilibria of CO2 + H2O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capobianco, Ryan; Gruszkiewicz, Miroslaw; Wesolowski, David J

    2013-01-01

    The need for accurate modeling of fluid-mineral processes over wide ranges of temperature, pressure and composition highlighted considerable uncertainties of available property data and equations of state, even for the CO2 + H2O binary system. In particular, the solubility, activity, and ionic dissociation equilibrium data for the CO2-rich phase, which are essential for understanding dissolution/precipitation, fluid-matrix reactions, and solute transport, are uncertain or missing. In this paper we report the results of a new experimental study of volumetric and phase equilibrium properties of CO2 + H2O, to be followed by measurements for bulk and confined multicomponent fluid mixtures. Mixture densitiesmore » were measured by vibrating tube densimetry (VTD) over the entire composition range at T = 200 and 250 C and P = 20, 40, 60, and 80 MPa. Initial analysis of the mutual solubilities, determined from volumetric data, shows good agreement with earlier results for the aqueous phase, but finds that the data of Takenouchi and Kennedy (1964) significantly overestimated the solubility of water in supercritical CO2 (by a factor of more than two at 200 C). Resolving this well-known discrepancy will have a direct impact on the accuracy of predictive modeling of CO2 injection in geothermal reservoirs and geological carbon sequestration through improved equations of state, needed for calibration of predictive molecular-scale models and large-scale reactive transport simulations.« less

  11. Soft bilateral filtering volumetric shadows using cube shadow maps

    PubMed Central

    Ali, Hatam H.; Sunar, Mohd Shahrizal; Kolivand, Hoshang

    2017-01-01

    Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications. PMID:28632740

  12. Theoretical characterization of annular array as a volumetric optoacoustic ultrasound handheld probe

    NASA Astrophysics Data System (ADS)

    Kalkhoran, Mohammad Azizian; Vray, Didier

    2018-02-01

    Optoacoustic ultrasound (OPUS) is a promising hybridized technique for simultaneous acquisition of functional and morphological data. The optical specificity of optoacoustic leverages the diagnostic aptitude of ultrasonography beyond anatomy. However, this integration has been rarely practiced for volumetric imaging. The challenge lies in the effective imaging probes that preserve the functionality of both modalities. The potentials of a sparse annular array for volumetric OPUS imaging are theoretically investigated. In order to evaluate and optimize the performance characteristics of the probe, series of analysis in the framework of system model matrix was carried out. The two criteria of voxel crosstalk and eigenanalysis have been employed to unveil information about the spatial sensitivity, aliasing, and number of definable spatial frequency components. Based on these benchmarks, the optimal parameters for volumetric handheld probe are determined. In particular, the number, size, and the arrangement of the elements and overall aperture dimension were investigated. The result of the numerical simulation suggests that the segmented-annular array of 128 negatively focused elements with 1λ × 20λ size, operating at 5-MHz central frequency showcases a good agreement with the physical requirement of both imaging systems. We hypothesize that these features enable a high-throughput volumetric passive/active ultrasonic imaging system with great potential for clinical applications.

  13. Field Management of Hot Mix Asphalt Volumetric Properties

    DOT National Transportation Integrated Search

    1995-12-01

    The Federal Highway Administration (FHWA) Demonstration Project No. 74 has clearly shown that significant differences exist between the volumetric properties of the laboratory designed and plant produced hot mix asphalt (HMA) mixes. The volumetric pr...

  14. Verbal Memory Decline following DBS for Parkinson's Disease: Structural Volumetric MRI Relationships.

    PubMed

    Geevarghese, Ruben; Lumsden, Daniel E; Costello, Angela; Hulse, Natasha; Ayis, Salma; Samuel, Michael; Ashkan, Keyoumars

    2016-01-01

    Parkinson's disease is a chronic degenerative movement disorder. The mainstay of treatment is medical. In certain patients Deep Brain Stimulation (DBS) may be offered. However, DBS has been associated with post-operative neuropsychology changes, especially in verbal memory. Firstly, to determine if pre-surgical thalamic and hippocampal volumes were related to verbal memory changes following DBS. Secondly, to determine if clinical factors such as age, duration of symptoms or motor severity (UPDRS Part III score) were related to verbal memory changes. A consecutive group of 40 patients undergoing bilateral Subthalamic Nucleus (STN)-DBS for PD were selected. Brain MRI data was acquired, pre-processed and structural volumetric data was extracted using FSL. Verbal memory test scores for pre- and post-STN-DBS surgery were recorded. Linear regression was used to investigate the relationship between score change and structural volumetric data. A significant relationship was demonstrated between change in List Learning test score and thalamic (left, p = 0.02) and hippocampal (left, p = 0.02 and right p = 0.03) volumes. Duration of symptoms was also associated with List Learning score change (p = 0.02 to 0.03). Verbal memory score changes appear to have a relationship to pre-surgical MRI structural volumetric data. The findings of this study provide a basis for further research into the use of pre-surgical MRI to counsel PD patients regarding post-surgical verbal memory changes.

  15. Volumetric velocimetry for fluid flows

    NASA Astrophysics Data System (ADS)

    Discetti, Stefano; Coletti, Filippo

    2018-04-01

    In recent years, several techniques have been introduced that are capable of extracting 3D three-component velocity fields in fluid flows. Fast-paced developments in both hardware and processing algorithms have generated a diverse set of methods, with a growing range of applications in flow diagnostics. This has been further enriched by the increasingly marked trend of hybridization, in which the differences between techniques are fading. In this review, we carry out a survey of the prominent methods, including optical techniques and approaches based on medical imaging. An overview of each is given with an example of an application from the literature, while focusing on their respective strengths and challenges. A framework for the evaluation of velocimetry performance in terms of dynamic spatial range is discussed, along with technological trends and emerging strategies to exploit 3D data. While critical challenges still exist, these observations highlight how volumetric techniques are transforming experimental fluid mechanics, and that the possibilities they offer have just begun to be explored.

  16. Dynamic CT imaging of volumetric changes in pulmonary nodules correlates with physical measurements of stiffness.

    PubMed

    Lartey, Frederick M; Rafat, Marjan; Negahdar, Mohammadreza; Malkovskiy, Andrey V; Dong, Xinzhe; Sun, Xiaoli; Li, Mei; Doyle, Timothy; Rajadas, Jayakumar; Graves, Edward E; Loo, Billy W; Maxim, Peter G

    2017-02-01

    A major challenge in CT screening for lung cancer is limited specificity when distinguishing between malignant and non-malignant pulmonary nodules (PN). Malignant nodules have different mechanical properties and tissue characteristics ('stiffness') from non-malignant nodules. This study seeks to improve CT specificity by demonstrating in rats that measurements of volumetric ratios in PNs with varying composition can be determined by respiratory-gated dynamic CT imaging and that these ratios correlate with direct physical measurements of PN stiffness. Respiratory-gated MicroCT images acquired at extreme tidal volumes of 9 rats with PNs from talc, matrigel and A549 human lung carcinoma were analyzed and their volumetric ratios (δ) derived. PN stiffness was determined by measuring the Young's modulus using atomic force microscopy (AFM) for each nodule excised immediately after MicroCT imaging. There was significant correlation (p=0.0002) between PN volumetric ratios determined by respiratory-gated CT imaging and the physical stiffness of the PNs determined from AFM measurements. We demonstrated proof of concept that PN volume changes measured non-invasively correlate with direct physical measurements of stiffness. These results may translate clinically into a means of improving the specificity of CT screening for lung cancer and/or improving individual prognostic assessments based on lung tumor stiffness. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Iterative reconstruction of volumetric particle distribution

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard

    2013-02-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.

  18. Effects of volumetric expansion in molecular crystals: A quantum mechanical investigation on aspirin and paracetamol most stable polymorphs

    NASA Astrophysics Data System (ADS)

    Adhikari, Kapil; Flurchick, Kenneth M.; Valenzano, Loredana

    2015-02-01

    This work reports a study performed at hybrid semi-empirical density functional level (B3LYP-D2*) of the physico-chemical properties of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) in their most stable crystalline forms. It is shown how effects arising from volumetric expansions influence the properties of the materials. Structural, energetic, and vibrational properties are in good agreement with experimental values reported at temperatures far from 0 K. Results show that the proposed approach is reliable enough to reproduce effects of volumetric expansion on lattice energies and other measurable physico-chemical observables related to inter-molecular forces.

  19. Delay Discounting of Self-Determined and Experimenter-Determined Commodities

    ERIC Educational Resources Information Center

    Weatherly, Jeffrey N.; Gudding, Jennifer; Derenne, Adam

    2010-01-01

    Research suggests that individuals prefer self-determined reinforcers over experimenter-determined ones. The present study had 518 college students complete a delay-discounting task in which the commodity was cigarettes, a grocery store gift card, casino tokens, cash, or the choice of the four. The least amount of delay discounting was observed…

  20. Effect of volumetric organic loading on the nitrogen removal rate by immobilised activated sludge.

    PubMed

    Zielinska, M; Wojnowska-Baryla, I

    2006-05-01

    Activated sludge was immobilised in a porous ceramic carrier to create a stationary core of a bio-reactor. Municipal wastewater was treated in this reactor under varied conditions of volumetric organic loading rate (expressed by chemical oxygen demand (COD)) that were the following: 6.5, 8.0, 20.8, 48.8 g COD l(-1) d(-1). The rate constants of ammonification, nitrification and denitrification under aerobic conditions were determined. All rate constants increased with a growth in volumetric loading rate, but the highest loading value of 48.8 g COD l(-1) d(-1) limited the ammonification and nitrification rates.

  1. Extended Kalman filtering for continuous volumetric MR-temperature imaging.

    PubMed

    Denis de Senneville, Baudouin; Roujol, Sébastien; Hey, Silke; Moonen, Chrit; Ries, Mario

    2013-04-01

    Real time magnetic resonance (MR) thermometry has evolved into the method of choice for the guidance of high-intensity focused ultrasound (HIFU) interventions. For this role, MR-thermometry should preferably have a high temporal and spatial resolution and allow observing the temperature over the entire targeted area and its vicinity with a high accuracy. In addition, the precision of real time MR-thermometry for therapy guidance is generally limited by the available signal-to-noise ratio (SNR) and the influence of physiological noise. MR-guided HIFU would benefit of the large coverage volumetric temperature maps, including characterization of volumetric heating trajectories as well as near- and far-field heating. In this paper, continuous volumetric MR-temperature monitoring was obtained as follows. The targeted area was continuously scanned during the heating process by a multi-slice sequence. Measured data and a priori knowledge of 3-D data derived from a forecast based on a physical model were combined using an extended Kalman filter (EKF). The proposed reconstruction improved the temperature measurement resolution and precision while maintaining guaranteed output accuracy. The method was evaluated experimentally ex vivo on a phantom, and in vivo on a porcine kidney, using HIFU heating. On the in vivo experiment, it allowed the reconstruction from a spatio-temporally under-sampled data set (with an update rate for each voxel of 1.143 s) to a 3-D dataset covering a field of view of 142.5×285×54 mm(3) with a voxel size of 3×3×6 mm(3) and a temporal resolution of 0.127 s. The method also provided noise reduction, while having a minimal impact on accuracy and latency.

  2. Volumetric graphics in liquid using holographic femtosecond laser pulse excitations

    NASA Astrophysics Data System (ADS)

    Kumagai, Kota; Hayasaki, Yoshio

    2017-06-01

    Much attention has been paid to the development of three-dimensional volumetric displays in the fields of optics and computer graphics, and it is a dream of we display researchers. However, full-color volumetric displays are challenging because many voxels with different colors have to be formed to render volumetric graphics in real three-dimensional space. Here, we show a new volumetric display in which microbubble voxels are three-dimensionally generated in a liquid by focused femtosecond laser pulses. Use of a high-viscosity liquid, which is the key idea of this system, slows down the movement of the microbubbles, and as a result, volumetric graphics can be displayed. This "volumetric bubble display" has a wide viewing angle and simple refresh and requires no addressing wires because it involves optical access to transparent liquid and achieves full-color graphics composed on light-scattering voxels controlled by illumination light sources. In addition, a bursting of bubble graphics system using an ultrasonic vibrator also has been demonstrated. This technology will open up a wide range of applications in three-dimensional displays, augmented reality and computer graphics.

  3. Volumetric flow rate in simulations of microfluidic devices+

    NASA Astrophysics Data System (ADS)

    Kovalčíková, KristÍna; Slavík, Martin; Bachratá, Katarína; Bachratý, Hynek; Bohiniková, Alžbeta

    2018-06-01

    In this work, we examine the volumetric flow rate of microfluidic devices. The volumetric flow rate is a parameter which is necessary to correctly set up a simulation of a real device and to check the conformity of a simulation and a laboratory experiments [1]. Instead of defining the volumetric rate at the beginning as a simulation parameter, a parameter of external force is set. The proposed hypothesis is that for a fixed set of other parameters (topology, viscosity of the liquid, …) the volumetric flow rate is linearly dependent on external force in typical ranges of fluid velocity used in our simulations. To confirm this linearity hypothesis and to find numerical limits of this approach, we test several values of the external force parameter. The tests are designed for three different topologies of simulation box and for various haematocrits. The topologies of the microfluidic devices are inspired by existing laboratory experiments [3 - 6]. The linear relationship between the external force and the volumetric flow rate is verified in orders of magnitudes similar to the values obtained from laboratory experiments. Supported by the Slovak Research and Development Agency under the contract No. APVV-15-0751 and by the Ministry of Education, Science, Research and Sport of the Slovak Republic under the contract No. VEGA 1/0643/17.

  4. Indexing Volumetric Shapes with Matching and Packing

    PubMed Central

    Koes, David Ryan; Camacho, Carlos J.

    2014-01-01

    We describe a novel algorithm for bulk-loading an index with high-dimensional data and apply it to the problem of volumetric shape matching. Our matching and packing algorithm is a general approach for packing data according to a similarity metric. First an approximate k-nearest neighbor graph is constructed using vantage-point initialization, an improvement to previous work that decreases construction time while improving the quality of approximation. Then graph matching is iteratively performed to pack related items closely together. The end result is a dense index with good performance. We define a new query specification for shape matching that uses minimum and maximum shape constraints to explicitly specify the spatial requirements of the desired shape. This specification provides a natural language for performing volumetric shape matching and is readily supported by the geometry-based similarity search (GSS) tree, an indexing structure that maintains explicit representations of volumetric shape. We describe our implementation of a GSS tree for volumetric shape matching and provide a comprehensive evaluation of parameter sensitivity, performance, and scalability. Compared to previous bulk-loading algorithms, we find that matching and packing can construct a GSS-tree index in the same amount of time that is denser, flatter, and better performing, with an observed average performance improvement of 2X. PMID:26085707

  5. Exploring interaction with 3D volumetric displays

    NASA Astrophysics Data System (ADS)

    Grossman, Tovi; Wigdor, Daniel; Balakrishnan, Ravin

    2005-03-01

    Volumetric displays generate true volumetric 3D images by actually illuminating points in 3D space. As a result, viewing their contents is similar to viewing physical objects in the real world. These displays provide a 360 degree field of view, and do not require the user to wear hardware such as shutter glasses or head-trackers. These properties make them a promising alternative to traditional display systems for viewing imagery in 3D. Because these displays have only recently been made available commercially (e.g., www.actuality-systems.com), their current use tends to be limited to non-interactive output-only display devices. To take full advantage of the unique features of these displays, however, it would be desirable if the 3D data being displayed could be directly interacted with and manipulated. We investigate interaction techniques for volumetric display interfaces, through the development of an interactive 3D geometric model building application. While this application area itself presents many interesting challenges, our focus is on the interaction techniques that are likely generalizable to interactive applications for other domains. We explore a very direct style of interaction where the user interacts with the virtual data using direct finger manipulations on and around the enclosure surrounding the displayed 3D volumetric image.

  6. Cost-effectiveness of volumetric alcohol taxation in Australia.

    PubMed

    Byrnes, Joshua M; Cobiac, Linda J; Doran, Christopher M; Vos, Theo; Shakeshaft, Anthony P

    2010-04-19

    To estimate the potential health benefits and cost savings of an alcohol tax rate that applies equally to all alcoholic beverages based on their alcohol content (volumetric tax) and to compare the cost savings with the cost of implementation. Mathematical modelling of three scenarios of volumetric alcohol taxation for the population of Australia: (i) no change in deadweight loss, (ii) no change in tax revenue, and (iii) all alcoholic beverages taxed at the same rate as spirits. Estimated change in alcohol consumption, tax revenue and health benefit. The estimated cost of changing to a volumetric tax rate is $18 million. A volumetric tax that is deadweight loss-neutral would increase the cost of beer and wine and reduce the cost of spirits, resulting in an estimated annual increase in taxation revenue of $492 million and a 2.77% reduction in annual consumption of pure alcohol. The estimated net health gain would be 21 000 disability-adjusted life-years (DALYs), with potential cost offsets of $110 million per annum. A tax revenue-neutral scenario would result in an 0.05% decrease in consumption, and a tax on all alcohol at a spirits rate would reduce consumption by 23.85% and increase revenue by $3094 million [corrected]. All volumetric tax scenarios would provide greater health benefits and cost savings to the health sector than the existing taxation system, based on current understandings of alcohol-related health effects. An equalized volumetric tax that would reduce beer and wine consumption while increasing the consumption of spirits would need to be approached with caution. Further research is required to examine whether alcohol-related health effects vary by type of alcoholic beverage independent of the amount of alcohol consumed to provide a strong evidence platform for alcohol taxation policies.

  7. Noncalcified Lung Nodules: Volumetric Assessment with Thoracic CT

    PubMed Central

    Gavrielides, Marios A.; Kinnard, Lisa M.; Myers, Kyle J.; Petrick, Nicholas

    2009-01-01

    Lung nodule volumetry is used for nodule diagnosis, as well as for monitoring tumor response to therapy. Volume measurement precision and accuracy depend on a number of factors, including image-acquisition and reconstruction parameters, nodule characteristics, and the performance of algorithms for nodule segmentation and volume estimation. The purpose of this article is to provide a review of published studies relevant to the computed tomographic (CT) volumetric analysis of lung nodules. A number of underexamined areas of research regarding volumetric accuracy are identified, including the measurement of nonsolid nodules, the effects of pitch and section overlap, and the effect of respiratory motion. The need for public databases of phantom scans, as well as of clinical data, is discussed. The review points to the need for continued research to examine volumetric accuracy as a function of a multitude of interrelated variables involved in the assessment of lung nodules. Understanding and quantifying the sources of volumetric measurement error in the assessment of lung nodules with CT would be a first step toward the development of methods to minimize that error through system improvements and to correctly account for any remaining error. © RSNA, 2009 PMID:19332844

  8. Effect of inflow discharges on the development of matric suction and volumetric water content for dike during overtopping tests

    NASA Astrophysics Data System (ADS)

    Hassan, Marwan A.; Ismail, Mohd A. M.

    2017-10-01

    The point of this review is to depict the impact of various inflow discharge rate releases on the instruments of matric suction and volumetric water content during an experimental test of spatial overtopping failure at school of civil engineering in universiti Sains of Malaysia. A dry sand dike was conducted inside small flume channel with twelve sensors of tensiometer and Time-Domain Reflectometer (TDR). Instruments are installed in the soil at different locations in downstream and upstream slopes of the dike for measuring the response of matric suction and volumetric water content, respectively. Two values of inflow discharge rates of 30 and 40 L/min are utilized as a part of these experiments to simulate the effectiveness of water reservoirs in erosion mechanism. The outcomes demonstrate that the matric suction and volumetric water content are decreased and increased, respectively for both inflow discharges. The higher inflow discharges accelerate the saturation of dike soil and the erosion process faster than that for the lower inflow discharges.

  9. Power Outputs and Volumetric Eruption Rates for Ionian Volcanoes from Galileo-NIMS Data

    NASA Technical Reports Server (NTRS)

    Davies, A. G.

    2001-01-01

    Volumetric eruption rates for a number of Io volcanoes are calculated as a function of volcanic thermal output. Thermal output is determined using 2-temperature fits to NIMS data. Typical eruption rates are larger than terrestrial eruptions of similar style. Additional information is contained in the original extended abstract.

  10. Light-Curing Volumetric Shrinkage in Dimethacrylate-Based Dental Composites by Nanoindentation and PAL Study.

    PubMed

    Shpotyuk, Olha; Adamiak, Stanislaw; Bezvushko, Elvira; Cebulski, Jozef; Iskiv, Maryana; Shpotyuk, Oleh; Balitska, Valentina

    2017-12-01

    Light-curing volumetric shrinkage in dimethacrylate-based dental resin composites Dipol® is examined through comprehensive kinetics research employing nanoindentation measurements and nanoscale atomic-deficient study with lifetime spectroscopy of annihilating positrons. Photopolymerization kinetics determined through nanoindentation testing is shown to be described via single-exponential relaxation function with character time constants reaching respectively 15.0 and 18.7 s for nanohardness and elastic modulus. Atomic-deficient characteristics of composites are extracted from positron lifetime spectra parameterized employing unconstrained x3-term fitting. The tested photopolymerization kinetics can be adequately reflected in time-dependent changes observed in average positron lifetime (with 17.9 s time constant) and fractional free volume of positronium traps (with 18.6 s time constant). This correlation proves that fragmentation of free-volume positronium-trapping sites accompanied by partial positronium-to-positron traps conversion determines the light-curing volumetric shrinkage in the studied composites.

  11. Performance-scalable volumetric data classification for online industrial inspection

    NASA Astrophysics Data System (ADS)

    Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.

    2002-03-01

    Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.

  12. Verbal Memory Decline following DBS for Parkinson’s Disease: Structural Volumetric MRI Relationships

    PubMed Central

    Geevarghese, Ruben; Lumsden, Daniel E.; Costello, Angela; Hulse, Natasha; Ayis, Salma; Samuel, Michael; Ashkan, Keyoumars

    2016-01-01

    Background Parkinson’s disease is a chronic degenerative movement disorder. The mainstay of treatment is medical. In certain patients Deep Brain Stimulation (DBS) may be offered. However, DBS has been associated with post-operative neuropsychology changes, especially in verbal memory. Objectives Firstly, to determine if pre-surgical thalamic and hippocampal volumes were related to verbal memory changes following DBS. Secondly, to determine if clinical factors such as age, duration of symptoms or motor severity (UPDRS Part III score) were related to verbal memory changes. Methods A consecutive group of 40 patients undergoing bilateral Subthalamic Nucleus (STN)-DBS for PD were selected. Brain MRI data was acquired, pre-processed and structural volumetric data was extracted using FSL. Verbal memory test scores for pre- and post-STN-DBS surgery were recorded. Linear regression was used to investigate the relationship between score change and structural volumetric data. Results A significant relationship was demonstrated between change in List Learning test score and thalamic (left, p = 0.02) and hippocampal (left, p = 0.02 and right p = 0.03) volumes. Duration of symptoms was also associated with List Learning score change (p = 0.02 to 0.03). Conclusion Verbal memory score changes appear to have a relationship to pre-surgical MRI structural volumetric data. The findings of this study provide a basis for further research into the use of pre-surgical MRI to counsel PD patients regarding post-surgical verbal memory changes. PMID:27557088

  13. Multiple sparse volumetric priors for distributed EEG source reconstruction.

    PubMed

    Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan

    2014-10-15

    We revisit the multiple sparse priors (MSP) algorithm implemented in the statistical parametric mapping software (SPM) for distributed EEG source reconstruction (Friston et al., 2008). In the present implementation, multiple cortical patches are introduced as source priors based on a dipole source space restricted to a cortical surface mesh. In this note, we present a technique to construct volumetric cortical regions to introduce as source priors by restricting the dipole source space to a segmented gray matter layer and using a region growing approach. This extension allows to reconstruct brain structures besides the cortical surface and facilitates the use of more realistic volumetric head models including more layers, such as cerebrospinal fluid (CSF), compared to the standard 3-layered scalp-skull-brain head models. We illustrated the technique with ERP data and anatomical MR images in 12 subjects. Based on the segmented gray matter for each of the subjects, cortical regions were created and introduced as source priors for MSP-inversion assuming two types of head models. The standard 3-layered scalp-skull-brain head models and extended 4-layered head models including CSF. We compared these models with the current implementation by assessing the free energy corresponding with each of the reconstructions using Bayesian model selection for group studies. Strong evidence was found in favor of the volumetric MSP approach compared to the MSP approach based on cortical patches for both types of head models. Overall, the strongest evidence was found in favor of the volumetric MSP reconstructions based on the extended head models including CSF. These results were verified by comparing the reconstructed activity. The use of volumetric cortical regions as source priors is a useful complement to the present implementation as it allows to introduce more complex head models and volumetric source priors in future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Volumetric 3D Display System with Static Screen

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  15. On the Stefan Problem with Volumetric Energy Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Crepeau; Ali Siahpush; Blaine Spotten

    2009-11-01

    This paper presents results of solid-liquid phase change, driven by volumetric energy generation, in a vertical cylinder. We show excellent agreement between a quasi-static, approximate analytical solution valid for Stefan numbers less than one, and a computational model solved using the CFD code FLUENT®. A computational study also shows the effect that the volumetric energy generation has on both the mushy zone thickness and convection in the melt during phase change.

  16. A comparison of 1D and 1.5D arrays for imaging volumetric flaws in small bore pipework

    NASA Astrophysics Data System (ADS)

    Barber, T. S.; Wilcox, P. D.; Nixon, A. D.

    2015-03-01

    1.5D arrays can be seen as a potentially ideal compromise between 1D arrays and 2D matrix arrays in terms of focusing capability, element density, weld coverage and data processing time. This paper presents an initial study of 1D and 1.5D arrays for high frequency (15MHz) imaging of volumetric flaws in small-bore (30-60mm outer diameter) thin-walled (3-8mm) pipework. A combination of 3D modelling and experimental work is used to determine Signal to Noise Ratio (SNR) improvement with a strong relationship between SNR and the longer dimension of element size observed. Similar behavior is demonstrated experimentally rendering a 1mm diameter Flat Bottom Hole (FBH) in Copper-Nickel alloy undetectable using a larger array element. A 3-5dB SNR increase is predicted when using a 1.5D array assuming a spherical reflector and a 2dB increase was observed on experimental trials with a FBH. It is argued that this improvement is likely to be a lower bound estimate due to the specular behavior of a FBH with future trials planned on welded samples with realistic flaws.

  17. Volumetric full-range magnetomotive optical coherence tomography

    PubMed Central

    Ahmad, Adeel; Kim, Jongsik; Shemonski, Nathan D.; Marjanovic, Marina; Boppart, Stephen A.

    2014-01-01

    Abstract. Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique. PMID:25472770

  18. Handheld real-time volumetric imaging of the spine: technology development.

    PubMed

    Tiouririne, Mohamed; Nguyen, Sarah; Hossack, John A; Owen, Kevin; William Mauldin, F

    2014-03-01

    Technical difficulties, poor image quality and reliance on pattern identifications represent some of the drawbacks of two-dimensional ultrasound imaging of spinal bone anatomy. To overcome these limitations, this study sought to develop real-time volumetric imaging of the spine using a portable handheld device. The device measured 19.2 cm × 9.2 cm × 9.0 cm and imaged at 5 MHz centre frequency. 2D imaging under conventional ultrasound and volumetric (3D) imaging in real time was achieved and verified by inspection using a custom spine phantom. Further device performance was assessed and revealed a 75-min battery life and an average frame rate of 17.7 Hz in volumetric imaging mode. The results suggest that real-time volumetric imaging of the spine is a feasible technique for more intuitive visualization of the spine. These results may have important ramifications for a large array of neuraxial procedures.

  19. Why Students Fail at Volumetric Analysis.

    ERIC Educational Resources Information Center

    Pickering, Miles

    1979-01-01

    Investigates the reasons for students' failure in an introductory volumetric analysis course by analyzing test papers and judging them against a hypothetical ideal method of grading laboratory techniques. (GA)

  20. Flexible Volumetric Structure

    NASA Technical Reports Server (NTRS)

    Cagle, Christopher M. (Inventor); Schlecht, Robin W. (Inventor)

    2014-01-01

    A flexible volumetric structure has a first spring that defines a three-dimensional volume and includes a serpentine structure elongatable and compressible along a length thereof. A second spring is coupled to at least one outboard edge region of the first spring. The second spring is a sheet-like structure capable of elongation along an in-plane dimension thereof. The second spring is oriented such that its in-plane dimension is aligned with the length of the first spring's serpentine structure.

  1. Critical Factors Driving the High Volumetric Uptake of Methane in Cu₃(btc)₂.

    PubMed

    Hulvey, Zeric; Vlaisavljevich, Bess; Mason, Jarad A; Tsivion, Ehud; Dougherty, Timothy P; Bloch, Eric D; Head-Gordon, Martin; Smit, Berend; Long, Jeffrey R; Brown, Craig M

    2015-08-26

    A thorough experimental and computational study has been carried out to elucidate the mechanistic reasons for the high volumetric uptake of methane in the metal-organic framework Cu3(btc)2 (btc(3-) = 1,3,5-benzenetricarboxylate; HKUST-1). Methane adsorption data measured at several temperatures for Cu3(btc)2, and its isostructural analogue Cr3(btc)2, show that there is little difference in volumetric adsorption capacity when the metal center is changed. In situ neutron powder diffraction data obtained for both materials were used to locate four CD4 adsorption sites that fill sequentially. This data unequivocally shows that primary adsorption sites around, and within, the small octahedral cage in the structure are favored over the exposed Cu(2+) or Cr(2+) cations. These results are supported by an exhaustive parallel computational study, and contradict results recently reported using a time-resolved diffraction structure envelope (TRDSE) method. Moreover, the computational study reveals that strong methane binding at the open metal sites is largely due to methane-methane interactions with adjacent molecules adsorbed at the primary sites instead of an electronic interaction with the metal center. Simulated methane adsorption isotherms for Cu3(btc)2 are shown to exhibit excellent agreement with experimental isotherms, allowing for additional simulations that show that modifications to the metal center, ligand, or even tuning the overall binding enthalpy would not improve the working capacity for methane storage over that measured for Cu3(btc)2 itself.

  2. Volumetrically Derived Thermodynamic Profile of Interactions of Urea with a Native Protein.

    PubMed

    Son, Ikbae; Chalikian, Tigran V

    2016-11-29

    We report the first experimental characterization of the full thermodynamic profile for binding of urea to a native protein. We measured the volumetric parameters of lysozyme at pH 7.0 as a function of urea within a temperature range of 18-45 °C. At neutral pH, lysozyme retains its native conformation between 0 and 8 M urea over the entire range of temperatures studied. Consequently, our measured volumetric properties reflect solely the interactions of urea with the native protein and do not involve contributions from urea-induced conformational transitions. We analyzed our data within the framework of a statistical thermodynamic analytical model in which urea-protein interactions are viewed as solvent exchange in the vicinity of the protein. The analysis produced the equilibrium constant, k, for an elementary reaction of urea-protein binding with a change in standard state free energy (ΔG° = -RT ln k) at each experimental temperature. We used the van't Hoff equation to compute from the temperature dependence of the equilibrium constant, k, changes in enthalpy, ΔH°, and entropy, ΔS°, accompanying binding. The thermodynamic profile of urea-protein interactions, in conjunction with published molecular dynamics simulation results, is consistent with the picture in which urea molecules, being underhydrated in the bulk, form strong, enthalpically favorable interactions with the surface protein groups while paying a high entropic price. We discuss ramifications of our results for providing insights into the combined effects of urea, temperature, and pressure on the conformational preferences of proteins.

  3. A prospective pilot study measuring muscle volumetric change in amyotrophic lateral sclerosis.

    PubMed

    Jenkins, Thomas M; Burness, Christine; Connolly, Daniel J; Rao, D Ganesh; Hoggard, Nigel; Mawson, Susan; McDermott, Christopher J; Wilkinson, Iain D; Shaw, Pamela J

    2013-09-01

    Our objective was to investigate the potential of muscle volume, measured with magnetic resonance (MR), as a biomarker to quantify disease progression in patients with amyotrophic lateral sclerosis (ALS). In this longitudinal pilot study, we first sought to determine the stability of volumetric muscle MR measurements in 11 control subjects at two time-points. We assessed feasibility of detecting atrophy in four patients with ALS, followed at three-month intervals for 12 months. Muscle power and MR volume were measured in thenar eminence (TEm), first dorsal interosseous (1DIO), tibialis anterior (TA) and tongue. Changes over time were assessed using linear regression models and t-tests. Results demonstrated that, in controls, no volumetric MR changes were seen (mean volume variation in all muscles < 5%, p > 0.1). In patients, between-subject heterogeneity was identified. Trends for volume loss were found in TEm (mean, - 26.84%, p = 0.056) and TA (- 8.29%, p = 0.077), but not in 1DIO (- 18.47%, p = 0.121) or tongue (< 5%, p = 0.367). In conclusion, volumetric muscle MR appears a stable measure in controls, and progressive volume loss was demonstrable in individuals with ALS in whom clinical weakness progressed. In this small study, subclinical atrophy was not demonstrable using muscle MR. Clinico-radiological discordance between muscle weakness and MR atrophy could reflect a contribution of upper motor neuron pathology.

  4. Linear and volumetric dimensional changes of injection-molded PMMA denture base resins.

    PubMed

    El Bahra, Shadi; Ludwig, Klaus; Samran, Abdulaziz; Freitag-Wolf, Sandra; Kern, Matthias

    2013-11-01

    The aim of this study was to evaluate the linear and volumetric dimensional changes of six denture base resins processed by their corresponding injection-molding systems at 3 time intervals of water storage. Two heat-curing (SR Ivocap Hi Impact and Lucitone 199) and four auto-curing (IvoBase Hybrid, IvoBase Hi Impact, PalaXpress, and Futura Gen) acrylic resins were used with their specific injection-molding technique to fabricate 6 specimens of each material. Linear and volumetric dimensional changes were determined by means of a digital caliper and an electronic hydrostatic balance, respectively, after water storage of 1, 30, or 90 days. Means and standard deviations of linear and volumetric dimensional changes were calculated in percentage (%). Statistical analysis was done using Student's and Welch's t tests with Bonferroni-Holm correction for multiple comparisons (α=0.05). Statistically significant differences in linear dimensional changes between resins were demonstrated at all three time intervals of water immersion (p≤0.05), with exception of the following comparisons which showed no significant difference: IvoBase Hi Impact/SR Ivocap Hi Impact and PalaXpress/Lucitone 199 after 1 day, Futura Gen/PalaXpress and PalaXpress/Lucitone 199 after 30 days, and IvoBase Hybrid/IvoBase Hi Impact after 90 days. Also, statistically significant differences in volumetric dimensional changes between resins were found at all three time intervals of water immersion (p≤0.05), with exception of the comparison between PalaXpress and Futura Gen. Denture base resins (IvoBase Hybrid and IvoBase Hi Impact) processed by the new injection-molding system (IvoBase), revealed superior dimensional precision. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Volumetric Light-field Encryption at the Microscopic Scale

    PubMed Central

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu

    2017-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale. PMID:28059149

  6. Volumetric Light-field Encryption at the Microscopic Scale

    NASA Astrophysics Data System (ADS)

    Li, Haoyu; Guo, Changliang; Muniraj, Inbarasan; Schroeder, Bryce C.; Sheridan, John T.; Jia, Shu

    2017-01-01

    We report a light-field based method that allows the optical encryption of three-dimensional (3D) volumetric information at the microscopic scale in a single 2D light-field image. The system consists of a microlens array and an array of random phase/amplitude masks. The method utilizes a wave optics model to account for the dominant diffraction effect at this new scale, and the system point-spread function (PSF) serves as the key for encryption and decryption. We successfully developed and demonstrated a deconvolution algorithm to retrieve both spatially multiplexed discrete data and continuous volumetric data from 2D light-field images. Showing that the method is practical for data transmission and storage, we obtained a faithful reconstruction of the 3D volumetric information from a digital copy of the encrypted light-field image. The method represents a new level of optical encryption, paving the way for broad industrial and biomedical applications in processing and securing 3D data at the microscopic scale.

  7. Modeling of macrosegregation caused by volumetric deformation in a coherent mushy zone

    NASA Astrophysics Data System (ADS)

    Nicolli, Lilia C.; Mo, Asbjørn; M'hamdi, Mohammed

    2005-02-01

    A two-phase volume-averaged continuum model is presented that quantifies macrosegregation formation during solidification of metallic alloys caused by deformation of the dendritic network and associated melt flow in the coherent part of the mushy zone. Also, the macrosegregation formation associated with the solidification shrinkage (inverse segregation) is taken into account. Based on experimental evidence established elsewhere, volumetric viscoplastic deformation (densification/dilatation) of the coherent dendritic network is included in the model. While the thermomechanical model previously outlined (M. M’Hamdi, A. Mo, and C.L. Martin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2081-93) has been used to calculate the temperature and velocity fields associated with the thermally induced deformations and shrinkage driven melt flow, the solute conservation equation including both the liquid and a solid volume-averaged velocity is solved in the present study. In modeling examples, the macrosegregation formation caused by mechanically imposed as well as by thermally induced deformations has been calculated. The modeling results for an Al-4 wt pct Cu alloy indicate that even quite small volumetric strains (≈2 pct), which can be associated with thermally induced deformations, can lead to a macroscopic composition variation in the final casting comparable to that resulting from the solidification shrinkage induced melt flow. These results can be explained by the relatively large volumetric viscoplastic deformation in the coherent mush resulting from the applied constitutive model, as well as the relatively large difference in composition for the studied Al-Cu alloy in the solid and liquid phases at high solid fractions at which the deformation takes place.

  8. Spatiotemporal image correlation-derived volumetric Doppler impedance indices from spherical samples of the placenta: intraobserver reliability and correlation with conventional umbilical artery Doppler indices.

    PubMed

    Welsh, A W; Hou, M; Meriki, N; Martins, W P

    2012-10-01

    Volumetric impedance indices derived from spatiotemporal image correlation (STIC) power Doppler ultrasound (PDU) might overcome the influence of machine settings and attenuation. We examined the feasibility of obtaining these indices from spherical samples of anterior placentas in healthy pregnancies, and assessed intraobserver reliability and correlation with conventional umbilical artery (UA) impedance indices. Uncomplicated singleton pregnancies with anterior placenta were included in the study. A single observer evaluated UA pulsatility index (PI), resistance index (RI) and systolic/diastolic ratio (S/D) and acquired three STIC-PDU datasets from the placenta just above the placental cord insertion. Another observer analyzed the STIC-PDU datasets using Virtual Organ Computer-aided AnaLysis (VOCAL) spherical samples from every frame to determine the vascularization index (VI) and vascularization flow index (VFI); maximum, minimum and average values were used to determine the three volumetric impedance indices (vPI, vRI, vS/D). Intraobserver reliability was examined by intraclass correlation coefficients (ICC) and association between volumetric indices from placenta, and UA Doppler indices were assessed by Pearson's correlation coefficient. A total of 25 pregnant women were evaluated but five were excluded because of artifacts observed during analysis. The reliability of measurement of volumetric indices of both VI and VFI from three STIC-PDU datasets was similar, with all ICCs ≥ 0.78. Pearson's r values showed a weak and non-significant correlation between UA pulsed-wave Doppler indices and their respective volumetric indices from spherical samples of placenta (all r ≥ 0.23). VOCAL indices from specific phases of the cardiac cycle showed good repeatability (ICC ≥ 0.92). Volumetric impedance indices determined from spherical samples of placenta are sufficiently reliable but do not correlate with UA Doppler indices in healthy pregnancies. Copyright © 2012

  9. Optimal experimental designs for the estimation of thermal properties of composite materials

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.; Moncman, Deborah A.

    1994-01-01

    Reliable estimation of thermal properties is extremely important in the utilization of new advanced materials, such as composite materials. The accuracy of these estimates can be increased if the experiments are designed carefully. The objectives of this study are to design optimal experiments to be used in the prediction of these thermal properties and to then utilize these designs in the development of an estimation procedure to determine the effective thermal properties (thermal conductivity and volumetric heat capacity). The experiments were optimized by choosing experimental parameters that maximize the temperature derivatives with respect to all of the unknown thermal properties. This procedure has the effect of minimizing the confidence intervals of the resulting thermal property estimates. Both one-dimensional and two-dimensional experimental designs were optimized. A heat flux boundary condition is required in both analyses for the simultaneous estimation of the thermal properties. For the one-dimensional experiment, the parameters optimized were the heating time of the applied heat flux, the temperature sensor location, and the experimental time. In addition to these parameters, the optimal location of the heat flux was also determined for the two-dimensional experiments. Utilizing the optimal one-dimensional experiment, the effective thermal conductivity perpendicular to the fibers and the effective volumetric heat capacity were then estimated for an IM7-Bismaleimide composite material. The estimation procedure used is based on the minimization of a least squares function which incorporates both calculated and measured temperatures and allows for the parameters to be estimated simultaneously.

  10. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  11. Estimation of effective x-ray tissue attenuation differences for volumetric breast density measurement

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Ruth, Chris; Jing, Zhenxue; Ren, Baorui; Smith, Andrew; Kshirsagar, Ashwini

    2014-03-01

    Breast density has been identified to be a risk factor of developing breast cancer and an indicator of lesion diagnostic obstruction due to masking effect. Volumetric density measurement evaluates fibro-glandular volume, breast volume, and breast volume density measures that have potential advantages over area density measurement in risk assessment. One class of volume density computing methods is based on the finding of the relative fibro-glandular tissue attenuation with regards to the reference fat tissue, and the estimation of the effective x-ray tissue attenuation differences between the fibro-glandular and fat tissue is key to volumetric breast density computing. We have modeled the effective attenuation difference as a function of actual x-ray skin entrance spectrum, breast thickness, fibro-glandular tissue thickness distribution, and detector efficiency. Compared to other approaches, our method has threefold advantages: (1) avoids the system calibration-based creation of effective attenuation differences which may introduce tedious calibrations for each imaging system and may not reflect the spectrum change and scatter induced overestimation or underestimation of breast density; (2) obtains the system specific separate and differential attenuation values of fibroglandular and fat for each mammographic image; and (3) further reduces the impact of breast thickness accuracy to volumetric breast density. A quantitative breast volume phantom with a set of equivalent fibro-glandular thicknesses has been used to evaluate the volume breast density measurement with the proposed method. The experimental results have shown that the method has significantly improved the accuracy of estimating breast density.

  12. Experimental study of the density of the helium-nitrogen gas system at low temperatures.

    NASA Astrophysics Data System (ADS)

    Milyutin, V. A.

    2017-11-01

    At the Department of TOT, an experimental setup was created to measure the density of a binary gas system from 100 to 300 K and pressures up to 16 MPa and with any mixture compositions. Experimental density for the helium-nitrogen system were determined by the piezometer of constant volume method. The amount of substance in the piezometer was measured by volumetric method. In this setup, the mixture of He - N2 was prepared in a special mixer for a series of p-v-T experiments, the concentration was determined by calculation using the equations of state of pure components. In the experiment, mixtures were prepared with molar concentrations, lying close to the range: 0.2, 0.4, 0.6 and 0.8.

  13. Volumetric Imaging and Characterization of Focusing Waveguide Grating Couplers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzenmeyer, Aaron Michael; McGuinness, Hayden James Evans; Starbuck, Andrew Lea

    Volumetric imaging of focusing waveguide grating coupler emission with high spatial resolution in the visible (λ = 637.3 nm) is demonstrated using a scanning near-field optical microscope with long z-axis travel range. Stacks of 2-D images recorded at fixed distance from the device are compiled to yield 3-D visualization of the light emission pattern and enable extraction of parameters, such as spot size, angle of emission, and focal height. Measurements of such parameters are not prevalent in the literature yet are necessary for efficacious design and integration. As a result, it is observed that finite-difference time-domain simulations based on fabricationmore » layout files do not perfectly predict in-hand device behavior, underscoring the merit of experimental validation, particularly for critical application.« less

  14. Volumetric Imaging and Characterization of Focusing Waveguide Grating Couplers

    DOE PAGES

    Katzenmeyer, Aaron Michael; McGuinness, Hayden James Evans; Starbuck, Andrew Lea; ...

    2017-08-29

    Volumetric imaging of focusing waveguide grating coupler emission with high spatial resolution in the visible (λ = 637.3 nm) is demonstrated using a scanning near-field optical microscope with long z-axis travel range. Stacks of 2-D images recorded at fixed distance from the device are compiled to yield 3-D visualization of the light emission pattern and enable extraction of parameters, such as spot size, angle of emission, and focal height. Measurements of such parameters are not prevalent in the literature yet are necessary for efficacious design and integration. As a result, it is observed that finite-difference time-domain simulations based on fabricationmore » layout files do not perfectly predict in-hand device behavior, underscoring the merit of experimental validation, particularly for critical application.« less

  15. Volumetric response of intracranial meningioma after photon or particle irradiation.

    PubMed

    Mozes, Petra; Dittmar, Jan Oliver; Habermehl, Daniel; Tonndorf-Martini, Eric; Hideghety, Katalin; Dittmar, Anne; Debus, Jürgen; Combs, Stephanie E

    2017-03-01

    Meningiomas are usually slow growing, well circumscribed intracranial tumors. In symptom-free cases observation with close follow-up imaging could be performed. Symptomatic meningiomas could be surgically removed and/or treated with radiotherapy. The study aimed to evaluate the volumetric response of intracranial meningiomas at different time points after photon, proton, and a mixed photon and carbon ion boost irradiation. In Group A 38 patients received proton therapy (median dose: 56 GyE in 1.8-2 GyE daily fractions) or a mixed photon/carbon ion therapy (50 Gy in 2 Gy daily fractions with intensity modulated radiotherapy (IMRT) and 18 GyE in 3 GyE daily dose carbon ion boost). Thirty-nine patients (Group B) were treated by photon therapy with IMRT or fractionated stereotactic radiotherapy technique (median dose: 56 Gy in 1.8-2 Gy daily fractions). The delineation of the tumor volume was based on the initial, one- and two-year follow-up magnetic resonance imaging and these volumes were compared to evaluate the volumetric tumor response. Significant tumor volume shrinkage was detected at one- and at two-year follow-up both after irradiation by particles and by photons. No significant difference in tumor volume change was observed between photon, proton or combined photon plus carbon ion boost treated patients. WHO grade and gender appear to be determining factors for tumor volume shrinkage. Significant volumetric shrinkage of meningiomas could be observed independently of the applied radiation modality. Long-term follow-up is recommended to evaluate further dynamic of size reduction and its correlation with outcome data.

  16. Experimental determination of thermodynamic equilibrium in biocatalytic transamination.

    PubMed

    Tufvesson, Pär; Jensen, Jacob S; Kroutil, Wolfgang; Woodley, John M

    2012-08-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones. Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore, in this communication we suggest a simple experimental methodology which we hope will stimulate more accurate determination of thermodynamic equilibria when reporting the results of transaminase-catalyzed reactions in order to increase understanding of the relationship between substrate and product molecular structure on reaction thermodynamics. Copyright © 2012 Wiley Periodicals, Inc.

  17. New approaches in renal microscopy: volumetric imaging and superresolution microscopy.

    PubMed

    Kim, Alfred H J; Suleiman, Hani; Shaw, Andrey S

    2016-05-01

    Histologic and electron microscopic analysis of the kidney has provided tremendous insight into structures such as the glomerulus and nephron. Recent advances in imaging, such as deep volumetric approaches and superresolution microscopy, have the capacity to dramatically enhance our current understanding of the structure and function of the kidney. Volumetric imaging can generate images millimeters below the surface of the intact kidney. Superresolution microscopy breaks the diffraction barrier inherent in traditional light microscopy, enabling the visualization of fine structures. Here, we describe new approaches to deep volumetric and superresolution microscopy of the kidney. Rapid advances in lasers, microscopic objectives, and tissue preparation have transformed our ability to deep volumetric image the kidney. Innovations in sample preparation have allowed for superresolution imaging with electron microscopy correlation, providing unprecedented insight into the structures within the glomerulus. Technological advances in imaging have revolutionized our capacity to image both large volumes of tissue and the finest structural details of a cell. These new advances have the potential to provide additional profound observations into the normal and pathologic functions of the kidney.

  18. Influence of pore pressure change on coseismic volumetric strain

    USGS Publications Warehouse

    Wang, Chi-Yuen; Barbour, Andrew J.

    2017-01-01

    Coseismic strain is fundamentally important for understanding crustal response to changes of stress after earthquakes. The elastic dislocation model has been widely applied to interpreting observed shear deformation caused by earthquakes. The application of the same theory to interpreting volumetric strain, however, has met with difficulty, especially in the far field of earthquakes. Predicted volumetric strain with dislocation model often differs substantially, and sometimes of opposite signs, from observed coseismic volumetric strains. The disagreement suggests that some processes unaccounted for by the dislocation model may occur during earthquakes. Several hypotheses have been suggested, but none have been tested quantitatively. In this paper we first examine published data to highlight the difference between the measured and calculated static coseismic volumetric strains; we then use these data to provide quantitative test of the model that the disagreement may be explained by the change of pore pressure in the shallow crust. The test allows us to conclude that coseismic change of pore pressure may be an important mechanism for coseismic crustal strain and, in the far field, may even be the dominant mechanism. Thus in the interpretation of observed coseismic crustal strain, one needs to account not only for the elastic strain due to fault rupture but also for the strain due to coseismic change of pore pressure.

  19. Experimental determination of Ramsey numbers.

    PubMed

    Bian, Zhengbing; Chudak, Fabian; Macready, William G; Clark, Lane; Gaitan, Frank

    2013-09-27

    Ramsey theory is a highly active research area in mathematics that studies the emergence of order in large disordered structures. Ramsey numbers mark the threshold at which order first appears and are extremely difficult to calculate due to their explosive rate of growth. Recently, an algorithm that can be implemented using adiabatic quantum evolution has been proposed that calculates the two-color Ramsey numbers R(m,n). Here we present results of an experimental implementation of this algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(m,2) for 4≤m≤8. The R(8,2) computation used 84 qubits of which 28 were computational qubits. This computation is the largest experimental implementation of a scientifically meaningful adiabatic evolution algorithm that has been done to date.

  20. Experimental Determination of Ramsey Numbers

    NASA Astrophysics Data System (ADS)

    Bian, Zhengbing; Chudak, Fabian; Macready, William G.; Clark, Lane; Gaitan, Frank

    2013-09-01

    Ramsey theory is a highly active research area in mathematics that studies the emergence of order in large disordered structures. Ramsey numbers mark the threshold at which order first appears and are extremely difficult to calculate due to their explosive rate of growth. Recently, an algorithm that can be implemented using adiabatic quantum evolution has been proposed that calculates the two-color Ramsey numbers R(m,n). Here we present results of an experimental implementation of this algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(m,2) for 4≤m≤8. The R(8,2) computation used 84 qubits of which 28 were computational qubits. This computation is the largest experimental implementation of a scientifically meaningful adiabatic evolution algorithm that has been done to date.

  1. Modeling and Representation of Human Hearts for Volumetric Measurement

    PubMed Central

    Guan, Qiu; Wang, Wanliang; Wu, Guang

    2012-01-01

    This paper investigates automatic construction of a three-dimensional heart model from a set of medical images, represents it in a deformable shape, and uses it to perform volumetric measurements. This not only significantly improves its reliability and accuracy but also makes it possible to derive valuable novel information, like various assessment and dynamic volumetric measurements. The method is based on a flexible model trained from hundreds of patient image sets by a genetic algorithm, which takes advantage of complete segmentation of the heart shape to form a geometrical heart model. For an image set of a new patient, an interpretation scheme is used to obtain its shape and evaluate some important parameters. Apart from automatic evaluation of traditional heart functions, some new information of cardiovascular diseases may be recognized from the volumetric analysis. PMID:22162723

  2. On the Uncertain Future of the Volumetric 3D Display Paradigm

    NASA Astrophysics Data System (ADS)

    Blundell, Barry G.

    2017-06-01

    Volumetric displays permit electronically processed images to be depicted within a transparent physical volume and enable a range of cues to depth to be inherently associated with image content. Further, images can be viewed directly by multiple simultaneous observers who are able to change vantage positions in a natural way. On the basis of research to date, we assume that the technologies needed to implement useful volumetric displays able to support translucent image formation are available. Consequently, in this paper we review aspects of the volumetric paradigm and identify important issues which have, to date, precluded their successful commercialization. Potentially advantageous characteristics are outlined and demonstrate that significant research is still needed in order to overcome barriers which continue to hamper the effective exploitation of this display modality. Given the recent resurgence of interest in developing commercially viable general purpose volumetric systems, this discussion is of particular relevance.

  3. Temperature and volumetric water content petrophysical relationships in municipal solid waste for the interpretation of bulk electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Pilawski, Tamara; Dumont, Gaël; Nguyen, Frédéric

    2015-04-01

    Landfills pose major environmental issues including long-term methane emissions, and local pollution of soil and aquifers but can also be seen as potential energy resources and mining opportunities. Water content in landfills determine whether solid fractions can be separated and recycled, and controls the existence and efficiency of natural or enhanced biodegradation. Geophysical techniques, such as electrical and electromagnetic methods have proven successful in the detection and qualitative investigation of sanitary landfills. However, their interpretation in terms of quantitative water content estimates makes it more challenging due to the influence of parameters such as temperature, compaction, waste composition or pore fluid. To improve the confidence given to bulk electrical resistivity data and to their interpretation, we established temperature and volumetric water content petrophysical relationships that we tested on field and laboratory electrical resistivity measurements. We carried out two laboratory experiments on leachates and waste samples from a landfill located in Mont-Saint-Guibert, Belgium. We determined a first relationship between temperature and electrical resistivity with pure and diluted leachates by progressively increasing the temperature from 5°C to 65°C, and then cooling down to 5°C. The second relationship was obtained by measuring electrical resistivity on waste samples of different volumetric water contents. First, we used the correlations obtained from the experiments to compare electrical resistivity measurements performed in a landfill borehole and on reworked waste samples excavated at different depths. Electrical resistivities were measured every 20cm with an electromagnetic logging device (EM39) while a temperature profile was acquired with optic fibres. Waste samples were excavated every 2m in the same borehole. We filled experimental columns with these samples and measured electrical resistivities at laboratory temperature

  4. Volumetric image interpretation in radiology: scroll behavior and cognitive processes.

    PubMed

    den Boer, Larissa; van der Schaaf, Marieke F; Vincken, Koen L; Mol, Chris P; Stuijfzand, Bobby G; van der Gijp, Anouk

    2018-05-16

    The interpretation of medical images is a primary task for radiologists. Besides two-dimensional (2D) images, current imaging technologies allow for volumetric display of medical images. Whereas current radiology practice increasingly uses volumetric images, the majority of studies on medical image interpretation is conducted on 2D images. The current study aimed to gain deeper insight into the volumetric image interpretation process by examining this process in twenty radiology trainees who all completed four volumetric image cases. Two types of data were obtained concerning scroll behaviors and think-aloud data. Types of scroll behavior concerned oscillations, half runs, full runs, image manipulations, and interruptions. Think-aloud data were coded by a framework of knowledge and skills in radiology including three cognitive processes: perception, analysis, and synthesis. Relating scroll behavior to cognitive processes showed that oscillations and half runs coincided more often with analysis and synthesis than full runs, whereas full runs coincided more often with perception than oscillations and half runs. Interruptions were characterized by synthesis and image manipulations by perception. In addition, we investigated relations between cognitive processes and found an overall bottom-up way of reasoning with dynamic interactions between cognitive processes, especially between perception and analysis. In sum, our results highlight the dynamic interactions between these processes and the grounding of cognitive processes in scroll behavior. It suggests, that the types of scroll behavior are relevant to describe how radiologists interact with and manipulate volumetric images.

  5. Comparing electronic probes for volumetric water content of low-density feathermoss

    USGS Publications Warehouse

    Overduin, P.P.; Yoshikawa, K.; Kane, D.L.; Harden, J.W.

    2005-01-01

    Purpose - Feathermoss is ubiquitous in the boreal forest and across various land-cover types of the arctic and subarctic. A variety of affordable commercial sensors for soil moisture content measurement have recently become available and are in use in such regions, often in conjunction with fire-susceptibility or ecological studies. Few come supplied with calibrations suitable or suggested for soils high in organics. Aims to test seven of these sensors for use in feathermoss, seeking calibrations between sensor output and volumetric water content. Design/methodology/approach - Measurements from seven sensors installed in live, dead and burned feathermoss samples, drying in a controlled manner, were compared to moisture content measurements. Empirical calibrations of sensor output to water content were determined. Findings - Almost all of the sensors tested were suitable for measuring the moss sample water content, and a unique calibration for each sensor for this material is presented. Differences in sensor design lead to changes in sensitivity as a function of volumetric water content, affecting the spatial averaging over the soil measurement volume. Research limitations/implications - The wide range of electromagnetic sensors available include frequency and time domain designs with variations in wave guide and sensor geometry, the location of sensor electronics and operating frequency. Practical implications - This study provides information for extending the use of electromagnetic sensors to feathermoss. Originality/value - A comparison of volumetric water content sensor mechanics and design is of general interest to researchers measuring soil water content. In particular, researchers working in wetlands, boreal forests and tundra regions will be able to apply these results. ?? Emerald Group Publishing Limited.

  6. Volumetric segmentation of ADC maps and utility of standard deviation as measure of tumor heterogeneity in soft tissue tumors.

    PubMed

    Singer, Adam D; Pattany, Pradip M; Fayad, Laura M; Tresley, Jonathan; Subhawong, Ty K

    2016-01-01

    Determine interobserver concordance of semiautomated three-dimensional volumetric and two-dimensional manual measurements of apparent diffusion coefficient (ADC) values in soft tissue masses (STMs) and explore standard deviation (SD) as a measure of tumor ADC heterogeneity. Concordance correlation coefficients for mean ADC increased with more extensive sampling. Agreement on the SD of tumor ADC values was better for large regions of interest and multislice methods. Correlation between mean and SD ADC was low, suggesting that these parameters are relatively independent. Mean ADC of STMs can be determined by volumetric quantification with high interobserver agreement. STM heterogeneity merits further investigation as a potential imaging biomarker that complements other functional magnetic resonance imaging parameters. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Tracking Ionic Rearrangements and Interpreting Dynamic Volumetric Changes in Two-Dimensional Metal Carbide Supercapacitors: A Molecular Dynamics Simulation Study.

    PubMed

    Xu, Kui; Lin, Zifeng; Merlet, Céline; Taberna, Pierre-Louis; Miao, Ling; Jiang, Jianjun; Simon, Patrice

    2017-12-06

    We present a molecular dynamics simulation study achieved on two-dimensional (2D) Ti 3 C 2 T x MXenes in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM] + [TFSI] - ) electrolyte. Our simulations reproduce the different patterns of volumetric change observed experimentally for both the negative and positive electrodes. The analysis of ionic fluxes and structure rearrangements in the 2D material provide an atomic scale insight into the charge and discharge processes in the layer pore and confirm the existence of two different charge-storage mechanisms at the negative and positive electrodes. The ionic number variation and the structure rearrangement contribute to the dynamic volumetric changes of both electrodes: negative electrode expansion and positive electrode contraction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Operating scheme for the light-emitting diode array of a volumetric display that exhibits multiple full-color dynamic images

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Shiraki, Atsushi; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-07-01

    We designed and developed a control circuit for a three-dimensional (3-D) light-emitting diode (LED) array to be used in volumetric displays exhibiting full-color dynamic 3-D images. The circuit was implemented on a field-programmable gate array; therefore, pulse-width modulation, which requires high-speed processing, could be operated in real time. We experimentally evaluated the developed system by measuring the luminance of an LED with varying input and confirmed that the system works appropriately. In addition, we demonstrated that the volumetric display exhibits different full-color dynamic two-dimensional images in two orthogonal directions. Each of the exhibited images could be obtained only from the prescribed viewpoint. Such directional characteristics of the system are beneficial for applications, including digital signage, security systems, art, and amusement.

  9. Model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    NASA Astrophysics Data System (ADS)

    Skinner, Brian; Fogler, M. M.; Shklovskii, B. I.

    2011-12-01

    Electric double-layer supercapacitors (SCs) are promising devices for high-power energy storage based on the reversible absorption of ions into porous conducting electrodes. Graphene is a particularly good candidate for the electrode material in SCs due to its high conductivity and large surface area. In this paper, we consider SC electrodes made from a stack of graphene sheets with randomly inserted spacer molecules. We show that the large volumetric capacitances C≳100F/cm3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.

  10. Volumetric Lattice Boltzmann Simulation for Fluid dynamics and Turbulence in Practical Syringes

    NASA Astrophysics Data System (ADS)

    Lima, Everton; Deep, Debanjan; Yu, Huidan (Whitney)

    2012-11-01

    We conduct numerical experiments to study fluid dynamics and turbulence in syringes using volumetric lattice Boltzmann method (VLBM) that is developed for dealing with arbitrary moving boundaries. Several common used medical syringes are used to predict the efficiency and safety of syringes experiencing low flow infusion rates. It is found that smaller size syringes reach a steady flow rate much sooner than larger ones, which are in quantitative agreement with experimental results. The relation between the syringe size and its steady flow rate is revealed. At low flow rates, corner vortices are observed. We explore conditions that lead to turbulent flow aiming to aid safer syringe application in nursing practices.

  11. Volumetric, dashboard-mounted augmented display

    NASA Astrophysics Data System (ADS)

    Kessler, David; Grabowski, Christopher

    2017-11-01

    The optical design of a compact volumetric display for drivers is presented. The system displays a true volume image with realistic physical depth cues, such as focal accommodation, parallax and convergence. A large eyebox is achieved with a pupil expander. The windshield is used as the augmented reality combiner. A freeform windshield corrector is placed at the dashboard.

  12. Genetic Determinants of Trabecular and Cortical Volumetric Bone Mineral Densities and Bone Microstructure

    PubMed Central

    Kähönen, Mika; Raitakari, Olli; Laaksonen, Marika; Sievänen, Harri; Viikari, Jorma; Lyytikäinen, Leo-Pekka; Mellström, Dan; Karlsson, Magnus; Ljunggren, Östen; Grundberg, Elin; Kemp, John P.; Sayers, Adrian; Nethander, Maria; Evans, David M.; Vandenput, Liesbeth; Tobias, Jon H.; Ohlsson, Claes

    2013-01-01

    Most previous genetic epidemiology studies within the field of osteoporosis have focused on the genetics of the complex trait areal bone mineral density (aBMD), not being able to differentiate genetic determinants of cortical volumetric BMD (vBMD), trabecular vBMD, and bone microstructural traits. The objective of this study was to separately identify genetic determinants of these bone traits as analysed by peripheral quantitative computed tomography (pQCT). Separate GWA meta-analyses for cortical and trabecular vBMDs were performed. The cortical vBMD GWA meta-analysis (n = 5,878) followed by replication (n = 1,052) identified genetic variants in four separate loci reaching genome-wide significance (RANKL, rs1021188, p = 3.6×10−14; LOC285735, rs271170, p = 2.7×10−12; OPG, rs7839059, p = 1.2×10−10; and ESR1/C6orf97, rs6909279, p = 1.1×10−9). The trabecular vBMD GWA meta-analysis (n = 2,500) followed by replication (n = 1,022) identified one locus reaching genome-wide significance (FMN2/GREM2, rs9287237, p = 1.9×10−9). High-resolution pQCT analyses, giving information about bone microstructure, were available in a subset of the GOOD cohort (n = 729). rs1021188 was significantly associated with cortical porosity while rs9287237 was significantly associated with trabecular bone fraction. The genetic variant in the FMN2/GREM2 locus was associated with fracture risk in the MrOS Sweden cohort (HR per extra T allele 0.75, 95% confidence interval 0.60–0.93) and GREM2 expression in human osteoblasts. In conclusion, five genetic loci associated with trabecular or cortical vBMD were identified. Two of these (FMN2/GREM2 and LOC285735) are novel bone-related loci, while the other three have previously been reported to be associated with aBMD. The genetic variants associated with cortical and trabecular bone parameters differed, underscoring the complexity of the genetics of bone parameters. We propose that a genetic

  13. Efficient volumetric estimation from plenoptic data

    NASA Astrophysics Data System (ADS)

    Anglin, Paul; Reeves, Stanley J.; Thurow, Brian S.

    2013-03-01

    The commercial release of the Lytro camera, and greater availability of plenoptic imaging systems in general, have given the image processing community cost-effective tools for light-field imaging. While this data is most commonly used to generate planar images at arbitrary focal depths, reconstruction of volumetric fields is also possible. Similarly, deconvolution is a technique that is conventionally used in planar image reconstruction, or deblurring, algorithms. However, when leveraged with the ability of a light-field camera to quickly reproduce multiple focal planes within an imaged volume, deconvolution offers a computationally efficient method of volumetric reconstruction. Related research has shown than light-field imaging systems in conjunction with tomographic reconstruction techniques are also capable of estimating the imaged volume and have been successfully applied to particle image velocimetry (PIV). However, while tomographic volumetric estimation through algorithms such as multiplicative algebraic reconstruction techniques (MART) have proven to be highly accurate, they are computationally intensive. In this paper, the reconstruction problem is shown to be solvable by deconvolution. Deconvolution offers significant improvement in computational efficiency through the use of fast Fourier transforms (FFTs) when compared to other tomographic methods. This work describes a deconvolution algorithm designed to reconstruct a 3-D particle field from simulated plenoptic data. A 3-D extension of existing 2-D FFT-based refocusing techniques is presented to further improve efficiency when computing object focal stacks and system point spread functions (PSF). Reconstruction artifacts are identified; their underlying source and methods of mitigation are explored where possible, and reconstructions of simulated particle fields are provided.

  14. A volumetric three-dimensional digital light photoactivatable dye display

    NASA Astrophysics Data System (ADS)

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-07-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated `on-off' cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays.

  15. Full-spectrum volumetric solar thermal conversion via photonic nanofluids.

    PubMed

    Liu, Xianglei; Xuan, Yimin

    2017-10-12

    Volumetric solar thermal conversion is an emerging technique for a plethora of applications such as solar thermal power generation, desalination, and solar water splitting. However, achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge. In this work, full-spectrum volumetric solar thermal conversion is demonstrated over a thin layer of the proposed 'photonic nanofluids'. The underlying mechanism is found to be the photonic superposition of core resonances, shell plasmons, and core-shell resonances at different wavelengths, whose coexistence is enabled by the broken symmetry of specially designed composite nanoparticles, i.e., Janus nanoparticles. The solar thermal conversion efficiency can be improved by 10.8% compared with core-shell nanofluids. The extinction coefficient of Janus dimers with various configurations is also investigated to unveil the effects of particle couplings. This work provides the possibility to achieve full-spectrum volumetric solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.

  16. A volumetric three-dimensional digital light photoactivatable dye display

    PubMed Central

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-01-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated ‘on-off’ cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays. PMID:28695887

  17. In vitro evaluation of forward and reverse volumetric flow across a regurgitant aortic valve using Doppler power-weighted mean velocities.

    PubMed

    Minich, L L; Tani, L Y; Pantalos, G M

    1997-01-01

    To determine the accuracy of using power-weighted mean velocities for quantitating volumetric flow across a cardiac valve, we equipped pulsatile flow-tank systems with a 25 mm porcine or a 27 mm mechanical valve with various sizes of regurgitant orifices. Forward and reverse volumetric flows were measured over a range of hemodynamic conditions using two insonating angles (0 and 45 degrees). Pulsed Doppler power-weighted mean velocity measurements were obtained simultaneously with electromagnetic or ultrasonic transit-time probe measurements. For the porcine valve, Doppler measurements correlated well with electromagnetic flow measurements for all (r = 0.75 to 0.97, p < 0.05) except the smallest (2.7 mm) orifice (r = 0.19). For the mechanical valve, power-weighted mean velocity measurements correlated well with ultrasonic transit-time measurements for each hemodynamic condition defined by pulse rate, mean arterial pressure, and insonating angle (r = 0.93 to 0.99, p < 0.01), but equations varied unpredictably. Thus, although power-weighted mean velocity volumetric flow measurements correlate well with flow probe measurements, equations vary widely as hemodynamic conditions change. Because of this variation, power-weighted mean velocity data are not useful for quantitation of volumetric flow across a cardiac valve at this time. Further investigation may show how different hemodynamic conditions affect power-weighted mean velocity measurements of volumetric flow.

  18. SU-F-J-47: Inherent Uncertainty in the Positional Shifts Determined by a Volumetric Cone Beam Imaging System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giri, U; Ganesh, T; Saini, V

    2016-06-15

    Purpose: To quantify inherent uncertainty associated with a volumetric imaging system in its determination of positional shifts. Methods: The study was performed on an Elekta Axesse™ linac’s XVI cone beam computed tomography (CBCT) system. A CT image data set of a Penta- Guide phantom was used as reference image by placing isocenter at the center of the phantom.The phantom was placed arbitrarily on the couch close to isocenter and CBCT images were obtained. The CBCT dataset was matched with the reference image using XVI software and the shifts were determined in 6-dimensions. Without moving the phantom, this process was repeatedmore » 20 times consecutively within 30 minutes on a single day. Mean shifts and their standard deviations in all 6-dimensions were determined for all the 20 instances of imaging. For any given day, the first set of shifts obtained was kept as reference and the deviations of the subsequent 19 sets from the reference set were scored. Mean differences and their standard deviations were determined. In this way, data were obtained for 30 consecutive working days. Results: Tabulating the mean deviations and their standard deviations observed on each day for the 30 measurement days, systematic and random errors in the determination of shifts by XVI software were calculated. The systematic errors were found to be 0.03, 0.04 and 0.03 mm while random errors were 0.05, 0.06 and 0.06 mm in lateral, craniocaudal and anterio-posterior directions respectively. For rotational shifts, the systematic errors were 0.02°, 0.03° and 0.03° and random errors were 0.06°, 0.05° and 0.05° in pitch, roll and yaw directions respectively. Conclusion: The inherent uncertainties in every image guidance system should be assessed and baseline values established at the time of its commissioning. These shall be periodically tested as part of the QA protocol.« less

  19. Increasing the volumetric efficiency of Diesel engines by intake pipes

    NASA Technical Reports Server (NTRS)

    List, Hans

    1933-01-01

    Development of a method for calculating the volumetric efficiency of piston engines with intake pipes. Application of this method to the scavenging pumps of two-stroke-cycle engines with crankcase scavenging and to four-stroke-cycle engines. The utility of the method is demonstrated by volumetric-efficiency tests of the two-stroke-cycle engines with crankcase scavenging. Its practical application to the calculation of intake pipes is illustrated by example.

  20. Tandem Gravimetric and Volumetric Apparatus for Methane Sorption Measurements

    NASA Astrophysics Data System (ADS)

    Burress, Jacob; Bethea, Donald

    Concerns about global climate change have driven the search for alternative fuels. Natural gas (NG, methane) is a cleaner fuel than gasoline and abundantly available due to hydraulic fracturing. One hurdle to the adoption of NG vehicles is the bulky cylindrical storage vessels needed to store the NG at high pressures (3600 psi, 250 bar). The adsorption of methane in microporous materials can store large amounts of methane at low enough pressures for the allowance of conformable, ``flat'' pressure vessels. The measurement of the amount of gas stored in sorbent materials is typically done by measuring pressure differences (volumetric, manometric) or masses (gravimetric). Volumetric instruments of the Sievert type have uncertainties that compound with each additional measurement. Therefore, the highest-pressure measurement has the largest uncertainty. Gravimetric instruments don't have that drawback, but can have issues with buoyancy corrections. An instrument will be presented with which methane adsorption measurements can be performed using both volumetric and gravimetric methods in tandem. The gravimetric method presented has no buoyancy corrections and low uncertainty. Therefore, the gravimetric measurements can be performed throughout an entire isotherm or just at the extrema to verify the results from the volumetric measurements. Results from methane sorption measurements on an activated carbon (MSC-30) and a metal-organic framework (Cu-BTC, HKUST-1, MOF-199) will be shown. New recommendations for calculations of gas uptake and uncertainty measurements will be discussed.

  1. Depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-03-31

    The purpose of this study was to investigate the depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites. Depth of cure and flexural properties were determined according to ISO 4049, and volumetric shrinkage was measured using a dilatometer. The depths of cure of giomers were significantly lower than those of resin composites, regardless of photo polymerization times. No difference in flexural strength and modulus was found among either high or low viscosity bulk fill materials. Volumetric shrinkage of low and high viscosity bulk-fill resin composites was significantly less than low and high viscosity giomers. Depth of cure of both low and high viscosity bulk-fill materials is time dependent. Flexural strength and modulus of high viscosity or low viscosity bulk-fill giomer or resin composite materials are not different for their respective category. Resin composites exhibited less polymerization shrinkage than giomers.

  2. A model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    NASA Astrophysics Data System (ADS)

    Skinner, Brian; Fogler, Michael; Shklovskii, Boris

    2012-02-01

    Electric double layer supercapacitors are promising devices for high-power energy storage based on the reversible absorption of ions into porous, conducting electrodes. Graphene is a particularly good candidate for the electrode material in supercapacitors due to its high conductivity and large surface area. In this paper we consider supercapacitor electrodes made from a stack of graphene sheets with randomly-inserted ``spacer" molecules. We show that the large volumetric capacitances C > 100 F/cm^3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.

  3. Modulation indices for volumetric modulated arc therapy.

    PubMed

    Park, Jong Min; Park, So-Yeon; Kim, Hyoungnyoun; Kim, Jin Ho; Carlson, Joel; Ye, Sung-Joon

    2014-12-07

    The aim of this study is to present a modulation index (MI) for volumetric modulated arc therapy (VMAT) based on the speed and acceleration analysis of modulating-parameters such as multi-leaf collimator (MLC) movements, gantry rotation and dose-rate, comprehensively. The performance of the presented MI (MIt) was evaluated with correlation analyses to the pre-treatment quality assurance (QA) results, differences in modulating-parameters between VMAT plans versus dynamic log files, and differences in dose-volumetric parameters between VMAT plans versus reconstructed plans using dynamic log files. For comparison, the same correlation analyses were performed for the previously suggested modulation complexity score (MCS(v)), leaf travel modulation complexity score (LTMCS) and MI by Li and Xing (MI Li&Xing). In the two-tailed unpaired parameter condition, p values were acquired. The Spearman's rho (r(s)) values of MIt, MCSv, LTMCS and MI Li&Xing to the local gamma passing rate with 2%/2 mm criterion were -0.658 (p < 0.001), 0.186 (p = 0.251), 0.312 (p = 0.05) and -0.455 (p = 0.003), respectively. The values of rs to the modulating-parameter (MLC positions) differences were 0.917, -0.635, -0.857 and 0.795, respectively (p < 0.001). For dose-volumetric parameters, MIt showed higher statistically significant correlations than the conventional MIs. The MIt showed good performance for the evaluation of the modulation-degree of VMAT plans.

  4. Experimental evidence for improved neuroimaging interpretation using three-dimensional graphic models.

    PubMed

    Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto

    2012-01-01

    Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more precisely than classical cross-sectional images based on a two dimensional (2D) approach. Eighty participants were assigned to each experimental condition: 2D cross-sectional visualization vs. 3D volumetric visualization. Both groups were matched for age, gender, visual-spatial ability, and previous knowledge of neuroanatomy. Accuracy in identifying brain structures, execution time, and level of confidence in the response were taken as outcome measures. Moreover, interactive effects between the experimental conditions (2D vs. 3D) and factors such as level of competence (novice vs. expert), image modality (morphological and functional), and difficulty of the structures were analyzed. The percentage of correct answers (hit rate) and level of confidence in responses were significantly higher in the 3D visualization condition than in the 2D. In addition, the response time was significantly lower for the 3D visualization condition in comparison with the 2D. The interaction between the experimental condition (2D vs. 3D) and difficulty was significant, and the 3D condition facilitated the location of difficult images more than the 2D condition. 3D volumetric visualization helps to identify brain structures such as the hippocampus and amygdala, more accurately and rapidly than conventional 2D visualization. This paper discusses the implications of these results with regards to the learning process involved in neuroimaging interpretation. Copyright © 2012 American Association of Anatomists.

  5. Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines

    PubMed Central

    Tan, Yunhao; Hua, Jing; Qin, Hong

    2009-01-01

    In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636

  6. Volumetric 3D display using a DLP projection engine

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  7. Erosion of water-based cements evaluated by volumetric and gravimetric methods.

    PubMed

    Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F

    2003-05-01

    To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.

  8. Recommended volumetric capacity definitions and protocols for accurate, standardized and unambiguous metrics for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Parilla, Philip A.; Gross, Karl; Hurst, Katherine; Gennett, Thomas

    2016-03-01

    The ultimate goal of the hydrogen economy is the development of hydrogen storage systems that meet or exceed the US DOE's goals for onboard storage in hydrogen-powered vehicles. In order to develop new materials to meet these goals, it is extremely critical to accurately, uniformly and precisely measure materials' properties relevant to the specific goals. Without this assurance, such measurements are not reliable and, therefore, do not provide a benefit toward the work at hand. In particular, capacity measurements for hydrogen storage materials must be based on valid and accurate results to ensure proper identification of promising materials for further development. Volumetric capacity determinations are becoming increasingly important for identifying promising materials, yet there exists controversy on how such determinations are made and whether such determinations are valid due to differing methodologies to count the hydrogen content. These issues are discussed herein, and we show mathematically that capacity determinations can be made rigorously and unambiguously if the constituent volumes are well defined and measurable in practice. It is widely accepted that this occurs for excess capacity determinations and we show here that this can happen for the total capacity determination. Because the adsorption volume is undefined, the absolute capacity determination remains imprecise. Furthermore, we show that there is a direct relationship between determining the respective capacities and the calibration constants used for the manometric and gravimetric techniques. Several suggested volumetric capacity figure-of-merits are defined, discussed and reporting requirements recommended. Finally, an example is provided to illustrate these protocols and concepts.

  9. Coaxial volumetric velocimetry

    NASA Astrophysics Data System (ADS)

    Schneiders, Jan F. G.; Scarano, Fulvio; Jux, Constantin; Sciacchitano, Andrea

    2018-06-01

    This study describes the working principles of the coaxial volumetric velocimeter (CVV) for wind tunnel measurements. The measurement system is derived from the concept of tomographic PIV in combination with recent developments of Lagrangian particle tracking. The main characteristic of the CVV is its small tomographic aperture and the coaxial arrangement between the illumination and imaging directions. The system consists of a multi-camera arrangement subtending only few degrees solid angle and a long focal depth. Contrary to established PIV practice, laser illumination is provided along the same direction as that of the camera views, reducing the optical access requirements to a single viewing direction. The laser light is expanded to illuminate the full field of view of the cameras. Such illumination and imaging conditions along a deep measurement volume dictate the use of tracer particles with a large scattering area. In the present work, helium-filled soap bubbles are used. The fundamental principles of the CVV in terms of dynamic velocity and spatial range are discussed. Maximum particle image density is shown to limit tracer particle seeding concentration and instantaneous spatial resolution. Time-averaged flow fields can be obtained at high spatial resolution by ensemble averaging. The use of the CVV for time-averaged measurements is demonstrated in two wind tunnel experiments. After comparing the CVV measurements with the potential flow in front of a sphere, the near-surface flow around a complex wind tunnel model of a cyclist is measured. The measurements yield the volumetric time-averaged velocity and vorticity field. The measurements of the streamlines in proximity of the surface give an indication of the skin-friction lines pattern, which is of use in the interpretation of the surface flow topology.

  10. Modelling volumetric growth in a thick walled fibre reinforced artery

    NASA Astrophysics Data System (ADS)

    Eriksson, T. S. E.; Watton, P. N.; Luo, X. Y.; Ventikos, Y.

    2014-12-01

    A novel framework for simulating growth and remodelling (G&R) of a fibre-reinforced artery, including volumetric adaption, is proposed. We show how to implement this model into a finite element framework and propose and examine two underlying assumptions for modelling growth, namely constant individual density (CID) or adaptive individual density (AID). Moreover, we formulate a novel approach which utilises a combination of both AID and CID to simulate volumetric G&R for a tissue composed of several different constituents. We consider a special case of the G&R of an artery subjected to prescribed elastin degradation and we theorise on the assumptions and suitability of CID, AID and the mixed approach for modelling arterial biology. For simulating the volumetric changes that occur during aneurysm enlargement, we observe that it is advantageous to describe the growth of collagen using CID whilst it is preferable to model the atrophy of elastin using AID.

  11. [Automated detection and volumetric segmentation of the spleen in CT scans].

    PubMed

    Hammon, M; Dankerl, P; Kramer, M; Seifert, S; Tsymbal, A; Costa, M J; Janka, R; Uder, M; Cavallaro, A

    2012-08-01

    To introduce automated detection and volumetric segmentation of the spleen in spiral CT scans with the THESEUS-MEDICO software. The consistency between automated volumetry (aV), estimated volume determination (eV) and manual volume segmentation (mV) was evaluated. Retrospective evaluation of the CAD system based on methods like "marginal space learning" and "boosting algorithms". 3 consecutive spiral CT scans (thoraco-abdominal; portal-venous contrast agent phase; 1 or 5 mm slice thickness) of 15 consecutive lymphoma patients were included. The eV: 30 cm³ + 0.58 (width × length × thickness of the spleen) and the mV as the reference standard were determined by an experienced radiologist. The aV could be performed in all CT scans within 15.2 (± 2.4) seconds. The average splenic volume measured by aV was 268.21 ± 114.67 cm³ compared to 281.58 ± 130.21 cm³ in mV and 268.93 ± 104.60 cm³ in eV. The correlation coefficient was 0.99 (coefficient of determination (R²) = 0.98) for aV and mV, 0.91 (R² = 0.83) for mV and eV and 0.91 (R² = 0.82) for aV and eV. There was an almost perfect correlation of the changes in splenic volume measured with the new aV and mV (0.92; R² = 0.84), mV and eV (0.95; R² = 0.91) and aV and eV (0.83; R² = 0.69) between two time points. The automated detection and volumetric segmentation software rapidly provides an accurate measurement of the splenic volume in CT scans. Knowledge about splenic volume and its change between two examinations provides valuable clinical information without effort for the radiologist. © Georg Thieme Verlag KG Stuttgart · New York.

  12. A Volumetric Flask as a Projector

    ERIC Educational Resources Information Center

    Limsuwan, P.; Asanithi, P.; Thongpool, V.; Piriyawong, V.; Limsuwan, S.

    2012-01-01

    A lens based on liquid in the confined volume of a volumetric flask was presented as a potential projector to observe microscopic floating organisms or materials. In this experiment, a mosquito larva from a natural pond was selected as a demonstration sample. By shining a light beam from a laser pointer of any visible wavelength through the…

  13. Volumetric direct nuclear pumped laser

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Hohl, F.; Deyoung, R. J.; Williams, M. D. (Inventor)

    1978-01-01

    A volumetric direct nuclear pumped laser was developed in which the gas is a mixture of He-3 and a minority gas from the group of argon, krypton, xenon, chlorine and fluorine. The mixture of He-3 and the minority gas produces lasing with a minority gas concentration of from 0.01 to 10 percent argon, 1 percent krypton, 0.01 to 5 percent xenon and small concentrations of chlorine or fluorine.

  14. Buoyancy driven mixing of miscible fluids by volumetric energy deposition of microwaves.

    PubMed

    Wachtor, Adam J; Mocko, Veronika; Williams, Darrick J; Goertz, Matthew P; Jebrail, Farzaneh F

    2013-01-01

    An experiment that seeks to investigate buoyancy driven mixing of miscible fluids by microwave volumetric energy deposition is presented. The experiment involves the use of a light, non-polar fluid that initially rests on top of a heavier fluid which is more polar. Microwaves preferentially heat the polar fluid, and its density decreases due to thermal expansion. As the microwave heating continues, the density of the lower fluid eventually becomes less than that of the upper, and buoyancy driven Rayleigh-Taylor mixing ensues. The choice of fluids is crucial to the success of the experiment, and a description is given of numerous fluid combinations considered and characterized. After careful consideration, the miscible pair of toluene/tetrahydrofuran (THF) was determined as having the best potential for successful volumetric energy deposition buoyancy driven mixing. Various single fluid calibration experiments were performed to facilitate the development of a heating theory. Thereafter, results from two-fluid mixing experiments are presented that demonstrate the capability of this novel Rayleigh-Taylor driven experiment. Particular interest is paid to the onset of buoyancy driven mixing and unusual aspects of the experiment in the context of typical Rayleigh-Taylor driven mixing.

  15. The use of hippocampal volumetric measurements to improve diagnostic accuracy in pediatric patients with mesial temporal sclerosis.

    PubMed

    Guzmán Pérez-Carrillo, Gloria J; Owen, Christopher; Schwetye, Katherine E; McFarlane, Spencer; Vellimana, Ananth K; Mar, Soe; Miller-Thomas, Michelle M; Shimony, Joshua S; Smyth, Matthew D; Benzinger, Tammie L S

    2017-06-01

    OBJECTIVE Many patients with medically intractable epilepsy have mesial temporal sclerosis (MTS), which significantly affects their quality of life. The surgical excision of MTS lesions can result in marked improvement or even complete resolution of the epileptic episodes. Reliable radiological diagnosis of MTS is a clinical challenge. The purpose of this study was to evaluate the utility of volumetric mapping of the hippocampi for the identification of MTS in a case-controlled series of pediatric patients who underwent resection for medically refractory epilepsy, using pathology as a gold standard. METHODS A cohort of 57 pediatric patients who underwent resection for medically intractable epilepsy between 2005 and 2015 was evaluated. On pathological investigation, this group included 24 patients with MTS and 33 patients with non-MTS findings. Retrospective quantitative volumetric measurements of the hippocampi were acquired for 37 of these 57 patients. Two neuroradiologists with more than 10 years of experience who were blinded to the patients' MTS status performed the retrospective review of MR images. To produce the volumetric data, MR scans were parcellated and segmented using the FreeSurfer software suite. Hippocampal regions of interest were compared against an age-weighted local regression curve generated with data from the pediatric normal cohort. Standard deviations and percentiles of specific subjects were calculated. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for the original clinical read and the expert readers. Receiver operating characteristic curves were generated for the methods of classification to compare results from the readers with the authors' results, and an optimal threshold was determined. From that threshold the sensitivity, specificity, PPV, and NPV were calculated for the volumetric analysis. RESULTS With the use of quantitative volumetry, a sensitivity of 72%, a

  16. Radiofrequency volumetric reduction of the tongue. A porcine pilot study for the treatment of obstructive sleep apnea syndrome.

    PubMed

    Powell, N B; Riley, R W; Troell, R J; Blumen, M B; Guilleminault, C

    1997-05-01

    To investigate, in an animal model, the feasibility of radiofrequency (RF) volumetric tongue reduction for the future purpose of determining its clinical applications in obstructive sleep apnea syndrome (OSAS). The study was performed in three stages, one in vitro bovine stage and two in vivo porcine stages. The last stage was a prospective investigation with histologic and volumetric analyses to establish outcomes. Laboratory and operating room of veterinary research center. A homogeneous population of porcine animal models, including seven in stage 2 and 12 in stage 3. RF energy was delivered by a custom-fabricated needle electrode and RF generator to the tongue tissue of both the in vitro and in vivo models. Microultransonic crystals were used to measure three-dimensional changes (volumetric reduction). Lesion size correlated well with increasing RF energy delivery (Sperman correlation coefficient of 0.986; p = 0.0003). Histologic assessments done serially over time (1 h through 3 weeks) showed a well-circumscribed lesion with a normal healing progression and no peripheral damage to nerves. Volumetric analysis documented a very mild initial edematous response that promptly tapered at 24 h. At 10 days after RF, a 26.3% volume reduction was documented at the treatment site (circumscribed by the microultrasonic crystals). RF, in a porcine animal model, can safely reduce tongue volume in a precise and controlled manner. Further studies will validate the use of RF in the treatment of OSAS.

  17. On the Experimental Determination of the One-Way Speed of Light

    ERIC Educational Resources Information Center

    Perez, Israel

    2011-01-01

    In this paper the question of the isotropy of the one-way speed of light is addressed from an experimental perspective. In particular, we analyse two experimental methods commonly used in its determination. The analysis is aimed at clarifying the view that the one-way speed of light cannot be determined by techniques in which physical entities…

  18. Experimental determination of satellite bolted joints thermal resistance

    NASA Technical Reports Server (NTRS)

    Mantelli, Marcia Barbosa Henriques; Basto, Jose Edson

    1990-01-01

    The thermal resistance was experimentally determined of the bolted joints of the first Brazilian satellite (SCD 01). These joints, used to connect the satellite structural panels, are reproduced in an experimental apparatus, keeping, as much as possible, the actual dimensions and materials. A controlled amount of heat is forced to pass through the joint and the difference of temperature between the panels is measured. The tests are conducted in a vacuum chamber with liquid nitrogen cooled walls, that simulates the space environment. Experimental procedures are used to avoid much heat losses, which are carefully calculated. Important observations about the behavior of the joint thermal resistance with the variation of the mean temperature are made.

  19. Breast Density Estimation with Fully Automated Volumetric Method: Comparison to Radiologists' Assessment by BI-RADS Categories.

    PubMed

    Singh, Tulika; Sharma, Madhurima; Singla, Veenu; Khandelwal, Niranjan

    2016-01-01

    The objective of our study was to calculate mammographic breast density with a fully automated volumetric breast density measurement method and to compare it to breast imaging reporting and data system (BI-RADS) breast density categories assigned by two radiologists. A total of 476 full-field digital mammography examinations with standard mediolateral oblique and craniocaudal views were evaluated by two blinded radiologists and BI-RADS density categories were assigned. Using a fully automated software, mean fibroglandular tissue volume, mean breast volume, and mean volumetric breast density were calculated. Based on percentage volumetric breast density, a volumetric density grade was assigned from 1 to 4. The weighted overall kappa was 0.895 (almost perfect agreement) for the two radiologists' BI-RADS density estimates. A statistically significant difference was seen in mean volumetric breast density among the BI-RADS density categories. With increased BI-RADS density category, increase in mean volumetric breast density was also seen (P < 0.001). A significant positive correlation was found between BI-RADS categories and volumetric density grading by fully automated software (ρ = 0.728, P < 0.001 for first radiologist and ρ = 0.725, P < 0.001 for second radiologist). Pairwise estimates of the weighted kappa between Volpara density grade and BI-RADS density category by two observers showed fair agreement (κ = 0.398 and 0.388, respectively). In our study, a good correlation was seen between density grading using fully automated volumetric method and density grading using BI-RADS density categories assigned by the two radiologists. Thus, the fully automated volumetric method may be used to quantify breast density on routine mammography. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  20. Experimental Determination of Unsteady Forces on Contrarotating Propellers in Uniform Flow

    DTIC Science & Technology

    1976-03-01

    Experimental Determination of Unsteady Forces on Contrarotating Propellers ini Uniform Flow ... EXPERIMENTAL DETERMINATION OF UNSTEADY FORCES E ON CONTP.AROTATING PROPELLERS IN UNIFORM FLOW0 0 cby -1 Marlin L. Miller 0 cc 0 z ~APPROVED FOR PUBLIC...tunnel. The experiments were conducted in uniform flow so that the unsteady forces would be due only to the interaction of the two

  1. Hierarchical Pore-Patterned Carbon Electrodes for High-Volumetric Energy Density Micro-Supercapacitors.

    PubMed

    Kim, Cheolho; Moon, Jun Hyuk

    2018-06-13

    Micro-supercapacitors (MSCs) are attractive for applications in next-generation mobile and wearable devices and have the potential to complement or even replace lithium batteries. However, many previous MSCs have often exhibited a low volumetric energy density with high-loading electrodes because of the nonuniform pore structure of the electrodes. To address this issue, we introduced a uniform-pore carbon electrode fabricated by 3D interference lithography. Furthermore, a hierarchical pore-patterned carbon (hPC) electrode was formed by introducing a micropore by chemical etching into the macropore carbon skeleton. The hPC electrodes were applied to solid-state MSCs. We achieved a constant volumetric capacitance and a corresponding volumetric energy density for electrodes of various thicknesses. The hPC MSC reached a volumetric energy density of approximately 1.43 mW h/cm 3 . The power density of the hPC MSC was 1.69 W/cm 3 . We could control the capacitance and voltage additionally by connecting the unit MSC cells in series or parallel, and we confirmed the operation of a light-emitting diode. We believe that our pore-patterned electrodes will provide a new platform for compact but high-performance energy storage devices.

  2. Experimental Determination of Unsteady Forces on Contrarotating Propellers for Application to Torpedoes

    DTIC Science & Technology

    1981-12-01

    Experimental determination of Unsteady Forces on Contrarotating Propellers in Uniform Flow ," David Taylor Naval Ship R&D Center, Ship Performance...were planned to determine the unsteady forces on contrarotating propellers in a 4-cycle wake, there were also experiments made in uniform flow to check...Subtitle) S. TYPE OF REPORT G PERIOD COVERED Experimental Determination of Unsteady Forces on

  3. A photophoretic-trap volumetric display

    NASA Astrophysics Data System (ADS)

    Smalley, D. E.; Nygaard, E.; Squire, K.; van Wagoner, J.; Rasmussen, J.; Gneiting, S.; Qaderi, K.; Goodsell, J.; Rogers, W.; Lindsey, M.; Costner, K.; Monk, A.; Pearson, M.; Haymore, B.; Peatross, J.

    2018-01-01

    Free-space volumetric displays, or displays that create luminous image points in space, are the technology that most closely resembles the three-dimensional displays of popular fiction. Such displays are capable of producing images in ‘thin air’ that are visible from almost any direction and are not subject to clipping. Clipping restricts the utility of all three-dimensional displays that modulate light at a two-dimensional surface with an edge boundary; these include holographic displays, nanophotonic arrays, plasmonic displays, lenticular or lenslet displays and all technologies in which the light scattering surface and the image point are physically separate. Here we present a free-space volumetric display based on photophoretic optical trapping that produces full-colour graphics in free space with ten-micrometre image points using persistence of vision. This display works by first isolating a cellulose particle in a photophoretic trap created by spherical and astigmatic aberrations. The trap and particle are then scanned through a display volume while being illuminated with red, green and blue light. The result is a three-dimensional image in free space with a large colour gamut, fine detail and low apparent speckle. This platform, named the Optical Trap Display, is capable of producing image geometries that are currently unobtainable with holographic and light-field technologies, such as long-throw projections, tall sandtables and ‘wrap-around’ displays.

  4. EXPERIMENTAL PROTOCOL FOR DETERMINING PROTOLYSIS REACTION RATE CONSTANTS

    EPA Science Inventory

    An experimental protocol to determine photolysis rates of chemicals which photolyze relatively rapidly in the gas phase has been developed. This procedure provides a basis for evaluating the relative importance of one atmospheric reaction pathway (i.e., photolysis) for organic su...

  5. A revised and unified pressure-clamp/relaxation theory for studying plant cell water relations with pressure probes: in-situ determination of cell volume for calculation of volumetric elastic modulus and hydraulic conductivity.

    PubMed

    Knipfer, T; Fei, J; Gambetta, G A; Shackel, K A; Matthews, M A

    2014-10-21

    The cell-pressure-probe is a unique tool to study plant water relations in-situ. Inaccuracy in the estimation of cell volume (νo) is the major source of error in the calculation of both cell volumetric elastic modulus (ε) and cell hydraulic conductivity (Lp). Estimates of νo and Lp can be obtained with the pressure-clamp (PC) and pressure-relaxation (PR) methods. In theory, both methods should result in comparable νo and Lp estimates, but this has not been the case. In this study, the existing νo-theories for PC and PR methods were reviewed and clarified. A revised νo-theory was developed that is equally valid for the PC and PR methods. The revised theory was used to determine νo for two extreme scenarios of solute mixing between the experimental cell and sap in the pressure probe microcapillary. Using a fully automated cell-pressure-probe (ACPP) on leaf epidermal cells of Tradescantia virginiana, the validity of the revised theory was tested with experimental data. Calculated νo values from both methods were in the range of optically determined νo (=1.1-5.0nL) for T. virginiana. However, the PC method produced a systematically lower (21%) calculated νo compared to the PR method. Effects of solute mixing could only explain a potential error in calculated νo of <3%. For both methods, this discrepancy in νo was almost identical to the discrepancy in the measured ratio of ΔV/ΔP (total change in microcapillary sap volume versus corresponding change in cell turgor) of 19%, which is a fundamental parameter in calculating νo. It followed from the revised theory that the ratio of ΔV/ΔP was inversely related to the solute reflection coefficient. This highlighted that treating the experimental cell as an ideal osmometer in both methods is potentially not correct. Effects of non-ideal osmotic behavior by transmembrane solute movement may be minimized in the PR as compared to the PC method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Multi-camera volumetric PIV for the study of jumping fish

    NASA Astrophysics Data System (ADS)

    Mendelson, Leah; Techet, Alexandra H.

    2018-01-01

    Archer fish accurately jump multiple body lengths for aerial prey from directly below the free surface. Multiple fins provide combinations of propulsion and stabilization, enabling prey capture success. Volumetric flow field measurements are crucial to characterizing multi-propulsor interactions during this highly three-dimensional maneuver; however, the fish's behavior also drives unique experimental constraints. Measurements must be obtained in close proximity to the water's surface and in regions of the flow field which are partially-occluded by the fish body. Aerial jump trajectories must also be known to assess performance. This article describes experiment setup and processing modifications to the three-dimensional synthetic aperture particle image velocimetry (SAPIV) technique to address these challenges and facilitate experimental measurements on live jumping fish. The performance of traditional SAPIV algorithms in partially-occluded regions is characterized, and an improved non-iterative reconstruction routine for SAPIV around bodies is introduced. This reconstruction procedure is combined with three-dimensional imaging on both sides of the free surface to reveal the fish's three-dimensional wake, including a series of propulsive vortex rings generated by the tail. In addition, wake measurements from the anal and dorsal fins indicate their stabilizing and thrust-producing contributions as the archer fish jumps.

  7. CBCT-based volumetric and dosimetric variation evaluation of volumetric modulated arc radiotherapy in the treatment of nasopharyngeal cancer patients

    PubMed Central

    2013-01-01

    Objective To investigate the anatomic and dosimetric variations of volumetric modulated arc therapy (VMAT) in the treatment of nasopharyngeal cancer (NPC) patients based on weekly cone beam CT (CBCT). Materials and methods Ten NPC patients treated by VMAT with weekly CBCT for setup corrections were reviewed retrospectively. Deformed volumes of targets and organs at risk (OARs) in the CBCT were compared with those in the planning CT. Delivered doses were recalculated based on weekly CBCT and compared with the planned doses. Results No significant volumetric changes on targets, brainstem, and spinal cord were observed. The average volumes of right and left parotid measured from the fifth CBCT were about 4.4 and 4.5 cm3 less than those from the first CBCT, respectively. There were no significant dose differences between average planned and delivered doses for targets, brainstem and spinal cord. For right parotid, the delivered mean dose was 10.5 cGy higher (p = 0.004) than the planned value per fraction, and the V26 and V32 increased by 7.5% (p = 0.002) and 7.4% (p = 0.01), respectively. For the left parotid, the D50 (dose to the 50% volume) was 8.8 cGy higher (p = 0.03) than the planned values per fraction, and the V26 increased by 8.8% (p = 0.002). Conclusion Weekly CBCTs were applied directly to study the continuous volume changes and resulting dosimetric variations of targets and OARs for NPC patients undergoing VMAT. Significant volumetric and dosimetric variations were observed for parotids. Replanning after 30 Gy will benefit the protection on parotids. PMID:24289312

  8. Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS)

    PubMed Central

    Song, Alexander; Charles, Adam S.; Koay, Sue Ann; Gauthier, Jeff L.; Thiberge, Stephan Y.; Pillow, Jonathan W.; Tank, David W.

    2017-01-01

    Two-photon laser scanning microscopy of calcium dynamics using fluorescent indicators is a widely used imaging method for large scale recording of neural activity in vivo. Here we introduce volumetric Two-photon Imaging of Neurons using Stereoscopy (vTwINS), a volumetric calcium imaging method that employs an elongated, V-shaped point spread function to image a 3D brain volume. Single neurons project to spatially displaced “image pairs” in the resulting 2D image, and the separation distance between images is proportional to depth in the volume. To demix the fluorescence time series of individual neurons, we introduce a novel orthogonal matching pursuit algorithm that also infers source locations within the 3D volume. We illustrate vTwINS by imaging neural population activity in mouse primary visual cortex and hippocampus. Our results demonstrate that vTwINS provides an effective method for volumetric two-photon calcium imaging that increases the number of neurons recorded while maintaining a high frame-rate. PMID:28319111

  9. Volumetric study in the development of paranasal sinuses by CT imaging in Asian: a pilot study.

    PubMed

    Park, Il-Ho; Song, Jong Seok; Choi, Hyuk; Kim, Tae Hoon; Hoon, Seung; Lee, Sang Hag; Lee, Heung-Man

    2010-12-01

    The volume of the air cavities in the paranasal sinuses is not only the simplest, but also the most important index for paranasal sinus evaluation. However, few volumetric studies have been performed in all age groups. The purpose of the current study was to outline the normal development of paranasal sinuses in all age groups, and to determine normal adult volumetric values by means of computed tomographic (CT) scan of paranasal sinus using volumetric procedures. A prospective volumetric CT study was conducted with 260 patients (520 sides) <25 years of age by means of three-dimensional reconstruction. The frontal sinuses began to pneumatize at 2 years of age, exhibited a faster growth pattern between 6 and 19 years of age, and the mean volume after full growth was 3.46±0.78 cm(3). The maxillary sinuses were pneumatized at birth in all cases, exhibited a monomodal growth pattern increasing until 15 years of age, and the mean volume after full growth was 14.83±1.36 cm(3). The floor of the sinus was the same level as the floor of the nasal cavity was between 7 and 15 years of age. The ethmoid sinuses exhibited a faster initial tendency to increase until 7 years of age, were completed by 15-16 years of age, and the mean volume after full growth was 4.51±0.92 cm(3). The sphenoid sinuses exhibited a growth spurt between 6 and 10 years of age, were completed by 15 years of age, and the mean volume after full growth was 3.47±0.93 cm(3). The results of this study are presented to provide the basis for an objective normal volume of sinus development and for studies involving diseases of the sinuses. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Using on-site liver 3-D reconstruction and volumetric calculations in split liver transplantation.

    PubMed

    Reichman, Trevor W; Fiorello, Brittany; Carmody, Ian; Bohorquez, Humberto; Cohen, Ari; Seal, John; Bruce, David; Loss, George E

    2016-12-01

    Split liver transplantation increases the number of grafts available for transplantation. Pre-recovery assessment of liver graft volume is essential for selecting suitable recipients. The purpose of this study was to determine the ability and feasibility of constructing a 3-D model to aid in surgical planning and to predict graft weight prior to an in situ division of the donor liver. Over 11 months, 3-D volumetric reconstruction of 4 deceased donors was performed using Pathfinder Scout© liver volumetric software. Demographic, laboratory, operative, perioperative and survival data for these patients along with donor demographic data were collected prospectively and analyzed retrospectively. The average predicted weight of the grafts from the adult donors obtained from an in situ split procedure were 1130 g (930-1458 g) for the extended right lobe donors and 312 g (222-396 g) for left lateral segment grafts. Actual adult graft weight was 92% of the predicted weight for both the extended right grafts and the left lateral segment grafts. The predicted and actual graft weights for the pediatric donors were 176 g and 210 g for the left lateral segment grafts and 308 g and 280 g for the extended right lobe grafts, respectively. All grafts were transplanted except for the right lobe from the pediatric donors due to the small graft weight. On-site volumetric assessment of donors provides useful information for the planning of an in situ split and for selection of recipients. This information may expand the donor pool to recipients previously felt to be unsuitable due to donor and/or recipient weight.

  11. Volumetric segmentation of range images for printed circuit board inspection

    NASA Astrophysics Data System (ADS)

    Van Dop, Erik R.; Regtien, Paul P. L.

    1996-10-01

    Conventional computer vision approaches towards object recognition and pose estimation employ 2D grey-value or color imaging. As a consequence these images contain information about projections of a 3D scene only. The subsequent image processing will then be difficult, because the object coordinates are represented with just image coordinates. Only complicated low-level vision modules like depth from stereo or depth from shading can recover some of the surface geometry of the scene. Recent advances in fast range imaging have however paved the way towards 3D computer vision, since range data of the scene can now be obtained with sufficient accuracy and speed for object recognition and pose estimation purposes. This article proposes the coded-light range-imaging method together with superquadric segmentation to approach this task. Superquadric segments are volumetric primitives that describe global object properties with 5 parameters, which provide the main features for object recognition. Besides, the principle axes of a superquadric segment determine the phase of an object in the scene. The volumetric segmentation of a range image can be used to detect missing, false or badly placed components on assembled printed circuit boards. Furthermore, this approach will be useful to recognize and extract valuable or toxic electronic components on printed circuit boards scrap that currently burden the environment during electronic waste processing. Results on synthetic range images with errors constructed according to a verified noise model illustrate the capabilities of this approach.

  12. Volumetric dimensional changes of dental light-cured dimethacrylate resins after sorption of water or ethanol.

    PubMed

    Sideridou, Irini D; Karabela, Maria M; Vouvoudi, Evagelia Ch

    2008-08-01

    This study evaluated the influence of water and ethanol sorption on the volumetric dimensional changes of resins prepared by light curing of Bis-GMA, Bis-EMA, UDMA, TEGDMA or D(3)MA. The resin specimens (15mm diameterx1mm height) were immersed in water or ethanol 37+/-1 degrees C for 30 days. Volumetric changes of specimens were obtained via accurate mass measurements using Archimedes principle. The specimens were reconditioned by dry storage in an oven at 37+/-1 degrees C until constant mass was obtained and then immersed in water or ethanol for 30 days. The volumetric changes of specimens were determined and compared to those obtained from the first sorption. Resins showed similar volume increase during the first and second sorptions of water or ethanol. The volume increase due to water absorption is in the following order: poly-TEGDMA>poly-Bis-GMA>poly-UDMA>poly-Bis-EMA>poly-D(3)MA. On the contrary, the order in ethanol is poly-Bis-GMA>poly-UDMA>poly-TEGDMA>poly-Bis-EMA approximately poly-D(3)MA. The volume increase was found to depend linearly on the amount of water or ethanol absorbed. In the choice of monomers for preparation of composite resin matrix the volume increase in the resin after immersion in water or ethanol must be taken into account. Resins of Bis-EMA and D(3)MA showed the lowest values.

  13. Method of fission heat flux determination from experimental data

    DOEpatents

    Paxton, Frank A.

    1999-01-01

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  14. Global performance parameters for different pneumatic bioreactors operating with water and glycerol solution: experimental data and CFD simulation.

    PubMed

    Rodriguez, G Y; Valverde-Ramírez, M; Mendes, C E; Béttega, R; Badino, A C

    2015-11-01

    Global variables play a key role in evaluation of the performance of pneumatic bioreactors and provide criteria to assist in system selection and design. The purpose of this work was to use experimental data and computational fluid dynamics (CFD) simulations to determine the global performance parameters gas holdup ([Formula: see text]) and volumetric oxygen transfer coefficient (k L a), and conduct an analysis of liquid circulation velocity, for three different geometries of pneumatic bioreactors: bubble column, concentric-tube airlift, and split tube airlift. All the systems had 5 L working volumes and two Newtonian fluids of different viscosities were used in the experiments: distilled water and 10 cP glycerol solution. Considering the high oxygen demand in certain types of aerobic fermentations, the assays were carried out at high flow rates. In the present study, the performances of three pneumatic bioreactors with different geometries and operating with two different Newtonian fluids were compared. A new CFD modeling procedure was implemented, and the simulation results were compared with the experimental data. The findings indicated that the concentric-tube airlift design was the best choice in terms of both gas holdup and volumetric oxygen transfer coefficient. The CFD results for gas holdup were consistent with the experimental data, and indicated that k L a was strongly influenced by bubble diameter and shape.

  15. Living donor right liver lobes: preoperative CT volumetric measurement for calculation of intraoperative weight and volume.

    PubMed

    Lemke, Arne-Jörn; Brinkmann, Martin Julius; Schott, Thomas; Niehues, Stefan Markus; Settmacher, Utz; Neuhaus, Peter; Felix, Roland

    2006-09-01

    To prospectively develop equations for the calculation of expected intraoperative weight and volume of a living donor's right liver lobe by using preoperative computed tomography (CT) for volumetric measurement. After medical ethics committee and state medical board approval, informed consent was obtained from eight female and eight male living donors (age range, 18-63 years) for participation in preoperative CT volumetric measurement of the right liver lobes by using the summation-of-area method. Intraoperatively, the graft was weighed, and the volume of the graft was determined by means of water displacement. Distributions of pre- and intraoperative data were depicted as Tukey box-and-whisker diagrams. Then, linear regressions were calculated, and the results were depicted as scatterplots. On the basis of intraoperative data, physical density of the parenchyma was calculated by dividing weight by volume of the graft. Preoperative measurement of grafts resulted in a mean volume of 929 mL +/- 176 (standard deviation); intraoperative mean weight and volume of the grafts were 774 g +/- 138 and 697 mL +/- 139, respectively. All corresponding pre- and intraoperative data correlated significantly (P < .001) with each other. Intraoperatively expected volume (V(intraop)) in millilliters and weight (W(intraop)) in grams can be calculated with the equations V(intra)(op) = (0.656 . V(preop)) + 87.629 mL and W(intra)(op) = (0.678 g/mL . V(preop)) + 143.704 g, respectively, where preoperative volume is V(preop) in milliliters. Physical density of transplanted liver lobes was 1.1172 g/mL +/- 0.1015. By using two equations developed from the data obtained in this study, expected intraoperative weight and volume can properly be determined from CT volumetric measurements. (c) RSNA, 2006.

  16. The power-proportion method for intracranial volume correction in volumetric imaging analysis.

    PubMed

    Liu, Dawei; Johnson, Hans J; Long, Jeffrey D; Magnotta, Vincent A; Paulsen, Jane S

    2014-01-01

    In volumetric brain imaging analysis, volumes of brain structures are typically assumed to be proportional or linearly related to intracranial volume (ICV). However, evidence abounds that many brain structures have power law relationships with ICV. To take this relationship into account in volumetric imaging analysis, we propose a power law based method-the power-proportion method-for ICV correction. The performance of the new method is demonstrated using data from the PREDICT-HD study.

  17. BOREAS HYD-1 Volumetric Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Cuenca, Richard H.; Kelly, Shaun F.; Stangel, David E.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-1 team made measurements of volumetric soil moisture at the Southern Study Area (SSA) and Northern Study Area (NSA) tower flux sites in 1994 and at selected tower flux sites in 1995-97. Different methods were used to collect these measurements, including neutron probe and manual and automated Time Domain Reflectometry (TDR). In 1994, the measurements were made every other day at the NSA-OJP (Old Jack Pine), NSA-YJP (Young Jack Pine), NSA-OBS (Old Black Spruce), NSA-Fen, SSA-OJP, SSA-YJP, SSA-Fen, SSA-YA (Young Aspen), and SSA-OBS sites. In 1995-97, when automated equipment was deployed at NSA-OJP, NSA-YJP, NSA-OBS, SSA-OBS, and SSA-OA (Old Aspen), the measurements were made as often as every hour. The data are stored in tabular ASCII files. The volumetric soil moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  18. Volumetric Acoustic Vector Intensity Probe

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2006-01-01

    A new measurement tool capable of imaging the acoustic intensity vector throughout a large volume is discussed. This tool consists of an array of fifty microphones that form a spherical surface of radius 0.2m. A simultaneous measurement of the pressure field across all the microphones provides time-domain near-field holograms. Near-field acoustical holography is used to convert the measured pressure into a volumetric vector intensity field as a function of frequency on a grid of points ranging from the center of the spherical surface to a radius of 0.4m. The volumetric intensity is displayed on three-dimensional plots that are used to locate noise sources outside the volume. There is no restriction on the type of noise source that can be studied. The sphere is mobile and can be moved from location to location to hunt for unidentified noise sources. An experiment inside a Boeing 757 aircraft in flight successfully tested the ability of the array to locate low-noise-excited sources on the fuselage. Reference transducers located on suspected noise source locations can also be used to increase the ability of this device to separate and identify multiple noise sources at a given frequency by using the theory of partial field decomposition. The frequency range of operation is 0 to 1400Hz. This device is ideal for the study of noise sources in commercial and military transportation vehicles in air, on land and underwater.

  19. Determining Metacarpophalangeal Flexion Angle Tolerance for Reliable Volumetric Joint Space Measurements by High-resolution Peripheral Quantitative Computed Tomography.

    PubMed

    Tom, Stephanie; Frayne, Mark; Manske, Sarah L; Burghardt, Andrew J; Stok, Kathryn S; Boyd, Steven K; Barnabe, Cheryl

    2016-10-01

    The position-dependence of a method to measure the joint space of metacarpophalangeal (MCP) joints using high-resolution peripheral quantitative computed tomography (HR-pQCT) was studied. Cadaveric MCP were imaged at 7 flexion angles between 0 and 30 degrees. The variability in reproducibility for mean, minimum, and maximum joint space widths and volume measurements was calculated for increasing degrees of flexion. Root mean square coefficient of variance values were < 5% under 20 degrees of flexion for mean, maximum, and volumetric joint spaces. Values for minimum joint space width were optimized under 10 degrees of flexion. MCP joint space measurements should be acquired at < 10 degrees of flexion in longitudinal studies.

  20. High-volumetric performance aligned nano-porous microwave exfoliated graphite oxide-based electrochemical capacitors.

    PubMed

    Ghaffari, Mehdi; Zhou, Yue; Xu, Haiping; Lin, Minren; Kim, Tae Young; Ruoff, Rodney S; Zhang, Q M

    2013-09-20

    Ultra-high volumetric performance electrochemical double layer capacitors based on high density aligned nano-porous microwave exfoliated graphite oxide have been studied. Elimination of macro-, meso-, and larger micro-pores from electrodes and controlling the nano-morphology results in very high volumetric capacitance, energy, and power density values. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. VASP-E: Specificity Annotation with a Volumetric Analysis of Electrostatic Isopotentials

    PubMed Central

    Chen, Brian Y.

    2014-01-01

    Algorithms for comparing protein structure are frequently used for function annotation. By searching for subtle similarities among very different proteins, these algorithms can identify remote homologs with similar biological functions. In contrast, few comparison algorithms focus on specificity annotation, where the identification of subtle differences among very similar proteins can assist in finding small structural variations that create differences in binding specificity. Few specificity annotation methods consider electrostatic fields, which play a critical role in molecular recognition. To fill this gap, this paper describes VASP-E (Volumetric Analysis of Surface Properties with Electrostatics), a novel volumetric comparison tool based on the electrostatic comparison of protein-ligand and protein-protein binding sites. VASP-E exploits the central observation that three dimensional solids can be used to fully represent and compare both electrostatic isopotentials and molecular surfaces. With this integrated representation, VASP-E is able to dissect the electrostatic environments of protein-ligand and protein-protein binding interfaces, identifying individual amino acids that have an electrostatic influence on binding specificity. VASP-E was used to examine a nonredundant subset of the serine and cysteine proteases as well as the barnase-barstar and Rap1a-raf complexes. Based on amino acids established by various experimental studies to have an electrostatic influence on binding specificity, VASP-E identified electrostatically influential amino acids with 100% precision and 83.3% recall. We also show that VASP-E can accurately classify closely related ligand binding cavities into groups with different binding preferences. These results suggest that VASP-E should prove a useful tool for the characterization of specific binding and the engineering of binding preferences in proteins. PMID:25166865

  2. Effect of cup inclination on predicted contact stress-induced volumetric wear in total hip replacement.

    PubMed

    Rijavec, B; Košak, R; Daniel, M; Kralj-Iglič, V; Dolinar, D

    2015-01-01

    In order to increase the lifetime of the total hip endoprosthesis, it is necessary to understand mechanisms leading to its failure. In this work, we address volumetric wear of the artificial cup, in particular the effect of its inclination with respect to the vertical. Volumetric wear was calculated by using mathematical models for resultant hip force, contact stress and penetration of the prosthesis head into the cup. Relevance of the dependence of volumetric wear on inclination of the cup (its abduction angle ϑA) was assessed by the results of 95 hips with implanted endoprosthesis. Geometrical parameters obtained from standard antero-posterior radiographs were taken as input data. Volumetric wear decreases with increasing cup abduction angle ϑA. The correlation within the population of 95 hips was statistically significant (P = 0.006). Large cup abduction angle minimises predicted volumetric wear but may increase the risk for dislocation of the artificial head from the cup in the one-legged stance. Cup abduction angle and direction of the resultant hip force may compensate each other to achieve optimal position of the cup with respect to wear and dislocation in the one-legged stance for a particular patient.

  3. Quantification of ultrasonic texture intra-heterogeneity via volumetric stochastic modeling for tissue characterization.

    PubMed

    Al-Kadi, Omar S; Chung, Daniel Y F; Carlisle, Robert C; Coussios, Constantin C; Noble, J Alison

    2015-04-01

    Intensity variations in image texture can provide powerful quantitative information about physical properties of biological tissue. However, tissue patterns can vary according to the utilized imaging system and are intrinsically correlated to the scale of analysis. In the case of ultrasound, the Nakagami distribution is a general model of the ultrasonic backscattering envelope under various scattering conditions and densities where it can be employed for characterizing image texture, but the subtle intra-heterogeneities within a given mass are difficult to capture via this model as it works at a single spatial scale. This paper proposes a locally adaptive 3D multi-resolution Nakagami-based fractal feature descriptor that extends Nakagami-based texture analysis to accommodate subtle speckle spatial frequency tissue intensity variability in volumetric scans. Local textural fractal descriptors - which are invariant to affine intensity changes - are extracted from volumetric patches at different spatial resolutions from voxel lattice-based generated shape and scale Nakagami parameters. Using ultrasound radio-frequency datasets we found that after applying an adaptive fractal decomposition label transfer approach on top of the generated Nakagami voxels, tissue characterization results were superior to the state of art. Experimental results on real 3D ultrasonic pre-clinical and clinical datasets suggest that describing tumor intra-heterogeneity via this descriptor may facilitate improved prediction of therapy response and disease characterization. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Experimental determination of third-order elastic constants of diamond.

    PubMed

    Lang, J M; Gupta, Y M

    2011-03-25

    To determine the nonlinear elastic response of diamond, single crystals were shock compressed along the [100], [110], and [111] orientations to 120 GPa peak elastic stresses. Particle velocity histories and elastic wave velocities were measured by using laser interferometry. The measured elastic wave profiles were used, in combination with published acoustic measurements, to determine the complete set of third-order elastic constants. These constants represent the first experimental determination, and several differ significantly from those calculated by using theoretical models.

  5. Method and device for determining heats of combustion of gaseous hydrocarbons

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Sprinkle, Danny R. (Inventor); Puster, Richard L. (Inventor)

    1988-01-01

    A method and device is provided for a quick, accurate and on-line determination of heats of combustion of gaseous hydrocarbons. First, the amount of oxygen in the carrier air stream is sensed by an oxygen sensing system. Second, three individual volumetric flow rates of oxygen, carrier stream air, and hydrocrabon test gas are introduced into a burner. The hydrocarbon test gas is fed into the burner at a volumetric flow rate, n, measured by a flowmeter. Third, the amount of oxygen in the resulting combustion products is sensed by an oxygen sensing system. Fourth, the volumetric flow rate of oxygen is adjusted until the amount of oxygen in the combustion product equals the amount of oxygen previously sensed in the carrier air stream. This equalizing volumetric flow rate is m and is measured by a flowmeter. The heat of combustion of the hydrocrabon test gas is then determined from the ratio m/n.

  6. The Volumetric Rate of Calcium-rich Transients in the Local Universe

    DOE PAGES

    Frohmaier, Chris; Sullivan, Mark; Maguire, Kate; ...

    2018-05-04

    Here, we present a measurement of the volumetric rate of "calcium-rich" optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: 1.21 -0.39 +1.13 10 -5 events yr -1Mpc -3. This is equivalent to 33%-94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundancesmore » in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ~0.05 M ⊙. As a result, we also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.« less

  7. The Volumetric Rate of Calcium-rich Transients in the Local Universe

    NASA Astrophysics Data System (ADS)

    Frohmaier, Chris; Sullivan, Mark; Maguire, Kate; Nugent, Peter

    2018-05-01

    We present a measurement of the volumetric rate of “calcium-rich” optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: {1.21}-0.39+1.13 × {10}-5 events yr‑1 Mpc‑3. This is equivalent to 33%–94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundances in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ∼0.05 {M}ȯ . We also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.

  8. The Volumetric Rate of Calcium-rich Transients in the Local Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frohmaier, Chris; Sullivan, Mark; Maguire, Kate

    Here, we present a measurement of the volumetric rate of "calcium-rich" optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detection efficiencies and uses a Monte Carlo simulation of the PTF survey. We measure the volumetric rate of calcium-rich transients to be higher than previous estimates: 1.21 -0.39 +1.13 10 -5 events yr -1Mpc -3. This is equivalent to 33%-94% of the local volumetric Type Ia supernova rate. This calcium-rich transient rate is sufficient to reproduce the observed calcium abundancesmore » in galaxy clusters, assuming an asymptotic calcium yield per calcium-rich event of ~0.05 M ⊙. As a result, we also study the PTF detection efficiency of these transients as a function of position within their candidate host galaxies. We confirm as a real physical effect previous results that suggest that calcium-rich transients prefer large physical offsets from their host galaxies.« less

  9. Volumetric structured illumination microscopy enabled by tunable focus lens (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hinsdale, Taylor; Malik, Bilal; Olsovsky, Cory; Jo, Javier A.; Maitland, Kristen C.

    2016-03-01

    We present a volumetric imaging method for biological tissue that is free of mechanically scanning components. The optical sectioning in the system is obtained by structured illumination microscopy (SIM) with the depth of focus being varied by the use of an electronic tunable-focus lens (ETL). The performance of the axial scanning mechanism was evaluated and characterized in conjunction with SIM to ensure volumetric images could be recorded and reconstructed without significant losses in optical section thickness and lateral resolution over the full desired scan range. It was demonstrated that sub-cellular image resolutions were obtainable in both microsphere films and in ex vivo oral mucosa, spanning multiple cell layers, without significant losses in image quality. The mechanism proposed here has the ability to be integrated into any wide-field microscopy system to convert it into a three-dimensional imaging platform without the need for axial scanning of the sample or imaging optics. The ability to axially scan independent of mechanical movement also provides the opportunity for the development of endoscopic systems which can create volumetric images of tissue in vivo.

  10. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption

    NASA Astrophysics Data System (ADS)

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (˜100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ˜0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  11. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption.

    PubMed

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (∼100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ∼0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  12. Rheological and volumetric properties of TiO2-ethylene glycol nanofluids

    PubMed Central

    2013-01-01

    Homogeneous stable suspensions obtained by dispersing dry TiO2 nanoparticles in pure ethylene glycol were prepared and studied. Two types of nanocrystalline structure were analyzed, namely anatase and rutile phases, which have been characterized by scanning electron microscopy. The rheological behavior was determined for both nanofluids at nanoparticle mass concentrations up to 25%, including flow curves and frequency-dependent storage and loss moduli, using a cone-plate rotational rheometer. The effect of temperature over these flow curve tests at the highest concentration was also analyzed from 283.15 to 323.15 K. Furthermore, the influence of temperature, pressure, nanocrystalline structure, and concentration on the volumetric properties, including densities and isobaric thermal expansivities, were also analyzed. PMID:23763850

  13. Volumetrics relate to the development of depression after traumatic brain injury.

    PubMed

    Maller, Jerome J; Thomson, Richard H S; Pannek, Kerstin; Bailey, Neil; Lewis, Philip M; Fitzgerald, Paul B

    2014-09-01

    Previous research suggests that many people who sustain a traumatic brain injury (TBI), even of the mild form, will develop major depression (MD). We previously reported white matter integrity differences between those who did and did not develop MD after mild TBI. In this current paper, we aimed to investigate whether there were also volumetric differences between these groups, as suggested by previous volumetric studies in mild TBI populations. A sample of TBI-with-MD subjects (N=14), TBI-without-MD subjects (N=12), MD-without-TBI (N=26) and control subjects (no TBI or MD, N=23), received structural MRI brain scans. T1-weighted data were analysed using the Freesurfer software package which produces automated volumetric results. The findings of this study indicate that (1) TBI patients who develop MD have reduced volume in temporal, parietal and lingual regions compared to TBI patients who do not develop MD, and (2) MD patients with a history of TBI have decreased volume in the temporal region compared to those who had MD but without a history of TBI. We also found that more severe MD in those with TBI-with-MD significantly correlated with reduced volume in anterior cingulate, temporal lobe and insula. These findings suggest that volumetric reduction to specific regions, including parietal, temporal and occipital lobes, after a mild TBI may underlie the susceptibility of these patients developing major depression, in addition to altered white matter integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Verification of Experimental Techniques for Flow Surface Determination

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Lerch, Bradley A.; Ellis, John R.; Robinson, David N.

    1996-01-01

    The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory. However, at elevated temperatures, material response can be highly time-dependent, which is beyond the realm of classical plasticity. Viscoplastic theories have been developed for just such conditions. In viscoplastic theories, the flow law is given in terms of inelastic strain rate rather than the inelastic strain increment used in time-independent plasticity. Thus, surfaces of constant inelastic strain rate or flow surfaces are to viscoplastic theories what yield surfaces are to classical plasticity. The purpose of the work reported herein was to validate experimental procedures for determining flow surfaces at elevated temperatures. Since experimental procedures for determining yield surfaces in axial/torsional stress space are well established, they were employed -- except inelastic strain rates were used rather than total inelastic strains. In yield-surface determinations, the use of small-offset definitions of yield minimizes the change of material state and allows multiple loadings to be applied to a single specimen. The key to the experiments reported here was precise, decoupled measurement of axial and torsional strain. With this requirement in mind, the performance of a high-temperature multi-axial extensometer was evaluated by comparing its results with strain gauge results at room temperature. Both the extensometer and strain gauges gave nearly identical yield surfaces (both initial and subsequent) for type 316 stainless steel (316 SS). The extensometer also successfully determined flow surfaces for 316 SS at 650 C. Furthermore, to judge the applicability of the technique for composite materials, yield surfaces were determined for unidirectional tungsten/Kanthal (Fe-Cr-Al).

  15. Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study.

    PubMed

    Suter, Melissa J; Gora, Michalina J; Lauwers, Gregory Y; Arnason, Thomas; Sauk, Jenny; Gallagher, Kevin A; Kava, Lauren; Tan, Khay M; Soomro, Amna R; Gallagher, Timothy P; Gardecki, Joseph A; Bouma, Brett E; Rosenberg, Mireille; Nishioka, Norman S; Tearney, Guillermo J

    2014-06-01

    Biopsy surveillance protocols for the assessment of Barrett's esophagus can be subject to sampling errors, resulting in diagnostic uncertainty. Optical coherence tomography is a cross-sectional imaging technique that can be used to conduct volumetric laser endomicroscopy (VLE) of the entire distal esophagus. We have developed a biopsy guidance platform that places endoscopically visible marks at VLE-determined biopsy sites. The objective of this study was to demonstrate in human participants the safety and feasibility of VLE-guided biopsy in vivo. A pilot feasibility study. Massachusetts General Hospital. A total of 22 participants were enrolled from January 2011 to June 2012 with a prior diagnosis of Barrett's esophagus. Twelve participants were used to optimize the laser marking parameters and the system platform. A total of 30 target sites were selected and marked in real-time by using the VLE-guided biopsy platform in the remaining 10 participants. Volumetric laser endomicroscopy. Endoscopic and VLE visibility, and accuracy of VLE diagnosis of the tissue between the laser cautery marks. There were no adverse events of VLE and laser marking. The optimal laser marking parameters were determined to be 2 seconds at 410 mW, with a mark separation of 6 mm. All marks made with these parameters were visible on endoscopy and VLE. The accuracies for diagnosing tissue in between the laser cautery marks by independent blinded readers for endoscopy were 67% (95% confidence interval [CI], 47%-83%), for VLE intent-to-biopsy images 93% (95% CI, 78%-99%), and for corrected VLE post-marking images 100% when compared with histopathology interpretations. This is a single-center feasibility study with a limited number of patients. Our results demonstrate that VLE-guided biopsy of the esophagus is safe and can be used to guide biopsy site selection based on the acquired volumetric optical coherence tomography imaging data. ( NCT01439633.). Copyright © 2014 American Society for

  16. Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study

    PubMed Central

    Suter, Melissa J.; Gora, Michalina J.; Lauwers, Gregory Y.; Arnason, Thomas; Sauk, Jenny; Gallagher, Kevin A.; Kava, Lauren; Tan, Khay M.; Soomro, Amna R.; Gallagher, Timothy P.; Gardecki, Joseph A.; Bouma, Brett E.; Rosenberg, Mireille; Nishioka, Norman S.; Tearney, Guillermo J.

    2018-01-01

    Background Biopsy surveillance protocols for the assessment of Barrett’s esophagus can be subject to sampling errors, resulting in diagnostic uncertainty. Optical coherence tomography is a cross-sectional imaging technique that can be used to conduct volumetric laser endomicroscopy (VLE) of the entire distal esophagus. We have developed a biopsy guidance platform that places endoscopically visible marks at VLE-determined biopsy sites. Objective The objective of this study was to demonstrate in human participants the safety and feasibility of VLE-guided biopsy in vivo. Design A pilot feasibility study. Setting Massachusetts General Hospital. Patients A total of 22 participants were enrolled from January 2011 to June 2012 with a prior diagnosis of Barrett’s esophagus. Twelve participants were used to optimize the laser marking parameters and the system platform. A total of 30 target sites were selected and marked in real-time by using the VLE-guided biopsy platform in the remaining 10 participants. Intervention Volumetric laser endomicroscopy. Main Outcome Measurements Endoscopic and VLE visibility, and accuracy of VLE diagnosis of the tissue between the laser cautery marks. Results There were no adverse events of VLE and laser marking. The optimal laser marking parameters were determined to be 2 seconds at 410 mW, with a mark separation of 6 mm. All marks made with these parameters were visible on endoscopy and VLE. The accuracies for diagnosing tissue in between the laser cautery marks by independent blinded readers for endoscopy were 67% (95% confidence interval [CI], 47%–83%), for VLE intent-to-biopsy images 93% (95% CI, 78%–99%), and for corrected VLE post-marking images 100% when compared with histopathology interpretations. Limitations This is a single-center feasibility study with a limited number of patients. Conclusion Our results demonstrate that VLE-guided biopsy of the esophagus is safe and can be used to guide biopsy site selection based on the

  17. MR volumetric analysis of the course of nephroblastomatosis under chemotherapy in childhood.

    PubMed

    Günther, Patrick; Tröger, Jochen; Graf, Norbert; Waag, Karl Ludwig; Schenk, Jens-Peter

    2004-08-01

    Nephroblastomatosis is a paediatric renal disease that may undergo malignant transformation. When neoadjuvant chemotherapy is indicated for nephroblastomatosis or bilateral Wilms' tumours, exact volumetric analysis using high-speed data processing and visualization may aid in determining tumour response. Using 3D-volume-rendering software, the 0.5-T MRI data of a 2-year-old girl with bilateral nephroblastomatosis was analysed. Exact volume determination of foci of nephroblastomatosis was performed by automatic and manual segmentation, and the relation to normal renal parenchyma was determined over a 12-month period. At the first visit, 80% (460/547 ml) of the extremely enlarged right kidney was due to nephroblastomatosis. Total tumour volume within the right kidney decreased to 74 ml under chemotherapy. Volume analysis of the two emerging right-sided masses after treatment correctly suggested Wilms' tumour. Three-dimensional rendering of the growing masses aided the surgeon in nephron-sparing surgery during tumour resection.

  18. Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances.

    PubMed

    Wang, Jie; Ding, Bing; Xu, Yunling; Shen, Laifa; Dou, Hui; Zhang, Xiaogang

    2015-10-14

    Graphene is considered a promising electrochemical capacitors electrode material due to its high surface area and high electrical conductivity. However, restacking interactions between graphene nanosheets significantly decrease the ion-accessible surface area and impede electronic and ionic transfer. This would, in turn, severely hinder the realization of high energy density. Herein, we report a strategy for preparation of few-layer graphene material with abundant crumples and high-level nitrogen doping. The two-dimensional graphene nanosheets (CNG) feature high ion-available surface area, excellent electronic and ion transfer properties, and high packing density, permitting the CNG electrode to exhibit excellent electrochemical performance. In ionic liquid electrolyte, the CNG electrode exhibits gravimetric and volumetric capacitances of 128 F g(-1) and 98 F cm(-3), respectively, achieving gravimetric and volumetric energy densities of 56 Wh kg(-1) and 43 Wh L(-1). The preparation strategy described here provides a new approach for developing a graphene-based supercapacitor with high gravimetric and volumetric energy densities.

  19. Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Jergas, M.; Breitenseher, M.; Gluer, C. C.; Yu, W.; Genant, H. K.

    1995-01-01

    To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are

  20. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY

    PubMed Central

    Villalon, Julio; Joshi, Anand A.; Toga, Arthur W.; Thompson, Paul M.

    2015-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic “Demons” algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future. PMID:26925198

  1. Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Xu, Zhichuan J.; Wang, Yanyan; Zhang, Yafei

    2016-08-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) are one of the most ideal candidates for high-performance flexible power sources. The achievement of high volumetric energy density is highly desired for practical application of this type of ASSSCs. Here, we present a facile method to boost volumetric performances of graphene-based flexible ASSSCs through incorporation of ultrafine polyaniline-poly(4-styrenesulfonate) (PANI-PSS) nanoparticles in reduced graphene oxide (rGO) papers. A compact structure is obtained via intimate contact and π-π interaction between PANI-PSS nanoparticles and rGO sheets. The hybrid paper electrode with the film thickness of 13.5 μm, shows an extremely high volumetric specific capacitance of 272 F/cm3 (0.37 A/cm3 in a three-electrode cell). The assembled ASSSCs show a large volumetric specific capacitance of 217 F/cm3 (0.37 A/cm3 in a two-electrode cell), high volumetric energy and power density, excellent capacitance stability, small leakage current as well as low self-discharge characteristics, revealing the usefulness of this robust hybrid paper for high-performance flexible energy storage devices.

  2. Volumetric Medical Image Coding: An Object-based, Lossy-to-lossless and Fully Scalable Approach

    PubMed Central

    Danyali, Habibiollah; Mertins, Alfred

    2011-01-01

    In this article, an object-based, highly scalable, lossy-to-lossless 3D wavelet coding approach for volumetric medical image data (e.g., magnetic resonance (MR) and computed tomography (CT)) is proposed. The new method, called 3DOBHS-SPIHT, is based on the well-known set partitioning in the hierarchical trees (SPIHT) algorithm and supports both quality and resolution scalability. The 3D input data is grouped into groups of slices (GOS) and each GOS is encoded and decoded as a separate unit. The symmetric tree definition of the original 3DSPIHT is improved by introducing a new asymmetric tree structure. While preserving the compression efficiency, the new tree structure allows for a small size of each GOS, which not only reduces memory consumption during the encoding and decoding processes, but also facilitates more efficient random access to certain segments of slices. To achieve more compression efficiency, the algorithm only encodes the main object of interest in each 3D data set, which can have any arbitrary shape, and ignores the unnecessary background. The experimental results on some MR data sets show the good performance of the 3DOBHS-SPIHT algorithm for multi-resolution lossy-to-lossless coding. The compression efficiency, full scalability, and object-based features of the proposed approach, beside its lossy-to-lossless coding support, make it a very attractive candidate for volumetric medical image information archiving and transmission applications. PMID:22606653

  3. A New Volumetric Radiologic Method to Assess Indirect Decompression After Extreme Lateral Interbody Fusion Using High-Resolution Intraoperative Computed Tomography.

    PubMed

    Navarro-Ramirez, Rodrigo; Berlin, Connor; Lang, Gernot; Hussain, Ibrahim; Janssen, Insa; Sloan, Stephen; Askin, Gulce; Avila, Mauricio J; Zubkov, Micaella; Härtl, Roger

    2018-01-01

    Two-dimensional radiographic methods have been proposed to evaluate the radiographic outcome after indirect decompression through extreme lateral interbody fusion (XLIF). However, the assessment of neural decompression in a single plane may underestimate the effect of indirect decompression on central canal and foraminal volumes. The present study aimed to assess the reliability and consistency of a novel 3-dimensional radiographic method that assesses neural decompression by volumetric analysis using a new generation of intraoperative fan-beam computed tomography scanner in patients undergoing XLIF. Prospectively collected data from 7 patients (9 levels) undergoing XLIF was retrospectively analyzed. Three independent, blind raters using imaging analysis software performed volumetric measurements pre- and postoperatively to determine central canal and foraminal volumes. Intrarater and Interrater reliability tests were performed to assess the reliability of this novel volumetric method. The interrater reliability between the three raters ranged from 0.800 to 0.952, P < 0.0001. The test-retest analysis on a randomly selected subset of three patients showed good to excellent internal reliability (range of 0.78-1.00) for all 3 raters. There was a significant increase in mean volume ≈20% for right foramen, left foramen, and central canal volumes postoperatively (P = 0.0472; P = 0.0066; P = 0.0003, respectively). Here we demonstrate a new volumetric analysis technique that is feasible, reliable, and reproducible amongst independent raters for central canal and foraminal volumes in the lumbar spine using an intraoperative computed tomography scanner. Copyright © 2017. Published by Elsevier Inc.

  4. Comparing the sensitivity of linear and volumetric MRI measurements to detect changes in the size of vestibular schwannomas in patients with neurofibromatosis type 2 on bevacizumab treatment.

    PubMed

    Morris, Katrina A; Parry, Allyson; Pretorius, Pieter M

    2016-09-01

    To compare the sensitivity of linear and volumetric measurements on MRI in detecting schwannoma progression in patients with neurofibromatosis type 2 on bevacizumab treatment as well as the extent to which this depends on the size of the tumour. We compared retrospectively, changes in linear tumour dimensions at a range of thresholds to volumetric tumour measurements performed using Brainlab iPlan(®) software (Feldkirchen, Germany) and classified for tumour progression according to the Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) criteria. Assessment of 61 schwannomas in 46 patients with a median follow-up of 20 months (range 3-43 months) was performed. There was a mean of 7 time points per tumour (range 2-12 time points). Using the volumetric REiNS criteria as the gold standard, a sensitivity of 86% was achieved for linear measurement using a 2-mm threshold to define progression. We propose that a change in linear measurement by 2 mm (particularly in tumours with starting diameters 20-30 mm, the majority of this cohort) could be used as a filter to identify cases of possible progression requiring volumetric analysis. This pragmatic approach can be used if stabilization of a previously growing schwannoma is sufficient for a patient to continue treatment in such a circumstance. We demonstrate the real-world limitations of linear vs volumetric measurement in tumour response assessment and identify limited circumstances where linear measurements can be used to determine which patients require the more resource-intensive volumetric measurements.

  5. Patterns of shading tolerance determined from experimental light reduction studies of seagrasses

    EPA Science Inventory

    An extensive review of the experimental literature on seagrass shading evaluated the relationship between experimental light reductions, duration of experiment and seagrass response metrics to determine whether there were consistent statistical patterns. There were highly signif...

  6. Three-Dimensional Dynamic Rupture in Brittle Solids and the Volumetric Strain Criterion

    NASA Astrophysics Data System (ADS)

    Uenishi, K.; Yamachi, H.

    2017-12-01

    As pointed out by Uenishi (2016 AGU Fall Meeting), source dynamics of ordinary earthquakes is often studied in the framework of 3D rupture in brittle solids but our knowledge of mechanics of actual 3D rupture is limited. Typically, criteria derived from 1D frictional observations of sliding materials or post-failure behavior of solids are applied in seismic simulations, and although mode-I cracks are frequently encountered in earthquake-induced ground failures, rupture in tension is in most cases ignored. Even when it is included in analyses, the classical maximum principal tensile stress rupture criterion is repeatedly used. Our recent basic experiments of dynamic rupture of spherical or cylindrical monolithic brittle solids by applying high-voltage electric discharge impulses or impact loads have indicated generation of surprisingly simple and often flat rupture surfaces in 3D specimens even without the initial existence of planes of weakness. However, at the same time, the snapshots taken by a high-speed digital video camera have shown rather complicated histories of rupture development in these 3D solid materials, which seem to be difficult to be explained by, for example, the maximum principal stress criterion. Instead, a (tensile) volumetric strain criterion where the volumetric strain (dilatation or the first invariant of the strain tensor) is a decisive parameter for rupture seems more effective in computationally reproducing the multi-directionally propagating waves and rupture. In this study, we try to show the connection between this volumetric strain criterion and other classical rupture criteria or physical parameters employed in continuum mechanics, and indicate that the criterion has, to some degree, physical meanings. First, we mathematically illustrate that the criterion is equivalent to a criterion based on the mean normal stress, a crucial parameter in plasticity. Then, we mention the relation between the volumetric strain criterion and the

  7. Iterative Reconstruction of Volumetric Particle Distribution for 3D Velocimetry

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard; Neal, Douglas

    2011-11-01

    A number of different volumetric flow measurement techniques exist for following the motion of illuminated particles. For experiments that have lower seeding densities, 3D-PTV uses recorded images from typically 3-4 cameras and then tracks the individual particles in space and time. This technique is effective in flows that have lower seeding densities. For flows that have a higher seeding density, tomographic PIV uses a tomographic reconstruction algorithm (e.g. MART) to reconstruct voxel intensities of the recorded volume followed by the cross-correlation of subvolumes to provide the instantaneous 3D vector fields on a regular grid. A new hybrid algorithm is presented which iteratively reconstructs the 3D-particle distribution directly using particles with certain imaging properties instead of voxels as base functions. It is shown with synthetic data that this method is capable of reconstructing densely seeded flows up to 0.05 particles per pixel (ppp) with the same or higher accuracy than 3D-PTV and tomographic PIV. Finally, this new method is validated using experimental data on a turbulent jet.

  8. Architecture of the Suprahyoid Muscles: A Volumetric Musculoaponeurotic Analysis.

    PubMed

    Shaw, Stephanie M; Martino, Rosemary; Mahdi, Ali; Sawyer, Forrest Kip; Mathur, Sunita; Hope, Andrew; Agur, Anne M

    2017-10-17

    Suprahyoid muscles play a critical role in swallowing. The arrangement of the fiber bundles and aponeuroses has not been investigated volumetrically, even though muscle architecture is an important determinant of function. Thus, the purpose was to digitize, model in three dimensions, and quantify the architectural parameters of the suprahyoid muscles to determine and compare their relative functional capabilities. Fiber bundles and aponeuroses from 11 formalin-embalmed specimens were serially dissected and digitized in situ. Data were reconstructed in three dimensions using Autodesk Maya. Architectural parameters were quantified, and data were compared using independent samples t-tests and analyses of variance. Based on architecture and attachment sites, suprahyoid muscles were divided into 3 groups: anteromedial, superolateral, and superoposterior. Architectural parameters differed significantly (p < .05) across muscles and across the 3 groups, suggesting differential roles in hyoid movement during swallowing. When activated simultaneously, anteromedial and superoposterior muscle groups could work together to elevate the hyoid. The results suggest that the suprahyoid muscles can have individualized roles in hyoid excursion during swallowing. Muscle balance may be important for identifying and treating hyolaryngeal dysfunction in patients with dysphagia.

  9. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    NASA Technical Reports Server (NTRS)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, Jim

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  10. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    NASA Technical Reports Server (NTRS)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, James; Cmarik, Gregory E.; Ebner, Armin; Ritter, James

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0 C, 10 C, 25 C, 50 C, and 75 C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  11. Measurement of vibration-induced volumetric strain in the human lung.

    PubMed

    Hirsch, Sebastian; Posnansky, Oleg; Papazoglou, Sebastian; Elgeti, Thomas; Braun, Jürgen; Sack, Ingolf

    2013-03-01

    Noninvasive image-based measurement of intrinsic tissue pressure is of great interest in the diagnosis and characterization of diseases. Therefore, we propose to exploit the capability of phase-contrast MRI to measure three-dimensional vector fields of tissue motion for deriving volumetric strain induced by external vibration. Volumetric strain as given by the divergence of mechanical displacement fields is related to tissue compressibility and is thus sensitive to the state of tissue pressure. This principle is demonstrated by the measurement of three-dimensional vector fields of 50-Hz oscillations in a compressible agarose phantom and in the lungs of nine healthy volunteers. In the phantom, the magnitude of the oscillating divergence increased by about 400% with 4.8 bar excess air pressure, corresponding to an effective-medium compression modulus of 230 MPa. In lungs, the averaged divergence magnitude increased in all volunteers (N = 9) between 7 and 78% from expiration to inspiration. Measuring volumetric strain by MRI provides a compression-sensitive parameter of tissue mechanics, which varies with the respiratory state in the lungs. In future clinical applications for diagnosis and characterization of lung emphysema, fibrosis, or cancer, divergence-sensitive MRI may serve as a noninvasive marker sensitive to disease-related alterations of regional elastic recoil pressure in the lungs. Copyright © 2012 Wiley Periodicals, Inc.

  12. Practical considerations for volumetric wear analysis of explanted hip arthroplasties

    PubMed Central

    Langton, D. J.; Sidaginamale, R. P.; Holland, J. P.; Deehan, D.; Joyce, T. J.; Nargol, A. V. F.; Meek, R. D.; Lord, J. K.

    2014-01-01

    Objectives Wear debris released from bearing surfaces has been shown to provoke negative immune responses in the recipient. Excessive wear has been linked to early failure of prostheses. Analysis using coordinate measuring machines (CMMs) can provide estimates of total volumetric material loss of explanted prostheses and can help to understand device failure. The accuracy of volumetric testing has been debated, with some investigators stating that only protocols involving hundreds of thousands of measurement points are sufficient. We looked to examine this assumption and to apply the findings to the clinical arena. Methods We examined the effects on the calculated material loss from a ceramic femoral head when different CMM scanning parameters were used. Calculated wear volumes were compared with gold standard gravimetric tests in a blinded study. Results Various scanning parameters including point pitch, maximum point to point distance, the number of scanning contours or the total number of points had no clinically relevant effect on volumetric wear calculations. Gravimetric testing showed that material loss can be calculated to provide clinically relevant degrees of accuracy. Conclusions Prosthetic surfaces can be analysed accurately and rapidly with currently available technologies. Given these results, we believe that routine analysis of explanted hip components would be a feasible and logical extension to National Joint Registries. Cite this article: Bone Joint Res 2014;3:60–8. PMID:24627327

  13. Practical considerations for volumetric wear analysis of explanted hip arthroplasties.

    PubMed

    Langton, D J; Sidaginamale, R P; Holland, J P; Deehan, D; Joyce, T J; Nargol, A V F; Meek, R D; Lord, J K

    2014-01-01

    Wear debris released from bearing surfaces has been shown to provoke negative immune responses in the recipient. Excessive wear has been linked to early failure of prostheses. Analysis using coordinate measuring machines (CMMs) can provide estimates of total volumetric material loss of explanted prostheses and can help to understand device failure. The accuracy of volumetric testing has been debated, with some investigators stating that only protocols involving hundreds of thousands of measurement points are sufficient. We looked to examine this assumption and to apply the findings to the clinical arena. We examined the effects on the calculated material loss from a ceramic femoral head when different CMM scanning parameters were used. Calculated wear volumes were compared with gold standard gravimetric tests in a blinded study. Various scanning parameters including point pitch, maximum point to point distance, the number of scanning contours or the total number of points had no clinically relevant effect on volumetric wear calculations. Gravimetric testing showed that material loss can be calculated to provide clinically relevant degrees of accuracy. Prosthetic surfaces can be analysed accurately and rapidly with currently available technologies. Given these results, we believe that routine analysis of explanted hip components would be a feasible and logical extension to National Joint Registries. Cite this article: Bone Joint Res 2014;3:60-8.

  14. NDE Technology Development Program for Non-Visual Volumetric Inspection Technology; Sensor Effectiveness Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, Traci L.; Larche, Michael R.; Denslow, Kayte M.

    The Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, hosted and administered Sensor Effectiveness Testing that allowed four different participants to demonstrate the NDE volumetric inspection technologies that were previously demonstrated during the Technology Screening session. This document provides a Sensor Effectiveness Testing report for the final part of Phase I of a three-phase NDE Technology Development Program designed to identify and mature a system or set of non-visual volumetric NDE technologies for Hanford DST primary liner bottom inspection. Phase I of the program will baseline the performance of current or emerging non-visual volumetric NDE technologies for their abilitymore » to detect and characterize primary liner bottom flaws, and identify candidate technologies for adaptation and maturation for Phase II of the program.« less

  15. Nanofoaming to Boost the Electrochemical Performance of Ni@Ni(OH)2 Nanowires for Ultrahigh Volumetric Supercapacitors.

    PubMed

    Xu, Shusheng; Li, Xiaolin; Yang, Zhi; Wang, Tao; Jiang, Wenkai; Yang, Chao; Wang, Shuai; Hu, Nantao; Wei, Hao; Zhang, Yafei

    2016-10-10

    Three-dimensional free-standing film electrodes have aroused great interest for energy storage devices. However, small volumetric capacity and low operating voltage limit their practical application for large energy storage applications. Herein, a facile and novel nanofoaming process was demonstrated to boost the volumetric electrochemical capacitance of the devices via activation of Ni nanowires to form ultrathin nanosheets and porous nanostructures. The as-designed free-standing Ni@Ni(OH) 2 film electrodes display a significantly enhanced volumetric capacity (462 C/cm 3 at 0.5 A/cm 3 ) and excellent cycle stability. Moreover, the as-developed hybrid supercapacitor employed Ni@Ni(OH) 2 film as positive electrode and graphene-carbon nanotube film as negative electrode exhibits a high volumetric capacitance of 95 F/cm 3 (at 0.25 A/cm 3 ) and excellent cycle performance (only 14% capacitance reduction for 4500 cycles). Furthermore, the volumetric energy density can reach 33.9 mWh/cm 3 , which is much higher than that of most thin film lithium batteries (1-10 mWh/cm 3 ). This work gives an insight for designing high-volume three-dimensional electrodes and paves a new way to construct binder-free film electrode for high-performance hybrid supercapacitor applications.

  16. Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing.

    PubMed

    Ghesu, Florin C; Krubasik, Edward; Georgescu, Bogdan; Singh, Vivek; Yefeng Zheng; Hornegger, Joachim; Comaniciu, Dorin

    2016-05-01

    Robust and fast solutions for anatomical object detection and segmentation support the entire clinical workflow from diagnosis, patient stratification, therapy planning, intervention and follow-up. Current state-of-the-art techniques for parsing volumetric medical image data are typically based on machine learning methods that exploit large annotated image databases. Two main challenges need to be addressed, these are the efficiency in scanning high-dimensional parametric spaces and the need for representative image features which require significant efforts of manual engineering. We propose a pipeline for object detection and segmentation in the context of volumetric image parsing, solving a two-step learning problem: anatomical pose estimation and boundary delineation. For this task we introduce Marginal Space Deep Learning (MSDL), a novel framework exploiting both the strengths of efficient object parametrization in hierarchical marginal spaces and the automated feature design of Deep Learning (DL) network architectures. In the 3D context, the application of deep learning systems is limited by the very high complexity of the parametrization. More specifically 9 parameters are necessary to describe a restricted affine transformation in 3D, resulting in a prohibitive amount of billions of scanning hypotheses. The mechanism of marginal space learning provides excellent run-time performance by learning classifiers in clustered, high-probability regions in spaces of gradually increasing dimensionality. To further increase computational efficiency and robustness, in our system we learn sparse adaptive data sampling patterns that automatically capture the structure of the input. Given the object localization, we propose a DL-based active shape model to estimate the non-rigid object boundary. Experimental results are presented on the aortic valve in ultrasound using an extensive dataset of 2891 volumes from 869 patients, showing significant improvements of up to 45

  17. Automated volumetric segmentation of retinal fluid on optical coherence tomography

    PubMed Central

    Wang, Jie; Zhang, Miao; Pechauer, Alex D.; Liu, Liang; Hwang, Thomas S.; Wilson, David J.; Li, Dengwang; Jia, Yali

    2016-01-01

    We propose a novel automated volumetric segmentation method to detect and quantify retinal fluid on optical coherence tomography (OCT). The fuzzy level set method was introduced for identifying the boundaries of fluid filled regions on B-scans (x and y-axes) and C-scans (z-axis). The boundaries identified from three types of scans were combined to generate a comprehensive volumetric segmentation of retinal fluid. Then, artefactual fluid regions were removed using morphological characteristics and by identifying vascular shadowing with OCT angiography obtained from the same scan. The accuracy of retinal fluid detection and quantification was evaluated on 10 eyes with diabetic macular edema. Automated segmentation had good agreement with manual segmentation qualitatively and quantitatively. The fluid map can be integrated with OCT angiogram for intuitive clinical evaluation. PMID:27446676

  18. Superficial Collagen Fibril Modulus and Pericellular Fixed Charge Density Modulate Chondrocyte Volumetric Behaviour in Early Osteoarthritis

    PubMed Central

    Turunen, Siru M.; Han, Sang Kuy; Herzog, Walter; Korhonen, Rami K.

    2013-01-01

    The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior. PMID:23634175

  19. JP3D compressed-domain watermarking of volumetric medical data sets

    NASA Astrophysics Data System (ADS)

    Ouled Zaid, Azza; Makhloufi, Achraf; Olivier, Christian

    2010-01-01

    Increasing transmission of medical data across multiple user systems raises concerns for medical image watermarking. Additionaly, the use of volumetric images triggers the need for efficient compression techniques in picture archiving and communication systems (PACS), or telemedicine applications. This paper describes an hybrid data hiding/compression system, adapted to volumetric medical imaging. The central contribution is to integrate blind watermarking, based on turbo trellis-coded quantization (TCQ), to JP3D encoder. Results of our method applied to Magnetic Resonance (MR) and Computed Tomography (CT) medical images have shown that our watermarking scheme is robust to JP3D compression attacks and can provide relative high data embedding rate whereas keep a relative lower distortion.

  20. Volumetric Near-Field Microwave Plasma Generation

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Balla, R. Jeffrey; Herring, G. C.; Popovic, S.; Vuskovic, L.

    2003-01-01

    A periodic series of microwave-induced plasmoids is generated using the outgoing wave from a microwave horn and the reflected wave from a nearby on-axis concave reflector. The plasmoids are spaced at half-wavelength separations according to a standing-wave pattern. The plasmoids are enhanced by an effective focusing in the near field of the horn (Fresnel region) as a result of a diffractive narrowing. Optical imaging, electron density, and rotational temperature measurements characterize the near field plasma region. Volumetric microwave discharges may have application to combustion ignition in scramjet engines.

  1. Influence of Cobb Angle and ISIS2 Surface Topography Volumetric Asymmetry on Scoliosis Research Society-22 Outcome Scores in Scoliosis.

    PubMed

    Brewer, Paul; Berryman, Fiona; Baker, De; Pynsent, Paul; Gardner, Adrian

    2013-11-01

    Retrospective sequential patient series. To establish the relationship between the magnitude of the deformity in scoliosis and patients' perception of their condition, as measured with Scoliosis Research Society-22 scores. A total of 93 untreated patients with adolescent idiopathic scoliosis were included retrospectively. The Cobb angle was measured from a plain radiograph, and volumetric asymmetry was measured by ISIS2 surface topography. The association between Scoliosis Research Society scores for function, pain, self-image, and mental health against Cobb angle and volumetric asymmetry was investigated using the Pearson correlation coefficient. Correlation of both Cobb angle and volumetric asymmetry with function and pain was weak (all < .23); these correlation values were not statistically significant. Correlation of Cobb angle and volumetric asymmetry with self-image, was higher, although still moderate (-.37 for Cobb angle and -.44 for volumetric asymmetry). Both were statistically significant (Cobb angle, p = .0002; volumetric asymmetry; p = .00001). Cobb angle contributed 13.8% to the linear relationship with self-image, whereas volumetric asymmetry contributed 19.3%. For mental health, correlation was statistically significant with Cobb angle (p = .011) and volumetric asymmetry (p = .0005), but the correlation was low to moderate (-.26 and -.35, respectively). Cobb angle contributed 6.9% to the linear relationship with mental health, whereas volumetric asymmetry contributed 12.4%. Volumetric asymmetry correlates better with both mental health and self-image compared with Cobb angle, but the correlation was only moderate. This study suggests that a patient's own perception of self-image and mental health is multifactorial and not completely explained through present objective measurements of the size of the deformity. This helps to explain the difficulties in any objective analysis of a problem with multifactorial perception issues. Further study is

  2. High volumetric power density, non-enzymatic, glucose fuel cells.

    PubMed

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

  3. High volumetric power density, non-enzymatic, glucose fuel cells

    PubMed Central

    Oncescu, Vlad; Erickson, David

    2013-01-01

    The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an “oxygen depletion design” whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm−2) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm−3). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells. PMID:23390576

  4. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jun; Ren, Chang E.; Maleski, Kathleen

    A strategy to prepare flexible and conductive MXene/graphene (reduced graphene oxide, rGO) supercapacitor electrodes by using electrostatic self-assembly between positively charged rGO modified with poly(diallyldimethylammonium chloride) and negatively charged titanium carbide MXene nanosheets is presented. After electrostatic assembly, rGO nanosheets are inserted in-between MXene layers. As a result, the self-restacking of MXene nanosheets is effectively prevented, leading to a considerably increased interlayer spacing. Accelerated diffusion of electrolyte ions enables more electroactive sites to become accessible. The freestanding MXene/rGO-5 wt% electrode displays a volumetric capacitance of 1040 F cm –3 at a scan rate of 2 mV s –1, an impressivemore » rate capability with 61% capacitance retention at 1 V s –1 and long cycle life. Moreover, the fabricated binder-free symmetric supercapacitor shows an ultrahigh volumetric energy density of 32.6 Wh L –1, which is among the highest values reported for carbon and MXene based materials in aqueous electrolytes. Furthermore, this work provides fundamental insight into the effect of interlayer spacing on the electrochemical performance of 2D hybrid materials and sheds light on the design of next-generation flexible, portable and highly integrated supercapacitors with high volumetric and rate performances.« less

  5. Dental age estimation employing CBCT scans enhanced with Mimics software: Comparison of two different approaches using pulp/tooth volumetric analysis.

    PubMed

    Asif, Muhammad Khan; Nambiar, Phrabhakaran; Mani, Shani Ann; Ibrahim, Norliza Binti; Khan, Iqra Muhammad; Sukumaran, Prema

    2018-02-01

    The methods of dental age estimation and identification of unknown deceased individuals are evolving with the introduction of advanced innovative imaging technologies in forensic investigations. However, assessing small structures like root canal volumes can be challenging in spite of using highly advanced technology. The aim of the study was to investigate which amongst the two methods of volumetric analysis of maxillary central incisors displayed higher strength of correlation between chronological age and pulp/tooth volume ratio for Malaysian adults. Volumetric analysis of pulp cavity/tooth ratio was employed in Method 1 and pulp chamber/crown ratio (up to cemento-enamel junction) was analysed in Method 2. The images were acquired employing CBCT scans and enhanced by manipulating them with the Mimics software. These scans belonged to 56 males and 54 females and their ages ranged from 16 to 65 years. Pearson correlation and regression analysis indicated that both methods used for volumetric measurements had strong correlation between chronological age and pulp/tooth volume ratio. However, Method 2 gave higher coefficient of determination value (R2 = 0.78) when compared to Method 1 (R2 = 0.64). Moreover, manipulation in Method 2 was less time consuming and revealed higher inter-examiner reliability (0.982) as no manual intervention during 'multiple slice editing phase' of the software was required. In conclusion, this study showed that volumetric analysis of pulp cavity/tooth ratio is a valuable gender independent technique and the Method 2 regression equation should be recommended for dental age estimation. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  6. An advanced shape-fitting algorithm applied to quadrupedal mammals: improving volumetric mass estimates

    PubMed Central

    Brassey, Charlotte A.; Gardiner, James D.

    2015-01-01

    Body mass is a fundamental physical property of an individual and has enormous bearing upon ecology and physiology. Generating reliable estimates for body mass is therefore a necessary step in many palaeontological studies. Whilst early reconstructions of mass in extinct species relied upon isolated skeletal elements, volumetric techniques are increasingly applied to fossils when skeletal completeness allows. We apply a new ‘alpha shapes’ (α-shapes) algorithm to volumetric mass estimation in quadrupedal mammals. α-shapes are defined by: (i) the underlying skeletal structure to which they are fitted; and (ii) the value α, determining the refinement of fit. For a given skeleton, a range of α-shapes may be fitted around the individual, spanning from very coarse to very fine. We fit α-shapes to three-dimensional models of extant mammals and calculate volumes, which are regressed against mass to generate predictive equations. Our optimal model is characterized by a high correlation coefficient and mean square error (r2=0.975, m.s.e.=0.025). When applied to the woolly mammoth (Mammuthus primigenius) and giant ground sloth (Megatherium americanum), we reconstruct masses of 3635 and 3706 kg, respectively. We consider α-shapes an improvement upon previous techniques as resulting volumes are less sensitive to uncertainties in skeletal reconstructions, and do not require manual separation of body segments from skeletons. PMID:26361559

  7. Volumetric error modeling, identification and compensation based on screw theory for a large multi-axis propeller-measuring machine

    NASA Astrophysics Data System (ADS)

    Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu

    2018-05-01

    Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.

  8. The in vitro wear behavior of experimental resin-based composites derived from a commercial formulation.

    PubMed

    Finlay, Nessa; Hahnel, Sebastian; Dowling, Adam H; Fleming, Garry J P

    2013-04-01

    To investigate the short- and long-term in vitro wear resistance of experimental resin-based composites (RBCs) derived from a commercial formulation. Six experimental RBCs were manufactured by manipulating the monomeric resin composition and the filler characteristics of Grandio (Voco GmbH, Cuxhaven, Germany). The Oregon Health Sciences University (OHSU) oral wear simulator was used in the presence of a food-like slurry to simulate three-body abrasion and attrition wear for 50,000, 150,000 and 300,000 cycles. A three-dimensional image of each wear facet was created and the total volumetric wear (mm(3)) and maximum wear depth (μm) were quantified for the RBC and antagonist. Statistical analyses of the total volumetric wear and maximum wear depth data (two- and one-way analyses of variance (ANOVA), with Tukey's post hoc tests where required) and regression analyses, were conducted at p=0.05. Two-way ANOVAs identified a significant effect of RBC material×wear cycles, RBC material and wear cycles (all p<0.0001). Regression analyses showed significant increases in the total volumetric wear (p≤0.001) and maximum wear depth data (p≤0.004) for all RBCs with increasing wear cycles. Differences between all RBC materials were evident after ≥150,000 wear cycles and antagonist wear provided valuable information to support the experimental findings. Wear simulating machines can provide an indication of the clinical performance but clinical performance is multi-factorial and wear is only a single facet. Employing experimental RBCs provided by a dental manufacturer rather than using self-manufactured RBCs or dental products provides increased experimental control by limiting the variables involved. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. A new contrast-assisted method in microcirculation volumetric flow assessment

    NASA Astrophysics Data System (ADS)

    Lu, Sheng-Yi; Chen, Yung-Sheng; Yeh, Chih-Kuang

    2007-03-01

    Microcirculation volumetric flow rate is a significant index in diseases diagnosis and treatment such as diabetes and cancer. In this study, we propose an integrated algorithm to assess microcirculation volumetric flow rate including estimation of blood perfused area and corresponding flow velocity maps based on high frequency destruction/contrast replenishment imaging technique. The perfused area indicates the blood flow regions including capillaries, arterioles and venules. Due to the echo variance changes between ultrasonic contrast agents (UCAs) pre- and post-destruction two images, the perfused area can be estimated by the correlation-based approach. The flow velocity distribution within the perfused area can be estimated by refilling time-intensity curves (TICs) after UCAs destruction. Most studies introduced the rising exponential model proposed by Wei (1998) to fit the TICs. Nevertheless, we found the TICs profile has a great resemblance to sigmoid function in simulations and in vitro experiments results. Good fitting correlation reveals that sigmoid model was more close to actual fact in describing destruction/contrast replenishment phenomenon. We derived that the saddle point of sigmoid model is proportional to blood flow velocity. A strong linear relationship (R = 0.97) between the actual flow velocities (0.4-2.1 mm/s) and the estimated saddle constants was found in M-mode and B-mode flow phantom experiments. Potential applications of this technique include high-resolution volumetric flow rate assessment in small animal tumor and the evaluation of superficial vasculature in clinical studies.

  10. GPU-Based Real-Time Volumetric Ultrasound Image Reconstruction for a Ring Array

    PubMed Central

    Choe, Jung Woo; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T.

    2014-01-01

    Synthetic phased array (SPA) beamforming with Hadamard coding and aperture weighting is an optimal option for real-time volumetric imaging with a ring array, a particularly attractive geometry in intracardiac and intravascular applications. However, the imaging frame rate of this method is limited by the immense computational load required in synthetic beamforming. For fast imaging with a ring array, we developed graphics processing unit (GPU)-based, real-time image reconstruction software that exploits massive data-level parallelism in beamforming operations. The GPU-based software reconstructs and displays three cross-sectional images at 45 frames per second (fps). This frame rate is 4.5 times higher than that for our previously-developed multi-core CPU-based software. In an alternative imaging mode, it shows one B-mode image rotating about the axis and its maximum intensity projection (MIP), processed at a rate of 104 fps. This paper describes the image reconstruction procedure on the GPU platform and presents the experimental images obtained using this software. PMID:23529080

  11. Tailoring of physical properties in highly filled experimental nanohybrid resin composites.

    PubMed

    Pick, Bárbara; Pelka, Matthias; Belli, Renan; Braga, Roberto R; Lohbauer, Ulrich

    2011-07-01

    To assess the elastic modulus (EM), volumetric shrinkage (VS), and polymerization shrinkage stress (PSS) of experimental highly filled nanohybrid composites as a function of matrix composition, filler distribution, and density. One regular viscosity nanohybrid composite (Grandio, VOCO, Germany) and one flowable nanohybrid composite (Grandio Flow, VOCO) were tested as references along with six highly filled experimental nanohybrid composites (four Bis-GMA-based, one UDMA-based, and one Ormocer®-based). The experimental composites varied in filler size and density. EM values were obtained from the "three-point bending" load-displacement curve. VS was calculated with Archimedes' buoyancy principle. PSS was determined in 1-mm thick specimens placed between two (poly)methyl methacrylate rods (Ø=6mm) attached to an universal testing machine. Data were analyzed using oneway ANOVA, Tukey's test (α=0.05), and linear regression analyses. The flowable composite exhibited the highest VS and PSS but lowest EM. The PSS was significantly lower with Ormocer. The EM was significantly higher among experimental composites with highest filler levels. No significant differences were found between all other experimental composites regarding VS and PSS. Filler density and size did not influence EM, VS, or PSS. Neither the filler configuration nor matrix composition in the investigated materials significantly influenced composite shrinkage and mechanical properties. The highest filled experimental composite seemed to increase EM by keeping VS and PSS low; however, matrix composition seemed to be the determinant factor for shrinkage and stress development. The Ormocer, with reduced PSS, deserves further investigation. Filler size and density did not influence the tested parameters. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Automated Quantification of Volumetric Optic Disc Swelling in Papilledema Using Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Wang, Jui-Kai; Kardon, Randy H.; Kupersmith, Mark J.; Garvin, Mona K.

    2012-01-01

    Purpose. To develop an automated method for the quantification of volumetric optic disc swelling in papilledema subjects using spectral-domain optical coherence tomography (SD-OCT) and to determine the extent that such volumetric measurements correlate with Frisén scale grades (from fundus photographs) and two-dimensional (2-D) peripapillary retinal nerve fiber layer (RNFL) and total retinal (TR) thickness measurements from SD-OCT. Methods. A custom image-analysis algorithm was developed to obtain peripapillary circular RNFL thickness, TR thickness, and TR volume measurements from SD-OCT volumes of subjects with papilledema. In addition, peripapillary RNFL thickness measures from the commercially available Zeiss SD-OCT machine were obtained. Expert Frisén scale grades were independently obtained from corresponding fundus photographs. Results. In 71 SD-OCT scans, the mean (± standard deviation) resulting TR volumes for Frisén scale 0 to scale 4 were 11.36 ± 0.56, 12.53 ± 1.21, 14.42 ± 2.11, 17.48 ± 2.63, and 21.81 ± 3.16 mm3, respectively. The Spearman's rank correlation coefficient was 0.737. Using 55 eyes with valid Zeiss RNFL measurements, Pearson's correlation coefficient (r) between the TR volume and the custom algorithm's TR thickness, the custom algorithm's RNFL thickness, and Zeiss' RNFL thickness was 0.980, 0.929, and 0.946, respectively. Between Zeiss' RNFL and the custom algorithm's RNFL, and the study's TR thickness, r was 0.901 and 0.961, respectively. Conclusions. Volumetric measurements of the degree of disc swelling in subjects with papilledema can be obtained from SD-OCT volumes, with the mean volume appearing to be roughly linearly related to the Frisén scale grade. Using such an approach can provide a more continuous, objective, and robust means for assessing the degree of disc swelling compared with presently available approaches. PMID:22599584

  13. Different Indices of Fetal Growth Predict Bone Size and Volumetric Density at 4 Years of Age

    PubMed Central

    Harvey, Nicholas C; Mahon, Pamela A; Robinson, Sian M; Nisbet, Corrine E; Javaid, M Kassim; Crozier, Sarah R; Inskip, Hazel M; Godfrey, Keith M; Arden, Nigel K; Dennison, Elaine M; Cooper, Cyrus

    2011-01-01

    We have demonstrated previously that higher birth weight is associated with greater peak and later-life bone mineral content and that maternal body build, diet, and lifestyle influence prenatal bone mineral accrual. To examine prenatal influences on bone health further, we related ultrasound measures of fetal growth to childhood bone size and density. We derived Z-scores for fetal femur length and abdominal circumference and conditional growth velocity from 19 to 34 weeks’ gestation from ultrasound measurements in participants in the Southampton Women’s Survey. A total of 380 of the offspring underwent dual-energy X-ray absorptiometry (DXA) at age 4 years [whole body minus head bone area (BA), bone mineral content (BMC), areal bone mineral density (aBMD), and estimated volumetric BMD (vBMD)]. Volumetric bone mineral density was estimated using BMC adjusted for BA, height, and weight. A higher velocity of 19- to 34-week fetal femur growth was strongly associated with greater childhood skeletal size (BA: r = 0.30, p < .0001) but not with volumetric density (vBMD: r = 0.03, p = .51). Conversely, a higher velocity of 19- to 34-week fetal abdominal growth was associated with greater childhood volumetric density (vBMD: r = 0.15, p = .004) but not with skeletal size (BA: r = 0.06, p = .21). Both fetal measurements were positively associated with BMC and aBMD, indices influenced by both size and density. The velocity of fetal femur length growth from 19 to 34 weeks’ gestation predicted childhood skeletal size at age 4 years, whereas the velocity of abdominal growth (a measure of liver volume and adiposity) predicted volumetric density. These results suggest a discordance between influences on skeletal size and volumetric density. PMID:20437610

  14. Use of volumetric features for temporal comparison of mass lesions in full field digital mammograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozek, Jelena, E-mail: jelena.bozek@fer.hr; Grgic, Mislav; Kallenberg, Michiel

    2014-02-15

    Purpose: Temporal comparison of lesions might improve classification between benign and malignant lesions in full-field digital mammograms (FFDM). The authors compare the use of volumetric features for lesion classification, which are computed from dense tissue thickness maps, to the use of mammographic lesion area. Use of dense tissue thickness maps for lesion characterization is advantageous, since it results in lesion features that are invariant to acquisition parameters. Methods: The dataset used in the analysis consisted of 60 temporal mammogram pairs comprising 120 mediolateral oblique or craniocaudal views with a total of 65 lesions, of which 41 were benign and 24more » malignant. The authors analyzed the performance of four volumetric features, area, and four other commonly used features obtained from temporal mammogram pairs, current mammograms, and prior mammograms. The authors evaluated the individual performance of all features and of different feature sets. The authors used linear discriminant analysis with leave-one-out cross validation to classify different feature sets. Results: Volumetric features from temporal mammogram pairs achieved the best individual performance, as measured by the area under the receiver operating characteristic curve (A{sub z} value). Volume change (A{sub z} = 0.88) achieved higher A{sub z} value than projected lesion area change (A{sub z} = 0.78) in the temporal comparison of lesions. Best performance was achieved with a set that consisted of a set of features extracted from the current exam combined with four volumetric features representing changes with respect to the prior mammogram (A{sub z} = 0.90). This was significantly better (p = 0.005) than the performance obtained using features from the current exam only (A{sub z} = 0.77). Conclusions: Volumetric features from temporal mammogram pairs combined with features from the single exam significantly improve discrimination of benign and malignant lesions in FFDM

  15. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    NASA Astrophysics Data System (ADS)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  16. Kilohertz VLIF (volumetric laser induced fluorescence) measurements in a seeded free gas-phase jet in the transitionally turbulent flow regime

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Xu, Wenjiang; Ma, Lin

    2018-03-01

    This paper reports the demonstration of instantaneous three-dimension (3D) measurements in turbulent flows at repetition rates up to 10 kHz using VLIF (volumetric laser induced fluorescence). The measurements were performed based on the LIF signal of iodine (I2) vapor seeded in the flow. The LIF signals of I2 vapor were generated volumetrically by a thick laser slab and then simultaneously captured by a total of seven cameras from different perspectives, based on which a 3D tomographic reconstruction was performed to obtain the 3D distribution of I2 vapor concentration. Single-shot measurements obtained in a duration of hundreds of nanoseconds (limited by the pulse duration of the excitation laser) were demonstrated in a 50 × 50 × 50 mm3 at a repetition rate up to 10 kHz. These measurements demonstrated the feasibility and potential of VLIF for resolving the 4D spatiotemporal dynamics of turbulent flows. Based on the experimental results obtained, this work also studied the VLIF signal level and its effects on the reconstruction accuracy under different the measurement conditions, illustrating the capabilities and limitations of performing high speed VLIF measurements.

  17. Volumetric computed tomography analysis of the olfactory cleft in patients with chronic rhinosinusitis.

    PubMed

    Soler, Zachary M; Pallanch, John F; Sansoni, Eugene Ritter; Jones, Cameron S; Lawrence, Lauren A; Schlosser, Rodney J; Mace, Jess C; Smith, Timothy L

    2015-09-01

    Commonly used computed tomography (CT) staging systems for chronic rhinosinusitis (CRS) focus on the sinuses and do not quantify disease in the olfactory cleft. The goal of the current study was to determine whether precise measurements of olfactory cleft opacification better correlate with olfaction in patients with CRS. Olfaction was assessed using the 40-item Smell Identification Test (SIT-40) before and after sinus surgery in adult patients. Olfactory cleft opacification was quantified precisely using three-dimensional (3D), computerized volumetric analysis, as well as via semiquantitative Likert scale estimations at predetermined anatomic sites. Sinus opacification was also quantified using the Lund-Mackay staging system. The overall cohort (n = 199) included 89 (44.7%) patients with CRS with nasal polyposis (CRSwNP) and 110 (55.3%) with CRS without nasal polyposis (CRSsNP). The olfactory cleft opacified volume correlated with objective olfaction as determined by the SIT-40 (Spearman's rank correlation coefficient [Rs ] = -0.461; p < 0.001). The correlation was significantly stronger in the CRSwNP subgroup (Rs = -0.573; p < 0.001), whereas no appreciable correlation was found in the CRSsNP group (Rs = -0.141; p = 0.141). Correlations between sinus-specific Lund-Mackay CT scoring and SIT-40 scores were weaker in the CRSwNP (Rs = -0.377; p < 0.001) subgroup but stronger in the CRSsNP (Rs = -0.225; p = 0.018) group when compared to olfactory cleft correlations. Greater intraclass correlations (ICCs) were found between quantitative volumetric measures of olfactory cleft opacification (ICC = 0.844; p < 0.001) as compared with semiquantitative Likert grading (ICC = 0.627; p < 0.001). Quantitative measures of olfactory cleft opacification correlate with objective olfaction, with the strongest correlations seen in patients with nasal polyps. © 2015 ARS-AAOA, LLC.

  18. Volumetric Stress-Strain Analysis of Optohydrodynamically Suspended Biological Cells

    PubMed Central

    Liang, Yu; Saha, Asit K.

    2011-01-01

    Ongoing investigations are exploring the biomechanical properties of isolated and suspended biological cells in pursuit of understanding single-cell mechanobiology. An optical tweezer with minimal applied laser power has positioned biologic cells at the geometric center of a microfluidic cross-junction, creating a novel optohydrodynamic trap. The resulting fluid flow environment facilitates unique multiaxial loading of single cells with site-specific normal and shear stresses resulting in a physical albeit extensional state. A recent two-dimensional analysis has explored the cytoskeletal strain response due to these fluid-induced stresses [Wilson and Kohles, 2010, “Two-Dimensional Modeling of Nanomechanical Stresses-Strains in Healthy and Diseased Single-Cells During Microfluidic Manipulation,” J Nanotechnol Eng Med, 1(2), p. 021005]. Results described a microfluidic environment having controlled nanometer and piconewton resolution. In this present study, computational fluid dynamics combined with multiphysics modeling has further characterized the applied fluid stress environment and the solid cellular strain response in three dimensions to accompany experimental cell stimulation. A volumetric stress-strain analysis was applied to representative living cell biomechanical data. The presented normal and shear stress surface maps will guide future microfluidic experiments as well as provide a framework for characterizing cytoskeletal structure influencing the stress to strain response. PMID:21186894

  19. Optical artefact characterization and correction in volumetric scintillation dosimetry

    PubMed Central

    Robertson, Daniel; Hui, Cheukkai; Archambault, Louis; Mohan, Radhe; Beddar, Sam

    2014-01-01

    The goals of this study were (1) to characterize the optical artefacts affecting measurement accuracy in a volumetric liquid scintillation detector, and (2) to develop methods to correct for these artefacts. The optical artefacts addressed were photon scattering, refraction, camera perspective, vignetting, lens distortion, the lens point spread function, stray radiation, and noise in the camera. These artefacts were evaluated by theoretical and experimental means, and specific correction strategies were developed for each artefact. The effectiveness of the correction methods was evaluated by comparing raw and corrected images of the scintillation light from proton pencil beams against validated Monte Carlo calculations. Blurring due to the lens and refraction at the scintillator tank-air interface were found to have the largest effect on the measured light distribution, and lens aberrations and vignetting were important primarily at the image edges. Photon scatter in the scintillator was not found to be a significant source of artefacts. The correction methods effectively mitigated the artefacts, increasing the average gamma analysis pass rate from 66% to 98% for gamma criteria of 2% dose difference and 2 mm distance to agreement. We conclude that optical artefacts cause clinically meaningful errors in the measured light distribution, and we have demonstrated effective strategies for correcting these optical artefacts. PMID:24321820

  20. Volumetric Real-Time Imaging Using a CMUT Ring Array

    PubMed Central

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J.; Khuri-Yakub, Butrus T.

    2012-01-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods—flash, classic phased array (CPA), and synthetic phased array (SPA)—were used in the study. For SPA imaging, two techniques to improve the image quality—Hadamard coding and aperture weighting—were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming. PMID:22718870

  1. Volumetric real-time imaging using a CMUT ring array.

    PubMed

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T

    2012-06-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.

  2. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance

    NASA Astrophysics Data System (ADS)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey

    2016-03-01

    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  3. Volumetric PIV in Patient-Specific Cerebral Aneurysm

    NASA Astrophysics Data System (ADS)

    Brindise, Melissa; Dickerhoff, Ben; Saloner, David; Rayz, Vitaliy; Vlachos, Pavlos

    2016-11-01

    Cerebral aneurysms impose a unique challenge in which neurosurgeons must assess and decide between the risk of rupture and risk of treatment for each patient. Risk of rupture is often difficult to determine and most commonly assessed using geometric data including the size and shape of the aneurysm and parent vessel. Hemodynamics is thought to play a major role in the growth and rupture of a cerebral aneurysm, but its specific influence is largely unknown due to the inability of in vivo modalities to characterize detailed flow fields and limited in vitro studies. In this work, we use a patient-specific basilar tip aneurysm model and volumetric particle image velocimetry (PIV). In vivo, 4-D PC-MRI measurements were obtained for this aneurysm and the extracted pulsatile waveform was used for the in vitro study. Clinically relevant metrics including wall shear stress (WSS), oscillatory shear index (OSI), relative residence time (RRT), 3-D pressure contours, and pressure wave speed were subsequently computed. This is the first study to investigate in vitro 3-D pressure fields within a cerebral aneurysm. The results of this study demonstrate how these metrics influence the biomechanics of the aneurysm and ultimately their affect on the risk of rupture.

  4. Volumetric Analysis of Cerebral Peduncles and Cerebellar Hemispheres for Predicting Hemiparesis After Hemispherectomy.

    PubMed

    Mullin, Jeffrey P; Soni, Pranay; Lee, Sungho; Jehi, Lara; Naduvil Valappi, Ahsan Moosa; Bingaman, William; Gonzalez-Martinez, Jorge

    2016-09-01

    In some cases of refractory epilepsy, hemispherectomy is the final invasive treatment option. However, predictors of postoperative hemiparesis in these patients have not been widely studied. To investigate how the volumetric analysis of cerebral peduncles and cerebellar hemispheres in patients who have undergone hemispherectomy may determine prognostic implications for postoperative hemiparesis. Twenty-two patients who underwent hemispherectomy at our institution were retrospectively included. Using iPlan/BrainLAB (BrainLAB, Feldkirchen, Germany) imaging software and a semiautomatic voxel-based segmentation method, we calculated the preoperative cerebral peduncle and cerebellar hemisphere volumes. Cerebral peduncle and cerebellar hemisphere ratios were compared between patients with worsened or unchanged/better hemiparesis postoperatively. The ratios of ipsilateral/contralateral cerebral peduncles (0.570 vs 0.828; P = .02) and contralateral/ipsilateral cerebellar hemispheres (0.885 vs 1.031; P = .009) were significantly lower in patients who had unchanged/improved hemiparesis postoperatively compared with patients who had worsened hemiparesis. Relative risk of worsening hemiparesis was significantly higher in patients with a cerebral peduncle ratio < 0.7 (relative risk, 4.3; P = .03) or a cerebellar ratio < 1.0 (relative risk, 6.4; P = .006). Although patients who undergo hemispherectomy are heterogeneous, we report a method of predicting postoperative hemiparesis using only standard volumetric magnetic resonance imaging. This information could be used in preoperative discussions with patients and families to help better understand that chance of retaining baseline motor function. CST, corticospinal tractfMRI, functional magnetic resonance imagingTMS, transcranial magnetic stimulation.

  5. Experimental determination of material damping using vibration analyzer

    NASA Technical Reports Server (NTRS)

    Chowdhury, Mostafiz R.; Chowdhury, Farida

    1990-01-01

    Structural damping is an important dynamic characteristic of engineering materials that helps to damp vibrations by reducing their amplitudes. In this investigation, an experimental method is illustrated to determine the damping characteristics of engineering materials using a dual channel Fast Fourier Transform (FFT) analyzer. A portable Compaq III computer which houses the analyzer, is used to collect the dynamic responses of three metal rods. Time-domain information is analyzed to obtain the logarithmic decrement of their damping. The damping coefficients are then compared to determine the variation of damping from material to material. The variations of damping from one point to another of the same material, due to a fixed point excitation, and the variable damping at a fixed point due to excitation at different points, are also demonstrated.

  6. Volumetric velocity measurements in restricted geometries using spiral sampling: a phantom study.

    PubMed

    Nilsson, Anders; Revstedt, Johan; Heiberg, Einar; Ståhlberg, Freddy; Bloch, Karin Markenroth

    2015-04-01

    The aim of this study was to evaluate the accuracy of maximum velocity measurements using volumetric phase-contrast imaging with spiral readouts in a stenotic flow phantom. In a phantom model, maximum velocity, flow, pressure gradient, and streamline visualizations were evaluated using volumetric phase-contrast magnetic resonance imaging (MRI) with velocity encoding in one (extending on current clinical practice) and three directions (for characterization of the flow field) using spiral readouts. Results of maximum velocity and pressure drop were compared to computational fluid dynamics (CFD) simulations, as well as corresponding low-echo-time (TE) Cartesian data. Flow was compared to 2D through-plane phase contrast (PC) upstream from the restriction. Results obtained with 3D through-plane PC as well as 4D PC at shortest TE using a spiral readout showed excellent agreements with the maximum velocity values obtained with CFD (<1 % for both methods), while larger deviations were seen using Cartesian readouts (-2.3 and 13 %, respectively). Peak pressure drop calculations from 3D through-plane PC and 4D PC spiral sequences were respectively 14 and 13 % overestimated compared to CFD. Identification of the maximum velocity location, as well as the accurate velocity quantification can be obtained in stenotic regions using short-TE spiral volumetric PC imaging.

  7. Experimental Determination of Physical Properties of DNGU, TNBA, LLM-105, HK-56, and DNP

    DTIC Science & Technology

    2016-09-01

    ARL-TN-0788 ● SEP 2016 US Army Research Laboratory Experimental Determination of Physical Properties of DNGU, TNBA, LLM-105, HK...NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by... Experimental Determination of Physical Properties of DNGU, TNBA, LLM-105, HK-56, and DNP by Rose A Pesce-Rodriguez Weapons and Materials

  8. GEOMETRIC, VOLUMETRIC, COLOUR AND FRICTIONAL PROPERTIES OF SELECTED SALVIA SPECIES OF TURKEY.

    PubMed

    Bayram, Mustafa; Altuntas, Ebubekir; Yilar, Melih

    2017-01-01

    Salvia seeds are promite to dietary and healthy oils because they contain essential fatty acids. Salvia seeds frequently produce mucilage on soaking, and this mucilage is used for the treatment of eye diseases in eastern countries. Salvia species studied for medicine, food and cosmetics, have the potential to be used in the various fields. In the present study, selected engineering (geometrical, volumetrical, colour and frictional) properties of 6 Salvia species seeds were determined and compared. This study was performed on selected engineering properties of seeds of 6 Salvia species ( Salvia viridis L., Salvia aethiopis L., Salvia cryptantha Montbert & Aucher ex Benthan., Salvia tomentosa Mill ., Salvia sclarea L., Salvia virgata Jacq.,) cultivated in Turkey. Plants were collected during the vegetation in 2012-2013 (May-Agust). The seeds were cleaned from foreign matter, dirt and broken seeds manually. The average length, width and thickness were found in the range of 2.61 to 3.53 mm, 1.59 to 2.92 mm and 1.14 to 2.52 mm, respectively. Salvia viridis L. specie had the lowest geometric mean diameter and surface area, whereas Salvia cryptantha L. had the least values among these 6 Salvia species for these properties. The bulk density, true density and the porosity were between 296.83 and 702.80 kg m -3 , 285.69 and 718.08 kg m -3 , 10.27 and 44.05%, respectively. The volume of unit seed and sphericity ranged between 2.56 and 13.64 mm 3 , 62.90 and 90.40%, respectively. The coefficient of friction of salvia species were largely influenced by the friction surfaces studied, and highest values were found for polywood in the Salvia crytantha L.. In the study, the static friction coefficient and the angle of repose of salvia species changed from 0.477 to 0.955, and from 14.09 to 23.57°, respectively. Determination of geometric, volumetric, colour and frictional properties of Salvia spp. seeds may increase their economic value.

  9. GEOMETRIC, VOLUMETRIC, COLOUR AND FRICTIONAL PROPERTIES OF SELECTED SALVIA SPECIES OF TURKEY

    PubMed Central

    Bayram, Mustafa; Altuntas, Ebubekir; Yilar, Melih

    2017-01-01

    Background: Salvia seeds are promite to dietary and healthy oils because they contain essential fatty acids. Salvia seeds frequently produce mucilage on soaking, and this mucilage is used for the treatment of eye diseases in eastern countries. Salvia species studied for medicine, food and cosmetics, have the potential to be used in the various fields. In the present study, selected engineering (geometrical, volumetrical, colour and frictional) properties of 6 Salvia species seeds were determined and compared. Materials and Methods: This study was performed on selected engineering properties of seeds of 6 Salvia species (Salvia viridis L., Salvia aethiopis L., Salvia cryptantha Montbert & Aucher ex Benthan., Salvia tomentosa Mill., Salvia sclarea L., Salvia virgata Jacq.,) cultivated in Turkey. Plants were collected during the vegetation in 2012-2013 (May-Agust). The seeds were cleaned from foreign matter, dirt and broken seeds manually. Results: The average length, width and thickness were found in the range of 2.61 to 3.53 mm, 1.59 to 2.92 mm and 1.14 to 2.52 mm, respectively. Salvia viridis L. specie had the lowest geometric mean diameter and surface area, whereas Salvia cryptantha L. had the least values among these 6 Salvia species for these properties. The bulk density, true density and the porosity were between 296.83 and 702.80 kg m-3, 285.69 and 718.08 kg m-3, 10.27 and 44.05%, respectively. The volume of unit seed and sphericity ranged between 2.56 and 13.64 mm3, 62.90 and 90.40%, respectively. The coefficient of friction of salvia species were largely influenced by the friction surfaces studied, and highest values were found for polywood in the Salvia crytantha L.. In the study, the static friction coefficient and the angle of repose of salvia species changed from 0.477 to 0.955, and from 14.09 to 23.57°, respectively. Conclusion: Determination of geometric, volumetric, colour and frictional properties of Salvia spp. seeds may increase their economic

  10. Volumetric three-component velocimetry measurements of the turbulent flow around a Rushton turbine

    NASA Astrophysics Data System (ADS)

    Sharp, Kendra V.; Hill, David; Troolin, Daniel; Walters, Geoffrey; Lai, Wing

    2010-01-01

    Volumetric three-component velocimetry measurements have been taken of the flow field near a Rushton turbine in a stirred tank reactor. This particular flow field is highly unsteady and three-dimensional, and is characterized by a strong radial jet, large tank-scale ring vortices, and small-scale blade tip vortices. The experimental technique uses a single camera head with three apertures to obtain approximately 15,000 three-dimensional vectors in a cubic volume. These velocity data offer the most comprehensive view to date of this flow field, especially since they are acquired at three Reynolds numbers (15,000, 107,000, and 137,000). Mean velocity fields and turbulent kinetic energy quantities are calculated. The volumetric nature of the data enables tip vortex identification, vortex trajectory analysis, and calculation of vortex strength. Three identification methods for the vortices are compared based on: the calculation of circumferential vorticity; the calculation of local pressure minima via an eigenvalue approach; and the calculation of swirling strength again via an eigenvalue approach. The use of two-dimensional data and three-dimensional data is compared for vortex identification; a `swirl strength' criterion is less sensitive to completeness of the velocity gradient tensor and overall provides clearer identification of the tip vortices. The principal components of the strain rate tensor are also calculated for one Reynolds number case as these measures of stretching and compression have recently been associated with tip vortex characterization. Vortex trajectories and strength compare favorably with those in the literature. No clear dependence of trajectory on Reynolds number is deduced. The visualization of tip vortices up to 140° past blade passage in the highest Reynolds number case is notable and has not previously been shown.

  11. A comparative study of volumetric breast density estimation in digital mammography and magnetic resonance imaging: results from a high-risk population

    NASA Astrophysics Data System (ADS)

    Kontos, Despina; Xing, Ye; Bakic, Predrag R.; Conant, Emily F.; Maidment, Andrew D. A.

    2010-03-01

    We performed a study to compare methods for volumetric breast density estimation in digital mammography (DM) and magnetic resonance imaging (MRI) for a high-risk population of women. DM and MRI images of the unaffected breast from 32 women with recently detected abnormalities and/or previously diagnosed breast cancer (age range 31-78 yrs, mean 50.3 yrs) were retrospectively analyzed. DM images were analyzed using QuantraTM (Hologic Inc). The MRI images were analyzed using a fuzzy-C-means segmentation algorithm on the T1 map. Both methods were compared to Cumulus (Univ. Toronto). Volumetric breast density estimates from DM and MRI are highly correlated (r=0.90, p<=0.001). The correlation between the volumetric and the area-based density measures is lower and depends on the training background of the Cumulus software user (r=0.73-84, p<=0.001). In terms of absolute values, MRI provides the lowest volumetric estimates (mean=14.63%), followed by the DM volumetric (mean=22.72%) and area-based measures (mean=29.35%). The MRI estimates of the fibroglandular volume are statistically significantly lower than the DM estimates for women with very low-density breasts (p<=0.001). We attribute these differences to potential partial volume effects in MRI and differences in the computational aspects of the image analysis methods in MRI and DM. The good correlation between the volumetric and the area-based measures, shown to correlate with breast cancer risk, suggests that both DM and MRI volumetric breast density measures can aid in breast cancer risk assessment. Further work is underway to fully-investigate the association between volumetric breast density measures and breast cancer risk.

  12. FMC/TFM experimental comparisons

    NASA Astrophysics Data System (ADS)

    Spencer, Roger; Sunderman, Ruth; Todorov, Evgueni

    2018-04-01

    Ultrasonic full matrix capture/total focusing method (FMC/TFM) technology has progressed significantly over the past few years and has seen increased use in industry. The technology has the potential to provide better detection and measurement capabilities for weld flaws, as well as, many other applications including additive manufacturing. This project looked at the effectiveness of FMC/TFM for detection and sizing of both planar and volumetric flaw types. FMC/TFM experimental data was collected and processed using multiple combinations of probe types and wave propagation modes. The data was then compared to typical ultrasonic phased-array results, as well as FMC/TFM inspection simulations.

  13. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  14. Improved correlation between CT emphysema quantification and pulmonary function test by density correction of volumetric CT data based on air and aortic density.

    PubMed

    Kim, Song Soo; Seo, Joon Beom; Kim, Namkug; Chae, Eun Jin; Lee, Young Kyung; Oh, Yeon Mok; Lee, Sang Do

    2014-01-01

    To determine the improvement of emphysema quantification with density correction and to determine the optimal site to use for air density correction on volumetric computed tomography (CT). Seventy-eight CT scans of COPD patients (GOLD II-IV, smoking history 39.2±25.3 pack-years) were obtained from several single-vendor 16-MDCT scanners. After density measurement of aorta, tracheal- and external air, volumetric CT density correction was conducted (two reference values: air, -1,000 HU/blood, +50 HU). Using in-house software, emphysema index (EI) and mean lung density (MLD) were calculated. Differences in air densities, MLD and EI prior to and after density correction were evaluated (paired t-test). Correlation between those parameters and FEV1 and FEV1/FVC were compared (age- and sex adjusted partial correlation analysis). Measured densities (HU) of tracheal- and external air differed significantly (-990 ± 14, -1016 ± 9, P<0.001). MLD and EI on original CT data, after density correction using tracheal- and external air also differed significantly (MLD: -874.9 ± 27.6 vs. -882.3 ± 24.9 vs. -860.5 ± 26.6; EI: 16.8 ± 13.4 vs. 21.1 ± 14.5 vs. 9.7 ± 10.5, respectively, P<0.001). The correlation coefficients between CT quantification indices and FEV1, and FEV1/FVC increased after density correction. The tracheal air correction showed better results than the external air correction. Density correction of volumetric CT data can improve correlations of emphysema quantification and PFT. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Quantitative volumetric analysis of a retinoic acid induced hypoplastic model of chick thymus, using Image-J.

    PubMed

    Haque, Ayesha; Khan, Muhammad Yunus

    2017-09-01

    To assess the total volume change in a retinoic acid-induced, hypoplastic model of a chick thymus using Image-J. This experimental study was carried out at the anatomy department of College of Physicians and Surgeons, Islamabad, Pakistan, from February 2009 to February 2010, and comprised fertilised chicken eggs. The eggs were divided into experimental group A and control group C. Group A was injected with 0.3µg of retinoic acid via yolk sac to induce a defective model of a thymus with hypoplasia. The chicks were sacrificed on embryonic day 15 and at hatching. The thymus of each animal was processed, serially sectioned and stained. The total area of each section of thymus was calculated using Image-J. This total area was summed and multiplied with the thickness of each section to obtain volume. Of the 120 eggs, there were 60(50%) in each group. Image analysis revealed a highly significant decrease in the volume of the chick thymus in the experimental group A than its matched control at the time of hatching (p=0.001). Moreover, volumetric depletion progressed with time, being substantially pronounced at hatching compared to the embryonic stage. The volume changes were significant and were effectively quantified using Image-J.

  16. Volumetric changes and clinical outcome for petroclival meningiomas after primary treatment with Gamma Knife radiosurgery.

    PubMed

    Sadik, Zjiwar H A; Lie, Suan Te; Leenstra, Sieger; Hanssens, Patrick E J

    2018-01-26

    OBJECTIVE Petroclival meningiomas (PCMs) can cause devastating clinical symptoms due to mass effect on cranial nerves (CNs); thus, patients harboring these tumors need treatment. Many neurosurgeons advocate for microsurgery because removal of the tumor can provide relief or result in symptom disappearance. Gamma Knife radiosurgery (GKRS) is often an alternative for surgery because it can cause tumor shrinkage with improvement of symptoms. This study evaluates qualitative volumetric changes of PCM after primary GKRS and its impact on clinical symptoms. METHODS The authors performed a retrospective study of patients with PCM who underwent primary GKRS between 2003 and 2015 at the Gamma Knife Center of the Elisabeth-Tweesteden Hospital in Tilburg, the Netherlands. This study yields 53 patients. In this study the authors concentrate on qualitative volumetric tumor changes, local tumor control rate, and the effect of the treatment on trigeminal neuralgia (TN). RESULTS Local tumor control was 98% at 5 years and 93% at 7 years (Kaplan-Meier estimates). More than 90% of the tumors showed regression in volume during the first 5 years. The mean volumetric tumor decrease was 21.2%, 27.1%, and 31% at 1, 3, and 6 years of follow-up, respectively. Improvement in TN was achieved in 61%, 67%, and 70% of the cases at 1, 2, and 3 years of follow-up, respectively. This was associated with a mean volumetric tumor decrease of 25% at the 1-year follow-up to 32% at the 3-year follow-up. CONCLUSIONS GKRS for PCMs yields a high tumor control rate with a low incidence of neurological deficits. Many patients with TN due to PCM experienced improvement in TN after radiosurgery. GKRS achieves significant volumetric tumor decrease in the first years of follow-up and thereafter.

  17. Interactions of urea with native and unfolded proteins: a volumetric study.

    PubMed

    Son, Ikbae; Shek, Yuen Lai; Tikhomirova, Anna; Baltasar, Eduardo Hidalgo; Chalikian, Tigran V

    2014-11-26

    We describe a statistical thermodynamic approach to analyzing urea-dependent volumetric properties of proteins. We use this approach to analyze our urea-dependent data on the partial molar volume and adiabatic compressibility of lysozyme, apocytochrome c, ribonuclease A, and α-chymotrypsinogen A. The analysis produces the thermodynamic properties of elementary urea-protein association reactions while also yielding estimates of the effective solvent-accessible surface areas of the native and unfolded protein states. Lysozyme and apocytochrome c do not undergo urea-induced transitions. The former remains folded, while the latter is unfolded between 0 and 8 M urea. In contrast, ribonuclease A and α-chymotrypsinogen A exhibit urea-induced unfolding transitions. Thus, our data permit us to characterize urea-protein interactions in both the native and unfolded states. We interpreted the urea-dependent volumetric properties of the proteins in terms of the equilibrium constant, k, and changes in volume, ΔV0, and compressibility, ΔKT0, for a reaction in which urea binds to a protein with a concomitant release of two waters of hydration to the bulk. Comparison of the values of k, ΔV0, and ΔKT0 with the similar data obtained on small molecules mimicking protein groups reveals lack of cooperative effects involved in urea-protein interactions. In general, the volumetric approach, while providing a unique characterization of cosolvent-protein interactions, offers a practical way for evaluating the effective solvent accessible surface area of biologically significant fully or partially unfolded polypeptides.

  18. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-05-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination.

  19. Low-cost Volumetric Ultrasound by Augmentation of 2D Systems: Design and Prototype.

    PubMed

    Herickhoff, Carl D; Morgan, Matthew R; Broder, Joshua S; Dahl, Jeremy J

    2018-01-01

    Conventional two-dimensional (2D) ultrasound imaging is a powerful diagnostic tool in the hands of an experienced user, yet 2D ultrasound remains clinically underutilized and inherently incomplete, with output being very operator dependent. Volumetric ultrasound systems can more fully capture a three-dimensional (3D) region of interest, but current 3D systems require specialized transducers, are prohibitively expensive for many clinical departments, and do not register image orientation with respect to the patient; these systems are designed to provide improved workflow rather than operator independence. This work investigates whether it is possible to add volumetric 3D imaging capability to existing 2D ultrasound systems at minimal cost, providing a practical means of reducing operator dependence in ultrasound. In this paper, we present a low-cost method to make 2D ultrasound systems capable of quality volumetric image acquisition: we present the general system design and image acquisition method, including the use of a probe-mounted orientation sensor, a simple probe fixture prototype, and an offline volume reconstruction technique. We demonstrate initial results of the method, implemented using a Verasonics Vantage research scanner.

  20. WE-D-BRB-03: Current State of Volumetric Image Guidance for Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, C.

    The goal of this session is to review the physics of proton therapy, treatment planning techniques, and the use of volumetric imaging in proton therapy. The course material covers the physics of proton interaction with matter and physical characteristics of clinical proton beams. It will provide information on proton delivery systems and beam delivery techniques for double scattering (DS), uniform scanning (US), and pencil beam scanning (PBS). The session covers the treatment planning strategies used in DS, US, and PBS for various anatomical sites, methods to address uncertainties in proton therapy and uncertainty mitigation to generate robust treatment plans. Itmore » introduces the audience to the current status of image guided proton therapy and clinical applications of CBCT for proton therapy. It outlines the importance of volumetric imaging in proton therapy. Learning Objectives: Gain knowledge in proton therapy physics, and treatment planning for proton therapy including intensity modulated proton therapy. The current state of volumetric image guidance equipment in proton therapy. Clinical applications of CBCT and its advantage over orthogonal imaging for proton therapy. B. Teo, B.K Teo had received travel funds from IBA in 2015.« less

  1. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, Scott; Walko, Robert J.; Ashley, Carol S.; Brinker, C. Jeffrey

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  2. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  3. High-Density Association Study of 383 Candidate Genes for Volumetric BMD at the Femoral Neck and Lumbar Spine Among Older Men

    PubMed Central

    Yerges, Laura M.; Klei, Lambertus; Cauley, Jane A.; Roeder, Kathryn; Kammerer, Candace M.; Moffett, Susan P.; Ensrud, Kristine E.; Nestlerode, Cara S.; Marshall, Lynn M.; Hoffman, Andrew R.; Lewis, Cora; Lang, Thomas F.; Barrett-Connor, Elizabeth; Ferrell, Robert E.; Orwoll, Eric S.

    2009-01-01

    Genetics is a well-established but poorly understood determinant of BMD. Whereas some genetic variants may influence BMD throughout the body, others may be skeletal site specific. We initially screened for associations between 4608 tagging and potentially functional single nucleotide polymorphisms (SNPs) in 383 candidate genes and femoral neck and lumbar spine volumetric BMD (vBMD) measured from QCT scans among 862 community-dwelling white men ≥65 yr of age in the Osteoporotic Fractures in Men Study (MrOS). The most promising SNP associations (p < 0.01) were validated by genotyping an additional 1156 white men from MrOS. This analysis identified 8 SNPs in 6 genes (APC, DMP1, FGFR2, FLT1, HOXA, and PTN) that were associated with femoral neck vBMD and 13 SNPs in 7 genes (APC, BMPR1B, FOXC2, HOXA, IGFBP2, NFATC1, and SOST) that were associated with lumbar spine vBMD in both genotyping samples (p < 0.05). Although most associations were specific to one skeletal site, SNPs in the APC and HOXA gene regions were associated with both femoral neck and lumbar spine BMD. This analysis identifies several novel and robust genetic associations for volumetric BMD, and these findings in combination with other data suggest the presence of genetic loci for volumetric BMD that are at least to some extent skeletal-site specific. PMID:19453261

  4. Nitrogen-Doped Holey Graphene as an Anode for Lithium-Ion Batteries with High Volumetric Energy Density and Long Cycle Life.

    PubMed

    Xu, Jiantie; Lin, Yi; Connell, John W; Dai, Liming

    2015-12-01

    Nitrogen-doped holey graphene (N-hG) as an anode material for lithium-ion batteries has delivered a maximum volumetric capacity of 384 mAh cm(-3) with an excellent long-term cycling life up to 6000 cycles, and as an electrochemical capacitor has delivered a maximum volumetric energy density of 171.2 Wh L(-1) and a volumetric capacitance of 201.6 F cm(-3) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Volumetric T-spline Construction Using Boolean Operations

    DTIC Science & Technology

    2013-07-01

    SUBTITLE Volumetric T-spline Construction Using Boolean Operations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Acknowledgements The work of L. Liu and Y. Zhang was supported by ONR-YIP award N00014- 10-1-0698 and an ONR Grant N00014-08-1-0653. T. J.R. Hughes was sup- 16...T-spline Construction Using Boolean Operations 17 ported by ONR Grant N00014-08-1-0992, NSF GOALI CMI-0700807/0700204, NSF CMMI-1101007 and a SINTEF

  6. An experimental approach to determine the heat transfer coefficient in directional solidification furnaces

    NASA Technical Reports Server (NTRS)

    Banan, Mohsen; Gray, Ross T.; Wilcox, William R.

    1992-01-01

    The heat transfer coefficient between a molten charge and its surroundings in a Bridgman furnace was experimentally determined using in-situ temperature measurement. The ampoule containing an isothermal melt was suddenly moved from a higher temperature zone to a lower temperature zone. The temperature-time history was used in a lumped-capacity cooling model to evaluate the heat transfer coefficient between the charge and the furnace. The experimentally determined heat transfer coefficient was of the same order of magnitude as the theoretical value estimated by standard heat transfer calculations.

  7. EVALUATION OF VOLUMETRIC LEAK DETECTION METHODS USED IN UNDERGROUND STORAGE TANKS

    EPA Science Inventory

    In the spring and summer of 1987, the United States Environmental Protection Agency (EPA) evaluated the performance of 25 commercially available volumetric test methods for the detection of small leaks in underground storage tanks containing gasoline. Performance was estimated by...

  8. Experimental determination of the particle motions associated with the low order acoustic modes in enclosures

    NASA Technical Reports Server (NTRS)

    Byrne, K. P.; Marshall, S. E.

    1983-01-01

    A procedure for experimentally determining, in terms of the particle motions, the shapes of the low order acoustic modes in enclosures is described. The procedure is based on finding differentiable functions which approximate the shape functions of the low order acoustic modes when these modes are defined in terms of the acoustic pressure. The differentiable approximating functions are formed from polynomials which are fitted by a least squares procedure to experimentally determined values which define the shapes of the low order acoustic modes in terms of the acoustic pressure. These experimentally determined values are found by a conventional technique in which the transfer functions, which relate the acoustic pressures at an array of points in the enclosure to the volume velocity of a fixed point source, are measured. The gradient of the function which approximates the shape of a particular mode in terms of the acoustic pressure is evaluated to give the mode shape in terms of the particle motion. The procedure was tested by using it to experimentally determine the shapes of the low order acoustic modes in a small rectangular enclosure.

  9. Patterns of shading tolerance determined from experimental ...

    EPA Pesticide Factsheets

    An extensive review of the experimental literature on seagrass shading evaluated the relationship between experimental light reductions, duration of experiment and seagrass response metrics to determine whether there were consistent statistical patterns. There were highly significant linear relationships of both percent biomass and percent shoot density reduction versus percent light reduction (versus controls), although unexplained variation in the data were high. Duration of exposure affected extent of response for both metrics, but was more clearly a factor in biomass response. Both biomass and shoot density showed linear responses to duration of light reduction for treatments 60%. Unexplained variation was again high, and greater for shoot density than biomass. With few exceptions, regressions of both biomass and shoot density on light reduction for individual species and for genera were statistically significant, but also tended to show high degrees of variability in data. Multivariate regressions that included both percent light reduction and duration of reduction as dependent variables increased the percentage of variation explained in almost every case. Analysis of response data by seagrass life history category (Colonizing, Opportunistic, Persistent) did not yield clearly separate response relationships in most cases. Biomass tended to show somewhat less variation in response to light reduction than shoot density, and of the two, may be the prefe

  10. Tomographic Aperture-Encoded Particle Tracking Velocimetry: A New Approach to Volumetric PIV

    NASA Astrophysics Data System (ADS)

    Troolin, Dan; Boomsma, Aaron; Lai, Wing; Pothos, Stamatios; Fluid Mechanics Research Instruments Team

    2016-11-01

    Volumetric velocity fields are useful in a wide variety of fluid mechanics applications. Several types of three-dimensional imaging methods have been used in the past to varying degrees of success, for example, 3D PTV (Maas et al., 1993), DDPIV (Peireira et al., 2006), Tomographic PIV (Elsinga, 2006), and V3V (Troolin and Longmire, 2009), among others. Each of these techniques has shown advantages and disadvantages in different areas. With the advent of higher resolution and lower noise cameras with higher stability levels, new techniques are emerging that combine the advantages of the existing techniques. This talk describes a new technique called Tomographic Aperture-Encoded Particle Tracking Velocimetry (TAPTV), in which segmented triangulation and diameter tolerance are used to achieve three-dimensional particle tracking with extremely high particle densities (on the order of ppp = 0.2 or higher) without the drawbacks normally associated with ghost particles (for example in TomoPIV). The results are highly spatially-resolved data with very fast processing times. A detailed explanation of the technique as well as plots, movies, and experimental considerations will be discussed.

  11. Volumetric Contrast-Enhanced Ultrasound Imaging to Assess Early Response to Apoptosis-Inducing Anti–Death Receptor 5 Antibody Therapy in a Breast Cancer Animal Model

    PubMed Central

    Hoyt, Kenneth; Sorace, Anna; Saini, Reshu

    2013-01-01

    Objectives The objective of this study was to determine whether volumetric contrast-enhanced ultrasound (US) imaging could detect early tumor response to anti–death receptor 5 antibody (TRA-8) therapy alone or in combination with chemotherapy in a preclinical triple-negative breast cancer animal model. Methods Animal experiments had Institutional Animal Care and Use Committee approval. Thirty breast tumor–bearing mice were administered Abraxane (paclitaxel; Celgene Corporation, Summit, NJ), TRA-8, TRA-8 + Abraxane, or saline as a control on days 0, 3, 7, 10, 14, and 17. Volumetric contrast-enhanced US imaging was performed on days 0, 1, 3, and 7 before dosing. Changes in parametric maps of tumor perfusion were compared with the tumor volume and immunohistologic findings. Results Therapeutic efficacy was detected within 7 days after drug administration using parametric volumetric contrast-enhanced US imaging. Decreased tumor perfusion was observed in both the TRA-8-alone– and TRA-8 + Abraxane–dosed animals compared to control tumors (P = .17; P = .001, respectively). The reduction in perfusion observed in the TRA-8 + Abraxane group was matched with a corresponding regression in tumor size over the same period. Survival curves illustrate that the combination of TRA-8 + Abraxane improves drug efficacy compared to the same drugs administered alone. Immunohistologic analysis revealed increased levels of apoptotic activity in the TRA-8-dosed tumors, confirming enhanced antitumor effects. Conclusions Preliminary results are encouraging, and volumetric contrast-enhanced US-based tumor perfusion imaging may prove clinically feasible for detecting and monitoring the early antitumor effects in response to combination TRA-8 + Abraxane therapy. PMID:23091246

  12. A spiral-based volumetric acquisition for MR temperature imaging.

    PubMed

    Fielden, Samuel W; Feng, Xue; Zhao, Li; Miller, G Wilson; Geeslin, Matthew; Dallapiazza, Robert F; Elias, W Jeffrey; Wintermark, Max; Butts Pauly, Kim; Meyer, Craig H

    2018-06-01

    To develop a rapid pulse sequence for volumetric MR thermometry. Simulations were carried out to assess temperature deviation, focal spot distortion/blurring, and focal spot shift across a range of readout durations and maximum temperatures for Cartesian, spiral-out, and retraced spiral-in/out (RIO) trajectories. The RIO trajectory was applied for stack-of-spirals 3D imaging on a real-time imaging platform and preliminary evaluation was carried out compared to a standard 2D sequence in vivo using a swine brain model, comparing maximum and mean temperatures measured between the two methods, as well as the temporal standard deviation measured by the two methods. In simulations, low-bandwidth Cartesian trajectories showed substantial shift of the focal spot, whereas both spiral trajectories showed no shift while maintaining focal spot geometry. In vivo, the 3D sequence achieved real-time 4D monitoring of thermometry, with an update time of 2.9-3.3 s. Spiral imaging, and RIO imaging in particular, is an effective way to speed up volumetric MR thermometry. Magn Reson Med 79:3122-3127, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.

    PubMed

    Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P

    2015-10-01

    Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.

  14. Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory

    NASA Astrophysics Data System (ADS)

    Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert

    2018-02-01

    Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.

  15. Volumetric analysis of chronic maxillary atelectasis.

    PubMed

    Lin, Giant C; Sedaghat, Ahmad R; Bleier, Benjamin S; Holbrook, Eric H; Busaba, Nicolas Y; Yoon, Michael K; Gray, Stacey T

    2015-01-01

    The relationship between orbit and maxillary sinus volumes in patients with chronic maxillary atelectasis (CMA), commonly known as silent sinus syndrome if enophthalmos is present, is poorly understood. A retrospective review of 22 patients who underwent endoscopic sinus surgery (ESS) for CMA from 2005 to 2013 was performed. Computed tomography (CT) images were analyzed using OsiriX 5.8.2 software for volumetric analysis of the orbit and maxillary sinus at presentation and after surgical treatment with ESS. Pretreatment mean orbit volumes on the diseased side (DS) and the contralateral side (CS) were 29.22 and 26.50 mL, respectively (p < 0.001); mean sinus volumes on the DS and CS were 8.51 and 17.20 mL, respectively (p < 0.001); and pretreatment mean midorbit heights (MOHs) on the DS and CS were 3.39 cm and 3.07 cm, respectively (p < 0.001). The percent decrease in sinus volume on the DS compared to that on the CS did not correlate significantly with the percent orbit-volume increase. Enophthalmos was present in nine (41%) patients, and diplopia was present in three (14%) patients. The measured degree of increased orbit volume and decreased sinus volume secondary to CMA did not significantly predict the presence of enophthalmos at presentation. Seven patients underwent sinus CT more than 6 months after ESS. In these patients, orbit volume on the DS decreased from 29.67 to 27.52 mL (p = 0.005), and sinus volume on the DS increased from 9.78 to 11.84 mL (p = 0.08). Volumetric analysis is a powerful and novel method for objectively demonstrating the degree of orbit expansion and maxillary sinus contraction seen with CMA. Spontaneous maxillary sinus expansion and a decrease in orbit volume can occur after ESS, but post-ESS volumes do not return to the normal volume of the CS.

  16. Volumetric influence on the mechanical behavior of organic solids: The case of aspirin and paracetamol addressed via dispersion corrected DFT

    NASA Astrophysics Data System (ADS)

    Adhikari, Kapil; Flurchick, Kenneth M.; Valenzano, Loredana

    2015-06-01

    The elastic and mechanical properties of the most stable polymorphs of aspirin and paracetamol are obtained at B3LYP-D2* level of theory to show how effects arising from volumetric expansions related to thermal variations influence the behavior of these materials. Results are in fair agreement with experimental values reported at temperatures far from 0 K, showing that the proposed approach can describe the elastic response of molecular crystals as rationalized in terms of inter-molecular forces. The computational approach, despite its semi-empirical nature, allows achieving a qualitative chemical understanding of the macroscopic mechanical properties of molecular crystals with respect to changes in temperature.

  17. In situ coating nickel organic complexes on free-standing nickel wire films for volumetric-energy-dense supercapacitors.

    PubMed

    Hong, Min; Xu, Shusheng; Yao, Lu; Zhou, Chao; Hu, Nantao; Yang, Zhi; Hu, Jing; Zhang, Liying; Zhou, Zhihua; Wei, Hao; Zhang, Yafei

    2018-07-06

    A self-free-standing core-sheath structured hybrid membrane electrodes based on nickel and nickel based metal-organic complexes (Ni@Ni-OC) was designed and constructed for high volumetric supercapacitors. The self-standing Ni@Ni-OC film electrode had a high volumetric specific capacity of 1225.5 C cm -3 at 0.3 A cm -3 and an excellent rate capability. Moreover, when countered with graphene-carbon nanotube (G-CNT) film electrode, the as-assembled Ni@Ni-OC//G-CNT hybrid supercapacitor device delivered an extraordinary volumetric capacitance of 85 F cm -3 at 0.5 A cm -3 and an outstanding energy density of 33.8 at 483 mW cm -3 . Furthermore, the hybrid supercapacitor showed no capacitance loss after 10 000 cycles at 2 A cm -3 , indicating its excellent cycle stability. These fascinating performances can be ascribed to its unique core-sheath structure that high capacity nano-porous nickel based metal-organic complexes (Ni-OC) in situ coated on highly conductive Ni wires. The impressive results presented here may pave the way to construct s self-standing membrane electrode for applications in high volumetric-performance energy storage.

  18. A prototype table-top inverse-geometry volumetric CT system.

    PubMed

    Schmidt, Taly Gilat; Star-Lack, Josh; Bennett, N Robert; Mazin, Samuel R; Solomon, Edward G; Fahrig, Rebecca; Pelc, Norbert J

    2006-06-01

    A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a "Defrise" phantom was scanned on both the prototype IGCT scanner and a micro CT system with a +/-5 cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for single

  19. Cosmological models constructed by van der Waals fluid approximation and volumetric expansion

    NASA Astrophysics Data System (ADS)

    Samanta, G. C.; Myrzakulov, R.

    The universe modeled with van der Waals fluid approximation, where the van der Waals fluid equation of state contains a single parameter ωv. Analytical solutions to the Einstein’s field equations are obtained by assuming the mean scale factor of the metric follows volumetric exponential and power-law expansions. The model describes a rapid expansion where the acceleration grows in an exponential way and the van der Waals fluid behaves like an inflation for an initial epoch of the universe. Also, the model describes that when time goes away the acceleration is positive, but it decreases to zero and the van der Waals fluid approximation behaves like a present accelerated phase of the universe. Finally, it is observed that the model contains a type-III future singularity for volumetric power-law expansion.

  20. Investigation of Volumetric Sources in Airframe Noise Simulations

    NASA Technical Reports Server (NTRS)

    Casper, Jay H.; Lockard, David P.; Khorrami, Mehdi R.; Streett, Craig L.

    2004-01-01

    Hybrid methods for the prediction of airframe noise involve a simulation of the near field flow that is used as input to an acoustic propagation formula. The acoustic formulations discussed herein are those based on the Ffowcs Williams and Hawkings equation. Some questions have arisen in the published literature in regard to an apparently significant dependence of radiated noise predictions on the location of the integration surface used in the solution of the Ffowcs Williams and Hawkings equation. These differences in radiated noise levels are most pronounced between solid-body surface integrals and off-body, permeable surface integrals. Such differences suggest that either a non-negligible volumetric source is contributing to the total radiation or the input flow simulation is suspect. The focus of the current work is the issue of internal consistency of the flow calculations that are currently used as input to airframe noise predictions. The case study for this research is a computer simulation for a three-element, high-lift wing profile during landing conditions. The noise radiated from this flow is predicted by a two-dimensional, frequency-domain formulation of the Ffowcs Williams and Hawkings equation. Radiated sound from volumetric sources is assessed by comparison of a permeable surface integration with the sum of a solid-body surface integral and a volume integral. The separate noise predictions are found in good agreement.

  1. Volumetric three-dimensional display system with rasterization hardware

    NASA Astrophysics Data System (ADS)

    Favalora, Gregg E.; Dorval, Rick K.; Hall, Deirdre M.; Giovinco, Michael; Napoli, Joshua

    2001-06-01

    An 8-color multiplanar volumetric display is being developed by Actuality Systems, Inc. It will be capable of utilizing an image volume greater than 90 million voxels, which we believe is the greatest utilizable voxel set of any volumetric display constructed to date. The display is designed to be used for molecular visualization, mechanical CAD, e-commerce, entertainment, and medical imaging. As such, it contains a new graphics processing architecture, novel high-performance line- drawing algorithms, and an API similar to a current standard. Three-dimensional imagery is created by projecting a series of 2-D bitmaps ('image slices') onto a diffuse screen that rotates at 600 rpm. Persistence of vision fuses the slices into a volume-filling 3-D image. A modified three-panel Texas Instruments projector provides slices at approximately 4 kHz, resulting in 8-color 3-D imagery comprised of roughly 200 radially-disposed slices which are updated at 20 Hz. Each slice has a resolution of 768 by 768 pixels, subtending 10 inches. An unusual off-axis projection scheme incorporating tilted rotating optics is used to maintain good focus across the projection screen. The display electronics includes a custom rasterization architecture which converts the user's 3- D geometry data into image slices, as well as 6 Gbits of DDR SDRAM graphics memory.

  2. Multi-volumetric registration and mosaicking using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bozic, Ivan; El-Haddad, Mohamed T.; Malone, Joseph D.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-02-01

    Ophthalmic diagnostic imaging using optical coherence tomography (OCT) is limited by bulk eye motions and a fundamental trade-off between field-of-view (FOV) and sampling density. Here, we introduced a novel multi-volumetric registration and mosaicking method using our previously described multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and OCT (SS-SESLO-OCT) system. Our SS-SESLO-OCT acquires an entire en face fundus SESLO image simultaneously with every OCT cross-section at 200 frames-per-second. In vivo human retinal imaging was performed in a healthy volunteer, and three volumetric datasets were acquired with the volunteer moving freely and refixating between each acquisition. In post-processing, SESLO frames were used to estimate en face rotational and translational motions by registering every frame in all three volumetric datasets to the first frame in the first volume. OCT cross-sections were contrast-normalized and registered axially and rotationally across all volumes. Rotational and translational motions calculated from SESLO frames were applied to corresponding OCT B-scans to compensate for interand intra-B-scan bulk motions, and the three registered volumes were combined into a single interpolated multi-volumetric mosaic. Using complementary information from SESLO and OCT over serially acquired volumes, we demonstrated multivolumetric registration and mosaicking to recover regions of missing data resulting from blinks, saccades, and ocular drifts. We believe our registration method can be directly applied for multi-volumetric motion compensation, averaging, widefield mosaicking, and vascular mapping with potential applications in ophthalmic clinical diagnostics, handheld imaging, and intraoperative guidance.

  3. Synoptic volumetric variations and flushing of the Tampa Bay estuary

    NASA Astrophysics Data System (ADS)

    Wilson, M.; Meyers, S. D.; Luther, M. E.

    2014-03-01

    Two types of analyses are used to investigate the synoptic wind-driven flushing of Tampa Bay in response to the El Niño-Southern Oscillation (ENSO) cycle from 1950 to 2007. Hourly sea level elevations from the St. Petersburg tide gauge, and wind speed and direction from three different sites around Tampa Bay are used for the study. The zonal (u) and meridional (v) wind components are rotated clockwise by 40° to obtain axial and co-axial components according to the layout of the bay. First, we use the subtidal observed water level as a proxy for mean tidal height to estimate the rate of volumetric bay outflow. Second, we use wavelet analysis to bandpass sea level and wind data in the time-frequency domain to isolate the synoptic sea level and surface wind variance. For both analyses the long-term monthly climatology is removed and we focus on the volumetric and wavelet variance anomalies. The overall correlation between the Oceanic Niño Index and volumetric analysis is small due to the seasonal dependence of the ENSO response. The mean monthly climatology between the synoptic wavelet variance of elevation and axial winds are in close agreement. During the winter, El Niño (La Niña) increases (decreases) the synoptic variability, but decreases (increases) it during the summer. The difference in winter El Niño/La Niña wavelet variances is about 20 % of the climatological value, meaning that ENSO can swing the synoptic flushing of the bay by 0.22 bay volumes per month. These changes in circulation associated with synoptic variability have the potential to impact mixing and transport within the bay.

  4. A Solar Volumetric Receiver: Influence of Absorbing Cells Configuration on Device Thermal Performance

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Shuja, S. Z.

    2017-01-01

    Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert's Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.

  5. Experimental Investigation of Water Droplet Impingement on Airfoils, Finite Wings, and an S-duct Engine Inlet

    NASA Technical Reports Server (NTRS)

    Papadakis, Michael; Hung, Kuohsing E.; Vu, Giao T.; Yeong, Hsiung Wei; Bidwell, Colin S.; Breer, Martin D.; Bencic, Timothy J.

    2002-01-01

    Validation of trajectory computer codes, for icing analysis, requires experimental water droplet impingement data for a wide range of aircraft geometries as well as flow and icing conditions. This report presents improved experimental and data reduction methods for obtaining water droplet impingement data and provides a comprehensive water droplet impingement database for a range of test geometries including an MS(1)-0317 airfoil, a GLC-305 airfoil, an NACA 65(sub 2)-415 airfoil, a commercial transport tail section, a 36-inch chord natural laminar flow NLF(1)-0414 airfoil, a 48-inch NLF(1)-0414 section with a 25 percent chord simple flap, a state-of-the-art three-element high lift system, a NACA 64A008 finite span swept business jet tail, a full-scale business jet horizontal tail section, a 25 percent-scale business jet empennage, and an S-duct turboprop engine inlet. The experimental results were obtained at the NASA Glenn Icing Research Tunnel (IRT) for spray clouds with median volumetric diameter (MVD) of 11, 11.5, 21, 92, and 94 microns and for a range of angles of attack. The majority of the impingement experiments were conducted at an air speed of 175 mph corresponding to a Reynolds number of approximately 1.6 million per foot. The maximum difference of repeated tests from the average ranged from 0.24 to 12 percent for most of the experimental results presented. This represents a significant improvement in test repeatability compared to previous experimental studies. The increase in test repeatability was attributed to improvements made to the experimental and data reduction methods. Computations performed with the LEWICE-2D and LEWICE-3D computer codes for all test configurations are presented in this report. For the test cases involving median volumetric diameters of 11 and 21 microns, the correlation between the analytical and experimental impingement efficiency distributions was good. For the median volumetric diameters of 92 and 94-micron cases, however

  6. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.

    PubMed

    Yu, Huidan; Chen, Xi; Wang, Zhiqiang; Deep, Debanjan; Lima, Everton; Zhao, Ye; Teague, Shawn D

    2014-06-01

    In this paper, we develop a mass-conserved volumetric lattice Boltzmann method (MCVLBM) for numerically solving fluid dynamics with willfully moving arbitrary boundaries. In MCVLBM, fluid particles are uniformly distributed in lattice cells and the lattice Boltzmann equations deal with the time evolution of the particle distribution function. By introducing a volumetric parameter P(x,y,z,t) defined as the occupation of solid volume in the cell, we distinguish three types of lattice cells in the simulation domain: solid cell (pure solid occupation, P=1), fluid cell (pure fluid occupation, P=0), and boundary cell (partial solid and partial fluid, 0volumetric lattice Boltzmann equations are self-regularized through P and consist of three parts: (1) collision taking into account the momentum exchange between the willfully moving boundary and the flow; (2) streaming accompanying a volumetric bounce-back procedure in boundary cells; and (3) boundary-induced volumetric fluid migration moving the residual fluid particles into the flow domain when the boundary swipes over a boundary cell toward a solid cell. The MCVLBM strictly satisfies mass conservation and can handle irregular boundary orientation and motion with respect to the mesh. Validation studies are carried out in four cases. The first is to simulate fluid dynamics in syringes focusing on how MCVLBM captures the underlying physics of flow driven by a willfully moving piston. The second and third cases are two-dimensional (2D) peristaltic flow and three-dimensional (3D) pipe flow, respectively. In each case, we compare the MCVLBM simulation result with the analytical solution and achieve quantitatively good agreements. The fourth case is to simulate blood flow in human aortic arteries with a very complicated irregular boundary. We study steady flow in two dimensions and unsteady flow via the pulsation of the cardiac cycle in three dimensions. In the 2D case, both vector (velocity) and

  7. Experimental Determination of the H2O-undersaturated Peridotite Solidus

    NASA Astrophysics Data System (ADS)

    Sarafian, E. K.; Gaetani, G. A.; Hauri, E.; Sarafian, A.

    2015-12-01

    Knowledge of the H2O-undersaturated lherzolite solidus places important constraints on the process of melt generation beneath oceanic spreading centers. While it is generally accepted that the small concentration of H2O (~50-200 ug/g) dissolved in the oceanic upper mantle has a strong influence on the peridotite solidus, but this effect has not been directly determined through experiments. This is because (1) precisely controlling low concentrations of H2O in high-pressure melting experiments is thought to be difficult, (2) small amounts of melt are difficult to identify, and (3) the size of mineral grains that grow in near-solidus experiments is too small to be analyzed for H2O by either Fourier transform infrared (FTIR) spectroscopy or secondary ion mass spectrometry (SIMS). We have developed an experimental approach for determining the peridotite solidus as a function of H2O content that overcomes these difficulties. Our approach utilizes large (~300 um diameter) spheres of San Carlos olivine to monitor the concentration and behavior of H2O in our experiments.. The spheres are mixed in 5:95 proportions with a synthetic peridotite that has the composition of the depleted MORB mantle of Workman and Hart (2005). Partial melting experiments are conducted in is a piston cylinder device using pre-conditioned Au80Pd20 capsules. During an experiment, the H2O content of the San Carlos olivine spheres diffusively equilibrates with the peridotite matrix. After each experiment, the concentration of H2O dissolved in the olivine spheres is determined by secondary ion mass spectrometry. By analyzing the H2O content of the San Carlos olivine spheres and performing a simple mass balance, we can then calculate the amount of H2O in the capsule. The spheres also provides a means to determine the solidus temperature due to the strong partitioning of H2O into silicate melt compared to olivine, pyroxene, and spinel. When a small amount of melt is present the H2O partitions into the

  8. Method of experimental and calculation determination of dissipative properties of carbon

    NASA Astrophysics Data System (ADS)

    Kazakova, Olga I.; Smolin, Igor Yu.; Bezmozgiy, Iosif M.

    2017-12-01

    This paper describes the process of definition of relations between the damping ratio and strain/state levels in a material. For these purposes, the experimental-calculation approach was applied. The experimental research was performed on plane composite specimens. The tests were accompanied by finite element modeling using the ANSYS software. Optimization was used as a tool for FEM property setting and for finding the above-mentioned relations. A difference between the calculation and experimental results was accepted as objective functions of this optimization. The optimization cycle was implemented using the pSeven DATADVANCE software platform. The developed approach makes it possible to determine the relations between the damping ratio and strain/state levels in the material, which can be used for computer modeling of the structure response under dynamic loading.

  9. An inverse hyper-spherical harmonics-based formulation for reconstructing 3D volumetric lung deformations

    NASA Astrophysics Data System (ADS)

    Santhanam, Anand P.; Min, Yugang; Mudur, Sudhir P.; Rastogi, Abhinav; Ruddy, Bari H.; Shah, Amish; Divo, Eduardo; Kassab, Alain; Rolland, Jannick P.; Kupelian, Patrick

    2010-07-01

    A method to estimate the deformation operator for the 3D volumetric lung dynamics of human subjects is described in this paper. For known values of air flow and volumetric displacement, the deformation operator and subsequently the elastic properties of the lung are estimated in terms of a Green's function. A Hyper-Spherical Harmonic (HSH) transformation is employed to compute the deformation operator. The hyper-spherical coordinate transformation method discussed in this paper facilitates accounting for the heterogeneity of the deformation operator using a finite number of frequency coefficients. Spirometry measurements are used to provide values for the airflow inside the lung. Using a 3D optical flow-based method, the 3D volumetric displacement of the left and right lungs, which represents the local anatomy and deformation of a human subject, was estimated from 4D-CT dataset. Results from an implementation of the method show the estimation of the deformation operator for the left and right lungs of a human subject with non-small cell lung cancer. Validation of the proposed method shows that we can estimate the Young's modulus of each voxel within a 2% error level.

  10. Empirical Constraints on the Origin of Fast Radio Bursts: Volumetric Rates and Host Galaxy Demographics as a Test of Millisecond Magnetar Connection

    NASA Astrophysics Data System (ADS)

    Nicholl, M.; Williams, P. K. G.; Berger, E.; Villar, V. A.; Alexander, K. D.; Eftekhari, T.; Metzger, B. D.

    2017-07-01

    The localization of the repeating fast radio burst (FRB) 121102 to a low-metallicity dwarf galaxy at z = 0.193, and its association with a luminous quiescent radio source, suggests the possibility that FRBs originate from magnetars, formed by the unusual supernovae that occur in such galaxies. We investigate this possibility via a comparison of magnetar birth rates, the FRB volumetric rate, and host galaxy demographics. We calculate average volumetric rates of possible millisecond magnetar production channels, such as superluminous supernovae (SLSNe), long and short gamma-ray bursts (GRBs), and general magnetar production via core-collapse supernovae (CCSNe). For each channel, we also explore the expected host galaxy demographics using their known properties. We determine for the first time the number density of FRB emitters (the product of their volumetric birth rate and lifetime), {R}{FRB}τ ≈ {10}4 Gpc-3, assuming that FRBs are predominantly emitted from repetitive sources similar to FRB 121102 and adopting a beaming factor of 0.1. By comparing rates, we find that production via rare channels (SLSNe, GRBs) implies a typical FRB lifetime of ˜30-300 years, in good agreement with other lines of argument. The total energy emitted over this time is consistent with the available energy stored in the magnetic field. On the other hand, any relation to magnetars produced via normal CCSNe leads to a very short lifetime of ˜0.5 years, in conflict with both theory and observation. We demonstrate that due to the diverse host galaxy distributions of the different progenitor channels, many possible sources of FRB birth can be ruled out with ≲ 10 host galaxy identifications. Conversely, targeted searches of galaxies that have previously hosted decades-old SLSNe and GRBs may be a fruitful strategy for discovering new FRBs and related quiescent radio sources, and determining the nature of their progenitors.

  11. Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks

    NASA Astrophysics Data System (ADS)

    Dana, Hod; Marom, Anat; Paluch, Shir; Dvorkin, Roman; Brosh, Inbar; Shoham, Shy

    2014-06-01

    Planar neural networks and interfaces serve as versatile in vitro models of central nervous system physiology, but adaptations of related methods to three dimensions (3D) have met with limited success. Here, we demonstrate for the first time volumetric functional imaging in a bioengineered neural tissue growing in a transparent hydrogel with cortical cellular and synaptic densities, by introducing complementary new developments in nonlinear microscopy and neural tissue engineering. Our system uses a novel hybrid multiphoton microscope design combining a 3D scanning-line temporal-focusing subsystem and a conventional laser-scanning multiphoton microscope to provide functional and structural volumetric imaging capabilities: dense microscopic 3D sampling at tens of volumes per second of structures with mm-scale dimensions containing a network of over 1,000 developing cells with complex spontaneous activity patterns. These developments open new opportunities for large-scale neuronal interfacing and for applications of 3D engineered networks ranging from basic neuroscience to the screening of neuroactive substances.

  12. Tracing dynamics of relative volumetric soil moisture content using SAR data

    NASA Astrophysics Data System (ADS)

    Avetisyan, Daniela; Velizarova, Emiliya; Nedkov, Roumen

    2017-09-01

    Soil is a dominant factor of the terrestrial geosystems in the dry sub-humid zones, particularly through its effect on biomass production. Due to the climate changes and industrial development, soil resources in these zones are prone to degradation. Mitigation of the negative effects of land degradation requires in-depth knowledge of the ongoing in the geosystems processes and application of innovative end effective methods for their investigation. The recent study aims to evaluate the relative soil moisture content in various soil differences and to trace its dynamics during growing season. In order to achieve this aim, Relative Soil Moisture Index (RSMI) based on Synthetic Aperture Radar (SAR) data was calculated. The index estimates the relative variation of volumetric soil moisture content in a given time period and enables determination of its change in relative values. The generated results show very high level of correlation for the investigated pilot areas which testifies that the RSMI is applicable in different territories.

  13. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    DOE PAGES

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; ...

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less

  14. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less

  15. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.

  16. Volumetric Verification of Multiaxis Machine Tool Using Laser Tracker

    PubMed Central

    Aguilar, Juan José

    2014-01-01

    This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space. PMID:25202744

  17. Spatio-volumetric hazard estimation in the Auckland volcanic field

    NASA Astrophysics Data System (ADS)

    Bebbington, Mark S.

    2015-05-01

    The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.

  18. Terrestrial laser scanning and a degenerated cylinder model to determine gross morphological change of cadavers under conditions of natural decomposition.

    PubMed

    Zhang, Xiao; Glennie, Craig L; Bucheli, Sibyl R; Lindgren, Natalie K; Lynne, Aaron M

    2014-08-01

    Decomposition can be a highly variable process with stages that are difficult to quantify. Using high accuracy terrestrial laser scanning a repeated three-dimensional (3D) documentation of volumetric changes of a human body during early decomposition is recorded. To determine temporal volumetric variations as well as 3D distribution of the changed locations in the body over time, this paper introduces the use of multiple degenerated cylinder models to provide a reasonable approximation of body parts against which 3D change can be measured and visualized. An iterative closest point algorithm is used for 3D registration, and a method for determining volumetric change is presented. Comparison of the laser scanning estimates of volumetric change shows good agreement with repeated in-situ measurements of abdomen and limb circumference that were taken diurnally. The 3D visualizations of volumetric changes demonstrate that bloat is a process with a beginning, middle, and end rather than a state of presence or absence. Additionally, the 3D visualizations show conclusively that cadaver bloat is not isolated to the abdominal cavity, but also occurs in the limbs. Detailed quantification of the bloat stage of decay has the potential to alter how the beginning and end of bloat are determined by researchers and can provide further insight into the effects of the ecosystem on decomposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Heritability of volumetric brain changes and height in children entering puberty.

    PubMed

    van Soelen, Inge L C; Brouwer, Rachel M; van Baal, G Caroline M; Schnack, Hugo G; Peper, Jiska S; Chen, Lei; Kahn, René S; Boomsma, Dorret I; Hulshoff Pol, Hilleke E

    2013-03-01

    The human brain undergoes structural changes in children entering puberty, while simultaneously children increase in height. It is not known if brain changes are under genetic control, and whether they are related to genetic factors influencing the amount of overall increase in height. Twins underwent magnetic resonance imaging brain scans at age 9 (N = 190) and 12 (N = 125). High heritability estimates were found at both ages for height and brain volumes (49-96%), and high genetic correlation between ages were observed (r(g) > 0.89). With increasing age, whole brain (+1.1%), cerebellum (+4.2%), cerebral white matter (+5.1%), and lateral ventricle (+9.4%) volumes increased, and third ventricle (-4.0%) and cerebral gray matter (-1.6%) volumes decreased. Children increased on average 13.8 cm in height (9.9%). Genetic influences on individual difference in volumetric brain and height changes were estimated, both within and across traits. The same genetic factors influenced both cerebral (20% heritable) and cerebellar volumetric changes (45%). Thus, the extent to which changes in cerebral and cerebellar volumes are heritable in children entering puberty are due to the same genes that influence change in both structures. The increase in height was heritable (73%), and not associated with cerebral volumetric change, but positively associated with cerebellar volume change (r(p) = 0.24). This association was explained by a genetic correlation (r(g) = 0.48) between height and cerebellar change. Brain and body each expand at their own pace and through separate genetic pathways. There are distinct genetic processes acting on structural brain development, which cannot be explained by genetic increase in height. Copyright © 2011 Wiley Periodicals, Inc.

  20. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance

    DOE PAGES

    Ghidiu, Michael; Lukatskaya, Maria R.; Zhao, Meng-Qiang; ...

    2014-11-26

    Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors—in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made ofmore » two-dimensional titanium carbide (Ti 3C 2, a member of the ‘MXene’ family), produced by etching aluminium from titanium aluminium carbide (Ti 3AlC 2, a ‘MAX’ phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. In this paper, we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide ‘clay’ have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. In addition, this capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.« less

  1. Evaluation of feature-based 3-d registration of probabilistic volumetric scenes

    NASA Astrophysics Data System (ADS)

    Restrepo, Maria I.; Ulusoy, Ali O.; Mundy, Joseph L.

    2014-12-01

    Automatic estimation of the world surfaces from aerial images has seen much attention and progress in recent years. Among current modeling technologies, probabilistic volumetric models (PVMs) have evolved as an alternative representation that can learn geometry and appearance in a dense and probabilistic manner. Recent progress, in terms of storage and speed, achieved in the area of volumetric modeling, opens the opportunity to develop new frameworks that make use of the PVM to pursue the ultimate goal of creating an entire map of the earth, where one can reason about the semantics and dynamics of the 3-d world. Aligning 3-d models collected at different time-instances constitutes an important step for successful fusion of large spatio-temporal information. This paper evaluates how effectively probabilistic volumetric models can be aligned using robust feature-matching techniques, while considering different scenarios that reflect the kind of variability observed across aerial video collections from different time instances. More precisely, this work investigates variability in terms of discretization, resolution and sampling density, errors in the camera orientation, and changes in illumination and geographic characteristics. All results are given for large-scale, outdoor sites. In order to facilitate the comparison of the registration performance of PVMs to that of other 3-d reconstruction techniques, the registration pipeline is also carried out using Patch-based Multi-View Stereo (PMVS) algorithm. Registration performance is similar for scenes that have favorable geometry and the appearance characteristics necessary for high quality reconstruction. In scenes containing trees, such as a park, or many buildings, such as a city center, registration performance is significantly more accurate when using the PVM.

  2. Trapping volumetric measurement by multidetector CT in chronic obstructive pulmonary disease: Effect of CT threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaohua; Yuan, Huishu; Duan, Jianghui

    2013-08-15

    Purpose: The purpose of this study was to evaluate the effect of various computed tomography (CT) thresholds on trapping volumetric measurements by multidetector CT in chronic obstructive pulmonary disease (COPD).Methods: Twenty-three COPD patients were scanned with a 64-slice CT scanner in both the inspiratory and expiratory phase. CT thresholds of −950 Hu in inspiration and −950 to −890 Hu in expiration were used, after which trapping volumetric measurements were made using computer software. Trapping volume percentage (Vtrap%) under the different CT thresholds in the expiratory phase and below −950 Hu in the inspiratory phase was compared and correlated with lungmore » function.Results: Mean Vtrap% was similar under −930 Hu in the expiratory phase and below −950 Hu in the inspiratory phase, being 13.18 ± 9.66 and 13.95 ± 6.72 (both lungs), respectively; this difference was not significant (P= 0.240). Vtrap% under −950 Hu in the inspiratory phase and below the −950 to −890 Hu threshold in the expiratory phase was moderately negatively correlated with the ratio of forced expiratory volume in one second to forced vital capacity and the measured value of forced expiratory volume in one second as a percentage of the predicted value.Conclusions: Trapping volumetric measurement with multidetector CT is a promising method for the quantification of COPD. It is important to know the effect of various CT thresholds on trapping volumetric measurements.« less

  3. Experimental and analytical determination of stability parameters for a balloon tethered in a wind

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Bennett, R. M.; Bland, S. R.

    1973-01-01

    Experimental and analytical techniques for determining stability parameters for a balloon tethered in a steady wind are described. These techniques are applied to a particular 7.64-meter-long balloon, and the results are presented. The stability parameters of interest appear as coefficients in linearized stability equations and are derived from the various forces and moments acting on the balloon. In several cases the results from the experimental and analytical techniques are compared and suggestions are given as to which techniques are the most practical means of determining values for the stability parameters.

  4. Automated volumetric lung segmentation of thoracic CT images using fully convolutional neural network

    NASA Astrophysics Data System (ADS)

    Negahdar, Mohammadreza; Beymer, David; Syeda-Mahmood, Tanveer

    2018-02-01

    Deep Learning models such as Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance in 2D medical image analysis. In clinical practice; however, most analyzed and acquired medical data are formed of 3D volumes. In this paper, we present a fast and efficient 3D lung segmentation method based on V-net: a purely volumetric fully CNN. Our model is trained on chest CT images through volume to volume learning, which palliates overfitting problem on limited number of annotated training data. Adopting a pre-processing step and training an objective function based on Dice coefficient addresses the imbalance between the number of lung voxels against that of background. We have leveraged Vnet model by using batch normalization for training which enables us to use higher learning rate and accelerates the training of the model. To address the inadequacy of training data and obtain better robustness, we augment the data applying random linear and non-linear transformations. Experimental results on two challenging medical image data show that our proposed method achieved competitive result with a much faster speed.

  5. Assessing vertebral fracture risk on volumetric quantitative computed tomography by geometric characterization of trabecular bone structure

    NASA Astrophysics Data System (ADS)

    Checefsky, Walter A.; Abidin, Anas Z.; Nagarajan, Mahesh B.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2016-03-01

    The current clinical standard for measuring Bone Mineral Density (BMD) is dual X-ray absorptiometry, however more recently BMD derived from volumetric quantitative computed tomography has been shown to demonstrate a high association with spinal fracture susceptibility. In this study, we propose a method of fracture risk assessment using structural properties of trabecular bone in spinal vertebrae. Experimental data was acquired via axial multi-detector CT (MDCT) from 12 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. Common image processing methods were used to annotate the trabecular compartment in the vertebral slices creating a circular region of interest (ROI) that excluded cortical bone for each slice. The pixels inside the ROI were converted to values indicative of BMD. High dimensional geometrical features were derived using the scaling index method (SIM) at different radii and scaling factors (SF). The mean BMD values within the ROI were then extracted and used in conjunction with a support vector machine to predict the failure load of the specimens. Prediction performance was measured using the root-mean-square error (RMSE) metric and determined that SIM combined with mean BMD features (RMSE = 0.82 +/- 0.37) outperformed MDCT-measured mean BMD (RMSE = 1.11 +/- 0.33) (p < 10-4). These results demonstrate that biomechanical strength prediction in vertebrae can be significantly improved through the use of SIM-derived texture features from trabecular bone.

  6. Volumetric brain differences in children with periventricular T2-signal hyperintensities: a grouping by gestational age at birth.

    PubMed

    Panigrahy, A; Barnes, P D; Robertson, R L; Back, S A; Sleeper, L A; Sayre, J W; Kinney, H C; Volpe, J J

    2001-09-01

    The purpose of this study was to compare both the volumes of the lateral ventricles and the cerebral white matter with gestational age at birth of children with periventricular white matter (PVWM) T2-signal hyperintensities on MR images. The spectrum of neuromotor abnormalities associated with these hyperintensities was also determined. We retrospectively reviewed the MR images of 70 patients who were between the ages of 1 and 5 years and whose images showed PVWM T2-signal hyperintensities. The patients were divided into premature (n = 35 children) and term (n = 35) groups depending on their gestational age at birth. Volumetric analysis was performed on four standardized axial sections using T2-weighted images. Volumes of interest were digitized on the basis of gray-scale densities of signal intensities to define the hemispheric cerebral white matter and lateral ventricles. Age-adjusted comparisons of volumetric measurements between the premature and term groups were performed using analysis of covariance. The volume of the cerebral white matter was smaller in the premature group (54 +/- 2 cm(3)) than in the term group (79 +/- 3 cm(3), p < 0.0001). The volume of the lateral ventricles was greater among the patients in the premature group (30 +/- 2 cm(3)) than among those in the term group (13 +/- 1 cm(3), p < 0.0001). Fifty percent of all the premature children had spastic diplegia or quadriplegia. Thirty-two percent of all the term children had hypotonia. There were patients in both groups whose PVWM T2-signal hyperintensities did not correlate with any neuromotor abnormalities but were associated with seizures or developmental delays. The differences in volumetric measurements of cerebral white matter and lateral ventricles in children with PVWM T2-signal hyperintensities are related to their gestational age at birth. Several neurologic motor abnormalities are found in children with such hyperintensities.

  7. Predicting repeat protein folding kinetics from an experimentally determined folding energy landscape

    PubMed Central

    Street, Timothy O; Barrick, Doug

    2009-01-01

    The Notch ankyrin domain is a repeat protein whose folding has been characterized through equilibrium and kinetic measurements. In previous work, equilibrium folding free energies of truncated constructs were used to generate an experimentally determined folding energy landscape (Mello and Barrick, Proc Natl Acad Sci USA 2004;101:14102–14107). Here, this folding energy landscape is used to parameterize a kinetic model in which local transition probabilities between partly folded states are based on energy values from the landscape. The landscape-based model correctly predicts highly diverse experimentally determined folding kinetics of the Notch ankyrin domain and sequence variants. These predictions include monophasic folding and biphasic unfolding, curvature in the unfolding limb of the chevron plot, population of a transient unfolding intermediate, relative folding rates of 19 variants spanning three orders of magnitude, and a change in the folding pathway that results from C-terminal stabilization. These findings indicate that the folding pathway(s) of the Notch ankyrin domain are thermodynamically selected: the primary determinants of kinetic behavior can be simply deduced from the local stability of individual repeats. PMID:19177351

  8. Feasibility study on dosimetry verification of volumetric-modulated arc therapy-based total marrow irradiation.

    PubMed

    Liang, Yun; Kim, Gwe-Ya; Pawlicki, Todd; Mundt, Arno J; Mell, Loren K

    2013-03-04

    The purpose of this study was to develop dosimetry verification procedures for volumetric-modulated arc therapy (VMAT)-based total marrow irradiation (TMI). The VMAT based TMI plans were generated for three patients: one child and two adults. The planning target volume (PTV) was defined as bony skeleton, from head to mid-femur, with a 3 mm margin. The plan strategy similar to published studies was adopted. The PTV was divided into head and neck, chest, and pelvic regions, with separate plans each of which is composed of 2-3 arcs/fields. Multiple isocenters were evenly distributed along the patient's axial direction. The focus of this study is to establish a dosimetry quality assurance procedure involving both two-dimensional (2D) and three-dimensional (3D) volumetric verifications, which is desirable for a large PTV treated with multiple isocenters. The 2D dose verification was performed with film for gamma evaluation and absolute point dose was measured with ion chamber, with attention to the junction between neighboring plans regarding hot/cold spots. The 3D volumetric dose verification used commercial dose reconstruction software to reconstruct dose from electronic portal imaging devices (EPID) images. The gamma evaluation criteria in both 2D and 3D verification were 5% absolute point dose difference and 3 mm of distance to agreement. With film dosimetry, the overall average gamma passing rate was 98.2% and absolute dose difference was 3.9% in junction areas among the test patients; with volumetric portal dosimetry, the corresponding numbers were 90.7% and 2.4%. A dosimetry verification procedure involving both 2D and 3D was developed for VMAT-based TMI. The initial results are encouraging and warrant further investigation in clinical trials.

  9. Empirical determination of collimator scatter data for use in Radcalc commercial monitor unit calculation software: Implication for prostate volumetric modulated-arc therapy calculations.

    PubMed

    Richmond, Neil; Tulip, Rachael; Walker, Chris

    2016-01-01

    The aim of this work was to determine, by measurement and independent monitor unit (MU) check, the optimum method for determining collimator scatter for an Elekta Synergy linac with an Agility multileaf collimator (MLC) within Radcalc, a commercial MU calculation software package. The collimator scatter factors were measured for 13 field shapes defined by an Elekta Agility MLC on a Synergy linac with 6MV photons. The value of the collimator scatter associated with each field was also calculated according to the equation Sc=Sc(mlc)+Sc(corr)(Sc(open)-Sc(mlc)) with Sc(corr) varied between 0 and 1, where Sc(open) is the value of collimator scatter calculated from the rectangular collimator-defined field and Sc(mlc) the value using only the MLC-defined field shape by applying sector integration. From this the optimum value of the correction was determined as that which gives the minimum difference between measured and calculated Sc. Single (simple fluence modulation) and dual-arc (complex fluence modulation) treatment plans were generated on the Monaco system for prostate volumetric modulated-arc therapy (VMAT) delivery. The planned MUs were verified by absolute dose measurement in phantom and by an independent MU calculation. The MU calculations were repeated with values of Sc(corr) between 0 and 1. The values of the correction yielding the minimum MU difference between treatment planning system (TPS) and check MU were established. The empirically derived value of Sc(corr) giving the best fit to the measured collimator scatter factors was 0.49. This figure however was not found to be optimal for either the single- or dual-arc prostate VMAT plans, which required 0.80 and 0.34, respectively, to minimize the differences between the TPS and independent-check MU. Point dose measurement of the VMAT plans demonstrated that the TPS MUs were appropriate for the delivered dose. Although the value of Sc(corr) may be obtained by direct comparison of calculation with measurement

  10. On the precision of experimentally determined protein folding rates and φ-values

    PubMed Central

    De Los Rios, Miguel A.; Muralidhara, B.K.; Wildes, David; Sosnick, Tobin R.; Marqusee, Susan; Wittung-Stafshede, Pernilla; Plaxco, Kevin W.; Ruczinski, Ingo

    2006-01-01

    φ-Values, a relatively direct probe of transition-state structure, are an important benchmark in both experimental and theoretical studies of protein folding. Recently, however, significant controversy has emerged regarding the reliability with which φ-values can be determined experimentally: Because φ is a ratio of differences between experimental observables it is extremely sensitive to errors in those observations when the differences are small. Here we address this issue directly by performing blind, replicate measurements in three laboratories. By monitoring within- and between-laboratory variability, we have determined the precision with which folding rates and φ-values are measured using generally accepted laboratory practices and under conditions typical of our laboratories. We find that, unless the change in free energy associated with the probing mutation is quite large, the precision of φ-values is relatively poor when determined using rates extrapolated to the absence of denaturant. In contrast, when we employ rates estimated at nonzero denaturant concentrations or assume that the slopes of the chevron arms (mf and mu) are invariant upon mutation, the precision of our estimates of φ is significantly improved. Nevertheless, the reproducibility we thus obtain still compares poorly with the confidence intervals typically reported in the literature. This discrepancy appears to arise due to differences in how precision is calculated, the dependence of precision on the number of data points employed in defining a chevron, and interlaboratory sources of variability that may have been largely ignored in the prior literature. PMID:16501226

  11. Volumetric and calorimetric properties of aqueous ionene solutions

    PubMed Central

    Lukšič, Miha; Hribar-Lee, Barbara

    2016-01-01

    The volumetric (partial and apparent molar volumes) and calorimetric properties (apparent heat capacities) of aqueous cationic polyelectrolyte solutions – ionenes – were studied using the oscillating tube densitometer and differential scanning calorimeter. The polyion’s charge density and the counterion properties were considered as variables. The special attention was put to evaluate the contribution of electrostatic and hydrophobic effects to the properties studied. The contribution of the CH2 group of the polyion’s backbone to molar volumes and heat capacities was estimated. Synergistic effect between polyion and counterions was found. PMID:28503012

  12. Numerical and Experimental Investigation of Stratified Gas-Liquid Two-Phase Flow in Horizontal Circular Pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faccini, J.L.H.; Sampaio, P.A.B. de; Su, J.

    This paper reports numerical and experimental investigation of stratified gas-liquid two-phase flow in horizontal circular pipes. The Reynolds averaged Navier Stokes equations (RANS) with the k-{omega} model for a fully developed stratified gas-liquid two-phase flow are solved by using the finite element method. A smooth and horizontal interface surface is assumed without considering the interfacial waves. The continuity of the shear stress across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational formulation. For each given interface position and longitudinal pressure gradient, an inner iteration loop runs to solve the nonlinear equations. Themore » Newton-Raphson scheme is used to solve the transcendental equations by an outer iteration to determine the interface position and pressure gradient for a given pair of volumetric flow rates. The interface position in a 51.2 mm ID circular pipe was measured experimentally by the ultrasonic pulse-echo technique. The numerical results were also compared with experimental results in a 21 mm ID circular pipe reported by Masala [1]. The good agreement between the numerical and experimental results indicates that the k-{omega} model can be applied for the numerical simulation of stratified gas-liquid two-phase flow. (authors)« less

  13. Quantifying spatial and temporal trends in beach-dune volumetric changes using spatial statistics

    NASA Astrophysics Data System (ADS)

    Eamer, Jordan B. R.; Walker, Ian J.

    2013-06-01

    Spatial statistics are generally underutilized in coastal geomorphology, despite offering great potential for identifying and quantifying spatial-temporal trends in landscape morphodynamics. In particular, local Moran's Ii provides a statistical framework for detecting clusters of significant change in an attribute (e.g., surface erosion or deposition) and quantifying how this changes over space and time. This study analyzes and interprets spatial-temporal patterns in sediment volume changes in a beach-foredune-transgressive dune complex following removal of invasive marram grass (Ammophila spp.). Results are derived by detecting significant changes in post-removal repeat DEMs derived from topographic surveys and airborne LiDAR. The study site was separated into discrete, linked geomorphic units (beach, foredune, transgressive dune complex) to facilitate sub-landscape scale analysis of volumetric change and sediment budget responses. Difference surfaces derived from a pixel-subtraction algorithm between interval DEMs and the LiDAR baseline DEM were filtered using the local Moran's Ii method and two different spatial weights (1.5 and 5 m) to detect statistically significant change. Moran's Ii results were compared with those derived from a more spatially uniform statistical method that uses a simpler student's t distribution threshold for change detection. Morphodynamic patterns and volumetric estimates were similar between the uniform geostatistical method and Moran's Ii at a spatial weight of 5 m while the smaller spatial weight (1.5 m) consistently indicated volumetric changes of less magnitude. The larger 5 m spatial weight was most representative of broader site morphodynamics and spatial patterns while the smaller spatial weight provided volumetric changes consistent with field observations. All methods showed foredune deflation immediately following removal with increased sediment volumes into the spring via deposition at the crest and on lobes in the lee

  14. Engineering three-dimensionally electrodeposited Si-on-Ni inverse opal structure for high volumetric capacity Li-ion microbattery anode.

    PubMed

    Liu, Hao; Cho, Hyung-Man; Meng, Ying Shirley; Li, Quan

    2014-06-25

    Aiming at improving the volumetric capacity of nanostructured Li-ion battery anode, an electrodeposited Si-on-Ni inverse opal structure has been proposed in the present work. This type of electrode provides three-dimensional bi-continuous pathways for ion/electron transport and high surface area-to-volume ratios, and thus exhibits lower interfacial resistance, but higher effective Li ions diffusion coefficients, when compared to the Si-on-Ni nanocable array electrode of the same active material mass. As a result, improved volumetric capacities and rate capabilities have been demonstrated in the Si-on-Ni inverse opal anode. We also show that optimization of the volumetric capacities and the rate performance of the inverse opal electrode can be realized by manipulating the pore size of the Ni scaffold and the thickness of the Si deposit.

  15. Primate Brain Anatomy: New Volumetric MRI Measurements for Neuroanatomical Studies.

    PubMed

    Navarrete, Ana F; Blezer, Erwin L A; Pagnotta, Murillo; de Viet, Elizabeth S M; Todorov, Orlin S; Lindenfors, Patrik; Laland, Kevin N; Reader, Simon M

    2018-06-12

    Since the publication of the primate brain volumetric dataset of Stephan and colleagues in the early 1980s, no major new comparative datasets covering multiple brain regions and a large number of primate species have become available. However, technological and other advances in the last two decades, particularly magnetic resonance imaging (MRI) and the creation of institutions devoted to the collection and preservation of rare brain specimens, provide opportunities to rectify this situation. Here, we present a new dataset including brain region volumetric measurements of 39 species, including 20 species not previously available in the literature, with measurements of 16 brain areas. These volumes were extracted from MRI of 46 brains of 38 species from the Netherlands Institute of Neuroscience Primate Brain Bank, scanned at high resolution with a 9.4-T scanner, plus a further 7 donated MRI of 4 primate species. Partial measurements were made on an additional 8 brains of 5 species. We make the dataset and MRI scans available online in the hope that they will be of value to researchers conducting comparative studies of primate evolution. © 2018 S. Karger AG, Basel.

  16. Experimentally determined stiffness and damping of an inherently compensated air squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1975-01-01

    Values of damping and stiffness were determined experimentally for an externally pressurized, inherently compensated, compressible squeeze-film damper up to excitation frequencies of 36,000 cycles per minute. Experimental damping values were higher than theory predicted at low squeeze numbers and less than predicted at high squeeze numbers. Experimental values of air film stiffness were less than theory predicted at low squeeze numbers and much greater at higher squeeze numbers. Results also indicate sufficient damping to attenuate amplitudes and forces at the critical speed when using three dampers in the flexible support system of a small, lightweight turborotor.

  17. 3D Volumetric Strain Modelling of Eruptions at Soufrière Hills Volcano Montserrat

    NASA Astrophysics Data System (ADS)

    Young, N. K.; Gottsmann, J.

    2015-12-01

    Volumetric strain data has captured a number of Vulcanian explosions at Soufrière Hills Volcano, Montserrat, which involve the uppermost part of the magmatic system. We previously used volumetric strain data from during one of these explosions to elucidate the geometry of the shallow plumbing system and crustal mechanics at Montserrat for mechanically plausible depressurisation amplitudes. Our results from both forward and inverse 2D models found that it was necessary to incorporate a mechanically weak shallow crust and mechanically compliant halo of material around the highest part of the SHV magmatic system i.e. the conduit, in order to implement geologically realistic conditions of depressurisation and rock strength. However, this model lacks complexity that cannot be implemented in a 2D environment. Here, in the first study of its kind, we use Finite Element Analysis of volumetric strain data in a 3D domain incorporating topography and mechanical complexities as imaged by seismic and gravimetric data. Our model implements topography from a DEM covering the island and surrounding bathymetry and include the mechanically stiff extinct volcanic cores of the Silver Hills and the Centre Hills. Here we present our preliminary findings from the 3D strain modelling and the effect of the extinct volcanic cores on strain partitioning on Montserrat.

  18. Development of a volumetric projection technique for the digital evaluation of field of view.

    PubMed

    Marshall, Russell; Summerskill, Stephen; Cook, Sharon

    2013-01-01

    Current regulations for field of view requirements in road vehicles are defined by 2D areas projected on the ground plane. This paper discusses the development of a new software-based volumetric field of view projection tool and its implementation within an existing digital human modelling system. In addition, the exploitation of this new tool is highlighted through its use in a UK Department for Transport funded research project exploring the current concerns with driver vision. Focusing specifically on rearwards visibility in small and medium passenger vehicles, the volumetric approach is shown to provide a number of distinct advantages. The ability to explore multiple projections of both direct vision (through windows) and indirect vision (through mirrors) provides a greater understanding of the field of view environment afforded to the driver whilst still maintaining compatibility with the 2D projections of the regulatory standards. Field of view requirements for drivers of road vehicles are defined by simplified 2D areas projected onto the ground plane. However, driver vision is a complex 3D problem. This paper presents the development of a new software-based 3D volumetric projection technique and its implementation in the evaluation of driver vision in small- and medium-sized passenger vehicles.

  19. Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School

    ERIC Educational Resources Information Center

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…

  20. Experimental determination of airplane mass and inertial characteristics

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1974-01-01

    Current practices are evaluated for experimentally determining airplane center of gravity, moments of inertia, and products of inertia. The techniques discussed are applicable to bodies other than airplanes. In pitching- and rolling-moment-of-inertia investigations with the airplane mounted on and pivoted about knife edges, the nonlinear spring moments that occur at large amplitudes of oscillation can be eliminated by using the proper spring configuration. The single-point suspension double-pendulum technique for obtaining yawing moments of inertia, products of inertia, and the inclination of the principal axis provides accurate results from yaw-mode oscillation data, provided that the sway-mode effects are minimized by proper suspension rig design. Rocking-mode effects in the data can be isolated.

  1. Assessing the Effects of Software Platforms on Volumetric Segmentation of Glioblastoma

    PubMed Central

    Dunn, William D.; Aerts, Hugo J.W.L.; Cooper, Lee A.; Holder, Chad A.; Hwang, Scott N.; Jaffe, Carle C.; Brat, Daniel J.; Jain, Rajan; Flanders, Adam E.; Zinn, Pascal O.; Colen, Rivka R.; Gutman, David A.

    2017-01-01

    Background Radiological assessments of biologically relevant regions in glioblastoma have been associated with genotypic characteristics, implying a potential role in personalized medicine. Here, we assess the reproducibility and association with survival of two volumetric segmentation platforms and explore how methodology could impact subsequent interpretation and analysis. Methods Post-contrast T1- and T2-weighted FLAIR MR images of 67 TCGA patients were segmented into five distinct compartments (necrosis, contrast-enhancement, FLAIR, post contrast abnormal, and total abnormal tumor volumes) by two quantitative image segmentation platforms - 3D Slicer and a method based on Velocity AI and FSL. We investigated the internal consistency of each platform by correlation statistics, association with survival, and concordance with consensus neuroradiologist ratings using ordinal logistic regression. Results We found high correlations between the two platforms for FLAIR, post contrast abnormal, and total abnormal tumor volumes (spearman’s r(67) = 0.952, 0.959, and 0.969 respectively). Only modest agreement was observed for necrosis and contrast-enhancement volumes (r(67) = 0.693 and 0.773 respectively), likely arising from differences in manual and automated segmentation methods of these regions by 3D Slicer and Velocity AI/FSL, respectively. Survival analysis based on AUC revealed significant predictive power of both platforms for the following volumes: contrast-enhancement, post contrast abnormal, and total abnormal tumor volumes. Finally, ordinal logistic regression demonstrated correspondence to manual ratings for several features. Conclusion Tumor volume measurements from both volumetric platforms produced highly concordant and reproducible estimates across platforms for general features. As automated or semi-automated volumetric measurements replace manual linear or area measurements, it will become increasingly important to keep in mind that measurement

  2. Prognostic value of (18)F-FDG PET/CT volumetric parameters in recurrent epithelial ovarian cancer.

    PubMed

    Mayoral, M; Fernandez-Martinez, A; Vidal, L; Fuster, D; Aya, F; Pavia, J; Pons, F; Lomeña, F; Paredes, P

    2016-01-01

    Metabolic tumour volume (MTV) and total lesion glycolysis (TLG) from (18)F-FDG PET/CT are emerging prognostic biomarkers in various solid neoplasms. These volumetric parameters and the SUVmax have shown to be useful criteria for disease prognostication in preoperative and post-treatment epithelial ovarian cancer (EOC) patients. The purpose of this study was to evaluate the utility of (18)F-FDG PET/CT measurements to predict survival in patients with recurrent EOC. Twenty-six patients with EOC who underwent a total of 31 (18)F-FDG PET/CT studies for suspected recurrence were retrospectively included. SUVmax and volumetric parameters whole-body MTV (wbMTV) and whole-body TLG (wbTLG) with a threshold of 40% and 50% of the SUVmax were obtained. Correlation between PET parameters and progression-free survival (PFS) and the survival analysis of prognostic factors were calculated. Serous cancer was the most common histological subtype (76.9%). The median PFS was 12.5 months (range 10.7-20.6 months). Volumetric parameters showed moderate inverse correlation with PFS but there was no significant correlation in the case of SUVmax. The correlation was stronger for first recurrences. By Kaplan-Meier analysis and log-rank test, wbMTV 40%, wbMTV 50% and wbTLG 50% correlated with PFS. However, SUVmax and wbTLG 40% were not statistically significant predictors for PFS. Volumetric parameters wbMTV and wbTLG 50% measured by (18)F-FDG PET/CT appear to be useful prognostic predictors of outcome and may provide valuable information to individualize treatment strategies in patients with recurrent EOC. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  3. Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Kishore, Sandeep; Nasenbeny, Jordan; McLean, David L.; Kozorovitskiy, Yevgenia

    2018-05-01

    Versatile, sterically accessible imaging systems capable of in vivo rapid volumetric functional and structural imaging deep in the brain continue to be a limiting factor in neuroscience research. Towards overcoming this obstacle, we present integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy which uses a single front-facing microscope objective to provide light-sheet scanning based rapid volumetric imaging capability at subcellular resolution. Our planar scan-mirror based optimized light-sheet architecture allows for non-distorted scanning of volume samples, simplifying accurate reconstruction of the imaged volume. Integration of both one-photon (1P) and two-photon (2P) light-sheet microscopy in the same system allows for easy selection between rapid volumetric imaging and higher resolution imaging in scattering media. Using SOPi, we demonstrate deep, large volume imaging capability inside scattering mouse brain sections and rapid imaging speeds up to 10 volumes per second in zebrafish larvae expressing genetically encoded fluorescent proteins GFP or GCaMP6s. SOPi flexibility and steric access makes it adaptable for numerous imaging applications and broadly compatible with orthogonal techniques for actuating or interrogating neuronal structure and activity.

  4. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhe; Raj, Devaraj Vasanth; Zhou, Xufeng; Liu, Zhaoping

    2018-04-01

    Graphene-based electrode materials for supercapacitors usually suffer from poor volumetric performance due to the low density. The enhancement of volumetric capacitance by densification of graphene materials, however, is usually accompanied by deterioration of rate capability, as the huge contraction of pore size hinders rapid diffusion of electrolytes. Thus, it is important to develop suitable pore size in graphene materials, which can sustain fast ion diffusion and avoid excessive voids to acquire high density simultaneously for supercapacitor applications. Accordingly, we propose a simple solvent evaporation method to control the pore size of graphene powders by adjusting the surface tension of solvents. Ethanol is used instead of water to reduce the shrinkage degree of graphene powder during solvent evaporation process, due to its lower surface tension comparing with water. Followed by the assistance of mechanical compression, graphene powder having high compaction density of 1.30 g cm-3 and a large proportion of mesopores in the pore size range of 2-30 nm is obtained, which delivers high volumetric capacitance of 162 F cm-3 and exhibits outstanding rate performance of 76% capacity retention at a high current density of 100 A g-1 simultaneously.

  5. Multimodal molecular 3D imaging for the tumoral volumetric distribution assessment of folate-based biosensors.

    PubMed

    Ramírez-Nava, Gerardo J; Santos-Cuevas, Clara L; Chairez, Isaac; Aranda-Lara, Liliana

    2017-12-01

    The aim of this study was to characterize the in vivo volumetric distribution of three folate-based biosensors by different imaging modalities (X-ray, fluorescence, Cerenkov luminescence, and radioisotopic imaging) through the development of a tridimensional image reconstruction algorithm. The preclinical and multimodal Xtreme imaging system, with a Multimodal Animal Rotation System (MARS), was used to acquire bidimensional images, which were processed to obtain the tridimensional reconstruction. Images of mice at different times (biosensor distribution) were simultaneously obtained from the four imaging modalities. The filtered back projection and inverse Radon transformation were used as main image-processing techniques. The algorithm developed in Matlab was able to calculate the volumetric profiles of 99m Tc-Folate-Bombesin (radioisotopic image), 177 Lu-Folate-Bombesin (Cerenkov image), and FolateRSense™ 680 (fluorescence image) in tumors and kidneys of mice, and no significant differences were detected in the volumetric quantifications among measurement techniques. The imaging tridimensional reconstruction algorithm can be easily extrapolated to different 2D acquisition-type images. This characteristic flexibility of the algorithm developed in this study is a remarkable advantage in comparison to similar reconstruction methods.

  6. Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging.

    PubMed

    Kumar, Manish; Kishore, Sandeep; Nasenbeny, Jordan; McLean, David L; Kozorovitskiy, Yevgenia

    2018-05-14

    Versatile, sterically accessible imaging systems capable of in vivo rapid volumetric functional and structural imaging deep in the brain continue to be a limiting factor in neuroscience research. Towards overcoming this obstacle, we present integrated one- and two-photon scanned oblique plane illumination (SOPi, /sōpī/) microscopy which uses a single front-facing microscope objective to provide light-sheet scanning based rapid volumetric imaging capability at subcellular resolution. Our planar scan-mirror based optimized light-sheet architecture allows for non-distorted scanning of volume samples, simplifying accurate reconstruction of the imaged volume. Integration of both one-photon (1P) and two-photon (2P) light-sheet microscopy in the same system allows for easy selection between rapid volumetric imaging and higher resolution imaging in scattering media. Using SOPi, we demonstrate deep, large volume imaging capability inside scattering mouse brain sections and rapid imaging speeds up to 10 volumes per second in zebrafish larvae expressing genetically encoded fluorescent proteins GFP or GCaMP6s. SOPi's flexibility and steric access makes it adaptable for numerous imaging applications and broadly compatible with orthogonal techniques for actuating or interrogating neuronal structure and activity.

  7. Relating Linear and Volumetric Variables Through Body Scanning to Improve Human Interfaces in Space

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Ferrer, Mike A.; Young, Karen S.; Rajulu, Sudhakar

    2010-01-01

    Designing space suits and vehicles for the diverse human population present unique challenges for the methods of traditional anthropometry. Space suits are bulky and allow the operator to shift position within the suit and inhibit the ability to identify body landmarks. Limited suit sizing options also cause variability in fit and performance between similarly sized individuals. Space vehicles are restrictive in volume in both the fit and the ability to collect data. NASA's Anthropometric and Biomechanics Facility (ABF) has utilized 3D scanning to shift from traditional linear anthropometry to explore and examine volumetric capabilities to provide anthropometric solutions for design. Overall, the key goals are to improve the human-system performance and develop new processes to aid in the design and evaluation of space systems. Four case studies are presented that illustrate the shift from purely linear analyses to an augmented volumetric toolset to predict and analyze the human within the space suit and vehicle. The first case study involves the calculation of maximal head volume to estimate total free volume in the helmet for proper air exchange. Traditional linear measurements resulted in an inaccurate representation of the head shape, yet limited data exists for the determination of a large head volume. Steps were first taken to identify and classify a maximum head volume and the resulting comparisons to the estimate are presented in this paper. This study illustrates the gap between linear components of anthropometry and the need for overall volume metrics in order to provide solutions. A second case study examines the overlay of the space suit scans and components onto scanned individuals to quantify fit and clearance to aid in sizing the suit to the individual. Restrictions in space suit size availability present unique challenges to optimally fit the individual within a limited sizing range while maintaining performance. Quantification of the clearance and

  8. Quantitative volumetric imaging of normal, neoplastic and hyperplastic mouse prostate using ultrasound.

    PubMed

    Singh, Shalini; Pan, Chunliu; Wood, Ronald; Yeh, Chiuan-Ren; Yeh, Shuyuan; Sha, Kai; Krolewski, John J; Nastiuk, Kent L

    2015-09-21

    Genetically engineered mouse models are essential to the investigation of the molecular mechanisms underlying human prostate pathology and the effects of therapy on the diseased prostate. Serial in vivo volumetric imaging expands the scope and accuracy of experimental investigations of models of normal prostate physiology, benign prostatic hyperplasia and prostate cancer, which are otherwise limited by the anatomy of the mouse prostate. Moreover, accurate imaging of hyperplastic and tumorigenic prostates is now recognized as essential to rigorous pre-clinical trials of new therapies. Bioluminescent imaging has been widely used to determine prostate tumor size, but is semi-quantitative at best. Magnetic resonance imaging can determine prostate volume very accurately, but is expensive and has low throughput. We therefore sought to develop and implement a high throughput, low cost, and accurate serial imaging protocol for the mouse prostate. We developed a high frequency ultrasound imaging technique employing 3D reconstruction that allows rapid and precise assessment of mouse prostate volume. Wild-type mouse prostates were examined (n = 4) for reproducible baseline imaging, and treatment effects on volume were compared, and blinded data analyzed for intra- and inter-operator assessments of reproducibility by correlation and for Bland-Altman analysis. Examples of benign prostatic hyperplasia mouse model prostate (n = 2) and mouse prostate implantation of orthotopic human prostate cancer tumor and its growth (n =  ) are also demonstrated. Serial measurement volume of the mouse prostate revealed that high frequency ultrasound was very precise. Following endocrine manipulation, regression and regrowth of the prostate could be monitored with very low intra- and interobserver variability. This technique was also valuable to monitor the development of prostate growth in a model of benign prostatic hyperplasia. Additionally, we demonstrate accurate ultrasound image

  9. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.

    PubMed

    Li, Ruijiang; Jia, Xun; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-06-01

    To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s). The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.

  10. Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil - ongoing activities in Working Project 2.5 of COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Slob, Evert

    2015-04-01

    This work will endeavour to review the current status of research activities carried out in Working Project 2.5 'Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil' within the framework of Working Group 2 'GPR surveying of pavements, bridges, tunnels and buildings; underground utility and void sensing' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). Overall, the Project includes 55 Participants from over 21 countries representing 33 Institutions. By considering the type of Institution, a percentage of 64% (35 units) comes from the academic world, while Research Centres and Companies include, respectively, the 27% (15 units) and 9% (5 units) of Institutions. Geographically speaking, Europe is the continent most represented with 18 out of 21 countries, followed by Africa (2 countries) and Asia (1 country). In more details and according to the Europe sub-regions classification provided by the United Nations, Southern Europe includes 39% of countries, Western Europe 27%, while Northern and Eastern Europe are equally present with 17% of countries each. Relying on the main purpose of Working Project 2.5, namely, the ground-penetrating radar-based evaluation of volumetric water content in structures, substructures , foundations, and soils, four main issues have been overall addressed over the first two years of activities. The first one, has been related to provide a comprehensive state of the art on the topic, due to the wide-ranging applications covered in the main disciplines of civil engineering, differently demanding. In this regard, two main publications reviewing the state of the art have been produced [1,2]. Secondly, discussions among Working Group Chairs and other Working Project Leaders have been undertaken and encouraged to avoid the risk of overlapping amongst similar topics from other Working

  11. Very high frame rate volumetric integration of depth images on mobile devices.

    PubMed

    Kähler, Olaf; Adrian Prisacariu, Victor; Yuheng Ren, Carl; Sun, Xin; Torr, Philip; Murray, David

    2015-11-01

    Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan XGPU, or even beyond 1.1 kHz without visualisation.

  12. Digital Breast Tomosynthesis guided Near Infrared Spectroscopy: Volumetric estimates of fibroglandular fraction and breast density from tomosynthesis reconstructions

    PubMed Central

    Vedantham, Srinivasan; Shi, Linxi; Michaelsen, Kelly E.; Krishnaswamy, Venkataramanan; Pogue, Brian W.; Poplack, Steven P.; Karellas, Andrew; Paulsen, Keith D.

    2016-01-01

    A multimodality system combining a clinical prototype digital breast tomosynthesis with its imaging geometry modified to facilitate near-infrared spectroscopic imaging has been developed. The accuracy of parameters recovered from near-infrared spectroscopy is dependent on fibroglandular tissue content. Hence, in this study, volumetric estimates of fibroglandular tissue from tomosynthesis reconstructions were determined. A kernel-based fuzzy c-means algorithm was implemented to segment tomosynthesis reconstructed slices in order to estimate fibroglandular content and to provide anatomic priors for near-infrared spectroscopy. This algorithm was used to determine volumetric breast density (VBD), defined as the ratio of fibroglandular tissue volume to the total breast volume, expressed as percentage, from 62 tomosynthesis reconstructions of 34 study participants. For a subset of study participants who subsequently underwent mammography, VBD from mammography matched for subject, breast laterality and mammographic view was quantified using commercial software and statistically analyzed to determine if it differed from tomosynthesis. Summary statistics of the VBD from all study participants were compared with prior independent studies. The fibroglandular volume from tomosynthesis and mammography were not statistically different (p=0.211, paired t-test). After accounting for the compressed breast thickness, which were different between tomosynthesis and mammography, the VBD from tomosynthesis was correlated with (r =0.809, p<0.001), did not statistically differ from (p>0.99, paired t-test), and was linearly related to, the VBD from mammography. Summary statistics of the VBD from tomosynthesis were not statistically different from prior studies using high-resolution dedicated breast computed tomography. The observation of correlation and linear association in VBD between mammography and tomosynthesis suggests that breast density associated risk measures determined for

  13. Antioxidant Capacity: Experimental Determination by EPR Spectroscopy and Mathematical Modeling.

    PubMed

    Polak, Justyna; Bartoszek, Mariola; Chorążewski, Mirosław

    2015-07-22

    A new method of determining antioxidant capacity based on a mathematical model is presented in this paper. The model was fitted to 1000 data points of electron paramagnetic resonance (EPR) spectroscopy measurements of various food product samples such as tea, wine, juice, and herbs with Trolox equivalent antioxidant capacity (TEAC) values from 20 to 2000 μmol TE/100 mL. The proposed mathematical equation allows for a determination of TEAC of food products based on a single EPR spectroscopy measurement. The model was tested on the basis of 80 EPR spectroscopy measurements of herbs, tea, coffee, and juice samples. The proposed model works for both strong and weak antioxidants (TEAC values from 21 to 2347 μmol TE/100 mL). The determination coefficient between TEAC values obtained experimentally and TEAC values calculated with proposed mathematical equation was found to be R(2) = 0.98. Therefore, the proposed new method of TEAC determination based on a mathematical model is a good alternative to the standard EPR method due to its being fast, accurate, inexpensive, and simple to perform.

  14. Spirometry and volumetric capnography in lung function assessment of obese and normal-weight individuals without asthma.

    PubMed

    Ferreira, Mariana S; Mendes, Roberto T; Marson, Fernando A L; Zambon, Mariana P; Antonio, Maria A R G M; Paschoal, Ilma A; Toro, Adyléia A D C; Severino, Silvana D; Ribeiro, Maria A G O; Ribeiro, José D

    To analyze and compare lung function of obese and healthy, normal-weight children and adolescents, without asthma, through spirometry and volumetric capnography. Cross-sectional study including 77 subjects (38 obese) aged 5-17 years. All subjects underwent spirometry and volumetric capnography. The evaluations were repeated in obese subjects after the use of a bronchodilator. At the spirometry assessment, obese individuals, when compared with the control group, showed lower values of forced expiratory volume in the first second by forced vital capacity (FEV 1 /FVC) and expiratory flows at 75% and between 25 and 75% of the FVC (p<0.05). Volumetric capnography showed that obese individuals had a higher volume of produced carbon dioxide and alveolar tidal volume (p<0.05). Additionally, the associations between dead space volume and tidal volume, as well as phase-3 slope normalized by tidal volume, were lower in healthy subjects (p<0.05). These data suggest that obesity does not alter ventilation homogeneity, but flow homogeneity. After subdividing the groups by age, a greater difference in lung function was observed in obese and healthy individuals aged >11 years (p<0.05). Even without the diagnosis of asthma by clinical criteria and without response to bronchodilator use, obese individuals showed lower FEV 1 /FVC values and forced expiratory flow, indicating the presence of an obstructive process. Volumetric capnography showed that obese individuals had higher alveolar tidal volume, with no alterations in ventilation homogeneity, suggesting flow alterations, without affecting lung volumes. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  15. Dosimetric analysis of testicular doses in prostate intensity-modulated and volumetric-modulated arc radiation therapy at different energy levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onal, Cem, E-mail: hcemonal@hotmail.com; Arslan, Gungor; Dolek, Yemliha

    2016-01-01

    The aim of this study is to evaluate the incidental testicular doses during prostate radiation therapy with intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) at different energies. Dosimetric data of 15 patients with intermediate-risk prostate cancer who were treated with radiotherapy were analyzed. The prescribed dose was 78 Gy in 39 fractions. Dosimetric analysis compared testicular doses generated by 7-field intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy with a single arc at 6, 10, and 15 MV energy levels. Testicular doses calculated from the treatment planning system and doses measured from the detectors were analyzed. Mean testicular doses from themore » intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy per fraction calculated in the treatment planning system were 16.3 ± 10.3 cGy vs 21.5 ± 11.2 cGy (p = 0.03) at 6 MV, 13.4 ± 10.4 cGy vs 17.8 ± 10.7 cGy (p = 0.04) at 10 MV, and 10.6 ± 8.5 cGy vs 14.5 ± 8.6 cGy (p = 0.03) at 15 MV, respectively. Mean scattered testicular doses in the phantom measurements were 99.5 ± 17.2 cGy, 118.7 ± 16.4 cGy, and 193.9 ± 14.5 cGy at 6, 10, and 15 MV, respectively, in the intensity-modulated radiotherapy plans. In the volumetric-modulated arc radiotherapy plans, corresponding testicular doses per course were 90.4 ± 16.3 cGy, 103.6 ± 16.4 cGy, and 139.3 ± 14.6 cGy at 6, 10, and 15 MV, respectively. In conclusions, this study was the first to measure the incidental testicular doses by intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy plans at different energy levels during prostate-only irradiation. Higher photon energy and volumetric-modulated arc radiotherapy plans resulted in higher incidental testicular doses compared with lower photon energy and intensity-modulated radiotherapy plans.« less

  16. The volumetric flux through Deception Pass, Washington and its effects on the circulation in the Whidbey Basin.

    NASA Astrophysics Data System (ADS)

    Heinze, K. R.

    2002-05-01

    The volumetric flux through Deception Pass, Washington will be determined by using tidal height differences between Bowman and Cornet Bays, which are located on the seaward and landward sides of Deception Pass respectively in Deception Pass State Park. Hydrolab sensors for measuring temperature, salinity and fluid depth will be attached to public boat docks in each of these bays. The numerical Puget Sound Regional Synthesis Model, PRISM, will be run with and without the flux through Deception Pass and compared to determine theoretically whether or not the flow through Deception Pass plays a significant role in the circulation of the Whidbey Basin, which could affect the circulation in the northern part of the Main Basin known as the Triple Junction. This could influence water movement near the new sewer outfall that King County is proposing to build in that area.

  17. The experimental determination of the moments of inertia of airplanes

    NASA Technical Reports Server (NTRS)

    Soule, Hartley A; Miller, Marvel P

    1934-01-01

    The application of the pendulum method to the experimental determination of the moments of inertia of airplanes is discussed in this report. Particular reference is made to the effects of the air, in which the airplane is immersed, on the swinging tests and to the procedure by which these effects are taken into account. This procedure has been used for some time, and the data on several airplanes for which the moments of inertia have been found are included.

  18. New method for determining heats of combustion of gaseous hydrocarbons

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Sprinkle, D. R.; Puster, R. L.

    1985-01-01

    As a spin off of a system developed for monitoring and controlling the oxygen concentration in the Langley 8-foot High Temperature Tunnel, a highly accurate on-line technique was developed for determining heats of combustion of natural gas samples. It is based on measuring the ratio m/n, where m is the (volumetric) flowrate of oxygen required to enrich the carrier air in which the test gas flowing at the rate n is burned, such that the mole fraction of oxygen in the combustion product gases equals that in the carrier air. The m/n ratio is directly related to the heats of combustion of the saturated hydrocarbons present in the natural gas. A measurement of the m/n ratio for the test gas can provide a direct means of determination of its heat of combustion by using the calibration graph relating the m/n values for pure saturated hydrocarbons with their heats of combustion. The accuracy of the technique is determine solely by the accuracy with which the flowrates m and n can be measured and is of the order of 2 percent in the present study. The theoretical principles and experimental results are discussed.

  19. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME II: APPENDICES A-E

    EPA Science Inventory

    The program of experiments conducted at Griffiss Air Force Base was devised to expand the understanding of large underground storage tank behavior as it impacts the performance of volumetric leak detection testing. The report addresses three important questions about testing the ...

  20. Theoretical and experimental determination of K - and L -shell x-ray relaxation parameters in Ni

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Sampaio, J. M.; Parente, F.; Indelicato, P.; Hönicke, P.; Müller, M.; Beckhoff, B.; Marques, J. P.; Santos, J. P.

    2018-04-01

    Fluorescence yields (FY) for the Ni K and L shells were determined by a theoretical and an experimental group within the framework of the International Initiative on X-ray Fundamental Parameters (FPs) collaboration. Coster-Kronig (CK) parameters were also measured for the L shell of Ni. Theoretical calculations of the same parameters were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental values for the FY and CK were determined at the PTB laboratory in the synchrotron radiation facility BESSY II, Berlin, Germany, and are compared to the corresponding calculated values.

  1. Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances

    NASA Astrophysics Data System (ADS)

    Nam, Donghyeon; Heo, Yeongbeom; Cheong, Sanghyuk; Ko, Yongmin; Cho, Jinhan

    2018-05-01

    We introduce high-performance supercapacitor electrodes with ternary components prepared from consecutive amphiphilic ligand-exchange-based layer-by-layer (LbL) assembly among amine-functionalized multi-walled carbon nanotubes (NH2-MWCNTs) in alcohol, oleic acid-stabilized Fe3O4 nanoparticles (OA-Fe3O4 NPs) in toluene, and semiconducting polymers (PEDOT:PSS) in water. The periodic insertion of semiconducting polymers within the (OA-Fe3O4 NP/NH2-MWCNT)n multilayer-coated indium tin oxide (ITO) electrode enhanced the volumetric and areal capacitances up to 408 ± 4 F cm-3 and 8.79 ± 0.06 mF cm-2 at 5 mV s-1, respectively, allowing excellent cycling stability (98.8% of the initial capacitance after 5000 cycles) and good rate capability. These values were higher than those of the OA-Fe3O4 NP/NH2-MWCNT multilayered electrode without semiconducting polymer linkers (volumetric capacitance ∼241 ± 4 F cm-3 and areal capacitance ∼1.95 ± 0.03 mF cm-2) at the same scan rate. Furthermore, when the asymmetric supercapacitor cells (ASCs) were prepared using OA-Fe3O4 NP- and OA-MnO NP-based ternary component electrodes, they displayed high volumetric energy (0.36 mW h cm-3) and power densities (820 mW cm-3).

  2. Fetal brain volumetry through MRI volumetric reconstruction and segmentation

    PubMed Central

    Estroff, Judy A.; Barnewolt, Carol E.; Connolly, Susan A.; Warfield, Simon K.

    2013-01-01

    Purpose Fetal MRI volumetry is a useful technique but it is limited by a dependency upon motion-free scans, tedious manual segmentation, and spatial inaccuracy due to thick-slice scans. An image processing pipeline that addresses these limitations was developed and tested. Materials and methods The principal sequences acquired in fetal MRI clinical practice are multiple orthogonal single-shot fast spin echo scans. State-of-the-art image processing techniques were used for inter-slice motion correction and super-resolution reconstruction of high-resolution volumetric images from these scans. The reconstructed volume images were processed with intensity non-uniformity correction and the fetal brain extracted by using supervised automated segmentation. Results Reconstruction, segmentation and volumetry of the fetal brains for a cohort of twenty-five clinically acquired fetal MRI scans was done. Performance metrics for volume reconstruction, segmentation and volumetry were determined by comparing to manual tracings in five randomly chosen cases. Finally, analysis of the fetal brain and parenchymal volumes was performed based on the gestational age of the fetuses. Conclusion The image processing pipeline developed in this study enables volume rendering and accurate fetal brain volumetry by addressing the limitations of current volumetry techniques, which include dependency on motion-free scans, manual segmentation, and inaccurate thick-slice interpolation. PMID:20625848

  3. Normative biometrics for fetal ocular growth using volumetric MRI reconstruction.

    PubMed

    Velasco-Annis, Clemente; Gholipour, Ali; Afacan, Onur; Prabhu, Sanjay P; Estroff, Judy A; Warfield, Simon K

    2015-04-01

    To determine normative ranges for fetal ocular biometrics between 19 and 38 weeks gestational age (GA) using volumetric MRI reconstruction. The 3D images of 114 healthy fetuses between 19 and 38 weeks GA were created using super-resolution volume reconstructions from MRI slice acquisitions. These 3D images were semi-automatically segmented to measure fetal orbit volume, binocular distance (BOD), interocular distance (IOD), and ocular diameter (OD). All biometry correlated with GA (Volume, Pearson's correlation coefficient (CC) = 0.9680; BOD, CC = 0.9552; OD, CC = 0.9445; and IOD, CC = 0.8429), and growth curves were plotted against linear and quadratic growth models. Regression analysis showed quadratic models to best fit BOD, IOD, and OD and a linear model to best fit volume. Orbital volume had the greatest correlation with GA, although BOD and OD also showed strong correlation. The normative data found in this study may be helpful for the detection of congenital fetal anomalies with more consistent measurements than are currently available. © 2015 John Wiley & Sons, Ltd. © 2015 John Wiley & Sons, Ltd.

  4. Inverse modeling of InSAR and ground leveling data for 3D volumetric strain distribution

    NASA Astrophysics Data System (ADS)

    Gallardo, L. A.; Glowacka, E.; Sarychikhina, O.

    2015-12-01

    Wide availability of modern Interferometric Synthetic aperture Radar (InSAR) data have made possible the extensive observation of differential surface displacements and are becoming an efficient tool for the detailed monitoring of terrain subsidence associated to reservoir dynamics, volcanic deformation and active tectonism. Unfortunately, this increasing popularity has not been matched by the availability of automated codes to estimate underground deformation, since many of them still rely on trial-error subsurface model building strategies. We posit that an efficient algorithm for the volumetric modeling of differential surface displacements should match the availability of current leveling and InSAR data and have developed an algorithm for the joint inversion of ground leveling and dInSAR data in 3D. We assume the ground displacements are originated by a stress free-volume strain distribution in a homogeneous elastic media and determined the displacement field associated to an ensemble of rectangular prisms. This formulation is then used to develop a 3D conjugate gradient inversion code that searches for the three-dimensional distribution of the volumetric strains that predict InSAR and leveling surface displacements simultaneously. The algorithm is regularized applying discontinuos first and zero order Thikonov constraints. For efficiency, the resulting computational code takes advantage of the resulting convolution integral associated to the deformation field and some basic tools for multithreading parallelization. We extensively test our algorithm on leveling and InSAR test and field data of the Northwest of Mexico and compare to some feasible geological scenarios of underground deformation.

  5. Toward building an anatomically correct solid eye model with volumetric representation of retinal morphology

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Rowe, T. Scott; Fuller, Alfred R.; Hamann, Bernd; Werner, John S.

    2010-02-01

    An accurate solid eye model (with volumetric retinal morphology) has many applications in the field of ophthalmology, including evaluation of ophthalmic instruments and optometry/ophthalmology training. We present a method that uses volumetric OCT retinal data sets to produce an anatomically correct representation of three-dimensional (3D) retinal layers. This information is exported to a laser scan system to re-create it within solid eye retinal morphology of the eye used in OCT testing. The solid optical model eye is constructed from PMMA acrylic, with equivalent optical power to that of the human eye (~58D). Additionally we tested a water bath eye model from Eyetech Ltd. with a customized retina consisting of five layers of ~60 μm thick biaxial polypropylene film and hot melt rubber adhesive.

  6. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Xie, Xiaoying; Lv, Wei; Tang, Dai-Ming; Kong, Debin; Huang, Zhenghong; Nishihara, Hirotomo; Ishii, Takafumi; Li, Baohua; Golberg, Dmitri; Kang, Feiyu; Kyotani, Takashi; Yang, Quan-Hong

    2013-10-01

    A small volumetric capacitance resulting from a low packing density is one of the major limitations for novel nanocarbons finding real applications in commercial electrochemical energy storage devices. Here we report a carbon with a density of 1.58 g cm-3, 70% of the density of graphite, constructed of compactly interlinked graphene nanosheets, which is produced by an evaporation-induced drying of a graphene hydrogel. Such a carbon balances two seemingly incompatible characteristics: a porous microstructure and a high density, and therefore has a volumetric capacitance for electrochemical capacitors (ECs) up to 376 F cm-3, which is the highest value so far reported for carbon materials in an aqueous electrolyte. More promising, the carbon is conductive and moldable, and thus could be used directly as a well-shaped electrode sheet for the assembly of a supercapacitor device free of any additives, resulting in device-level high energy density ECs.

  7. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors.

    PubMed

    Tao, Ying; Xie, Xiaoying; Lv, Wei; Tang, Dai-Ming; Kong, Debin; Huang, Zhenghong; Nishihara, Hirotomo; Ishii, Takafumi; Li, Baohua; Golberg, Dmitri; Kang, Feiyu; Kyotani, Takashi; Yang, Quan-Hong

    2013-10-17

    A small volumetric capacitance resulting from a low packing density is one of the major limitations for novel nanocarbons finding real applications in commercial electrochemical energy storage devices. Here we report a carbon with a density of 1.58 g cm(-3), 70% of the density of graphite, constructed of compactly interlinked graphene nanosheets, which is produced by an evaporation-induced drying of a graphene hydrogel. Such a carbon balances two seemingly incompatible characteristics: a porous microstructure and a high density, and therefore has a volumetric capacitance for electrochemical capacitors (ECs) up to 376 F cm(-3), which is the highest value so far reported for carbon materials in an aqueous electrolyte. More promising, the carbon is conductive and moldable, and thus could be used directly as a well-shaped electrode sheet for the assembly of a supercapacitor device free of any additives, resulting in device-level high energy density ECs.

  8. Numerical evaluation of an innovative cup layout for open volumetric solar air receivers

    NASA Astrophysics Data System (ADS)

    Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz

    2016-05-01

    This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.

  9. Predictive Utility of Marketed Volumetric Software Tools in Subjects at Risk for Alzheimer's: Do Regions Outside the Hippocampus Matter?

    PubMed Central

    Tanpitukpongse, Teerath P.; Mazurowski, Maciej A.; Ikhena, John; Petrella, Jeffrey R.

    2016-01-01

    Background and Purpose To assess prognostic efficacy of individual versus combined regional volumetrics in two commercially-available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer's disease. Materials and Methods Data was obtained through the Alzheimer's Disease Neuroimaging Initiative. 192 subjects (mean age 74.8 years, 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1WI MRI sequences at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant® and Neuroreader™. Receiver operating characteristic curves assessing the prognostic efficacy of each software package were generated using a univariable approach employing individual regional brain volumes, as well as two multivariable approaches (multiple regression and random forest), combining multiple volumes. Results On univariable analysis of 11 NeuroQuant® and 11 Neuroreader™ regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69 NeuroQuant®, 0.68 Neuroreader™), and was not significantly different (p > 0.05) between packages. Multivariable analysis did not increase the area under the curve for either package (0.63 logistic regression, 0.60 random forest NeuroQuant®; 0.65 logistic regression, 0.62 random forest Neuroreader™). Conclusion Of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer's disease at 3-year follow-up. Combining volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in MCI, combining such tools with demographic and other biomarker measures, are justified in using hippocampal volume as the only volumetric biomarker. PMID:28057634

  10. Volumetric display containing multiple two-dimensional color motion pictures

    NASA Astrophysics Data System (ADS)

    Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.

    2014-06-01

    We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.

  11. Volumetric Optical Frequency Domain Imaging of Pulmonary Pathology With Precise Correlation to Histopathology

    PubMed Central

    Hariri, Lida P.; Applegate, Matthew B.; Mino-Kenudson, Mari; Mark, Eugene J.; Medoff, Benjamin D.; Luster, Andrew D.; Bouma, Brett E.; Tearney, Guillermo J.

    2013-01-01

    Background: Lung cancer is the leading cause of cancer-related mortality. Radiology and bronchoscopy techniques do not have the necessary resolution to evaluate lung lesions on the microscopic scale, which is critical for diagnosis. Bronchial biopsy specimens can be limited by sampling error and small size. Optical frequency domain imaging (OFDI) provides volumetric views of tissue microstructure at near-histologic resolution and may be useful for evaluating pulmonary lesions to increase diagnostic accuracy. Bronchoscopic OFDI has been evaluated in vivo, but a lack of correlated histopathology has limited the ability to develop accurate image interpretation criteria. Methods: We performed OFDI through two approaches (airway-centered and parenchymal imaging) in 22 ex vivo lung specimens, using tissue dye to precisely correlate imaging and histology. Results: OFDI of normal airway allowed visualization of epithelium, lamina propria, cartilage, and alveolar attachments. Carcinomas exhibited architectural disarray, loss of normal airway and alveolar structure, and rapid light attenuation. Squamous cell carcinomas showed nested architecture. Atypical glandular formation was appreciated in adenocarcinomas, and uniform trabecular gland formation was seen in salivary gland carcinomas. Mucinous adenocarcinomas showed alveolar wall thickening with intraalveolar mucin. Interstitial fibrosis was visualized as signal-dense tissue, with an interstitial distribution in mild interstitial fibrotic disease and a diffuse subpleural pattern with cystic space formation in usual interstitial pneumonitis. Conclusions: To our knowledge, this study is the first demonstration of volumetric OFDI with precise correlation to histopathology in lung pathology. We anticipate that OFDI may play a role in assessing airway and parenchymal pathology, providing fresh insights into the volumetric features of pulmonary disease. PMID:22459781

  12. Volumetric Visualization of Human Skin

    NASA Astrophysics Data System (ADS)

    Kawai, Toshiyuki; Kurioka, Yoshihiro

    We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.

  13. Unique X-ray emission characteristics from volumetrically heated nanowire array plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J. J.; Bargsten, C.; Hollinger, R.; Shlyaptsev, V.; Pukhov, A.; Kaymak, V.; Capeluto, G.; Keiss, D.; Townsend, A.; Rockwood, A.; Wang, Y.; Wang, S.

    2015-11-01

    Highly anisotropic emission of hard X-ray radiation (h ν >10 keV) is observed when arrays of ordered nanowires (50 nm diameter wires of Au or Ni) are volumetrically heated by normal incidence irradiation with high contrast 50-60 fs laser pulses of relativistic intensity. The annular emission is in contrast with angular distribution of softer X-rays (h ν >1 KeV) from these targets and with the X-ray radiation emitted by polished flat targets, both of which are nearly isotropic. Model computations that make use the electron energy distribution computed by particle-in-cell simulations show that the unexpected annular distribution of the hard x-rays is the result of bremsstrahlung from fast electrons. Volumetric heating of Au nanowire arrays irradiated with an intensity of 2 x 10 19 W cm-2 is measured to convert laser energy into h ν>1KeV photons with a record efficiency of >8 percent into 2 π, creating a bright picosecond X-ray source for applications. Work supported by the Office of Fusion Energy Science of the U.S Department of Energy, and the Defense Threat Reduction Agency. A.P was supported by DFG project TR18.

  14. Volumetric visualization algorithm development for an FPGA-based custom computing machine

    NASA Astrophysics Data System (ADS)

    Sallinen, Sami J.; Alakuijala, Jyrki; Helminen, Hannu; Laitinen, Joakim

    1998-05-01

    Rendering volumetric medical images is a burdensome computational task for contemporary computers due to the large size of the data sets. Custom designed reconfigurable hardware could considerably speed up volume visualization if an algorithm suitable for the platform is used. We present an algorithm and speedup techniques for visualizing volumetric medical CT and MR images with a custom-computing machine based on a Field Programmable Gate Array (FPGA). We also present simulated performance results of the proposed algorithm calculated with a software implementation running on a desktop PC. Our algorithm is capable of generating perspective projection renderings of single and multiple isosurfaces with transparency, simulated X-ray images, and Maximum Intensity Projections (MIP). Although more speedup techniques exist for parallel projection than for perspective projection, we have constrained ourselves to perspective viewing, because of its importance in the field of radiotherapy. The algorithm we have developed is based on ray casting, and the rendering is sped up by three different methods: shading speedup by gradient precalculation, a new generalized version of Ray-Acceleration by Distance Coding (RADC), and background ray elimination by speculative ray selection.

  15. Single camera volumetric velocimetry in aortic sinus with a percutaneous valve

    NASA Astrophysics Data System (ADS)

    Clifford, Chris; Thurow, Brian; Midha, Prem; Okafor, Ikechukwu; Raghav, Vrishank; Yoganathan, Ajit

    2016-11-01

    Cardiac flows have long been understood to be highly three dimensional, yet traditional in vitro techniques used to capture these complexities are costly and cumbersome. Thus, two dimensional techniques are primarily used for heart valve flow diagnostics. The recent introduction of plenoptic camera technology allows for traditional cameras to capture both spatial and angular information from a light field through the addition of a microlens array in front of the image sensor. When combined with traditional particle image velocimetry (PIV) techniques, volumetric velocity data may be acquired with a single camera using off-the-shelf optics. Particle volume pairs are reconstructed from raw plenoptic images using a filtered refocusing scheme, followed by three-dimensional cross-correlation. This technique was applied to the sinus region (known for having highly three-dimensional flow structures) of an in vitro aortic model with a percutaneous valve. Phase-locked plenoptic PIV data was acquired at two cardiac outputs (2 and 5 L/min) and 7 phases of the cardiac cycle. The volumetric PIV data was compared to standard 2D-2C PIV. Flow features such as recirculation and stagnation were observed in the sinus region in both cases.

  16. Critical properties and high-pressure volumetric behavior of the carbon dioxide+propane system at T=308.15 k. Krichevskii function and related thermodynamic properties.

    PubMed

    Blanco, Sofía T; Gil, Laura; García-Giménez, Pilar; Artal, Manuela; Otín, Santos; Velasco, Inmaculada

    2009-05-21

    Critical properties and volumetric behavior for the {CO2(1)+C3H8(2)} system have been studied. The critical locus was measured with a flow apparatus and detected by critical opalescence. For the mixtures, repeatabilities in critical temperature and pressure are rTcexperimental critical data in this work. Additionally, the density measurements of 15 {CO2(1)+C3H8(2)} binary mixtures at 308.15 K and pressures up to 20 MPa were carried out using an Anton Paar DMA 512-P vibrating-tube densimeter calibrated with the forced path mechanical calibration model. The mean relative standard deviation of density, srhor, was estimated to be better than 0.1%, and the uncertainties in temperature and pressure are +/-0.01 K and +/-0.001 MPa, respectively. In the experimental setup, an uncertainty in the mole fraction, u(xj)=+/-0.0015, has been achieved. Other properties related to P-rho-T-x data such as saturated densities, rhoL and rhoV, compressibility factor, Z, excess molar volumes,VmE, and partial molar volumes, Vi, have been calculated. Structural properties such as direct and total correlation function integrals and cluster size were calculated using the Krichevskii function concept. Both the critical and volumetric behavior have been compared with literature data and with those obtained from the PC-SAFT and Patel-Teja equations of state.

  17. Mammographic Breast Density Assessment Using Automated Volumetric Software and Breast Imaging Reporting and Data System (BIRADS) Categorization by Expert Radiologists.

    PubMed

    Damases, Christine N; Brennan, Patrick C; Mello-Thoms, Claudia; McEntee, Mark F

    2016-01-01

    To investigate agreement on mammographic breast density (MD) assessment between automated volumetric software and Breast Imaging Reporting and Data System (BIRADS) categorization by expert radiologists. Forty cases of left craniocaudal and mediolateral oblique mammograms from 20 women were used. All images had their volumetric density classified using Volpara density grade (VDG) and average volumetric breast density percentage. The same images were then classified into BIRADS categories (I-IV) by 20 American Board of Radiology examiners. The results demonstrated a moderate agreement (κ = 0.537; 95% CI = 0.234-0.699) between VDG classification and radiologists' BIRADS density assessment. Interreader agreement using BIRADS also demonstrated moderate agreement (κ = 0.565; 95% CI = 0.519-0.610) ranging from 0.328 to 0.669. Radiologists' average BIRADS was lower than average VDG scores by 0.33, with their mean being 2.13, whereas the mean VDG was 2.48 (U = -3.742; P < 0.001). VDG and BIRADS showed a very strong positive correlation (ρ = 0.91; P < 0.001) as did BIRADS and average volumetric breast density percentage (ρ = 0.94; P < 0.001). Automated volumetric breast density assessment shows moderate agreement and very strong correlation with BIRADS; interreader variations still exist within BIRADS. Because of the increasing importance of MD measurement in clinical management of patients, widely accepted, reproducible, and accurate measures of MD are required. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.; Hunter, Scott D.

    2001-01-01

    The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.

  19. Accurate nonlinear mapping between MNI volumetric and FreeSurfer surface coordinate systems.

    PubMed

    Wu, Jianxiao; Ngo, Gia H; Greve, Douglas; Li, Jingwei; He, Tong; Fischl, Bruce; Eickhoff, Simon B; Yeo, B T Thomas

    2018-05-16

    The results of most neuroimaging studies are reported in volumetric (e.g., MNI152) or surface (e.g., fsaverage) coordinate systems. Accurate mappings between volumetric and surface coordinate systems can facilitate many applications, such as projecting fMRI group analyses from MNI152/Colin27 to fsaverage for visualization or projecting resting-state fMRI parcellations from fsaverage to MNI152/Colin27 for volumetric analysis of new data. However, there has been surprisingly little research on this topic. Here, we evaluated three approaches for mapping data between MNI152/Colin27 and fsaverage coordinate systems by simulating the above applications: projection of group-average data from MNI152/Colin27 to fsaverage and projection of fsaverage parcellations to MNI152/Colin27. Two of the approaches are currently widely used. A third approach (registration fusion) was previously proposed, but not widely adopted. Two implementations of the registration fusion (RF) approach were considered, with one implementation utilizing the Advanced Normalization Tools (ANTs). We found that RF-ANTs performed the best for mapping between fsaverage and MNI152/Colin27, even for new subjects registered to MNI152/Colin27 using a different software tool (FSL FNIRT). This suggests that RF-ANTs would be useful even for researchers not using ANTs. Finally, it is worth emphasizing that the most optimal approach for mapping data to a coordinate system (e.g., fsaverage) is to register individual subjects directly to the coordinate system, rather than via another coordinate system. Only in scenarios where the optimal approach is not possible (e.g., mapping previously published results from MNI152 to fsaverage), should the approaches evaluated in this manuscript be considered. In these scenarios, we recommend RF-ANTs (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/registration/Wu2017_RegistrationFusion). © 2018 Wiley Periodicals, Inc.

  20. Remote determination of the velocity index and mean streamwise velocity profiles

    NASA Astrophysics Data System (ADS)

    Johnson, E. D.; Cowen, E. A.

    2017-09-01

    When determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, k=Ub/Usurf, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.

  1. Vessel suppressed chest Computed Tomography for semi-automated volumetric measurements of solid pulmonary nodules.

    PubMed

    Milanese, Gianluca; Eberhard, Matthias; Martini, Katharina; Vittoria De Martini, Ilaria; Frauenfelder, Thomas

    2018-04-01

    To evaluate whether vessel-suppressed computed tomography (VSCT) can be reliably used for semi-automated volumetric measurements of solid pulmonary nodules, as compared to standard CT (SCT) MATERIAL AND METHODS: Ninety-three SCT were elaborated by dedicated software (ClearRead CT, Riverain Technologies, Miamisburg, OH, USA), that allows subtracting vessels from lung parenchyma. Semi-automated volumetric measurements of 65 solid nodules were compared between SCT and VSCT. The measurements were repeated by two readers. For each solid nodule, volume measured on SCT by Reader 1 and Reader 2 was averaged and the average volume between readers acted as standard of reference value. Concordance between measurements was assessed using Lin's Concordance Correlation Coefficient (CCC). Limits of agreement (LoA) between readers and CT datasets were evaluated. Standard of reference nodule volume ranged from 13 to 366 mm 3 . The mean overestimation between readers was 3 mm 3 and 2.9 mm 3 on SCT and VSCT, respectively. Semi-automated volumetric measurements on VSCT showed substantial agreement with the standard of reference (Lin's CCC = 0.990 for Reader 1; 0.985 for Reader 2). The upper and lower LoA between readers' measurements were (16.3, -22.4 mm 3 ) and (15.5, -21.4 mm 3 ) for SCT and VSCT, respectively. VSCT datasets are feasible for the measurements of solid nodules, showing an almost perfect concordance between readers and with measurements on SCT. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Breast volumetric analysis for aesthetic planning in breast reconstruction: a literature review of techniques

    PubMed Central

    Rozen, Warren Matthew; Spychal, Robert T.; Hunter-Smith, David J.

    2016-01-01

    Background Accurate volumetric analysis is an essential component of preoperative planning in both reconstructive and aesthetic breast procedures towards achieving symmetrization and patient-satisfactory outcome. Numerous comparative studies and reviews of individual techniques have been reported. However, a unifying review of all techniques comparing their accuracy, reliability, and practicality has been lacking. Methods A review of the published English literature dating from 1950 to 2015 using databases, such as PubMed, Medline, Web of Science, and EMBASE, was undertaken. Results Since Bouman’s first description of water displacement method, a range of volumetric assessment techniques have been described: thermoplastic casting, direct anthropomorphic measurement, two-dimensional (2D) imaging, and computed tomography (CT)/magnetic resonance imaging (MRI) scans. However, most have been unreliable, difficult to execute and demonstrate limited practicability. Introduction of 3D surface imaging has revolutionized the field due to its ease of use, fast speed, accuracy, and reliability. However, its widespread use has been limited by its high cost and lack of high level of evidence. Recent developments have unveiled the first web-based 3D surface imaging program, 4D imaging, and 3D printing. Conclusions Despite its importance, an accurate, reliable, and simple breast volumetric analysis tool has been elusive until the introduction of 3D surface imaging technology. However, its high cost has limited its wide usage. Novel adjunct technologies, such as web-based 3D surface imaging program, 4D imaging, and 3D printing, appear promising. PMID:27047788

  3. A volumetric conformal mapping approach for clustering white matter fibers in the brain

    PubMed Central

    Gupta, Vikash; Prasad, Gautam; Thompson, Paul

    2017-01-01

    The human brain may be considered as a genus-0 shape, topologically equivalent to a sphere. Various methods have been used in the past to transform the brain surface to that of a sphere using harmonic energy minimization methods used for cortical surface matching. However, very few methods have studied volumetric parameterization of the brain using a spherical embedding. Volumetric parameterization is typically used for complicated geometric problems like shape matching, morphing and isogeometric analysis. Using conformal mapping techniques, we can establish a bijective mapping between the brain and the topologically equivalent sphere. Our hypothesis is that shape analysis problems are simplified when the shape is defined in an intrinsic coordinate system. Our goal is to establish such a coordinate system for the brain. The efficacy of the method is demonstrated with a white matter clustering problem. Initial results show promise for future investigation in these parameterization technique and its application to other problems related to computational anatomy like registration and segmentation. PMID:29177252

  4. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors

    PubMed Central

    Tao, Ying; Xie, Xiaoying; Lv, Wei; Tang, Dai-Ming; Kong, Debin; Huang, Zhenghong; Nishihara, Hirotomo; Ishii, Takafumi; Li, Baohua; Golberg, Dmitri; Kang, Feiyu; Kyotani, Takashi; Yang, Quan-Hong

    2013-01-01

    A small volumetric capacitance resulting from a low packing density is one of the major limitations for novel nanocarbons finding real applications in commercial electrochemical energy storage devices. Here we report a carbon with a density of 1.58 g cm−3, 70% of the density of graphite, constructed of compactly interlinked graphene nanosheets, which is produced by an evaporation-induced drying of a graphene hydrogel. Such a carbon balances two seemingly incompatible characteristics: a porous microstructure and a high density, and therefore has a volumetric capacitance for electrochemical capacitors (ECs) up to 376 F cm−3, which is the highest value so far reported for carbon materials in an aqueous electrolyte. More promising, the carbon is conductive and moldable, and thus could be used directly as a well-shaped electrode sheet for the assembly of a supercapacitor device free of any additives, resulting in device-level high energy density ECs. PMID:24131954

  5. Experimental Investigation of the Momentum Method for Determining Profile Drag

    NASA Technical Reports Server (NTRS)

    Goett, Harry J

    1939-01-01

    Report presents the results of an experimental investigation conducted in the full-scale tunnel to determine the accuracy of the Jones and the Betz equations for computing profile drag from total and static pressure surveys in the wake of wings. Surveys were made behind 6 by 8-foot airfoils of the NACA 0009, and 0018 sections at zero lift and behind the NACA 0012 at positive lifts. The surveys were made at various spanwise positions and at distances behind the airfoil ranging from 0.05c to 3.00c.

  6. Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion.

    PubMed

    Tisdall, M Dylan; Reuter, Martin; Qureshi, Abid; Buckner, Randy L; Fischl, Bruce; van der Kouwe, André J W

    2016-02-15

    Recent work has demonstrated that subject motion produces systematic biases in the metrics computed by widely used morphometry software packages, even when the motion is too small to produce noticeable image artifacts. In the common situation where the control population exhibits different behaviors in the scanner when compared to the experimental population, these systematic measurement biases may produce significant confounds for between-group analyses, leading to erroneous conclusions about group differences. While previous work has shown that prospective motion correction can improve perceived image quality, here we demonstrate that, in healthy subjects performing a variety of directed motions, the use of the volumetric navigator (vNav) prospective motion correction system significantly reduces the motion-induced bias and variance in morphometry. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Experimental Determination of Dynamical Lee-Yang Zeros

    NASA Astrophysics Data System (ADS)

    Brandner, Kay; Maisi, Ville F.; Pekola, Jukka P.; Garrahan, Juan P.; Flindt, Christian

    2017-05-01

    Statistical physics provides the concepts and methods to explain the phase behavior of interacting many-body systems. Investigations of Lee-Yang zeros—complex singularities of the free energy in systems of finite size—have led to a unified understanding of equilibrium phase transitions. The ideas of Lee and Yang, however, are not restricted to equilibrium phenomena. Recently, Lee-Yang zeros have been used to characterize nonequilibrium processes such as dynamical phase transitions in quantum systems after a quench or dynamic order-disorder transitions in glasses. Here, we experimentally realize a scheme for determining Lee-Yang zeros in such nonequilibrium settings. We extract the dynamical Lee-Yang zeros of a stochastic process involving Andreev tunneling between a normal-state island and two superconducting leads from measurements of the dynamical activity along a trajectory. From the short-time behavior of the Lee-Yang zeros, we predict the large-deviation statistics of the activity which is typically difficult to measure. Our method paves the way for further experiments on the statistical mechanics of many-body systems out of equilibrium.

  8. Laser scanning stereomicroscopy for fast volumetric imaging with two-photon excitation and scanned Bessel beams

    NASA Astrophysics Data System (ADS)

    Yang, Yanlong; Zhou, Xing; Li, Runze; Van Horn, Mark; Peng, Tong; Lei, Ming; Wu, Di; Chen, Xun; Yao, Baoli; Ye, Tong

    2015-03-01

    Bessel beams have been used in many applications due to their unique optical properties of maintaining their intensity profiles unchanged during propagation. In imaging applications, Bessel beams have been successfully used to provide extended focuses for volumetric imaging and uniformed illumination plane in light-sheet microscopy. Coupled with two-photon excitation, Bessel beams have been successfully used in realizing fluorescence projected volumetric imaging. We demonstrated previously a stereoscopic solution-two-photon fluorescence stereomicroscopy (TPFSM)-for recovering the depth information in volumetric imaging with Bessel beams. In TPFSM, tilted Bessel beams were used to generate stereoscopic images on a laser scanning two-photon fluorescence microscope; upon post image processing we could successfully provide 3D perception of acquired volume images by wearing anaglyph 3D glasses. However, tilted Bessel beams were generated by shifting either an axicon or an objective laterally; the slow imaging speed and severe aberrations made it hard to use in real-time volume imaging. In this article, we report recent improvements of TPFSM with newly designed scanner and imaging software, which allows 3D stereoscopic imaging without moving any of the optical components on the setup. This improvement has dramatically improved focusing qualities and imaging speed so that the TPFSM can be performed potentially in real-time to provide 3D visualization in scattering media without post image processing.

  9. Role of 17 beta-estradiol on type IV collagen fibers volumetric density in the basement membrane of bladder wall.

    PubMed

    de Fraga, Rogerio; Dambros, Miriam; Miyaoka, Ricardo; Riccetto, Cássio Luís Zanettini; Palma, Paulo César Rodrigues

    2007-10-01

    The authors quantified the type IV collagen fibers volumetric density in the basement membrane of bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old) randomly divided in 4 groups: group 1, remained intact (control); group 2, submitted to bilateral oophorectomy and daily replacement 4 weeks later of 17 beta-estradiol for 12 weeks; group 3, sham operated and daily replacement 4 weeks later of sesame oil for 12 weeks; and group 4, submitted to bilateral oophorectomy and killed after 12 weeks. It was used in immunohistochemistry evaluation using type IV collagen polyclonal antibody to stain the fibers on paraffin rat bladder sections. The M-42 stereological grid system was used to analyze the fibers. Ovariectomy had an increase effect on the volumetric density of the type IV collagen fibers in the basement membrane of rat bladder wall. Estradiol replacement in castrated animals demonstrated a significative difference in the stereological parameters when compared to the castrated group without hormonal replacement. Surgical castration performed on rats induced an increasing volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall and the estradiol treatment had a significant effect in keeping a low volumetric density of type IV collagen fibers in the basement membrane of rats bladder wall.

  10. High dose hypofractionated frameless volumetric modulated arc radiotherapy is a feasible method for treating canine trigeminal nerve sheath tumors.

    PubMed

    Dolera, Mario; Malfassi, Luca; Marcarini, Silvia; Mazza, Giovanni; Carrara, Nancy; Pavesi, Simone; Sala, Massimo; Finesso, Sara; Urso, Gaetano

    2018-06-08

    The aim of this prospective pilot study was to evaluate the feasibility and effectiveness of curative intent high dose hypofractionated frameless volumetric modulated arc radiotherapy for treatment of canine trigeminal peripheral nerve sheath tumors. Client-owned dogs with a presumptive imaging-based diagnosis of trigeminal peripheral nerve sheath tumor were recruited for the study during the period of February 2010 to December 2013. Seven dogs were enrolled and treated with high dose hypofractionated volumetric modulated arc radiotherapy delivered by a 6 MV linear accelerator equipped with a micro-multileaf beam collimator. The plans were computed using a Monte Carlo algorithm with a prescription dose of 37 Gy delivered in five fractions on alternate days. Overall survival was estimated using a Kaplan-Meier curve analysis. Magnetic resonance imaging (MRI) follow-up examinations revealed complete response in one dog, partial response in four dogs, and stable disease in two dogs. Median overall survival was 952 days with a 95% confidence interval of 543-1361 days. Volumetric modulated arc radiotherapy was demonstrated to be feasible and effective for trigeminal peripheral nerve sheath tumor treatment in this sample of dogs. The technique required few sedations and spared organs at risk. Even though larger studies are required, these preliminary results supported the use of high dose hypofractionated volumetric modulated arc radiotherapy as an alternative to other treatment modalities. © 2018 American College of Veterinary Radiology.

  11. Direct volumetric rendering based on point primitives in OpenGL.

    PubMed

    da Rosa, André Luiz Miranda; de Almeida Souza, Ilana; Yuuji Hira, Adilson; Zuffo, Marcelo Knörich

    2006-01-01

    The aim of this project is to present a renderization by software algorithm of acquired volumetric data. The algorithm was implemented in Java language and the LWJGL graphical library was used, allowing the volume renderization by software and thus preventing the necessity to acquire specific graphical boards for the 3D reconstruction. The considered algorithm creates a model in OpenGL, through point primitives, where each voxel becomes a point with the color values related to this pixel position in the corresponding images.

  12. Hierarchical pictorial structures for simultaneously localizing multiple organs in volumetric pre-scan CT

    NASA Astrophysics Data System (ADS)

    Montillo, Albert; Song, Qi; Das, Bipul; Yin, Zhye

    2015-03-01

    Parsing volumetric computed tomography (CT) into 10 or more salient organs simultaneously is a challenging task with many applications such as personalized scan planning and dose reporting. In the clinic, pre-scan data can come in the form of very low dose volumes acquired just prior to the primary scan or from an existing primary scan. To localize organs in such diverse data, we propose a new learning based framework that we call hierarchical pictorial structures (HPS) which builds multiple levels of models in a tree-like hierarchy that mirrors the natural decomposition of human anatomy from gross structures to finer structures. Each node of our hierarchical model learns (1) the local appearance and shape of structures, and (2) a generative global model that learns probabilistic, structural arrangement. Our main contribution is twofold. First we embed the pictorial structures approach in a hierarchical framework which reduces test time image interpretation and allows for the incorporation of additional geometric constraints that robustly guide model fitting in the presence of noise. Second we guide our HPS framework with the probabilistic cost maps extracted using random decision forests using volumetric 3D HOG features which makes our model fast to train and fast to apply to novel test data and posses a high degree of invariance to shape distortion and imaging artifacts. All steps require approximate 3 mins to compute and all organs are located with suitably high accuracy for our clinical applications such as personalized scan planning for radiation dose reduction. We assess our method using a database of volumetric CT scans from 81 subjects with widely varying age and pathology and with simulated ultra-low dose cadaver pre-scan data.

  13. Volumetric CT measurement of the ischial tuberosities for designing analytical models of decubitus ulcers

    NASA Astrophysics Data System (ADS)

    Holmes, David R., III; Robb, Richard A.

    2006-03-01

    Decubitus ulcers can have a deleterious effect on the quality of life for some patients, particularly those prone to chronic development of skin ulcerations. The bones of the pelvis are particularly relevant as nearly half of all ulcerations observed in the hospital are in the pelvic region. This research focuses on the development of methods to extract the ischium and adjacent anatomy from volumetric CT data of the pelvis which will be used for patient-specific modeling of high-pressure regions and the treatment of associated ulcers. Six volumetric CT scans were evaluated to determine the size and shape of the ischial tuberosities. Using oblique images computed from the CT data, cross-sectional measurements (approximately Superior-Inferior, Anterior-Posterior, and Left-Right) were made to estimate the size of the ischial tuberosities. Similar measurements were made on the ischial ramus. The mean length of the ischial tuberosities (S-I direction) is 12.35 cm. The mean dimension in the L-R and A-P directions are 2.97 cm and 3.78 cm, respectively. For the ischial ramus, the S-I, L-R, and A-P mean lengths are 6.57 cm, 1.72 cm, and 1.49 cm. Due to a limited field of view for the CT datasets, the thickness of the soft tissue (i.e. Gluteus Maximus and subcutaneous fat) could not be measured. Using the bony measurements and adjacent soft tissue measurements, an investigator would be able estimate the posterior pelvis forces for calculations of pressure on the proximal skin, which could then be used to predict ulcerations in patients, or to design new ulcer-inhibiting seating devices. Current efforts are focused on collecting a large cohort of data with both bony and soft tissue measurements. Future work will incorporate the physical properties of the soft tissue to specifically predict high-pressure regions.

  14. 2pBAb5. Validation of three-dimensional strain tracking by volumetric ultrasound image correlation in a pubovisceral muscle model

    PubMed Central

    Nagle, Anna S.; Nageswaren, Ashok R.; Haridas, Balakrishna; Mast, T. D.

    2014-01-01

    Little is understood about the biomechanical changes leading to pelvic floor disorders such as stress urinary incontinence. In order to measure regional biomechanical properties of the pelvic floor muscles in vivo, a three dimensional (3D) strain tracking technique employing correlation of volumetric ultrasound images has been implemented. In this technique, local 3D displacements are determined as a function of applied stress and then converted to strain maps. To validate this approach, an in vitro model of the pubovisceral muscle, with a hemispherical indenter emulating the downward stress caused by intra-abdominal pressure, was constructed. Volumetric B-scan images were recorded as a function of indenter displacement while muscle strain was measured independently by a sonomicrometry system (Sonometrics). Local strains were computed by ultrasound image correlation and compared with sonomicrometry-measured strains to assess strain tracking accuracy. Image correlation by maximizing an exponential likelihood function was found more reliable than the Pearson correlation coefficient. Strain accuracy was dependent on sizes of the subvolumes used for image correlation, relative to characteristic speckle length scales of the images. Decorrelation of echo signals was mapped as a function of indenter displacement and local tissue orientation. Strain measurement accuracy was weakly related to local echo decorrelation. PMID:24900165

  15. Computational knee ligament modeling using experimentally determined zero-load lengths.

    PubMed

    Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin

    2012-01-01

    This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models.

  16. Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths

    PubMed Central

    Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin

    2012-01-01

    This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models. PMID:22523522

  17. Utility of Early Post-operative High Resolution Volumetric MR Imaging after Transsphenoidal Pituitary Tumor Surgery

    PubMed Central

    Patel, Kunal S.; Kazam, Jacob; Tsiouris, Apostolos J.; Anand, Vijay K.; Schwartz, Theodore H.

    2014-01-01

    Objective Controversy exists over the utility of early post-operative magnetic resonance imaging (MRI) after transsphenoidal pituitary surgery for macroadenomas. We investigate whether valuable information can be derived from current higher resolution scans. Methods Volumetric MRI scans were obtained in the early (<10 days) and late (>30 days) post-operative periods in a series of patients undergoing transsphenoidal pituitary surgery. The volume of the residual tumor, resection cavity, and corresponding visual field tests were recorded at each time point. Statistical analyses of changes in tumor volume and cavity size were calculated using the late MRI as the gold standard. Results 40 patients met the inclusion criteria. Pre-operative tumor volume averaged 8.8 cm3. Early postoperative assessment of average residual tumor volume (1.18 cm3) was quite accurate and did not differ statistically from late post-operative volume (1.23 cm3, p=.64), indicating the utility of early scans to measure residual tumor. Early scans were 100% sensitive and 91% specific for predicting ≥ 98% resection (p<.001, Fisher’s exact test). The average percent decrease in cavity volume from pre-operative MRI (tumor volume) to early post-operative imaging was 45% with decreases in all but 3 patients. There was no correlation between the size of the early cavity and the visual outcome. Conclusions Early high resolution volumetric MRI is valuable in determining the presence or absence of residual tumor. Cavity volume almost always decreases after surgery and a lack of decrease should alert the surgeon to possible persistent compression of the optic apparatus that may warrant re-operation. PMID:25045791

  18. The puzzle of the 1996 Bárdarbunga, Iceland, earthquake: no volumetric component in the source mechanism

    USGS Publications Warehouse

    Tkalcic, Hrvoje; Dreger, Douglas S.; Foulger, Gillian R.; Julian, Bruce R.

    2009-01-01

    A volcanic earthquake with Mw 5.6 occurred beneath the Bárdarbunga caldera in Iceland on 29 September 1996. This earthquake is one of a decade-long sequence of  events at Bárdarbunga with non-double-couple mechanisms in the Global Centroid Moment Tensor catalog. Fortunately, it was recorded well by the regional-scale Iceland Hotspot Project seismic experiment. We investigated the event with a complete moment tensor inversion method using regional long-period seismic waveforms and a composite structural model. The moment tensor inversion using data from stations of the Iceland Hotspot Project yields a non-double-couple solution with a 67% vertically oriented compensated linear vector dipole component, a 32% double-couple component, and a statistically insignificant (2%) volumetric (isotropic) contraction. This indicates the absence of a net volumetric component, which is puzzling in the case of a large volcanic earthquake that apparently is not explained by shear slip on a planar fault. A possible volcanic mechanism that can produce an earthquake without a volumetric component involves two offset sources with similar but opposite volume changes. We show that although such a model cannot be ruled out, the circumstances under which it could happen are rare.

  19. Volumetric glioma quantification: comparison of manual and semi-automatic tumor segmentation for the quantification of tumor growth.

    PubMed

    Odland, Audun; Server, Andres; Saxhaug, Cathrine; Breivik, Birger; Groote, Rasmus; Vardal, Jonas; Larsson, Christopher; Bjørnerud, Atle

    2015-11-01

    Volumetric magnetic resonance imaging (MRI) is now widely available and routinely used in the evaluation of high-grade gliomas (HGGs). Ideally, volumetric measurements should be included in this evaluation. However, manual tumor segmentation is time-consuming and suffers from inter-observer variability. Thus, tools for semi-automatic tumor segmentation are needed. To present a semi-automatic method (SAM) for segmentation of HGGs and to compare this method with manual segmentation performed by experts. The inter-observer variability among experts manually segmenting HGGs using volumetric MRIs was also examined. Twenty patients with HGGs were included. All patients underwent surgical resection prior to inclusion. Each patient underwent several MRI examinations during and after adjuvant chemoradiation therapy. Three experts performed manual segmentation. The results of tumor segmentation by the experts and by the SAM were compared using Dice coefficients and kappa statistics. A relatively close agreement was seen among two of the experts and the SAM, while the third expert disagreed considerably with the other experts and the SAM. An important reason for this disagreement was a different interpretation of contrast enhancement as either surgically-induced or glioma-induced. The time required for manual tumor segmentation was an average of 16 min per scan. Editing of the tumor masks produced by the SAM required an average of less than 2 min per sample. Manual segmentation of HGG is very time-consuming and using the SAM could increase the efficiency of this process. However, the accuracy of the SAM ultimately depends on the expert doing the editing. Our study confirmed a considerable inter-observer variability among experts defining tumor volume from volumetric MRIs. © The Foundation Acta Radiologica 2014.

  20. Experimental study of starting plumes simulating cumulus cloud flows in the atmosphere

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.; Diwan, S. S.; Narasimha, Roddam

    2009-11-01

    Turbulent jets and plumes subjected to off-source volumetric heating have been studied experimentally and numerically by Narasimha and co-workers and others over the past two decades. The off-source heating attempts to simulate the latent heat release that occurs in cumulus clouds on condensation of water vapour. This heat release plays a crucial role in determining the overall cloud shape among other things. Previous studies investigated steady state jets and plumes that had attained similarity upstream of heat injection. A better understanding and appreciation of the fluid dynamics of cumulus clouds should be possible by study of starting plumes. Experiments have been set up at JNCASR (Bangalore) using experimental techniques developed previously but incorporating various improvements. Till date, experiments have been performed on plumes at Re of 1000 and 2250, with three different heating levels in each case. Axial sections of the flow have been studied using standard PLIF techniques. The flow visualization provides us with data on the temporal evolution of the starting plume. It is observed that the broad nature of the effect of off-source heating on the starting plumes is generally consistent with the results obtained previously on steady state flows. More complete results and a critical discussion will be presented at the upcoming meeting.

  1. Mucosal wrinkling in animal antra induced by volumetric growth

    NASA Astrophysics Data System (ADS)

    Li, Bo; Cao, Yan-Ping; Feng, Xi-Qiao; Yu, Shou-Wen

    2011-04-01

    Surface wrinkling of animal mucosas is crucial for the biological functions of some tissues, and the change in their surface patterns is a phenotypic characteristic of certain diseases. Here we develop a biomechanical model to study the relationship between morphogenesis and volumetric growth, either physiological or pathological, of mucosas. Theoretical analysis and numerical simulations are performed to unravel the critical characteristics of mucosal wrinkling in a spherical antrum. It is shown that the thicknesses and elastic moduli of mucosal and submucosal layers dictate the surface buckling morphology. The results hold clinical relevance for such diseases as inflammation and gastritis.

  2. Experimental method for determination of bending and torsional rigidities of advanced composite laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Takenori

    1995-11-01

    This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method ismore » confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.« less

  3. Imaging multi-scale dynamics in vivo with spiral volumetric optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Fehm, Thomas F.; Ford, Steven J.; Gottschalk, Sven; Razansky, Daniel

    2017-03-01

    Imaging dynamics in living organisms is essential for the understanding of biological complexity. While multiple imaging modalities are often required to cover both microscopic and macroscopic spatial scales, dynamic phenomena may also extend over different temporal scales, necessitating the use of different imaging technologies based on the trade-off between temporal resolution and effective field of view. Optoacoustic (photoacoustic) imaging has been shown to offer the exclusive capability to link multiple spatial scales ranging from organelles to entire organs of small animals. Yet, efficient visualization of multi-scale dynamics remained difficult with state-of-the-art systems due to inefficient trade-offs between image acquisition and effective field of view. Herein, we introduce a spiral volumetric optoacoustic tomography (SVOT) technique that provides spectrally-enriched high-resolution optical absorption contrast across multiple spatio-temporal scales. We demonstrate that SVOT can be used to monitor various in vivo dynamics, from video-rate volumetric visualization of cardiac-associated motion in whole organs to high-resolution imaging of pharmacokinetics in larger regions. The multi-scale dynamic imaging capability thus emerges as a powerful and unique feature of the optoacoustic technology that adds to the multiple advantages of this technology for structural, functional and molecular imaging.

  4. Semiautomatic segmentation of liver metastases on volumetric CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng, E-mail: bz2166@cumc.columbia.edu

    2015-11-15

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accuratelymore » delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic

  5. Volumetric MRI study of brain in children with intrauterine exposure to cocaine, alcohol, tobacco, and marijuana.

    PubMed

    Rivkin, Michael J; Davis, Peter E; Lemaster, Jennifer L; Cabral, Howard J; Warfield, Simon K; Mulkern, Robert V; Robson, Caroline D; Rose-Jacobs, Ruth; Frank, Deborah A

    2008-04-01

    The objective of this study was to use volumetric MRI to study brain volumes in 10- to 14-year-old children with and without intrauterine exposure to cocaine, alcohol, cigarettes, or marijuana. Volumetric MRI was performed on 35 children (mean age: 12.3 years; 14 with intrauterine exposure to cocaine, 21 with no intrauterine exposure to cocaine) to determine the effect of prenatal drug exposure on volumes of cortical gray matter; white matter; subcortical gray matter; cerebrospinal fluid; and total parenchymal volume. Head circumference was also obtained. Analyses of each individual substance were adjusted for demographic characteristics and the remaining 3 prenatal substance exposures. Regression analyses adjusted for demographic characteristics showed that children with intrauterine exposure to cocaine had lower mean cortical gray matter and total parenchymal volumes and smaller mean head circumference than comparison children. After adjustment for other prenatal exposures, these volumes remained smaller but lost statistical significance. Similar analyses conducted for prenatal ethanol exposure adjusted for demographics showed significant reduction in mean cortical gray matter; total parenchymal volumes; and head circumference, which remained smaller but lost statistical significance after adjustment for the remaining 3 exposures. Notably, prenatal cigarette exposure was associated with significant reductions in cortical gray matter and total parenchymal volumes and head circumference after adjustment for demographics that retained marginal significance after adjustment for the other 3 exposures. Finally, as the number of exposures to prenatal substances grew, cortical gray matter and total parenchymal volumes and head circumference declined significantly with smallest measures found among children exposed to all 4. CONCLUSIONS; These data suggest that intrauterine exposures to cocaine, alcohol, and cigarettes are individually related to reduced head

  6. Treatment Planning and Volumetric Response Assessment for Yttrium-90 Radioembolization: Semiautomated Determination of Liver Volume and Volume of Tumor Necrosis in Patients with Hepatic Malignancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monsky, Wayne L., E-mail: wayne.monsky@ucdmc.ucdavis.edu; Garza, Armando S.; Kim, Isaac

    Purpose: The primary purpose of this study was to demonstrate intraobserver/interobserver reproducibility for novel semiautomated measurements of hepatic volume used for Yttrium-90 dose calculations as well as whole-liver and necrotic-liver (hypodense/nonenhancing) tumor volume after radioembolization. The secondary aim was to provide initial comparisons of tumor volumetric measurements with linear measurements, as defined by Response Evaluation Criteria in Solid Tumors criteria, and survival outcomes. Methods: Between 2006 and 2009, 23 consecutive radioembolization procedures were performed for 14 cases of hepatocellular carcinoma and 9 cases of hepatic metastases. Baseline and follow-up computed tomography obtained 1 month after treatment were retrospectively analyzed. Threemore » observers measured liver, whole-tumor, and tumor-necrosis volumes twice using semiautomated software. Results: Good intraobserver/interobserver reproducibility was demonstrated (intraclass correlation [ICC] > 0.9) for tumor and liver volumes. Semiautomated measurements of liver volumes were statistically similar to those obtained with manual tracing (ICC = 0.868), but they required significantly less time to perform (p < 0.0001, ICC = 0.088). There was a positive association between change in linear tumor measurements and whole-tumor volume (p < 0.0001). However, linear measurements did not correlate with volume of necrosis (p > 0.05). Dose, change in tumor diameters, tumor volume, and necrotic volume did not correlate with survival (p > 0.05 in all instances). However, Kaplan-Meier curves suggest that a >10% increase in necrotic volume correlated with survival (p = 0.0472). Conclusion: Semiautomated volumetric analysis of liver, whole-tumor, and tumor-necrosis volume can be performed with good intraobserver/interobserver reproducibility. In this small retrospective study, measurements of tumor necrosis were suggested to correlate with survival.« less

  7. Tumor volumetric measurements in surgically inaccessible pediatric low-grade glioma.

    PubMed

    Kilday, John-Paul; Branson, Helen; Rockel, Conrad; Laughlin, Suzanne; Mabbott, Donald; Bouffet, Eric; Bartels, Ute

    2015-01-01

    Tumor measurement is important in unresectable pediatric low-grade gliomas (pLGGs) to determine either the need for treatment or assess response. Standard methods measure the product of the largest 2 lengths from transverse, anterior-posterior, and cranio-caudal dimensions (SM, cm). This single-institution study evaluated tumor volume measurements (VM, cm) in such pLGGs. Of 50 patients treated with chemotherapy for surgically inaccessible pLGG, 8 met the inclusion criteria of having 2 or more sequential MRI studies of T1-weighted Fast-Spoiled Gradient Recalled acquisition. SM and VM were performed by 2 independent neuroradiologists. Associations of measurement methods with defined therapeutic response criteria and patient clinical status were assessed. The mean tumor size at the first MRI scan was 20 cm and 398 cm according to SM and VM, respectively. VM results did not differ significantly from SM-derived spherical volume calculations (Pearson correlation, P<0.0001) with a high interrater reliability. Both methods were concordant in defining the tumor response according to the current criteria, although radiologic progressive disease was not associated with clinical status (SM: P=0.491, VM: P=0.208). In this limited experience, volumetric analysis of unresectable pLGGs did not seem superior to the standard linear measurements for defining tumor response.

  8. Mathematical estimation of the level of microbial contamination on spacecraft surfaces by volumetric air sampling

    NASA Technical Reports Server (NTRS)

    Oxborrow, G. S.; Roark, A. L.; Fields, N. D.; Puleo, J. R.

    1974-01-01

    Microbiological sampling methods presently used for enumeration of microorganisms on spacecraft surfaces require contact with easily damaged components. Estimation of viable particles on surfaces using air sampling methods in conjunction with a mathematical model would be desirable. Parameters necessary for the mathematical model are the effect of angled surfaces on viable particle collection and the number of viable cells per viable particle. Deposition of viable particles on angled surfaces closely followed a cosine function, and the number of viable cells per viable particle was consistent with a Poisson distribution. Other parameters considered by the mathematical model included deposition rate and fractional removal per unit time. A close nonlinear correlation between volumetric air sampling and airborne fallout on surfaces was established with all fallout data points falling within the 95% confidence limits as determined by the mathematical model.

  9. Predicting the conversion of mild cognitive impairment to Alzheimer's disease based on the volumetric measurements of the selected brain structures in magnetic resonance imaging.

    PubMed

    Nesteruk, Marta; Nesteruk, Tomasz; Styczyńska, Maria; Barczak, Anna; Mandecka, Monika; Walecki, Jerzy; Barcikowska-Kotowicz, Maria

    2015-01-01

    Mild cognitive impairment (MCI) is defined as abnormal cognitive state, but does not meet the criteria for the diagnosis of dementia. According to the new guidelines Alzheimer's disease (AD) involves not only dementia's phase but also predementia phase which is asymptomatic and pathological process in the brain is already present. For this reason it is very important to determine the suitability of markers which should be positive before onset of the first symptoms. One of these biomarkers is a structural magnetic resonance imaging with hippocampal volumetric assessment. The aim of this study was to investigate the usefulness of structural brain magnetic resonance imaging with volumetric assessment of the hippocampus and entorhinal cortex, posterior cingulate gyrus, parahippocampal gyrus, temporal gyri: superior, medial and inferior, to predict the conversion of MCI to AD. Magnetic resonance imaging of brain was performed at the baseline visit in 101 patients diagnosed with MCI. Clinic follow-ups were scheduled after 6.12 and 24 months. Amongst 101 patients with MCI, 17 (16.8%) converted into AD within two years of observation. All measured volumes were lower in converters than non-converters. Discriminant analysis was conducted and sensitivity for MCI conversion to AD was 64.7%, specificity 96.4%. 91% of patients were correctly classified (converter or non-converter). Volumetric measurements may help clinicians to predict MCI conversion to AD but due to low sensitivity it cannot be use separately. The study group requires further observation. Copyright © 2015 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Development and experimental verification of an intraocular scattering model

    NASA Astrophysics Data System (ADS)

    Jiang, Chong-Jhih; Jhong, Tian-Siang; Chen, Yi-Chun; Sun, Ching-Cherng

    2011-10-01

    An intraocular scattering model was constructed in human eye model and experimentally verified. According to the biometric data, the volumetric scattering in crystalline lens and diffusion at retina fundus were developed. The scattering parameters of cornea, including particle size and obscuration ratio, were varied to make the veiling luminance of the eye model matching the CIE disability glare general formula. By replacing the transparent lens with a cataractous lens, the disability glare curve of cataracts was generated and compared with that of transparent lenses. The MTF of the intraocular scattering model showed nice correspondence with the data measured by a double-pass experiment.

  11. 2D Echocardiographic Evaluation of Right Ventricular Function Correlates With 3D Volumetric Models in Cardiac Surgery Patients.

    PubMed

    Magunia, Harry; Schmid, Eckhard; Hilberath, Jan N; Häberle, Leo; Grasshoff, Christian; Schlensak, Christian; Rosenberger, Peter; Nowak-Machen, Martina

    2017-04-01

    The early diagnosis and treatment of right ventricular (RV) dysfunction are of critical importance in cardiac surgery patients and impact clinical outcome. Two-dimensional (2D) transesophageal echocardiography (TEE) can be used to evaluate RV function using surrogate parameters due to complex RV geometry. The aim of this study was to evaluate whether the commonly used visual evaluation of RV function and size using 2D TEE correlated with the calculated three-dimensional (3D) volumetric models of RV function. Retrospective study, single center, University Hospital. Seventy complete datasets were studied consisting of 2D 4-chamber view loops (2-3 beats) and the corresponding 4-chamber view 3D full-volume loop of the right ventricle. RV function and RV size of the 2D loops then were assessed retrospectively purely qualitatively individually by 4 clinician echocardiographers certified in perioperative TEE. Corresponding 3D volumetric models calculating RV ejection fraction and RV end-diastolic volumes then were established and compared with the 2D assessments. 2D assessment of RV function correlated with 3D volumetric calculations (Spearman's rho -0.5; p<0.0001). No correlation could be established between 2D estimates of RV size and actual 3D volumetric end-diastolic volumes (Spearman's rho 0.15; p = 0.25). The 2D assessment of right ventricular function based on visual estimation as frequently used in clinical practice appeared to be a reliable method of RV functional evaluation. However, 2D assessment of RV size seemed unreliable and should be used with caution. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Linac-based total body irradiation (TBI) with volumetric modulated arc therapy (VMAT)

    NASA Astrophysics Data System (ADS)

    Tas, B.; Durmus, I. F.; Okumus, A.; Uzel, O. E.

    2017-02-01

    To evaluate dose distribution of Volumetric modulated arc therapy (VMAT) planning tecnique using Versa HD® lineer accelerator to deliver Total Body Irradiation (TBI) on the coach. Eight TBI patient's Treatment Planning System (TPS) were performed with dual arc VMAT for each patient. The VMAT-TBI consisted of three isocentres and three dual overlapping arcs. The prescribed dose was 12 Gy. Mean dose to lung and kidney were restricted less than 10 Gy and max. dose to lens were restricted less than 6 Gy. The plans were verified using 2D array and ion chamber. The comparison between calculation and measurement were made by γ-index analysis and absolute dose. An average total delivery time was determined 923±34 seconds and an average MU was determined 2614±228 MUs for dual arc VMAT. Mean dose to lungs was 9.7±0.2 Gy, mean dose to kidneys was 8.8±0.3 Gy, max. dose to lens was 5.5±0.3 Gy and max. dose was 14.6±0.3 Gy, HI of PTV was 1.13±0.2, mean dose to PTV was 12.6±1.5 Gy and mean γ-index pass rate was %97.1±1.9. The results show that the tecnique for TBI using VMAT on the treatment coach is feasible.

  13. Experimental determination of group flux control coefficients in metabolic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, T.W.; Shimizu, Hiroshi; Stephanopoulos, G.

    1998-04-20

    Grouping of reactions around key metabolite branch points can facilitate the study of metabolic control of complex metabolic networks. This top-down Metabolic Control Analysis is exemplified through the introduction of group control coefficients whose magnitudes provide a measure of the relative impact of each reaction group on the overall network flux, as well as on the overall network stability, following enzymatic amplification. In this article, the authors demonstrate the application of previously developed theory to the determination of group flux control coefficients. Experimental data for the changes in metabolic fluxes obtained in response to the introduction of six different environmentalmore » perturbations are used to determine the group flux control coefficients for three reaction groups formed around the phosphoenolpyruvate/pyruvate branch point. The consistency of the obtained group flux control coefficient estimates is systematically analyzed to ensure that all necessary conditions are satisfied. The magnitudes of the determined control coefficients suggest that the control of lysine production flux in Corynebacterium glutamicum cells at a growth base state resides within the lysine biosynthetic pathway that begins with the PEP/PYR carboxylation anaplorotic pathway.« less

  14. Experimental and molecular dynamics simulation study of the sublimation energetics of cyclopentadienyltricarbonylmanganese (Cymantrene).

    PubMed

    Picciochi, Ricardo; Canongia Lopes, José N; Diogo, Hermínio P; Minas da Piedade, Manuel E

    2008-10-16

    The standard molar enthalpy of sublimation of monoclinic cyclopentadienyltricarbonylmanganese, Mn(eta (5)-C 5H 5)(CO) 3, at 298.15 K, was determined as Delta sub H m (o)[Mn(eta (5)-C 5H 5)(CO) 3] = 75.97 +/- 0.37 kJ x mol (-1) from Knudsen effusion and Calvet-drop microcalorimetry measurements, thus considerably improving the very large inaccuracy (>10 kJ x mol (-1)) of the published data. The obtained value was used to assess the extension of the OPLS-based all-atom force field we previously developed for iron metallocenes to manganese organometallic compounds. The modified force field was able to reproduce the volumetric properties (density and unit-cell volume) of crystalline Mn(eta (5)-C 5H 5)(CO) 3 with a deviation of 0.6% and the experimentally determined enthalpy of sublimation with an accuracy of 1 kJ x mol (-1). The interaction (epsilon) and atomic-diameter (sigma) parameters of the Lennard-Jones (12-6) potential function used to calculate dispersion contributions within the framework of the force field were found to be transferable from iron to manganese.

  15. Predictive Utility of Marketed Volumetric Software Tools in Subjects at Risk for Alzheimer Disease: Do Regions Outside the Hippocampus Matter?

    PubMed

    Tanpitukpongse, T P; Mazurowski, M A; Ikhena, J; Petrella, J R

    2017-03-01

    Alzheimer disease is a prevalent neurodegenerative disease. Computer assessment of brain atrophy patterns can help predict conversion to Alzheimer disease. Our aim was to assess the prognostic efficacy of individual-versus-combined regional volumetrics in 2 commercially available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer disease. Data were obtained through the Alzheimer's Disease Neuroimaging Initiative. One hundred ninety-two subjects (mean age, 74.8 years; 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1-weighted MR imaging sequences at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant and Neuroreader. Receiver operating characteristic curves assessing the prognostic efficacy of each software package were generated by using a univariable approach using individual regional brain volumes and 2 multivariable approaches (multiple regression and random forest), combining multiple volumes. On univariable analysis of 11 NeuroQuant and 11 Neuroreader regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69, NeuroQuant; 0.68, Neuroreader) and was not significantly different ( P > .05) between packages. Multivariable analysis did not increase the area under the curve for either package (0.63, logistic regression; 0.60, random forest NeuroQuant; 0.65, logistic regression; 0.62, random forest Neuroreader). Of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer disease at 3-year follow-up. Combining volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in mild cognitive impairment, combining such tools with demographic and other biomarker measures, are justified in using hippocampal volume as

  16. A Tourette-like syndrome following cardiopulmonary bypass and hypothermia: MRI volumetric measurements.

    PubMed

    Singer, H S; Dela Cruz, P S; Abrams, M T; Bean, S C; Reiss, A L

    1997-07-01

    We present the case of an adolescent boy who developed a variety of simple and complex motor and vocal tics (Tourette-like syndrome), along with inattentiveness and obsessive-compulsive behaviors after cardiac surgery with cardiopulmonary bypass and profound hypothermia. A single photon emission computed tomography study 2 months after surgery showed reduced uptake in the left hemisphere and 2 years later a perfusion defect in the basal ganglia. Serial magnetic resonance imaging (MRI) studies were normal. Volumetric MRI studies were obtained 4 years after surgery and compared with published values for normal individuals and children with Tourette syndrome (TS), including subsets matched for age, sex, and handedness. Measurement of basal ganglia structures showed a right-dominant asymmetry of the caudate and putamen, in part similar to findings previously reported in patients with TS. Other volumetric abnormalities included a > 2-SD reduction of cortical gray matter, a small decrease of total cerebral volume, and increase in cerebral white matter. Although a variety of neurological problems may occur after cardiopulmonary bypass, to our knowledge this case represents the first report of a chronic tic disorder following cardiac surgery with cardiopulmonary bypass and hypothermia.

  17. Disorder-specific volumetric brain difference in adolescent major depressive disorder and bipolar depression.

    PubMed

    MacMaster, Frank P; Carrey, Normand; Langevin, Lisa Marie; Jaworska, Natalia; Crawford, Susan

    2014-03-01

    Structural abnormalities in frontal, limbic and subcortical regions have been noted in adults with both major depressive disorder (MDD) and bipolar disorder (BD). In the current study, we examined regional brain morphology in youth with MDD and BD as compared to controls. Regional brain volumes were measured in 32 MDD subjects (15.7 ± 2.1 years), 14 BD subjects (16.0 ± 2.4 years) and 22 healthy controls (16.0 ± 2.8 years) using magnetic resonance imaging (MRI). Regions of interest included the hippocampus, dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), caudate, putamen and thalamus. Volumetric differences between groups were significant (F26,80 = 1.80, p = 0.02). Post-hoc analyses indicated that individuals with MDD showed reduced left hippocampus volumes (p = 0.048) as well as right ACC white and gray matter volumes (p = 0.003; p = 0.01) compared to controls. BD participants also displayed reduced left hippocampal and right/left putamen volumes compared to controls (p < 0.001; p = 0.015; p = 0.046 respectively). Interestingly, right and left ACC white matter volumes were smaller in MDD than in BD participants (p = 0.019; p = 0.045 respectively). No volumetric group differences were observed for the DLPFC and thalamus. Discriminant analysis was able to correctly classify 81.0 % of subjects as having BD or as MDD based on imaging data. Confirmation and extension of our findings requires larger sample sizes. Our findings provide new evidence of distinct, specific regional brain volumetric differences between MDD and BD that may be used to distinguish the two disorders.

  18. The fractional derivative Kelvin–Voigt model of viscoelasticity with and without volumetric relaxation

    NASA Astrophysics Data System (ADS)

    Rossikhin, Yu A.; Shitikova, M. V.

    2018-04-01

    The fractional derivative Kelvin–Voigt model of viscoelasticity involving the time-dependent Poisson’s operator has been studied not only for the case of a time-independent bulk modulus, but also when the volumetric relaxation is taken into account. It has been shown that such a model could describe the features of auxetic materials.

  19. Volumetric magnetic resonance imaging evidence of bilateral hippocampal atrophy in mesial temporal lobe epilepsy.

    PubMed

    Quigg, M; Bertram, E H; Jackson, T; Laws, E

    1997-05-01

    We measured absolute volumes and volume differences of hippocampi in patients with mesial temporal lobe epilepsy (MTLE) using volumetric magnetic resonance imaging (MRI) to determine the extent of bilateral atrophy in MTLE and to relate hippocampal volumes (HV) to outcome of temporal lobectomy. HV and hippocampal differences (HD) were measured in 40 patients with MTLE determined by pathology of hippocampal sclerosis (HS) and compared with those of age-matched controls. Results were matched with surgical outcome. Hippocampi contralateral to lobectomy (right hippocampi 2.96 +/- 0.49 cm3, left 3.14 +/- 0.51 cm3) were significantly smaller than those of controls (right hippocampi 3.73 +/- 0.52 cm3, left 3.60 +/- 0.51 cm3) but were significantly larger than hippocampi ipsilateral to lobectomy (right hippocampi 2.63 +/- 0.61 cm3, 2.18 cm3) as compared across groups by analysis of variance (ANOVA: F = 27.2, p < 0.0001). The smaller hippocampus was ipsilateral to lobectomy in 39 of 40 cases. Seven of 40 MTLE patients (18%) had bilateral atrophy, defined by volumes of each hippocampi 2 SD lower than control means. Surgical outcome was independent of hippocampal asymmetry and bilateral atrophy measured by chi-square and Fisher's exact tests. We determined that most patients with MTLE have some degree of bilateral, asymmetric hippocampal pathology. However, asymmetry and bilateral atrophy have no clear relation to surgical outcome.

  20. Direct biomechanical modeling of trabecular bone using a nonlinear manifold-based volumetric representation

    NASA Astrophysics Data System (ADS)

    Jin, Dakai; Lu, Jia; Zhang, Xiaoliu; Chen, Cheng; Bai, ErWei; Saha, Punam K.

    2017-03-01

    Osteoporosis is associated with increased fracture risk. Recent advancement in the area of in vivo imaging allows segmentation of trabecular bone (TB) microstructures, which is a known key determinant of bone strength and fracture risk. An accurate biomechanical modelling of TB micro-architecture provides a comprehensive summary measure of bone strength and fracture risk. In this paper, a new direct TB biomechanical modelling method using nonlinear manifold-based volumetric reconstruction of trabecular network is presented. It is accomplished in two sequential modules. The first module reconstructs a nonlinear manifold-based volumetric representation of TB networks from three-dimensional digital images. Specifically, it starts with the fuzzy digital segmentation of a TB network, and computes its surface and curve skeletons. An individual trabecula is identified as a topological segment in the curve skeleton. Using geometric analysis, smoothing and optimization techniques, the algorithm generates smooth, curved, and continuous representations of individual trabeculae glued at their junctions. Also, the method generates a geometrically consistent TB volume at junctions. In the second module, a direct computational biomechanical stress-strain analysis is applied on the reconstructed TB volume to predict mechanical measures. The accuracy of the method was examined using micro-CT imaging of cadaveric distal tibia specimens (N = 12). A high linear correlation (r = 0.95) between TB volume computed using the new manifold-modelling algorithm and that directly derived from the voxel-based micro-CT images was observed. Young's modulus (YM) was computed using direct mechanical analysis on the TB manifold-model over a cubical volume of interest (VOI), and its correlation with the YM, computed using micro-CT based conventional finite-element analysis over the same VOI, was examined. A moderate linear correlation (r = 0.77) was observed between the two YM measures. This

  1. Integration of platinum nanoparticles with a volumetric bar-chart chip for biomarker assays.

    PubMed

    Song, Yujun; Xia, Xuefeng; Wu, Xifeng; Wang, Ping; Qin, Lidong

    2014-11-10

    Platinum nanoparticles (PtNPs) efficiently catalyze the transformation of H2 O2 into oxygen gas. However, owing to the lack of an efficient approach or device that can measure the produced oxygen gas, the catalytic reaction has never been used for diagnostic applications. Microfluidics technology provides a platform that meets these requirements. The volumetric bar-chart chip (V-Chip) volumetrically measures the production of oxygen gas by PtNPs and can be integrated with ELISA technology to provide visible and quantitative readouts without expensive instrumentation or complicated data processing. Herein we show that PtNPs outperform catalase with respect to stability at high H2 O2 concentrations or temperatures or in long-term reactions, and are resistant to most catalase inhibitors. We also show that the catalase-like activity of PtNPs can be used in combination with the V-Chip to sensitively and specifically detect cancer biomarkers both in serum and on the cell surface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Massively parallel implementation of 3D-RISM calculation with volumetric 3D-FFT.

    PubMed

    Maruyama, Yutaka; Yoshida, Norio; Tadano, Hiroto; Takahashi, Daisuke; Sato, Mitsuhisa; Hirata, Fumio

    2014-07-05

    A new three-dimensional reference interaction site model (3D-RISM) program for massively parallel machines combined with the volumetric 3D fast Fourier transform (3D-FFT) was developed, and tested on the RIKEN K supercomputer. The ordinary parallel 3D-RISM program has a limitation on the number of parallelizations because of the limitations of the slab-type 3D-FFT. The volumetric 3D-FFT relieves this limitation drastically. We tested the 3D-RISM calculation on the large and fine calculation cell (2048(3) grid points) on 16,384 nodes, each having eight CPU cores. The new 3D-RISM program achieved excellent scalability to the parallelization, running on the RIKEN K supercomputer. As a benchmark application, we employed the program, combined with molecular dynamics simulation, to analyze the oligomerization process of chymotrypsin Inhibitor 2 mutant. The results demonstrate that the massive parallel 3D-RISM program is effective to analyze the hydration properties of the large biomolecular systems. Copyright © 2014 Wiley Periodicals, Inc.

  3. Correction of Altitude-Induced Changes in Performance of the Volumetric Diffusive Respirator

    DTIC Science & Technology

    2017-04-05

    to a plateau pressure. The positive pressure delivery of each percussive pulse is followed by a passive fall in pressure as the spring moves the ...AFRL-SA-WP-SR-2017-0007 Correction of Altitude- Induced Changes in Performance of the Volumetric Diffusive Respirator Thomas...Blakeman, MSc RRT April 2017 Air Force Research Laboratory 711th Human Performance Wing U.S. Air Force School of Aerospace

  4. A genetic meta-algorithm-assisted inversion approach: hydrogeological study for the determination of volumetric rock properties and matrix and fluid parameters in unsaturated formations

    NASA Astrophysics Data System (ADS)

    Szabó, Norbert Péter

    2018-03-01

    An evolutionary inversion approach is suggested for the interpretation of nuclear and resistivity logs measured by direct-push tools in shallow unsaturated sediments. The efficiency of formation evaluation is improved by estimating simultaneously (1) the petrophysical properties that vary rapidly along a drill hole with depth and (2) the zone parameters that can be treated as constant, in one inversion procedure. In the workflow, the fractional volumes of water, air, matrix and clay are estimated in adjacent depths by linearized inversion, whereas the clay and matrix properties are updated using a float-encoded genetic meta-algorithm. The proposed inversion method provides an objective estimate of the zone parameters that appear in the tool response equations applied to solve the forward problem, which can significantly increase the reliability of the petrophysical model as opposed to setting these parameters arbitrarily. The global optimization meta-algorithm not only assures the best fit between the measured and calculated data but also gives a reliable solution, practically independent of the initial model, as laboratory data are unnecessary in the inversion procedure. The feasibility test uses engineering geophysical sounding logs observed in an unsaturated loessy-sandy formation in Hungary. The multi-borehole extension of the inversion technique is developed to determine the petrophysical properties and their estimation errors along a profile of drill holes. The genetic meta-algorithmic inversion method is recommended for hydrogeophysical logging applications of various kinds to automatically extract the volumetric ratios of rock and fluid constituents as well as the most important zone parameters in a reliable inversion procedure.

  5. High sensitive volumetric imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography

    NASA Astrophysics Data System (ADS)

    Zhi, Zhongwei; Jung, Yeongri; Jia, Yali; An, Lin; Wang, Ruikang K.

    2011-03-01

    We present a non-invasive, label-free imaging technique called Ultrahigh Sensitive Optical Microangiography (UHSOMAG) for high sensitive volumetric imaging of renal microcirculation. The UHS-OMAG imaging system is based on spectral domain optical coherence tomography (SD-OCT), which uses a 47000 A-line scan rate CCD camera to perform an imaging speed of 150 frames per second that takes only ~7 seconds to acquire a 3D image. The technique, capable of measuring slow blood flow down to 4 um/s, is sensitive enough to image capillary networks, such as peritubular capillaries and glomerulus within renal cortex. We show superior performance of UHS-OMAG in providing depthresolved volumetric images of rich renal microcirculation. We monitored the dynamics of renal microvasculature during renal ischemia and reperfusion. Obvious reduction of renal microvascular density due to renal ischemia was visualized and quantitatively analyzed. This technique can be helpful for the assessment of chronic kidney disease (CKD) which relates to abnormal microvasculature.

  6. A volumetric technique for fossil body mass estimation applied to Australopithecus afarensis.

    PubMed

    Brassey, Charlotte A; O'Mahoney, Thomas G; Chamberlain, Andrew T; Sellers, William I

    2018-02-01

    Fossil body mass estimation is a well established practice within the field of physical anthropology. Previous studies have relied upon traditional allometric approaches, in which the relationship between one/several skeletal dimensions and body mass in a range of modern taxa is used in a predictive capacity. The lack of relatively complete skeletons has thus far limited the potential application of alternative mass estimation techniques, such as volumetric reconstruction, to fossil hominins. Yet across vertebrate paleontology more broadly, novel volumetric approaches are resulting in predicted values for fossil body mass very different to those estimated by traditional allometry. Here we present a new digital reconstruction of Australopithecus afarensis (A.L. 288-1; 'Lucy') and a convex hull-based volumetric estimate of body mass. The technique relies upon identifying a predictable relationship between the 'shrink-wrapped' volume of the skeleton and known body mass in a range of modern taxa, and subsequent application to an articulated model of the fossil taxa of interest. Our calibration dataset comprises whole body computed tomography (CT) scans of 15 species of modern primate. The resulting predictive model is characterized by a high correlation coefficient (r 2  = 0.988) and a percentage standard error of 20%, and performs well when applied to modern individuals of known body mass. Application of the convex hull technique to A. afarensis results in a relatively low body mass estimate of 20.4 kg (95% prediction interval 13.5-30.9 kg). A sensitivity analysis on the articulation of the chest region highlights the sensitivity of our approach to the reconstruction of the trunk, and the incomplete nature of the preserved ribcage may explain the low values for predicted body mass here. We suggest that the heaviest of previous estimates would require the thorax to be expanded to an unlikely extent, yet this can only be properly tested when more complete fossils

  7. Improved Second-Generation 3-D Volumetric Display System. Revision 2

    DTIC Science & Technology

    1998-10-01

    computer control, uses infrared lasers to address points within a rare-earth-infused solid glass cube. Already, simple animated computer-generated images...Volumetric Display System permits images to be displayed in a three- dimensional format that can be observed without the use of special glasses . Its...MM 120 nm 60 mm nI POLARIZING I $-"• -’’""BEAMSPLI’i-ER ) 4P40-MHz 50-MHz BW PLRZN i TeO2 MODULATORS TeO2 DEFLECTORS Figure 1-4. NEOS four-channel

  8. An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images

    PubMed Central

    Mishra, Pankaj; Li, Ruijiang; Mak, Raymond H.; Rottmann, Joerg; Bryant, Jonathan H.; Williams, Christopher L.; Berbeco, Ross I.; Lewis, John H.

    2014-01-01

    Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculated through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung motion model

  9. An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Pankaj, E-mail: pankaj.mishra@varian.com; Mak, Raymond H.; Rottmann, Joerg

    2014-08-15

    Purpose: In this work the authors develop and investigate the feasibility of a method to estimate time-varying volumetric images from individual MV cine electronic portal image device (EPID) images. Methods: The authors adopt a two-step approach to time-varying volumetric image estimation from a single cine EPID image. In the first step, a patient-specific motion model is constructed from 4DCT. In the second step, parameters in the motion model are tuned according to the information in the EPID image. The patient-specific motion model is based on a compact representation of lung motion represented in displacement vector fields (DVFs). DVFs are calculatedmore » through deformable image registration (DIR) of a reference 4DCT phase image (typically peak-exhale) to a set of 4DCT images corresponding to different phases of a breathing cycle. The salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). PCA decouples the spatial and temporal components of the DVFs. Spatial information is represented in eigenvectors and the temporal information is represented by eigen-coefficients. To generate a new volumetric image, the eigen-coefficients are updated via cost function optimization based on digitally reconstructed radiographs and projection images. The updated eigen-coefficients are then multiplied with the eigenvectors to obtain updated DVFs that, in turn, give the volumetric image corresponding to the cine EPID image. Results: The algorithm was tested on (1) Eight digital eXtended CArdiac-Torso phantom datasets based on different irregular patient breathing patterns and (2) patient cine EPID images acquired during SBRT treatments. The root-mean-squared tumor localization error is (0.73 ± 0.63 mm) for the XCAT data and (0.90 ± 0.65 mm) for the patient data. Conclusions: The authors introduced a novel method of estimating volumetric time-varying images from single cine EPID images and a PCA-based lung

  10. Volumetric dispenser for small particles from plural sources

    DOEpatents

    Bradley, R.A.; Miller, W.H.; Sease, J.D.

    1975-12-16

    Apparatus is described for rapidly and accurately dispensing measured volumes of small particles from a supply hopper. The apparatus includes an adjustable, vertically oriented measuring tube and orifice member defining the volume to be dispensed, a ball plug valve for selectively closing the bottom end of the orifice member, and a compression valve for selectively closing the top end of the measuring tube. A supply hopper is disposed above and in gravity flow communication with the measuring tube. Properly sequenced opening and closing of the two valves provides accurate volumetric discharge through the ball plug valve. A dispensing system is described wherein several appropriately sized measuring tubes, orifice members, and associated valves are arranged to operate contemporaneously to facilitate blending of different particles.

  11. Technical Note: Using experimentally determined proton spot scanning timing parameters to accurately model beam delivery time.

    PubMed

    Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin

    2017-10-01

    To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (T BDT ) were compared with the BDTs recorded in the treatment delivery log files (T Log ): ∆t = T Log -T BDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may

  12. Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Zhang, S. L.; van der Laan, G.; Hesjedal, T.

    2017-02-01

    The mathematical concept of topology has brought about significant advantages that allow for a fundamental understanding of the underlying physics of a system. In magnetism, the topology of spin order manifests itself in the topological winding number which plays a pivotal role for the determination of the emergent properties of a system. However, the direct experimental determination of the topological winding number of a magnetically ordered system remains elusive. Here, we present a direct relationship between the topological winding number of the spin texture and the polarized resonant X-ray scattering process. This relationship provides a one-to-one correspondence between the measured scattering signal and the winding number. We demonstrate that the exact topological quantities of the skyrmion material Cu2OSeO3 can be directly experimentally determined this way. This technique has the potential to be applicable to a wide range of materials, allowing for a direct determination of their topological properties.

  13. Experimental determination of the turbulence in a liquid rocket combustion chamber

    NASA Technical Reports Server (NTRS)

    Hara, J.; Smith, L. O.; Partus, F. P.

    1972-01-01

    The intensity of turbulence and the Lagrangian correlation coefficient for a liquid rocket combustion chamber were determined experimentally using the tracer gas diffusion method. The results indicate that the turbulent diffusion process can be adequately modeled by the one-dimensional Taylor theory; however, the numerical values show significant disagreement with previously accepted values. The intensity of turbulence is higher by a factor of about two, while the Lagrangian correlation coefficient which was assumed to be unity in the past is much less than unity.

  14. SU-F-J-54: Towards Real-Time Volumetric Imaging Using the Treatment Beam and KV Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, M; Rozario, T; Liu, A

    Purpose: Existing real-time imaging uses dual (orthogonal) kV beam fluoroscopies and may result in significant amount of extra radiation to patients, especially for prolonged treatment cases. In addition, kV projections only provide 2D information, which is insufficient for in vivo dose reconstruction. We propose real-time volumetric imaging using prior knowledge of pre-treatment 4D images and real-time 2D transit data of treatment beam and kV beam. Methods: The pre-treatment multi-snapshot volumetric images are used to simulate 2D projections of both the treatment beam and kV beam, respectively, for each treatment field defined by the control point. During radiation delivery, the transitmore » signals acquired by the electronic portal image device (EPID) are processed for every projection and compared with pre-calculation by cross-correlation for phase matching and thus 3D snapshot identification or real-time volumetric imaging. The data processing involves taking logarithmic ratios of EPID signals with respect to the air scan to reduce modeling uncertainties in head scatter fluence and EPID response. Simulated 2D projections are also used to pre-calculate confidence levels in phase matching. Treatment beam projections that have a low confidence level either in pre-calculation or real-time acquisition will trigger kV beams so that complementary information can be exploited. In case both the treatment beam and kV beam return low confidence in phase matching, a predicted phase based on linear regression will be generated. Results: Simulation studies indicated treatment beams provide sufficient confidence in phase matching for most cases. At times of low confidence from treatment beams, kV imaging provides sufficient confidence in phase matching due to its complementary configuration. Conclusion: The proposed real-time volumetric imaging utilizes the treatment beam and triggers kV beams for complementary information when the treatment beam along does not provide

  15. Volumetric strain in relation to particle displacements for body and surface waves in a general viscoelastic half-space

    USGS Publications Warehouse

    Borcherdt, R.D.

    1988-01-01

    Dilatational earth strain, associated with the radiation fields for several hundred local, regional, and teleseismic earthquakes, has been recorded over an extended bandwidth and dynamic range at four borehole sites near the San Andreas fault, CA. The general theory of linear viscoelasticity is applied to account for anelasticity of the near-surface materials and to provide a mathematical basis for interpretation of seismic radiation fields as detected simultaneously by co-located volumetric strain meters and seismometers. The general theory is applied to describe volumetric strain and displacement for general (homogeneous or inhomogeneous) P and S waves in an anelastic whole space. Solutions to the free-surface reflection problems for incident general P and S-I waves are used to evaluate the effect of the free surface on observations from co-located sensors. Corresponding expressions are derived for a Rayleigh-type surface wave on a linear viscoelastic half-space. The theory predicts a number of anelastic wave field characteristics that can be inferred from observation of volumetric strains and displacement fields as detected by co-located sensors that cannot be inferred from either sensor alone. -from Author

  16. Determination of a kinetic region in catalytic oxidation of carbon monoxide

    NASA Technical Reports Server (NTRS)

    Sultanov, M. Y.; Sadykhova, K. A.

    1981-01-01

    The catalytic activity of cupric oxide activated with ceric oxide in a braod interval of volumetric velocities was investigated. It was determined that for practical catalysts used in the diffuse region, dilution of the active substance by an inert diluent increases the effectiveness of the catalysts.

  17. Volumetric differences suggest involvement of cerebellum and brainstem in chronic migraine.

    PubMed

    Bilgiç, Başar; Kocaman, Gülşen; Arslan, Ali Bilgin; Noyan, Handan; Sherifov, Resul; Alkan, Alpay; Asil, Talip; Parman, Yeşim; Baykan, Betül

    2016-04-01

    Chronic migraine (CM) is a disabling neurologic condition that often evolves from episodic migraine. There has been mounting evidence on the volumetric changes detected by magnetic resonance imaging (MRI) technique in migraineurs. These studies mainly focused on episodic migraine patients and less is known about the differences in CM patients. A total of 24 CM patients and 24 healthy control individuals (all females) were included in this study. All participants underwent neurological examination and MRI. High-resolution anatomical MRI images were processed with an automated segmentation method (FreeSurfer). White-matter abnormalities of the brain were also evaluated with the Age-Related White-Matter-Changes Scale. The volumes of the cerebellum and brainstem were found to be smaller in CM patients compared to healthy controls. White-matter abnormalities were also found in CM patients, specifically in the bilateral parieto-occipital areas. There was no correlation between the clinical variables and volume decrease in these regions. CM patients showed significant volume differences in infratentorial areas and white-matter abnormalities in the posterior part of the brain. It is currently unclear whether the structural brain changes seen in migraine patients are the cause or the result of headaches. Longitudinal volumetric neuroimaging studies with larger groups, especially on the chronification of migraine, are needed to shed light on this topic. © International Headache Society 2015.

  18. What are the potential advantages and disadvantages of volumetric CT scanning?

    PubMed

    Voros, Szilard

    2009-01-01

    After the introduction and dissemination of 64-slice multislice computed tomography systems, cardiovascular CT has arrived at a crossroad, and different philosophies lead down different paths of technologic development. Increased number of detector rows in the z-axis led to the introduction of dynamic, volumetric scanning of the heart and allows for whole-organ imaging. Dynamic, volumetric "whole-organ" scanning significantly reduces image acquisition time; "single-beat whole-heart imaging" results in improved image quality and reduced radiation exposure and reduced contrast dose. It eliminates helical and pitch artifacts and allows for simultaneous imaging of the base and apex of the heart. Beyond coronary arterial luminal imaging, such innovations open up the opportunity for myocardial perfusion and viability imaging and coronary arterial plaque imaging. Dual-source technology with 2 x-ray tubes placed at 90-degree angles provides heart rate-independent temporal resolution and has the potential for tissue characterization on the basis of different attenuation values at different energy levels. Refined detector technology allows for improved low-contrast resolution and may be beneficial for more detailed evaluation of coronary arterial plaque composition. The clinical benefit of each of these technologies will have to be evaluated in carefully designed clinical trials and in everyday clinical practice. Such combined experience will probably show the relative benefit of each of these philosophies in different patient populations and in different clinical scenarios.

  19. Methods to produce calibration mixtures for anesthetic gas monitors and how to perform volumetric calculations on anesthetic gases.

    PubMed

    Christensen, P L; Nielsen, J; Kann, T

    1992-10-01

    A simple procedure for making calibration mixtures of oxygen and the anesthetic gases isoflurane, enflurane, and halothane is described. One to ten grams of the anesthetic substance is evaporated in a closed, 11,361-cc glass bottle filled with oxygen gas at atmospheric pressure. The carefully mixed gas is used to calibrate anesthetic gas monitors. By comparison of calculated and measured volumetric results it is shown that at atmospheric conditions the volumetric behavior of anesthetic gas mixtures can be described with reasonable accuracy using the ideal gas law. A procedure is described for calculating the deviation from ideal gas behavior in cases in which this is needed.

  20. Feasibility of volumetric MRI-guided high intensity focused ultrasound (MR-HIFU) for painful bone metastases.

    PubMed

    Huisman, Merel; Lam, Mie K; Bartels, Lambertus W; Nijenhuis, Robbert J; Moonen, Chrit T; Knuttel, Floor M; Verkooijen, Helena M; van Vulpen, Marco; van den Bosch, Maurice A

    2014-01-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has recently emerged as an effective treatment option for painful bone metastases. We describe here the first experience with volumetric MR-HIFU for palliative treatment of painful bone metastases and evaluate the technique on three levels: technical feasibility, safety, and initial effectiveness. In this observational cohort study, 11 consecutive patients (7 male and 4 female; median age, 60 years; age range, 53-86 years) underwent 13 treatments for 12 bone metastases. All patients exhibited persistent metastatic bone pain refractory to the standard of care. Patients were asked to rate their worst pain on an 11-point pain scale before treatment, 3 days after treatment, and 1 month after treatment. Complications were monitored. All data were prospectively recorded in the context of routine clinical care. Response was defined as a ≥2-point decrease in pain at the treated site without increase in analgesic intake. Baseline pain scores were compared to pain scores at 3 days and 1 month using the Wilcoxon signed-rank test. For reporting, the STROBE guidelines were followed. No treatment-related major adverse events were observed. At 3 days after volumetric MR-HIFU ablation, pain scores decreased significantly (p = 0.045) and response was observed in a 6/11 (55%) patients. At 1-month follow-up, which was available for nine patients, pain scores decreased significantly compared to baseline (p = 0.028) and 6/9 patients obtained pain response (overall response rate 67% (95% confidence interval (CI) 35%-88%)). This is the first study reporting on the volumetric MR-HIFU ablation for painful bone metastases. No major treatment-related adverse events were observed during follow-up. The results of our study showed that volumetric MR-HIFU ablation for painful bone metastases is technically feasible and can induce pain relief in patients with metastatic bone pain refractory to the standard of

  1. Feasibility of volumetric MRI-guided high intensity focused ultrasound (MR-HIFU) for painful bone metastases

    PubMed Central

    2014-01-01

    Background Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has recently emerged as an effective treatment option for painful bone metastases. We describe here the first experience with volumetric MR-HIFU for palliative treatment of painful bone metastases and evaluate the technique on three levels: technical feasibility, safety, and initial effectiveness. Methods In this observational cohort study, 11 consecutive patients (7 male and 4 female; median age, 60 years; age range, 53–86 years) underwent 13 treatments for 12 bone metastases. All patients exhibited persistent metastatic bone pain refractory to the standard of care. Patients were asked to rate their worst pain on an 11-point pain scale before treatment, 3 days after treatment, and 1 month after treatment. Complications were monitored. All data were prospectively recorded in the context of routine clinical care. Response was defined as a ≥2-point decrease in pain at the treated site without increase in analgesic intake. Baseline pain scores were compared to pain scores at 3 days and 1 month using the Wilcoxon signed-rank test. For reporting, the STROBE guidelines were followed. Results No treatment-related major adverse events were observed. At 3 days after volumetric MR-HIFU ablation, pain scores decreased significantly (p = 0.045) and response was observed in a 6/11 (55%) patients. At 1-month follow-up, which was available for nine patients, pain scores decreased significantly compared to baseline (p = 0.028) and 6/9 patients obtained pain response (overall response rate 67% (95% confidence interval (CI) 35%–88%)). Conclusions This is the first study reporting on the volumetric MR-HIFU ablation for painful bone metastases. No major treatment-related adverse events were observed during follow-up. The results of our study showed that volumetric MR-HIFU ablation for painful bone metastases is technically feasible and can induce pain relief in patients with metastatic

  2. Volumetric imaging of fast biological dynamics in deep tissue via wavefront engineering

    NASA Astrophysics Data System (ADS)

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-03-01

    To reveal fast biological dynamics in deep tissue, we combine two wavefront engineering methods that were developed in our laboratory, namely optical phase-locked ultrasound lens (OPLUL) based volumetric imaging and iterative multiphoton adaptive compensation technique (IMPACT). OPLUL is used to generate oscillating defocusing wavefront for fast axial scanning, and IMPACT is used to compensate the wavefront distortions for deep tissue imaging. We show its promising applications in neuroscience and immunology.

  3. Cardiac imaging with multi-sector data acquisition in volumetric CT: variation of effective temporal resolution and its potential clinical consequences

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Hsieh, Jiang; Taha, Basel H.; Vass, Melissa L.; Seamans, John L.; Okerlund, Darin R.

    2009-02-01

    With increasing longitudinal detector dimension available in diagnostic volumetric CT, step-and-shoot scan is becoming popular for cardiac imaging. In comparison to helical scan, step-and-shoot scan decouples patient table movement from cardiac gating/triggering, which facilitates the cardiac imaging via multi-sector data acquisition, as well as the administration of inter-cycle heart beat variation (arrhythmia) and radiation dose efficiency. Ideally, a multi-sector data acquisition can improve temporal resolution at a factor the same as the number of sectors (best scenario). In reality, however, the effective temporal resolution is jointly determined by gantry rotation speed and patient heart beat rate, which may significantly lower than the ideal or no improvement (worst scenario). Hence, it is clinically relevant to investigate the behavior of effective temporal resolution in cardiac imaging with multi-sector data acquisition. In this study, a 5-second cine scan of a porcine heart, which cascades 6 porcine cardiac cycles, is acquired. In addition to theoretical analysis and motion phantom study, the clinical consequences due to the effective temporal resolution variation are evaluated qualitative or quantitatively. By employing a 2-sector image reconstruction strategy, a total of 15 (the permutation of P(6, 2)) cases between the best and worst scenarios are studied, providing informative guidance for the design and optimization of CT cardiac imaging in volumetric CT with multi-sector data acquisition.

  4. [Automated procedure for volumetric measurement of metastases: estimation of tumor burden].

    PubMed

    Fabel, M; Bolte, H

    2008-09-01

    Cancer is a common and increasing disease worldwide. Therapy monitoring in oncologic patient care requires accurate and reliable measurement methods for evaluation of the tumor burden. RECIST (response evaluation criteria in solid tumors) and WHO criteria are still the current standards for therapy response evaluation with inherent disadvantages due to considerable interobserver variation of the manual diameter estimations. Volumetric analysis of e.g. lung, liver and lymph node metastases, promises to be a more accurate, precise and objective method for tumor burden estimation.

  5. The experimental determination of atmospheric absorption from aircraft acoustic flight tests

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Oncley, P. B.

    1971-01-01

    A method for determining atmospheric absorption coefficients from acoustic flight test data is presented. Measurements from five series of acoustic flight tests were included in the study. The number of individual flights totaled 24: six Boeing 707 flights performed in May 1969 in connection with the turbofan nacelle modification program, eight flights from Boeing tests conducted during the same period, and 10 flights of the Boeing 747 airplane. The effects of errors in acoustic, meteorological, and aircraft performance and position measurements are discussed. Tabular data of the estimated sample variance of the data for each test are given for source directivity angles from 75 deg to 120 deg and each 1/3-octave frequency band. Graphic comparisons are made of absorption coefficients derived from ARP 866, using atmospheric profile data, with absorption coefficients determined by the experimental method described in the report.

  6. Elucidating the DEP phenomena using a volumetric polarization approach with consideration of the electric double layer

    PubMed Central

    Brcka, Jozef; Faguet, Jacques; Zhang, Guigen

    2017-01-01

    Dielectrophoretic (DEP) phenomena have been explored to great success for various applications like particle sorting and separation. To elucidate the underlying mechanism and quantify the DEP force experienced by particles, the point-dipole and Maxwell Stress Tensor (MST) methods are commonly used. However, both methods exhibit their own limitations. For example, the point-dipole method is unable to fully capture the essence of particle-particle interactions and the MST method is not suitable for particles of non-homogeneous property. Moreover, both methods fare poorly when it comes to explaining DEP phenomena such as the dependence of crossover frequency on medium conductivity. To address these limitations, the authors have developed a new method, termed volumetric-integration method, with the aid of computational implementation, to reexamine the DEP phenomena, elucidate the governing mechanism, and quantify the DEP force. The effect of an electric double layer (EDL) on particles' crossover behavior is dealt with through consideration of the EDL structure along with surface ionic/molecular adsorption, unlike in other methods, where the EDL is accounted for through simply assigning a surface conductance value to the particles. For validation, by comparing with literature experimental data, the authors show that the new method can quantify the DEP force on not only homogeneous particles but also non-homogeneous ones, and predict particle-particle interactions fairly accurately. Moreover, the authors also show that the predicted dependence of crossover frequency on medium conductivity and particle size agrees very well with experimental measurements. PMID:28396710

  7. Ad Integrum Functional and Volumetric Recovery in Right Lobe Living Donors: Is It Really Complete 1 Year After Donor Hepatectomy?

    PubMed

    Duclos, J; Bhangui, P; Salloum, C; Andreani, P; Saliba, F; Ichai, P; Elmaleh, A; Castaing, D; Azoulay, D

    2016-01-01

    The partial liver's ability to regenerate both as a graft and remnant justifies right lobe (RL) living donor liver transplantation. We studied (using biochemical and radiological parameters) the rate, extent of, and predictors of functional and volumetric recovery of the remnant left liver (RLL) during the first year in 91 consecutive RL donors. Recovery of normal liver function (prothrombin time [PT] ≥70% of normal and total bilirubin [TB] ≤20 µmol/L), liver volumetric recovery, and percentage RLL growth were analyzed. Normal liver function was regained by postoperative day's 7, 30, and 365 in 52%, 86%, and 96% donors, respectively. Similarly, mean liver volumetric recovery was 64%, 71%, and 85%; whereas the percentage liver growth was 85%, 105%, and 146%, respectively. Preoperative PT value (p = 0.01), RLL/total liver volume (TLV) ratio (p = 0.03), middle hepatic vein harvesting (p = 0.02), and postoperative peak TB (p < 0.01) were predictors of early functional recovery, whereas donor age (p = 0.03), RLL/TLV ratio (p = 0.004), and TLV/ body weight ratio (p = 0.02) predicted early volumetric recuperation. One-year post-RL donor hepatectomy, though functional recovery occurs in almost all (96%), donors had incomplete restoration (85%) of preoperative total liver volume. Modifiable predictors of regeneration could help in better and safer donor selection, while continuing to ensure successful recipient outcomes. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  8. SU-F-J-166: Volumetric Spatial Distortions Comparison for 1.5 Tesla Versus 3 Tesla MRI for Gamma Knife Radiosurgery Scans Using Frame Marker Fusion and Co-Registration Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neyman, G

    Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002more » vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB.« less

  9. Validation and refinement of mixture volumetric material properties identified in superpave monitoring project II : phase II.

    DOT National Transportation Integrated Search

    2015-02-01

    This study was initiated to validate and refine mixture volumetric material properties identified in the : Superpave Monitoring Project II. It has been found that differences in performance are primarily controlled : by differences in gradation and r...

  10. Predicting clinical outcomes in chordoma patients receiving immunotherapy: a comparison between volumetric segmentation and RECIST.

    PubMed

    Fenerty, Kathleen E; Folio, Les R; Patronas, Nicholas J; Marté, Jennifer L; Gulley, James L; Heery, Christopher R

    2016-08-23

    The Response Evaluation Criteria in Solid Tumors (RECIST) are the current standard for evaluating disease progression or therapy response in patients with solid tumors. RECIST 1.1 calls for axial, longest-diameter (or perpendicular short axis of lymph nodes) measurements of a maximum of five tumors, which limits clinicians' ability to adequately measure disease burden, especially in patients with irregularly shaped tumors. This is especially problematic in chordoma, a disease for which RECIST does not always adequately capture disease burden because chordoma tumors are typically irregularly shaped and slow-growing. Furthermore, primary chordoma tumors tend to be adjacent to vital structures in the skull or sacrum that, when compressed, lead to significant clinical consequences. Volumetric segmentation is a newer technology that allows tumor burden to be measured in three dimensions on either MR or CT. Here, we compared the ability of RECIST measurements and tumor volumes to predict clinical outcomes in a cohort of 21 chordoma patients receiving immunotherapy. There was a significant difference in radiologic time to progression Kaplan-Meier curves between clinical outcome groups using volumetric segmentation (P = 0.012) but not RECIST (P = 0.38). In several cases, changes in volume were earlier and more sensitive reflections of clinical status. RECIST is a useful evaluation method when obvious changes are occurring in patients with chordoma. However, in many cases, RECIST does not detect small changes, and volumetric assessment was capable of detecting changes and predicting clinical outcome earlier than RECIST. Although this study was small and retrospective, we believe our results warrant further research in this area.

  11. Comparison of experimental and calculated chiroptical spectra for chiral molecular structure determination.

    PubMed

    Polavarapu, Prasad L; Covington, Cody L

    2014-09-01

    For three different chiroptical spectroscopic methods, namely, vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and Raman optical activity (ROA), the measures of similarity of the experimental spectra to the corresponding spectra predicted using quantum chemical theories are summarized. In determining the absolute configuration and/or predominant conformations of chiral molecules, these similarity measures provide numerical estimates of agreement between experimental observations and theoretical predictions. Selected applications illustrating the similarity measures for absorption, circular dichroism, and corresponding dissymmetry factor (DF) spectra, in the case of VCD and ECD, and for Raman, ROA, and circular intensity differential (CID) spectra in the case of ROA, are presented. The analysis of similarity in DF or CID spectra is considered to be much more discerning and accurate than that in absorption (or Raman) and circular dichroism (or ROA) spectra, undertaken individually. © 2014 Wiley Periodicals, Inc.

  12. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems.

    PubMed

    Paynter, Ian; Genest, Daniel; Peri, Francesco; Schaaf, Crystal

    2018-04-06

    Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results.

  13. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems

    PubMed Central

    Genest, Daniel; Peri, Francesco; Schaaf, Crystal

    2018-01-01

    Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results. PMID:29503722

  14. Hydrodynamic Radii of Intrinsically Disordered Proteins Determined from Experimental Polyproline II Propensities

    PubMed Central

    Tomasso, Maria E.; Tarver, Micheal J.; Devarajan, Deepa; Whitten, Steven T.

    2016-01-01

    The properties of disordered proteins are thought to depend on intrinsic conformational propensities for polyproline II (PP II) structure. While intrinsic PP II propensities have been measured for the common biological amino acids in short peptides, the ability of these experimentally determined propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs) has not been established. Presented here are results from molecular simulations of disordered proteins showing that the hydrodynamic radius (R h) can be predicted from experimental PP II propensities with good agreement, even when charge-based considerations are omitted. The simulations demonstrate that R h and chain propensity for PP II structure are linked via a simple power-law scaling relationship, which was tested using the experimental R h of 22 IDPs covering a wide range of peptide lengths, net charge, and sequence composition. Charge effects on R h were found to be generally weak when compared to PP II effects on R h. Results from this study indicate that the hydrodynamic dimensions of IDPs are evidence of considerable sequence-dependent backbone propensities for PP II structure that qualitatively, if not quantitatively, match conformational propensities measured in peptides. PMID:26727467

  15. Considerations on the Analytical Control of Sulfur Traces in Uranium Metal; CONSIDERACIONES SOBRE EL CONTROL ANALITICO DE TRAZAS DE AZUFRE (SULFURO) EN URANIO METAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cellini, R.F.; Sanchez, L.G.

    1956-01-01

    Volumetric and colorimetric determinations of sulfur in uranium were carried out by acid treatment and evaluation of SH/sup 2/. According to the experimental results a discussion of both methods was made. (auth)

  16. Complete Volumetric Decomposition of Individual Trabecular Plates and Rods and Its Morphological Correlations With Anisotropic Elastic Moduli in Human Trabecular Bone

    PubMed Central

    Liu, X Sherry; Sajda, Paul; Saha, Punam K; Wehrli, Felix W; Bevill, Grant; Keaveny, Tony M; Guo, X Edward

    2008-01-01

    Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anisotropic mechanical properties of trabecular bone. Introduction Standard morphological analyses of trabecular architecture lack explicit segmentations of individual trabecular plates and rods. In this study, a complete volumetric decomposition technique was developed to segment trabecular bone microstructure into individual plates and rods. Contributions of trabecular type–associated morphological parameters to the anisotropic elastic moduli of trabecular bone were studied. Materials and Methods Seventy-one human trabecular bone samples from the femoral neck (FN), tibia, and vertebral body (VB) were imaged using μCT or serial milling. Complete volumetric decomposition was applied to segment trabecular bone microstructure into individual plates and rods. The orientation of each individual trabecula was determined, and the axial bone volume fractions (aBV/TV), axially aligned bone volume fraction along each orthotropic axis, were correlated with the elastic moduli. The microstructural type–associated morphological parameters were derived and compared with standard morphological parameters. Their contributions to the anisotropic elastic moduli, calculated by finite element analysis (FEA), were evaluated and compared. Results The distribution of trabecular orientation suggested that longitudinal plates and transverse rods dominate at all three anatomic sites. aBV/TV along each axis, in general, showed a better correlation with the axial elastic modulus (r 2 = 0.95∼0.99) compared with BV/TV (r 2 = 0.93∼0.94). The plate-associated morphological parameters generally showed higher

  17. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone.

    PubMed

    Liu, X Sherry; Sajda, Paul; Saha, Punam K; Wehrli, Felix W; Bevill, Grant; Keaveny, Tony M; Guo, X Edward

    2008-02-01

    Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anisotropic mechanical properties of trabecular bone. Standard morphological analyses of trabecular architecture lack explicit segmentations of individual trabecular plates and rods. In this study, a complete volumetric decomposition technique was developed to segment trabecular bone microstructure into individual plates and rods. Contributions of trabecular type-associated morphological parameters to the anisotropic elastic moduli of trabecular bone were studied. Seventy-one human trabecular bone samples from the femoral neck (FN), tibia, and vertebral body (VB) were imaged using muCT or serial milling. Complete volumetric decomposition was applied to segment trabecular bone microstructure into individual plates and rods. The orientation of each individual trabecula was determined, and the axial bone volume fractions (aBV/TV), axially aligned bone volume fraction along each orthotropic axis, were correlated with the elastic moduli. The microstructural type-associated morphological parameters were derived and compared with standard morphological parameters. Their contributions to the anisotropic elastic moduli, calculated by finite element analysis (FEA), were evaluated and compared. The distribution of trabecular orientation suggested that longitudinal plates and transverse rods dominate at all three anatomic sites. aBV/TV along each axis, in general, showed a better correlation with the axial elastic modulus (r(2) = 0.95 approximately 0.99) compared with BV/TV (r(2) = 0.93 approximately 0.94). The plate-associated morphological parameters generally showed higher correlations with the

  18. Volumetric multimodality neural network for brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Silvana Castillo, Laura; Alexandra Daza, Laura; Carlos Rivera, Luis; Arbeláez, Pablo

    2017-11-01

    Brain lesion segmentation is one of the hardest tasks to be solved in computer vision with an emphasis on the medical field. We present a convolutional neural network that produces a semantic segmentation of brain tumors, capable of processing volumetric data along with information from multiple MRI modalities at the same time. This results in the ability to learn from small training datasets and highly imbalanced data. Our method is based on DeepMedic, the state of the art in brain lesion segmentation. We develop a new architecture with more convolutional layers, organized in three parallel pathways with different input resolution, and additional fully connected layers. We tested our method over the 2015 BraTS Challenge dataset, reaching an average dice coefficient of 84%, while the standard DeepMedic implementation reached 74%.

  19. Synthesis of Volumetric Ring Antenna Array for Terrestrial Coverage Pattern

    PubMed Central

    Reyna, Alberto; Panduro, Marco A.; Del Rio Bocio, Carlos

    2014-01-01

    This paper presents a synthesis of a volumetric ring antenna array for a terrestrial coverage pattern. This synthesis regards the spacing among the rings on the planes X-Y, the positions of the rings on the plane X-Z, and uniform and concentric excitations. The optimization is carried out by implementing the particle swarm optimization. The synthesis is compared with previous designs by resulting with proper performance of this geometry to provide an accurate coverage to be applied in satellite applications with a maximum reduction of the antenna hardware as well as the side lobe level reduction. PMID:24701150

  20. Simulation of parameters of hydraulic drive with volumetric type controller

    NASA Astrophysics Data System (ADS)

    Mulyukin, V. L.; Boldyrev, A. V.; Karelin, D. L.; Belousov, A. M.

    2017-09-01

    The article presents a mathematical model of volumetric type hydraulic drive controller that allows to calculate the parameters of forward and reverse motion. According to the results of simulation static characteristics of rod’s speed and the force of the hydraulic cylinder rod were built and the influence of the angle of swash plate of the controller at the characteristics profile is shown. The results analysis showed that the proposed controller allows steplessly adjust the speed□ц of hydraulic cylinder’s rod motion and the force developed on the rod without the use of flow throttling.

  1. Minimum pricing of alcohol versus volumetric taxation: which policy will reduce heavy consumption without adversely affecting light and moderate consumers?

    PubMed

    Sharma, Anurag; Vandenberg, Brian; Hollingsworth, Bruce

    2014-01-01

    We estimate the effect on light, moderate and heavy consumers of alcohol from implementing a minimum unit price for alcohol (MUP) compared with a uniform volumetric tax. We analyse scanner data from a panel survey of demographically representative households (n = 885) collected over a one-year period (24 Jan 2010-22 Jan 2011) in the state of Victoria, Australia, which includes detailed records of each household's off-trade alcohol purchasing. The heaviest consumers (3% of the sample) currently purchase 20% of the total litres of alcohol (LALs), are more likely to purchase cask wine and full strength beer, and pay significantly less on average per standard drink compared to the lightest consumers (A$1.31 [95% CI 1.20-1.41] compared to $2.21 [95% CI 2.10-2.31]). Applying a MUP of A$1 per standard drink has a greater effect on reducing the mean annual volume of alcohol purchased by the heaviest consumers of wine (15.78 LALs [95% CI 14.86-16.69]) and beer (1.85 LALs [95% CI 1.64-2.05]) compared to a uniform volumetric tax (9.56 LALs [95% CI 9.10-10.01] and 0.49 LALs [95% CI 0.46-0.41], respectively). A MUP results in smaller increases in the annual cost for the heaviest consumers of wine ($393.60 [95% CI 374.19-413.00]) and beer ($108.26 [95% CI 94.76-121.75]), compared to a uniform volumetric tax ($552.46 [95% CI 530.55-574.36] and $163.92 [95% CI 152.79-175.03], respectively). Both a MUP and uniform volumetric tax have little effect on changing the annual cost of wine and beer for light and moderate consumers, and likewise little effect upon their purchasing. While both a MUP and a uniform volumetric tax have potential to reduce heavy consumption of wine and beer without adversely affecting light and moderate consumers, a MUP offers the potential to achieve greater reductions in heavy consumption at a lower overall annual cost to consumers.

  2. Soft-tissue volumetric changes following monobloc distraction procedure: analysis using digital three-dimensional photogrammetry system (3dMD).

    PubMed

    Chan, Fuan Chiang; Kawamoto, Henry K; Federico, Christina; Bradley, James P

    2013-03-01

    We have previously reported that monobloc advancement by distraction osteogenesis resulted in decreased morbidity and greater advancement with less relapse compared with acute monobloc advancement with bone grafting. In this study, we examine the three-dimensional (3D) volumetric soft-tissue changes in monobloc distraction.Patients with syndromic craniosynostosis who underwent monobloc distraction from 2002 to 2010 at University of California-Los Angeles Craniofacial Center were studied (n = 12). We recorded diagnosis, indications for the surgery, and volumetric changes for skeletal and soft-tissue midface structures (preoperative/postoperative [6 weeks]/follow-up [>1 year]). Computed tomography scans and a digital 3D photogrammetry system were used for image analysis.Patients ranged from 6 to 14 years of age (mean, 10.1 years) at the time of the operation (follow-up 2-11 years); mean distraction advancement was 19.4 mm (range, 14-25 mm). There was a mean increase in the 3D volumetric soft-tissue changes: 99.5 ± 4.0 cm(3) (P < 0.05) at 6 weeks and 94.9 ± 3.6 cm(3) (P < 0.05) at 1-year follow-up. When comparing soft-tissue changes at 6 weeks postoperative to 1-year follow-up, there were minimal relapse changes. The overall mean 3D skeletal change was 108.9 ± 4.2 cm. For every 1 cm of skeletal gain, there was 0.78 cm(3) of soft-tissue gain.Monobloc advancement by distraction osteogenesis using internal devices resulted in increased volumetric soft-tissue changes, which remained stable at 1 year. The positive linear correlation between soft-tissue increments and bony advancement can be incorporated during the planning of osteotomies to achieve optimum surgical outcomes with monobloc distraction.

  3. Results from VDOT's pilot project using volumetric properties and asphalt content for acceptance of asphalt concrete.

    DOT National Transportation Integrated Search

    1995-01-01

    In 1994 the Virginia Department of Transportation (VDOT) developed a specification for the acceptance of asphalt concrete based largely on Marshall compacted volumetric properties of the mix. A copy of the Special Provision is shown in the Appendix. ...

  4. Quantitative volumetric Raman imaging of three dimensional cell cultures

    NASA Astrophysics Data System (ADS)

    Kallepitis, Charalambos; Bergholt, Mads S.; Mazo, Manuel M.; Leonardo, Vincent; Skaalure, Stacey C.; Maynard, Stephanie A.; Stevens, Molly M.

    2017-03-01

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  5. Zero mortality in more than 300 hepatic resections: validity of preoperative volumetric analysis.

    PubMed

    Itoh, Shinji; Shirabe, Ken; Taketomi, Akinobu; Morita, Kazutoyo; Harimoto, Norifumi; Tsujita, Eiji; Sugimachi, Keishi; Yamashita, Yo-Ichi; Gion, Tomonobu; Maehara, Yoshihiko

    2012-05-01

    We reviewed a series of patients who underwent hepatic resection at our institution, to investigate the risk factors for postoperative complications after hepatic resection of liver tumors and for procurement of living donor liver transplantation (LDLT) grafts. Between April 2004 and August 2007, we performed 304 hepatic resections for liver tumors or to procure grafts for LDLT. Preoperative volumetric analysis was done using 3-dimensional computed tomography (3D-CT) prior to major hepatic resection. We compared the clinicopathological factors between patients with and without postoperative complications. There was no operative mortality. According to the 3D-CT volumetry, the mean error ratio between the actual and the estimated remnant liver volume was 13.4%. Postoperative complications developed in 96 (31.6%) patients. According to logistic regression analysis, histological liver cirrhosis and intraoperative blood loss >850 mL were significant risk factors of postoperative complications after hepatic resection. Meticulous preoperative evaluation based on volumetric analysis, together with sophisticated surgical techniques, achieved zero mortality and minimized intraoperative blood loss, which was classified as one of the most significant predictors of postoperative complications after major hepatic resection.

  6. Gamma-index method sensitivity for gauging plan delivery accuracy of volumetric modulated arc therapy.

    PubMed

    Park, Jong In; Park, Jong Min; Kim, Jung-In; Park, So-Yeon; Ye, Sung-Joon

    2015-12-01

    The aim of this study was to investigate the sensitivity of the gamma-index method according to various gamma criteria for volumetric modulated arc therapy (VMAT). Twenty head and neck (HN) and twenty prostate VMAT plans were retrospectively selected for this study. Both global and local 2D gamma evaluations were performed with criteria of 3%/3 mm, 2%/2 mm, 1%/2 mm and 2%/1 mm. In this study, the global and local gamma-index calculated the differences in doses relative to the maximum dose and the dose at the current measurement point, respectively. Using log files acquired during delivery, the differences in parameters at every control point between the VMAT plans and the log files were acquired. The differences in dose-volumetric parameters between reconstructed VMAT plans using the log files and the original VMAT plans were calculated. The Spearman's rank correlation coefficients (rs) were calculated between the passing rates and those differences. Considerable correlations with statistical significances were observed between global 1%/2 mm, local 1%/2 mm and local 2%/1 mm and the MLC position differences (rs = -0.712, -0.628 and -0.581). The numbers of rs values with statistical significance between the passing rates and the changes in dose-volumetric parameters were largest in global 2%/2 mm (n = 16), global 2%/1 mm (n = 15) and local 2%/1 mm (n = 13) criteria. Local gamma-index method with 2%/1 mm generally showed higher sensitivity to detect deviations between a VMAT plan and the delivery of the VMAT plan. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Automated volumetric evaluation of stereoscopic disc photography

    PubMed Central

    Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A; Kagemann, Larry; Craig, Jamie E; Mackey, David A; Hewitt, Alex W; Schuman, Joel S

    2010-01-01

    PURPOSE: To develop a fully automated algorithm (AP) to perform a volumetric measure of the optic disc using conventional stereoscopic optic nerve head (ONH) photographs, and to compare algorithm-produced parameters with manual photogrammetry (MP), scanning laser ophthalmoscope (SLO) and optical coherence tomography (OCT) measurements. METHODS: One hundred twenty-two stereoscopic optic disc photographs (61 subjects) were analyzed. Disc area, rim area, cup area, cup/disc area ratio, vertical cup/disc ratio, rim volume and cup volume were automatically computed by the algorithm. Latent variable measurement error models were used to assess measurement reproducibility for the four techniques. RESULTS: AP had better reproducibility for disc area and cup volume and worse reproducibility for cup/disc area ratio and vertical cup/disc ratio, when the measurements were compared to the MP, SLO and OCT methods. CONCLUSION: AP provides a useful technique for an objective quantitative assessment of 3D ONH structures. PMID:20588996

  8. Preoperative assessment of intracranial tumors with perfusion MR and a volumetric interpolated examination: a comparative study with DSA.

    PubMed

    Wetzel, Stephan G; Cha, Soonmee; Law, Meng; Johnson, Glyn; Golfinos, John; Lee, Peter; Nelson, Peter Kim

    2002-01-01

    In evaluating intracranial tumors, a safe low-cost alternative that provides information similar to that of digital subtraction angiography (DSA) may be of interest. Our purpose was to determine the utility and limitations of a combined MR protocol in assessing (neo-) vascularity in intracranial tumors and their relation to adjacent vessels and to compare the results with those of DSA. Twenty-two consecutive patients with an intracranial tumor who underwent preoperative stereoscopic DSA were examined with contrast-enhanced dynamic T2*-weighted perfusion MR imaging followed by a T1-weighted three-dimensional (3D) MR study (volumetric interpolated brain examination [VIBE]). The maximum relative cerebral blood volume (rCBV) of the tumor was compared with tumor vascularity at DSA. Critical vessel structures were defined in each patient, and VIBE images of these structures were compared with DSA findings. For full exploitation of the 3D data sets, maximum-intensity projection algorithms reconstructed in real time with any desired volume and orientation were used. Tumor blush scores at DSA were significantly correlated with the rCBV measurements (r = 0.75; P <.01, Spearman rank correlation coefficient). In 17 (77%) patients, VIBE provided all relevant information about the venous system, whereas information about critical arteries were partial in 50% of the cases and not relevant in the other 50%. A fast imaging protocol consisting of perfusion MR imaging and a volumetric MR acquisition provides some of the information about tumor (neo-) vascularity and adjacent vascular anatomy that can be obtained with conventional angiography. However, the MR protocol provides insufficient visualization of distal cerebral arteries.

  9. Effect of rhythmic gymnastics on volumetric bone mineral density and bone geometry in premenarcheal female athletes and controls.

    PubMed

    Tournis, S; Michopoulou, E; Fatouros, I G; Paspati, I; Michalopoulou, M; Raptou, P; Leontsini, D; Avloniti, A; Krekoukia, M; Zouvelou, V; Galanos, A; Aggelousis, N; Kambas, A; Douroudos, I; Lyritis, G P; Taxildaris, K; Pappaioannou, N

    2010-06-01

    Weight-bearing exercise during growth exerts positive effects on the skeleton. Our objective was to test the hypothesis that long-term elite rhythmic gymnastics exerts positive effects on volumetric bone mineral density and geometry and to determine whether exercise-induced bone adaptation is associated with increased periosteal bone formation or medullary contraction using tibial peripheral quantitative computed tomography and bone turnover markers. We conducted a cross-sectional study at a tertiary center. We studied 26 elite premenarcheal female rhythmic gymnasts (RG) and 23 female controls, aged 9-13 yr. We measured bone age, volumetric bone mineral density, bone mineral content (BMC), cortical thickness, cortical and trabecular area, and polar stress strength index (SSIp) by peripheral quantitative computed tomography of the left tibia proximal to the distal metaphysis (trabecular) at 14, 38 (cortical), and 66% (muscle mass) from the distal end and bone turnover markers. The two groups were comparable according to height and chronological and bone age. After weight adjustment, cortical BMC, area, and thickness at 38% were significantly higher in RG (P < 0.005-0.001). Periosteal circumference, SSIp, and muscle area were higher in RG (P < 0.01-0.001). Muscle area was significantly associated with cortical BMC, area, and SSIp, whereas years of training showed positive association with cortical BMC, area, and thickness independent of chronological age. RG in premenarcheal girls may induce positive adaptations on the skeleton, especially in cortical bone. Increased duration of exercise is associated with a positive response of bone geometry.

  10. Improving plan quality for prostate volumetric-modulated arc therapy.

    PubMed

    Wright, Katrina; Ferrari-Anderson, Janet; Barry, Tamara; Bernard, Anne; Brown, Elizabeth; Lehman, Margot; Pryor, David

    2017-01-01

    We critically evaluated the quality and consistency of volumetric-modulated arc therapy (VMAT) prostate planning at a single institution to quantify objective measures for plan quality and establish clear guidelines for plan evaluation and quality assurance. A retrospective analysis was conducted on 34 plans generated on the Pinnacle 3 version 9.4 and 9.8 treatment planning system to deliver 78 Gy in 39 fractions to the prostate only using VMAT. Data were collected on contoured structure volumes, overlaps and expansions, planning target volume (PTV) and organs at risk volumes and relationship, dose volume histogram, plan conformity, plan homogeneity, low-dose wash, and beam parameters. Standard descriptive statistics were used to describe the data. Despite a standardized planning protocol, we found variability was present in all steps of the planning process. Deviations from protocol contours by radiation oncologists and radiation therapists occurred in 12% and 50% of cases, respectively, and the number of optimization parameters ranged from 12 to 27 (median 17). This contributed to conflicts within the optimization process reflected by the mean composite objective value of 0.07 (range 0.01 to 0.44). Methods used to control low-intermediate dose wash were inconsistent. At the PTV rectum interface, the dose-gradient distance from the 74.1 Gy to 40 Gy isodose ranged from 0.6 cm to 2.0 cm (median 1.0 cm). Increasing collimator angle was associated with a decrease in monitor units and a single full 6 MV arc was sufficient for the majority of plans. A significant relationship was found between clinical target volume-rectum distance and rectal tolerances achieved. A linear relationship was determined between the PTV volume and volume of 40 Gy isodose. Objective values and composite objective values were useful in determining plan quality. Anatomic geometry and overlap of structures has a measurable impact on the plan quality achieved for prostate patients

  11. Intimal and medial contributions to the hydraulic resistance of the arterial wall at different pressures: a combined computational and experimental study.

    PubMed

    Chooi, K Y; Comerford, A; Sherwin, S J; Weinberg, P D

    2016-06-01

    The hydraulic resistances of the intima and media determine water flux and the advection of macromolecules into and across the arterial wall. Despite several experimental and computational studies, these transport processes and their dependence on transmural pressure remain incompletely understood. Here, we use a combination of experimental and computational methods to ascertain how the hydraulic permeability of the rat abdominal aorta depends on these two layers and how it is affected by structural rearrangement of the media under pressure. Ex vivo experiments determined the conductance of the whole wall, the thickness of the media and the geometry of medial smooth muscle cells (SMCs) and extracellular matrix (ECM). Numerical methods were used to compute water flux through the media. Intimal values were obtained by subtraction. A mechanism was identified that modulates pressure-induced changes in medial transport properties: compaction of the ECM leading to spatial reorganization of SMCs. This is summarized in an empirical constitutive law for permeability and volumetric strain. It led to the physiologically interesting observation that, as a consequence of the changes in medial microstructure, the relative contributions of the intima and media to the hydraulic resistance of the wall depend on the applied pressure; medial resistance dominated at pressures above approximately 93 mmHg in this vessel. © 2016 The Authors.

  12. Experimental and analytical determination of characteristics affecting light aircraft landing-gear dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, E. L.; Mcgehee, J. R.; Pappas, M. S.

    1977-01-01

    An experimental and analytical investigation was conducted to determine which characteristics of a light aircraft landing gear influence gear dynamic behavior significantly. The investigation focused particularly on possible modification for load control. Pseudostatic tests were conducted to determine the gear fore-and-aft spring constant, axial friction as a function of drag load, brake pressure-torque characteristics, and tire force-deflection characteristics. To study dynamic tire response, vertical drops were conducted at impact velocities of 1.2, 1.5, and 1.8 m/s onto a level surface; to determine axial-friction effects, a second series of vertical drops were made at 1.5 m/s onto surfaces inclined 5 deg and 10 deg to the horizontal. An average dynamic axial-friction coefficient of 0.15 was obtained by comparing analytical data with inclined surface drop test data. Dynamic strut bending and associated axial friction were found to be severe for the drop tests on the 10 deg surface.

  13. 3D Pathology Volumetric Technique: A Method for Calculating Breast Tumour Volume from Whole-Mount Serial Section Images

    PubMed Central

    Clarke, G. M.; Murray, M.; Holloway, C. M. B.; Liu, K.; Zubovits, J. T.; Yaffe, M. J.

    2012-01-01

    Tumour size, most commonly measured by maximum linear extent, remains a strong predictor of survival in breast cancer. Tumour volume, proportional to the number of tumour cells, may be a more accurate surrogate for size. We describe a novel “3D pathology volumetric technique” for lumpectomies and compare it with 2D measurements. Volume renderings and total tumour volume are computed from digitized whole-mount serial sections using custom software tools. Results are presented for two lumpectomy specimens selected for tumour features which may challenge accurate measurement of tumour burden with conventional, sampling-based pathology: (1) an infiltrative pattern admixed with normal breast elements; (2) a localized invasive mass separated from the in situ component by benign tissue. Spatial relationships between key features (tumour foci, close or involved margins) are clearly visualized in volume renderings. Invasive tumour burden can be underestimated using conventional pathology, compared to the volumetric technique (infiltrative pattern: 30% underestimation; localized mass: 3% underestimation for invasive tumour, 44% for in situ component). Tumour volume approximated from 2D measurements (i.e., maximum linear extent), assuming elliptical geometry, was seen to overestimate volume compared to the 3D volumetric calculation (by a factor of 7x for the infiltrative pattern; 1.5x for the localized invasive mass). PMID:23320179

  14. Investigation of poly(γ-glutamic acid) production via online determination of viscosity and oxygen transfer rate in shake flasks.

    PubMed

    Regestein Née Meissner, Lena; Arndt, Julia; Palmen, Thomas G; Jestel, Tim; Mitsunaga, Hitoshi; Fukusaki, Eiichiro; Büchs, Jochen

    2017-01-01

    Poly(γ-glutamic acid) (γ-PGA) is a biopolymer with many useful properties making it applicable for instance in food and skin care industries, in wastewater treatment, in biodegradable plastics or in the pharmaceutical industry. γ-PGA is usually produced microbially by different Bacillus spp. The produced γ-PGA increases the viscosity of the fermentation broth. In case of shake flask fermentations, this results in an increase of the volumetric power input. The power input in shake flasks can be determined by measuring the torque of an orbitally rotating lab shaker. The online measurement of the volumetric power input enables to continuously monitor the formation or degradation of viscous products like γ-PGA. Combined with the online measurement of the oxygen transfer rate (OTR), the respiration activity of the organisms can be observed at the same time. Two different Bacillus licheniformis strains and three medium compositions were investigated using online volumetric power input and OTR measurements as well as thorough offline analysis. The online volumetric power input measurement clearly depicted changes in γ-PGA formation due to different medium compositions as well as differences in the production behavior of the two investigated strains. A higher citric acid concentration and the addition of trace elements to the standard medium showed a positive influence on γ-PGA production. The online power input signal was used to derive an online viscosity signal which was validated with offline determined viscosity values. The online measurement of the OTR proved to be a valuable tool to follow the respiration activity of the cultivated strains and to determine its reproducibility under different cultivation conditions. The combination of the volumetric power input and the OTR allows for an easy and reliable investigation of new strains, cultivation conditions and medium compositions for their potential in γ-PGA production. The power input signal and the derived

  15. Conformal Pad-Printing Electrically Conductive Composites onto Thermoplastic Hemispheres: Toward Sustainable Fabrication of 3-Cents Volumetric Electrically Small Antennas.

    PubMed

    Wu, Haoyi; Chiang, Sum Wai; Yang, Cheng; Lin, Ziyin; Liu, Jingping; Moon, Kyoung-Sik; Kang, Feiyu; Li, Bo; Wong, Ching Ping

    2015-01-01

    Electrically small antennas (ESAs) are becoming one of the key components in the compact wireless devices for telecommunications, defence, and aerospace systems, especially for the spherical one whose geometric layout is more closely approaching Chu's limit, thus yielding significant bandwidth improvements relative to the linear and planar counterparts. Yet broad applications of the volumetric ESAs are still hindered since the low cost fabrication has remained a tremendous challenge. Here we report a state-of-the-art technology to transfer electrically conductive composites (ECCs) from a planar mould to a volumetric thermoplastic substrate by using pad-printing technology without pattern distortion, benefit from the excellent properties of the ECCs as well as the printing-calibration method that we developed. The antenna samples prepared in this way meet the stringent requirement of an ESA (ka is as low as 0.32 and the antenna efficiency is as high as 57%), suggesting that volumetric electronic components i.e. the antennas can be produced in such a simple, green, and cost-effective way. This work can be of interest for the development of studies on green and high performance wireless communication devices.

  16. Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid

    NASA Astrophysics Data System (ADS)

    Lion, Alexander; Mittermeier, Christoph; Johlitz, Michael

    2017-09-01

    A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting-Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference c_p -c_v is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model.

  17. Comparison between multislice and cone-beam computerized tomography in the volumetric assessment of cleft palate.

    PubMed

    Albuquerque, Marco Antonio; Gaia, Bruno Felipe; Cavalcanti, Marcelo Gusmão Paraíso

    2011-08-01

    The aim of this study was to determine the applicability of multislice and cone-beam computerized tomography (CT) in the assessment of bone defects in patients with oral clefts. Bone defects were produced in 9 dry skulls to mimic oral clefts. All defects were modeled with wax. The skulls were submitted to multislice and cone-beam CT. Subsequently, physical measurements were obtained by the Archimedes principle of water displacement of wax models. The results demonstrated that multislice and cone-beam CT showed a high efficiency rate and were considered to be effective for volumetric assessment of bone defects. It was also observed that both CT modalities showed excellent results with high reliability in the study of the volume of bone defects, with no difference in performance between them. The clinical applicability of our research has shown these CT modalities to be immediate and direct, and they is important for the diagnosis and therapeutic process of patients with oral cleft. Copyright © 2011 Mosby, Inc. All rights reserved.

  18. Hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhenyue; Deán-Ben, Xosé Luís.; Gottschalk, Sven; Razansky, Daniel

    2018-02-01

    Fluorescence imaging is widely employed in all fields of cell and molecular biology due to its high sensitivity, high contrast and ease of implementation. However, the low spatial resolution and lack of depth information, especially in strongly-scattering samples, restrict its applicability for deep-tissue imaging applications. On the other hand, optoacoustic imaging is known to deliver a unique set of capabilities such as high spatial and temporal resolution in three dimensions, deep penetration and spectrally-enriched imaging contrast. Since fluorescent substances can generate contrast in both modalities, simultaneous fluorescence and optoacoustic readings can provide new capabilities for functional and molecular imaging of living organisms. Optoacoustic images can further serve as valuable anatomical references based on endogenous hemoglobin contrast. Herein, we propose a hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic tomography, both operating in reflection mode, which synergistically combines the advantages of stand-alone systems. Validation of the spatial resolution and sensitivity of the system were first carried out in tissue mimicking phantoms while in vivo imaging was further demonstrated by tracking perfusion of an optical contrast agent in a mouse brain in the hybrid imaging mode. Experimental results show that the proposed system effectively exploits the contrast mechanisms of both imaging modalities, making it especially useful for accurate monitoring of fluorescence-based signal dynamics in highly scattering samples.

  19. On-line measurement of heat of combustion

    NASA Technical Reports Server (NTRS)

    Chaturvedi, S. K.; Chegini, H.

    1988-01-01

    An experimental method for an on-line measurement of heat of combustion of a gaseous hydrocarbon fuel mixture of unknown composition is developed. It involves combustion of a test gas with a known quantity of air to achieve a predetermined oxygen concentration level in the combustion products. This is accomplished by a feedback controller which maintains the gas volumetric flow rate at a level consistent with the desired oxygen concentration in the products. The heat of combustion is determined from a known correlation with the gas volumetric flow rate. An on-line microcomputer accesses the gas volumetric flow data, and displays the heat of combustion values at desired time intervals.

  20. Volumetric bioimaging based on light field microscopy with temporal focusing illumination

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chun; Sie, Yong Da; Lai, Feng-Jie; Chen, Shean-Jen

    2018-02-01

    Light field technique at a single shot can get the whole volume image of observed sample. Therefore, the original frame rate of the optical system can be taken as the volumetric image rate. For dynamically imaging whole micron-scale biosample, a light field microscope with temporal focusing illumination has been developed. In the light field microscope, the f-number of the microlens array (MLA) is adopted to match that of the objective; hence, the subimages via adjacent lenslets do not overlay each other. A three-dimensional (3D) deconvolution algorithm is utilized to deblur the out-of-focusing part. Conventional light field microscopy (LFM) illuminates whole volume sample even noninteresting parts; nevertheless, whole volume excitation causes even more damage on bio-sample and also increase the background noise from the out of range. Therefore, temporal focusing is integrated into the light field microscope for selecting the illumination volume. Herein, a slit on the back focal plane of the objective is utilized to control the axial excitation confinement for selecting the illumination volume. As a result, the developed light field microscope with the temporal focusing multiphoton illumination (TFMPI) can reconstruct 3D images within the selected volume, and the lateral resolution approaches to the theoretical value. Furthermore, the 3D Brownian motion of two-micron fluorescent beads is observed as the criterion of dynamic sample. With superior signal-to-noise ratio and less damage to tissue, the microscope is potential to provide volumetric imaging for vivo sample.

  1. Quantitative imaging features of pretreatment CT predict volumetric response to chemotherapy in patients with colorectal liver metastases.

    PubMed

    Creasy, John M; Midya, Abhishek; Chakraborty, Jayasree; Adams, Lauryn B; Gomes, Camilla; Gonen, Mithat; Seastedt, Kenneth P; Sutton, Elizabeth J; Cercek, Andrea; Kemeny, Nancy E; Shia, Jinru; Balachandran, Vinod P; Kingham, T Peter; Allen, Peter J; DeMatteo, Ronald P; Jarnagin, William R; D'Angelica, Michael I; Do, Richard K G; Simpson, Amber L

    2018-06-19

    This study investigates whether quantitative image analysis of pretreatment CT scans can predict volumetric response to chemotherapy for patients with colorectal liver metastases (CRLM). Patients treated with chemotherapy for CRLM (hepatic artery infusion (HAI) combined with systemic or systemic alone) were included in the study. Patients were imaged at baseline and approximately 8 weeks after treatment. Response was measured as the percentage change in tumour volume from baseline. Quantitative imaging features were derived from the index hepatic tumour on pretreatment CT, and features statistically significant on univariate analysis were included in a linear regression model to predict volumetric response. The regression model was constructed from 70% of data, while 30% were reserved for testing. Test data were input into the trained model. Model performance was evaluated with mean absolute prediction error (MAPE) and R 2 . Clinicopatholologic factors were assessed for correlation with response. 157 patients were included, split into training (n = 110) and validation (n = 47) sets. MAPE from the multivariate linear regression model was 16.5% (R 2 = 0.774) and 21.5% in the training and validation sets, respectively. Stratified by HAI utilisation, MAPE in the validation set was 19.6% for HAI and 25.1% for systemic chemotherapy alone. Clinical factors associated with differences in median tumour response were treatment strategy, systemic chemotherapy regimen, age and KRAS mutation status (p < 0.05). Quantitative imaging features extracted from pretreatment CT are promising predictors of volumetric response to chemotherapy in patients with CRLM. Pretreatment predictors of response have the potential to better select patients for specific therapies. • Colorectal liver metastases (CRLM) are downsized with chemotherapy but predicting the patients that will respond to chemotherapy is currently not possible. • Heterogeneity and enhancement patterns of CRLM can be

  2. Comparison of experimentally and theoretically determined radiation characteristics of photosynthetic microorganisms

    NASA Astrophysics Data System (ADS)

    Kandilian, Razmig; Pruvost, Jérémy; Artu, Arnaud; Lemasson, Camille; Legrand, Jack; Pilon, Laurent

    2016-05-01

    This paper aims to experimentally and directly validate a recent theoretical method for predicting the radiation characteristics of photosynthetic microorganisms. Such predictions would facilitate light transfer analysis in photobioreactors (PBRs) to control their operation and to maximize their production of biofuel and other high-value products. The state of the art experimental method can be applied to microorganisms of any shape and inherently accounts for their non-spherical and heterogeneous nature. On the other hand, the theoretical method treats the microorganisms as polydisperse homogeneous spheres with some effective optical properties. The absorption index is expressed as the weighted sum of the pigment mass absorption cross-sections and the refractive index is estimated based on the subtractive Kramers-Kronig relationship given an anchor refractive index and wavelength. Here, particular attention was paid to green microalgae Chlamydomonas reinhardtii grown under nitrogen-replete and nitrogen-limited conditions and to Chlorella vulgaris grown under nitrogen-replete conditions. First, relatively good agreement was found between the two methods for determining the mass absorption and scattering cross-sections and the asymmetry factor of both nitrogen-replete and nitrogen-limited C. reinhardtii with the proper anchor point. However, the homogeneous sphere approximation significantly overestimated the absorption cross-section of C. vulgaris cells. The latter were instead modeled as polydisperse coated spheres consisting of an absorbing core containing pigments and a non-absorbing but strongly refracting wall made of sporopollenin. The coated sphere approximation gave good predictions of the experimentally measured integral radiation characteristics of C. vulgaris. In both cases, the homogeneous and coated sphere approximations predicted resonance in the scattering phase function that were not observed experimentally. However, these approximations were

  3. Quantification of coronary microvascular resistance using angiographic images for volumetric blood flow measurement: in vivo validation

    PubMed Central

    Zhang, Zhang; Takarada, Shigeho

    2011-01-01

    Structural coronary microcirculation abnormalities are important prognostic determinants in clinical settings. However, an assessment of microvascular resistance (MR) requires a velocity wire. A first-pass distribution analysis technique to measure volumetric blood flow has been previously validated. The aim of this study was the in vivo validation of the MR measurement technique using first-pass distribution analysis. Twelve anesthetized swine were instrumented with a transit-time ultrasound flow probe on the proximal segment of the left anterior descending coronary artery (LAD). Microspheres were injected into the LAD to create a model of microvascular dysfunction. Adenosine (400 μg·kg−1·min−1) was used to produce maximum hyperemia. A region of interest in the LAD arterial bed was drawn to generate time-density curves using angiographic images. Volumetric blood flow measurements (Qa) were made using a time-density curve and the assumption that blood was momentarily replaced with contrast agent during the injection. Blood flow from the flow probe (Qp), coronary pressure (Pa), and right atrium pressure (Pv) were continuously recorded. Flow probe-based normalized MR (NMRp) and angiography-based normalized MR (NMRa) were calculated using Qp and Qa, respectively. In 258 measurements, Qa showed a strong correlation with the gold standard Qp (Qa = 0.90 Qp + 6.6 ml/min, r2 = 0.91, P < 0.0001). NMRa correlated linearly with NMRp (NMRa = 0.90 NMRp + 0.02 mmHg·ml−1·min−1, r2 = 0.91, P < 0.0001). Additionally, the Bland-Altman analysis showed a close agreement between NMRa and NMRp. In conclusion, a technique based on angiographic image data for quantifying NMR was validated using a swine model. This study provides a method to measure NMR without using a velocity wire, which can potentially be used to evaluate microvascular conditions during coronary arteriography. PMID:21398596

  4. An Experimental Device for Real Time Determination of Slant Path Atmospheric Contrast Transmittance.

    DTIC Science & Technology

    1982-03-01

    copies ftom th Defense Technical Information Caster. AN others ioM apply to the National Technical Information Service. UNCLASSIFIED SECURITV...EXPERIMENTAL DEVICE FOR REAL TIME DETERMINATION OF SLANT PATH ATMOSPHERIC CONTRAST TRANSMITTANCE Richard W. Johnson 1. INTRODUCTION 2. BASIC CONCEPTS As...and z is an altitude parameter. primary optical channel uses a cosine corrected and PE- ASSIG SYSTM DEPIS1ttt STAGE I DSIN STAGEM Pgormiy TES

  5. Pahoehoe and aa in Hawaii: volumetric flow rate controls the lava structure

    NASA Astrophysics Data System (ADS)

    Rowland, Scott K.; Walker, George Pl

    1990-11-01

    The historical records of Kilauea and Mauna Loa volcanoes reveal that the rough-surfaced variety of basalt lava called aa forms when lava flows at a high volumetric rate (>5 10 m3/s), and the smooth-surfaced variety called pahoehoe forms at a low volumetric rate (<5 10 m3/s). This relationship is well illustrated by the 1983 1990 and 1969 1974 eruptions of Kilauea and the recent eruptions of Mauna Loa. It is also illustrated by the eruptions that produced the remarkable paired flows of Mauna Loa, in which aa formed during an initial short period of high discharge rate (associated with high fountaining) and was followed by the eruption of pahoehoe over a sustained period at a low discharge rate (with little or no fountaining). The finest examples of paired lava flows are those of 1859 and 1880 1881. We attribute aa formation to rapid and concentrated flow in open channels. There, rapid heat loss causes an increase in viscosity to a threshold value (that varies depending on the actual flow velocity) at which, when surface crust is torn by differential flow, the underlying lava is unable to move sufficiently fast to heal the tear. We attribute pahoehoe formation to the flowage of lava at a low volumetric rate, commonly in tubes that minimize heat loss. Flow units of pahoehoe are small (usually <1 m thick), move slowly, develop a chilled skin, and become virtually static before the viscosity has risen, to the threshold value. We infer that the high-discharge-rate eruptions that generate aa flows result from the rapid emptying of major or subsidiary magma chambers. Rapid near-surface vesiculation of gas-rich magma leads to eruptions with high discharge rates, high lava fountains, and fast-moving channelized flows. We also infer that long periods of sustained flow at a low discharge rate, which favor pahoehoe, result from the development of a free and unimpeded pathway from the deep plumbing system of the volcano and the separation of gases from the magma before eruption

  6. Theoretical and experimental determination of L -shell decay rates, line widths, and fluorescence yields in Ge

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Sampaio, J. M.; Madeira, T. I.; Parente, F.; Indelicato, P.; Marques, J. P.; Santos, J. P.; Hoszowska, J.; Dousse, J.-Cl.; Loperetti, L.; Zeeshan, F.; Müller, M.; Unterumsberger, R.; Beckhoff, B.

    2015-08-01

    Fluorescence yields (FYs) for the Ge L shell were determined by a theoretical and two experimental groups within the framework of the International Initiative on X-Ray Fundamental Parameters Collaboration. Calculations were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental value of the L3FY ωL 3 was determined at the Physikalisch-Technische Bundesanstalt undulator beamline of the synchrotron radiation facility BESSY II in Berlin, Germany, and the L α1 ,2 and L β1 line widths were measured at the Swiss Light Source, Paul Scherrer Institute, Switzerland, using monochromatized synchrotron radiation and a von Hamos x-ray crystal spectrometer. The measured fluorescence yields and line widths are compared to the corresponding calculated values.

  7. Volumetric formulation for a class of kinetic models with energy conservation.

    PubMed

    Sbragaglia, M; Sugiyama, K

    2010-10-01

    We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum, and energy. Issues related to boundary condition problems and improvements based on grid refinement are also investigated.

  8. Size exclusion deep bed filtration: Experimental and modelling uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badalyan, Alexander, E-mail: alexander.badalyan@adelaide.edu.au; You, Zhenjiang; Aji, Kaiser

    A detailed uncertainty analysis associated with carboxyl-modified latex particle capture in glass bead-formed porous media enabled verification of the two theoretical stochastic models for prediction of particle retention due to size exclusion. At the beginning of this analysis it is established that size exclusion is a dominant particle capture mechanism in the present study: calculated significant repulsive Derjaguin-Landau-Verwey-Overbeek potential between latex particles and glass beads is an indication of their mutual repulsion, thus, fulfilling the necessary condition for size exclusion. Applying linear uncertainty propagation method in the form of truncated Taylor's series expansion, combined standard uncertainties (CSUs) in normalised suspendedmore » particle concentrations are calculated using CSUs in experimentally determined parameters such as: an inlet volumetric flowrate of suspension, particle number in suspensions, particle concentrations in inlet and outlet streams, particle and pore throat size distributions. Weathering of glass beads in high alkaline solutions does not appreciably change particle size distribution, and, therefore, is not considered as an additional contributor to the weighted mean particle radius and corresponded weighted mean standard deviation. Weighted mean particle radius and LogNormal mean pore throat radius are characterised by the highest CSUs among all experimental parameters translating to high CSU in the jamming ratio factor (dimensionless particle size). Normalised suspended particle concentrations calculated via two theoretical models are characterised by higher CSUs than those for experimental data. The model accounting the fraction of inaccessible flow as a function of latex particle radius excellently predicts normalised suspended particle concentrations for the whole range of jamming ratios. The presented uncertainty analysis can be also used for comparison of intra- and inter-laboratory particle size exclusion

  9. An open randomized controlled clinical trial to evaluate ridge preservation and repair using SocketKAP(™) and SocketKAGE(™) : part 2 - three-dimensional alveolar bone volumetric analysis of CBCT imaging.

    PubMed

    Abdelhamid, Alaa; Omran, Mostafa; Bakhshalian, Neema; Tarnow, Dennis; Zadeh, Homayoun H

    2016-06-01

    The aims of this study were (i) to evaluate the efficacy of ridge preservation and repair procedures involving the application of SocketKAP(™) and SocketKAGE(™) devices following tooth removal and (ii) to evaluate alveolar bone volumetric changes at 6 months post-extraction in intact sockets or those with facial wall dehiscence defects using 3-dimensional pre- and postoperative CBCT data. Thirty-six patients required 61 teeth extracted. Five cohorts were established: Group A: Intact Socket Negative Control Group B: Intact Socket + SocketKAP(™) Group C: Intact Socket Filled with Anorganic Bovine Bone Mineral (ABBM) + SocketKAP(™) Group D: Facial Dehiscence Socket Negative Control Group E: Facial Dehiscence Socket Filled with ABBM + SocketKAP(™) + SocketKAGE(™) . Preoperative CBCT scans were obtained followed by digital subtraction of the test teeth. At 6 months post-extraction, another CBCT scan was obtained. The pre- and postoperative scans were then superimposed, allowing highly accurate quantitative determination of the 3D volumetric alveolar bone volume changes from baseline through 6 months. Significant volumetric bone loss occurred in all sockets, localized mainly in the 0-3 mm zone apical to the ridge crest. For intact sockets, SocketKAP(™) + ABBM treatment led to a statistically significant greater percentage of remaining mineralized tissue volume when compared to negative control group. A significant difference favoring SocketKAP(™) + SocketKAGE(™) + ABBM treatment was observed for sockets with facial dehiscence defects compared to the negative control group. SocketKAP(™) , with ABBM, appears effective in limiting post-extraction volumetric bone loss in intact sockets, while SocketKAP(™) + SocketKAGE + ABBM appears effective in limiting post-extraction bone loss in sockets with dehiscence defects. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. On the use of volumetric strain meters to infer additional characteristics of short-period seismic radiation

    USGS Publications Warehouse

    Borcherdt, R.D.; Johnston, M.J.S.; Glassmoyer, G.

    1989-01-01

    Volumetric strain meters (Sacks-Evertson design) are installed at 15 sites along the San Andreas fault system, to monitor long-term strain changes for earthquake prediction. Deployment of portable broadband, high-resolution digital recorders (GEOS) at several of the sites extends the detection band for volumetric strain to periods shorter than 5 ?? 10-2 sec and permits the simultaneous observation of seismic radiation fields using conventional short-period pendulum seismometers. Recordings of local and regional earthquakes indicate that dilatometers respond to P energy but not direct shear energy and that straingrams can be used to resolve superimposed reflect P and S waves for inference of wave characteristics not permitted by either sensor alone. Simultaneous measurements of incident P- and S-wave amplitudes are used to introduce a technique for single-station estimates of wave field inhomogeneity, free-surface reflection coefficients and local material P velocity. -from Authors

  11. Determination of calibration constants for the hole-drilling residual stress measurement technique applied to orthotropic composites. II - Experimental evaluations

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Prabhakaran, R.; Tompkins, S.

    1987-01-01

    The first step in the extension of the semidestructive hole-drilling technique for residual stress measurement to orthotropic composite materials is the determination of the three calibration constants. Attention is presently given to an experimental determination of these calibration constants for a highly orthotropic, unidirectionally-reinforced graphite fiber-reinforced polyimide composite. A comparison of the measured values with theoretically obtained ones shows agreement to be good, in view of the many possible sources of experimental variation.

  12. Uncertainty associated with assessing semen volume: are volumetric and gravimetric methods that different?

    PubMed

    Woodward, Bryan; Gossen, Nicole; Meadows, Jessica; Tomlinson, Mathew

    2016-12-01

    The World Health Organization laboratory manual for the examination of human semen suggests that an indirect measurement of semen volume by weighing (gravimetric method) is more accurate than a direct measure using a serological pipette. A series of experiments were performed to determine the level of discrepancy between the two methods using pipettes and a balance which had been calibrated to a traceable standard. The median weights of 1.0ml and 5.0ml of semen were 1.03 g (range 1.02-1.05 g) and 5.11 g (range 4.95-5.16 g), respectively, suggesting a density for semen between 1.03g and 1.04 g/ml. When the containers were re-weighed after the removal of 5.0 ml semen using a serological pipette, the mean residual loss was 0.12 ml (120 μl) or 0.12 g (median 100 μl, range 70-300 μl). Direct comparison of the volumetric and gravimetric methods in a total of 40 samples showed a mean difference of 0.25ml (median 0.32 ± 0.67ml) representing an error of 8.5%. Residual semen left in the container by weight was on average 0.11 g (median 0.10 g, range 0.05-0.19 g). Assuming a density of 1 g/ml then the average error between volumetric and gravimetric methods was approximately 8% (p < 0.001). If, however, the WHO value for density is assumed (1.04 g/ml) then the difference is reduced to 4.2%. At least 2.4-3.5% of this difference is also explained by the residual semen remaining in the container. This study suggests that by assuming the density of semen as 1 g/ml, there is significant uncertainty associated with the average gravimetric measurement of semen volume. Laboratories may therefore prefer to provide in-house quality assurance data in order to be satisfied that 'estimating' semen volume is 'fit for purpose' as opposed to assuming a lower uncertainty associated with the WHO recommended method.

  13. One-step volumetric additive manufacturing of complex polymer structures

    DOE PAGES

    Shusteff, Maxim; Browar, Allison E. M.; Kelly, Brett E.; ...

    2017-12-01

    Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex non-periodic 3D geometries on a timescale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that lowabsorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10-100more » mW) may be successfully used to build full structures in ~1-10 s.« less

  14. Volumetric neuroimage analysis extensions for the MIPAV software package.

    PubMed

    Bazin, Pierre-Louis; Cuzzocreo, Jennifer L; Yassa, Michael A; Gandler, William; McAuliffe, Matthew J; Bassett, Susan S; Pham, Dzung L

    2007-09-15

    We describe a new collection of publicly available software tools for performing quantitative neuroimage analysis. The tools perform semi-automatic brain extraction, tissue classification, Talairach alignment, and atlas-based measurements within a user-friendly graphical environment. They are implemented as plug-ins for MIPAV, a freely available medical image processing software package from the National Institutes of Health. Because the plug-ins and MIPAV are implemented in Java, both can be utilized on nearly any operating system platform. In addition to the software plug-ins, we have also released a digital version of the Talairach atlas that can be used to perform regional volumetric analyses. Several studies are conducted applying the new tools to simulated and real neuroimaging data sets.

  15. One-step volumetric additive manufacturing of complex polymer structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusteff, Maxim; Browar, Allison E. M.; Kelly, Brett E.

    Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex non-periodic 3D geometries on a timescale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that lowabsorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10-100more » mW) may be successfully used to build full structures in ~1-10 s.« less

  16. One-step volumetric additive manufacturing of complex polymer structures

    PubMed Central

    Shusteff, Maxim; Browar, Allison E. M.; Kelly, Brett E.; Henriksson, Johannes; Weisgraber, Todd H.; Panas, Robert M.; Fang, Nicholas X.; Spadaccini, Christopher M.

    2017-01-01

    Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex nonperiodic three-dimensional geometries on a time scale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that low-absorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10 to 100 mW), may be successfully used to build full structures in ~1 to 10 s. PMID:29230437

  17. One-step volumetric additive manufacturing of complex polymer structures.

    PubMed

    Shusteff, Maxim; Browar, Allison E M; Kelly, Brett E; Henriksson, Johannes; Weisgraber, Todd H; Panas, Robert M; Fang, Nicholas X; Spadaccini, Christopher M

    2017-12-01

    Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex nonperiodic three-dimensional geometries on a time scale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that low-absorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10 to 100 mW), may be successfully used to build full structures in ~1 to 10 s.

  18. Active machine learning-driven experimentation to determine compound effects on protein patterns.

    PubMed

    Naik, Armaghan W; Kangas, Joshua D; Sullivan, Devin P; Murphy, Robert F

    2016-02-03

    High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many conditions and targets without doing all possible experiments. We have previously described an active machine learning algorithm that can iteratively choose small sets of experiments to learn models of multiple effects. We now show that, with no prior knowledge and with liquid handling robotics and automated microscopy under its control, this learner accurately learned the effects of 48 chemical compounds on the subcellular localization of 48 proteins while performing only 29% of all possible experiments. The results represent the first practical demonstration of the utility of active learning-driven biological experimentation in which the set of possible phenotypes is unknown in advance.

  19. Active machine learning-driven experimentation to determine compound effects on protein patterns

    PubMed Central

    Naik, Armaghan W; Kangas, Joshua D; Sullivan, Devin P; Murphy, Robert F

    2016-01-01

    High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many conditions and targets without doing all possible experiments. We have previously described an active machine learning algorithm that can iteratively choose small sets of experiments to learn models of multiple effects. We now show that, with no prior knowledge and with liquid handling robotics and automated microscopy under its control, this learner accurately learned the effects of 48 chemical compounds on the subcellular localization of 48 proteins while performing only 29% of all possible experiments. The results represent the first practical demonstration of the utility of active learning-driven biological experimentation in which the set of possible phenotypes is unknown in advance. DOI: http://dx.doi.org/10.7554/eLife.10047.001 PMID:26840049

  20. Experimental determination of dynamic characteristics of the VentrAssist implantable rotary blood pump.

    PubMed

    Chung, Michael K H; Zhang, Nong; Tansley, Geoff D; Qian, Yi

    2004-12-01

    The VentrAssist implantable rotary blood pump, intended for long-term ventricular assist, is under development and is currently being tested for its rotor-dynamic stability. The pump consists of a shaftless impeller, which also acts as the rotor of the brushless DC motor. The impeller remains passively suspended in the pump cavity by hydrodynamic forces, which result from the small clearances between the outside surfaces of the impeller and the pump cavity. These small clearances range from approximately 50 microm to 230 microm in size in the version of pump reported here. This article presents experimental investigation into the dynamic characteristics of the impeller-bearing-pump housing system of the rotary blood pump for increasing pump speeds at different flow rates. The pump was mounted on a suspension system consisting of a platform and springs, where the natural frequency and damping ratio for the suspension system were determined. Real-time measurements of the impeller's displacement were performed using Hall effect sensors. A vertical disturbance force was exerted onto the pump housing, causing the impeller to be displaced in vertical direction from its dynamic equilibrium position within the pump cavity. The impeller displacement was represented by a decaying sine wave, which indicated the impeller restoring to its equilibrium position. From the decaying sine wave the natural frequency and stiffness coefficient of the system were determined. Furthermore, the logarithmic decrement method was used to determine the damping ratio and eventually the damping coefficient of the system. Results indicate that stiffness and damping coefficients increased as flow rate and pump speed increased, representing an increase in stability with these changing conditions. However, pump speed had a greater influence on the stiffness and damping coefficients than flow rate did, which was evident through dynamic analysis. Overall the experimental method presented in this

  1. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1992-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  2. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1993-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperatable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color-shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  3. Dynamic volumetric computed tomographic assessment of the young paediatric airway: Initial experience of rapid, non-invasive, four-dimensional technique.

    PubMed

    Tan, Judith Zhi-Yie; Crossett, Marcus; Ditchfield, Michael

    2013-04-01

    The aim of this study was to evaluate the dynamic volumetric CT in the assessment of the paediatric airway. Ethics board approval was obtained for this retrospective review. Eight infants (median age 6 months, range 3 weeks to 1 year, 50% female) at a tertiary paediatric centre with complex clinical respiratory presentation underwent volumetric CT assessment of their airways. The entire lungs were examined over 1-2 respiratory cycles. In four patients, intravenous contrast was administered to assess for vascular airway compression. The patients were not intubated. CT findings were correlated with bronchography and bronchoscopy, where available. Two patients had diffuse tracheobronchomalacia associated with chronic lung disease. One patient demonstrated focal severe cervical tracheomalacia. One patient had a double aortic arch causing fixed narrowing with superimposed malacia of the distal trachea. Four patients had normal airways; one with chronic lung disease, one demonstrating air trapping. CT findings were concordant with bronchography (one case) and bronchoscopy (four cases) in all but one (CT negative, bronchoscopy positive) but did not alter patient management. The assessment of the paediatric airway, and in particular for tracheobronchomalacia, is difficult. Assessment with bronchography, bronchoscopy, helical CT and MR have issues with reliability, intubation, intratracheal/bronchial contrast administration and ionising radiation. Volumetric CT assesses the entire central airway in children at much lower radiation dose compared with previous dynamic CT imaging. This non-invasive, rapid assessment obviates the need for patient cooperation and enables evaluation of extratracheal intrathoracic structures. Volumetric CT enables four-dimensional assessment for paediatric tracheobronchomalacia without intubation or patient cooperation and at low radiation dose. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and

  4. The volumetric fraction of inorganic particles and the flexural strength of composites for posterior teeth.

    PubMed

    Adabo, Gelson Luis; dos Santos Cruz, Carlos Alberto; Fonseca, Renata Garcia; Vaz, Luís Geraldo

    2003-07-01

    To evaluate the content of inorganic particles and the flexural strength of new condensable composites for posterior teeth in comparison to hybrid conventional composites. The determination of the content of inorganic particles was performed by mass weighing of a polymerized composite before and after the elimination of the organic phase. The volumetric particle content was determined by a practical method based on Archimedes' principle, which calculates the volume of the composite and their particles by differential mass measured in the air and in water. The flexural strength of three points was evaluated according to the norm ISO 4049:1988. The results showed the following filler content: Alert, 67.26%; Z-100, 65.27%; Filtek P 60, 62.34%; Ariston pHc, 64.07%; Tetric Ceram, 57.22%; Definite, 54.42%; Solitaire, 47.76%. In the flexural strength test, the materials presented the following decreasing order of resistance: Filtek P 60 (170.02 MPa)>Z-100 (151.34 MPa)>Tetric Ceram (126.14 MPa)=Alert (124.89 MPa)>Ariston pHc (102.00 MPa)=Definite (93.63 MPa)>Solitaire (56.71 MPa). New condensable composites for posterior teeth present a concentration of inorganic particles similar to those of hybrid composites but do not necessarily present higher flexural strength.

  5. Quantification of mammographic masking risk with volumetric breast density maps: how to select women for supplemental screening

    NASA Astrophysics Data System (ADS)

    Holland, Katharina; van Gils, Carla H.; Wanders, Johanna OP; Mann, Ritse M.; Karssemeijer, Nico

    2016-03-01

    The sensitivity of mammograms is low for women with dense breasts, since cancers may be masked by dense tissue. In this study, we investigated methods to identify women with density patterns associated with a high masking risk. Risk measures are derived from volumetric breast density maps. We used the last negative screening mammograms of 93 women who subsequently presented with an interval cancer (IC), and, as controls, 930 randomly selected normal screening exams from women without cancer. Volumetric breast density maps were computed from the mammograms, which provide the dense tissue thickness at each location. These were used to compute absolute and percentage glandular tissue volume. We modeled the masking risk for each pixel location using the absolute and percentage dense tissue thickness and we investigated the effect of taking the cancer location probability distribution (CLPD) into account. For each method, we selected cases with the highest masking measure (by thresholding) and computed the fraction of ICs as a function of the fraction of controls selected. The latter can be interpreted as the negative supplemental screening rate (NSSR). Between the models, when incorporating CLPD, no significant differences were found. In general, the methods performed better when CLPD was included. At higher NSSRs some of the investigated masking measures had a significantly higher performance than volumetric breast density. These measures may therefore serve as an alternative to identify women with a high risk for a masked cancer.

  6. MO-DE-210-06: Development of a Supercompounded 3D Volumetric Ultrasound Image Guidance System for Prone Accelerated Partial Breast Irradiation (APBI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, T; Hrycushko, B; Zhao, B

    2015-06-15

    Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of watermore » container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and

  7. Minimum Pricing of Alcohol versus Volumetric Taxation: Which Policy Will Reduce Heavy Consumption without Adversely Affecting Light and Moderate Consumers?

    PubMed Central

    Sharma, Anurag; Vandenberg, Brian; Hollingsworth, Bruce

    2014-01-01

    Background We estimate the effect on light, moderate and heavy consumers of alcohol from implementing a minimum unit price for alcohol (MUP) compared with a uniform volumetric tax. Methods We analyse scanner data from a panel survey of demographically representative households (n = 885) collected over a one-year period (24 Jan 2010–22 Jan 2011) in the state of Victoria, Australia, which includes detailed records of each household's off-trade alcohol purchasing. Findings The heaviest consumers (3% of the sample) currently purchase 20% of the total litres of alcohol (LALs), are more likely to purchase cask wine and full strength beer, and pay significantly less on average per standard drink compared to the lightest consumers (A$1.31 [95% CI 1.20–1.41] compared to $2.21 [95% CI 2.10–2.31]). Applying a MUP of A$1 per standard drink has a greater effect on reducing the mean annual volume of alcohol purchased by the heaviest consumers of wine (15.78 LALs [95% CI 14.86–16.69]) and beer (1.85 LALs [95% CI 1.64–2.05]) compared to a uniform volumetric tax (9.56 LALs [95% CI 9.10–10.01] and 0.49 LALs [95% CI 0.46–0.41], respectively). A MUP results in smaller increases in the annual cost for the heaviest consumers of wine ($393.60 [95% CI 374.19–413.00]) and beer ($108.26 [95% CI 94.76–121.75]), compared to a uniform volumetric tax ($552.46 [95% CI 530.55–574.36] and $163.92 [95% CI 152.79–175.03], respectively). Both a MUP and uniform volumetric tax have little effect on changing the annual cost of wine and beer for light and moderate consumers, and likewise little effect upon their purchasing. Conclusions While both a MUP and a uniform volumetric tax have potential to reduce heavy consumption of wine and beer without adversely affecting light and moderate consumers, a MUP offers the potential to achieve greater reductions in heavy consumption at a lower overall annual cost to consumers. PMID:24465368

  8. Serial 3-dimensional computed tomography and a novel method of volumetric analysis for the evaluation of the osteo-odonto-keratoprosthesis.

    PubMed

    Sipkova, Zuzana; Lam, Fook Chang; Francis, Ian; Herold, Jim; Liu, Christopher

    2013-04-01

    To assess the use of serial computed tomography (CT) in the detection of osteo-odonto-lamina resorption in osteo-odonto-keratoprosthesis (OOKP) and to investigate the use of new volumetric software, Advanced Lung Analysis software (3D-ALA; GE Healthcare), for detecting changes in OOKP laminar volume. A retrospective assessment of the radiological databases and hospital records was performed for 22 OOKP patients treated at the National OOKP referral center in Brighton, United Kingdom. Three-dimensional surface reconstructions of the OOKP laminae were performed using stored CT data. For the 2-dimensional linear analysis, the linear dimensions of the reconstructed laminae were measured, compared with original measurements taken at the time of surgery, and then assigned a CT grade based on a predetermined resorption grading scale. The volumetric analysis involved calculating the laminar volumes using 3D-ALA. The effectiveness of 2-dimensional linear analysis, volumetric analysis, and clinical examination in detecting laminar resorption was compared. The mean change in laminar volume between the first and second scans was -6.67% (range, +10.13% to -24.86%). CT grades assigned to patients based on laminar dimension measurements remained the same, despite significant changes in laminar volumes. Clinical examination failed to identify 60% of patients who were found to have resorption on volumetric analysis. Currently, the detection of laminar resorption relies on clinical examination and the measurement of laminar dimensions on the 2- and 3-dimensional radiological images. Laminar volume measurement is a useful new addition to the armamentarium. It provides an objective tool that allows for a precise and reproducible assessment of laminar resorption.

  9. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images.

    PubMed

    Muncy, Nathan M; Hedges-Muncy, Ariana M; Kirwan, C Brock

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing.

  10. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images

    PubMed Central

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing. PMID:29023597

  11. MXene-Based Electrode with Enhanced Pseudocapacitance and Volumetric Capacity for Power-Type and Ultra-Long Life Lithium Storage.

    PubMed

    Niu, Shanshan; Wang, Zhiyu; Yu, Mingliang; Yu, Mengzhou; Xiu, Luyang; Wang, Song; Wu, Xianhong; Qiu, Jieshan

    2018-04-24

    Powerful yet thinner lithium-ion batteries (LIBs) are eagerly desired to meet the practical demands of electric vehicles and portable electronic devices. However, the use of soft carbon materials in current electrode design to improve the electrode conductivity and stability does not afford high volumetric capacity due to their low density and capacity for lithium storage. Herein, we report a strategy leveraging the MXene with superior conductivity and density to soft carbon as matrix and additive material for comprehensively enhancing the power capability, lifespan, and volumetric capacity of conversion-type anode. A kinetics favorable 2D nanohybrid with high conductivity, compact density, accumulated pseudocapacitance, and diffusion-controlled behavior is fabricated by coupling Ti 3 C 2 MXene with high-density molybdenum carbide for fast lithium storage over 300 cycles with high capacities. By replacing the carbonaceous conductive agent with Ti 3 C 2 MXene, the electrodes with better conductivity and dramatically reduced thickens could be further manufactured to achieve 37-40% improvement in capacity retention and ultra-long life of 5500 cycles with extremely slow capacity loss of 0.002% per cycle at high current rates. Ultrahigh volumetric capacity of 2460 mAh cm -3 could be attained by such MXene-based electrodes, highlighting the great promise of MXene in the development of high-performance LIBs.

  12. Comparing Visually Assessed BI-RADS Breast Density and Automated Volumetric Breast Density Software: A Cross-Sectional Study in a Breast Cancer Screening Setting.

    PubMed

    van der Waal, Daniëlle; den Heeten, Gerard J; Pijnappel, Ruud M; Schuur, Klaas H; Timmers, Johanna M H; Verbeek, André L M; Broeders, Mireille J M

    2015-01-01

    The objective of this study is to compare different methods for measuring breast density, both visual assessments and automated volumetric density, in a breast cancer screening setting. These measures could potentially be implemented in future screening programmes, in the context of personalised screening or screening evaluation. Digital mammographic exams (N = 992) of women participating in the Dutch breast cancer screening programme (age 50-75y) in 2013 were included. Breast density was measured in three different ways: BI-RADS density (5th edition) and with two commercially available automated software programs (Quantra and Volpara volumetric density). BI-RADS density (ordinal scale) was assessed by three radiologists. Quantra (v1.3) and Volpara (v1.5.0) provide continuous estimates. Different comparison methods were used, including Bland-Altman plots and correlation coefficients (e.g., intraclass correlation coefficient [ICC]). Based on the BI-RADS classification, 40.8% of the women had 'heterogeneously or extremely dense' breasts. The median volumetric percent density was 12.1% (IQR: 9.6-16.5) for Quantra, which was higher than the Volpara estimate (median 6.6%, IQR: 4.4-10.9). The mean difference between Quantra and Volpara was 5.19% (95% CI: 5.04-5.34) (ICC: 0.64). There was a clear increase in volumetric percent dense volume as BI-RADS density increased. The highest accuracy for predicting the presence of BI-RADS c+d (heterogeneously or extremely dense) was observed with a cut-off value of 8.0% for Volpara and 13.8% for Quantra. Although there was no perfect agreement, there appeared to be a strong association between all three measures. Both volumetric density measures seem to be usable in breast cancer screening programmes, provided that the required data flow can be realized.

  13. Comparing Visually Assessed BI-RADS Breast Density and Automated Volumetric Breast Density Software: A Cross-Sectional Study in a Breast Cancer Screening Setting

    PubMed Central

    van der Waal, Daniëlle; den Heeten, Gerard J.; Pijnappel, Ruud M.; Schuur, Klaas H.; Timmers, Johanna M. H.; Verbeek, André L. M.; Broeders, Mireille J. M.

    2015-01-01

    Introduction The objective of this study is to compare different methods for measuring breast density, both visual assessments and automated volumetric density, in a breast cancer screening setting. These measures could potentially be implemented in future screening programmes, in the context of personalised screening or screening evaluation. Materials and Methods Digital mammographic exams (N = 992) of women participating in the Dutch breast cancer screening programme (age 50–75y) in 2013 were included. Breast density was measured in three different ways: BI-RADS density (5th edition) and with two commercially available automated software programs (Quantra and Volpara volumetric density). BI-RADS density (ordinal scale) was assessed by three radiologists. Quantra (v1.3) and Volpara (v1.5.0) provide continuous estimates. Different comparison methods were used, including Bland-Altman plots and correlation coefficients (e.g., intraclass correlation coefficient [ICC]). Results Based on the BI-RADS classification, 40.8% of the women had ‘heterogeneously or extremely dense’ breasts. The median volumetric percent density was 12.1% (IQR: 9.6–16.5) for Quantra, which was higher than the Volpara estimate (median 6.6%, IQR: 4.4–10.9). The mean difference between Quantra and Volpara was 5.19% (95% CI: 5.04–5.34) (ICC: 0.64). There was a clear increase in volumetric percent dense volume as BI-RADS density increased. The highest accuracy for predicting the presence of BI-RADS c+d (heterogeneously or extremely dense) was observed with a cut-off value of 8.0% for Volpara and 13.8% for Quantra. Conclusion Although there was no perfect agreement, there appeared to be a strong association between all three measures. Both volumetric density measures seem to be usable in breast cancer screening programmes, provided that the required data flow can be realized. PMID:26335569

  14. Predicting gaseous reaction rates of short chain chlorinated paraffins with ·OH: overcoming the difficulty in experimental determination.

    PubMed

    Li, Chao; Xie, Hong-Bin; Chen, Jingwen; Yang, Xianhai; Zhang, Yifei; Qiao, Xianliang

    2014-12-02

    Short chain chlorinated paraffins (SCCPs) are under evaluation for inclusion in the Stockholm Convention on persistent organic pollutants. However, information on their reaction rate constants with gaseous ·OH (kOH) is unavailable, limiting the evaluation of their persistence in the atmosphere. Experimental determination of kOH is confined by the unavailability of authentic chemical standards for some SCCP congeners. In this study, we evaluated and selected density functional theory (DFT) methods to predict kOH of SCCPs, by comparing the experimental kOH values of six polychlorinated alkanes (PCAs) with those calculated by the different theoretical methods. We found that the M06-2X/6-311+G(3df,2pd)//B3LYP/6-311 +G(d,p) method is time-effective and can be used to predict kOH of PCAs. Moreover, based on the calculated kOH of nine SCCPs and available experimental kOH values of 22 PCAs with low carbon chain, a quantitative structure-activity relationship (QSAR) model was developed. The molecular structural characteristics determining the ·OH reaction rate were discussed. logkOH was found to negatively correlate with the percentage of chlorine substitutions (Cl%). The DFT calculation method and the QSAR model are important alternatives to the conventional experimental determination of kOH for SCCPs, and are prospective in predicting their persistence in the atmosphere.

  15. Chaos and simple determinism in reversed field pinch plasmas: Nonlinear analysis of numerical simulation and experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Christopher A.

    In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulatemore » the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less

  16. A volumetric pulmonary CT segmentation method with applications in emphysema assessment

    NASA Astrophysics Data System (ADS)

    Silva, José Silvestre; Silva, Augusto; Santos, Beatriz S.

    2006-03-01

    A segmentation method is a mandatory pre-processing step in many automated or semi-automated analysis tasks such as region identification and densitometric analysis, or even for 3D visualization purposes. In this work we present a fully automated volumetric pulmonary segmentation algorithm based on intensity discrimination and morphologic procedures. Our method first identifies the trachea as well as primary bronchi and then the pulmonary region is identified by applying a threshold and morphologic operations. When both lungs are in contact, additional procedures are performed to obtain two separated lung volumes. To evaluate the performance of the method, we compared contours extracted from 3D lung surfaces with reference contours, using several figures of merit. Results show that the worst case generally occurs at the middle sections of high resolution CT exams, due the presence of aerial and vascular structures. Nevertheless, the average error is inferior to the average error associated with radiologist inter-observer variability, which suggests that our method produces lung contours similar to those drawn by radiologists. The information created by our segmentation algorithm is used by an identification and representation method in pulmonary emphysema that also classifies emphysema according to its severity degree. Two clinically proved thresholds are applied which identify regions with severe emphysema, and with highly severe emphysema. Based on this thresholding strategy, an application for volumetric emphysema assessment was developed offering new display paradigms concerning the visualization of classification results. This framework is easily extendable to accommodate other classifiers namely those related with texture based segmentation as it is often the case with interstitial diseases.

  17. Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays.

    PubMed

    Bhuyan, Anshuman; Choe, Jung Woo; Lee, Byung Chul; Wygant, Ira O; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T

    2013-12-01

    Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 μm. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.

  18. Volumetric modulated arc therapy for treatment of solid tumors: current insights

    PubMed Central

    Macchia, Gabriella; Deodato, Francesco; Cilla, Savino; Cammelli, Silvia; Guido, Alessandra; Ferioli, Martina; Siepe, Giambattista; Valentini, Vincenzo; Morganti, Alessio Giuseppe; Ferrandina, Gabriella

    2017-01-01

    Aim This article discusses the current use of volumetric modulated arc therapy (VMAT) techniques in clinical practice and reviews the available data from clinical outcome studies in different clinical settings. An overview of available literature about clinical outcomes with VMAT stereotactic/radiosurgical treatment is also reported. Materials and methods All published manuscripts reporting the use of VMAT in a clinical setting from 2009 to November 2016 were identified. The search was carried out in December 2016 using the National Library of Medicine (PubMed/Medline). The following words were searched: “volumetric arc therapy”[All Fields] OR “vmat”[All Fields] OR “rapidarc”[All Fields], AND “radiotherapy”[All Fields] AND “Clinical Trial”[All Fields]. Results Overall, 37 studies (21 prospective and 16 retrospective) fulfilling inclusion criteria and thus included in the review evaluated 2,029 patients treated with VMAT; of these patients, ~30.8% had genitourinary (GU) tumors (81% prostate, 19% endometrial), 26.2% head-and-neck cancer (H&NC), 13.9% oligometastases, 11.2% had anorectal cancer, 10.6% thoracic neoplasms (81% breast, 19% lung), and 7.0% brain metastases (BMs). Six different clinical scenarios for VMAT use were identified: 1) BMs, 2) H&NC, 3) thoracic neoplasms, 4) GU cancer, 5) anorectal tumor, and 6) stereotactic body radiation therapy (SBRT) performed by VMAT technique in the oligometastatic patient setting. Conclusion The literature addressing the clinical appropriateness of VMAT is scarce. Current literature suggests that VMAT, especially when used as simultaneous integrated boost or SBRT strategy, is an effective safe modality for all cancer types. PMID:28794640

  19. Experimental determination of ablation vapor species from carbon phenolic heat-shield materials

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.

    1981-01-01

    The relative concentrations of vapors produced from carbon phenolic composites under thermal loadings approximating those expected at peak heating during vehicle entry into the atmospheres of the outer planets have been determined. The technique of vaporizing the surface of bulk samples by laser irradiation while measuring in situ the vapor species by mass spectrometry is described. Results show that vapor composition varies with irradiance level and with depth of heating (or extent of pyrolysis). Attempts are made to compare these experimental results with the theoretical predictions from computer codes.

  20. Volumetric Nephrogram Represents Renal Function and Complements Aortic Anatomic Severity Grade in Predicting EVAR Outcomes.

    PubMed

    Balceniuk, Mark D; Trakimas, Lauren; Aghaie, Claudia; Mix, Doran; Rasheed, Khurram; Seaman, Matthew; Ellis, Jennifer; Glocker, Roan; Doyle, Adam; Stoner, Michael C

    2018-07-01

    Chronic kidney disease (CKD) is a predictor of poor outcomes for patients undergoing endovascular aortic aneurysm repair (EVAR). Anatomic severity grade (ASG) represents a quantitative mechanism for assessing anatomical suitability for endovascular aortic repair. Anatomic severity grade has been correlated with repair outcomes and resource utilization. The purpose of this study was to identify a novel renal perfusion metric as a way to assist ASG with predicting EVAR outcomes. Retrospective review of a prospectively maintained database identified elective infrarenal aortic aneurysm repair cases. Anatomic grading was undertaken by independent reviewers. Using volumetric software, kidney volume, and a novel measure of kidney functional volume, the volumetric nephrogram (VN) was recorded. Systematic evaluation of the relationship of kidney volume and VN to CKD and ASG was undertaken using linear regression and receiver-operator statistical tools. A total of 386 cases with patient and anatomic data were identified and graded. Mean age was 72.9 ± 0.4 years. Renal volume <281 mL correlated with CKD (area under the curve [AUC] = .708; P ≤ .0001). Volumetric nephrogram <22.5 HU·L correlated with CKD (AUC = 0.764; P ≤ .0001). High (≥15) ASG scores correlated with both renal volume (AUC = .628; P ≤ .0001) and VN (AUC = .628; P ≤ .0001). Regression analysis demonstrated a strong, inverse relationship between ASG and VN ( R 2 = .95). These data demonstrate that VN is a strong predictor of CKD in a large database of patients undergoing elective aneurysm repair. We demonstrate an inverse relationship between renal function and ASG that has not been previously described in the literature. Additionally, we have shown that VN complements ASG as a model of overall cardiovascular health and atherosclerotic burden. Outcomes in patients with poor renal function may be related to anatomical issues in addition to well-described systemic ramifications.

  1. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density

    PubMed Central

    Son, In Hyuk; Hwan Park, Jong; Kwon, Soonchul; Park, Seongyong; Rümmeli, Mark H.; Bachmatiuk, Alicja; Song, Hyun Jae; Ku, Junhwan; Choi, Jang Wook; Choi, Jae-man; Doo, Seok-Gwang; Chang, Hyuk

    2015-01-01

    Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge–discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700 Wh l−1 at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology. PMID:26109057

  2. Computer-assisted identification and volumetric quantification of dynamic contrast enhancement in brain MRI: an interactive system

    NASA Astrophysics Data System (ADS)

    Wu, Shandong; Avgeropoulos, Nicholas G.; Rippe, David J.

    2013-03-01

    We present a dedicated segmentation system for tumor identification and volumetric quantification in dynamic contrast brain magnetic resonance (MR) scans. Our goal is to offer a practically useful tool at the end of clinicians in order to boost volumetric tumor assessment. The system is designed to work in an interactive mode such that maximizes the integration of computing capacity and clinical intelligence. We demonstrate the main functions of the system in terms of its functional flow and conduct preliminary validation using a representative pilot dataset. The system is inexpensive, user-friendly, easy to deploy and integrate with picture archiving and communication systems (PACS), and possible to be open-source, which enable it to potentially serve as a useful assistant for radiologists and oncologists. It is anticipated that in the future the system can be integrated into clinical workflow so that become routine available to help clinicians make more objective interpretations of treatment interventions and natural history of disease to best advocate patient needs.

  3. Prognostic Value of the Amount of Bleeding After Aneurysmal Subarachnoid Hemorrhage: A Quantitative Volumetric Study.

    PubMed

    Lagares, Alfonso; Jiménez-Roldán, Luis; Gomez, Pedro A; Munarriz, Pablo M; Castaño-León, Ana M; Cepeda, Santiago; Alén, José F

    2015-12-01

    Quantitative estimation of the hemorrhage volume associated with aneurysm rupture is a new tool of assessing prognosis. To determine the prognostic value of the quantitative estimation of the amount of bleeding after aneurysmal subarachnoid hemorrhage, as well the relative importance of this factor related to other prognostic indicators, and to establish a possible cut-off value of volume of bleeding related to poor outcome. A prospective cohort of 206 patients consecutively admitted with the diagnosis of aneurysmal subarachnoid hemorrhage to Hospital 12 de Octubre were included in the study. Subarachnoid, intraventricular, intracerebral, and total bleeding volumes were calculated using analytic software. For assessing factors related to prognosis, univariate and multivariate analysis (logistic regression) were performed. The relative importance of factors in determining prognosis was established by calculating their proportion of explained variation. Maximum Youden index was calculated to determine the optimal cut point for subarachnoid and total bleeding volume. Variables independently related to prognosis were clinical grade at admission, age, and the different bleeding volumes. The proportion of variance explained is higher for subarachnoid bleeding. The optimal cut point related to poor prognosis is a volume of 20 mL both for subarachnoid and total bleeding. Volumetric measurement of subarachnoid or total bleeding volume are both independent prognostic factors in patients with aneurysmal subarachnoid hemorrhage. A volume of more than 20 mL of blood in the initial noncontrast computed tomography is related to a clear increase in poor outcome risk. : aSAH, aneurysmal subarachnoid hemorrhage.

  4. An experimental determination of the drag coefficient of a Mens 8+ racing shell.

    PubMed

    Buckmann, James G; Harris, Samuel D

    2014-01-01

    This study centered around an experimental analysis of a Mens Lightweight Eight racing shell and, specifically, determining an approximation for the drag coefficient. A testing procedure was employed that used a Global Positioning System (GPS) unit in order to determine the acceleration and drag force on the shell, and through calculations yield a drag coefficient. The testing was run over several days in numerous conditions, and a 95% confidence interval was established to capture the results. The results obtained, over these varying trials, maintained a successful level of consistency. The significance of this study transcends the determination an approximation for the drag coefficient of the racing shell; it defined a successful means of quantifying performance of the shell itself. The testing procedures outlined in the study represent a uniform means of evaluating the factors that influence drag on the shell, and thus influence speed.

  5. Feasibility of estimating volumetric breast density from mammographic x-ray spectra using a cadmium telluride photon-counting detector.

    PubMed

    Ghammraoui, Bahaa; Badal, Andreu; Glick, Stephen J

    2018-06-03

    Mammographic density of glandular breast tissue has a masking effect that can reduce lesion detection accuracy and is also a strong risk factor for breast cancer. Therefore, accurate quantitative estimation of breast density is clinically important. In this study, we investigate experimentally the feasibility of quantifying volumetric breast density with spectral mammography using a CdTe-based photon-counting detector. To demonstrate proof-of-principle, this study was carried out using the single pixel Amptek XR-100T-CdTe detector. The total number of x rays recorded by the detector from a single pencil-beam projection through 50%/50% of adipose/glandular mass fraction-equivalent phantoms was measured. Material decomposition assuming two, four, and eight energy bins was then applied to characterize the inspected phantom into adipose and glandular using log-likelihood estimation, taking into account the polychromatic source, the detector response function, and the energy-dependent attenuation. Measurement tests were carried out for different doses, kVp settings, and different breast sizes. For dose of 1 mGy and above, the percent relative root mean square (RMS) errors of the estimated breast density was measured below 7% for all three phantom studies. It was also observed that some decrease in RMS errors was achieved using eight energy bins. For 3 and 4 cm thick phantoms, performance at 40 and 45 kVp showed similar performance. However, it was observed that 45 kVp showed better performance for a phantom thickness of 6 cm at low dose levels due to increased statistical variation at lower photon count levels with 40 kVp. The results of the current study suggest that photon-counting spectral mammography systems using CdTe detectors have the potential to be used for accurate quantification of volumetric breast density on a pixel-to-pixel basis, with an RMS error of less than 7%. Published 2018. This article is a U.S. Government work and is in the public domain in the

  6. Thermal and volumetric properties of methanol-hexamethylphosphortriamide mixtures under standard conditions

    NASA Astrophysics Data System (ADS)

    Batov, D. V.; Kustov, A. V.; Antonova, O. A.; Smirnova, N. L.

    2017-02-01

    Enthalpic and volumetric characteristics of mixing in a methanol (MeOH)-hexamethylphosphortriamide (HMPT, 2) mixture are studied. Based on an analysis of concentration changes in the obtained data and the calculated partial molar characteristics, it is shown that at 0.2 molar fractions > x 2 > 0.7 molar fractions, the variation in the composition of the mixture slightly alters the character of intermolecular interactions characteristic of pure components. It is found that MeOH-HMPT mixtures experience most changes in intermolecular interaction and structure within the range of 0.2-0.7 molar fractions of HMPT.

  7. Volumetric Spectroscopic Imaging of Glioblastoma Multiforme Radiation Treatment Volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parra, N. Andres; Maudsley, Andrew A.; Gupta, Rakesh K.

    Purpose: Magnetic resonance (MR) imaging and computed tomography (CT) are used almost exclusively in radiation therapy planning of glioblastoma multiforme (GBM), despite their well-recognized limitations. MR spectroscopic imaging (MRSI) can identify biochemical patterns associated with normal brain and tumor, predominantly by observation of choline (Cho) and N-acetylaspartate (NAA) distributions. In this study, volumetric 3-dimensional MRSI was used to map these compounds over a wide region of the brain and to evaluate metabolite-defined treatment targets (metabolic tumor volumes [MTV]). Methods and Materials: Volumetric MRSI with effective voxel size of ∼1.0 mL and standard clinical MR images were obtained from 19 GBM patients.more » Gross tumor volumes and edema were manually outlined, and clinical target volumes (CTVs) receiving 46 and 60 Gy were defined (CTV{sub 46} and CTV{sub 60}, respectively). MTV{sub Cho} and MTV{sub NAA} were constructed based on volumes with high Cho and low NAA relative to values estimated from normal-appearing tissue. Results: The MRSI coverage of the brain was between 70% and 76%. The MTV{sub NAA} were almost entirely contained within the edema, and the correlation between the 2 volumes was significant (r=0.68, P=.001). In contrast, a considerable fraction of MTV{sub Cho} was outside of the edema (median, 33%) and for some patients it was also outside of the CTV{sub 46} and CTV{sub 60}. These untreated volumes were greater than 10% for 7 patients (37%) in the study, and on average more than one-third (34.3%) of the MTV{sub Cho} for these patients were outside of CTV{sub 60}. Conclusions: This study demonstrates the potential usefulness of whole-brain MRSI for radiation therapy planning of GBM and revealed that areas of metabolically active tumor are not covered by standard RT volumes. The described integration of MTV into the RT system will pave the way to future clinical trials investigating outcomes in patients treated based

  8. Development and Evaluation of Real-Time Volumetric Compton Gamma-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Barnowski, Ross Wegner

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. The real-time tracking allows the imager to be moved throughout the environment or around a particular object of interest, obtaining the multiple perspectives necessary for standoff 3D imaging. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, can be incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and two different mobile gamma-ray imaging platforms. The first is a cart-based imaging platform known as the Volumetric Compton Imager (VCI), comprising two 3D position-sensitive high purity germanium (HPGe) detectors, exhibiting excellent gamma-ray imaging characteristics, but with limited mobility due to the size and weight of the cart. The second system is the High Efficiency Multimodal Imager (HEMI) a hand-portable gamma-ray imager comprising 96 individual cm3 CdZnTe crystals arranged in a two-plane, active-mask configuration. The HEMI instrument has poorer energy and angular resolution than the VCI, but is truly hand-portable, allowing the SDF concept to be tested in multiple environments and for more challenging imaging scenarios. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. Each of the two mobile imaging systems are used to demonstrate SDF for a variety of scenarios, including

  9. Code CUGEL: A code to unfold Ge(Li) spectrometer polyenergetic gamma photon experimental distributions

    NASA Technical Reports Server (NTRS)

    Steyn, J. J.; Born, U.

    1970-01-01

    A FORTRAN code was developed for the Univac 1108 digital computer to unfold lithium-drifted germanium semiconductor spectrometers, polyenergetic gamma photon experimental distributions. It was designed to analyze the combination continuous and monoenergetic gamma radiation field of radioisotope volumetric sources. The code generates the detector system response matrix function and applies it to monoenergetic spectral components discretely and to the continuum iteratively. It corrects for system drift, source decay, background, and detection efficiency. Results are presented in digital form for differential and integrated photon number and energy distributions, and for exposure dose.

  10. Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen

    PubMed Central

    Corbett, Alexander D.; Burton, Rebecca A. B.; Bub, Gil; Salter, Patrick S.; Tuohy, Simon; Booth, Martin J.; Wilson, Tony

    2014-01-01

    Remote focussing microscopy allows sharp, in-focus images to be acquired at high speed from outside of the focal plane of an objective lens without any agitation of the specimen. However, without careful optical alignment, the advantages of remote focussing microscopy could be compromised by the introduction of depth-dependent scaling artifacts. To achieve an ideal alignment in a point-scanning remote focussing microscope, the lateral (XY) scan mirror pair must be imaged onto the back focal plane of both the reference and imaging objectives, in a telecentric arrangement. However, for many commercial objective lenses, it can be difficult to accurately locate the position of the back focal plane. This paper investigates the impact of this limitation on the fidelity of three-dimensional data sets of living cardiac tissue, specifically the introduction of distortions. These distortions limit the accuracy of sarcomere measurements taken directly from raw volumetric data. The origin of the distortion is first identified through simulation of a remote focussing microscope. Using a novel three-dimensional calibration specimen it was then possible to quantify experimentally the size of the distortion as a function of objective misalignment. Finally, by first approximating and then compensating the distortion in imaging data from whole heart rodent studies, the variance of sarcomere length (SL) measurements was reduced by almost 50%. PMID:25339910

  11. Simultaneous delivery time and aperture shape optimization for the volumetric-modulated arc therapy (VMAT) treatment planning problem

    NASA Astrophysics Data System (ADS)

    Mahnam, Mehdi; Gendreau, Michel; Lahrichi, Nadia; Rousseau, Louis-Martin

    2017-07-01

    In this paper, we propose a novel heuristic algorithm for the volumetric-modulated arc therapy treatment planning problem, optimizing the trade-off between delivery time and treatment quality. We present a new mixed integer programming model in which the multi-leaf collimator leaf positions, gantry speed, and dose rate are determined simultaneously. Our heuristic is based on column generation; the aperture configuration is modeled in the columns and the dose distribution and time restriction in the rows. To reduce the number of voxels and increase the efficiency of the master model, we aggregate similar voxels using a clustering technique. The efficiency of the algorithm and the treatment quality are evaluated on a benchmark clinical prostate cancer case. The computational results show that a high-quality treatment is achievable using a four-thread CPU. Finally, we analyze the effects of the various parameters and two leaf-motion strategies.

  12. Modifying Current Collectors to Produce High Volumetric Energy Density and Power Density Storage Devices.

    PubMed

    Khani, Hadi; Dowell, Timothy J; Wipf, David O

    2018-06-27

    We develop zirconium-templated NiO/NiOOH nanosheets on nickel foam and polypyrrole-embedded in exfoliated carbon fiber cloth as complementary electrodes for an asymmetric battery-type supercapacitor device. We achieve high volumetric energy and power density by the modification of commercially available current collectors (CCs). The modified CCs provide the source of active material, actively participate in the charge storage process, provide a larger surface area for active material loading, need no additional binders or conductive additives, and retain the ability to act as the CC. Nickel foam (NF) CCs are modified by use of a soft-templating/solvothermal treatment to generate NiO/NiOOH nanosheets, where the NF is the source of Ni for the synthesis. Carbon-fiber cloth (CFC) CCs are modified by an electrochemical oxidation/reduction process to generate exfoliated core-shell structures (ECFC). Electropolymerization of pyrrole into the shell structure produces polypyrrole embedded in exfoliated core-shell material (PPy@rECFC). Battery-type supercapacitor devices are produced with NiO/NiOOH@NF and PPy@rECFC as positive and negative electrodes, respectively, to demonstrate the utility of this approach. Volumetric energy densities for the full-cell device are in the range of 2.60-4.12 mWh cm -3 with corresponding power densities in the range of 9.17-425.58 mW cm -3 . This is comparable to thin-film lithium-ion batteries (0.3-10 mWh cm -3 ) and better than some commercial supercapacitors (<1 mWh cm -3 ). 1 The energy and power density is impressive considering that it was calculated using the entire cell volume (active materials, separator, and both CCs). The full-cell device is highly stable, retaining 96% and 88% of capacity after 2000 and 5000 cycles, respectively. These results demonstrate the utility of directly modifying the CCs and suggest a new method to produce high volumetric energy density and power density storage devices.

  13. Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance

    DOE PAGES

    Zhao, Meng-Qiang; Ren, Chang E.; Ling, Zheng; ...

    2014-11-18

    Electrochemical capacitors attract attention because of their high power densities and long cycle lives. Moreover, with increasing demand for portable and wearable electronics, recent research has focused primarily on improving the energy density per unit of volume of electrochemical capacitors. But, the volumetric capacitances of carbon-based electrodes is limited at around 60 F cm -3 for commercial devices, and at best in the range of 300 F cm -3 for low-density porous carbons (<0.5–1 g cm -3 ). Although extremely high capacitances of 1000–1500 F cm -3 can be achieved for hydrated ruthenium oxide, RuO 2 , its highmore » cost limits its wide-spread applications.« less

  14. Determining an Effective Intervention within a Brief Experimental Analysis for Reading: A Meta-Analytic Review

    ERIC Educational Resources Information Center

    Burns, Matthew K.; Wagner, Dana

    2008-01-01

    The current study applied meta-analytic procedures to brief experimental analysis research of reading fluency interventions to better inform practice and suggest areas for future research. Thirteen studies were examined to determine what magnitude of effect was needed to identify an intervention as the most effective within a brief experimental…

  15. Experimental and Numerical Investigations on Strength and Deformation Behavior of Cataclastic Sandstone

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shao, J. F.; Xu, W. Y.; Zhao, H. B.; Wang, W.

    2015-05-01

    This work is devoted to characterization of the deformation and strength properties of cataclastic sandstones. Before conducting mechanical tests, the physical properties were first examined. These sandstones are characterized by a loose damaged microstructure and poorly cemented contacts. Then, a series of mechanical tests including hydrostatic, uniaxial, and triaxial compression tests were performed to study the mechanical strength and deformation of the sandstones. The results obtained show nonlinear stress-strain responses. The initial microcracks are closed at hydrostatic stress of 2.6 MPa, and the uniaxial compressive strength is about 0.98 MPa. Under triaxial compression, there is a clear transition from volumetric compressibility to dilatancy and a strong dependency on confining pressure. Based on the experimental evidence, an elastoplastic model is proposed using a linear yield function and a nonassociated plastic potential. There is good agreement between numerical results and experimental data.

  16. Morphological and functional determinants of fluoxetine (Prozac)-induced pulmonary disease in an experimental model.

    PubMed

    Capelozzi, Marco A; Leick-Maldonado, Edna A; Parra, Edwin R; Martins, Mílton A; Tibério, Iolanda F L C; Capelozzi, Vera L

    2007-05-14

    Fluoxetine treatment effects were determined by evaluating respiratory mechanics (elastance/resistance) and exhaled nitric oxide, as well as mononuclear and polymorphonuclear cell recruitment into the lungs, in an experimental guinea pig model. Guinea pigs were divided into four groups: Fl (fluoxetine only, n=7); Fl+Sw (fluoxetine and forced swimming, n=7); Ns+Sw (normal saline and forced swimming, n=8); and Ns (normal saline only, n=8). Treated animals received oral fluoxetine (10 mg/(kg day)) for 30 consecutive days. On day 31, all animals were anesthetized and mechanically ventilated so that respiratory system elastance and resistance, as well exhaled nitric oxide, could be determined. The lungs were then excised en bloc for histological and immunohistochemical evaluation. Forced swimming induced bronchodilation in untreated animals and bronchoconstriction in fluoxetine-treated animals. Fluoxetine treatment was also associated with mononuclear infiltration (predominantly into alveolar walls) and neutrophil recruitment. In addition, levels of exhaled nitric oxide, an inflammatory marker, were higher in fluoxetine-treated animals. Swimming-induced stress also amplified mononuclear cell recruitment to the lungs. These results show that, in this experimental model, fluoxetine treatment reproduces the pathology of chronic interstitial pneumonia in humans.

  17. Hydrodynamic performance of a single-use aerated stirred bioreactor in animal cell culture: applications of tomography, dynamic gas disengagement (DGD), and CFD.

    PubMed

    Kazemzadeh, Argang; Elias, Cynthia; Tamer, Melih; Ein-Mozaffari, Farhad

    2018-05-01

    The hydrodynamics of gas-liquid two-phase flow in a single-use bioreactor were investigated in detail both experimentally and numerically. Electrical resistance tomography (ERT) and dynamic gas disengagement (DGD) combined with computational fluid dynamics (CFD) were employed to assess the effect of the volumetric gas flow rate and impeller speed on the gas-liquid flow field, local and global gas holdup values, and Sauter mean bubble diameter. From the results obtained from DGD coupled with ERT, the bubble sizes were determined. The experimental data indicated that the total gas holdup values increased with increasing both the rotational speed of impeller and volumetric gas flow rate. Moreover, the analysis of the flow field generated inside the aerated stirred bioreactor was conducted using CFD results. Overall, a more uniform distribution of the gas holdup was obtained at impeller speeds ≥ 100 rpm for volumetric gas flow rates ≥ 1.6 × 10 -5  m 3 /s.

  18. Estimation of Soil-Water Characteristic Curves in Multiple-Cycles Using Membrane and TDR System

    PubMed Central

    Hong, Won-Taek; Jung, Young-Seok; Kang, Seonghun; Lee, Jong-Sub

    2016-01-01

    The objective of this study is to estimate multiple-cycles of the soil-water characteristic curve (SWCC) using an innovative volumetric pressure plate extractor (VPPE), which is incorporated with a membrane and time domain reflectometry (TDR). The pressure cell includes the membrane to reduce the experimental time and the TDR probe to automatically estimate the volumetric water content. For the estimation of SWCC using the VPPE system, four specimens with different grain size and void ratio are prepared. The volumetric water contents of the specimens according to the matric suction are measured by the burette system and are estimated in the TDR system during five cycles of SWCC tests. The volumetric water contents estimated by the TDR system are almost identical to those determined by the burette system. The experimental time significantly decreases with the new VPPE. The hysteresis in the SWCC is largest in the first cycle and is nearly identical after 1.5 cycles. As the initial void ratio decreases, the air entry value increases. This study suggests that the new VPPE may effectively estimate multiple-cycles of the SWCC of unsaturated soils. PMID:28774139

  19. Determination of pKa and the corresponding structures of quinclorac using combined experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Song, Dean; Sun, Huiqing; Jiang, Xiaohua; Kong, Fanyu; Qiang, Zhimin; Zhang, Aiqian; Liu, Huijuan; Qu, Jiuhui

    2018-01-01

    As an emerging environmental contaminant, the herbicide quinclorac has attracted much attention in recent years. However, a very fundamental issue, the acid dissociation of quinclorac has not yet to be studied in detail. Herein, the pKa value and the corresponding structures of quinclorac were systematically investigated using combined experimental and theoretical approaches. The experimental pKa of quinclorac was determined by the spectrophotometric method to be 2.65 at 25 °C with ionic strength of 0.05 M, and was corrected to be 2.56 at ionic strength of zero. The molecular structures of quinclorac were then located by employing the DFT calculation. The anionic quinclorac was directly located with the carboxylic group perpendicular to the aromatic ring, while neutral quinclorac was found to be the equivalent twin structures. The result was further confirmed by analyzing the UV/Vis and MS-MS2 spectra from both experimental and theoretical viewpoints. By employing the QSPR approach, the theoretical pKa of QCR was determined to be 2.50, which is excellent agreement with the experimental result obtained herein. The protonation of QCR at the carboxylic group instead of the quinoline structure was attributed to the weak electronegative property of nitrogen atom induced by the electron-withdrawing groups. It is anticipated that this work could not only help in gaining a deep insight into the acid dissociation of quinclorac but also offering the key information on its reaction and interaction with others.

  20. Volumetric particle image velocimetry with a single plenoptic camera

    NASA Astrophysics Data System (ADS)

    Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.

    2015-11-01

    A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera