Science.gov

Sample records for experimentally determined volumetric

  1. Comparison of experimental methods for determination of the volumetric mass transfer coefficient in fermentation processes

    NASA Astrophysics Data System (ADS)

    Tobajas, M.; García-Calvo, E.

    Mass transfer in bioreactors has been examined. In the present work, dynamic methods are used for the determination of KLa values for water, model media and a fermentation broth (Candida utilis) in an airlift reactor. The conventional dynamic method is applied at the end of the microbial process in order to avoid an alteration in the metabolism of the microorganisms. New dynamic methods are used to determine KLa in an airlift reactor during the microbial growth of Candida utilis on glucose. One of the methods is based on the continuous measurement of carbon dioxide production while the other method is based on the relationship between the oxygen transfer and biomass growth rates. These methods of determining KLa does not interfere with the microorganisms action. A theoretical mass transfer model has been used for KLa estimation for the systems described above. Some differences between calculated and measured values are found for fermentation processes due to the model is developed for two-phase air-water systems. Nevertheless, the average deviation between the predicted values and those obtained from the relationship between oxygen transfer and biomass production rates are lower than 25% in any case.

  2. Determination of volumetric concentration of solids in vertical pipeline hydrotransport

    NASA Astrophysics Data System (ADS)

    Zych, Marcin; Hanus, Robert; Petryka, Leszek; Strzępowicz, Anna; Zych, Piotr

    2016-03-01

    This paper presents an application of radioisotopes with reference to the determination of the solid phase volumetric concentration in a hydromixture by calibration of the measuring set. It shows how the gamma absorption equipment consisting of radioactive isotopes 241Am and scintillation probe, may be applied to the measurement of solid particles volumetric concentration in a flow. It is based on fact that the intensity of a gamma beam decreases as it passes through matter. In the described experiments as solid phase the ceramic models representing natural polymetallic ocean nodules were used. The especially constructed calibration stand and obtained relation between the related intensity of radiation and mean volumetric concentration of the solid phase are presented.

  3. Determining the volumetric steam content in a BWR gravity leg

    SciTech Connect

    Fedulin, V.N.; Bartolomei, G.G.; Solodkii, V.A.; Shmelev, V.E.

    1987-09-01

    The structure of two-phase flow in a large-diameter limited-height gravity leg was investigated in the VK-50 reactor. Phase distribution properties and a physical model of the steam-water mixture flow in the gravity leg were described. On the basis of experimentally derived date a method was proposed for the calculation of volumetric steam content in the leg.

  4. Experimentally determined volumetric properties of CO{sub 2} + CH{sub 4} + N{sub 2} mixtures at 20-100 MPa and 323-573 K. Chapter 3

    SciTech Connect

    Seitz, J.C.; Blencoe, J.G.; Bodnar, R.J.

    1994-12-31

    The densities of C0{sub 2}+CH{sub 4}+N{sub 2} mixtures were measured at 20--100 MPa, 323--573 K using a custom-designed high-pressure, high-temperature vibrating-tube densimeter. Molar volumes and excess molar volumes (V{sub m}{sup E}) were calculated from the experimental data. Although (V{sub m}{sup E}) is generally positive, negative deviations are observed in ternary mixtures with compositions close to those of binary mixtures that exhibit negative deviations. (V{sub m}{sup E}) generally decreases as pressure increases from 20 to 100 MPa. As temperature increases, (V{sub m}{sup E}) increases until it reaches a maximum around 473 K, and then it decreases moderately as temperature is further increased. (V{sub m}{sup E}) is typically between 0 and 4 per cent of the total volume of the mixture. Predictions of (V{sub m}{sup E}) for ternary mixtures may be made from experimental data for the binary subsystems. Comparison with experimental data indicates that these methods are reasonably accurate for predicting the volumetric properties of ternary gas mixtures.

  5. Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue

    NASA Astrophysics Data System (ADS)

    González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.

    2013-04-01

    Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.

  6. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    NASA Astrophysics Data System (ADS)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  7. An Experimental study of the initial volumetric strain rate effect on the creep behaviour of reconstituted clays

    NASA Astrophysics Data System (ADS)

    Bagheri, M.; Rezania, M.; Nezhad, M. M.

    2015-09-01

    Clayey soils tend to undergo continuous compression with time, even after excess pore pressures have substantially dissipated. The effect of time on deformation and mechanical response of these soft soils has been the subject of numerous studies. Based on these studies, the observed time-dependent behaviour of clays is mainly related to the evolution of soil volume and strength characteristics with time, which are classified as creep and/or relaxation properties of the soil. Apart from many empirical relationships that have been proposed in the literature to capture the rheological behaviour of clays, a number of viscid constitutive relationships have also been developed which have more attractive theoretical attributes. A particular feature of these viscid models is that their creep parameters often have clear physical meaning (e.g. coefficient of secondary compression, Cα). Sometimes with these models, a parameter referred to as initial/reference volumetric strain rate, has also been alluded as a model parameter. However, unlike Cα, the determination of and its variations with stress level is not properly documented in the literature. In an attempt to better understand , this paper presents an experimental investigation of the reference volumetric strain rate in reconstituted clay specimens. A long-term triaxial creep test, at different shear stress levels and different strain rates, was performed on clay specimen whereby the volumetric strain rate was measured. The obtained results indicated the stress-level dependency and non-linear variation of with time.

  8. Volumetric runoff coefficients for experimental rural catchments in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Taguas, Encarnación V.; Molina, Cecilio; Nadal-Romero, Estela; Ayuso, José L.; Casalí, Javier; Cid, Patricio; Dafonte, Jorge; Duarte, Antonio C.; Farguell, Joaquim; Giménez, Rafael; Giráldez, Juan V.; Gómez, Helena; Gómez, Jose A.; González-Hidalgo, J. Carlos; Keizer, J. Jacob; Lucía, Ana; Mateos, Luciano; Rodríguez-Blanco, M. Luz; Schnabel, Sussane; Serrano-Muela, M. Pilar

    2015-04-01

    crucial for designing appropriate decision making tools for water management. REFERENCES Chow V.T., Maidment D.R. and Mays, L.W. 1988. Applied Hydrology. MCGraw Hill, Nueva York. Dhakal, N., Fang, X., Cleveland, T., Thompson, D., Asquith, W., and Marzen, L. (2012). "Estimation of Volumetric Runoff Coefficients for Texas Watersheds Using Land-Use and Rainfall-Runoff Data." Journal of Irrigation and Drainage Engineering, 1(2012):43-54. Schaake JC, Geyer JC,Knapp JW. 1967. Experimental examination of the rational method. J. Hydr.Div. 93(6),353-70

  9. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    NASA Astrophysics Data System (ADS)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  10. Validation of simultaneous volumetric and spectrophotometric methods for the determination of captopril in pharmaceutical formulations.

    PubMed

    Rahman, Nafisur; Singh, Manisha; Hoda, Nasrul

    2005-01-01

    Simple, sensitive and economical simultaneous volumetric and spectrophotometric methods for the determination of captopril have been developed. The methods were based on the reaction of captopril with potassium iodate in HCl medium. Amaranth was used as indicator to detect the end-point of the titration in aqueous layer. The iodine formed during the titration was extracted into CCl4 and subsequently determined spectrophotometrically at 510 nm. The Beer's law was obeyed in the concentration range of 120-520 microg ml-1. Rigorous statistical analyses were performed for the validation of the proposed methods. The proposed methods were successfully applied to the determination of captopril in dosage forms. Comparison of the means of the proposed procedures with those of reference methods using point and interval hypothesis tests showed no statistically significant difference. PMID:15927181

  11. Volumetric determination of uranium titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, J.S.; Skinner, D.L.; Rader, L.F., Jr.

    1957-01-01

    Need for a more rapid volumetric method for the routine determination of uranium in uranium-rich materials has led to the development of a method that uses titanous sulfate as a reductant before oxidimetric titration. Separation of the hydrogen sulfide group is not necessary. Interfering elements precipitated by cupferron are removed by automatic filtrations made simultaneously rather than by the longer chloroform extraction method. Uranium is reduced from VI to IV by addition of an excess of titanous sulfate solution, cupric ion serving as an indicator by forming red metallic copper when reduction is complete. The copper is reoxidized by addition of mercuric perchlorate. The reduced uranium is then determined by addition of excess ferric sulfate and titration with ceric sulfate. The method has proved to be rapid, accurate, and economical.

  12. Determination of density and volumetric water content of soil at multiple photon energies

    NASA Astrophysics Data System (ADS)

    Ün, A.; Demir, D.; Şahin, Y.

    2011-08-01

    Gamma ray transmission methods have been used accurately for the study of the properties of soil for agricultural purposes. In this study, density and volumetric water content of soil are determined by using gamma ray transmission method. To this end, the soil sample was collected from Erzurum, Turkey. The attenuation of strongly collimated monoenergetic gamma beam through the soil sample was measured using a 3×3×1 mm3 cadmium telluride (CdTe) detector. The radioactive sources used in the experiment were 241Am, 133Ba and 137Cs. The mass attenuation coefficients of dry soil sample were calculated from the transmission measurements. It was observed that gamma ray transmission method in measurement of the soil parameters with the portable CdTe detector has advantages such as practical, inexpensive, non-destructive and fast analysis.

  13. Simultaneous determination of temperature-dependent thermal conductivity and volumetric heat capacity by an inverse technique

    SciTech Connect

    Woodbury, K.A.; Boohaker, C.G.

    1996-12-31

    Determination of thermal properties by inverse methods often involves limited thermal excitation of a relatively small sample. If these thermal properties are to be found as functions of temperature, then this procedure must be replicated at several artificially elevated temperatures. For some types of materials (for example, those bearing moisture) this approach is impractical. In this paper, a procedure is developed for determining thermal properties (conductivity k and volumetric heat capacity C {equivalent_to} {rho}c{sub p}) as functions of temperature from a single experiment. This procedure is targeted for determination of k(T) and C(T) for sand molds used in castings. An inverse method based on a Gauss linearization is used to estimate these functions. The experiment used to determine these properties consists of heating a one-dimensional specimen of the material from one end. The variation of thermal properties with temperature is assumed to be a piecewise linear function, with values of properties to be determined at prescribed temperatures. A numerical experiment is used to demonstrate the technique.

  14. Experimental analysis of the pressure drop and heat transfer through metal foams used as volumetric receivers under concentrated solar radiation

    SciTech Connect

    Albanakis, C.; Missirlis, D.; Yakinthos, K.; Goulas, A.; Michailidis, N.; Omar, H.; Tsipas, D.; Granier, B.

    2009-01-15

    The main objective of this work was to evaluate the behavior of porous materials, when treated as volumetric receivers under concentrated solar radiation. For this reason various porous metallic and ceramic materials have been tested as potential receivers for concentrated solar radiation. The experimental investigation showed that their efficiency was depending on both materials parameters and flow conditions. In this work, a variety of foam materials such as Ni and Ni alloy, inconel, copper, aluminum and SiC with different open cell porosity were tested as potential media to be used as volumetric receivers and heat exchangers. However, since the results were similar, for space economy, only the results of two of them, nickel and inconel were presented in detail and compared with each other. (author)

  15. Remote monitoring of volumetric discharge employing bathymetry determined from surface turbulence metrics

    NASA Astrophysics Data System (ADS)

    Johnson, E. D.; Cowen, E. A.

    2016-03-01

    Current methods employed by the United States Geological Survey (USGS) to measure river discharge are manpower intensive, expensive, and during high flow events require field personnel to work in dangerous conditions. Indirect methods of estimating river discharge, which involve the use of extrapolated rating curves, can result in gross error during high flow conditions due to extrapolation error and/or bathymetric change. Our goal is to develop a remote method of monitoring volumetric discharge that reduces costs at the same or improved accuracy compared with current methods, while minimizing risk to field technicians. We report the results of Large-Scale Particle Image Velocimetry (LSPIV) and Acoustic Doppler Velocimetry (ADV) measurements conducted in a wide-open channel under a range of flow conditions, i.e., channel aspect ratio (B/H = 6.6-31.9), Reynolds number (ReH = 4,950-73,800), and Froude number (Fr = 0.04-0.46). Experiments were carried out for two different channel cross sections (rectangular and asymmetric compound) and two bathymetric roughness conditions (smooth glass and rough gravel bed). The results show that the mean surface velocity normalized by the depth-averaged velocity (the velocity index) decreases with increasing δ*/H, where δ* is the boundary layer displacement thickness and that the integral length scales, L11,1 and L22,1, calculated on the free-surface vary predictably with the local flow depth. Remote determination of local depth-averaged velocity and flow depth over a channel cross section yields an estimate of volumetric discharge.

  16. Volumetric characterization of the flow over miniature wind farms: An experimental study

    NASA Astrophysics Data System (ADS)

    Wing, Lai; Troolin, Dan; Hyun, Jin Kim; Tobin, Nicolas; Zuniga Zamalloa, Carlo; Chamorro, Leonardo P.

    2014-11-01

    An internal boundary layer is known to develop from the interaction between wind farms and the atmospheric boundary layer. It possesses characteristic features able to modulate the turbulence dynamics over large regions and eventually modify the micro climate in the vicinity of the wind farm. In this study, we examine the structure of the turbulence above various miniature wind farm configurations using 3D Particle Image velocimetry (PIV). Each miniature wind farm is placed in the boundary-layer wind tunnel at the Mechanical Science Engineering, UIUC. The turbines are fabricated using 3D printing and have a loading system that controls their tip-speed ratio and allows for characterizing the loads. Volumetric PIV is performed at various locations over and downstream a series of wind farm layouts. High-order turbulence statistics, turbulence structure and characteristic coherent motions are obtained and discussed in terms of the wind farm layout.

  17. Volumetric Titrations Using Electrolytically Generated Reagents for the Determination of Ascorbic Acid and Iron in Dietary Supplement Tablets: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.

    2014-01-01

    An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…

  18. Microfluidic volumetric flow determination using optical coherence tomography speckle: An autocorrelation approach

    NASA Astrophysics Data System (ADS)

    De Pretto, Lucas R.; Nogueira, Gesse E. C.; Freitas, Anderson Z.

    2016-04-01

    Functional modalities of Optical Coherence Tomography (OCT) based on speckle analysis are emerging in the literature. We propose a simple approach to the autocorrelation of OCT signal to enable volumetric flow rate differentiation, based on decorrelation time. Our results show that this technique could distinguish flows separated by 3 μl/min, limited by the acquisition speed of the system. We further perform a B-scan of gradient flow inside a microchannel, enabling the visualization of the drag effect on the walls.

  19. Purity of potassium hydrogen phthalate, determination with precision coulometric and volumetric titration--a comparison.

    PubMed

    Recknagel, Sebastian; Breitenbach, Martin; Pautz, Joachim; Lück, Detlef

    2007-09-19

    The mass fraction of potassium hydrogen phthalate (KHP) from a specific batch was certified as an acidimetric standard. Two different analytical methods on a metrological level were used to carry out certification analysis: precision constant current coulometric and volumetric titration with NaOH. It could be shown that with a commercial automatic titration system in combination with a reliable software for the end-point detection it is possible to produce equivalent results with the same accuracy in comparison to a definite method handled by a fundamental apparatus for traceable precision coulometry. Prerequisite for titrations are that a high number of single measurement are applied which are calibrated with a high precision certified reference material. PMID:17870288

  20. Volumetric determination of apolipoprotein stoichiometry of circulating HDL subspecies1[S

    PubMed Central

    Segrest, Jere P.; Cheung, Marian C.; Jones, Martin K.

    2013-01-01

    Although HDL is inversely correlated with coronary heart disease, elevated HDL-cholesterol is not always protective. Additionally, HDL has biological functions that transcend any antiatherogenic role: shotgun proteomics show that HDL particles contain 84 proteins (latest count), many correlating with antioxidant and anti-inflammatory properties of HDL. ApoA-I has been suggested to serve as a platform for the assembly of these protein components on HDL with specific functions - the HDL proteome. However, the stoichiometry of apoA-I in HDL subspecies is poorly understood. Here we use a combination of immunoaffinity chromatography data and volumetric analysis to evaluate the size and stoichiometry of LpA-I and LpA-I,A-II particles. We conclude that there are three major LpA-I subspecies: two major particles, HDL[4] in the HDL3 size range (d = 85.0 ± 1.2 Å) and HDL[7] in the HDL2 size range (d = 108.5 ± 3.8 Å) with apoA-I stoichiometries of 3 and 4, respectively, and a small minor particle, HDL[1] (d = 73.8 ± 2.1Å) with an apoA-I stoichiometry of 2. Additionally, we conclude that the molar ratio of apolipoprotein to surface lipid is significantly higher in circulating HDL subspecies than in reconstituted spherical HDL particles, presumably reflecting a lack of phospholipid transfer protein in reconstitution protocols. PMID:23883582

  1. Volumetric determination of uranium using titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, James S.; Skinner, Dwight L.; Rader, Lewis F.

    1956-01-01

    A new method for determining uranium in samples containing 0.05 percent or more U3O8, using titanous sulfate as reducing agent, is much shorter, faster, and has fewer interferences than conventional methods using reductor columns. The sample is dissolved with sulfuric, nitric, perchloric, and hydrofluoric acids. Elements that would otherwise form insoluble fluorides are kept in solution by complexing the fluoride ion with boric acid. A precipitation is made with cupferron to remove interfering elements. The solution is filtered to remove the precipitated cupferrates instead of extracting them with chloroform as is usually done. Filtration is preferred to extraction because any niobium that may be in solution forms an insoluble cupferrate that may be removed by filtering but is very difficult to extract with chloroform. Excess cupferron is destroyed by oxidizing with nitric and perchloric acids, and evaporating to dense fumes of sulfuric acid. The uranium is reduced to U(IV) by the addition of titanous sulfate, with cupric sulfate used as an indicator of the completeness of the reduction. Metallic copper is formed when all the uranium is reduced. The reduced copper is then reoxidized by the addition of mercuric perchlorate, an excess of ferric sulfate added, and the solution titrated immediately with standard ceric sulfate with ferroin as an indicator. Precision of the method compared favorable with methods in common use, both for uranium ores and for most types of uranium-rich materials.

  2. Volumetric magnetic induction tomography

    NASA Astrophysics Data System (ADS)

    Wei, H.-Y.; Ma, L.; Soleimani, M.

    2012-05-01

    Magnetic induction tomography (MIT) is a new and emerging type of tomography technique that is able to map the passive electromagnetic properties (in particular conductivity) of an object. Because of its non-invasive feature, it becomes a suitable technique for many industries, such as metal processing and mining. This paper presents a volumetric MIT (VMIT) system based on an existing measurement setup in our 2D system (MIT Mk-I). By increasing the number of sensors in the axial direction, volumetric imaging can be realized and hence can improve the spatial resolution of the reconstructed images. All of the system control, data acquisition and signal demodulation are accomplished by a commercial data acquisition card and the National Instruments graphical programming language. In this paper, both the system architecture and the forward 3D sensitivity model will be presented. The image reconstruction scheme is modified by introducing a 3D sensitivity map to replace the previous 2D sensitivity map used for the MIT Mk-I system. The iterative Landweber technique was implemented as the inverse solver to reconstruct the images. Several laboratory-based experimental results are demonstrated in this paper, with different shapes of imaging objects. The reconstructed images are satisfactory showing for the first time volumetric conductivity reconstruction using a multi-layer MIT system. The results indicate the high-quality image reconstruction using our novel VMIT system for potential use in industrial applications, such as metal flow imaging.

  3. Volumetric properties of CO{sub 2}-CH{sub 4}-N{sub 2} fluids at 200{degree}C and 1000 bars: A comparison of equations of state and experimental data. Chapter 4

    SciTech Connect

    Seitz, J.C.; Blencoe, J.G.; Joyce, D.B.; Bodnar, R.J.

    1994-12-31

    Predictions of molar volume, excess molar volume, and isochoric P-T trajectories from 13 published equations of state are compared with one another and with preliminary volumetric data for CO{sub 2}-CH{sub 4}-N{sub 2} fluids at 200{degrees}C and 1000 bars. The equations of state investigated represent a wide variety of empirical and semi-empirical approaches to the modeling of fluids. The experimental data indicate that excess volumes of CO{sub 2}-CH{sub 4}-N{sub 2} mixtures are small (<3% of the total volume of the mixture, except near the critical point of CO{sub 2}). The NIST software package DDMIX yields volumetric properties that are most consistent with our experimental results. Differences in the calculated volumetric properties of mixtures from the different equations of state are significant For example, estimates of the equilibrium trapping temperature of a fluid inclusion (2000 bars, 60% CO{sub 2}-20% CH{sub 4}20% N{sub 2}mixture, V=59.10 cm{sup 3}/mole) calculated from various equations of state range from 462-570{degrees}C. The major source of error in calculated volumetric properties of fluid mixtures is the inability of equations of state to accurately predict the volumetric properties of the pure components.

  4. Experimental determination of stator endwall heat transfer

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Russell, Louis M.

    1989-01-01

    Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane possage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Resutls were obtained for Reynolds numbers based on inlet velocity and axial chord between 75,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.

  5. Experimental determination of stator endwall heat transfer

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Russell, Louis M.

    1989-01-01

    Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane passage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Results were obtained for Reynolds numbers based on inlet velocity and axial chord between 73,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.

  6. Experimental determination of chlorite dissolution rates

    SciTech Connect

    Rochelle, C.A.; Bateman, K.; MacGregor, R.; Pearce, J.M.; Wetton, P.D.; Savage, D.

    1995-12-31

    Current concepts of the geological disposal of low- and intermediate-level radioactive wastes in the UK envisage the construction of a mined facility (incorporating cementitious engineered barriers) in chlorite-bearing rocks. To model accurately the fluid-rock reactions within the disturbed zone surrounding a repository requires functions that describe mineral dissolution kinetics under pH conditions that vary from near neutral to highly alkaline. Therefore, an experimental study to determine the dissolution rates of Fe-rich chlorite has been undertaken as part of the Nirex Safety Assessment Research Program. Four experiments have been carried out at 25 C and four at 70 C, both sets using a range of NaCl/NaOH solutions of differing pH (of nominal pH 9.0, 10.3, 11.6 and 13.0 [at 25 C]). Dissolution rates have been calculated and were found to increase with increasing pH and temperature. However, increased pH resulted in non-stoichiometric dissolution possibly due to preferential dissolution of part of the chlorite structure relative to another, or reprecipitation of some elements as thin hydroxide or oxyhydroxide surface coatings on the chlorite. These results also show that chlorite dissolution is appreciably slower than that of albite and quartz at both 25 and 70 C, but slightly faster than that of muscovite at 70 C.

  7. Snapshot Hyperspectral Volumetric Microscopy.

    PubMed

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-01-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens. PMID:27103155

  8. Snapshot Hyperspectral Volumetric Microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-04-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens.

  9. Snapshot Hyperspectral Volumetric Microscopy

    PubMed Central

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-01-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens. PMID:27103155

  10. Determination of action thresholds for electromagnetic tracking system-guided hypofractionated prostate radiotherapy using volumetric modulated arc therapy

    SciTech Connect

    Zhang, Pengpeng; Mah, Dennis; Happersett, Laura; Cox, Brett; Hunt, Margie; Mageras, Gig

    2011-07-15

    Purpose: Hypofractionated prostate radiotherapy may benefit from both volumetric modulated arc therapy (VMAT) due to shortened treatment time and intrafraction real-time monitoring provided by implanted radiofrequency(RF) transponders. The authors investigate dosimetrically driven action thresholds (whether treatment needs to be interrupted and patient repositioned) in VMAT treatment with electromagnetic (EM) tracking. Methods: VMAT plans for five patients are generated for prescription doses of 32.5 and 42.5 Gy in five fractions. Planning target volume (PTV) encloses the clinical target volume (CTV) with a 3 mm margin at the prostate-rectal interface and 5 mm elsewhere. The VMAT delivery is modeled using 180 equi-spaced static beams. Intrafraction prostate motion is simulated in the plan by displacing the beam isocenter at each beam assuming rigid organ motion according to a previously recorded trajectory of the transponder centroid. The cumulative dose delivered in each fraction is summed over all beams. Two sets of 57 prostate motion trajectories were randomly selected to form a learning and a testing dataset. Dosimetric end points including CTV D95%, rectum wall D1cc, bladder wall D1cc, and urethra Dmax, are analyzed against motion characteristics including the maximum amplitude of the anterior-posterior (AP), superior-inferior (SI), and left-right components. Action thresholds are triggered when intrafraction motion causes any violations of dose constraints to target and organs at risk (OAR), so that treatment is interrupted and patient is repositioned. Results: Intrafraction motion has a little effect on CTV D95%, indicating PTV margins are adequate. Tight posterior and inferior action thresholds around 1 mm need to be set in a patient specific manner to spare organs at risk, especially when the prescription dose is 42.5 Gy. Advantages of setting patient specific action thresholds are to reduce false positive alarms by 25% when prescription dose is low, and

  11. Exploring Volumetrically Indexed Cups

    ERIC Educational Resources Information Center

    Jones, Dustin L.

    2011-01-01

    This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup "n" is equal to "n" times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to…

  12. Molecular Diffusion Coefficients: Experimental Determination and Demonstration.

    ERIC Educational Resources Information Center

    Fate, Gwendolyn; Lynn, David G.

    1990-01-01

    Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)

  13. An Experimental Determination of Thermodynamic Values

    ERIC Educational Resources Information Center

    Antony, Erling; Muccianti, Christine; Vogel, Tracy

    2012-01-01

    Measurements have been added to an old demonstration of chemical equilibria allowing the determination of thermodynamic constants. The experiment allows the students an opportunity to merge qualitative observations associated with Le Chatelier's principle and thermodynamic calculations using graphical techniques. (Contains 4 figures.)

  14. The experimental determination of coal models

    SciTech Connect

    Bollinger, K.; Snowden, H.

    1983-06-01

    This paper describes the experimental measurement of coal-mill transfer functions at a 380 Mw steam turbine generator of TransAlta Utilities in Canada. Measurement equipment was used that estimated the parameters of the transfer functions from digitized transients obtained during on-site tests. These preliminary tests were part of a sequence of tests that were undertaken to evaluate the use of feedforward control to maintain the output temperature of the coal-air mixture at a fixed level. The measurement technique used to obtain the coal-mill transfer functions utilizes Least Squares Parameter Estimation (LSPE) concepts. The microprocessor-based system with the LSPE algorithm enabled the parameters to be obtained while the coal-mill was operating online. The transfer functions obtained during these field tests allowed feedforward controllers to be designed that gave improved performance of the coal-mill.

  15. Experimental determination of ice sublimation energies

    NASA Astrophysics Data System (ADS)

    Luna, R.; Canto, J.; Satorre, M. A.; Domingo, M.

    2011-11-01

    In Astrophysics, the study of ices is important due to the wide range of scenarios in which they are present. Their physical and chemical characteristics play an important role in the study of the interstellar medium (ISM). The assessment of the energy of sublimation allows us to improve our understanding of physical and/or chemical processes that take place where ices are present. The energy of sublimation E_sub is defined as the change of energy between solid and gas phase of certain molecule. This value is important to determinate other thermodynamical parameters such as the reticular energy of ionic compounds, the energy of formation in gas phase from the energy of formation in condensed phase, or to estimate the sublimation rate, which is very important in determining the evolution of surfaces of astrophysical objects.

  16. Magma fragmentation speed: an experimental determination

    NASA Astrophysics Data System (ADS)

    Spieler, O.; Dingwell, D. B.; Alidibirov, M.

    2004-01-01

    The propagation speed of a fragmentation front, combined with the ascent velocity of magma is, in all likelihood, a controlling factor in the dynamics of explosive volcanic eruptions. Direct measurement of the 'fragmentation speed' in natural systems appears to be impossible at present. Fortunately, laboratory experiments can provide information on the propagation speed of the fragmentation front. Here we present the results of fragmentation speed determinations using a so-called 'fragmentation bomb'. These are, to the best of our knowledge, the first in situ fragmentation speed determinations performed on magma. Natural magma samples (Merapi basaltic andesite, Mount St. Helens dacite and Unzen dacite) have been investigated in the temperature range of 20-950°C and at pressures up to 25 MPa. Two techniques have been employed. Firstly, in experiments at 20°C, dynamic pressure transducers were placed above and below the magma samples and the fragmentation speed of the magma sample was derived from an analysis of the decompression curves. Secondly, at elevated temperatures, an alternative technique was introduced and successfully employed. This involved the severing via fragmentation of conducting wires placed within the samples at various heights. Fragmentation speeds are very low, falling in the range of 2-70 m/s and increasing with an increase in the magnitude of the decompression step responsible for the fragmentation. The first high-temperature determination seems consistent with low-temperature results. Implications for explosive volcanism are discussed briefly.

  17. Exploring volumetrically indexed cups

    NASA Astrophysics Data System (ADS)

    Jones, Dustin L.

    2011-03-01

    This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup n is equal to n times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to geometry, algebra and differential calculus. Students with an understanding of these topics should be able to complete the analysis and related exercises contained herein.

  18. Experimental determination of the effective Taylor dispersivity in a fracture

    SciTech Connect

    Gilardi, J.R.

    1984-06-01

    The applicability and accuracy of the approximation for Taylor Dispersion was experimentally determined for the diffusion of a chemical tracer in flow through a fracture. 12 refs., 16 figs., 10 tabs. (ACR)

  19. A revised and unified pressure-clamp/relaxation theory for studying plant cell water relations with pressure probes: in-situ determination of cell volume for calculation of volumetric elastic modulus and hydraulic conductivity.

    PubMed

    Knipfer, T; Fei, J; Gambetta, G A; Shackel, K A; Matthews, M A

    2014-10-21

    The cell-pressure-probe is a unique tool to study plant water relations in-situ. Inaccuracy in the estimation of cell volume (νo) is the major source of error in the calculation of both cell volumetric elastic modulus (ε) and cell hydraulic conductivity (Lp). Estimates of νo and Lp can be obtained with the pressure-clamp (PC) and pressure-relaxation (PR) methods. In theory, both methods should result in comparable νo and Lp estimates, but this has not been the case. In this study, the existing νo-theories for PC and PR methods were reviewed and clarified. A revised νo-theory was developed that is equally valid for the PC and PR methods. The revised theory was used to determine νo for two extreme scenarios of solute mixing between the experimental cell and sap in the pressure probe microcapillary. Using a fully automated cell-pressure-probe (ACPP) on leaf epidermal cells of Tradescantia virginiana, the validity of the revised theory was tested with experimental data. Calculated νo values from both methods were in the range of optically determined νo (=1.1-5.0nL) for T. virginiana. However, the PC method produced a systematically lower (21%) calculated νo compared to the PR method. Effects of solute mixing could only explain a potential error in calculated νo of <3%. For both methods, this discrepancy in νo was almost identical to the discrepancy in the measured ratio of ΔV/ΔP (total change in microcapillary sap volume versus corresponding change in cell turgor) of 19%, which is a fundamental parameter in calculating νo. It followed from the revised theory that the ratio of ΔV/ΔP was inversely related to the solute reflection coefficient. This highlighted that treating the experimental cell as an ideal osmometer in both methods is potentially not correct. Effects of non-ideal osmotic behavior by transmembrane solute movement may be minimized in the PR as compared to the PC method. PMID:24907672

  20. Geometrical constraint experimental determination of Raman lidar overlap profile.

    PubMed

    Li, Jian; Li, Chengcai; Zhao, Yiming; Li, Jing; Chu, Yiqi

    2016-06-20

    A simple experimental method to determine the overlap profile of Raman lidar is presented in this paper. Based on Mie and Raman backscattering signals and a geometrically constrained condition, the overlap profile of a Raman lidar system can be determined. Our approach simultaneously retrieves the lidar ratio of aerosols, which is one of the most important sources of uncertainty in the overlap profile determination. The results indicate that the overlap factor is significantly influenced by the lidar ratio in experimental methods. A representative case study indicates that the correction of the overlap profile obtained by this method is practical and feasible. PMID:27409119

  1. Semi-Quantitative vs. Volumetric Determination of Endolymphatic Space in Menière’s Disease Using Endolymphatic Hydrops 3T-HR-MRI after Intravenous Gadolinium Injection

    PubMed Central

    Homann, Georg; Vieth, Volker; Weiss, Daniel; Nikolaou, Konstantin; Heindel, Walter; Notohamiprodjo, Mike; Böckenfeld, Yvonne

    2015-01-01

    Magnetic resonance imaging enhances the clinical diagnosis of Menière's disease. This is accomplished by in vivo detection of endolymphatic hydrops, which are graded using different semi-quantitative grading systems. We evaluated an established, semi-quantitative endolymphatic hydrops score and with a quantitative method for volumetric assessment of the endolymphatic size. 11 patients with Menière's disease and 2 healthy subjects underwent high resolution endolymphatic hydrops 3 Tesla MRI with highly T2 weighted FLAIR and T2DRIVE sequences. The degree of endolymphatic hydrops was rated semi-quantitatively and compared to the results of 3D-volumetry. Moreover, the grade of endolymphatic hydrops was correlated with pure tone audiometry. Semi-quantitative grading and volumetric evaluation of the endolymphatic hydrops are in accordance (r = 0.92) and the grade of endolymphatic hydrops correlates with pure tone audiometry. Patients with a sickness duration of ≥ 30 months showed a significant higher total labyrinth fluid volume (p = 0.03). Fast, semi-quantitative evaluation of endolymphatic hydrops is highly reliable compared to quantitative/volumetric assessment. Endolymphatic space is significantly higher in patients with longer sickness duration. PMID:25768940

  2. Experimental determination of thermal properties of alluvial soil

    NASA Astrophysics Data System (ADS)

    Kulkarni, N. G.; Bhandarkar, U. V.; Puranik, B. P.; Rao, A. B.

    2016-02-01

    In the present work, thermal conductivity and specific heat of a particular type of alluvial soil used in brick making in a certain region of India (Karad, Maharashtra State) are experimentally determined for later use in the estimation of ground heat loss in clamp type kilns. These properties are determined simultaneously using the steady-state and the transient temperature data measured in the setup constructed for this purpose. Additionally, physical properties of the soil are experimentally determined for use with six models for the prediction of the thermal conductivity of soil. The predictions from the models are compared with the experimental data. A separate data fitting exercise revealed a small temperature dependence of the soil thermal conductivity on the soil mean temperature.

  3. Direct experimental determination of Frisch grid inefficiency in ionization chamber

    NASA Astrophysics Data System (ADS)

    Khriachkov, V. A.; Goverdovski, A. A.; Ketlerov, V. V.; Mitrofanov, V. F.; Semenova, N. N.

    1997-07-01

    The present work describes the method of direct experimental determination of the Frisch grid inefficiency in an ionization chamber. The method is based on analysis of the anode signal after Waveform Digitizer. It is shown that the calculated grid inefficiency value can differ much from the measured ones.

  4. Statistical Evaluation of Experimental Determinations of Neutrino Mass Hierarchy

    SciTech Connect

    X. Qian, A. Tan, W. Wang, J. J. Ling, R. D. McKeown, C. Zhang

    2012-12-01

    Statistical methods of presenting experimental results in constraining the neutrino mass hierarchy (MH) are discussed. Two problems are considered and are related to each other: how to report the findings for observed experimental data, and how to evaluate the ability of a future experiment to determine the neutrino mass hierarchy, namely, sensitivity of the experiment. For the first problem where experimental data have already been observed, the classical statistical analysis involves constructing confidence intervals for the parameter {Delta}m{sup 2}{sub 32}. These intervals are deduced from the parent distribution of the estimation of {Delta}m{sup 2}{sub 32} based on experimental data. Due to existing experimental constraints on |{Delta}m{sup 2}{sub 32}|, the estimation of {Delta}m{sup 2}{sub 32} is better approximated by a Bernoulli distribution (a Binomial distribution with 1 trial) rather than a Gaussian distribution. Therefore, the Feldman-Cousins approach needs to be used instead of the Gaussian approximation in constructing confidence intervals. Furthermore, as a result of the definition of confidence intervals, even if it is correctly constructed, its confidence level does not directly reflect how much one hypothesis of the MH is supported by the data rather than the other hypothesis. We thus describe a Bayesian approach that quantifies the evidence provided by the observed experimental data through the (posterior) probability that either one hypothesis of MH is true. This Bayesian presentation of observed experimental results is then used to develop several metrics to assess the sensitivity of future experiments. Illustrations are made using a simple example with a confined parameter space, which approximates the MH determination problem with experimental constraints on the |{Delta}m{sup 2}{sub 32}|.

  5. Direct experimental determination of voltage across high-low junctions

    NASA Technical Reports Server (NTRS)

    Daud, T.; Lindholm, F. A.

    1986-01-01

    High-low (HL) junctions form a part of many semiconductor devices, including back surface field solar cells. A first experimental determination and interpretation of the voltage across the HL junction under low- and high-injection conditions is presented as a function of the voltage across a nearby p/n junction. Theoretical analysis from first principles is shown to bear well on the experimental results. In addition, a test structure is proposed for measurement of the effective surface recombination velocity at the HL junctions.

  6. Volumetric Muscle Loss.

    PubMed

    Pollot, Beth E; Corona, Benjamin T

    2016-01-01

    Volumetric muscle loss (VML) injury is prevalent in severe extremity trauma and is an emerging focus area among orthopedic and regenerative medicine fields. VML injuries are the result of an abrupt, frank loss of tissue and therefore of different etiology from other standard rodent injury models to include eccentric contraction, ischemia reperfusion, crush, and freeze injury. The current focus of many VML-related research efforts is to regenerate the lost muscle tissue and thereby improve muscle strength. Herein, we describe a VML model in the anterior compartment of the hindlimb that is permissible to repeated neuromuscular strength assessments and is validated in mouse, rat, and pig. PMID:27492162

  7. Flexible Volumetric Structure

    NASA Technical Reports Server (NTRS)

    Cagle, Christopher M. (Inventor); Schlecht, Robin W. (Inventor)

    2014-01-01

    A flexible volumetric structure has a first spring that defines a three-dimensional volume and includes a serpentine structure elongatable and compressible along a length thereof. A second spring is coupled to at least one outboard edge region of the first spring. The second spring is a sheet-like structure capable of elongation along an in-plane dimension thereof. The second spring is oriented such that its in-plane dimension is aligned with the length of the first spring's serpentine structure.

  8. Experimental determination of satellite bolted joints thermal resistance

    NASA Technical Reports Server (NTRS)

    Mantelli, Marcia Barbosa Henriques; Basto, Jose Edson

    1990-01-01

    The thermal resistance was experimentally determined of the bolted joints of the first Brazilian satellite (SCD 01). These joints, used to connect the satellite structural panels, are reproduced in an experimental apparatus, keeping, as much as possible, the actual dimensions and materials. A controlled amount of heat is forced to pass through the joint and the difference of temperature between the panels is measured. The tests are conducted in a vacuum chamber with liquid nitrogen cooled walls, that simulates the space environment. Experimental procedures are used to avoid much heat losses, which are carefully calculated. Important observations about the behavior of the joint thermal resistance with the variation of the mean temperature are made.

  9. Treatment Planning and Volumetric Response Assessment for Yttrium-90 Radioembolization: Semiautomated Determination of Liver Volume and Volume of Tumor Necrosis in Patients with Hepatic Malignancy

    SciTech Connect

    Monsky, Wayne L.; Garza, Armando S.; Kim, Isaac; Loh, Shaun; Lin, Tzu-Chun; Li Chinshang; Fisher, Jerron; Sandhu, Parmbir; Sidhar, Vishal; Chaudhari, Abhijit J.; Lin, Frank; Deutsch, Larry-Stuart; Badawi, Ramsey D.

    2011-04-15

    Purpose: The primary purpose of this study was to demonstrate intraobserver/interobserver reproducibility for novel semiautomated measurements of hepatic volume used for Yttrium-90 dose calculations as well as whole-liver and necrotic-liver (hypodense/nonenhancing) tumor volume after radioembolization. The secondary aim was to provide initial comparisons of tumor volumetric measurements with linear measurements, as defined by Response Evaluation Criteria in Solid Tumors criteria, and survival outcomes. Methods: Between 2006 and 2009, 23 consecutive radioembolization procedures were performed for 14 cases of hepatocellular carcinoma and 9 cases of hepatic metastases. Baseline and follow-up computed tomography obtained 1 month after treatment were retrospectively analyzed. Three observers measured liver, whole-tumor, and tumor-necrosis volumes twice using semiautomated software. Results: Good intraobserver/interobserver reproducibility was demonstrated (intraclass correlation [ICC] > 0.9) for tumor and liver volumes. Semiautomated measurements of liver volumes were statistically similar to those obtained with manual tracing (ICC = 0.868), but they required significantly less time to perform (p < 0.0001, ICC = 0.088). There was a positive association between change in linear tumor measurements and whole-tumor volume (p < 0.0001). However, linear measurements did not correlate with volume of necrosis (p > 0.05). Dose, change in tumor diameters, tumor volume, and necrotic volume did not correlate with survival (p > 0.05 in all instances). However, Kaplan-Meier curves suggest that a >10% increase in necrotic volume correlated with survival (p = 0.0472). Conclusion: Semiautomated volumetric analysis of liver, whole-tumor, and tumor-necrosis volume can be performed with good intraobserver/interobserver reproducibility. In this small retrospective study, measurements of tumor necrosis were suggested to correlate with survival.

  10. Method of fission heat flux determination from experimental data

    SciTech Connect

    Paxton, F.A.

    1999-09-28

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  11. Method of fission heat flux determination from experimental data

    DOEpatents

    Paxton, Frank A.

    1999-01-01

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  12. A unique method of neutron flux determination from experimental data

    SciTech Connect

    Paxton, Frank A.

    1998-12-01

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  13. Delay Discounting of Self-Determined and Experimenter-Determined Commodities

    ERIC Educational Resources Information Center

    Weatherly, Jeffrey N.; Gudding, Jennifer; Derenne, Adam

    2010-01-01

    Research suggests that individuals prefer self-determined reinforcers over experimenter-determined ones. The present study had 518 college students complete a delay-discounting task in which the commodity was cigarettes, a grocery store gift card, casino tokens, cash, or the choice of the four. The least amount of delay discounting was observed…

  14. Experimental Determination of Hydraulic Properties of Unsaturated Calcarenites

    NASA Astrophysics Data System (ADS)

    Turturro, Antonietta Celeste; Andriani, Gioacchino Francesco; Clementina Caputo, Maria; Maggi, Sabino

    2013-04-01

    Understanding hydraulic properties is essential in the modeling of flow and solute transport through the vadose zone, to which problems of soil and groundwater pollution are related. The vadose zone, in fact, is of great importance in controlling groundwater recharge and transport of contaminants into and through the subsoil. The aim of this work is to determine experimentally in laboratory the hydraulic properties of unsaturated calcarenites using an approach including petrophysical determinations and methods for measuring water retention. For this purpose, samples of calcarenites belonging to the Calcarenite di Gravina Fm.(Pliocene-early Pleistocene), came from two different quarry districts located in Southern Italy (Canosa di Puglia and Massafra), were utilized. The water retention function, θ(h), which binds the water content, θ, to water potential, h, was determined in the laboratory by means two different experimental methods: the WP4-T psychrometer and the suction table. At last, a simple mathematical equation represented by van Genuchten's model is fitted to the experimental data and the unknown empirical parameters of this model are determined. Textural analysis on thin sections using optical petrographic microscopy and evaluation of total and effective porosity by means of standard geotechnical laboratory tests, mercury intrusion porosimetry and image analysis were also performed. In particular, a comparison between mercury porosimetry data and results of photomicrograph computer analysis through the methods of quantitative stereology was employed for providing pore size distributions. The results of this study identify the relationship between the hydraulic behavior, described by the water retention function, and pore size distribution for the calcarenites that are not easy to hydraulically characterize. This relationship could represent a useful tool to infer the unsaturated hydraulic properties of calcarenites and in general this approach could be

  15. An experimentally determined evolutionary model dramatically improves phylogenetic fit.

    PubMed

    Bloom, Jesse D

    2014-08-01

    All modern approaches to molecular phylogenetics require a quantitative model for how genes evolve. Unfortunately, existing evolutionary models do not realistically represent the site-heterogeneous selection that governs actual sequence change. Attempts to remedy this problem have involved augmenting these models with a burgeoning number of free parameters. Here, I demonstrate an alternative: Experimental determination of a parameter-free evolutionary model via mutagenesis, functional selection, and deep sequencing. Using this strategy, I create an evolutionary model for influenza nucleoprotein that describes the gene phylogeny far better than existing models with dozens or even hundreds of free parameters. Emerging high-throughput experimental strategies such as the one employed here provide fundamentally new information that has the potential to transform the sensitivity of phylogenetic and genetic analyses. PMID:24859245

  16. Direct experimental determination of spectral densities of molecular complexes

    NASA Astrophysics Data System (ADS)

    Pachón, Leonardo A.; Brumer, Paul

    2014-11-01

    Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need to be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

  17. Direct experimental determination of spectral densities of molecular complexes

    SciTech Connect

    Pachón, Leonardo A.; Brumer, Paul

    2014-11-07

    Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need to be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

  18. THEORETICAL CHALLENGE TO THE EXPERIMENTALLY DETERMINED GEOMETRICAL STRUCTURE OF DIMETHYLSILAETHYLENE

    SciTech Connect

    Yoshioka, Yasunori; Goddard, John D.; Schaefer, III, Henry F.

    1980-09-01

    The equilibrium geometries of (CH{sub 3}){sub 2}Si=CH{sub 2} and H{sub 2}Si=CH{sub 2} have been determined at the self-consistent-field level of electronic structure theory using a double zeta basis set augmented with d functions on all heavy atoms. For the parent silaethylene, large scale configuration interaction (6920 configurations) demonstrates that electron correlation effects do not qualitatively alter the predicted structure. On this basis it is concluded that the experimental electron diffraction geometry of Mahaffy, Gutowsky, and Montgomery is likely to be seriously incorrect. Specifically the theoretical prediction for the dimethylsilaethylene Si=C distance is 1.692 {Angstrom}, while the range of experimental values presented was 1.815 - 1.835 {Angstrom}.

  19. Experimental determination of core electron deformation in diamond.

    PubMed

    Bindzus, Niels; Straasø, Tine; Wahlberg, Nanna; Becker, Jacob; Bjerg, Lasse; Lock, Nina; Dippel, Ann Christin; Iversen, Bo B

    2014-01-01

    Synchrotron powder X-ray diffraction data are used to determine the core electron deformation of diamond. Core shell contraction inherently linked to covalent bond formation is observed in close correspondence with theoretical predictions. Accordingly, a precise and physically sound reconstruction of the electron density in diamond necessitates the use of an extended multipolar model, which abandons the assumption of an inert core. The present investigation is facilitated by negligible model bias in the extraction of structure factors, which is accomplished by simultaneous multipolar and Rietveld refinement accurately determining an atomic displacement parameter (ADP) of 0.00181 (1) Å(2). The deconvolution of thermal motion is a critical step in experimental core electron polarization studies, and for diamond it is imperative to exploit the monatomic crystal structure by implementing Wilson plots in determination of the ADP. This empowers the electron-density analysis to precisely administer both the deconvolution of thermal motion and the employment of the extended multipolar model on an experimental basis. PMID:24419169

  20. Verification of Experimental Techniques for Flow Surface Determination

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Lerch, Bradley A.; Ellis, John R.; Robinson, David N.

    1996-01-01

    The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory. However, at elevated temperatures, material response can be highly time-dependent, which is beyond the realm of classical plasticity. Viscoplastic theories have been developed for just such conditions. In viscoplastic theories, the flow law is given in terms of inelastic strain rate rather than the inelastic strain increment used in time-independent plasticity. Thus, surfaces of constant inelastic strain rate or flow surfaces are to viscoplastic theories what yield surfaces are to classical plasticity. The purpose of the work reported herein was to validate experimental procedures for determining flow surfaces at elevated temperatures. Since experimental procedures for determining yield surfaces in axial/torsional stress space are well established, they were employed -- except inelastic strain rates were used rather than total inelastic strains. In yield-surface determinations, the use of small-offset definitions of yield minimizes the change of material state and allows multiple loadings to be applied to a single specimen. The key to the experiments reported here was precise, decoupled measurement of axial and torsional strain. With this requirement in mind, the performance of a high-temperature multi-axial extensometer was evaluated by comparing its results with strain gauge results at room temperature. Both the extensometer and strain gauges gave nearly identical yield surfaces (both initial and subsequent) for type 316 stainless steel (316 SS). The extensometer also successfully determined flow surfaces for 316 SS at 650 C. Furthermore, to judge the applicability of the technique for composite materials, yield surfaces were determined for unidirectional tungsten/Kanthal (Fe-Cr-Al).

  1. Experimental Investigation of the Momentum Method for Determining Profile Drag

    NASA Technical Reports Server (NTRS)

    Goett, Harry J

    1939-01-01

    Report presents the results of an experimental investigation conducted in the full-scale tunnel to determine the accuracy of the Jones and the Betz equations for computing profile drag from total and static pressure surveys in the wake of wings. Surveys were made behind 6 by 8-foot airfoils of the NACA 0009, and 0018 sections at zero lift and behind the NACA 0012 at positive lifts. The surveys were made at various spanwise positions and at distances behind the airfoil ranging from 0.05c to 3.00c.

  2. Experimental determination of size distributions: analyzing proper sample sizes

    NASA Astrophysics Data System (ADS)

    Buffo, A.; Alopaeus, V.

    2016-04-01

    The measurement of various particle size distributions is a crucial aspect for many applications in the process industry. Size distribution is often related to the final product quality, as in crystallization or polymerization. In other cases it is related to the correct evaluation of heat and mass transfer, as well as reaction rates, depending on the interfacial area between the different phases or to the assessment of yield stresses of polycrystalline metals/alloys samples. The experimental determination of such distributions often involves laborious sampling procedures and the statistical significance of the outcome is rarely investigated. In this work, we propose a novel rigorous tool, based on inferential statistics, to determine the number of samples needed to obtain reliable measurements of size distribution, according to specific requirements defined a priori. Such methodology can be adopted regardless of the measurement technique used.

  3. SU-F-BRE-07: Experimental Validation of a Lung SBRT Technique Using a Novel, True Volumetric Plenoptic-Plastic-Scintillator Detector

    SciTech Connect

    Goulet, M; Rilling, M; Gingras, L; Beaulieu, L; Archambault, L; Beddar, S

    2014-06-15

    Purpose: Lung SBRT is being used by an increasing number of clinics, including our center which recently treated its first patient. In order to validate this technique, the 3D dose distribution of the SBRT plan was measured using a previously developed 3D detector based on plenoptic camera and plastic scintillator technology. The excellent agreement between the detector measurement and the expected dose from the treatment planning system Pinnacle{sup 3} shows great promise and amply justify the development of the technique. Methods: The SBRT treatment comprised 8 non-coplanar 6MV photon fields with a mean field size of 12 cm{sup 2} at isocentre and a total prescription dose of 12Gy per fraction for a total of 48Gy. The 3D detector was composed of a 10×10×10 cm{sup 2} EJ-260 water-equivalent plastic scintillator embedded inside a truncated cylindrical acrylic phantom of 10cm radius. The scintillation light was recorded using a static R5 light-field camera and the 3D dose was reconstructed at a 2mm resolution in all 3 dimensions using an iterative backprojection algorithm. Results: The whole 3D dose distribution was recorded at a rate of one acquisition per second. The mean absolute dose difference between the detector and Pinnacle{sup 3} was 1.3% over the region with more than 10% of the maximum dose. 3D gamma tests performed over the same region yield passing rates of 98.8% and 96.6% with criteria of 3%/1mm and 2%/1mm, respectively. Conclusion: Experimental results showed that our beam modeling and treatment planning system calculation was adequate for the safe administration of small field/high dose techniques such as SBRT. Moreover, because of the real-time capability of the detector, further validation of small field rotational, dynamic or gated technique can be monitored or verified by this system.

  4. Experimental determination of the dynamics of vacuum impregnation of apples.

    PubMed

    Laurindo, J B; Stringari, G B; Paes, S S; Carciofi, B A M

    2007-10-01

    Vacuum impregnation (VI) is a food processing method by which air and native solution are removed from porous spaces within a food and replaced by an external solution. In this study, an experimental device based on a previous design was built, including some modifications, in order to investigate the dynamics of the VI process. The device measured the net force exerted by a food sample submitted to the VI process using a load cell. The influence of the vacuum level and sample geometry was well quantified by the experimental procedure and the modified equipment using apple samples (Fuji var.) as a food model. The results indicated that the experimental device proposed in this study, together with the suggested procedure, is a useful tool to investigate the dynamics of VI processes. It is robust and versatile, and has the advantage of not requiring the determination of the water evaporated during the VI process in a separate experiment, which represents an increase in the accuracy of the results. PMID:17995607

  5. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  6. Direct experimental determination of the atomic structure at internal interfaces

    SciTech Connect

    Browning, N.D. |; Pennycook, S.J.

    1995-07-01

    A crucial first step in understanding the effect that internal interfaces have on the properties of materials is the ability to determine the atomic structure at the interface. As interfaces can contain atomic disorder, dislocations, segregated impurities and interphases, sensitivity to all of these features is essential for complete experimental characterization. By combining Z-contrast imaging and electron energy loss spectroscopy (EELS) in a dedicated scanning transmission electron microscope (STEM), the ability to probe the structure, bonding and composition at interfaces with the necessary atomic resolution has been obtained. Experimental conditions can be controlled to provide, simultaneously, both incoherent imaging and spectroscopy. This enables interface structures observed in the image to be interpreted intuitively and the bonding in a specified atomic column to be probed directly by EELS. The bonding and structure information can then be correlated using bond-valence sum analysis to produce structural models. This technique is demonstrated for 25{degrees}, 36{degrees} and 67{degrees} symmetric and 45{degrees} and 25{degrees} asymmetric [001] tilt grain boundaries in SrTiO{sub 3} The structures of both types of boundary were found to contain partially occupied columns in the boundary plane. From these experimental results, a series of structural units were identified which could be combined, using continuity of gain boundary structure principles, to construct all [001] tilt boundaries in SrTiO{sub 3}. Using these models, the ability of this technique to address the issues of vacancies and dopant segregation at grain boundaries in electroceramics is discussed.

  7. Experimental determination of group flux control coefficients in metabolic networks

    SciTech Connect

    Simpson, T.W.; Shimizu, Hiroshi; Stephanopoulos, G.

    1998-04-20

    Grouping of reactions around key metabolite branch points can facilitate the study of metabolic control of complex metabolic networks. This top-down Metabolic Control Analysis is exemplified through the introduction of group control coefficients whose magnitudes provide a measure of the relative impact of each reaction group on the overall network flux, as well as on the overall network stability, following enzymatic amplification. In this article, the authors demonstrate the application of previously developed theory to the determination of group flux control coefficients. Experimental data for the changes in metabolic fluxes obtained in response to the introduction of six different environmental perturbations are used to determine the group flux control coefficients for three reaction groups formed around the phosphoenolpyruvate/pyruvate branch point. The consistency of the obtained group flux control coefficient estimates is systematically analyzed to ensure that all necessary conditions are satisfied. The magnitudes of the determined control coefficients suggest that the control of lysine production flux in Corynebacterium glutamicum cells at a growth base state resides within the lysine biosynthetic pathway that begins with the PEP/PYR carboxylation anaplorotic pathway.

  8. Volumetric Modulated Arc Therapy Planning for Primary Prostate Cancer With Selective Intraprostatic Boost Determined by {sup 18}F-Choline PET/CT

    SciTech Connect

    Kuang, Yu; Wu, Lili; Hirata, Emily; Miyazaki, Kyle; Sato, Miles

    2015-04-01

    Purpose: This study evaluated expected tumor control and normal tissue toxicity for prostate volumetric modulated arc therapy (VMAT) with and without radiation boosts to an intraprostatically dominant lesion (IDL), defined by {sup 18}F-choline positron emission tomography/computed tomography (PET/CT). Methods and Materials: Thirty patients with localized prostate cancer underwent {sup 18}F-choline PET/CT before treatment. Two VMAT plans, plan{sub 79} {sub Gy} and plan{sub 100-105} {sub Gy}, were compared for each patient. The whole-prostate planning target volume (PTV{sub prostate}) prescription was 79 Gy in both plans, but plan{sub 100-105} {sub Gy} added simultaneous boost doses of 100 Gy and 105 Gy to the IDL, defined by 60% and 70% of maximum prostatic uptake on {sup 18}F-choline PET (IDL{sub suv60%} and IDL{sub suv70%}, respectively, with IDL{sub suv70%} nested inside IDL{sub suv60%} to potentially enhance tumor specificity of the maximum point dose). Plan evaluations included histopathological correspondence, isodose distributions, dose-volume histograms, tumor control probability (TCP), and normal tissue complication probability (NTCP). Results: Planning objectives and dose constraints proved feasible in 30 of 30 cases. Prostate sextant histopathology was available for 28 cases, confirming that IDL{sub suv60%} adequately covered all tumor-bearing prostate sextants in 27 cases and provided partial coverage in 1 case. Plan{sub 100-105} {sub Gy} had significantly higher TCP than plan{sub 79} {sub Gy} across all prostate regions for α/β ratios ranging from 1.5 Gy to 10 Gy (P<.001 for each case). There were no significant differences in bladder and femoral head NTCP between plans and slightly lower rectal NTCP (endpoint: grade ≥ 2 late toxicity or rectal bleeding) was found for plan{sub 100-105} {sub Gy}. Conclusions: VMAT can potentially increase the likelihood of tumor control in primary prostate cancer while observing normal tissue tolerances through

  9. Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil - ongoing activities in Working Project 2.5 of COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Slob, Evert

    2015-04-01

    This work will endeavour to review the current status of research activities carried out in Working Project 2.5 'Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil' within the framework of Working Group 2 'GPR surveying of pavements, bridges, tunnels and buildings; underground utility and void sensing' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). Overall, the Project includes 55 Participants from over 21 countries representing 33 Institutions. By considering the type of Institution, a percentage of 64% (35 units) comes from the academic world, while Research Centres and Companies include, respectively, the 27% (15 units) and 9% (5 units) of Institutions. Geographically speaking, Europe is the continent most represented with 18 out of 21 countries, followed by Africa (2 countries) and Asia (1 country). In more details and according to the Europe sub-regions classification provided by the United Nations, Southern Europe includes 39% of countries, Western Europe 27%, while Northern and Eastern Europe are equally present with 17% of countries each. Relying on the main purpose of Working Project 2.5, namely, the ground-penetrating radar-based evaluation of volumetric water content in structures, substructures , foundations, and soils, four main issues have been overall addressed over the first two years of activities. The first one, has been related to provide a comprehensive state of the art on the topic, due to the wide-ranging applications covered in the main disciplines of civil engineering, differently demanding. In this regard, two main publications reviewing the state of the art have been produced [1,2]. Secondly, discussions among Working Group Chairs and other Working Project Leaders have been undertaken and encouraged to avoid the risk of overlapping amongst similar topics from other Working

  10. Experimental determination of airplane mass and inertial characteristics

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1974-01-01

    Current practices are evaluated for experimentally determining airplane center of gravity, moments of inertia, and products of inertia. The techniques discussed are applicable to bodies other than airplanes. In pitching- and rolling-moment-of-inertia investigations with the airplane mounted on and pivoted about knife edges, the nonlinear spring moments that occur at large amplitudes of oscillation can be eliminated by using the proper spring configuration. The single-point suspension double-pendulum technique for obtaining yawing moments of inertia, products of inertia, and the inclination of the principal axis provides accurate results from yaw-mode oscillation data, provided that the sway-mode effects are minimized by proper suspension rig design. Rocking-mode effects in the data can be isolated.

  11. Experimental determination of three dimensional liquid rocket nozzle admittances.

    NASA Technical Reports Server (NTRS)

    Zinn, B. T.; Bell, W. A.; Daniel, B. R.; Smith, A. J., Jr.

    1972-01-01

    The three dimensional nozzle admittance, an important parameter in combustion instability studies, was experimentally measured for several nozzle configurations. The admittance values were obtained using a modification of the classical impedance tube technique. The modified impedance tube method measures the admittance of a duct termination in the presence of one dimensional mean flow and three dimensional oscillations. Values of the nozzle admittance were obtained from pressure amplitude measurements taken at discrete points along the length of the tube. To determine the effects of nozzle geometry, nozzles were tested with half-angles of 15, 30, and 45 degrees and entrance Mach numbers of 0.08, 0.16, and 0.20. The admittance results are presented as functions of nondimensional frequency for mixed first tangential-longitudinal modes. These results are compared with available theoretical predictions and favorable agreement between theory and experiment is shown.

  12. Evolutionary determination of experimental parameters for ptychographical imaging

    SciTech Connect

    Shenfield, Alex; Rodenburg, John M.

    2011-06-15

    The Ptychographical Iterative Engine (PIE) algorithm is a recently developed novel method of Coherent Diffractive Imaging (CDI) that uses multiple overlapping diffraction patterns to reconstruct an image. This method has successfully produced high quality reconstructions at both optical and X-ray wavelengths but the need for accurate knowledge of the probe positions is currently a limiting factor in the production of high resolution reconstructions at electron wavelengths. This paper examines the shape of the search landscape for producing optimal image reconstructions in the specific case of electron microscopy and then shows how evolutionary search methods can be used to reliably determine experimental parameters in the electron microscopy case (such as the spherical aberration in the probe and the probe positions).

  13. Methods for determining the CO2 sorption capacity of coal: Experimental and theoretical high pressure isotherms

    NASA Astrophysics Data System (ADS)

    Weishauptová, Zuzana; Přibyl, Oldřich

    2016-04-01

    volumetric sorption apparatus working within the temperature range of 30°C to 65°C at a pressure of 15 MPa was used for measuring the CO2 high pressure isotherms. The data for constructing the theoretical high pressure isotherm were obtained from a gravimetric sorption apparatus and a mercury porosimeter. The Dubinin, Langmuir, and Gibbs equations were used for evaluating the data. The measured experimental high pressure isotherms were compared with the theoretical isotherms using linearized Langmuir isotherms. The Langmuir parameters confirmed a reasonable correspondence between the sorption capacities derived using the two approaches applied here.

  14. Volumetric PIV with a Plenoptic Camera

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Fahringer, Tim

    2012-11-01

    Plenoptic cameras have received attention recently due to their ability to computationally refocus an image after it has been acquired. We describe the development of a robust, economical and easy-to-use volumetric PIV technique using a unique plenoptic camera built in our laboratory. The tomographic MART algorithm is used to reconstruct pairs of 3D particle volumes with velocity determined using conventional cross-correlation techniques. 3D/3C velocity measurements (volumetric dimensions of 2 . 8 ' ' × 1 . 9 ' ' × 1 . 6 ' ') of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. This work has been supported by the Air Force Office of Scientific Research,(Grant #FA9550-100100576).

  15. Experimentally Determined Interfacial Area Between Immiscible Fluids in Porous Media

    SciTech Connect

    Crandall, Dustin; Niessner, J; Hassanizadeh, S.M; Smith, Duane

    2008-01-01

    When multiple fluids flow through a porous medium, the interaction between the fluid interfaces can be of great importance. While this is widely recognized in practical applications, numerical models often disregard interactios between discrete fluid phases due to the computational complexity. And rightly so, for this level of detail is well beyond most extended Darcy Law relationships. A new model of two-phase flow including the interfacial area has been proposed by Hassarizadeh and Gray based upon thermodynamic principles. A version of this general equation set has been implemented by Nessner and Hassarizadeh. Many of the interfacial parameters required by this equation set have never been determined from experiments. The work presented here is a description of how the interfacial area, capillary pressure, interfacial velocity and interfacial permeability from two-phase flow experiments in porous media experiments can be used to determine the required parameters. This work, while on-going, has shown the possibility of digitizing images within translucent porous media and identifying the location and behavior of interfaces under dynamic conditions. Using the described methods experimentally derived interfacial functions to be used in larger scale simulations are currently being developed. In summary, the following conclusions can be drawn: (1) by mapping a pore-throat geometry onto an image of immiscible fluid flow, the saturation of fluids and the individual interfaces between the fluids can be identified; (2) the resulting saturation profiles of the low velocity drainage flows used in this study are well described by an invasion percolation fractal scaling; (3) the interfacial area between fluids has been observed to increase in a linear fashion during the initial invasion of the non-wetting fluid; and (4) the average capillary pressure within the entire cell and representative elemental volumes were observed to plateau after a small portion of the volume was

  16. Determination of gunshot residues with image analysis: an experimental study.

    PubMed

    Tuğcu, Harun; Yorulmaz, Coşkun; Bayraktaroğlu, Görgün; Uner, Hüseyin Bülent; Karslioğlu, Yildirim; Koç, Sermet; Ulukan, Mustafa Ozer; Celasun, Bülent

    2005-09-01

    In firearm injuries, assessment of the firing range and determination of entrance and exit wounds are important. For this reason, evaluation of the amount and distribution of gunshot residues (GSRs) is necessary. Several methods and techniques for GSR analysis have been developed. Although these methods are relatively sensitive and specific, they may require expensive dedicated equipment. Therefore, a simple, easily applicable, more convenient method is needed. A total of 40 experimental shots were made to calf skin from distances of 0, 2.5, 5, 10, 20, 30, 45, and 60 cm. Eighty samples were taken from the right and left sides of the wounds, and Alizarin Red S dye staining was performed. The amounts of GSR particles were measured with image analysis. GSRs were detected in all shots. The mean size of the distribution area of barium and lead elements around the wound had a significant negative correlation with increasing shooting distance (r = -0.97, p < 0.001). As the distance increased, the amount of GSR decreased, and this decrease rate was nonlinear. Variance analysis suggested significant differences between data groups depending on range (p < 0.001). The image analysis method may solve some of the standardization problems for evaluation of GSRs. GSR detection with the image analysis method does not require experienced personnel and may be a suitable method for scientific studies and for routine purposes. PMID:16261988

  17. Experimental Determination of Chemical Diffusion within Secondary Organic Aerosol Particles

    SciTech Connect

    Abramson, Evan H.; Imre, D.; Beranek, Josef; Wilson, Jacqueline; Zelenyuk, Alla

    2013-02-28

    Formation, properties, transformations, and temporal evolution of secondary organic aerosols (SOA) particles strongly depend on particle phase. Recent experimental evidence from a number of groups indicates that SOA is in a semi-solid phase, the viscosity of which remained unknown. We find that when SOA is made in the presence of vapors of volatile hydrophobic molecules the SOA particles absorb and trap them. Here, we illustrate that it is possible to measure the evaporation rate of these molecules that is determined by their diffusion in SOA, which is then used to calculate a reasonably accurate value for the SOA viscosity. We use pyrene as a tracer molecule and a-pinene SOA as an illustrative case. It takes ~24 hours for half the pyrene to evaporate to yield a viscosity of 10^8 Pa s for a-pinene. This viscosity is consistent with measurements of particle bounce and evaporation rates. We show that viscosity of 10^8 Pa s implies coalescence times of minutes, consistent with the findings that SOA particles are spherical. Similar measurements on aged SOA particles doped with pyrene yield a viscosity of 10^9 Pa s, indicating that hardening occurs with time, which is consistent with observed decrease in water uptake and evaporation rate with aging.

  18. Experimental determination of boron isotope fractionation in seawater

    NASA Astrophysics Data System (ADS)

    Klochko, K.; Kaufman, A. J.; Yao, W.; Byrne, R. H.; Tossell, J. A.

    2005-12-01

    The boron isotopic composition of marine carbonates is believed to be a useful tracer of seawater pH, which may then be used to reconstruct atmospheric pCO2 through time. Use of this proxy requires an intimate understanding of chemical kinetics and thermodynamic isotope exchange reactions between the two dominant boron-bearing species in seawater: boric acid B(OH)3 and borate ion B(OH)4-, which is preferentially incorporated into the carbonate lattice. However, due to our inability to quantitatively isolate these species from seawater, the magnitude of boron isotope fractionation at different temperatures and salinities has not previously been empirically measured. All paleo-pH studies have relied on the boron isotope equilibrium constant (11-10Kb = 1.0194 at 25°C) estimated theoretically in 1977 by Kakihana and colleagues. Here we present results of empirical determination of the boron isotope equilibrium constant at different temperatures and ionic strengths. The determinations are based on titration of isotopically labeled solutions, containing either 10B(OH)3 or 11B(OH)3, with NaOH. The pH of the titrated solutions is precisely measured using thymol blue indicator absorbance ratios. Differences in solution pH or, equivalently, borate/boric acid pK values between the isotopically substituted solutions, provides the desired equilibrium constant for the reaction: 10B(OH)3 + 11B(OH)4- <=> 11B(OH)3 + 10B(OH)4-. We have performed experiments to assess the influence of the temperature (25 and 40°C), ionic strength (0.05 and 0.7 molar) and medium composition (pure water, 0.6 M KCl, and synthetic seawater) on the isotopic equilibrium constant. Within experimental uncertainty maximum of ±0.002 (1σ), our results show only a weak dependence of the equilibrium constant on the above factors. The boron isotope equilibrium constant in seawater (S = 35) was determined to be 1.0269 ± 0.0013 at 25°C (1σ, n=6), which is in poor agreement with the theoretical basis for all

  19. Experimental Techniques Verified for Determining Yield and Flow Surfaces

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Ellis, Rod; Lissenden, Cliff J.

    1998-01-01

    Structural components in aircraft engines are subjected to multiaxial loads when in service. For such components, life prediction methodologies are dependent on the accuracy of the constitutive models that determine the elastic and inelastic portions of a loading cycle. A threshold surface (such as a yield surface) is customarily used to differentiate between reversible and irreversible flow. For elastoplastic materials, a yield surface can be used to delimit the elastic region in a given stress space. The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory, but at elevated temperatures, material response can be highly time dependent. Thus, viscoplastic theories have been developed to account for this time dependency. Since the key to many of these theories is experimental validation, the objective of this work (refs. 1 and 2) at the NASA Lewis Research Center was to verify that current laboratory techniques and equipment are sufficient to determine flow surfaces at elevated temperatures. By probing many times in the axial-torsional stress space, we could define the yield and flow surfaces. A small offset definition of yield (10 me) was used to delineate the boundary between reversible and irreversible behavior so that the material state remained essentially unchanged and multiple probes could be done on the same specimen. The strain was measured with an off-the-shelf multiaxial extensometer that could measure the axial and torsional strains over a wide range of temperatures. The accuracy and resolution of this extensometer was verified by comparing its data with strain gauge data at room temperature. The extensometer was found to have sufficient resolution for these experiments. In addition, the amount of crosstalk (i.e., the accumulation of apparent strain in one direction when strain in the other direction is applied) was found to be negligible. Tubular specimens were induction heated to determine the flow

  20. Recent Experimental Advances to Determine (noble) Gases in Waters

    NASA Astrophysics Data System (ADS)

    Kipfer, R.; Brennwald, M. S.; Huxol, S.; Mächler, L.; Maden, C.; Vogel, N.; Tomonaga, Y.

    2013-12-01

    In aquatic systems noble gases, radon, and bio-geochemically conservative transient trace gases (SF6, CFCs) are frequently applied to determine water residence times and to reconstruct past environmental and climatic conditions. Recent experimental breakthroughs now enable ● to apply the well-established concepts of terrestrial noble gas geochemistry in waters to the minute water amounts stored in sediment pore space and in fluid inclusions (A), ● to determine gas exchange processes on the bio-geochemical relevant time scales of minutes - hours (B), and ● to separate diffusive and advective gas transport in soil air (C). A. Noble-gas analysis in water samples (< 1 g) facilitates determining the solute transport in the pore space and identifying the origin of bio- and geogenic fluids in (un) consolidated sediments [1]. Advanced techniques that combine crushing and sieving speleothem samples in ultra-high-vacuum to a specific grain size allow to separate air and water-bearing fluid inclusions and thus enables noble-gas-based reconstruction of environmental conditions from water masses as small as 1mg [2]. B. The coupling of noble gas analysis with approaches of gas chromatography permits combined analysis of noble gases and other gases species (e.g., SF6, CFCs, O2, N2) from a single water sample. The new method substantially improves ground water dating by SF6 and CFCs as excess air is quantified from the same sample and hence can adequately be corrected for [3]. Portable membrane-inlet mass spectrometers enable the quasi-continuous and real-time analysis of noble gases and other dissolved gases directly in the field, allowing, for instance, quantification of O2 turnover rates on small time scales [4]. C. New technical developments perfect 222Rn analysis in water by the synchronous the determination of the short-lived 220Rn. The combined 220,222Rn analysis sheds light on the emanation behaviour of radon by identifying soil water content to be the crucial

  1. Volumetric Light-Field Excitation.

    PubMed

    Schedl, David C; Bimber, Oliver

    2016-01-01

    We explain how to concentrate light simultaneously at multiple selected volumetric positions by means of a 4D illumination light field. First, to select target objects, a 4D imaging light field is captured. A light field mask is then computed automatically for this selection to avoid illumination of the remaining areas. With one-photon illumination, simultaneous generation of complex volumetric light patterns becomes possible. As a full light-field can be captured and projected simultaneously at the desired exposure and excitation times, short readout and lighting durations are supported. PMID:27363565

  2. Volumetric Light-Field Excitation

    PubMed Central

    Schedl, David C.; Bimber, Oliver

    2016-01-01

    We explain how to concentrate light simultaneously at multiple selected volumetric positions by means of a 4D illumination light field. First, to select target objects, a 4D imaging light field is captured. A light field mask is then computed automatically for this selection to avoid illumination of the remaining areas. With one-photon illumination, simultaneous generation of complex volumetric light patterns becomes possible. As a full light-field can be captured and projected simultaneously at the desired exposure and excitation times, short readout and lighting durations are supported. PMID:27363565

  3. Rapid mapping of volumetric errors

    SciTech Connect

    Krulewich, D.; Hale, L.; Yordy, D.

    1995-09-13

    This paper describes a relatively inexpensive, fast, and easy to execute approach to mapping the volumetric errors of a machine tool, coordinate measuring machine, or robot. An error map is used to characterize a machine or to improve its accuracy by compensating for the systematic errors. The method consists of three steps: (1) modeling the relationship between the volumetric error and the current state of the machine; (2) acquiring error data based on length measurements throughout the work volume; and (3) optimizing the model to the particular machine.

  4. Multi-scale Heat Kernel based Volumetric Morphology Signature

    PubMed Central

    Wang, Gang; Wang, Yalin

    2015-01-01

    Here we introduce a novel multi-scale heat kernel based regional shape statistical approach that may improve statistical power on the structural analysis. The mechanism of this analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral mesh. In order to capture profound volumetric changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between two boundary surfaces by computing the streamline in the tetrahedral mesh. Secondly, we propose a multi-scale volumetric morphology signature to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the volumetric morphology signatures and generate the internal structure features. The multi-scale and physics based internal structure features may bring stronger statistical power than other traditional methods for volumetric morphology analysis. To validate our method, we apply support vector machine to classify synthetic data and brain MR images. In our experiments, the proposed work outperformed FreeSurfer thickness features in Alzheimer's disease patient and normal control subject classification analysis. PMID:26550613

  5. Experimental Determination of Structure Factors of Titanium Aluminum and Silicon

    NASA Astrophysics Data System (ADS)

    Subramanian, Swaminathan

    Brittleness of TiAl has been attributed to strong directional bonding by a number of researchers. Their predictions have been based on theoretical calculations of electron charge density distribution. It is necessary to complement these predictions by experimental measurements. The work described in this thesis, aimed towards that end, involves measurement of Debye-Waller factors by four circle x-ray diffraction and of structure factors by energy filtered convergent beam electron diffraction CBED methods. Stoichiometric single crystals are required for the measurement of Debye-Waller factors by the four circle x-ray diffraction method. Because of constraints imposed by the phase diagram only non-stoichiometric single crystal of TiAl are available. Measurement of Debye-Waller parameters have been attempted by using aluminum rich TiAl single crystals of compositions Ti54at%Al and Ti56at%Al. The symmetry of L1_0 structure of TiAl dictates that all reflections with Miller indices (hkl) not satisfying the condition h + k = 2n should be extinct. However, during the x-ray diffraction experiments diffuse diffracted intensities were observed for reflections of h + k = 2n + 1 type. This indicates the possibility of occupation of the excess Al atoms on the Ti-sites. If the excess Al atom preferentially occupies one of the Ti-sites, it would lead to the formation of L1_2 type TiAl_3 unit cells within the TiAl lattice. This notion has been further verified by least-squares refinement of the data obtained from Ti54at%Al single crystal. Also Debye-Waller factor values were different for equivalent Ti-sites in TiAl. The CBED method was developed for accurate structure factor measurement. Factors such as limitation due to the angular resolution of the aperture and complex matrix and perturbation treatment of absorption have been considered. Computer routines, incorporating these factors, have been developed for the calculation of CBED patterns and for matching the rocking curves

  6. Experimental methods of determining thermal properties of granite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of thermal properties of granite using the block method is discussed and compared with other methods. Problems that limit the accuracy of contact method in determining thermal properties of porous media are evaluated. Thermal properties of granite is determined in the laboratory with a...

  7. Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil - ongoing activities in Working Project 2.5 of COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Slob, Evert

    2015-04-01

    This work will endeavour to review the current status of research activities carried out in Working Project 2.5 'Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil' within the framework of Working Group 2 'GPR surveying of pavements, bridges, tunnels and buildings; underground utility and void sensing' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). Overall, the Project includes 55 Participants from over 21 countries representing 33 Institutions. By considering the type of Institution, a percentage of 64% (35 units) comes from the academic world, while Research Centres and Companies include, respectively, the 27% (15 units) and 9% (5 units) of Institutions. Geographically speaking, Europe is the continent most represented with 18 out of 21 countries, followed by Africa (2 countries) and Asia (1 country). In more details and according to the Europe sub-regions classification provided by the United Nations, Southern Europe includes 39% of countries, Western Europe 27%, while Northern and Eastern Europe are equally present with 17% of countries each. Relying on the main purpose of Working Project 2.5, namely, the ground-penetrating radar-based evaluation of volumetric water content in structures, substructures , foundations, and soils, four main issues have been overall addressed over the first two years of activities. The first one, has been related to provide a comprehensive state of the art on the topic, due to the wide-ranging applications covered in the main disciplines of civil engineering, differently demanding. In this regard, two main publications reviewing the state of the art have been produced [1,2]. Secondly, discussions among Working Group Chairs and other Working Project Leaders have been undertaken and encouraged to avoid the risk of overlapping amongst similar topics from other Working

  8. Efficient threshold for volumetric segmentation

    NASA Astrophysics Data System (ADS)

    Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel

    2015-07-01

    Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.

  9. Cigarette Experimentation in Mexican Origin Youth: Psychosocial and Genetic Determinants

    PubMed Central

    Wilkinson, Anna V.; Bondy, Melissa L.; Wu, Xifeng; Wang, Jian; Dong, Qiong; D’Amelio, Anthony M.; Prokhorov, Alexander V.; Pu, Xia; Yu, Robert K.; Etzel, Carol J.; Shete, Sanjay; Spitz, Margaret R.

    2011-01-01

    Background Established psychosocial risk factors increase the risk for experimentation among Mexican-origin youth. Now we comprehensively investigate the added contribution of select polymorphisms in candidate genetic pathways associated with sensation seeking, risk taking, and smoking phenotypes to predict experimentation. Methods Participants, (N=1,118 Mexican origin youth) recruited from a large population-based cohort study in Houston, Texas, provided prospective data on cigarette experimentation over three years. Psychosocial data were elicited twice—baseline and final follow-up. Participants were genotyped for 672 functional and tagging variants in the dopamine, serotonin and opioid pathways. Results After adjusting for gender and age, with a Bayesian False Discovery Probability set at 0.8 and prior probability of 0.05, six gene variants were significantly associated with risk of experimentation. After controlling for established risk factors, multivariable analyses revealed that participants with six or more risk alleles were 2.25 (95%CI: 1.62–3.13) times more likely to have experimented since baseline compared to participants with five or fewer. Among committed never smokers (N=872), three genes (OPRM1, SNAP25, HTR1B) were associated with experimentation as were all psychosocial factors. Among susceptible youth (N=246) older age at baseline, living with a smoker, and three different genes (HTR2A, DRD2, SLC6A3) predicted experimentation. Conclusions Our findings, which have implications for development of culturally-specific interventions, need to be validated in other ethnic groups. Impact These results suggest that variations in select genes interact with a cognitive predisposition toward smoking. In susceptible adolescents, the impact of the genetic variants appears to be larger compared to committed never smokers. PMID:22028400

  10. Experimentally determined water storage capacity in the Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Ferot, A.; Bolfan-Casanova, N.

    2010-12-01

    Trace amounts of hydrogen dissolved as defects in nominally anhydrous minerals (NAMs) in the mantle are believed to play a key role in physical and chemical processes in the Earth’s upper mantle. Hence, the estimation of water storage in mantle phases and solubility mechanisms are important in order to better understand the effect of water. Experimental data on water solubility in NAMs are available for upper mantle minerals such as olivine, pyroxenes and garnet. However, the majority of studies are based on the study of single phases, and at temperatures or pressures that are too low for the Earth’s upper mantle. The aim of this study is to constrain the combined effects of pressure, temperature and composition on water solubility in olivine and orthopyroxene under upper mantle conditions. The solubility of water in coexisting orthopyroxene and olivine was investigated by simultaneously synthesizing the two phases at high pressure and high temperature in a multi-anvil press. Experiments were performed under water-saturated conditions in the MSH systems with Fe and Al at 2.5, 5, 7.5 and 9 GPa and temperatures between 1175 and 1400°C. Integrated OH absorbances were determined using polarized infrared spectroscopy on doubly polished thin sections of randomly oriented crystals. Water solubility in olivine increases with pressure and decreases with temperature as has been described previously (Bali et al., 2008). The aluminum content strongly decreases in olivine with pressure from 0.09 wt% at 2.5 GPa and 1250°C to 0.04 wt% at 9 GPa and 1175°C. The incorporation of this trivalent cation in the system enhances water solubility in olivine even if present in trace amounts, however this behavior appears to reverse at high pressure. The effect of temperature on water solubility follows a bell-shaped curve with a maximum solubility in olivine and orthopyroxene at 1250°C. Aluminum is incorporated in orthopyroxene following the Tschermak substitution and strongly

  11. Experimental determination of the dynamics of an acoustically levitated sphere

    SciTech Connect

    Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  12. Aluminum Silicate System: Experimental Determination of the Triple Point.

    PubMed

    Bell, P M

    1963-03-15

    The kyanite-sillimanite-andalusite triple point exists in the pressure-temperature plane at 8 +/- 0.5 kb and 300 +/- 50 degrees C. Reactions are accomplished experimentally with a Bridgman opposed-anvil press (with an external furnace), modified to provide shearing of the sample charges. All three equilibrium boundaries are proved by reversed reactions. PMID:17812984

  13. Experimental determination of the dynamics of an acoustically levitated sphere

    NASA Astrophysics Data System (ADS)

    Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.

    2014-11-01

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  14. Determination of nuclear level densities from experimental information

    SciTech Connect

    Cole, B.J. ); Davidson, N.J. , P.O. Box 88, Manchester M60 1QD ); Miller, H.G. )

    1994-10-01

    A novel information theory based method for determining the density of states from prior information is presented. The energy dependence of the density of states is determined from the observed number of states per energy interval, and model calculations suggest that the method is sufficiently reliable to calculate the thermal properties of nuclei over a reasonable temperature range.

  15. Direct determination of the hit locations from experimental HPGe pulses

    NASA Astrophysics Data System (ADS)

    Désesquelles, P.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Dimmock, M. R.; Lazarus, I. H.; Ljungvall, J.; Nelson, L.; Nga, D.-T.; Nolan, P. J.; Rigby, S. V.; Simpson, J.; Van-Oanh, N.-T.

    2013-11-01

    The gamma-tracking technique optimises the determination of the energy and emission angle of gamma-rays detected by modern segmented HPGe detectors. This entails the determination, using the delivered pulse shapes, of the interaction points of the gamma-ray within the crystal. The direct method presented here allows the localisation of the hits using only a large sample of pulses detected in the actual operating conditions. No external crystal scanning system or pulse shape simulation code is needed. In order to validate this method, it is applied to sets of pulses obtained using the University of Liverpool scanning system. The hit locations are determined by the method with good precision.

  16. Experimental determination of the effective strong coupling constant

    SciTech Connect

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch

    2005-09-15

    We extract an effective strong coupling constant from low Q2 data on the Bjorken sum. Using sum rules, we establish its Q2-behavior over the complete Q2-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  17. Volumetric (3D) compressive sensing spectral domain optical coherence tomography

    PubMed Central

    Xu, Daguang; Huang, Yong; Kang, Jin U.

    2014-01-01

    In this work, we proposed a novel three-dimensional compressive sensing (CS) approach for spectral domain optical coherence tomography (SD OCT) volumetric image acquisition and reconstruction. Instead of taking a spectral volume whose size is the same as that of the volumetric image, our method uses a sub set of the original spectral volume that is under-sampled in all three dimensions, which reduces the amount of spectral measurements to less than 20% of that required by the Shan-non/Nyquist theory. The 3D image is recovered from the under-sampled spectral data dimension-by-dimension using the proposed three-step CS reconstruction strategy. Experimental results show that our method can significantly reduce the sampling rate required for a volumetric SD OCT image while preserving the image quality. PMID:25426320

  18. Experimental Determination of Multipartite Entanglement with Incomplete Information

    NASA Astrophysics Data System (ADS)

    Aguilar, G. H.; Walborn, S. P.; Ribeiro, P. H. Souto; Céleri, L. C.

    2015-07-01

    Multipartite entanglement is very poorly understood despite all the theoretical and experimental advances of the last decades. Preparation, manipulation, and identification of this resource is crucial for both practical and fundamental reasons. However, the difficulty in the practical manipulation and the complexity of the data generated by measurements on these systems increase rapidly with the number of parties. Therefore, we would like to experimentally address the problem of how much information about multipartite entanglement we can access with incomplete measurements. In particular, it was shown that some types of pure multipartite entangled states can be witnessed without measuring the correlations [M. Walter et al., Science 340, 1205 (2013)] between parties, which is strongly demanding experimentally. We explore this method using an optical setup that permits the preparation and the complete tomographic reconstruction of many inequivalent classes of three- and four-partite entangled states, and compare complete versus incomplete information. We show that the method is useful in practice, even for nonpure states or nonideal measurement conditions.

  19. Experimental determination of the effective strong coupling constant

    SciTech Connect

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch

    2007-07-01

    We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  20. Determining the extent of coarticulation: effects of experimental design.

    PubMed

    Gelfer, C E; Bell-Berti, F; Harris, K S

    1989-12-01

    The purpose of this letter is to explore some reasons for what appear to be conflicting reports regarding the nature and extent of anticipatory coarticulation, in general, and anticipatory lip rounding, in particular. Analyses of labial electromyographic and kinematic data using a minimal-pair paradigm allowed for the differentiation of consonantal and vocalic effects, supporting a frame versus a feature-spreading model of coarticulation. It is believed that the apparent conflicts of previous studies of anticipatory coarticulation might be resolved if experimental design made more use of contrastive minimal pairs and relied less on assumptions about feature specifications of phones. PMID:2600314

  1. Combined Volumetric and Surface Registration

    PubMed Central

    Zöllei, Lilla; Fischl, Bruce

    2009-01-01

    In this paper, we propose a novel method for the registration of volumetric images of the brain that optimizes the alignment of both cortical and subcortical structures. In order to achieve this, relevant geometrical information is extracted from a surface-based morph and diffused into the volume using the Navier operator of elasticity, resulting in a volumetric warp that aligns cortical folding patterns. This warp field is then refined with an intensity driven optical flow procedure that registers noncortical regions, while preserving the cortical alignment. The result is a combined surface and volume morph (CVS) that accurately registers both cortical and subcortical regions, establishing a single coordinate system suitable for the entire brain. PMID:19273000

  2. Improved volumetric imaging in tomosynthesis using combined multiaxial sweeps.

    PubMed

    Gersh, Jacob A; Wiant, David B; Best, Ryan C M; Bennett, Marcus C; Munley, Michael T; King, June D; McKee, Mahta M; Baydush, Alan H

    2010-01-01

    This study explores the volumetric reconstruction fidelity attainable using tomosynthesis with a kV imaging system which has a unique ability to rotate isocentrically and with multiple degrees of mechanical freedom. More specifically, we seek to investigate volumetric reconstructions by combining multiple limited-angle rotational image acquisition sweeps. By comparing these reconstructed images with those of a CBCT reconstruction, we can gauge the volumetric fidelity of the reconstructions. In surgical situations, the described tomosynthesis-based system could provide high-quality volumetric imaging without requiring patient motion, even with rotational limitations present. Projections were acquired using the Digital Integrated Brachytherapy Unit, or IBU-D. A phantom was used which contained several spherical objects of varying contrast. Using image projections acquired during isocentric sweeps around the phantom, reconstructions were performed by filtered backprojection. For each image acquisition sweep configuration, a contrasting sphere is analyzed using two metrics and compared to a gold standard CBCT reconstruction. Since the intersection of a reconstructed sphere and an imaging plane is ideally a circle with an eccentricity of zero, the first metric presented compares the effective eccentricity of intersections of reconstructed volumes and imaging planes. As another metric of volumetric reconstruction fidelity, the volume of one of the contrasting spheres was determined using manual contouring. By comparing these manually delineated volumes with a CBCT reconstruction, we can gauge the volumetric fidelity of reconstructions. The configuration which yielded the highest overall volumetric reconstruction fidelity, as determined by effective eccentricities and volumetric contouring, consisted of two orthogonally-offset 60° L-arm sweeps and a single C-arm sweep which shared a pivot point with one the L-arm sweeps. When compared to a similar configuration that

  3. Experimental Determination of Thermal Conductivity of Low-Density Ice

    NASA Technical Reports Server (NTRS)

    Coles, Willard D.

    1954-01-01

    The thermal conductivity of low-density ice has been computed from data obtained in an experimental investigation of the heat transfer and mass transfer by sublimation for an iced surface on a flat plate in a high-velocity tangential air stream. The results are compared with data from several sources on the thermal conductivity of packed snow and solid glaze ice. The results show good agreement with the equations for the thermal conductivity of packed snow as a function of snow density. The agreement of the curves for packed snow near the solid ice regime with the values of thermal conductivity, of ice indicates that the curves are applicable over the entire-ice-density range.

  4. Experimental determination of a Viviparus contectus thermometry equation.

    PubMed

    Bugler, Melanie J; Grimes, Stephen T; Leng, Melanie J; Rundle, Simon D; Price, Gregory D; Hooker, Jerry J; Collinson, Margaret E

    2009-09-01

    Experimental measurements of the (18)O/(16)O isotope fractionation between the biogenic aragonite of Viviparus contectus (Gastropoda) and its host freshwater were undertaken to generate a species-specific thermometry equation. The temperature dependence of the fractionation factor and the relationship between Deltadelta(18)O (delta(18)O(carb.) - delta(18)O(water)) and temperature were calculated from specimens maintained under laboratory and field (collection and cage) conditions. The field specimens were grown (Somerset, UK) between August 2007 and August 2008, with water samples and temperature measurements taken monthly. Specimens grown in the laboratory experiment were maintained under constant temperatures (15 degrees C, 20 degrees C and 25 degrees C) with water samples collected weekly. Application of a linear regression to the datasets indicated that the gradients of all three experiments were within experimental error of each other (+/-2 times the standard error); therefore, a combined (laboratory and field data) correlation could be applied. The relationship between Deltadelta(18)O (delta(18)O(carb.) - delta(18)O(water)) and temperature (T) for this combined dataset is given by: T = - 7.43( + 0.87, - 1.13)*Deltadelta18O + 22.89(+/- 2.09) (T is in degrees C, delta(18)O(carb.) is with respect to Vienna Pee Dee Belemnite (VPDB) and delta(18)O(water) is with respect to Vienna Standard Mean Ocean Water (VSMOW). Quoted errors are 2 times standard error).Comparisons made with existing aragonitic thermometry equations reveal that the linear regression for the combined Viviparus contectus equation is within 2 times the standard error of previously reported aragonitic thermometry equations. This suggests there are no species-specific vital effects for Viviparus contectus. Seasonal delta(18)O(carb.) profiles from specimens retrieved from the field cage experiment indicate that during shell secretion the delta(18)O(carb.) of the shell carbonate is not influenced by

  5. An Experimental Investigation To Determine Interaction Between Rotating Bodies

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Volz, M. P.; Mazuruk, K.

    2003-01-01

    A brass (copper+zinc) wheel, with a 4-in diameter and 1.4 in thick, was used for this investigation. Ceramic ball bearings were used to safely spin the wheel up to 40,000 rpm. The wheel was also electrically insulated from the rest of the armature. For spinning, an air turbine was used. The rotational velocity was measured by two methods: (1) A simple strobe light and (2) a photodiode that detected laser beam pulses as they passed through a slot in the rotating shaft. The magnetic sensor is based on a giant magnetoresistivity, and consists of a balanced bridge circuitry. The position of the sensor was as close as possible to the rim of the wheel. The linear dimension of the sensor is approximately equal to 8 mm so that the offset from the surface is on the order of 15 percent. We did not use any goniometer system, so the accuracy of the angular position is not high, being estimated within a few degrees, with the main uncertainty being the direction of Earth's magnetic field. We attempted to fit the experimental data with the presented theory by selecting the best value for the electrical conductivity of the wheel. The results of this procedure are displayed, where the black dots represent experimental values. A slight misfit on the right shoulder can be due to slight angular misalignment from a 90 degree position. The obtained value for the resistivity is 43 n(OMEGA)m, which compares well with those listed. We can conclude, based on these measurements, that the proposed theory satisfactorily explains our experiments.

  6. Potassium determinations using SEM, FAAS and XRF: some experimental notes

    NASA Astrophysics Data System (ADS)

    Liritzis, I.; et al.

    The calibration of Scanning Electron Microscopy coupled with Energy Dispersive X- Rays Spec-trometry (SEM-EDS) for elemental quantitative analysis is an important task for characterization, provenance and absolute dating purposes. In particular the potassium determination is an im-portant contributor to dose rate assessments in luminescence and Electron Spin Resonance (ESR) dating. Here a SEM-EDX is calibrated on different archaeological and geoarchaeological materials against standard laboratory samples as well as measured by micro X-Rays Fluorescence (μXRF) and flame atomic absorption spectroscopy (FAAS) techniques. A common linear relationship is obtained for most elements and certain rock types used and two clear linear regressions for two types of rocks; one for granite, diorite, microgranite and sediments and another ceramic sherds, soils, marble schists, breccia. Such linear regressions become readily available for a future fast, efficient and accu-rate way of potassium determination.

  7. Experimentally Determined Coordinates for Three MILS Hydrophones Near Ascension Island

    SciTech Connect

    Harben, P. E.; Hollfelder, J. R.; Rodgers, A. J.

    1999-11-19

    We conducted an airgun survey in the waters of Ascension Island in May 1999 to determine new locations and depths for three Missile Impact Location System (MILS) hydrophones (ASC23, ASC24, and ASC26) currently in use by the Prototype International Data Center (PIDC) and the National Data Center (NDC). The nominal and new locations are summarized in Table 1. Although not rigorous, errors in the new locations and depths are conservatively estimated to be less than 100 m. The hydrophones are either on or near the ocean bottom in all three cases. The new depths are consistent with the following: Direct-phase airgun arrivals; Bathymetry determined along the track of the ship used for this airgun survey; Reflected phases from the airgun data; and Depths given in the original hydrophone installation report.

  8. Experimentally Determined Binding Energies of Astrophysically Relevant Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Behmard, Aida; Graninger, Dawn; Oberg, Karin I.

    2016-06-01

    Small hydrocarbons represent an important organic reservoir in a variety of interstellar environments. Constraints on desorption temperatures and binding energies of hydrocarbons are thus necessary for accurate predictions of where and in which phase these molecules exist. Through a series of temperature programmed desorption experiments, we determined the desorption temperatures and binding energies of 1, 2, and 3-carbon interstellar hydrocarbons (CH4, H3CCH3, H2CCH2, C3H8, HCCCH3, and C3H6). These empirically determined values can be used to inform observations and models of the molecular spatial distribution in protoplanetary disks, thus providing insight into planetesimal composition. In addition, knowledge of hydrocarbon binding energies will refine simulations of grain surface chemistry, allowing for better predictions of the chemical conditions that lead to the production of complex organic molecules vital for life.

  9. Experimentally determined chaotic phase synchronization in a neuronal system

    PubMed Central

    Makarenko, Vladimir; Llinás, Rodolfo

    1998-01-01

    Mathematical analysis of the subthreshold oscillatory properties of inferior olivary neurons in vitro indicates that the oscillation is nonlinear and supports low dimensional chaotic dynamics. This property leads to the generation of complex functional states that can be attained rapidly via phase coherence that conform to the category of “generalized synchronization.” Functionally, this translates into neuronal ensemble properties that can support maximum functional permissiveness and that rapidly can transform into robustly determined multicellular coherence. PMID:9861041

  10. Experimentally Determined Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Watts, Carly; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vonau, Walt; Vogel, Matt; Conger, Bruce

    2015-01-01

    A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flowrate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.

  11. Experimental determination of storage ring optics using orbit response measurements

    NASA Astrophysics Data System (ADS)

    Safranek, J.

    1997-02-01

    The measured response matrix giving the change in orbit at beam position monitors (BPMs) with changes in steering magnet excitation can be used to accurately calibrate the linear optics in an electron storage ring [1-8]. A computer code called LOCO (Linear Optics from Closed Orbits) was developed to analyze the NSLS X-Ray Ring measured response matrix to determine: the gradients in all 56 quadrupole magnets; the calibration of the steering magnets and BPMs; the roll of the quadrupoles, steering magnets, and BPMs about the electron beam direction; the longitudinal magnetic centers of the orbit steering magnets; the horizontal dispersion at the orbit steering magnets; and the transverse mis-alignment of the electron orbit in each of the sextupoles. Random orbit measurement error from the BPMs propagated to give only 0.04% rms error in the determination of individual quadrupole gradients and 0.4 mrad rms error in the determination of individual quadrupole rolls. Small variations of a few parts in a thousand in the quadrupole gradients within an individual family were resolved. The optics derived by LOCO gave accurate predictions of the horizontal dispersion, the beta functions, and the horizontal and vertical emittances, and it gave good qualitative agreement with the measured vertical dispersion. The improved understanding of the X-Ray Ring has enabled us to increase the synchrotron radiation brightness. The LOCO code can also be used to find the quadrupole family gradients that best correct for gradient errors in quadrupoles, in sextupoles, and from synchrotron radiation insertion devices. In this way the design periodicity of a storage ring's optics can be restored. An example of periodicity restoration will be presented for the NSLS VUV Ring. LOCO has also produced useful results when applied to the ALS storage ring [8].

  12. Method for experimental determination of flutter speed by parameter identification

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Gilyard, Glenn B.

    1989-01-01

    A method for flight flutter testing is proposed which enables one to determine the flutter dynamic pressure from flights flown far below the flutter dynamic pressure. The method is based on the identification of the coefficients of the equations of motion at low dynamic pressures, followed by the solution of these equations to compute the flutter dynamic pressure. The initial results of simulated data reported in the present work indicate that the method can accurately predict the flutter dynamic pressure, as described. If no insurmountable difficulties arise in the implementation of this method, it may significantly improve the procedures for flight flutter testing.

  13. Experimental determination of fragment excitation energies in multifragmentation events

    SciTech Connect

    Marie, N.; Natowitz, J.B.; Cibor, J.; Hagel, K.; Wada, R.; Chbihi, A.; Le Fevre, A.; Salou, S.; Wieleczko, J.P.; Gingras, L.; Auger, G.; Laville, J.L.; Saint-Laurent, F.; Tirel, O.; Assenard, M.; Eudes, P.; Germain, M.; Rahmani, A.; Reposeur, T.; Bacri, C.O.; Borderie, B.; Frankland, J.D.; Plagnol, E.; Rivet, M.F.; Bocage, F.; Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Genouin-Duhamel, E.; Lecolley, J.F.; Lefort, T.; Le Neindre, N.; Lopez, O.; Louvel, M.; Nguyen, A.D.; Peter, J.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Buchet, P.; Charvet, J.L.; Dayras, R.; Dore, D.; Legrain, R.; Nalpas, L.; Volant, C.; Parlog, M.; Tabacaru, G.; Rosato, E.; Gourio, D.; Majka, Z.

    1998-07-01

    For 50 MeV/nucleon {sup 129}Xe+{sup nat}Sn multifragmentation events, we deduced, by means of correlation techniques, the multiplicities of the hydrogen and helium isotopes which were emitted by the hot primary excited fragments produced at the stage of the disassembly of an equilibrated hot source. We also derived the relative kinetic energy distributions between the primary clusters and the light charged particles that they evaporate. From the comparison between the secondary multiplicities observed experimentally and the multiplicities predicted by the GEMINI model, we concluded that the source breaks into primary fragments which are characterized by the same N/Z ratio as the combined system. Knowing the secondary light charged particle multiplicities and kinetic energies, we reconstructed the average charges of the hot fragments and we estimated their mean excitation energies. The fragment excitation energies are equal to 3.0 MeV/nucleon for the full range of intermediate mass fragment atomic number. This global constancy indicates that, on the average, thermodynamical equilibrium was achieved at the disassembly stage of the source. {copyright} {ital 1998} {ital The American Physical Society}

  14. Experimental infrared measurements for hydrocarbon pollutant determination in subterranean waters

    NASA Astrophysics Data System (ADS)

    Lay-Ekuakille, A.; Palamara, I.; Caratelli, D.; Morabito, F. C.

    2013-01-01

    Subterranean waters are often polluted by industrial and anthropic effluents that are drained in subsoil. To prevent and control pollution, legislations of different developed countries require an online monitoring measurement, especially for detecting organic solvents (chlorinated and unchlorinated ones). Online measurements include both real-time and no real-time measurements. In general, it is difficult to implement real-time measurements in stricto sensu for online acquisitions on aqueous effluents since they need to be processed by a modeling. This research presents an experimental measurement system based on infrared (IR) spectroscopy for aqueous effluents containing hydrocarbons and capable of displaying excellent values of pollutant concentrations even in instable conditions; the system is able to detect pollutants either in laminar or turbulent flow. The results show the possibility of avoiding the use of "Pitot tube" that is employed to create a stagnation point in order to convert kinetic energy into potential one. This conversion allows the transformation of a turbulent flow in a laminar flow making easy measurement of pollutants included in an aqueous effluent. Obviously, "Pitot tube" is also used for other fluid effluents. The obtained results have been compared with those produced by means of sophisticated IR instrumentation for laboratory applications.

  15. The Microbiota Determines Susceptibility to Experimental Autoimmune Uveoretinitis

    PubMed Central

    Heissigerova, Jarmila; Seidler Stangova, Petra; Klimova, Aneta; Svozilkova, Petra; Hrncir, Tomas; Stepankova, Renata; Kverka, Miloslav; Tlaskalova-Hogenova, Helena; Forrester, John V.

    2016-01-01

    The microbiota is a crucial modulator of the immune system. Here, we evaluated how its absence or reduction modifies the inflammatory response in the murine model of experimental autoimmune uveoretinitis (EAU). We induced EAU in germ-free (GF) or conventionally housed (CV) mice and in CV mice treated with a combination of broad-spectrum antibiotics either from the day of EAU induction or from one week prior to induction of disease. The severity of the inflammation was assessed by fundus biomicroscopy or by histology, including immunohistology. The immunophenotyping of T cells in local and distant lymph nodes was performed by flow cytometry. We found that GF mice and mice where the microbiota was reduced one week before EAU induction were protected from severe autoimmune inflammation. GF mice had lower numbers of infiltrating macrophages and significantly less T cell infiltration in the retina than CV mice with EAU. GF mice also had reduced numbers of IFN-γ and IL-17-producing T cells and increased numbers of regulatory T cells in the eye-draining lymph nodes. These data suggest that the presence of microbiota during autoantigen recognition regulates the inflammatory response by influencing the adaptive immune response. PMID:27294159

  16. Experimental determinations of Mueller scattering matrices for nonspherical particles.

    PubMed

    Perry, R J; Hunt, A J; Huffman, D R

    1978-09-01

    Measurements have been made to determine all sixteen elements of the Mueller scattering matrix for two types of nonspherical particles. Rounded particles of ammonium sulfate and nearly cubic particles of sodium chloride in the 0.1-1.0-mum size range have been prepared by nebulizing salt water solutions and drying the droplets. Scanning electron micrographs are used to determine size distributions used in Mie calculations of all matrix elements. The expected symmetry of the scattering matrices across the diagonal was confirmed, and the expected eight of the sixteen elements were found to be zero within measurement accuracy. The rounded particles were found accurately to obey Mie theory, while the cubic particles were poorly described by Mie theory for some matrix elements and some angles. Total intensity and linear polarization measurements are presented also for a series of increasing sizes of rounded and cubic particles. A discussion of the effect of nonsphericity on the various matrix elements is given, and applications of these results are given to analysis of particle properties in the laboratory, the clouds of Venus, reflection nebulae, the zodiacal light, and atmospheric particulates. PMID:20203854

  17. Experimental determination of visibility modeling parameters for aircraft

    NASA Astrophysics Data System (ADS)

    Boettcher, Evelyn J.; Maurer, Tana; Murrill, Steven R.; Miller, Brian

    2010-04-01

    The Federal Aviation Administration (FAA) is presently engaged in research to quantify the visibility of aircraft under two important scenarios: aircraft observed directly by human operators in air traffic control towers (ATCT's), and aircraft observed by human operators through unmanned aerial vehicle (UAV) sensors viewed through ground-based display systems. Previously, an ATCT visibility analysis software tool (FAA Vis) was developed by the U.S. Army Research Laboratory (ARL) in collaboration with the U.S. Army's Night Vision and Electronic Sensors Directorate (NVESD) and the FAA. This tool predicts the probability of detection, recognition, and identification of various aircraft by human observers as a function of range and ATCT height. More recently, a baseline version of a UAV See-And- Avoid visibility analysis software tool was also developed by ARL, again in collaboration with NVESD and the FAA. Important to the calibration of these tools is the empirical determination of target discrimination difficulty criteria. Consequently, a set of human perception experiments were designed and conducted to empirically determine the target recognition and identification discrimination difficulty criteria for a representative set of aircraft. This paper will report on the results and analyses of those experiments.

  18. Determination of dynamic fracture toughness using a new experimental technique

    NASA Astrophysics Data System (ADS)

    Cady, Carl M.; Liu, Cheng; Lovato, Manuel L.

    2015-09-01

    In other studies dynamic fracture toughness has been measured using Charpy impact and modified Hopkinson Bar techniques. In this paper results will be shown for the measurement of fracture toughness using a new test geometry. The crack propagation velocities range from ˜0.15 mm/s to 2.5 m/s. Digital image correlation (DIC) will be the technique used to measure both the strain and the crack growth rates. The boundary of the crack is determined using the correlation coefficient generated during image analysis and with interframe timing the crack growth rate and crack opening can be determined. A comparison of static and dynamic loading experiments will be made for brittle polymeric materials. The analysis technique presented by Sammis et al. [1] is a semi-empirical solution, however, additional Linear Elastic Fracture Mechanics analysis of the strain fields generated as part of the DIC analysis allow for the more commonly used method resembling the crack tip opening displacement (CTOD) experiment. It should be noted that this technique was developed because limited amounts of material were available and crack growth rates were to fast for a standard CTOD method.

  19. FELIX: a volumetric 3D laser display

    NASA Astrophysics Data System (ADS)

    Bahr, Detlef; Langhans, Knut; Gerken, Martin; Vogt, Carsten; Bezecny, Daniel; Homann, Dennis

    1996-03-01

    In this paper, an innovative approach of a true 3D image presentation in a space filling, volumetric laser display will be described. The introduced prototype system is based on a moving target screen that sweeps the display volume. Net result is the optical equivalent of a 3D array of image points illuminated to form a model of the object which occupies a physical space. Wireframe graphics are presented within the display volume which a group of people can walk around and examine simultaneously from nearly any orientation and without any visual aids. Further to the detailed vector scanning mode, a raster scanned system and a combination of both techniques are under development. The volumetric 3D laser display technology for true reproduction of spatial images can tremendously improve the viewers ability to interpret data and to reliably determine distance, shape and orientation. Possible applications for this development range from air traffic control, where moving blips of light represent individual aircrafts in a true to scale projected airspace of an airport, to various medical applications (e.g. electrocardiography, computer-tomography), to entertainment and education visualization as well as imaging in the field of engineering and Computer Aided Design.

  20. First experimental determination of the solubility constant of coffinite

    NASA Astrophysics Data System (ADS)

    Szenknect, Stephanie; Mesbah, Adel; Cordara, Théo; Clavier, Nicolas; Brau, Henri-Pierre; Le Goff, Xavier; Poinssot, Christophe; Ewing, Rodney C.; Dacheux, Nicolas

    2016-05-01

    Dissolution experiments have been performed in order to determine the solubility constant of coffinite, USiO4. Several assemblages of phases were used in under-saturated experiments performed in 0.1 mol L-1 HCl under Ar atmosphere, as well as in air. These samples were fully-characterized and were composed of either USiO4, solely, or USiO4 and additional oxide byproducts that resulted from the synthesis procedure. The solubility constant of coffinite was determined at 25 °C and 1 bar (log *KS°(USiO4, cr) = -5.25 ± 0.05), as well as the standard free energy of formation of coffinite (ΔfG°(298 K) = -1867.6 ± 3.2 kJ mol-1), which enables one to infer the relative stability of coffinite and uraninite as a function of groundwater composition. Geochemical simulations using PHREEQC 2 software and the Thermochimie data base indicate that coffinite precipitates at 25 °C under reducing conditions, at pH = 6, for H4SiO4(aq) concentration of 7 × 10-5 mol L-1 and U(OH)4(aq) concentration of 10-11 mol L-1. The ΔfG° value determined was used to calculate the standard free energy associated with the formation of coffinite from a mixture of uraninite and quartz. The value obtained (Δr,oxG° = 20.6 ± 5.2 kJ mol-1) indicates unambiguously that coffinite is less stable than the quartz + uraninite mixture at 25 °C. Geochemical simulations using PHREEQC 2 software indicate that coffinite precipitates in solutions supersaturated with respect to UO2(cr), but undersaturated with respect to UO2(am) in aqueous solutions with silica concentrations typical of groundwater. These favorable conditions during the formation of sedimentary uranium ore deposits, as well as slow dissolution kinetics, explain the common occurrence of coffinite.

  1. Experimental determination of circumferential properties of fresh carotid artery plaques.

    PubMed

    Lawlor, Michael G; O'Donnell, Michael R; O'Connell, Barry M; Walsh, Michael T

    2011-06-01

    Carotid endarterectomy (CEA) is currently accepted as the gold standard for interventional revascularisation of diseased arteries belonging to the carotid bifurcation. Despite the proven efficacy of CEA, great interest has been generated in carotid angioplasty and stenting (CAS) as an alternative to open surgical therapy. CAS is less invasive compared with CEA, and has the potential to successfully treat lesions close to the aortic arch or distal internal carotid artery (ICA). Following promising results from two recent trials (CREST; Carotid revascularisation endarterectomy versus stenting trial, and ICSS; International carotid stenting study) it is envisaged that there will be a greater uptake in carotid stenting, especially amongst the group who do not qualify for open surgical repair, thus creating pressure to develop computational models that describe a multitude of plaque models in the carotid arteries and their reaction to the deployment of such interventional devices. Pertinent analyses will require fresh human atherosclerotic plaque material characteristics for different disease types. This study analysed atherosclerotic plaque characteristics from 18 patients tested on site, post-surgical revascularisation through endarterectomy, with 4 tissue samples being excluded from tensile testing based on large width-length ratios. According to their mechanical behaviour, atherosclerotic plaques were separated into 3 grades of stiffness. Individual and group material coefficients were then generated analytically using the Yeoh strain energy function. The ultimate tensile strength (UTS) of each sample was also recorded, showing large variation across the 14 atherosclerotic samples tested. Experimental Green strains at rupture varied from 0.299 to 0.588 and the Cauchy stress observed in the experiments was between 0.131 and 0.779 MPa. It is expected that this data may be used in future design optimisation of next generation interventional medical devices for the

  2. Determining Pressure and Velocity Fields from Experimental Schlieren Data

    NASA Astrophysics Data System (ADS)

    Lee, Frank M.; Allshouse, Michael R.; Morrison, P. J.; Swinney, Harry L.

    2015-11-01

    Internal gravity waves generated by tidal flow over bottom topography in the ocean are important because they contribute significantly to the energy composition of the ocean. Determination of the instantaneous internal wave energy flux requires knowledge of the pressure and velocity fields, each of which is difficult to measure in the ocean or the laboratory. However, the density perturbation field can be measured using a laboratory technique known as ``synthetic schlieren.'' We present an analytical method for deducing both the pressure and velocity fields from the density perturbation field. This yields the instantaneous energy flux of linear internal waves. Our method is verified in tests with data from a Navier-Stokes direct numerical simulation. The method is then applied to laboratory schlieren data obtained for the conditions in the numerical simulations. MRA and HLS were supported by ONR. FML and PJM supported by DOE contract DE-FG02-04ER-54742.

  3. Experimental determination of the distribution of tail states of hydrogenated amorphous silicon: A transient photocurrent analysis

    SciTech Connect

    Webb, D.P.; Chan, F.Y.M.; Zou, X.C.; Chan, Y.C.; Lam, Y.W.; Lin, S.H.; O'Leary, S.K.; Lim, P.K.

    1997-07-01

    Recent experimental developments have cast doubt on the validity of the common assumption that the distribution of tail states of hydrogenated amorphous silicon exhibits a single exponential functional form. The authors employ transient photocurrent decay measurements to determine this distribution of tail states. In their approach, however, they determine the distribution of tail states directly from the experimental data, without assuming, a priori, a specific functional form. It is found that these experimental results are consistent with other more recent experimental determinations of the distribution of tail states, suggesting the possibility of deviations from a single exponential distribution of tail states in hydrogenated amorphous silicon.

  4. On the Experimental Determination of the One-Way Speed of Light

    ERIC Educational Resources Information Center

    Perez, Israel

    2011-01-01

    In this paper the question of the isotropy of the one-way speed of light is addressed from an experimental perspective. In particular, we analyse two experimental methods commonly used in its determination. The analysis is aimed at clarifying the view that the one-way speed of light cannot be determined by techniques in which physical entities…

  5. Experimentally determined spectral optimization for dedicated breast computed tomography

    SciTech Connect

    Prionas, Nicolas D.; Huang, Shih-Ying; Boone, John M.

    2011-02-15

    Purpose: The current study aimed to experimentally identify the optimal technique factors (x-ray tube potential and added filtration material/thickness) to maximize soft-tissue contrast, microcalcification contrast, and iodine contrast enhancement using cadaveric breast specimens imaged with dedicated breast computed tomography (bCT). Secondarily, the study aimed to evaluate the accuracy of phantom materials as tissue surrogates and to characterize the change in accuracy with varying bCT technique factors. Methods: A cadaveric breast specimen was acquired under appropriate approval and scanned using a prototype bCT scanner. Inserted into the specimen were cylindrical inserts of polyethylene, water, iodine contrast medium (iodixanol, 2.5 mg/ml), and calcium hydroxyapatite (100 mg/ml). Six x-ray tube potentials (50, 60, 70, 80, 90, and 100 kVp) and three different filters (0.2 mm Cu, 1.5 mm Al, and 0.2 mm Sn) were tested. For each set of technique factors, the intensity (linear attenuation coefficient) and noise were measured within six regions of interest (ROIs): Glandular tissue, adipose tissue, polyethylene, water, iodine contrast medium, and calcium hydroxyapatite. Dose-normalized contrast to noise ratio (CNRD) was measured for pairwise comparisons among the six ROIs. Regression models were used to estimate the effect of tube potential and added filtration on intensity, noise, and CNRD. Results: Iodine contrast enhancement was maximized using 60 kVp and 0.2 mm Cu. Microcalcification contrast and soft-tissue contrast were maximized at 60 kVp. The 0.2 mm Cu filter achieved significantly higher CNRD for iodine contrast enhancement than the other two filters (p=0.01), but microcalcification contrast and soft-tissue contrast were similar using the copper and aluminum filters. The average percent difference in linear attenuation coefficient, across all tube potentials, for polyethylene versus adipose tissue was 1.8%, 1.7%, and 1.3% for 0.2 mm Cu, 1.5 mm Al, and 0.2 mm

  6. Streptococcus pneumoniae capsule determines disease severity in experimental pneumococcal meningitis.

    PubMed

    Hathaway, Lucy J; Grandgirard, Denis; Valente, Luca G; Täuber, Martin G; Leib, Stephen L

    2016-03-01

    Streptococcus pneumoniaebacteria can be characterized into over 90 serotypes according to the composition of their polysaccharide capsules. Some serotypes are common in nasopharyngeal carriage whereas others are associated with invasive disease, but when carriage serotypes do invade disease is often particularly severe. It is unknown whether disease severity is due directly to the capsule type or to other virulence factors. Here, we used a clinical pneumococcal isolate and its capsule-switch mutants to determine the effect of capsule, in isolation from the genetic background, on severity of meningitis in an infant rat model. We found that possession of a capsule was essential for causing meningitis. Serotype 6B caused significantly more mortality than 7F and this correlated with increased capsule thickness in the cerebrospinal fluid (CSF), a stronger inflammatory cytokine response in the CSF and ultimately more cortical brain damage. We conclude that capsule type has a direct effect on meningitis severity. This is an important consideration in the current era of vaccination targeting a subset of capsule types that causes serotype replacement. PMID:27009189

  7. Streptococcus pneumoniae capsule determines disease severity in experimental pneumococcal meningitis

    PubMed Central

    Grandgirard, Denis; Valente, Luca G.; Täuber, Martin G.; Leib, Stephen L.

    2016-01-01

    Streptococcus pneumoniae bacteria can be characterized into over 90 serotypes according to the composition of their polysaccharide capsules. Some serotypes are common in nasopharyngeal carriage whereas others are associated with invasive disease, but when carriage serotypes do invade disease is often particularly severe. It is unknown whether disease severity is due directly to the capsule type or to other virulence factors. Here, we used a clinical pneumococcal isolate and its capsule-switch mutants to determine the effect of capsule, in isolation from the genetic background, on severity of meningitis in an infant rat model. We found that possession of a capsule was essential for causing meningitis. Serotype 6B caused significantly more mortality than 7F and this correlated with increased capsule thickness in the cerebrospinal fluid (CSF), a stronger inflammatory cytokine response in the CSF and ultimately more cortical brain damage. We conclude that capsule type has a direct effect on meningitis severity. This is an important consideration in the current era of vaccination targeting a subset of capsule types that causes serotype replacement. PMID:27009189

  8. Depolarising primate experimentation: the good, the bad and the determined.

    PubMed

    Hudson, Michelle

    2009-12-01

    Until I began working at FRAME, I was not really aware of the Three Rs or FRAME's work to promote and progress them. It soon became clear to me that it made scientific sense and that it could make a difference to many thousands of laboratory animals. As an alternatives advocate, I regularly experience optimism, frustration and determination. This is illustrated most clearly by the primate research dilemma. Here, I describe the positive and negative experiences I have had whilst working toward the goal of replacing primate experiments, and how these have led me to undertake a multidisciplinary PhD project on primate use in biomedical research. The aim is to examine how research scientists view the opportunities and challenges involved in the use of primates in biomedical science, and to investigate the feasibility of phasing out their use. As a result of the research, I hope to provide a new perspective, to depolarise the debate and bring about a constructive dialogue between all parties as to how and when primate research could be replaced. PMID:20105018

  9. Non-invasive experimental determination of a CT source model.

    PubMed

    Alikhani, Babak; Büermann, Ludwig

    2016-01-01

    Non-invasive methods to determine equivalent X-ray source models of a CT scanner are presented. A high-precision technique called TRIC ("Time Resolved Integrated Charge") was developed and used to characterize the bow tie filters (BT) of the CT scanner installed at Physikalisch-Technische Bundesanstalt (PTB). Aluminum (Al) and polymethyl methacrylate (PMMA) equivalent thicknesses of the BT filters at all tube high voltages were evaluated, assuming that those consist of only one material. Thereby two different dose probes were used, a solid state detector and an ionization chamber, the former characterized by a significant and the latter by an almost negligible energy dependence of the air kerma response. A method was developed to correct for the energy dependence of the solid state dose probe. Next, a two-component material was assumed and equivalent BT filters were evaluated. The latter method was also applied using the known real BT filter materials and compared with the shape of the real BT filters. Finally, the results obtained by the TRIC method were compared with those obtained by using the so-called COBRA method ("Characterization Of Bow tie Relative Attenuation"), the latter being more suitable for measurements in a clinical environment. PMID:26602858

  10. An experimental procedure to determine heat transfer properties of turbochargers

    NASA Astrophysics Data System (ADS)

    Serrano, J. R.; Olmeda, P.; Páez, A.; Vidal, F.

    2010-03-01

    Heat transfer phenomena in turbochargers have been a subject of investigation due to their importance for the correct determination of compressor real work when modelling. The commonly stated condition of adiabaticity for turbochargers during normal operation of an engine has been revaluated because important deviations from adiabatic behaviour have been stated in many studies in this issue especially when the turbocharger is running at low rotational speeds/loads. The deviations mentioned do not permit us to assess properly the turbine and compressor efficiencies since the pure aerodynamic effects cannot be separated from the non-desired heat transfer due to the presence of both phenomena during turbocharger operation. The correction of the aforesaid facts is necessary to properly feed engine models with reliable information and in this way increase the quality of the results in any modelling process. The present work proposes a thermal characterization methodology successfully applied in a turbocharger for a passenger car which is based on the physics of the turbocharger. Its application helps to understand the thermal behaviour of the turbocharger, and the results obtained constitute vital information for future modelling efforts which involve the use of the information obtained from the proposed methodology. The conductance values obtained from the proposed methodology have been applied to correct a procedure for measuring the mechanical efficiency of the tested turbocharger.

  11. Preliminary analysis of problem of determining experimental performance of air-cooled turbine III : methods for determining power and efficiency

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H , Jr; Ziemer, Robert R

    1950-01-01

    Suggested formula are given for determining air-cooled turbine-performance characteristics, such as power and efficiency, as functions of certain parameters. These functions, generally being unknown, are determined from experimental data obtained from specific investigations. Special plotting methods for isolating the effect of each parameter are outlined.

  12. Synthetic fluid inclusions XIX. Experimental determination of the vapor-saturated liquidus of the system H2O-NaCl-FeCl2

    NASA Astrophysics Data System (ADS)

    Lecumberri-Sanchez, Pilar; Steele-MacInnis, Matthew; Bodnar, Robert J.

    2015-01-01

    Magmatic-hydrothermal fluids associated with felsic to intermediate composition magmas are generally dominated by (Na ± K)Cl, but often the fluids also contain significant concentrations of FeCl2. Previously, fluid inclusions containing such fluids were interpreted using the properties of H2O-NaCl because the effect of FeCl2 on the phase equilibrium and volumetric (PVTx) properties of aqueous fluids was essentially unknown. In this study, synthetic fluid inclusion experiments have been conducted to determine the vapor-saturated liquidus phase relations of the system H2O-NaCl-FeCl2. Microthermometric and microanalytical measurements on synthetic fluid inclusions have been combined with the limited existing data, as well as with predictions based on Pitzer's formalism, to determine the ternary cotectic and peritectic phase boundaries and liquidus fields. The liquidus is qualitatively similar to those of other ternary systems of H2O-NaCl plus divalent-cation chlorides (MgCl2 and CaCl2) and has been characterized through empirical equations that represent the liquid salinity on the ice- and halite-liquidus surfaces. The ice and halite liquidi intersect at a metastable cotectic curve, which can be used to determine fluid compositions in this system if metastable behavior is observed. Furthermore, based on the experimentally determined liquidus, bulk salinities of natural fluid inclusions can be determined from the last dissolution temperatures of ice and/or halite using the new empirical equations.

  13. Design, implementation and characterization of a quantum-dot-based volumetric display.

    PubMed

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-01-01

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others. PMID:25683656

  14. Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-01

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  15. Volumetric Properties of Dilute Aqueous Solutions of 1- and 2-propanol to 50 MPa and 373.15 K

    NASA Astrophysics Data System (ADS)

    Seitz, J.; Bahramian, J.; Blackwell, R.; Inaki, T.; York, D.; Schulte, M. D.

    2014-12-01

    The need to accurately model and understand reactions among organic compounds and biomolecules in solution is necessary to develop realistic chemical models for the reactions leading to the emergence of life and metabolic processes of extremophiles under elevated temperature and pressure conditions. Unfortunately, the scarcity of experimentally determined volumetric (and other) properties for important compounds at high temperatures and pressures leads to uncertainty in the calculation of reaction properties. Experimentally determined volumetric properties of aqueous solutions at non-standard conditions provide direct tests of current estimation methods and aid in the refinement of these methods. The goal of our research is to provide a database of experimentally determined volumetric properties. In previous studies, we have examined important organic molecules and biomolecules such as adenosine, coenzyme M and D-ribose. In this study, we investigate the volumetric properties of the structural isomers 1- and 2-propanol. 1-propanol (n-propanol) is a primary alcohol (CH3CH2CH2OH) and 2-propanol (isopropanol) is the simplest example of a secondary alcohol (CH3CHOHCH3). These compounds differ slightly in structure depending on to which carbon atom the hydroxyl group is bonded and will provide a sensitive test of current estimation methods and lead to more accurate predictions of the properties of complex aqueous systems at elevated temperatures and pressures. We obtained the densities of aqueous solutions of the alchohols using an Anton Paar DMA HP vibrating tube densimeter. Pressure was measured (pressure transducer) to an accuracy of ±0.01% and temperature was measured (integrated platinum thermometer) with an accuracy of ±0.05 K. Experimental uncertainty of density measurements is less than ±0.0001 g·cm-3. The partial molar volumes at infinite dilution (V∞) for 1- and 2-propanol were calculated from the measured densities and are shown in the figure at 0

  16. Factors that determine the severity of experimental myasthenia gravis.

    PubMed

    Drachman, D B; McIntosh, K R; Yang, B

    1998-05-13

    R antibody production than T cells with specificity for other Torpedo AChR epitopes. This results in production of greater amounts of AChR antibodies, including a critical subset that cross-reacts with autologous mouse AChR. The higher autoantibody levels contribute to the greater susceptibility to EAMG and to the greater severity of manifestations in the B6 strain compared with the bm12 strain. (4) There is a bias in B6 mice toward the production of AChR antibodies of IgG2b isotype. We suggest that T cells specific for alpha 146-162 may contribute to this isotype bias. The IgG2b antibodies appear to have particularly potent "myasthenogenic" effects in rats and mice. (5) Finally, it should be emphasized that these differences in immunological and clinical aspects of EAMG in B6 and bm12 mice are relative rather than absolute. T cells that respond to AChR epitopes other than alpha 146-162 can also provide help for AChR antibody production, albeit less potent. In a sense, this model represents a special case of molecular mimicry. In this case, the source of the foreign antigenic molecule is injection rather than the more usual route of infection. The antigen (Torpedo AChR) is one that these mice would never naturally encounter, and the critical amino acid (lysine 155) of the key epitope (alpha 146-162) is present only in the AChR of electric organs of electric fish and not in the AChR of mice, chickens, cows, or humans. The important point is that a detail of the structure of the foreign antigen--that is, a particular peptide of Torpedo AChR--can determine the severity of an antibody-mediated autoimmune disease, depending on how it interacts with a detail of the structure of the MHC Class II molecule and, in turn, on how the peptide/MHC Class II complex interacts with the available T cell repertoire. (ABSTRACT TRUNCATED) PMID:9668247

  17. Volumetric Acoustic Vector Intensity Probe

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2006-01-01

    A new measurement tool capable of imaging the acoustic intensity vector throughout a large volume is discussed. This tool consists of an array of fifty microphones that form a spherical surface of radius 0.2m. A simultaneous measurement of the pressure field across all the microphones provides time-domain near-field holograms. Near-field acoustical holography is used to convert the measured pressure into a volumetric vector intensity field as a function of frequency on a grid of points ranging from the center of the spherical surface to a radius of 0.4m. The volumetric intensity is displayed on three-dimensional plots that are used to locate noise sources outside the volume. There is no restriction on the type of noise source that can be studied. The sphere is mobile and can be moved from location to location to hunt for unidentified noise sources. An experiment inside a Boeing 757 aircraft in flight successfully tested the ability of the array to locate low-noise-excited sources on the fuselage. Reference transducers located on suspected noise source locations can also be used to increase the ability of this device to separate and identify multiple noise sources at a given frequency by using the theory of partial field decomposition. The frequency range of operation is 0 to 1400Hz. This device is ideal for the study of noise sources in commercial and military transportation vehicles in air, on land and underwater.

  18. Seismic volumetric flattening and segmentation

    NASA Astrophysics Data System (ADS)

    Lomask, Jesse

    Two novel algorithms provide seismic interpretation solutions that use the full dimensionality of the data. The first is volumetric flattening and the second is image segmentation for tracking salt boundaries. Volumetric flattening is an efficient full-volume automatic dense-picking method applied to seismic data. First local dips (step-outs) are calculated over the entire seismic volume. The dips are then resolved into time shifts (or depth shifts) in a least-squares sense. To handle faults (discontinuous reflections), I apply a weighted inversion scheme. Additional information is incorporated in this flattening algorithm as geological constraints. The method is tested successfully on both synthetic and field data sets of varying degrees of complexity including salt piercements, angular unconformities, and laterally limited faults. The second full-volume interpretation method uses normalized cuts image segmentation to track salt interfaces. I apply a modified version of the normalized cuts image segmentation (NCIS) method to partition seismic images along salt interfaces. The method is capable of tracking interfaces that are not continuous, where conventional horizon tracking algorithms may fail. This method partitions the seismic image into two groups. One group is inside the salt body and the other is outside. Where the two groups meet is the salt boundary. By imposing bounds and by distributing the algorithm on a parallel cluster, I significantly increase efficiency and robustness. This method is demonstrated to be effective on both 2D and 3D seismic data sets.

  19. Volumetric velocity measurements on flows through heart valves

    NASA Astrophysics Data System (ADS)

    Troolin, Daniel; Amatya, Devesh; Longmire, Ellen

    2009-11-01

    Volumetric velocity fields inside two types of artificial heart valves were obtained experimentally through the use of volumetric 3-component velocimetry (V3V). Index matching was used to mitigate the effects of optical distortions due to interfaces between the fluid and curved walls. The steady flow downstream of a mechanical valve was measured and the results matched well with previously obtained 2D PIV results, such as those of Shipkowitz et al. (2002). Measurements upstream and downstream of a deformable silicone valve in a pulsatile flow were obtained and reveal significant three-dimensional features of the flow. Plots and movies will be shown, and a detailed discussion of the flow and various experimental considerations will be included. Reference: Shipkowitz, T, Ambrus J, Kurk J, Wickramasinghe K (2002) Evaluation technique for bileaflet mechanical valves. J. Heart Valve Disease. 11(2) pp. 275-282.

  20. A volumetric flow sensor for automotive injection systems

    NASA Astrophysics Data System (ADS)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  1. A reduced volumetric expansion factor plot

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    1979-01-01

    A reduced volumetric expansion factor plot has been constructed for simple fluids which is suitable for engineering computations in heat transfer. Volumetric expansion factors have been found useful in correlating heat transfer data over a wide range of operating conditions including liquids, gases and the near critical region.

  2. A reduced volumetric expansion factor plot

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    1979-01-01

    A reduced volumetric expansion factor plot was constructed for simple fluids which is suitable for engineering computations in heat transfer. Volumetric expansion factors were found useful in correlating heat transfer data over a wide range of operating conditions including liquids, gases and the near critical region.

  3. Iterative reconstruction of volumetric particle distribution

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard

    2013-02-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.

  4. In vivo real-time volumetric synthetic aperture ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Bouzari, Hamed; Rasmussen, Morten F.; Brandt, Andreas H.; Stuart, Matthias B.; Nikolov, Svetoslav; Jensen, Jørgen A.

    2015-03-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological. This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° × 90° field-of-view was achieved. data were obtained using a 3.5 MHz 32 × 32 elements 2-D phased array transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak-temporal-average intensity for parallel beam-forming (PB) are 0.83 and 377.5mW/cm2, and for SA are 0.48 and 329.5mW/cm2. A human kidney was volumetrically imaged with SA and PB techniques simultaneously. Two radiologists for evaluation of the volumetric SA were consulted by means of a questionnaire on the level of details perceivable in the beam-formed images. The comparison was against PB based on the in vivo data. The feedback from the domain experts indicates that volumetric SA images internal body structures with a better contrast resolution compared to PB at all positions in the entire imaged volume. Furthermore, the autocovariance of a homogeneous area in the in vivo SA data, had 23.5% smaller width at the half of its maximum value compared to PB.

  5. Innovative system architecture for spatial volumetric acoustic seeing

    NASA Astrophysics Data System (ADS)

    Levin, Eugene; Sergeyev, Aleksandr V.

    2009-04-01

    Situational awareness is a critical issue for the modern battle and security systems improvement of which will increase human performance efficiency. There are multiple research project and development efforts based on omni-directional (fish-eye) electro-optical and other frequency sensor fusion systems implementing head-mounted visualization systems. However, the efficiency of these systems is limited by the human eye-brain system perception limitations. Humans are capable to naturally perceive the situations in front of them, but interpretation of omni-directional visual scenes increases the user's mental workload, increasing human fatigue and disorientation requiring more effort for object recognition. It is especially important to reduce this workload making rear scenes perception intuitive in battlefield situations where a combatant can be attacked from both directions. This paper describes an experimental model of the system fusion architecture of the Visual Acoustic Seeing (VAS) for representation spatial geometric 3D model in form of 3D volumetric sound. Current research in the area of auralization points to the possibility of identifying sound direction. However, for complete spatial perception it is necessary to identify the direction and the distance to an object by an expression of volumetric sound, we initially assume that the distance can be encoded by the sound frequency. The chain: object features -> sensor -> 3D geometric model-> auralization constitutes Volumetric Acoustic Seeing (VAS). Paper describes VAS experimental research for representing and perceiving spatial information by means of human hearing cues in more details.

  6. Experimental Determination of Paschen Curve and First Townsend Coefficient of Nitrogen Plasma Discharge

    NASA Astrophysics Data System (ADS)

    Wais, Sabah

    2011-10-01

    In the present work, an experimental study is performed to determine the first Townsend coefficient and Paschen curve for N2 gas chamber using a parallel plate geometrical configuration. Paschen curve coefficients are derived by exponential fitting of first Townsend coefficients data of plasma discharge. The experimental data is acquired at different working pressure and various electrode gap separations. Furthermore, the amplification process of the gas gain in non-uniform electric field is realized.

  7. Experimental and analytical determination of vibration characteristics of corrugated, flexibly supported, heat-shield panels

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1974-01-01

    Experimental and analytical natural frequencies, nodal patterns, and typical modal displacements for a corrugated, flexibly supported, heat-shield panel are discussed. Good correlation was found between the experimental data and NASTRAN analytical results for the corrugated panel over a relatively wide frequency spectrum covered in the investigation. Of the two experimental techniques used for mode shape and displacement measurements (a noncontacting displacement sensor system and a holographic technique using a helium-neon, continuous-wave laser), the holographic technique was found, in the present investigation, to be faster and better suited for determining a large number of complex nodal patterns of the corrugated panel.

  8. Experimentally determined stiffness and damping of an inherently compensated air squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1975-01-01

    Values of damping and stiffness were determined experimentally for an externally pressurized, inherently compensated, compressible squeeze-film damper up to excitation frequencies of 36,000 cycles per minute. Experimental damping values were higher than theory predicted at low squeeze numbers and less than predicted at high squeeze numbers. Experimental values of air film stiffness were less than theory predicted at low squeeze numbers and much greater at higher squeeze numbers. Results also indicate sufficient damping to attenuate amplitudes and forces at the critical speed when using three dampers in the flexible support system of a small, lightweight turborotor.

  9. Experimental determination of self-similarity constant for converging cylindrical shocks

    NASA Astrophysics Data System (ADS)

    Kjellander, Malte; Tillmark, Nils; Apazidis, Nicholas

    2011-11-01

    Guderley's self-similarity solution r = r0(1 - t/t0)α for strong converging cylindrical shocks is investigated experimentally for three different gases with adiabatic exponents γ = 1.13; 1.40; and 1.66 and various values of the initial Mach number. Corresponding values of the similarity exponent α which determines the strength of shock convergence are obtained for each gas thus giving the variation of α with γ. Schlieren imaging with multiple exposure technique is used to track the propagation of a single shock front during convergence. The present experimental results are compared with previous experimental, numerical, and theoretical investigations.

  10. Floating volumetric image formation using a dihedral corner reflector array device.

    PubMed

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuki; Yamamoto, Siori; Mukai, Takaaki; Maekawa, Satoshi

    2013-01-01

    A volumetric display system using an optical imaging device consisting of numerous dihedral corner reflectors placed perpendicular to the surface of a metal plate is proposed. Image formation by the dihedral corner reflector array (DCRA) is free from distortion and focal length. In the proposed volumetric display system, a two-dimensional real image is moved by a mirror scanner to scan a three-dimensional (3D) space. Cross-sectional images of a 3D object are displayed in accordance with the position of the image plane. A volumetric image is observed as a stack of the cross-sectional images. The use of the DCRA brings compact system configuration and volumetric real image generation with very low distortion. An experimental volumetric display system including a DCRA, a galvanometer mirror, and a digital micro-mirror device was constructed to verify the proposed method. A volumetric image consisting of 1024×768×400 voxels was formed by the experimental system. PMID:23292404

  11. Experimental and analytical determination of stability parameters for a balloon tethered in a wind

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Bennett, R. M.; Bland, S. R.

    1973-01-01

    Experimental and analytical techniques for determining stability parameters for a balloon tethered in a steady wind are described. These techniques are applied to a particular 7.64-meter-long balloon, and the results are presented. The stability parameters of interest appear as coefficients in linearized stability equations and are derived from the various forces and moments acting on the balloon. In several cases the results from the experimental and analytical techniques are compared and suggestions are given as to which techniques are the most practical means of determining values for the stability parameters.

  12. An experimental approach to determine the heat transfer coefficient in directional solidification furnaces

    NASA Technical Reports Server (NTRS)

    Banan, Mohsen; Gray, Ross T.; Wilcox, William R.

    1992-01-01

    The heat transfer coefficient between a molten charge and its surroundings in a Bridgman furnace was experimentally determined using in-situ temperature measurement. The ampoule containing an isothermal melt was suddenly moved from a higher temperature zone to a lower temperature zone. The temperature-time history was used in a lumped-capacity cooling model to evaluate the heat transfer coefficient between the charge and the furnace. The experimentally determined heat transfer coefficient was of the same order of magnitude as the theoretical value estimated by standard heat transfer calculations.

  13. Volumetric Properties and Fluid Phase Equilibria of CO2 + H2O

    SciTech Connect

    Capobianco, Ryan; Gruszkiewicz, Miroslaw {Mirek} S; Wesolowski, David J; Cole, David R; Bodnar, Robert

    2013-01-01

    The need for accurate modeling of fluid-mineral processes over wide ranges of temperature, pressure and composition highlighted considerable uncertainties of available property data and equations of state, even for the CO2 + H2O binary system. In particular, the solubility, activity, and ionic dissociation equilibrium data for the CO2-rich phase, which are essential for understanding dissolution/precipitation, fluid-matrix reactions, and solute transport, are uncertain or missing. In this paper we report the results of a new experimental study of volumetric and phase equilibrium properties of CO2 + H2O, to be followed by measurements for bulk and confined multicomponent fluid mixtures. Mixture densities were measured by vibrating tube densimetry (VTD) over the entire composition range at T = 200 and 250 C and P = 20, 40, 60, and 80 MPa. Initial analysis of the mutual solubilities, determined from volumetric data, shows good agreement with earlier results for the aqueous phase, but finds that the data of Takenouchi and Kennedy (1964) significantly overestimated the solubility of water in supercritical CO2 (by a factor of more than two at 200 C). Resolving this well-known discrepancy will have a direct impact on the accuracy of predictive modeling of CO2 injection in geothermal reservoirs and geological carbon sequestration through improved equations of state, needed for calibration of predictive molecular-scale models and large-scale reactive transport simulations.

  14. Survey of Volumetric Grid Generators

    NASA Technical Reports Server (NTRS)

    Woo, Alex; Volakis, John; Hulbert, Greg; Case, Jeff; Presley, Leroy L. (Technical Monitor)

    1994-01-01

    This document is the result of an Internet Survey of Volumetric grid generators. As such we have included information from only the responses which were sent to us. After the initial publication and posting of this survey, we would encourage authors and users of grid generators to send further information. Here is the initial query posted to SIGGRID@nas and the USENET group sci.physics.computational.fluid-dynamics. Date: Sun, 30 Jan 94 11:37:52 -0800 From: woo (Alex Woo x6010 227-6 rm 315) Subject: Info Sought for Survey of Grid Generators I am collecting information and reviews of both government sponsored and commercial mesh generators for large scientific calculations, both block structured and unstructured. If you send me a review of a mesh generator, please indicate its availability and cost. If you are a commercial concern with information on a product, please also include references for possible reviewers. Please email to woo@ra-next.arc.nasa.gov. I will post a summary and probably write a short note for the IEEE Antennas and Propagation Magazine. Alex Woo, MS 227-6 woo@ames.arc.nasa.gov NASA Ames Research Center NASAMAIL ACWOO Moffett Field, CA 94035-1000 SPANET 24582::W00 (415) 604-6010 (FAX) 604-4357 fhplabs,decwrl,uunet)!ames!woo Disclaimer: These are not official statements of NASA or EMCC. We did not include all the submitted text here. Instead we have created a database entry in the freely available and widely used BIBTeX format which has an Uniform Resource Locator (URL) field pointing to more details. The BIBTeX database is modeled after those available from the BIBNET project at University of Utah.

  15. Volumetric interpretation of protein adsorption kinetics

    NASA Astrophysics Data System (ADS)

    Barnthip, Naris

    Protein adsorption is believed to be a very important factor ultimately leading to a predictive basis for biomaterials design and improving biocompatibility. Standard adsorption theories are modified to accommodate experimental observations. Adsorption from single-protein solutions and competitive adsorption from binary solutions are mainly considered. The standard solution-depletion method of measuring protein adsorption is implemented with SDS-gel electrophoresis as a multiplexing, separation-and-quantification tool to measure protein adsorption to hydrophobic octyl sepharose (OS) adsorbent particles. Standard radiometric methods have also been used as a further check on the electrophoresis method mentioned above for purified-protein cases. Experimental results are interpreted in terms of an alternative kinetic model called volumetric interpretation of protein adsorption. A partitioning process between bulk solution and a three-dimensional interphase region that separates bulk solution from the physical adsorbent surface is the concept of the model. Protein molecules rapidly diffuse into an inflating interphase that is spontaneously formed by bringing a protein solution into contact with a physical surface, then follows by rearrangement of proteins within this interphase to achieve the maximum interphase concentration (dictated by energetics of interphase dehydration) within the thinnest (lowest volume) interphase possible. An important role of water in protein adsorption is emphasized and supported by this model. The fundamental aspects including the reversibility/irreversibility of protein adsorption, the multilayer adsorption, the applicability of thermodynamic/computational models, the capacity of protein adsorption, and the mechanism of so called Vroman effect are discussed and compared to the conventional theories. Superhydrophobic effect on the adsorption of human serum albumin is also examined.

  16. Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV)

    NASA Astrophysics Data System (ADS)

    Falahatpisheh, Ahmad; Kheradvar, Arash

    2015-11-01

    Measurement of 3D flow field inside the cardiac chambers has proven to be a challenging task. Current laser-based 3D PIV methods estimate the third component of the velocity rather than directly measuring it and also cannot be used to image the opaque heart chambers. Modern echocardiography systems are equipped with 3D probes that enable imaging the entire 3D opaque field. However, this feature has not yet been employed for 3D vector characterization of blood flow. For the first time, we introduce a method that generates velocity vector field in 4D based on volumetric echocardiographic images. By assuming the conservation of brightness in 3D, blood speckles are tracked. A hierarchical 3D PIV method is used to account for large particle displacement. The discretized brightness transport equation is solved in a least square sense in interrogation windows of size 163 voxels. We successfully validate the method in analytical and experimental cases. Volumetric echo data of a left ventricle is then processed in the systolic phase. The expected velocity fields were successfully predicted by V-Echo-PIV. In this work, we showed a method to image blood flow in 3D based on volumetric images of human heart using no contrast agent.

  17. Autologous Fat Grafting in Facial Volumetric Restoration

    PubMed Central

    Pasquale, Piombino; Gaetano, Marenzi; Giovanni, Dell’Aversana Orabona; Luigi, Califano; Gilberto, Sammartino

    2015-01-01

    Abstract The authors reported their surgical experience about structural fat grafting in the management of facial volumetric deficit. The purpose of this study was to assess the real indications, cosmetic results, complications, and global patient satisfaction of the Coleman technique in redefining facial contours in congenital and postoperative deformities. A retrospective analysis of 32 patients grafted according to Coleman's technique was performed, and the long-term outcomes and patient satisfaction were evaluated. The mean postoperative clinical follow-up was 14 months. The morphological changes were analyzed by comparing the photographic presurgical facial contour and the postoperative correction of soft tissue defects. All consecutive cases reported showed a progressive fat resorption for 3 months after surgery and its stable integration only after this period. Best results were performed in the treatment of genetically determined syndromes, such as the Franceschetti and Romberg syndromes. The authors suggest this surgical technique also for the treatment of unaesthetic cutaneous abscess cavity after incision and drainage. Unsatisfactory outcomes were obtained in the treatment of the posttraumatic facial scar, which needed more surgical procedures. PMID:25974786

  18. Calculation and experimental determination of the fast neutron sensitivity of OSL detectors with hydrogen containing radiators

    NASA Astrophysics Data System (ADS)

    Fellinger, Jürgen; Henniger, Jürgen; Hübner, Klaus

    1984-11-01

    Detectors based on optically stimulated luminescence are useful for fast neutron dosimetry. For this one needs the neutron sensitivity of these detectors. We describe a procedure for the calculation of the neutron sensitivity. For CaF 2:Mn embedded in polyethylene the calculated values are compared with experimentally determined neutron sensitivities. There is good agreement.

  19. Experimental and Theoretical Determination of Heavy Oil Viscosity Under Reservoir Conditions

    SciTech Connect

    Gabitto, Jorge; Barrufet, Maria

    2002-03-11

    The main objective of this research was to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes.

  20. Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School

    ERIC Educational Resources Information Center

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…

  1. Experimental determination of the particle motions associated with the low order acoustic modes in enclosures

    NASA Technical Reports Server (NTRS)

    Byrne, K. P.; Marshall, S. E.

    1983-01-01

    A procedure for experimentally determining, in terms of the particle motions, the shapes of the low order acoustic modes in enclosures is described. The procedure is based on finding differentiable functions which approximate the shape functions of the low order acoustic modes when these modes are defined in terms of the acoustic pressure. The differentiable approximating functions are formed from polynomials which are fitted by a least squares procedure to experimentally determined values which define the shapes of the low order acoustic modes in terms of the acoustic pressure. These experimentally determined values are found by a conventional technique in which the transfer functions, which relate the acoustic pressures at an array of points in the enclosure to the volume velocity of a fixed point source, are measured. The gradient of the function which approximates the shape of a particular mode in terms of the acoustic pressure is evaluated to give the mode shape in terms of the particle motion. The procedure was tested by using it to experimentally determine the shapes of the low order acoustic modes in a small rectangular enclosure.

  2. Determining the performance of energy wheels: Part 2 -- Experimental data and numerical validation

    SciTech Connect

    Simonson, C.J.; Ciepliski, D.L.; Besant, R.W.

    1999-07-01

    Experimentally measured and numerically simulated performance data are presented for an energy wheel operating in a wide range of conditions for mass flux, temperature, and humidity. Typically, the agreement between simulated and measured results is well within the experimental uncertainty. Both the simulated and numerical results show that the three effectiveness values (i.e., sensible, latent, and total) are unequal and each has its own unique sensitivity to operating conditions. Also, total effectiveness is shown to be a poor measurement of performance when the supply and exhaust inlet air enthalpies are nearly equal. Simulated results with the numerical model show that experimental results measured using half of the energy wheel, to reduce equipment sizes, underpredict the measured sensible effectiveness by up to 7%. The proposed method of determining energy wheel performance is to validate a detailed numerical model with a range of accurate experimental data and then use the model to predict performance for other operating conditions.

  3. Comparison of experimentally determined and mathematically predicted percutaneous penetration rates of chemicals.

    PubMed

    Korinth, Gintautas; Schaller, Karl Heinz; Bader, Michael; Bartsch, Rüdiger; Göen, Thomas; Rossbach, Bernd; Drexler, Hans

    2012-03-01

    The aim of the study was to evaluate the predictive potential of three different mathematical models for the percutaneous penetration of industrial solvents with respect to our experimental data. Percutaneous penetration rates (fluxes) from diffusion cell experiments of 11 chemicals were compared with fluxes predicted by mathematical models. The chemicals considered were three glycol ethers (2-butoxyethanol, diethylene glycol monobutyl ether and 1-ethoxy-2-propanol), three alcohols (ethanol, isopropanol and methanol), two glycols (ethylene glycol and 1,2-propanediol), one aromatic hydrocarbon (toluene) and two aromatic amines (aniline and o-toluidine). For the mathematical prediction of fluxes, models described by Fiserova-Bergerova et al. (Am J Ind Med 17:617-635 1990), Guy and Potts (Am J Ind Med 23:711-719 1993) and Wilschut et al. (Chemosphere 30:1275-1296 1995) were used. The molecular weights, octanol-water partition coefficients (LogP) and water solubilities of the compounds were obtained from a database for modelling. The fit between the mathematically predicted and experimentally determined fluxes was poor (R(2) = 0.04-0.29; linear regression). The flux differences ranged up to a factor of 412. For 4 compounds, the Guy and Potts model showed a closer fit with the experimental flux than the other models. The Wilschut et al. model showed a lower flux difference for 4 compounds as compared to experimental data than the models of Fiserova-Bergerova et al. and Guy and Potts. The Fiserova-Bergerova et al. model showed for 3 compounds a lower flux difference to experimental data than the other models. This study demonstrates large differences between mathematically predicted and experimentally determined fluxes. The percutaneous penetration as determined in diffusion cell experiments may be considerably overestimated as well as underestimated by mathematical models. Although the number of compounds in our comparison study is small, the results point out that none

  4. A model for the volumetric radiation characteristics of cellular ceramics

    SciTech Connect

    Fu, X.; Viskanta, R.; Gore, J.P.

    1997-12-01

    A unit cell based model for cellular ceramics was developed in conjunction with the discrete ordinates method for radiative transfer to predict theoretically the effective volumetric radiation characteristics of the cellular ceramics. Model input parameters include the porosity, pores per centimeter (PPC) and reflectivity of the solid material. Numerical calculations of the extinction coefficients and single scattering albedo are reported over the range of reflectivities from 0 to 1, porosities from 0.6 to 0.95 and PPC from 4 to 26. A comparison between model predictions and spectral emittance data for cellular ceramics reported in the literature shows agreement within 5 to 10% which is within experimental uncertainty.

  5. Accuracy of endodontic microleakage results: autoradiographic vs. volumetric measurements.

    PubMed

    Ximénez-Fyvie, L A; Ximénez-García, C; Carter-Bartlett, P M; Collado-Webber, F J

    1996-06-01

    The correlation between autoradiographic and volumetric leakage measurements was evaluated. Seventy-two anterior teeth with a single canal were selected and divided into three groups of 24. Group 1 served as control (no obturation), group 2 was obturated with gutta-percha only, and group 3 was obturated with gutta-percha and endodontic sealer. Samples were placed in a vertical position in 48-well cell culture plates and immersed in 1 ml of [14C]urea for 14 days. One-mm-thick horizontal serial sections were cut with a diamond disk cooled with liquid-nitrogen gas. Linear penetration was recorded by five independent evaluators from autoradiographs. Volumetric results were based on counts per minute registered in a liquid scintillation spectrometer. Pearson's correlation coefficient test was used to determine the lineal correlation between both methods of evaluation. No acceptable correlation values were found in any of the three groups (group 1, r = 0.34; group 2, r = 0.23; group 3, r = 0.20). Our results indicate that there is no correlation between linear and volumetric measurements of leakage. PMID:8934988

  6. Experimental determination of the solubility of iridium in silicate melts: Preliminary results

    NASA Technical Reports Server (NTRS)

    Borisov, Alexander; Dingwell, Donald B.; Oneill, Hugh ST.C.; Palme, Herbert

    1992-01-01

    Little is known of the geochemical behavior of iridium. Normally this element is taken to be chalcophile and/or siderophile so that during planetary differentiation processes, e.g., core formation, iridium is extracted from silicate phases into metallic phases. Experimental determination of the metal/silicate partition coefficient of iridium is difficult simply because it is so large. Also there are no data on the solubility behavior of iridium in silicate melts. With information on the solubility of iridium in silicate melts it is possible, in combination with experimental data for Fe-Ir alloys, to calculate the partition coefficient between a metallic phase and a silicate melt.

  7. Experimental level-structure determination in odd-odd actinide nuclei

    SciTech Connect

    Hoff, R.W.

    1985-04-04

    The status of experimental determination of level structure in odd-odd actinide nuclei is reviewed. A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei is applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation are derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings are used. Calculated and experimental level structures for /sup 238/Np, /sup 244/Am, and /sup 250/Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Applications of this modeling technique are discussed.

  8. Experimental determination of the relationship between permeability and microfracture-induced damage in bedded salt

    SciTech Connect

    Pfeifle, T.W.

    1998-03-01

    The development of deep underground structures (e.g., shafts, mines, storage and disposal caverns) significantly alters the stress state in the rock near the structure or opening. The effect of such an opening is to concentrate the far-field stress near the free surface. For soft rock such as salt, the concentrating effect of the opening induces deviatoric stresses in the salt that may be large enough to initiate microcracks which then propagate with time. The volume of rock susceptible to damage by microfracturing is often referred to as the disturbed rock zone and, by its nature, is expected to exhibit high permeability relative to that of the native, far-field rock. This paper presents laboratory data that characterize microfracture-induced damage and the effect this damage has on permeability for bedded salt from the Waste Isolation Pilot Plant located in southeastern New Mexico. Damage is induced in the salt through a series of tertiary creep experiments and quantified in terms of dilatant volumetric strain. The permeability of damaged specimens is then measured using nitrogen gas as the permeant. The range in damage investigated included dilatant volumetric strains from less than 0.03 percent to nearly 4.0 percent. Permeability values corresponding to these damage levels ranged from 1 {times} 10{sup {minus}18} m{sup 2} to 1 {times} 10{sup {minus}12} m{sup 2}. Two simple models were fitted to the data for use in predicting permeability from dilatant volumetric strain.

  9. Experimental Procedures for Determining the Invariant Triplet-Phases of X-Ray Reflections.

    NASA Astrophysics Data System (ADS)

    Nicolosi, Joseph Anthony

    The phases of x-ray reflections are retained when three-beams diffract simultaneously (Post, 1977, 1979). The phase information can be extracted from the angular distribution of diffracted intensity about the three beam setting. We have investigated methods of optimizng experimental procedures and have developed instrumentation for resolving the intensity asymmetries associated with n-beam interactions in centrosymmetric crystals. A device, which employs two crystals in a skew-parallel arrangement, was designed and used to produce monochromatic ((DELTA)(lamda)/(lamda) (TURN) 5 x 10('-4)) and highly collimated ((alpha)(,(theta)) (TURN) (alpha)(,(omega)) (LESSTHEQ) 60") incident radiation. A 6000 Watt rotating anode x-ray generator was used with a (300 (mu)m)('2) projected focus. An automated diffractometer, which incorporates "absolute" optical encoders, was used to orient and drive the study crystals with an accuracy of (+OR-) 0.001(DEGREES). These experimental procedures yielded an appreciable improvement in sensitivity over procedures used previously which utilized polychromatic and more divergent incident radiation. The sensitivity of our procedures has been checked using perfect crystals of Germanium and Silicon. The improved techniques were used to determine more than 200 triplet-phases experimentally in mosaic crystals of Lead Molybdate and Sulfamic Acid. The experimental phases agreed in all cases with those calculated from the known atomic coordinates of the compounds. The bases for generalized procedures to be used with crystals having large unit cells are discussed. Methods of applying the phase determining rules and estimating the approximate magnitudes of the n-beam interactions are described. The basis for a generalized experimental data collection procedure not restricted to the Renninger geometry is discussed. Such procedures require the use of automated techniques for calculation of experimental parameters of the samples studied.

  10. Experimental method for determination of bending and torsional rigidities of advanced composite laminates

    SciTech Connect

    Maeda, Takenori

    1995-11-01

    This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method is confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.

  11. On the experimental determination of the one-way speed of light

    NASA Astrophysics Data System (ADS)

    Pérez, Israel

    2011-07-01

    In this paper the question of the isotropy of the one-way speed of light is addressed from an experimental perspective. In particular, we analyse two experimental methods commonly used in its determination. The analysis is aimed at clarifying the view that the one-way speed of light cannot be determined by techniques in which physical entities close paths. The procedure employed here will provide epistemological tools so that physicists understand that a direct measurement of the speed not only of light but of any physical entity is by no means trivial. Our results shed light on the physics behind the experiments which may be of interest for both physicists with an elemental knowledge in special relativity and philosophers of science.

  12. A proposed experimental method for interpreting Doppler effect measurements and determining their precision

    NASA Technical Reports Server (NTRS)

    Klann, P. G.

    1973-01-01

    The principal problem in the measurement of the Doppler reactivity effect is separating it from the thermal reactivity effects of the expansion of the heated sample. It is shown in this proposal that the thermal effects of sample expansion can be experimentally determined by making additional measurements with porous samples having the same mass and/or volume as the primary sample. By combining these results with independent measurements of the linear temperature coefficient and the computed temperature dependence of the Doppler coefficient the magnitude of the Doppler coefficient may be extracted from the data. These addiational measurements are also useful to experimentally determine the precision of the reactivity oscillator technique used to measure the reactivity effects of the heated sample.

  13. Theoretical and experimental determination of L -shell decay rates, line widths, and fluorescence yields in Ge

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Sampaio, J. M.; Madeira, T. I.; Parente, F.; Indelicato, P.; Marques, J. P.; Santos, J. P.; Hoszowska, J.; Dousse, J.-Cl.; Loperetti, L.; Zeeshan, F.; Müller, M.; Unterumsberger, R.; Beckhoff, B.

    2015-08-01

    Fluorescence yields (FYs) for the Ge L shell were determined by a theoretical and two experimental groups within the framework of the International Initiative on X-Ray Fundamental Parameters Collaboration. Calculations were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental value of the L3FY ωL 3 was determined at the Physikalisch-Technische Bundesanstalt undulator beamline of the synchrotron radiation facility BESSY II in Berlin, Germany, and the L α1 ,2 and L β1 line widths were measured at the Swiss Light Source, Paul Scherrer Institute, Switzerland, using monochromatized synchrotron radiation and a von Hamos x-ray crystal spectrometer. The measured fluorescence yields and line widths are compared to the corresponding calculated values.

  14. Experimental determination of carbon dioxide evolution during aerobic composting of agro-wastes.

    PubMed

    Tripathi, Shilpa; Srivastava, J K

    2012-10-01

    This work aims at optimal composting of agro-wastes like sugarcane bagasse, wood straw and soya husk. A mixture of these substances along with small quantity of food waste as the seed was composted aerobically and carbon dioxide evolved was determined experimentally using a composting system comprising aerobic digester, operating in near-optimal conditions with regard to adequacy of oxygen and temperature in the system. During aerobic composting of agro-waste carbon dioxide is produced due to degradation of different carbon fractions in the substrate. Carbon dioxide production rate, which is a measure of bacterial/fungal activity in composting systems, can be related to various process parameters like different carbon fractions present in the substrate and their reaction rates, progress and termination of compost phenomenon and stabilization of organic matter. This gives a balanced compromise between complexity of mathematical model and extensive experimentation, and can be used for determining optimum conditions for composting. PMID:25151714

  15. Volumetric imaging with an amplitude-steered array

    NASA Astrophysics Data System (ADS)

    Frazier, Catherine H.; Hughes, W. Jack; O'Brien, William D.

    2002-12-01

    Volumetric acoustic imaging is desirable for the visualization of underwater objects and structures; however, the implementation of a volumetric imaging system is difficult due to the high channel count of a fully populated two-dimensional array. Recently, a linear amplitude-steered array with a reduced electronics requirement was presented, which is capable of collecting a two-dimensional set of data with a single transmit pulse. In this study, we demonstrate the use of the linear amplitude-steered array and associated image formation algorithms for collecting and displaying volumetric data; that is, proof of principle of the amplitude-steering concept and the associated image formation algorithms is demonstrated. Range and vertical position are obtained by taking advantage of the frequency separation of a vertical linear amplitude-steered array. The third dimension of data is obtained by rotating the array such that the mainlobe is mechanically steered in azimuth. Data are collected in a water tank at the Pennsylvania State University Applied Research Laboratory for two targets: a ladder and three pipes. These data are the first experimental data collected with an amplitude-steered array for the purposes of imaging. The array is 10 cm in diameter and is operated in the frequency range of 80 to 304 kHz. Although the array is small for high-resolution imaging at these frequencies, the rungs of the ladder are recognizable in the images. The three pipes are difficult to discern in two of the projection images; however, the pipes separated in range are clear in the image showing vertical position versus range. The imaging concept is demonstrated on measured data, and the simulations agree well with the experimental results.

  16. Volumetric imaging with an amplitude-steered array.

    PubMed

    Frazier, Catherine H; Hughes, W Jack; O'Brien, William D

    2002-12-01

    Volumetric acoustic imaging is desirable for the visualization of underwater objects and structures; however, the implementation of a volumetric imaging system is difficult due to the high channel count of a fully populated two-dimensional array. Recently, a linear amplitude-steered array with a reduced electronics requirement was presented, which is capable of collecting a two-dimensional set of data with a single transmit pulse. In this study, we demonstrate the use of the linear amplitude-steered array and associated image formation algorithms for collecting and displaying volumetric data; that is, proof of principle of the amplitude-steering concept and the associated image formation algorithms is demonstrated. Range and vertical position are obtained by taking advantage of the frequency separation of a vertical linear amplitude-steered array. The third dimension of data is obtained by rotating the array such that the mainlobe is mechanically steered in azimuth. Data are collected in a water tank at the Pennsylvania State University Applied Research Laboratory for two targets: a ladder and three pipes. These data are the first experimental data collected with an amplitude-steered array for the purposes of imaging. The array is 10 cm in diameter and is operated in the frequency range of 80 to 304 kHz. Although the array is small for high-resolution imaging at these frequencies, the rungs of the ladder are recognizable in the images. The three pipes are difficult to discern in two of the projection images; however, the pipes separated in range are clear in the image showing vertical position versus range. The imaging concept is demonstrated on measured data, and the simulations agree well with the experimental results. PMID:12508995

  17. An experimental method for directly determining the interconnectivity of melt in a partially molten system

    NASA Technical Reports Server (NTRS)

    Daines, Martha J.; Richter, Frank M.

    1988-01-01

    An experimental method for directly determining the degree of interconnectivity of melt in a partially molten system is discussed using an olivine-basalt system as an example. Samarium 151 is allowed time to diffuse through mixtures of olivine and basalt powder which have texturally equilibrated at 1350 C and 13 to 15 kbars. The final distribution of samarium is determined through examination of developed radiographs of the samples. Results suggest an interconnected melt network is established at melt fractions at least as low as 1 wt pct and all melt is completely interconnected at melt fractions at least as low as 2 wt pct for the system examined.

  18. Apollo 17 petrology and experimental determination of differentiation sequences in model moon compositions

    NASA Technical Reports Server (NTRS)

    Hodges, F. N.; Kushiro, I.

    1974-01-01

    Experimental studies of model moon compositions are discussed, taking into account questions related to the differentiation of the outer layer of the moon. Phase relations for a series of proposed lunar compositions have been determined and a petrographic and electron microprobe study was conducted on four Apollo 17 samples. Two of the samples consist of high-titanium mare basalts, one includes crushed anorthosite and gabbro, and another contains blue-gray breccia.

  19. Experimental determination of the dynamic tensile strength of liquid Sn, Pb, and Zn

    NASA Astrophysics Data System (ADS)

    Zaretsky, E. B.

    2016-07-01

    An experimental technique capable of determining the dynamic tensile (spall) strength of metals in the liquid state is described. Relying on this technique, spall data on samples of tin, lead, and zinc pre-heated to 20 K above their melting points were obtained. It is found that the spall strength of the metals is low, 40-100 MPa, but not zero and is, seemingly, affected by material purity and by the rate of tensile deformation preceding sample spallation.

  20. Experimental Methodology for Determining Optimum Process Parameters for Production of Hydrous Metal Oxides by Internal Gelation

    SciTech Connect

    Collins, J.L.

    2005-10-28

    The objective of this report is to describe a simple but very useful experimental methodology that was used to determine optimum process parameters for preparing several hydrous metal-oxide gel spheres by the internal gelation process. The method is inexpensive and very effective in collection of key gel-forming data that are needed to prepare the hydrous metal-oxide microspheres of the best quality for a number of elements.

  1. Theoretical-experimental method of determining the drag coefficient of a harmonically oscillating thin plate

    NASA Astrophysics Data System (ADS)

    Egorov, A. G.; Kamalutdinov, A. M.; Paimushin, V. N.; Firsov, V. A.

    2016-03-01

    A method for determining the drag coefficient of a thin plate harmonically oscillating in a viscous incompressible fluid is proposed. The method is based on measuring the amplitude of deflections of cantilever-fixed thin plates exhibiting damping flexural oscillations with a frequency corresponding to the first mode and on solving an inverse problem of calculating the drag coefficient on the basis of the experimentally found logarithmic decrement of beam oscillations.

  2. Nonequilibrium volumetric response of shocked polymers

    SciTech Connect

    Clements, B E

    2009-01-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.

  3. A volumetric flask as a projector

    NASA Astrophysics Data System (ADS)

    Limsuwan, P.; Asanithi, P.; Thongpool, V.; Piriyawong, V.; Limsuwan, S.

    2012-03-01

    A lens based on liquid in the confined volume of a volumetric flask was presented as a potential projector to observe microscopic floating organisms or materials. In this experiment, a mosquito larva from a natural pond was selected as a demonstration sample. By shining a light beam from a laser pointer of any visible wavelength through the volumetric flask filled with liquid, the movements of floating objects were clearly observed on a screen. The magnification was simply controlled by changing either the volume of the flask or the distance of the screen from the flask.

  4. Determination of hydroxy acids in cosmetics by chemometric experimental design and cyclodextrin-modified capillary electrophoresis.

    PubMed

    Liu, Pei-Yu; Lin, Yi-Hui; Feng, Chia Hsien; Chen, Yen-Ling

    2012-10-01

    A CD-modified CE method was established for quantitative determination of seven hydroxy acids in cosmetic products. This method involved chemometric experimental design aspects, including fractional factorial design and central composite design. Chemometric experimental design was used to enhance the method's separation capability and to explore the interactions between parameters. Compared to the traditional investigation that uses multiple parameters, the method that used chemometric experimental design was less time-consuming and lower in cost. In this study, the influences of three experimental variables (phosphate concentration, surfactant concentration, and methanol percentage) on the experimental response were investigated by applying a chromatographic resolution statistic function. The optimized conditions were as follows: a running buffer of 150 mM phosphate solution (pH 7) containing 0.5 mM CTAB, 3 mM γ-CD, and 25% methanol; 20 s sample injection at 0.5 psi; a separation voltage of -15 kV; temperature was set at 25°C; and UV detection at 200 nm. The seven hydroxy acids were well separated in less than 10 min. The LOD (S/N = 3) was 625 nM for both salicylic acid and mandelic acid. The correlation coefficient of the regression curve was greater than 0.998. The RSD and relative error values were all less than 9.21%. After optimization and validation, this simple and rapid analysis method was considered to be established and was successfully applied to several commercial cosmetic products. PMID:22996609

  5. Experimental determination of the distributed dynamic coefficients for a hydrodynamic fluid film bearing

    NASA Astrophysics Data System (ADS)

    Gyurko, John Harrison

    Most current rotor bearing analysis utilizes lumped parameter bearing coefficients to model the static and dynamic characteristics of fluid film bearings. By treating the stiffness and damping properties of the fluid film as acting upon the axial centerline of the rotor, these models are limited in their analysis to first order lateral rotor-bearing motion. The development of numerical methods that distribute the dynamic properties of the fluid film around the bearing circumference allow for higher order analysis of the motion between the bearing and rotor. Assessment of the accuracy of the numerical method used to calculate distributed dynamic fluid film bearing coefficients is performed by developing a novel hydrodynamic journal bearing test rig and experimental testing procedure capable of obtaining measured distributed dynamic coefficients over a range of bearing operating conditions. The instrumented bearing test rig is used to measure the dynamic bearing displacement and fluid film pressure responses from application of an externally applied excitation force. Least squares solution to a system of perturbated pressure equations, populated by measured displacement and pressure responses, is used to determine the hydrodynamic stiffness and damping properties for a finite region of the bearing surface. Incremental rotation of pressure sensors embedded in the body of the test bearing allow for measurement of the fluid film circumferential pressure distribution which is used to calculate a set of experimentally determined dynamic bearing coefficients. Distributed bearing coefficients derived from experimental measurements are compared to numerically calculated distributed coefficients as well as to lumped parameter coefficients generated from experimental and numerical methods found in the literature. Overall, the numerically calculated distributed coefficients successfully model both the circumferential distribution and the operating conditions of the experimental

  6. Experimental determination of Cm measurement related hardware parameters of the patch-clamp amplifier.

    PubMed

    Zhang, Hao; Xiong, Jun; Luo, Jie; Qu, Anlian

    2009-01-30

    Accurate Cm measurements rely on accurate determination of specific parameters of a patch-clamp amplifier (PCA). Hardware-related parameters, such as the resistance Rf and the stray capacitance Cf of the feedback resistor, the input capacitance Ci, the injection capacitance Cj, and the extra capacitances introduced by the BNC connector, are of significance in the sense of obtaining absolute estimates of cell parameters. In the present paper, a frequency-domain method, or the f-method for simplicity, is put forward to experimentally determine the actual values of basic circuit elements for our self-developed PCA. The f-method makes use of sine waves and amplitude/phase measurements instead of the square-wave responses to determine the above parameters of a PCA, and thereby calibrates the PAC for capacitance measurements. Experimental results prove that the f-method is excellent in determining hardware-related parameters, with 3-5% error of the impedance of the "10 MOmega setting", and about 2% error of the impedance of the "model cell" of the model circuit for our PCA. The f-method enables us not only to picture components of fast capacitances, but also to guarantee complete fast capacitance compensation; it may be applicable for other PCAs. PMID:18789969

  7. Volumetric measurement of tank volume

    NASA Technical Reports Server (NTRS)

    Walter, Richard T. (Inventor); Vanbuskirk, Paul D. (Inventor); Weber, William F. (Inventor); Froebel, Richard C. (Inventor)

    1991-01-01

    A method is disclosed for determining the volume of compressible gas in a system including incompressible substances in a zero-gravity environment consisting of measuring the change in pressure (delta P) for a known volume change rate (delta V/delta t) in the polytrophic region between isothermal and adiabatic conditions. The measurements are utilized in an idealized formula for determining the change in isothermal pressure (delta P sub iso) for the gas. From the isothermal pressure change (delta iso) the gas volume is obtained. The method is also applicable to determination of gas volume by utilizing work (W) in the compression process. In a passive system, the relationship of specific densities can be obtained.

  8. Experimental determinations of the eigenmodes for composite bars made with carbon and Kevlar-carbon fibers

    NASA Astrophysics Data System (ADS)

    Miriţoiu, C. M.; Stănescu, M. M.; Burada, C. O.; Bolcu, D.; Roşca, V.

    2015-11-01

    For modal identification, the single-point excitation method has been widely used in modal tests and it consists in applying a force in a given point and recording the vibratory structure response in all interest points, including the excitation point. There will be presented the experimental recordings for the studied bars (with Kevlar-carbon or carbon fibers), the frequency response function in Cartesian and polar coordinates. By using the frequency response functions we determine the eigenparameters for each bar. We present the final panel of the eigenmodes (with the damping factors, eigenfrequencies and critical damping) for each considered bar. Using the eigenfrequency of the first determined eigenmode, the bars stiffness has been determined. The presented bars can be used in practical engineering for: car or bus body parts, planes body parts, bullet-proof vests, reinforcements for sandwich beams, and so on.

  9. Experimental determination of the density matrix describing collisionally produced H(n = 3) atoms

    SciTech Connect

    Havener, C.C.; Rouze, N.; Westerveld, W.B.; Risley, A.J.S.

    1986-01-01

    An experimental technique and analysis procedure is described for determining the axially symmetric density matrix for collisionally produced H(n = 3) atoms by measuring the Stokes parameters which characterize the emitted Balmer- radiation as a function of axial and transverse electric fields applied in the collision cell. The electric fields induce strong characteristic variations in the Stokes parameters. The 14 independent elements of the density matrix are determined by fitting the observed Stokes parameters with signals calculated from a theoretical analysis of the experiment. The physical interpretation of the density matrix is presented in terms of graphs of the electron probability distribution and the electron current distribution. Examples of the determination of the density matrix are given for 40-, 60-, and 80-keV H +He electron-transfer collisions.

  10. Clinical Applications of Volumetric Modulated Arc Therapy

    SciTech Connect

    Matuszak, Martha M.; Yan Di; Grills, Inga; Martinez, Alvaro

    2010-06-01

    Purpose: To present treatment planning case studies for several treatment sites for which volumetric modulated arc therapy (VMAT) could have a positive impact; and to share an initial clinical experience with VMAT for stereotactic body radiotherapy (SBRT). Methods and Materials: Four case studies are presented to show the potential benefit of VMAT compared with conformal and intensity-modulated radiotherapy (IMRT) techniques in pediatric cancer, bone marrow-sparing whole-abdominopelvic irradiation (WAPI), and SBRT of the lung and spine. Details of clinical implementation of VMAT for SBRT are presented. The VMAT plans are compared with conventional techniques in terms of dosimetric quality and delivery efficiency. Results: Volumetric modulated arc therapy reduced the treatment time of spine SBRT by 37% and improved isodose conformality. Conformal and VMAT techniques for lung SBRT had similar dosimetric quality, but VMAT had improved target coverage and took 59% less time to deliver, although monitor units were increased by 5%. In a complex pediatric pelvic example, VMAT reduced treatment time by 78% and monitor units by 25% compared with IMRT. A double-isocenter VMAT technique for WAPI can spare bone marrow while maintaining good delivery efficiency. Conclusions: Volumetric modulated arc therapy is a new technology that may benefit different patient populations, including pediatric cancer patients and those undergoing concurrent chemotherapy and WAPI. Volumetric modulated arc therapy has been used and shown to be beneficial for significantly improving delivery efficiency of lung and spine SBRT.

  11. A Volumetric Flask as a Projector

    ERIC Educational Resources Information Center

    Limsuwan, P.; Asanithi, P.; Thongpool, V.; Piriyawong, V.; Limsuwan, S.

    2012-01-01

    A lens based on liquid in the confined volume of a volumetric flask was presented as a potential projector to observe microscopic floating organisms or materials. In this experiment, a mosquito larva from a natural pond was selected as a demonstration sample. By shining a light beam from a laser pointer of any visible wavelength through the…

  12. EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS

    SciTech Connect

    Dr. Jorge Gabitto; Maria Barrufet

    2003-05-01

    The USA deposits of heavy oils and tar sands contain significant energy reserves. Thermal methods, particularly steam drive and steam soak, are used to recover heavy oils and bitumen. Thermal methods rely on several displacement mechanisms to recover oil, but the most important is the reduction of crude viscosity with increasing temperature. The main objective of this research is to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes. First, we reviewed critically the existing literature choosing the most promising models for viscosity determination. Then, we modified an existing viscosity correlation, based on the corresponding states principle in order to fit more than two thousand commercial viscosity data. We collected data for compositional and black oil samples (absence of compositional data). The data were screened for inconsistencies resulting from experimental error. A procedure based on the monotonic increase or decrease of key variables was implemented to carry out the screening process. The modified equation was used to calculate the viscosity of several oil samples where compositional data were available. Finally, a simple procedure was proposed to calculate black oil viscosity from common experimental information such as, boiling point, API gravity and molecular weight.

  13. Cross-scale coefficient selection for volumetric medical image fusion.

    PubMed

    Shen, Rui; Cheng, Irene; Basu, Anup

    2013-04-01

    Joint analysis of medical data collected from different imaging modalities has become a common clinical practice. Therefore, image fusion techniques, which provide an efficient way of combining and enhancing information, have drawn increasing attention from the medical community. In this paper, we propose a novel cross-scale fusion rule for multiscale-decomposition-based fusion of volumetric medical images taking into account both intrascale and interscale consistencies. An optimal set of coefficients from the multiscale representations of the source images is determined by effective exploitation of neighborhood information. An efficient color fusion scheme is also proposed. Experiments demonstrate that our fusion rule generates better results than existing rules. PMID:22868528

  14. On the Equivalency of Experimental B(E2) Values Determined by Various Methods

    NASA Astrophysics Data System (ADS)

    Pritychenko, Boris; Birch, Michael; Singh, Balraj; Brookhaven National Laboratory Team; McMaster University Team

    2015-10-01

    Over the last 60 years a variety of experimental methods have been employed to determine reduced transition probabilities in even-even nuclei. Different methods and data analysis techniques imply a strong need for consistency checks of the reported results. To investigate the equivalence of different measurements we have used a recently-developed B(E2) ↑ database. For the first time transition probabilities for Doppler Shift Attenuation (DSA), Recoil Distance Doppler Shift (RDDS), Delayed Coincidences (DC), Nuclear Resonance Fluorescence (NRF) and Coulomb Excitation (CE) methods have been analyzed and compared in the Z = 6-94 region. The analysis of B(E2;01+ -->21+) values of the 100 frequently-studied even-even nuclei indicates these experimental methods produce equivalent results. Possible differences between the DSA and CE values near closed neutron and proton shells could be explained by the experimental deficiencies. Further comparisons of the present data with the inelastic electron scattering (EE') results also show agreement. These findings confirm equivalence of the major experimental methods for a wide range of nuclei. This work was funded by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy, under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LC.

  15. Experimentally determining the exchange parameters of quasi-two dimensional Heisenbert magnets

    SciTech Connect

    Singleton, John; Sengupta, P; Mcdonald, R D; Cox, S; Harrison, N; Goddard, P A; Lancaster, T; Blundell, S J; Pratt, F L; Manson, J L; Southerland, H I; Schlueter, J A

    2008-01-01

    Though long-range magnetic order cannot occur at temperatures T > 0 in a perfect two-dimensional (2D) Heisenberg magnet, real quasi-2D materials will invariably possess nonzero inter-plane coupling J{sub {perpendicular}} driving the system to order at elevated temperatures. This process can be studied using quantum Monte Carlo calculations. However, it is difficult to test the results of these calculations experimentally since for highly anisotropic materials in which the in-plane coupling is comparable with attainable magnetic fields J{sub {perpendicular}} is necessarily very small and inaccessible directly. In addition, because of the large anisotropy, the Neel temperatures are low and difficult to determine from thermodynamic measurements. Here, we present an elegant method of assessing the calculations via two independent experimental probes: pulsed-field magnetization in fields of up to 85 T, and muon-spin rotation.

  16. Nondestructive experimental determination of bimaterial rectangular cantilever spring constants in water

    SciTech Connect

    Snow, David E.; Kim, Dae Jung; Hope-Weeks, Louisa J.; Weeks, Brandon L.; Pitchimani, Rajasekar

    2008-08-15

    In order to address the issue of spring constant calibration in viscous fluids such as water, a new method is presented that allows for the experimental calibration of bimaterial cantilever spring constants. This method is based on modeling rectangular cantilever beam bending as a function of changing temperature. The temperature change is accomplished by heating water as it flows around the cantilever beams in an enclosed compartment. The optical static method of detection is used to measure the deflection of cantilever at the free end. Experimentally determined results are compared to Sader's method and to the Thermotune method most commonly used in cantilever calibrations. Results indicate that the new bimaterial thermal expansion method is accurate within 15%-20% of the actual cantilever spring constant, which is comparable to other nondestructive calibration techniques.

  17. Nondestructive experimental determination of bimaterial rectangular cantilever spring constants in water.

    PubMed

    Snow, David E; Weeks, Brandon L; Kim, Dae Jung; Pitchimani, Rajasekar; Hope-Weeks, Louisa J

    2008-08-01

    In order to address the issue of spring constant calibration in viscous fluids such as water, a new method is presented that allows for the experimental calibration of bimaterial cantilever spring constants. This method is based on modeling rectangular cantilever beam bending as a function of changing temperature. The temperature change is accomplished by heating water as it flows around the cantilever beams in an enclosed compartment. The optical static method of detection is used to measure the deflection of cantilever at the free end. Experimentally determined results are compared to Sader's method and to the Thermotune method most commonly used in cantilever calibrations. Results indicate that the new bimaterial thermal expansion method is accurate within 15%-20% of the actual cantilever spring constant, which is comparable to other nondestructive calibration techniques. PMID:19044356

  18. Experimental phase determination of the structure factor from Kossel line profile

    PubMed Central

    Faigel, G.; Bortel, G.; Tegze, M.

    2016-01-01

    Kossel lines are formed when radiation from point x-ray sources inside a single crystal are diffracted by the crystal itself. In principle, Kossel line patterns contain full information on the crystalline structure: phase and magnitude of the structure factors. The phase is coded into the profile of the lines. Although this was known for a long time, experimental realization has not been presented. In this work we demonstrate experimentally that phases can be directly determined from the profile of the Kossel lines. These measurements are interesting not only theoretically, but they would facilitate structure solution of samples within extreme conditions, such as high pressure, high and low temperatures, high magnetic fields and extremely short times. The parallel measurement of many diffraction lines on a stationary sample will allow a more efficient use of the new generation of x-ray sources the X-ray free electron lasers (XFELs). PMID:26965321

  19. Theoretical and experimental determination of steering mechanism for Risley prism systems.

    PubMed

    Lu, Yafei; Zhou, Yuan; Hei, Mo; Fan, Dapeng

    2013-03-01

    Two different analytical methods, the first-order paraxial approximation method and the nonparaxial ray tracing method, are applied to determine the steering mechanism of the Risley prism system, including the pointing prediction and the complete and exact inverse orientation solutions. The analytical results obtained with the two different methods are investigated in detail about the pointing prediction and the two groups of inverse orientation solutions, respectively. Risley prism equipment for wide angular range beam scanning is assembled and the experimental setup is built to test the steering mechanism of the Risley prism system. Experimental results validate the availability of the nonparaxial ray tracing method to discuss the beam steering mechanism for the Risley prism system. PMID:23458790

  20. Experimental phase determination of the structure factor from Kossel line profile.

    PubMed

    Faigel, G; Bortel, G; Tegze, M

    2016-01-01

    Kossel lines are formed when radiation from point x-ray sources inside a single crystal are diffracted by the crystal itself. In principle, Kossel line patterns contain full information on the crystalline structure: phase and magnitude of the structure factors. The phase is coded into the profile of the lines. Although this was known for a long time, experimental realization has not been presented. In this work we demonstrate experimentally that phases can be directly determined from the profile of the Kossel lines. These measurements are interesting not only theoretically, but they would facilitate structure solution of samples within extreme conditions, such as high pressure, high and low temperatures, high magnetic fields and extremely short times. The parallel measurement of many diffraction lines on a stationary sample will allow a more efficient use of the new generation of x-ray sources the X-ray free electron lasers (XFELs). PMID:26965321

  1. Experimental and Theoretical Determination of Dissociation Energies of Dispersion-Dominated Aromatic Molecular Complexes.

    PubMed

    Frey, Jann A; Holzer, Christof; Klopper, Wim; Leutwyler, Samuel

    2016-05-11

    The dissociation energy (D0) of an isolated and cold molecular complex in the gas-phase is a fundamental measure of the strength of the intermolecular interactions between its constituent moieties. Accurate D0 values are important for the understanding of intermolecular bonding, for benchmarking high-level theoretical calculations, and for the parametrization of force-field models used in fields ranging from crystallography to biochemistry. We review experimental and theoretical methods for determining gas-phase D0 values of M·S complexes, where M is a (hetero)aromatic molecule and S is a closed-shell "solvent" atom or molecule. The experimental methods discussed involve M-centered (S0 → S1) electronic excitation, which is often followed by ionization to the M(+)·S ion. The D0 is measured by depositing a defined amount of vibrational energy in the neutral ground state, giving M(‡)·S, the neutral S1 excited state, giving M*·S, or the M(+)·S ion ground state. The experimental methods and their relative advantages and disadvantages are discussed. Based on the electronic structure of M and S, we classify the M·S complexes as Type I, II, or III, and discuss characteristic properties of their respective potential energy surfaces that affect or hinder the determination of D0. Current theoretical approaches are reviewed, which comprise methods based on a Kohn-Sham reference determinant as well as wave function-based methods based on coupled-cluster theory. PMID:27055105

  2. Determination of Absorption Coefficient of a Solution by a Simple Experimental Setup

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Deepak; Akhildev, C.; Sreenivasan, P. V.; Leelamma, K. K.; Joseph, Lyjo K.; Anila, E. I.

    2011-10-01

    The absorption coefficients of aqueous potassium permanganate (KMnO4) solution at 638.8 nm for various concentrations are determined using a simple experimental set up. The setup consists of He-Ne laser source (Red, 638.8 nm, 10 mW), a glass jar in which the KMnO4 sample is taken, a mirror strip inclined at 45° to direct the laser beam towards the bottom of the glass jar, a traveling microscope to adjust the position of light dependent resistor (LDR) and a digital multimeter to measure the resistance.

  3. Experimental Determination of High-Order Bending Elastic Constants of Lipid Bilayers.

    PubMed

    Toscano-Flores, Liliana G; Jacinto-Méndez, Damián; Carbajal-Tinoco, Mauricio D

    2016-06-30

    We present a method to describe the formation of small lipid vesicles in terms of three bending elastic constants that can be experimentally measured. Our method combines a general expression of the elastic free energy of the bilayer and the thermodynamic description of molecular aggregation. The resulting model requires the size distribution of liposomes, which is determined from the X-ray scattered intensity spectra of vesicular dispersions. By using two different preparation methods, we studied a series of vesicular solutions made of distinct lipids and we obtained their corresponding bending elastic constants that are consistent with known bending rigidities. PMID:27267752

  4. Experimental Determination of the Dominant Type of Auger Recombination in InGaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Galler, Bastian; Lugauer, Hans-Jürgen; Binder, Michael; Hollweck, Richard; Folwill, Yannick; Nirschl, Anna; Gomez-Iglesias, Alvaro; Hahn, Berthold; Wagner, Joachim; Sabathil, Matthias

    2013-11-01

    We investigate theoretically the influence of type and density of background carriers in the active region on the quantum efficiency of InGaN-based light emitters using an extension of the ABC rate model. A method to determine experimentally whether a certain type of Auger recombination is relevant in InGaN quantum wells is derived from these considerations. Using this approach, we show that the physical process which is the dominant cause for the efficiency droop is superlinear in the electron density and can thus be assigned to nnp-Auger recombination.

  5. Development of an experimental apparatus and protocol for determining antimicrobial activities of gaseous plant essential oils.

    PubMed

    Seo, Hyun-Sun; Beuchat, Larry R; Kim, Hoikyung; Ryu, Jee-Hoon

    2015-12-23

    There is a growing interest in the use of naturally-occurring antimicrobial agents such as plant essential oils (EOs) to inhibit the growth of hazardous and spoilage microorganisms in foods. Gaseous EOs (EO gases) have many potential applications in the food industry, including use as antimicrobial agents in food packaging materials and sanitizing agents for foods and food-contact surfaces, and in food processing environments. Despite the potentially beneficial applications of EO gases, there is no standard method to evaluate their antimicrobial activities. Thus, the present study was aimed at developing an experimental apparatus and protocol to determine the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) of EO gases against microorganisms. A sealed experimental apparatus was constructed for simultaneous evaluation of antimicrobial activities of EO gases at different concentrations without creating concentration gradients. A differential medium was then evaluated in which a color change allowed for the determination of growth of glucose-fermenting microorganisms. Lastly, an experimental protocol for the assessment of MIC and MLC values of EO gases was developed, and these values were determined for 31 EO gases against Escherichia coli O157:H7 as a model bacterium. Results showed that cinnamon bark EO gas had the lowest MIC (0.0391 μl/ml), followed by thyme-thymol EO gas (0.0781 μl/ml), oregano EO gas (0.3125 μl/ml), peppermint EO gas (0.6250 μl/ml), and thyme-linalool EO gas (0.6250 μl/ml). The order of the MLC values of the EO gases against the E. coli O157:H7 was thyme-thymol (0.0781 μl/ml)experimental apparatus and protocol enable rapid and accurate determination of the MIC and MLC values of EO gases and perhaps other types of gaseous antimicrobial agents. PMID:26350124

  6. Experimental determination of ablation vapor species from carbon phenolic heat-shield materials

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.

    1981-01-01

    The relative concentrations of vapors produced from carbon phenolic composites under thermal loadings approximating those expected at peak heating during vehicle entry into the atmospheres of the outer planets have been determined. The technique of vaporizing the surface of bulk samples by laser irradiation while measuring in situ the vapor species by mass spectrometry is described. Results show that vapor composition varies with irradiance level and with depth of heating (or extent of pyrolysis). Attempts are made to compare these experimental results with the theoretical predictions from computer codes.

  7. First experimentally determined thermodynamic values of francium: hydration energy, energy of partitioning, and thermodynamic radius.

    PubMed

    Delmau, Lætitia H; Moine, Jérôme; Mirzadeh, Saed; Moyer, Bruce A

    2013-08-01

    The Gibbs energy of partitioning of Fr(+) ion between water and nitrobenzene has been determined to be 14.5 ± 0.6 kJ/mol at 25 °C, the first ever Gibbs energy of partitioning for francium in particular and the first ever solution thermodynamic quantity for francium in general. This value enabled the ionic radius and standard Gibbs energy of hydration for Fr(+) to be estimated as 173 pm and -251 kJ/mol, respectively, the former value being significantly smaller than previously thought. A new experimental method was established using a cesium dicarbollide as a cation-exchange agent, overcoming problems inherent to the trace-level concentrations of francium. The methodology opens the door to the study of the partitioning behavior of francium to other water-immiscible solvents and the determination of complexation constants for francium binding by receptor molecules. PMID:23848436

  8. Volumetric display based on multiple mini-projectors and a rotating screen

    NASA Astrophysics Data System (ADS)

    Song, Weitao; Zhu, Qiudong; Huang, Tao; Liu, Yue; Wang, Yongtian

    2015-01-01

    A method has been proposed to realize a transparent volumetric display using multiple mini-projectors and a rotating screen. Correct two-dimensional cross-sectional images are projected on a bidirectional scattering projection screen, which rotates to form a three-dimensional (3-D) image due to human vision persistence. An illumination subsystem is designed to ensure the accurate synchronization between the projectors and the rotating screen. Therefore, low-speed and low-cost miniature display devices can be used in the mini-projectors to realize dynamic volumetric imaging, which can satisfy all criteria of real 3-D vision with full color and high resolution. Experimental results of volumetric imaging realized by this method are also presented.

  9. Comparisons of surface vs. volumetric model-based registration methods using single-plane vs. bi-plane fluoroscopy in measuring spinal kinematics.

    PubMed

    Lin, Cheng-Chung; Lu, Tung-Wu; Wang, Ting-Ming; Hsu, Chao-Yu; Shih, Ting-Fang

    2014-02-01

    Several 2D-to-3D image registration methods are available for measuring 3D vertebral motion but their performance has not been evaluated under the same experimental protocol. In this study, four major types of fluoroscopy-to-CT registration methods, with different use of surface vs. volumetric models, and single-plane vs. bi-plane fluoroscopy, were evaluated: STS (surface, single-plane), VTS (volumetric, single-plane), STB (surface, bi-plane) and VTB (volumetric, bi-plane). Two similarity measures were used: 'Contour Difference' for STS and STB and 'Weighted Edge-Matching Score' for VTS and VTB. Two cadaveric porcine cervical spines positioned in a box filled with paraffin and embedded with four radiopaque markers were CT scanned to obtain vertebral models and marker coordinates, and imaged at ten static positions using bi-plane fluoroscopy for subsequent registrations using different methods. The registered vertebral poses were compared to the gold standard poses defined by the marker positions determined using CT and Roentgen stereophotogrammetry analysis. The VTB was found to have the highest precision (translation: 0.4mm; rotation: 0.3°), comparable with the VTS in rotations (0.3°), and the STB in translations (0.6mm). The STS had the lowest precision (translation: 4.1mm; rotation: 2.1°). PMID:24011956

  10. Experimental determination of the radial temperature profile in a non-neutral plasma

    NASA Astrophysics Data System (ADS)

    Hart, Grant W.

    2005-10-01

    In 1992 Eggleston, et al.^1 reported on a technique for measuring the radial temperature profile in a pure electron plasma by partially dumping the plasma onto a charge collector. Several of their assumptions do not apply to our plasma, and so last year^2 we reported on a modified method which uses a form of equilibrium calculation to determine the temperature. We applied the method to the results of a simulation and found that it gave the correct temperature distribution, but we had no experimental data to apply the method to. We have now applied it to real data and found that the method was extremely sensitive to experimental noise. We have modified the method to make it less sensitive to noise and compared it to the standard `evaporation' method. These experimental results will be presented. ^1D.L.Eggleston, C.F. Driscoll, B.R. Beck, A.W. Hyatt and J.H. Malmberg, Phys. Fluids B 4, 3432 (1992).^2Grant W. Hart and Bryan G. Peterson, Bull. Am. Phys. Soc. 49, 320.

  11. Hydrodynamic Radii of Intrinsically Disordered Proteins Determined from Experimental Polyproline II Propensities

    PubMed Central

    Tomasso, Maria E.; Tarver, Micheal J.; Devarajan, Deepa; Whitten, Steven T.

    2016-01-01

    The properties of disordered proteins are thought to depend on intrinsic conformational propensities for polyproline II (PPII) structure. While intrinsic PPII propensities have been measured for the common biological amino acids in short peptides, the ability of these experimentally determined propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs) has not been established. Presented here are results from molecular simulations of disordered proteins showing that the hydrodynamic radius (Rh) can be predicted from experimental PPII propensities with good agreement, even when charge-based considerations are omitted. The simulations demonstrate that Rh and chain propensity for PPII structure are linked via a simple power-law scaling relationship, which was tested using the experimental Rh of 22 IDPs covering a wide range of peptide lengths, net charge, and sequence composition. Charge effects on Rh were found to be generally weak when compared to PPII effects on Rh. Results from this study indicate that the hydrodynamic dimensions of IDPs are evidence of considerable sequence-dependent backbone propensities for PPII structure that qualitatively, if not quantitatively, match conformational propensities measured in peptides. PMID:26727467

  12. A validated spectrofluorimetric method for the determination of nifuroxazide through coumarin formation using experimental design

    PubMed Central

    2013-01-01

    Background Nifuroxazide (NF) is an oral nitrofuran antibiotic, having a wide range of bactericidal activity against gram positive and gram negative enteropathogenic organisms. It is formulated either in single form, as intestinal antiseptic or in combination with drotaverine (DV) for the treatment of gastroenteritis accompanied with gastrointestinal spasm. Spectrofluorimetry is a convenient and sensitive technique for pharmaceutical quality control. The new proposed spectrofluorimetric method allows its determination either in single form or in binary mixture with DV. Furthermore, experimental conditions were optimized using the new approach: Experimental design, which has many advantages over the old one, one variable at a time (OVAT approach). Results A novel and sensitive spectrofluorimetric method was designed and validated for the determination of NF in pharmaceutical formulation. The method was based upon the formation of a highly fluorescent coumarin compound by the reaction between NF and ethylacetoacetate (EAA) using sulfuric acid as catalyst. The fluorescence was measured at 390 nm upon excitation at 340 nm. Experimental design was used to optimize experimental conditions. Volumes of EAA and sulfuric acid, temperature and heating time were considered the critical factors to be studied in order to establish an optimum fluorescence. Each two factors were co-tried at three levels. Regression analysis revealed good correlation between fluorescence intensity and concentration over the range 20–400 ng ml-1. The suggested method was successfully applied for the determination of NF in pure and capsule forms. The procedure was validated in terms of linearity, accuracy, precision, limit of detection and limit of quantification. The selectivity of the method was investigated by analysis of NF in presence of the co-mixed drug DV where no interference was observed. The reaction pathway was suggested and the structure of the fluorescent product was proposed

  13. Experimental determination of the residual stresses in a Kraft recovery boiler tube

    SciTech Connect

    Wang, Xun-Li; Payzant, E.A.; Taljat, B.

    1997-07-01

    Neutron diffraction was used to determine the residual stresses in a spiral weld overlay tube used in Kraft recovery boilers by the pulp and paper industry. The specimen was a 2.5 inches OD carbon steel tube covered with a layer of Inconel 625 weld overlay. Residual strains in the carbon steel and weld overlay layers were determined using the ferritic (211) and austenitic (311) reflections, respectively. Residual stresses in each material were derived from the measured strains using Hooke`s law and appropriate elastic constants. Tensile stress regions were found not only in the weld metal but also in the heat affected zone in the carbon steel. The maximum tensile stress was located in the weld overlay layer and was found to be 360 MPa, or about 75% of the yield strength of the weld metal. The experimental data were compared with a finite element analysis based on an uncoupled thermal-mechanical formulation. Overall, the modeling results were in satisfactory agreement with the experimental data, although the hoop strain (stress) appears to have been overestimated by the finite element model. Additional neutron diffraction measurements on an annealed tube confirmed that these welding residual stresses were eliminated after annealing at 900{degrees}C for 20 minutes. 18 refs., 7 figs.

  14. Determining the experimental leachability of copper, lead, and zinc in a harbor sediment and modeling.

    PubMed

    Chatain, Vincent; Blanc, Denise; Borschneck, Daniel; Delolme, Cécile

    2013-01-01

    The potential leaching of pollutants present in harbor sediments has to be evaluated in order to choose the best practices for managing them. Little is known about the speciation and mobility of heavy metals in these specific solid materials. The objective of this paper is to determine and model the leachability of copper, lead, and zinc present in harbor sediments in order to obtain essential new data. The mobility of inorganic contaminants in a polluted harbor sediment collected in France was investigated as a function of physicochemical conditions. The investigation relied mainly on the use of leaching tests performed in combination with mineralogical analysis and thermodynamic modeling using PHREEQC. The modeling phase was dedicated to both confirm the hypothesis formulated to explain the experimental results and improve the determination of the main physico-chemical parameters governing mobility. The experimental results and modeling showed that the release of copper, lead, and zinc is very low with deionized water which is due to the stability of the associated solid phases (organic matter, carbonate minerals, and/or iron sulfides) at natural slightly basic conditions. However, increased mobilization is observed under pH values below 6.0 and above 10.0. This methodology helped to consistently obtain the geochemical parameters governing the mobility of the contaminants studied. PMID:23086130

  15. Structural determinants of resveratrol for cell proliferation inhibition potency: experimental and docking studies of new analogs.

    PubMed

    Mazué, Frédéric; Colin, Didier; Gobbo, Jessica; Wegner, Maria; Rescifina, Antonio; Spatafora, Carmela; Fasseur, Dominique; Delmas, Dominique; Meunier, Philippe; Tringali, Corrado; Latruffe, Norbert

    2010-07-01

    Resveratrol is the subject of intense research because of the abundance of this compound in the human diet and as one of the most valuable natural chemopreventive agents. Further advances require new resveratrol analogs be used to identify the structural determinants of resveratrol for the inhibition potency of cell proliferation by comparing experimental and docking studies. Therefore, we synthesized new trans/(E)- and cis/(Z)-resveratrol - analogs not reported to date - by modifying the hydroxylation pattern of resveratrol and a double bond geometry. We included them in a larger panel of 14 molecules, including (Z)-3,5,4'-trimethoxystilbene, the most powerful molecule that is used as reference. Using a docking model complementary to experimental studies on the proliferation inhibition of the human colorectal tumor SW480 cell line, we show that methylation is the determinant substitution in inhibition efficacy, but only in molecules bearing a Z configuration. Most of the synthetic methylated derivatives (E or Z) stop mitosis at the M phase and lead to polyploid cells, while (E)-resveratrol inhibits cells at the S phase. Docking studies show that almost all of the docked structures of (Z)-polymethoxy isomers, but not most of the (E)-polymethoxy isomers substantially overlap the docked structure of combretastatin A-4, taken as reference ligand at the colchicine-tubulin binding site. PMID:20395019

  16. Experimental conditions for determination of the neutrino mass hierarchy with reactor antineutrinos

    NASA Astrophysics Data System (ADS)

    Pac, Myoung Youl

    2016-01-01

    This article reports the optimized experimental requirements to determine neutrino mass hierarchy using electron antineutrinos (νbare) generated in a nuclear reactor. The features of the neutrino mass hierarchy can be extracted from the | Δ m312 | and | Δ m322 | oscillations by applying the Fourier sine and cosine transforms to the L / E spectrum. To determine the neutrino mass hierarchy above 90% probability, the requirements on the energy resolution as a function of the baseline are studied at sin2 ⁡ 2θ13 = 0.1. If the energy resolution of the neutrino detector is less than 0.04 /√{Eν} and the determination probability obtained from Bayes' theorem is above 90%, the detector needs to be located around 48-53 km from the reactor(s) to measure the energy spectrum of νbare. These results will be helpful for setting up an experiment to determine the neutrino mass hierarchy, which is an important problem in neutrino physics.

  17. Computational knee ligament modeling using experimentally determined zero-load lengths.

    PubMed

    Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin

    2012-01-01

    This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models. PMID:22523522

  18. Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths

    PubMed Central

    Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin

    2012-01-01

    This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models. PMID:22523522

  19. Performance-scalable volumetric data classification for online industrial inspection

    NASA Astrophysics Data System (ADS)

    Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.

    2002-03-01

    Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.

  20. Left-ventricular boundary detection from spatiotemporal volumetric CT images

    NASA Astrophysics Data System (ADS)

    Tu, Hsiao-Kun; Matheny, Art; Goldgof, Dmitry B.

    1993-07-01

    This paper presents a new technique for LV boundary detection from 3-D volumetric cardiac images. The proposed method consists of boundary detection and boundary refinement stages. In the boundary detection stage, a spatio-temporal (4-D) gradient operator is used to capture the temporal gradients of dynamic LV boundaries and to smooth time uncorrelated noise. Spatio-temporal edge detection is performed outward from an approximate center of the left ventricle. In the boundary refinement stage, spherical harmonic model is fitted to the detected boundaries. Based on this model, false boundaries are removed; LV boundaries are recovered. A left ventricle is a bright, smooth region, varying in size over the heart cycle. This a priori knowledge is incorporated in detection and refinement of LV boundaries to reduce the effect of noise. The intensity of the inner (close to the center) neighbors of the LV boundary is brighter than the outer. The size of the left ventricle is used in boundary refinement to select proper boundaries to be fitted by the spherical harmonic mode. We demonstrate the advantages of 4-D edge detection over 3-D and the use of spherical harmonics to refine LV boundaries. Our experimental data is supplied by Dr. Eric Hoffman at University of Pennsylvania medical school and consists of 16 volumetric (128 by 128 by 118) CT images taken through a heart cycle.

  1. Experimental determination of the light-trapping-induced absorption enhancement factor in DSSC photoanodes

    PubMed Central

    Falconieri, Mauro

    2015-01-01

    Summary For dye-sensitized solar cells (DSSC), the fundamental process that determines the maximum short-circuit current is the absorption of light. In such devices, this is produced by the concurrent phenomena of light absorption by dye molecules and light trapping in the mesoporous, titania photoanode structure. The decoupling of these two phenomena is important for device characterization and the design of novel photoelectrode geometries with increased optical performance. In this paper, this task is addressed by introducing a spectral absorption enhancement factor as a parameter to quantify the light trapping effect. The experimental value of this parameter was obtained by comparing the experimentally determined fraction of absorbed light by a dye-sensitized photoanode with the light absorbed by the dye without the mesoporous titania structure. In order to gain more insight from this result, the fraction of light absorbed in the photoanode (on the basis of the dye loading capacity of the titania nanospheres) was also calculated by an optical model for the two extreme cases of the absence of light trapping and maximum light trapping. Accordingly, the photocurrent was calculated under the assumption of solar irradiation, which defined two useful boundaries. Using the experimentally derived values of the spectral absorption enhancement factor in the photoanode optical model, the DSSC short-circuit current can be calculated with good agreement with the value measured in practical devices based on the same photoanode structures. Therefore, our approach provides a realistic description of a practical device and can be exploited as an useful tool to assess the optical functionality of novel photoanode structures. PMID:25977859

  2. Comparison of experimentally and theoretically determined radiation characteristics of photosynthetic microorganisms

    NASA Astrophysics Data System (ADS)

    Kandilian, Razmig; Pruvost, Jérémy; Artu, Arnaud; Lemasson, Camille; Legrand, Jack; Pilon, Laurent

    2016-05-01

    This paper aims to experimentally and directly validate a recent theoretical method for predicting the radiation characteristics of photosynthetic microorganisms. Such predictions would facilitate light transfer analysis in photobioreactors (PBRs) to control their operation and to maximize their production of biofuel and other high-value products. The state of the art experimental method can be applied to microorganisms of any shape and inherently accounts for their non-spherical and heterogeneous nature. On the other hand, the theoretical method treats the microorganisms as polydisperse homogeneous spheres with some effective optical properties. The absorption index is expressed as the weighted sum of the pigment mass absorption cross-sections and the refractive index is estimated based on the subtractive Kramers-Kronig relationship given an anchor refractive index and wavelength. Here, particular attention was paid to green microalgae Chlamydomonas reinhardtii grown under nitrogen-replete and nitrogen-limited conditions and to Chlorella vulgaris grown under nitrogen-replete conditions. First, relatively good agreement was found between the two methods for determining the mass absorption and scattering cross-sections and the asymmetry factor of both nitrogen-replete and nitrogen-limited C. reinhardtii with the proper anchor point. However, the homogeneous sphere approximation significantly overestimated the absorption cross-section of C. vulgaris cells. The latter were instead modeled as polydisperse coated spheres consisting of an absorbing core containing pigments and a non-absorbing but strongly refracting wall made of sporopollenin. The coated sphere approximation gave good predictions of the experimentally measured integral radiation characteristics of C. vulgaris. In both cases, the homogeneous and coated sphere approximations predicted resonance in the scattering phase function that were not observed experimentally. However, these approximations were

  3. Experimental determination of the H2O-undersaturated peridotite solidus

    NASA Astrophysics Data System (ADS)

    Sarafian, E. K.; Gaetani, G. A.; Hauri, E. H.; Sarafian, A. R.

    2014-12-01

    Knowledge of the H2O-undersaturated lherzolite solidus places important constraints on the process of melt generation and mantle potential temperatures beneath oceanic spreading centers. The small concentration of H2O (~50-200 μg/g) dissolved in the oceanic mantle is thought to exert a strong influence on the peridotite solidus, but this effect has not been directly determined. The utility of existing experimental data is limited by a lack of information on the concentration of H2O dissolved in the peridotite and uncertainties involved with identifying small amounts of partial melt. We have developed an experimental approach for determining the peridotite solidus as a function of H2O content that overcomes these difficulties. Our initial results demonstrate that the solidus temperature for spinel lherzolite containing 150 μg/g H2O is higher than existing estimates for the anhydrous solidus. Our approach to determining the H2O-undersaturated lherzolite solidus is as follows. First, a small proportion (~5 %) of San Carlos olivine spheres, ~300 μm in diameter, are added to a peridotite synthesized from high-purity oxides and carbonates. Melting experiments are then conducted in pre-conditioned Au80Pd20 capsules over a range of temperatures at a single pressure using a piston-cylinder device. Water diffuses rapidly in olivine resulting in thorough equilibration between the olivine spheres and the surrounding fine-grained peridotite, and allowing the spheres to be used as hygrometers. After the experiment, the concentration of H2O dissolved in the olivine spheres is determined by secondary ion mass spectrometry. Melting experiments, spaced 20°C apart, were performed from 1250 to 1430°C at 1.5 GPa. The starting material has the composition of the depleted MORB mantle of Workman and Hart (2005) containing 0.13 wt% Na2O and 150 µg/g H2O. The concentration of H2O in the olivine spheres remains constant up to 1350°C, and then decreases systematically with increasing

  4. An intelligent, robust approach to volumetric aircraft sizing

    NASA Astrophysics Data System (ADS)

    Upton, Eric

    Advances in computational power have produced great strides in the later design and production portions of an aircraft's life cycle, and these advances have included the internal layout component of the design and manufacturing process. However, conceptual and preliminary design tools for internal layout remain primarily based on historical regressions and estimations---a situation that becomes untenable when considering revolutionary designs or component technologies. Bringing internal layout information forward in the design process can encourage the same level of benefits enjoyed by other disciplines as advances in aerodynamics, structures and other fields propagate forward in the design of complex systems. Accurate prediction of the volume required to contain all of an aircraft's internal components results in a more accurate prediction of aircraft specifications, mission effectiveness, and costs, helping determine if an aircraft is the best choice for continued development. This is not a computationally simple problem, however, and great care must be taken to ensure the efficiency of any proposed solution. Any solution must also address the uncertainty inherent in describing internal components early in the design process. Implementing a methodology that applies notions of an intelligent search for a solution, as well as deals robustly with component sizing, produces a high chance of success. Development of a robust, rapid method for assessing the volumetric characteristics of an aircraft in the context of the conceptual and preliminary design processes can offer many of the benefits of a complete internal layout without the immense assignment of resources typical in the detail phase of the design process. A simplified methodology for volumetrically sizing an aircraft is presented here as well as an assessment of the state-of-the-art techniques for volumetric considerations used in current aircraft design literature. A prototype tool using a combination of

  5. Temperature and volumetric water content petrophysical relationships in municipal solid waste for the interpretation of bulk electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Pilawski, Tamara; Dumont, Gaël; Nguyen, Frédéric

    2015-04-01

    Landfills pose major environmental issues including long-term methane emissions, and local pollution of soil and aquifers but can also be seen as potential energy resources and mining opportunities. Water content in landfills determine whether solid fractions can be separated and recycled, and controls the existence and efficiency of natural or enhanced biodegradation. Geophysical techniques, such as electrical and electromagnetic methods have proven successful in the detection and qualitative investigation of sanitary landfills. However, their interpretation in terms of quantitative water content estimates makes it more challenging due to the influence of parameters such as temperature, compaction, waste composition or pore fluid. To improve the confidence given to bulk electrical resistivity data and to their interpretation, we established temperature and volumetric water content petrophysical relationships that we tested on field and laboratory electrical resistivity measurements. We carried out two laboratory experiments on leachates and waste samples from a landfill located in Mont-Saint-Guibert, Belgium. We determined a first relationship between temperature and electrical resistivity with pure and diluted leachates by progressively increasing the temperature from 5°C to 65°C, and then cooling down to 5°C. The second relationship was obtained by measuring electrical resistivity on waste samples of different volumetric water contents. First, we used the correlations obtained from the experiments to compare electrical resistivity measurements performed in a landfill borehole and on reworked waste samples excavated at different depths. Electrical resistivities were measured every 20cm with an electromagnetic logging device (EM39) while a temperature profile was acquired with optic fibres. Waste samples were excavated every 2m in the same borehole. We filled experimental columns with these samples and measured electrical resistivities at laboratory temperature

  6. Mode Content Determination of Terahertz Corrugated Waveguides Using Experimentally Measured Radiated Field Patterns.

    PubMed

    Jawla, Sudheer K; Nanni, Emilio A; Shapiro, Michael A; Woskov, Paul P; Temkin, Richard J

    2012-06-01

    This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique. PMID:25264391

  7. Mode Content Determination of Terahertz Corrugated Waveguides Using Experimentally Measured Radiated Field Patterns

    PubMed Central

    Jawla, Sudheer K.; Nanni, Emilio A.; Shapiro, Michael A.; Woskov, Paul P.; Temkin, Richard J.

    2012-01-01

    This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique. PMID:25264391

  8. Low-Pass Filtered Volumetric Shadows.

    PubMed

    Ament, Marco; Sadlo, Filip; Dachsbacher, Carsten; Weiskopf, Daniel

    2014-12-01

    We present a novel and efficient method to compute volumetric soft shadows for interactive direct volume visualization to improve the perception of spatial depth. By direct control of the softness of volumetric shadows, disturbing visual patterns due to hard shadows can be avoided and users can adapt the illumination to their personal and application-specific requirements. We compute the shadowing of a point in the data set by employing spatial filtering of the optical depth over a finite area patch pointing toward each light source. Conceptually, the area patch spans a volumetric region that is sampled with shadow rays; afterward, the resulting optical depth values are convolved with a low-pass filter on the patch. In the numerical computation, however, to avoid expensive shadow ray marching, we show how to align and set up summed area tables for both directional and point light sources. Once computed, the summed area tables enable efficient evaluation of soft shadows for each point in constant time without shadow ray marching and the softness of the shadows can be controlled interactively. We integrated our method in a GPU-based volume renderer with ray casting from the camera, which offers interactive control of the transfer function, light source positions, and viewpoint, for both static and time-dependent data sets. Our results demonstrate the benefit of soft shadows for visualization to achieve user-controlled illumination with many-point lighting setups for improved perception combined with high rendering speed. PMID:26356957

  9. An in vivo experimental model to determine antigenic variations among infectious bursal disease viruses.

    PubMed

    Durairaj, Vijay; Linnemann, Erich; Icard, Alan H; Williams, Susan M; Sellers, Holly S; Mundt, Egbert

    2013-08-01

    Infectious bursal disease virus (IBDV) is a double-stranded RNA virus causing infectious bursal disease in chickens. IBDV undergoes antigenic drift, so characterizing the antigenicity of IBDV plays an important role for identification and selection of vaccine candidates. In this study, an in vivo experimental model was developed to differentiate a new antigenic variant of IBDV. To this end, a hyper-immune serum to IBDV E/Del-type virus was generated in specific pathogen-free chickens and a standard volume of the hyper-immune serum was serially diluted and injected in specific pathogen-free birds via intravenous, subcutaneous, or intramuscular routes. The chickens were bled at different time points in order to evaluate the dynamics of virus neutralization titres. Based on the results, chickens were injected with different serum dilutions by the subcutaneous route. Twenty-four hours later, chickens were bled and then challenged with 100 median chicken infectious doses of the E/Del virus and a new IBDV variant. Chickens were euthanized at 7 days post infection and the bursa of Fabricius was removed for microscopic evaluation to determine the bursal lesion score. The determined virus neutralization titre along with the bursal lesion score was used to determine the breakthrough titre in the in vivo chicken model. Based on the data obtained, an antigenic subtype of IBDV was identified and determined to be different from E/Del. This model is a sensitive model for determination of IBDV antigenicity of non-tissue culture adapted IBDV. PMID:23662946

  10. Optimizing the spectrofluorimetric determination of cefdinir through a Taguchi experimental design approach.

    PubMed

    Abou-Taleb, Noura Hemdan; El-Wasseef, Dalia Rashad; El-Sherbiny, Dina Tawfik; El-Ashry, Saadia Mohamed

    2016-05-01

    The aim of this work is to optimize a spectrofluorimetric method for the determination of cefdinir (CFN) using the Taguchi method. The proposed method is based on the oxidative coupling reaction of CFN and cerium(IV) sulfate. The quenching effect of CFN on the fluorescence of the produced cerous ions is measured at an emission wavelength (λem ) of 358 nm after excitation (λex ) at 301 nm. The Taguchi orthogonal array L9 (3(4) ) was designed to determine the optimum reaction conditions. The results were analyzed using the signal-to-noise (S/N) ratio and analysis of variance (ANOVA). The optimal experimental conditions obtained from this study were 1 mL of 0.2% MBTH, 0.4 mL of 0.25% Ce(IV), a reaction time of 10 min and methanol as the diluting solvent. The calibration plot displayed a good linear relationship over a range of 0.5-10.0 µg/mL. The proposed method was successfully applied to the determination of CFN in bulk powder and pharmaceutical dosage forms. The results are in good agreement with those obtained using the comparison method. Finally, the Taguchi method provided a systematic and efficient methodology for this optimization, with considerably less effort than would be required for other optimizations techniques. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26456088

  11. Experimental and analytical determination of characteristics affecting light aircraft landing-gear dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, E. L.; Mcgehee, J. R.; Pappas, M. S.

    1977-01-01

    An experimental and analytical investigation was conducted to determine which characteristics of a light aircraft landing gear influence gear dynamic behavior significantly. The investigation focused particularly on possible modification for load control. Pseudostatic tests were conducted to determine the gear fore-and-aft spring constant, axial friction as a function of drag load, brake pressure-torque characteristics, and tire force-deflection characteristics. To study dynamic tire response, vertical drops were conducted at impact velocities of 1.2, 1.5, and 1.8 m/s onto a level surface; to determine axial-friction effects, a second series of vertical drops were made at 1.5 m/s onto surfaces inclined 5 deg and 10 deg to the horizontal. An average dynamic axial-friction coefficient of 0.15 was obtained by comparing analytical data with inclined surface drop test data. Dynamic strut bending and associated axial friction were found to be severe for the drop tests on the 10 deg surface.

  12. Volumetric 3D Display System with Static Screen

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  13. Predictive algorithms for determination of reflectance data from quantity of pigments within experimental dental resin composites

    PubMed Central

    2015-01-01

    Background Being able to estimate (predict) the final spectrum of reflectance of a biomaterial, especially when the final color and appearance are fundamental for their clinical success (as is the case of dental resin composites), could be a very useful tool for the industrial development of these type of materials. The main objective of this study was the development of predictive models which enable the determination of the reflectance spectrum of experimental dental resin composites based on type and quantity of pigments used in their chemical formulation. Methods 49 types of experimental dental resin composites were formulated as a mixture of organic matrix, inorganic filler, photo activator and other components in minor quantities (accelerator, inhibitor, fluorescent agent and 4 types of pigments). Spectral reflectance of all samples were measured, before and after artificial chromatic aging, using a spectroradiometer. A Multiple Nonlinear Regression Model (MNLR) was used to predict the values of the Reflectance Factors values in the visible range (380 nm-780 nm), before and after aging, from % Pigment (%P1, %P2, %P3 and %P4) within the formulation. Results The average value of the prediction error of the model was 3.46% (SD: 1.82) across all wavelengths for samples before aging and 3.54% (SD: 1.17) for samples after aging. The differences found between the predicted and measured values of the chromatic coordinates are smaller than the acceptability threshold and, in some cases, are even below the perceptibility threshold. Conclusions Within the framework of this pilot study, the nonlinear predictive models developed allow the prediction, with a high degree of accuracy, of the reflectance spectrum of the experimental dental resin composites. PMID:26329369

  14. Experimental infection of T4 Acanthamoeba genotype determines the pathogenic potential.

    PubMed

    Alves, Daniella de Sousa Mendes Moreira; Moraes, Aline Silva; Alves, Luciano Moreira; Gurgel-Gonçalves, Rodrigo; Lino Junior, Ruy de Souza; Cuba-Cuba, César Augusto; Vinaud, Marina Clare

    2016-09-01

    T4 is the Acanthamoeba genotype most related to cases of granulomatous amoebic encephalitis (GAE) in immunocompromised patients and of keratitis in contact lens wearers. The determination of the pathogenic potential of Acanthamoeba clinical and environmental isolates using experimental models is extremely important to elucidate the capacity of free-living organisms to establish and cause disease in hosts. The aim of this study was to compare and evaluate the histopathology and culture between two different routes of experimental infection of T4 Acanthamoeba isolated from environmental and clinical source in mice (intracranial and intraperitoneal). Swiss isogenic healthy mice were inoculated with 10(4) trophozoites by intracranial (IC) and intraperitoneal (IP) routes and observed during 21 days. The brains from animals inoculated by the IC route were collected and from the animals of the IP inoculation group, the brains, livers, kidneys, spleens, and lungs were removed. The organs were prepared and appropriately divided to be evaluated with histopathology and culture. There was no significant difference between the inoculation routes in terms of isolates recovery (χ(2) = 0.09; p = 0.76). In the IC group, isolate recovery rate was significantly higher in histopathology than the one achieved by culture (χ(2) = 6.45; p < 0.01). Experimental infection revealed that all isolates inoculated could be considered invasive because it was possible to recover evolutive forms of Acanthamoeba in both routes. This work represents the first in vivo pathogenicity assay of primary isolation source in Central region of Brazil showing in vivo pathogenicity and hematogenous spread capacity of these protozoa, improving the knowledge on free-living amoebae isolates. PMID:27164833

  15. Experimental determination and prediction of the gas-liquid n-hexadecane partition coefficients.

    PubMed

    Mutelet, F; Rogalski, M

    2001-07-20

    Experimental methods based on gas-phase chromatography were tested with a view to determine the gas-liquid n-hexadecane partition coefficients, log L16 of non-volatile compounds at 298.2 K. It was demonstrated that reliable values of log L16 of compounds more volatile than n-docosane can be obtained using either capillary, or packed columns. The main limitation of both methods is the column stability at high temperatures. Here we propose a new method based on the temperature gradient mode, to obtain log L16 of high-boiling compounds. A group contribution model is also presented in view to predicting log L16 values of non-volatile compounds. PMID:11510537

  16. Experimental determination of cloud influence on the spectral UV irradiance and implications for biological effects

    NASA Astrophysics Data System (ADS)

    Mateos, David; di Sarra, Alcide; Meloni, Daniela; di Biagio, Claudia; Sferlazzo, Damiano M.

    2011-08-01

    Measurements of UV spectra, total ozone, cloud cover, and cloud optical thickness, obtained at Lampedusa (central Mediterranean), are used to investigate the influence of clouds on the spectral UV irradiance, through the cloud modification factor (CMF), and on five biological processes. The CMF decreases with cloud optical thickness (COT), from about 0.5 for COT˜15 to 0.25 for COT˜45, and decreases with increasing wavelength above 315-320-nm. Observations display an increase in the CMF from 295 to 320-nm, which is related to enhanced absorption by tropospheric ozone due to the long photon path lengths under cloudy conditions. The use of a wavelength independent CMF instead of the experimentally determined spectral curves produces an overestimation of the biological effects of UV irradiance. The overestimation may be as large as 30% for the DNA damage, 20% for vitamin D synthesis, 12% for plant damage, and 8-10% for phytoplankton inhibition and erythema.

  17. An experimental correction proposed for an accurate determination of mass diffusivity of wood in steady regime

    NASA Astrophysics Data System (ADS)

    Zohoun, Sylvain; Agoua, Eusèbe; Degan, Gérard; Perre, Patrick

    2002-08-01

    This paper presents an experimental study of the mass diffusion in the hygroscopic region of four temperate species and three tropical ones. In order to simplify the interpretation of the phenomena, a dimensionless parameter called reduced diffusivity is defined. This parameter varies from 0 to 1. The method used is firstly based on the determination of that parameter from results of the measurement of the mass flux which takes into account the conditions of operating standard device (tightness, dimensional variations and easy installation of samples of wood, good stability of temperature and humidity). Secondly the reasons why that parameter has to be corrected are presented. An abacus for this correction of mass diffusivity of wood in steady regime has been plotted. This work constitutes an advanced deal nowadays for characterising forest species.

  18. The use of airborne imaging spectrometer data to determine experimentally induced variation in coniferous canopy chemistry

    NASA Technical Reports Server (NTRS)

    Swanberg, Nancy A.; Matson, Pamela A.

    1987-01-01

    It was experimentally determined whether induced differences in forest canopy chemical composition can be detected using data from the Airborne Imaging Spectrometer (AIS). Treatments were applied to an even-aged forest of Douglas fir trees. Work to date has stressed wet chemical analysis of foilage samples and correction of AIS data. Plot treatments were successful in providing a range of foliar N2 concentrations. Much time was spent investigating and correcting problems with the raw AIS data. Initial problems with groups of drop out lines in the AIS data were traced to the tape recorder and the tape drive. Custom adjustment of the tape drive led to recovery of most missing lines. Remaining individual drop out lines were replaced using average of adjacent lines. Application of a notch filter to the Fourier transform of the image in each band satisfactorily removed vertical striping. The aspect ratio was corrected by resampling the image in the line direction using nearest neighbor interpolation.

  19. An experimental study for determining human discomfort response to roll vibration

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Dempsey, T. K.; Clevenson, S. A.

    1976-01-01

    An experimental study using a passenger ride quality apparatus (PRQA) was conducted to determine the subjective reactions of passengers to roll vibrations. The data obtained illustrate the effect upon human comfort of several roll-vibration parameters: namely, roll acceleration level, roll frequency, and seat location (i.e., distance from axis of rotation). Results of an analysis of variance indicated that seat location had no effect on discomfort ratings of roll vibrations. The effect of roll acceleration level was significant, and discomfort ratings increased markedly with increasing roll acceleration level at all roll frequencies investigated. Of particular interest, is the fact that the relationship between discomfort ratings and roll acceleration level was linear in nature. The effect of roll frequency also was significant as was the interaction between roll acceleration level and roll frequency.

  20. Experimental determination of turbulence in a GH2-GOX rocket combustion chamber

    NASA Technical Reports Server (NTRS)

    Tou, P.; Russell, R.; Ohara, J.

    1974-01-01

    The intensity of turbulence and the Lagrangian correlation coefficient for a gaseous rocket combustion chamber have been determined from the experimental measurements of the tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and Spalding's numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber. An exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the maximum value of the intensity of turbulence is about 15% and the Lagrangian correlation coefficient drops to about 0.12 in one inch of the chamber length.

  1. Experimental determination of the transport number of water in Nafion 117 membrane

    SciTech Connect

    Fuller, T.F.; Newman, J. . Dept. of Chemical Engineering)

    1992-05-01

    The transport number of water in Nafion 117 membrane over a wide range of water contents is determined experimentally using a concentration cell. The transport number of water, the ratio f[sup m][sub o]/Z[sub o], is about 1.4 for a membrane equilibrated with saturated water vapor at 25[degrees]C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the concentration of water approaches zero. In this paper, the relationship between the transference number, the transport number, and the electro-osmotic drag coefficient is presented, and their relevance to water management is solid-polymer-electrolyte fuel cells is discussed. Results are compared with other data available in the literature and with the theoretical maximum.

  2. Active machine learning-driven experimentation to determine compound effects on protein patterns

    PubMed Central

    Naik, Armaghan W; Kangas, Joshua D; Sullivan, Devin P; Murphy, Robert F

    2016-01-01

    High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many conditions and targets without doing all possible experiments. We have previously described an active machine learning algorithm that can iteratively choose small sets of experiments to learn models of multiple effects. We now show that, with no prior knowledge and with liquid handling robotics and automated microscopy under its control, this learner accurately learned the effects of 48 chemical compounds on the subcellular localization of 48 proteins while performing only 29% of all possible experiments. The results represent the first practical demonstration of the utility of active learning-driven biological experimentation in which the set of possible phenotypes is unknown in advance. DOI: http://dx.doi.org/10.7554/eLife.10047.001 PMID:26840049

  3. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    PubMed

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better. PMID:23529116

  4. Time-Dependent Reversible-Irreversible Deformation Threshold Determined Explicitly by Experimental Technique

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Arnold, Steven M.

    2000-01-01

    Structural materials for the design of advanced aeropropulsion components are usually subject to loading under elevated temperatures, where a material's viscosity (resistance to flow) is greatly reduced in comparison to its viscosity under low-temperature conditions. As a result, the propensity for the material to exhibit time-dependent deformation is significantly enhanced, even when loading is limited to a quasi-linear stress-strain regime as an effort to avoid permanent (irreversible) nonlinear deformation. An understanding and assessment of such time-dependent effects in the context of combined reversible and irreversible deformation is critical to the development of constitutive models that can accurately predict the general hereditary behavior of material deformation. To this end, researchers at the NASA Glenn Research Center at Lewis Field developed a unique experimental technique that identifies the existence of and explicitly determines a threshold stress k, below which the time-dependent material deformation is wholly reversible, and above which irreversible deformation is incurred. This technique is unique in the sense that it allows, for the first time, an objective, explicit, experimental measurement of k. The underlying concept for the experiment is based on the assumption that the material s time-dependent reversible response is invariable, even in the presence of irreversible deformation.

  5. Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System

    PubMed Central

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better. PMID:23529116

  6. Experimental Determination of DT Yield in High Current DD Dense Plasma Focii

    SciTech Connect

    Lowe, D. R.; Hagen, E. C.; Meehan, B. T.; Springs, R. K.; O'Brien, R. J.

    2013-06-18

    Dense Plasma Focii (DPF), which utilize deuterium gas to produce 2.45 MeV neutrons, may in fact also produce DT fusion neutrons at 14.1 MeV due to the triton production in the DD reaction. If beam-target fusion is the primary producer of fusion neutrons in DPFs, it is possible that ejected tritons from the first pinch will interact with the second pinch, and so forth. The 2 MJ DPF at National Security Technologies’ Losee Road Facility is able to, and has produced, over 1E12 DD neutrons per pulse, allowing an accurate measurement of the DT/DD ratio. The DT/DD ratio was experimentally verified by using the (n,2n) reaction in a large piece of praseodymium metal, which has a threshold reaction of 8 MeV, and is widely used as a DT yield measurement system1. The DT/DD ratio was experimentally determined for over 100 shots, and then compared to independent variables such as tube pressure, number of pinches per shot, total current, pinch current and charge voltage.

  7. Determining the performance of energy wheels: Part 1 -- Experimental and numerical methods

    SciTech Connect

    Simonson, C.J.; Ciepliski, D.L.; Besant, R.W.

    1999-07-01

    Measuring and modeling the performance of energy recovery devices is difficult and, in some cases, may result in unacceptably high uncertainties. In this paper, controlled laboratory experiments and a detailed numerical model are presented, which, together with uncertainty analysis, can quantify the performance of energy wheels. A numerical model that has been developed from physical principles and an experimental method for determining the performance of energy wheels with acceptable uncertainties are detailed. Included is a pre-test, during-test, and post-test uncertainty analysis that allows the experimenter to estimate accurately precision (random) and bias (fixed) errors a priori, during, and a posteriori each experiment using energy and mass balances on the air-to-air energy recovery device as well as the characteristics of each instrument and the data acquisition system. A comprehensive set of measured data for the sensible, latent, and total effectiveness of an energy wheel is compared with the corresponding simulation results in Part 2 of this paper.

  8. Numerical and Experimental Determination of the Geometric Far Field for Round Jets

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James; Brown, Cliff; Khavaran, Abbas

    2003-01-01

    To reduce ambiguity in the reporting of far field jet noise, three round jets operating at subsonic conditions have recently been studied at the NASA Glenn Research Center. The goal of the investigation was to determine the location of the geometric far field both numerically and experimentally. The combination of the WIND Reynolds-Averaged Navier-Stokes solver and the MGBK jet noise prediction code was used for the computations, and the experimental data was collected in the Aeroacoustic Propulsion Laboratory. While noise sources are distributed throughout the jet plume, at great distances from the nozzle the noise will appear to be emanating from a point source and the assumption of linear propagation is valid. Closer to the jet, nonlinear propagation may be a problem, along with the known geometric issues. By comparing sound spectra at different distances from the jet, both from computational methods that assume linear propagation, and from experiments, the contributions of geometry and nonlinearity can be separately ascertained and the required measurement distance for valid experiments can be established. It is found that while the shortest arc considered here (approx. 8D) was already in the geometric far field for the high frequency sound (St greater than 2.0), the low frequency noise due to its extended source distribution reached the geometric far field at or about 50D. It is also found that sound spectra at far downstream angles does not strictly scale on Strouhal number, an observation that current modeling does not capture.

  9. Experimental Determination of the Electric Dipole Moment Function of the X Pi-2 Hydroxyl Radical

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Goorvitch, D.; Abrams, M. C.; Davis, S. P.; Benidar, A.; Farrenq, R.; Guelachvili, G.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    Laboratory infrared emission spectra of X 2piOH obtained with the Solar McMath FTS and the U. Paris (Orsay) FTS are used in an inversion procedure to experimentally determine the electric dipole moment function (EDMF) of the hydroxyl radical. The spectra produced at Kitt Peak show vibrational levels up to v = 10 and rotational lines in the range, -25.5 less than or equal to m less than or equal to 12.5. The following vibrational quantum number ranges were observed: for DELTA v = -1, v prime = 1 - 9, for DELTA v = -2, v prime = 2 - 10, and for DELTA v = - 3, v prime = 6 - 10. The spectra produced at Orsay show DELTA v = -1, with v prime = 1 - 4 and -22.5 less than or equal to m less than or equal to 9.5 as well as DELTA v = 0, with v prime= 1 - 3, and 9.5 less than or equal to m less than or equal to 25.5. The OH rovibrational wavefunctions used in the inversion procedure were calculated using a procedure which reproduces observed rotational constants with a high level of accuracy. Comparisons of our EDMF are made with previous experimental and theoretical work.

  10. Combined Theoretical and Experimental Analysis of Processes Determining Cathode Performance in Solid Oxide Fuel Cells

    SciTech Connect

    Kukla, Maija M.; Kotomin, Eugene Alexej; Merkle, R.; Mastrikov, Yuri; Maier, J.

    2013-02-11

    Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980’s as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot’s cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.