Science.gov

Sample records for experimentally determined volumetric

  1. Comparison of experimental methods for determination of the volumetric mass transfer coefficient in fermentation processes

    NASA Astrophysics Data System (ADS)

    Tobajas, M.; García-Calvo, E.

    Mass transfer in bioreactors has been examined. In the present work, dynamic methods are used for the determination of KLa values for water, model media and a fermentation broth (Candida utilis) in an airlift reactor. The conventional dynamic method is applied at the end of the microbial process in order to avoid an alteration in the metabolism of the microorganisms. New dynamic methods are used to determine KLa in an airlift reactor during the microbial growth of Candida utilis on glucose. One of the methods is based on the continuous measurement of carbon dioxide production while the other method is based on the relationship between the oxygen transfer and biomass growth rates. These methods of determining KLa does not interfere with the microorganisms action. A theoretical mass transfer model has been used for KLa estimation for the systems described above. Some differences between calculated and measured values are found for fermentation processes due to the model is developed for two-phase air-water systems. Nevertheless, the average deviation between the predicted values and those obtained from the relationship between oxygen transfer and biomass production rates are lower than 25% in any case.

  2. Determination of volumetric concentration of solids in vertical pipeline hydrotransport

    NASA Astrophysics Data System (ADS)

    Zych, Marcin; Hanus, Robert; Petryka, Leszek; Strzępowicz, Anna; Zych, Piotr

    2016-03-01

    This paper presents an application of radioisotopes with reference to the determination of the solid phase volumetric concentration in a hydromixture by calibration of the measuring set. It shows how the gamma absorption equipment consisting of radioactive isotopes 241Am and scintillation probe, may be applied to the measurement of solid particles volumetric concentration in a flow. It is based on fact that the intensity of a gamma beam decreases as it passes through matter. In the described experiments as solid phase the ceramic models representing natural polymetallic ocean nodules were used. The especially constructed calibration stand and obtained relation between the related intensity of radiation and mean volumetric concentration of the solid phase are presented.

  3. Determining the volumetric steam content in a BWR gravity leg

    SciTech Connect

    Fedulin, V.N.; Bartolomei, G.G.; Solodkii, V.A.; Shmelev, V.E.

    1987-09-01

    The structure of two-phase flow in a large-diameter limited-height gravity leg was investigated in the VK-50 reactor. Phase distribution properties and a physical model of the steam-water mixture flow in the gravity leg were described. On the basis of experimentally derived date a method was proposed for the calculation of volumetric steam content in the leg.

  4. Experimentally determined volumetric properties of CO{sub 2} + CH{sub 4} + N{sub 2} mixtures at 20-100 MPa and 323-573 K. Chapter 3

    SciTech Connect

    Seitz, J.C.; Blencoe, J.G.; Bodnar, R.J.

    1994-12-31

    The densities of C0{sub 2}+CH{sub 4}+N{sub 2} mixtures were measured at 20--100 MPa, 323--573 K using a custom-designed high-pressure, high-temperature vibrating-tube densimeter. Molar volumes and excess molar volumes (V{sub m}{sup E}) were calculated from the experimental data. Although (V{sub m}{sup E}) is generally positive, negative deviations are observed in ternary mixtures with compositions close to those of binary mixtures that exhibit negative deviations. (V{sub m}{sup E}) generally decreases as pressure increases from 20 to 100 MPa. As temperature increases, (V{sub m}{sup E}) increases until it reaches a maximum around 473 K, and then it decreases moderately as temperature is further increased. (V{sub m}{sup E}) is typically between 0 and 4 per cent of the total volume of the mixture. Predictions of (V{sub m}{sup E}) for ternary mixtures may be made from experimental data for the binary subsystems. Comparison with experimental data indicates that these methods are reasonably accurate for predicting the volumetric properties of ternary gas mixtures.

  5. Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue

    NASA Astrophysics Data System (ADS)

    González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.

    2013-04-01

    Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.

  6. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    NASA Astrophysics Data System (ADS)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  7. An Experimental study of the initial volumetric strain rate effect on the creep behaviour of reconstituted clays

    NASA Astrophysics Data System (ADS)

    Bagheri, M.; Rezania, M.; Nezhad, M. M.

    2015-09-01

    Clayey soils tend to undergo continuous compression with time, even after excess pore pressures have substantially dissipated. The effect of time on deformation and mechanical response of these soft soils has been the subject of numerous studies. Based on these studies, the observed time-dependent behaviour of clays is mainly related to the evolution of soil volume and strength characteristics with time, which are classified as creep and/or relaxation properties of the soil. Apart from many empirical relationships that have been proposed in the literature to capture the rheological behaviour of clays, a number of viscid constitutive relationships have also been developed which have more attractive theoretical attributes. A particular feature of these viscid models is that their creep parameters often have clear physical meaning (e.g. coefficient of secondary compression, Cα). Sometimes with these models, a parameter referred to as initial/reference volumetric strain rate, has also been alluded as a model parameter. However, unlike Cα, the determination of and its variations with stress level is not properly documented in the literature. In an attempt to better understand , this paper presents an experimental investigation of the reference volumetric strain rate in reconstituted clay specimens. A long-term triaxial creep test, at different shear stress levels and different strain rates, was performed on clay specimen whereby the volumetric strain rate was measured. The obtained results indicated the stress-level dependency and non-linear variation of with time.

  8. Volumetric runoff coefficients for experimental rural catchments in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Taguas, Encarnación V.; Molina, Cecilio; Nadal-Romero, Estela; Ayuso, José L.; Casalí, Javier; Cid, Patricio; Dafonte, Jorge; Duarte, Antonio C.; Farguell, Joaquim; Giménez, Rafael; Giráldez, Juan V.; Gómez, Helena; Gómez, Jose A.; González-Hidalgo, J. Carlos; Keizer, J. Jacob; Lucía, Ana; Mateos, Luciano; Rodríguez-Blanco, M. Luz; Schnabel, Sussane; Serrano-Muela, M. Pilar

    2015-04-01

    crucial for designing appropriate decision making tools for water management. REFERENCES Chow V.T., Maidment D.R. and Mays, L.W. 1988. Applied Hydrology. MCGraw Hill, Nueva York. Dhakal, N., Fang, X., Cleveland, T., Thompson, D., Asquith, W., and Marzen, L. (2012). "Estimation of Volumetric Runoff Coefficients for Texas Watersheds Using Land-Use and Rainfall-Runoff Data." Journal of Irrigation and Drainage Engineering, 1(2012):43-54. Schaake JC, Geyer JC,Knapp JW. 1967. Experimental examination of the rational method. J. Hydr.Div. 93(6),353-70

  9. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    NASA Astrophysics Data System (ADS)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  10. Validation of simultaneous volumetric and spectrophotometric methods for the determination of captopril in pharmaceutical formulations.

    PubMed

    Rahman, Nafisur; Singh, Manisha; Hoda, Nasrul

    2005-01-01

    Simple, sensitive and economical simultaneous volumetric and spectrophotometric methods for the determination of captopril have been developed. The methods were based on the reaction of captopril with potassium iodate in HCl medium. Amaranth was used as indicator to detect the end-point of the titration in aqueous layer. The iodine formed during the titration was extracted into CCl4 and subsequently determined spectrophotometrically at 510 nm. The Beer's law was obeyed in the concentration range of 120-520 microg ml-1. Rigorous statistical analyses were performed for the validation of the proposed methods. The proposed methods were successfully applied to the determination of captopril in dosage forms. Comparison of the means of the proposed procedures with those of reference methods using point and interval hypothesis tests showed no statistically significant difference. PMID:15927181

  11. Volumetric determination of uranium titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, J.S.; Skinner, D.L.; Rader, L.F., Jr.

    1957-01-01

    Need for a more rapid volumetric method for the routine determination of uranium in uranium-rich materials has led to the development of a method that uses titanous sulfate as a reductant before oxidimetric titration. Separation of the hydrogen sulfide group is not necessary. Interfering elements precipitated by cupferron are removed by automatic filtrations made simultaneously rather than by the longer chloroform extraction method. Uranium is reduced from VI to IV by addition of an excess of titanous sulfate solution, cupric ion serving as an indicator by forming red metallic copper when reduction is complete. The copper is reoxidized by addition of mercuric perchlorate. The reduced uranium is then determined by addition of excess ferric sulfate and titration with ceric sulfate. The method has proved to be rapid, accurate, and economical.

  12. Determination of density and volumetric water content of soil at multiple photon energies

    NASA Astrophysics Data System (ADS)

    Ün, A.; Demir, D.; Şahin, Y.

    2011-08-01

    Gamma ray transmission methods have been used accurately for the study of the properties of soil for agricultural purposes. In this study, density and volumetric water content of soil are determined by using gamma ray transmission method. To this end, the soil sample was collected from Erzurum, Turkey. The attenuation of strongly collimated monoenergetic gamma beam through the soil sample was measured using a 3×3×1 mm3 cadmium telluride (CdTe) detector. The radioactive sources used in the experiment were 241Am, 133Ba and 137Cs. The mass attenuation coefficients of dry soil sample were calculated from the transmission measurements. It was observed that gamma ray transmission method in measurement of the soil parameters with the portable CdTe detector has advantages such as practical, inexpensive, non-destructive and fast analysis.

  13. Simultaneous determination of temperature-dependent thermal conductivity and volumetric heat capacity by an inverse technique

    SciTech Connect

    Woodbury, K.A.; Boohaker, C.G.

    1996-12-31

    Determination of thermal properties by inverse methods often involves limited thermal excitation of a relatively small sample. If these thermal properties are to be found as functions of temperature, then this procedure must be replicated at several artificially elevated temperatures. For some types of materials (for example, those bearing moisture) this approach is impractical. In this paper, a procedure is developed for determining thermal properties (conductivity k and volumetric heat capacity C {equivalent_to} {rho}c{sub p}) as functions of temperature from a single experiment. This procedure is targeted for determination of k(T) and C(T) for sand molds used in castings. An inverse method based on a Gauss linearization is used to estimate these functions. The experiment used to determine these properties consists of heating a one-dimensional specimen of the material from one end. The variation of thermal properties with temperature is assumed to be a piecewise linear function, with values of properties to be determined at prescribed temperatures. A numerical experiment is used to demonstrate the technique.

  14. Experimental analysis of the pressure drop and heat transfer through metal foams used as volumetric receivers under concentrated solar radiation

    SciTech Connect

    Albanakis, C.; Missirlis, D.; Yakinthos, K.; Goulas, A.; Michailidis, N.; Omar, H.; Tsipas, D.; Granier, B.

    2009-01-15

    The main objective of this work was to evaluate the behavior of porous materials, when treated as volumetric receivers under concentrated solar radiation. For this reason various porous metallic and ceramic materials have been tested as potential receivers for concentrated solar radiation. The experimental investigation showed that their efficiency was depending on both materials parameters and flow conditions. In this work, a variety of foam materials such as Ni and Ni alloy, inconel, copper, aluminum and SiC with different open cell porosity were tested as potential media to be used as volumetric receivers and heat exchangers. However, since the results were similar, for space economy, only the results of two of them, nickel and inconel were presented in detail and compared with each other. (author)

  15. Remote monitoring of volumetric discharge employing bathymetry determined from surface turbulence metrics

    NASA Astrophysics Data System (ADS)

    Johnson, E. D.; Cowen, E. A.

    2016-03-01

    Current methods employed by the United States Geological Survey (USGS) to measure river discharge are manpower intensive, expensive, and during high flow events require field personnel to work in dangerous conditions. Indirect methods of estimating river discharge, which involve the use of extrapolated rating curves, can result in gross error during high flow conditions due to extrapolation error and/or bathymetric change. Our goal is to develop a remote method of monitoring volumetric discharge that reduces costs at the same or improved accuracy compared with current methods, while minimizing risk to field technicians. We report the results of Large-Scale Particle Image Velocimetry (LSPIV) and Acoustic Doppler Velocimetry (ADV) measurements conducted in a wide-open channel under a range of flow conditions, i.e., channel aspect ratio (B/H = 6.6-31.9), Reynolds number (ReH = 4,950-73,800), and Froude number (Fr = 0.04-0.46). Experiments were carried out for two different channel cross sections (rectangular and asymmetric compound) and two bathymetric roughness conditions (smooth glass and rough gravel bed). The results show that the mean surface velocity normalized by the depth-averaged velocity (the velocity index) decreases with increasing δ*/H, where δ* is the boundary layer displacement thickness and that the integral length scales, L11,1 and L22,1, calculated on the free-surface vary predictably with the local flow depth. Remote determination of local depth-averaged velocity and flow depth over a channel cross section yields an estimate of volumetric discharge.

  16. Volumetric characterization of the flow over miniature wind farms: An experimental study

    NASA Astrophysics Data System (ADS)

    Wing, Lai; Troolin, Dan; Hyun, Jin Kim; Tobin, Nicolas; Zuniga Zamalloa, Carlo; Chamorro, Leonardo P.

    2014-11-01

    An internal boundary layer is known to develop from the interaction between wind farms and the atmospheric boundary layer. It possesses characteristic features able to modulate the turbulence dynamics over large regions and eventually modify the micro climate in the vicinity of the wind farm. In this study, we examine the structure of the turbulence above various miniature wind farm configurations using 3D Particle Image velocimetry (PIV). Each miniature wind farm is placed in the boundary-layer wind tunnel at the Mechanical Science Engineering, UIUC. The turbines are fabricated using 3D printing and have a loading system that controls their tip-speed ratio and allows for characterizing the loads. Volumetric PIV is performed at various locations over and downstream a series of wind farm layouts. High-order turbulence statistics, turbulence structure and characteristic coherent motions are obtained and discussed in terms of the wind farm layout.

  17. Volumetric Titrations Using Electrolytically Generated Reagents for the Determination of Ascorbic Acid and Iron in Dietary Supplement Tablets: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.

    2014-01-01

    An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…

  18. Microfluidic volumetric flow determination using optical coherence tomography speckle: An autocorrelation approach

    NASA Astrophysics Data System (ADS)

    De Pretto, Lucas R.; Nogueira, Gesse E. C.; Freitas, Anderson Z.

    2016-04-01

    Functional modalities of Optical Coherence Tomography (OCT) based on speckle analysis are emerging in the literature. We propose a simple approach to the autocorrelation of OCT signal to enable volumetric flow rate differentiation, based on decorrelation time. Our results show that this technique could distinguish flows separated by 3 μl/min, limited by the acquisition speed of the system. We further perform a B-scan of gradient flow inside a microchannel, enabling the visualization of the drag effect on the walls.

  19. Purity of potassium hydrogen phthalate, determination with precision coulometric and volumetric titration--a comparison.

    PubMed

    Recknagel, Sebastian; Breitenbach, Martin; Pautz, Joachim; Lück, Detlef

    2007-09-19

    The mass fraction of potassium hydrogen phthalate (KHP) from a specific batch was certified as an acidimetric standard. Two different analytical methods on a metrological level were used to carry out certification analysis: precision constant current coulometric and volumetric titration with NaOH. It could be shown that with a commercial automatic titration system in combination with a reliable software for the end-point detection it is possible to produce equivalent results with the same accuracy in comparison to a definite method handled by a fundamental apparatus for traceable precision coulometry. Prerequisite for titrations are that a high number of single measurement are applied which are calibrated with a high precision certified reference material. PMID:17870288

  20. Volumetric determination of apolipoprotein stoichiometry of circulating HDL subspecies1[S

    PubMed Central

    Segrest, Jere P.; Cheung, Marian C.; Jones, Martin K.

    2013-01-01

    Although HDL is inversely correlated with coronary heart disease, elevated HDL-cholesterol is not always protective. Additionally, HDL has biological functions that transcend any antiatherogenic role: shotgun proteomics show that HDL particles contain 84 proteins (latest count), many correlating with antioxidant and anti-inflammatory properties of HDL. ApoA-I has been suggested to serve as a platform for the assembly of these protein components on HDL with specific functions - the HDL proteome. However, the stoichiometry of apoA-I in HDL subspecies is poorly understood. Here we use a combination of immunoaffinity chromatography data and volumetric analysis to evaluate the size and stoichiometry of LpA-I and LpA-I,A-II particles. We conclude that there are three major LpA-I subspecies: two major particles, HDL[4] in the HDL3 size range (d = 85.0 ± 1.2 Å) and HDL[7] in the HDL2 size range (d = 108.5 ± 3.8 Å) with apoA-I stoichiometries of 3 and 4, respectively, and a small minor particle, HDL[1] (d = 73.8 ± 2.1Å) with an apoA-I stoichiometry of 2. Additionally, we conclude that the molar ratio of apolipoprotein to surface lipid is significantly higher in circulating HDL subspecies than in reconstituted spherical HDL particles, presumably reflecting a lack of phospholipid transfer protein in reconstitution protocols. PMID:23883582

  1. Volumetric determination of uranium using titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, James S.; Skinner, Dwight L.; Rader, Lewis F.

    1956-01-01

    A new method for determining uranium in samples containing 0.05 percent or more U3O8, using titanous sulfate as reducing agent, is much shorter, faster, and has fewer interferences than conventional methods using reductor columns. The sample is dissolved with sulfuric, nitric, perchloric, and hydrofluoric acids. Elements that would otherwise form insoluble fluorides are kept in solution by complexing the fluoride ion with boric acid. A precipitation is made with cupferron to remove interfering elements. The solution is filtered to remove the precipitated cupferrates instead of extracting them with chloroform as is usually done. Filtration is preferred to extraction because any niobium that may be in solution forms an insoluble cupferrate that may be removed by filtering but is very difficult to extract with chloroform. Excess cupferron is destroyed by oxidizing with nitric and perchloric acids, and evaporating to dense fumes of sulfuric acid. The uranium is reduced to U(IV) by the addition of titanous sulfate, with cupric sulfate used as an indicator of the completeness of the reduction. Metallic copper is formed when all the uranium is reduced. The reduced copper is then reoxidized by the addition of mercuric perchlorate, an excess of ferric sulfate added, and the solution titrated immediately with standard ceric sulfate with ferroin as an indicator. Precision of the method compared favorable with methods in common use, both for uranium ores and for most types of uranium-rich materials.

  2. Volumetric magnetic induction tomography

    NASA Astrophysics Data System (ADS)

    Wei, H.-Y.; Ma, L.; Soleimani, M.

    2012-05-01

    Magnetic induction tomography (MIT) is a new and emerging type of tomography technique that is able to map the passive electromagnetic properties (in particular conductivity) of an object. Because of its non-invasive feature, it becomes a suitable technique for many industries, such as metal processing and mining. This paper presents a volumetric MIT (VMIT) system based on an existing measurement setup in our 2D system (MIT Mk-I). By increasing the number of sensors in the axial direction, volumetric imaging can be realized and hence can improve the spatial resolution of the reconstructed images. All of the system control, data acquisition and signal demodulation are accomplished by a commercial data acquisition card and the National Instruments graphical programming language. In this paper, both the system architecture and the forward 3D sensitivity model will be presented. The image reconstruction scheme is modified by introducing a 3D sensitivity map to replace the previous 2D sensitivity map used for the MIT Mk-I system. The iterative Landweber technique was implemented as the inverse solver to reconstruct the images. Several laboratory-based experimental results are demonstrated in this paper, with different shapes of imaging objects. The reconstructed images are satisfactory showing for the first time volumetric conductivity reconstruction using a multi-layer MIT system. The results indicate the high-quality image reconstruction using our novel VMIT system for potential use in industrial applications, such as metal flow imaging.

  3. Volumetric properties of CO{sub 2}-CH{sub 4}-N{sub 2} fluids at 200{degree}C and 1000 bars: A comparison of equations of state and experimental data. Chapter 4

    SciTech Connect

    Seitz, J.C.; Blencoe, J.G.; Joyce, D.B.; Bodnar, R.J.

    1994-12-31

    Predictions of molar volume, excess molar volume, and isochoric P-T trajectories from 13 published equations of state are compared with one another and with preliminary volumetric data for CO{sub 2}-CH{sub 4}-N{sub 2} fluids at 200{degrees}C and 1000 bars. The equations of state investigated represent a wide variety of empirical and semi-empirical approaches to the modeling of fluids. The experimental data indicate that excess volumes of CO{sub 2}-CH{sub 4}-N{sub 2} mixtures are small (<3% of the total volume of the mixture, except near the critical point of CO{sub 2}). The NIST software package DDMIX yields volumetric properties that are most consistent with our experimental results. Differences in the calculated volumetric properties of mixtures from the different equations of state are significant For example, estimates of the equilibrium trapping temperature of a fluid inclusion (2000 bars, 60% CO{sub 2}-20% CH{sub 4}20% N{sub 2}mixture, V=59.10 cm{sup 3}/mole) calculated from various equations of state range from 462-570{degrees}C. The major source of error in calculated volumetric properties of fluid mixtures is the inability of equations of state to accurately predict the volumetric properties of the pure components.

  4. Experimental determination of stator endwall heat transfer

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Russell, Louis M.

    1989-01-01

    Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane passage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Results were obtained for Reynolds numbers based on inlet velocity and axial chord between 73,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.

  5. Experimental determination of stator endwall heat transfer

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.; Russell, Louis M.

    1989-01-01

    Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane possage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Resutls were obtained for Reynolds numbers based on inlet velocity and axial chord between 75,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.

  6. Experimental determination of chlorite dissolution rates

    SciTech Connect

    Rochelle, C.A.; Bateman, K.; MacGregor, R.; Pearce, J.M.; Wetton, P.D.; Savage, D.

    1995-12-31

    Current concepts of the geological disposal of low- and intermediate-level radioactive wastes in the UK envisage the construction of a mined facility (incorporating cementitious engineered barriers) in chlorite-bearing rocks. To model accurately the fluid-rock reactions within the disturbed zone surrounding a repository requires functions that describe mineral dissolution kinetics under pH conditions that vary from near neutral to highly alkaline. Therefore, an experimental study to determine the dissolution rates of Fe-rich chlorite has been undertaken as part of the Nirex Safety Assessment Research Program. Four experiments have been carried out at 25 C and four at 70 C, both sets using a range of NaCl/NaOH solutions of differing pH (of nominal pH 9.0, 10.3, 11.6 and 13.0 [at 25 C]). Dissolution rates have been calculated and were found to increase with increasing pH and temperature. However, increased pH resulted in non-stoichiometric dissolution possibly due to preferential dissolution of part of the chlorite structure relative to another, or reprecipitation of some elements as thin hydroxide or oxyhydroxide surface coatings on the chlorite. These results also show that chlorite dissolution is appreciably slower than that of albite and quartz at both 25 and 70 C, but slightly faster than that of muscovite at 70 C.

  7. Snapshot Hyperspectral Volumetric Microscopy.

    PubMed

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-01-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens. PMID:27103155

  8. Snapshot Hyperspectral Volumetric Microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-04-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens.

  9. Snapshot Hyperspectral Volumetric Microscopy

    PubMed Central

    Wu, Jiamin; Xiong, Bo; Lin, Xing; He, Jijun; Suo, Jinli; Dai, Qionghai

    2016-01-01

    The comprehensive analysis of biological specimens brings about the demand for capturing the spatial, temporal and spectral dimensions of visual information together. However, such high-dimensional video acquisition faces major challenges in developing large data throughput and effective multiplexing techniques. Here, we report the snapshot hyperspectral volumetric microscopy that computationally reconstructs hyperspectral profiles for high-resolution volumes of ~1000 μm × 1000 μm × 500 μm at video rate by a novel four-dimensional (4D) deconvolution algorithm. We validated the proposed approach with both numerical simulations for quantitative evaluation and various real experimental results on the prototype system. Different applications such as biological component analysis in bright field and spectral unmixing of multiple fluorescence are demonstrated. The experiments on moving fluorescent beads and GFP labelled drosophila larvae indicate the great potential of our method for observing multiple fluorescent markers in dynamic specimens. PMID:27103155

  10. Determination of action thresholds for electromagnetic tracking system-guided hypofractionated prostate radiotherapy using volumetric modulated arc therapy

    SciTech Connect

    Zhang, Pengpeng; Mah, Dennis; Happersett, Laura; Cox, Brett; Hunt, Margie; Mageras, Gig

    2011-07-15

    Purpose: Hypofractionated prostate radiotherapy may benefit from both volumetric modulated arc therapy (VMAT) due to shortened treatment time and intrafraction real-time monitoring provided by implanted radiofrequency(RF) transponders. The authors investigate dosimetrically driven action thresholds (whether treatment needs to be interrupted and patient repositioned) in VMAT treatment with electromagnetic (EM) tracking. Methods: VMAT plans for five patients are generated for prescription doses of 32.5 and 42.5 Gy in five fractions. Planning target volume (PTV) encloses the clinical target volume (CTV) with a 3 mm margin at the prostate-rectal interface and 5 mm elsewhere. The VMAT delivery is modeled using 180 equi-spaced static beams. Intrafraction prostate motion is simulated in the plan by displacing the beam isocenter at each beam assuming rigid organ motion according to a previously recorded trajectory of the transponder centroid. The cumulative dose delivered in each fraction is summed over all beams. Two sets of 57 prostate motion trajectories were randomly selected to form a learning and a testing dataset. Dosimetric end points including CTV D95%, rectum wall D1cc, bladder wall D1cc, and urethra Dmax, are analyzed against motion characteristics including the maximum amplitude of the anterior-posterior (AP), superior-inferior (SI), and left-right components. Action thresholds are triggered when intrafraction motion causes any violations of dose constraints to target and organs at risk (OAR), so that treatment is interrupted and patient is repositioned. Results: Intrafraction motion has a little effect on CTV D95%, indicating PTV margins are adequate. Tight posterior and inferior action thresholds around 1 mm need to be set in a patient specific manner to spare organs at risk, especially when the prescription dose is 42.5 Gy. Advantages of setting patient specific action thresholds are to reduce false positive alarms by 25% when prescription dose is low, and

  11. Exploring Volumetrically Indexed Cups

    ERIC Educational Resources Information Center

    Jones, Dustin L.

    2011-01-01

    This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup "n" is equal to "n" times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to…

  12. An Experimental Determination of Thermodynamic Values

    ERIC Educational Resources Information Center

    Antony, Erling; Muccianti, Christine; Vogel, Tracy

    2012-01-01

    Measurements have been added to an old demonstration of chemical equilibria allowing the determination of thermodynamic constants. The experiment allows the students an opportunity to merge qualitative observations associated with Le Chatelier's principle and thermodynamic calculations using graphical techniques. (Contains 4 figures.)

  13. Molecular Diffusion Coefficients: Experimental Determination and Demonstration.

    ERIC Educational Resources Information Center

    Fate, Gwendolyn; Lynn, David G.

    1990-01-01

    Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)

  14. The experimental determination of coal models

    SciTech Connect

    Bollinger, K.; Snowden, H.

    1983-06-01

    This paper describes the experimental measurement of coal-mill transfer functions at a 380 Mw steam turbine generator of TransAlta Utilities in Canada. Measurement equipment was used that estimated the parameters of the transfer functions from digitized transients obtained during on-site tests. These preliminary tests were part of a sequence of tests that were undertaken to evaluate the use of feedforward control to maintain the output temperature of the coal-air mixture at a fixed level. The measurement technique used to obtain the coal-mill transfer functions utilizes Least Squares Parameter Estimation (LSPE) concepts. The microprocessor-based system with the LSPE algorithm enabled the parameters to be obtained while the coal-mill was operating online. The transfer functions obtained during these field tests allowed feedforward controllers to be designed that gave improved performance of the coal-mill.

  15. Experimental determination of ice sublimation energies

    NASA Astrophysics Data System (ADS)

    Luna, R.; Canto, J.; Satorre, M. A.; Domingo, M.

    2011-11-01

    In Astrophysics, the study of ices is important due to the wide range of scenarios in which they are present. Their physical and chemical characteristics play an important role in the study of the interstellar medium (ISM). The assessment of the energy of sublimation allows us to improve our understanding of physical and/or chemical processes that take place where ices are present. The energy of sublimation E_sub is defined as the change of energy between solid and gas phase of certain molecule. This value is important to determinate other thermodynamical parameters such as the reticular energy of ionic compounds, the energy of formation in gas phase from the energy of formation in condensed phase, or to estimate the sublimation rate, which is very important in determining the evolution of surfaces of astrophysical objects.

  16. Magma fragmentation speed: an experimental determination

    NASA Astrophysics Data System (ADS)

    Spieler, O.; Dingwell, D. B.; Alidibirov, M.

    2004-01-01

    The propagation speed of a fragmentation front, combined with the ascent velocity of magma is, in all likelihood, a controlling factor in the dynamics of explosive volcanic eruptions. Direct measurement of the 'fragmentation speed' in natural systems appears to be impossible at present. Fortunately, laboratory experiments can provide information on the propagation speed of the fragmentation front. Here we present the results of fragmentation speed determinations using a so-called 'fragmentation bomb'. These are, to the best of our knowledge, the first in situ fragmentation speed determinations performed on magma. Natural magma samples (Merapi basaltic andesite, Mount St. Helens dacite and Unzen dacite) have been investigated in the temperature range of 20-950°C and at pressures up to 25 MPa. Two techniques have been employed. Firstly, in experiments at 20°C, dynamic pressure transducers were placed above and below the magma samples and the fragmentation speed of the magma sample was derived from an analysis of the decompression curves. Secondly, at elevated temperatures, an alternative technique was introduced and successfully employed. This involved the severing via fragmentation of conducting wires placed within the samples at various heights. Fragmentation speeds are very low, falling in the range of 2-70 m/s and increasing with an increase in the magnitude of the decompression step responsible for the fragmentation. The first high-temperature determination seems consistent with low-temperature results. Implications for explosive volcanism are discussed briefly.

  17. Exploring volumetrically indexed cups

    NASA Astrophysics Data System (ADS)

    Jones, Dustin L.

    2011-03-01

    This article was inspired by a set of 12 cylindrical cups, which are volumetrically indexed; that is to say, the volume of cup n is equal to n times the volume of cup 1. Various sets of volumetrically indexed cylindrical cups are explored. I demonstrate how this children's toy is ripe for mathematical investigation, with connections to geometry, algebra and differential calculus. Students with an understanding of these topics should be able to complete the analysis and related exercises contained herein.

  18. Experimental determination of the effective Taylor dispersivity in a fracture

    SciTech Connect

    Gilardi, J.R.

    1984-06-01

    The applicability and accuracy of the approximation for Taylor Dispersion was experimentally determined for the diffusion of a chemical tracer in flow through a fracture. 12 refs., 16 figs., 10 tabs. (ACR)

  19. A revised and unified pressure-clamp/relaxation theory for studying plant cell water relations with pressure probes: in-situ determination of cell volume for calculation of volumetric elastic modulus and hydraulic conductivity.

    PubMed

    Knipfer, T; Fei, J; Gambetta, G A; Shackel, K A; Matthews, M A

    2014-10-21

    The cell-pressure-probe is a unique tool to study plant water relations in-situ. Inaccuracy in the estimation of cell volume (νo) is the major source of error in the calculation of both cell volumetric elastic modulus (ε) and cell hydraulic conductivity (Lp). Estimates of νo and Lp can be obtained with the pressure-clamp (PC) and pressure-relaxation (PR) methods. In theory, both methods should result in comparable νo and Lp estimates, but this has not been the case. In this study, the existing νo-theories for PC and PR methods were reviewed and clarified. A revised νo-theory was developed that is equally valid for the PC and PR methods. The revised theory was used to determine νo for two extreme scenarios of solute mixing between the experimental cell and sap in the pressure probe microcapillary. Using a fully automated cell-pressure-probe (ACPP) on leaf epidermal cells of Tradescantia virginiana, the validity of the revised theory was tested with experimental data. Calculated νo values from both methods were in the range of optically determined νo (=1.1-5.0nL) for T. virginiana. However, the PC method produced a systematically lower (21%) calculated νo compared to the PR method. Effects of solute mixing could only explain a potential error in calculated νo of <3%. For both methods, this discrepancy in νo was almost identical to the discrepancy in the measured ratio of ΔV/ΔP (total change in microcapillary sap volume versus corresponding change in cell turgor) of 19%, which is a fundamental parameter in calculating νo. It followed from the revised theory that the ratio of ΔV/ΔP was inversely related to the solute reflection coefficient. This highlighted that treating the experimental cell as an ideal osmometer in both methods is potentially not correct. Effects of non-ideal osmotic behavior by transmembrane solute movement may be minimized in the PR as compared to the PC method. PMID:24907672

  20. Geometrical constraint experimental determination of Raman lidar overlap profile.

    PubMed

    Li, Jian; Li, Chengcai; Zhao, Yiming; Li, Jing; Chu, Yiqi

    2016-06-20

    A simple experimental method to determine the overlap profile of Raman lidar is presented in this paper. Based on Mie and Raman backscattering signals and a geometrically constrained condition, the overlap profile of a Raman lidar system can be determined. Our approach simultaneously retrieves the lidar ratio of aerosols, which is one of the most important sources of uncertainty in the overlap profile determination. The results indicate that the overlap factor is significantly influenced by the lidar ratio in experimental methods. A representative case study indicates that the correction of the overlap profile obtained by this method is practical and feasible. PMID:27409119

  1. Semi-Quantitative vs. Volumetric Determination of Endolymphatic Space in Menière’s Disease Using Endolymphatic Hydrops 3T-HR-MRI after Intravenous Gadolinium Injection

    PubMed Central

    Homann, Georg; Vieth, Volker; Weiss, Daniel; Nikolaou, Konstantin; Heindel, Walter; Notohamiprodjo, Mike; Böckenfeld, Yvonne

    2015-01-01

    Magnetic resonance imaging enhances the clinical diagnosis of Menière's disease. This is accomplished by in vivo detection of endolymphatic hydrops, which are graded using different semi-quantitative grading systems. We evaluated an established, semi-quantitative endolymphatic hydrops score and with a quantitative method for volumetric assessment of the endolymphatic size. 11 patients with Menière's disease and 2 healthy subjects underwent high resolution endolymphatic hydrops 3 Tesla MRI with highly T2 weighted FLAIR and T2DRIVE sequences. The degree of endolymphatic hydrops was rated semi-quantitatively and compared to the results of 3D-volumetry. Moreover, the grade of endolymphatic hydrops was correlated with pure tone audiometry. Semi-quantitative grading and volumetric evaluation of the endolymphatic hydrops are in accordance (r = 0.92) and the grade of endolymphatic hydrops correlates with pure tone audiometry. Patients with a sickness duration of ≥ 30 months showed a significant higher total labyrinth fluid volume (p = 0.03). Fast, semi-quantitative evaluation of endolymphatic hydrops is highly reliable compared to quantitative/volumetric assessment. Endolymphatic space is significantly higher in patients with longer sickness duration. PMID:25768940

  2. Experimental determination of thermal properties of alluvial soil

    NASA Astrophysics Data System (ADS)

    Kulkarni, N. G.; Bhandarkar, U. V.; Puranik, B. P.; Rao, A. B.

    2016-02-01

    In the present work, thermal conductivity and specific heat of a particular type of alluvial soil used in brick making in a certain region of India (Karad, Maharashtra State) are experimentally determined for later use in the estimation of ground heat loss in clamp type kilns. These properties are determined simultaneously using the steady-state and the transient temperature data measured in the setup constructed for this purpose. Additionally, physical properties of the soil are experimentally determined for use with six models for the prediction of the thermal conductivity of soil. The predictions from the models are compared with the experimental data. A separate data fitting exercise revealed a small temperature dependence of the soil thermal conductivity on the soil mean temperature.

  3. Direct experimental determination of Frisch grid inefficiency in ionization chamber

    NASA Astrophysics Data System (ADS)

    Khriachkov, V. A.; Goverdovski, A. A.; Ketlerov, V. V.; Mitrofanov, V. F.; Semenova, N. N.

    1997-07-01

    The present work describes the method of direct experimental determination of the Frisch grid inefficiency in an ionization chamber. The method is based on analysis of the anode signal after Waveform Digitizer. It is shown that the calculated grid inefficiency value can differ much from the measured ones.

  4. Statistical Evaluation of Experimental Determinations of Neutrino Mass Hierarchy

    SciTech Connect

    X. Qian, A. Tan, W. Wang, J. J. Ling, R. D. McKeown, C. Zhang

    2012-12-01

    Statistical methods of presenting experimental results in constraining the neutrino mass hierarchy (MH) are discussed. Two problems are considered and are related to each other: how to report the findings for observed experimental data, and how to evaluate the ability of a future experiment to determine the neutrino mass hierarchy, namely, sensitivity of the experiment. For the first problem where experimental data have already been observed, the classical statistical analysis involves constructing confidence intervals for the parameter {Delta}m{sup 2}{sub 32}. These intervals are deduced from the parent distribution of the estimation of {Delta}m{sup 2}{sub 32} based on experimental data. Due to existing experimental constraints on |{Delta}m{sup 2}{sub 32}|, the estimation of {Delta}m{sup 2}{sub 32} is better approximated by a Bernoulli distribution (a Binomial distribution with 1 trial) rather than a Gaussian distribution. Therefore, the Feldman-Cousins approach needs to be used instead of the Gaussian approximation in constructing confidence intervals. Furthermore, as a result of the definition of confidence intervals, even if it is correctly constructed, its confidence level does not directly reflect how much one hypothesis of the MH is supported by the data rather than the other hypothesis. We thus describe a Bayesian approach that quantifies the evidence provided by the observed experimental data through the (posterior) probability that either one hypothesis of MH is true. This Bayesian presentation of observed experimental results is then used to develop several metrics to assess the sensitivity of future experiments. Illustrations are made using a simple example with a confined parameter space, which approximates the MH determination problem with experimental constraints on the |{Delta}m{sup 2}{sub 32}|.

  5. Direct experimental determination of voltage across high-low junctions

    NASA Technical Reports Server (NTRS)

    Daud, T.; Lindholm, F. A.

    1986-01-01

    High-low (HL) junctions form a part of many semiconductor devices, including back surface field solar cells. A first experimental determination and interpretation of the voltage across the HL junction under low- and high-injection conditions is presented as a function of the voltage across a nearby p/n junction. Theoretical analysis from first principles is shown to bear well on the experimental results. In addition, a test structure is proposed for measurement of the effective surface recombination velocity at the HL junctions.

  6. Flexible Volumetric Structure

    NASA Technical Reports Server (NTRS)

    Cagle, Christopher M. (Inventor); Schlecht, Robin W. (Inventor)

    2014-01-01

    A flexible volumetric structure has a first spring that defines a three-dimensional volume and includes a serpentine structure elongatable and compressible along a length thereof. A second spring is coupled to at least one outboard edge region of the first spring. The second spring is a sheet-like structure capable of elongation along an in-plane dimension thereof. The second spring is oriented such that its in-plane dimension is aligned with the length of the first spring's serpentine structure.

  7. Volumetric Muscle Loss.

    PubMed

    Pollot, Beth E; Corona, Benjamin T

    2016-01-01

    Volumetric muscle loss (VML) injury is prevalent in severe extremity trauma and is an emerging focus area among orthopedic and regenerative medicine fields. VML injuries are the result of an abrupt, frank loss of tissue and therefore of different etiology from other standard rodent injury models to include eccentric contraction, ischemia reperfusion, crush, and freeze injury. The current focus of many VML-related research efforts is to regenerate the lost muscle tissue and thereby improve muscle strength. Herein, we describe a VML model in the anterior compartment of the hindlimb that is permissible to repeated neuromuscular strength assessments and is validated in mouse, rat, and pig. PMID:27492162

  8. Experimental determination of satellite bolted joints thermal resistance

    NASA Technical Reports Server (NTRS)

    Mantelli, Marcia Barbosa Henriques; Basto, Jose Edson

    1990-01-01

    The thermal resistance was experimentally determined of the bolted joints of the first Brazilian satellite (SCD 01). These joints, used to connect the satellite structural panels, are reproduced in an experimental apparatus, keeping, as much as possible, the actual dimensions and materials. A controlled amount of heat is forced to pass through the joint and the difference of temperature between the panels is measured. The tests are conducted in a vacuum chamber with liquid nitrogen cooled walls, that simulates the space environment. Experimental procedures are used to avoid much heat losses, which are carefully calculated. Important observations about the behavior of the joint thermal resistance with the variation of the mean temperature are made.

  9. Treatment Planning and Volumetric Response Assessment for Yttrium-90 Radioembolization: Semiautomated Determination of Liver Volume and Volume of Tumor Necrosis in Patients with Hepatic Malignancy

    SciTech Connect

    Monsky, Wayne L.; Garza, Armando S.; Kim, Isaac; Loh, Shaun; Lin, Tzu-Chun; Li Chinshang; Fisher, Jerron; Sandhu, Parmbir; Sidhar, Vishal; Chaudhari, Abhijit J.; Lin, Frank; Deutsch, Larry-Stuart; Badawi, Ramsey D.

    2011-04-15

    Purpose: The primary purpose of this study was to demonstrate intraobserver/interobserver reproducibility for novel semiautomated measurements of hepatic volume used for Yttrium-90 dose calculations as well as whole-liver and necrotic-liver (hypodense/nonenhancing) tumor volume after radioembolization. The secondary aim was to provide initial comparisons of tumor volumetric measurements with linear measurements, as defined by Response Evaluation Criteria in Solid Tumors criteria, and survival outcomes. Methods: Between 2006 and 2009, 23 consecutive radioembolization procedures were performed for 14 cases of hepatocellular carcinoma and 9 cases of hepatic metastases. Baseline and follow-up computed tomography obtained 1 month after treatment were retrospectively analyzed. Three observers measured liver, whole-tumor, and tumor-necrosis volumes twice using semiautomated software. Results: Good intraobserver/interobserver reproducibility was demonstrated (intraclass correlation [ICC] > 0.9) for tumor and liver volumes. Semiautomated measurements of liver volumes were statistically similar to those obtained with manual tracing (ICC = 0.868), but they required significantly less time to perform (p < 0.0001, ICC = 0.088). There was a positive association between change in linear tumor measurements and whole-tumor volume (p < 0.0001). However, linear measurements did not correlate with volume of necrosis (p > 0.05). Dose, change in tumor diameters, tumor volume, and necrotic volume did not correlate with survival (p > 0.05 in all instances). However, Kaplan-Meier curves suggest that a >10% increase in necrotic volume correlated with survival (p = 0.0472). Conclusion: Semiautomated volumetric analysis of liver, whole-tumor, and tumor-necrosis volume can be performed with good intraobserver/interobserver reproducibility. In this small retrospective study, measurements of tumor necrosis were suggested to correlate with survival.

  10. Method of fission heat flux determination from experimental data

    SciTech Connect

    Paxton, F.A.

    1999-09-28

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  11. Method of fission heat flux determination from experimental data

    DOEpatents

    Paxton, Frank A.

    1999-01-01

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  12. A unique method of neutron flux determination from experimental data

    SciTech Connect

    Paxton, Frank A.

    1998-12-01

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  13. Delay Discounting of Self-Determined and Experimenter-Determined Commodities

    ERIC Educational Resources Information Center

    Weatherly, Jeffrey N.; Gudding, Jennifer; Derenne, Adam

    2010-01-01

    Research suggests that individuals prefer self-determined reinforcers over experimenter-determined ones. The present study had 518 college students complete a delay-discounting task in which the commodity was cigarettes, a grocery store gift card, casino tokens, cash, or the choice of the four. The least amount of delay discounting was observed…

  14. Experimental Determination of Hydraulic Properties of Unsaturated Calcarenites

    NASA Astrophysics Data System (ADS)

    Turturro, Antonietta Celeste; Andriani, Gioacchino Francesco; Clementina Caputo, Maria; Maggi, Sabino

    2013-04-01

    Understanding hydraulic properties is essential in the modeling of flow and solute transport through the vadose zone, to which problems of soil and groundwater pollution are related. The vadose zone, in fact, is of great importance in controlling groundwater recharge and transport of contaminants into and through the subsoil. The aim of this work is to determine experimentally in laboratory the hydraulic properties of unsaturated calcarenites using an approach including petrophysical determinations and methods for measuring water retention. For this purpose, samples of calcarenites belonging to the Calcarenite di Gravina Fm.(Pliocene-early Pleistocene), came from two different quarry districts located in Southern Italy (Canosa di Puglia and Massafra), were utilized. The water retention function, θ(h), which binds the water content, θ, to water potential, h, was determined in the laboratory by means two different experimental methods: the WP4-T psychrometer and the suction table. At last, a simple mathematical equation represented by van Genuchten's model is fitted to the experimental data and the unknown empirical parameters of this model are determined. Textural analysis on thin sections using optical petrographic microscopy and evaluation of total and effective porosity by means of standard geotechnical laboratory tests, mercury intrusion porosimetry and image analysis were also performed. In particular, a comparison between mercury porosimetry data and results of photomicrograph computer analysis through the methods of quantitative stereology was employed for providing pore size distributions. The results of this study identify the relationship between the hydraulic behavior, described by the water retention function, and pore size distribution for the calcarenites that are not easy to hydraulically characterize. This relationship could represent a useful tool to infer the unsaturated hydraulic properties of calcarenites and in general this approach could be

  15. Direct experimental determination of spectral densities of molecular complexes

    SciTech Connect

    Pachón, Leonardo A.; Brumer, Paul

    2014-11-07

    Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need to be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

  16. THEORETICAL CHALLENGE TO THE EXPERIMENTALLY DETERMINED GEOMETRICAL STRUCTURE OF DIMETHYLSILAETHYLENE

    SciTech Connect

    Yoshioka, Yasunori; Goddard, John D.; Schaefer, III, Henry F.

    1980-09-01

    The equilibrium geometries of (CH{sub 3}){sub 2}Si=CH{sub 2} and H{sub 2}Si=CH{sub 2} have been determined at the self-consistent-field level of electronic structure theory using a double zeta basis set augmented with d functions on all heavy atoms. For the parent silaethylene, large scale configuration interaction (6920 configurations) demonstrates that electron correlation effects do not qualitatively alter the predicted structure. On this basis it is concluded that the experimental electron diffraction geometry of Mahaffy, Gutowsky, and Montgomery is likely to be seriously incorrect. Specifically the theoretical prediction for the dimethylsilaethylene Si=C distance is 1.692 {Angstrom}, while the range of experimental values presented was 1.815 - 1.835 {Angstrom}.

  17. An experimentally determined evolutionary model dramatically improves phylogenetic fit.

    PubMed

    Bloom, Jesse D

    2014-08-01

    All modern approaches to molecular phylogenetics require a quantitative model for how genes evolve. Unfortunately, existing evolutionary models do not realistically represent the site-heterogeneous selection that governs actual sequence change. Attempts to remedy this problem have involved augmenting these models with a burgeoning number of free parameters. Here, I demonstrate an alternative: Experimental determination of a parameter-free evolutionary model via mutagenesis, functional selection, and deep sequencing. Using this strategy, I create an evolutionary model for influenza nucleoprotein that describes the gene phylogeny far better than existing models with dozens or even hundreds of free parameters. Emerging high-throughput experimental strategies such as the one employed here provide fundamentally new information that has the potential to transform the sensitivity of phylogenetic and genetic analyses. PMID:24859245

  18. Direct experimental determination of spectral densities of molecular complexes

    NASA Astrophysics Data System (ADS)

    Pachón, Leonardo A.; Brumer, Paul

    2014-11-01

    Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need to be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

  19. Experimental determination of core electron deformation in diamond.

    PubMed

    Bindzus, Niels; Straasø, Tine; Wahlberg, Nanna; Becker, Jacob; Bjerg, Lasse; Lock, Nina; Dippel, Ann Christin; Iversen, Bo B

    2014-01-01

    Synchrotron powder X-ray diffraction data are used to determine the core electron deformation of diamond. Core shell contraction inherently linked to covalent bond formation is observed in close correspondence with theoretical predictions. Accordingly, a precise and physically sound reconstruction of the electron density in diamond necessitates the use of an extended multipolar model, which abandons the assumption of an inert core. The present investigation is facilitated by negligible model bias in the extraction of structure factors, which is accomplished by simultaneous multipolar and Rietveld refinement accurately determining an atomic displacement parameter (ADP) of 0.00181 (1) Å(2). The deconvolution of thermal motion is a critical step in experimental core electron polarization studies, and for diamond it is imperative to exploit the monatomic crystal structure by implementing Wilson plots in determination of the ADP. This empowers the electron-density analysis to precisely administer both the deconvolution of thermal motion and the employment of the extended multipolar model on an experimental basis. PMID:24419169

  20. Verification of Experimental Techniques for Flow Surface Determination

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Lerch, Bradley A.; Ellis, John R.; Robinson, David N.

    1996-01-01

    The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory. However, at elevated temperatures, material response can be highly time-dependent, which is beyond the realm of classical plasticity. Viscoplastic theories have been developed for just such conditions. In viscoplastic theories, the flow law is given in terms of inelastic strain rate rather than the inelastic strain increment used in time-independent plasticity. Thus, surfaces of constant inelastic strain rate or flow surfaces are to viscoplastic theories what yield surfaces are to classical plasticity. The purpose of the work reported herein was to validate experimental procedures for determining flow surfaces at elevated temperatures. Since experimental procedures for determining yield surfaces in axial/torsional stress space are well established, they were employed -- except inelastic strain rates were used rather than total inelastic strains. In yield-surface determinations, the use of small-offset definitions of yield minimizes the change of material state and allows multiple loadings to be applied to a single specimen. The key to the experiments reported here was precise, decoupled measurement of axial and torsional strain. With this requirement in mind, the performance of a high-temperature multi-axial extensometer was evaluated by comparing its results with strain gauge results at room temperature. Both the extensometer and strain gauges gave nearly identical yield surfaces (both initial and subsequent) for type 316 stainless steel (316 SS). The extensometer also successfully determined flow surfaces for 316 SS at 650 C. Furthermore, to judge the applicability of the technique for composite materials, yield surfaces were determined for unidirectional tungsten/Kanthal (Fe-Cr-Al).

  1. Experimental Investigation of the Momentum Method for Determining Profile Drag

    NASA Technical Reports Server (NTRS)

    Goett, Harry J

    1939-01-01

    Report presents the results of an experimental investigation conducted in the full-scale tunnel to determine the accuracy of the Jones and the Betz equations for computing profile drag from total and static pressure surveys in the wake of wings. Surveys were made behind 6 by 8-foot airfoils of the NACA 0009, and 0018 sections at zero lift and behind the NACA 0012 at positive lifts. The surveys were made at various spanwise positions and at distances behind the airfoil ranging from 0.05c to 3.00c.

  2. Experimental determination of size distributions: analyzing proper sample sizes

    NASA Astrophysics Data System (ADS)

    Buffo, A.; Alopaeus, V.

    2016-04-01

    The measurement of various particle size distributions is a crucial aspect for many applications in the process industry. Size distribution is often related to the final product quality, as in crystallization or polymerization. In other cases it is related to the correct evaluation of heat and mass transfer, as well as reaction rates, depending on the interfacial area between the different phases or to the assessment of yield stresses of polycrystalline metals/alloys samples. The experimental determination of such distributions often involves laborious sampling procedures and the statistical significance of the outcome is rarely investigated. In this work, we propose a novel rigorous tool, based on inferential statistics, to determine the number of samples needed to obtain reliable measurements of size distribution, according to specific requirements defined a priori. Such methodology can be adopted regardless of the measurement technique used.

  3. SU-F-BRE-07: Experimental Validation of a Lung SBRT Technique Using a Novel, True Volumetric Plenoptic-Plastic-Scintillator Detector

    SciTech Connect

    Goulet, M; Rilling, M; Gingras, L; Beaulieu, L; Archambault, L; Beddar, S

    2014-06-15

    Purpose: Lung SBRT is being used by an increasing number of clinics, including our center which recently treated its first patient. In order to validate this technique, the 3D dose distribution of the SBRT plan was measured using a previously developed 3D detector based on plenoptic camera and plastic scintillator technology. The excellent agreement between the detector measurement and the expected dose from the treatment planning system Pinnacle{sup 3} shows great promise and amply justify the development of the technique. Methods: The SBRT treatment comprised 8 non-coplanar 6MV photon fields with a mean field size of 12 cm{sup 2} at isocentre and a total prescription dose of 12Gy per fraction for a total of 48Gy. The 3D detector was composed of a 10×10×10 cm{sup 2} EJ-260 water-equivalent plastic scintillator embedded inside a truncated cylindrical acrylic phantom of 10cm radius. The scintillation light was recorded using a static R5 light-field camera and the 3D dose was reconstructed at a 2mm resolution in all 3 dimensions using an iterative backprojection algorithm. Results: The whole 3D dose distribution was recorded at a rate of one acquisition per second. The mean absolute dose difference between the detector and Pinnacle{sup 3} was 1.3% over the region with more than 10% of the maximum dose. 3D gamma tests performed over the same region yield passing rates of 98.8% and 96.6% with criteria of 3%/1mm and 2%/1mm, respectively. Conclusion: Experimental results showed that our beam modeling and treatment planning system calculation was adequate for the safe administration of small field/high dose techniques such as SBRT. Moreover, because of the real-time capability of the detector, further validation of small field rotational, dynamic or gated technique can be monitored or verified by this system.

  4. Experimental determination of the dynamics of vacuum impregnation of apples.

    PubMed

    Laurindo, J B; Stringari, G B; Paes, S S; Carciofi, B A M

    2007-10-01

    Vacuum impregnation (VI) is a food processing method by which air and native solution are removed from porous spaces within a food and replaced by an external solution. In this study, an experimental device based on a previous design was built, including some modifications, in order to investigate the dynamics of the VI process. The device measured the net force exerted by a food sample submitted to the VI process using a load cell. The influence of the vacuum level and sample geometry was well quantified by the experimental procedure and the modified equipment using apple samples (Fuji var.) as a food model. The results indicated that the experimental device proposed in this study, together with the suggested procedure, is a useful tool to investigate the dynamics of VI processes. It is robust and versatile, and has the advantage of not requiring the determination of the water evaporated during the VI process in a separate experiment, which represents an increase in the accuracy of the results. PMID:17995607

  5. Direct experimental determination of the atomic structure at internal interfaces

    SciTech Connect

    Browning, N.D. |; Pennycook, S.J.

    1995-07-01

    A crucial first step in understanding the effect that internal interfaces have on the properties of materials is the ability to determine the atomic structure at the interface. As interfaces can contain atomic disorder, dislocations, segregated impurities and interphases, sensitivity to all of these features is essential for complete experimental characterization. By combining Z-contrast imaging and electron energy loss spectroscopy (EELS) in a dedicated scanning transmission electron microscope (STEM), the ability to probe the structure, bonding and composition at interfaces with the necessary atomic resolution has been obtained. Experimental conditions can be controlled to provide, simultaneously, both incoherent imaging and spectroscopy. This enables interface structures observed in the image to be interpreted intuitively and the bonding in a specified atomic column to be probed directly by EELS. The bonding and structure information can then be correlated using bond-valence sum analysis to produce structural models. This technique is demonstrated for 25{degrees}, 36{degrees} and 67{degrees} symmetric and 45{degrees} and 25{degrees} asymmetric [001] tilt grain boundaries in SrTiO{sub 3} The structures of both types of boundary were found to contain partially occupied columns in the boundary plane. From these experimental results, a series of structural units were identified which could be combined, using continuity of gain boundary structure principles, to construct all [001] tilt boundaries in SrTiO{sub 3}. Using these models, the ability of this technique to address the issues of vacancies and dopant segregation at grain boundaries in electroceramics is discussed.

  6. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  7. Experimental determination of group flux control coefficients in metabolic networks

    SciTech Connect

    Simpson, T.W.; Shimizu, Hiroshi; Stephanopoulos, G.

    1998-04-20

    Grouping of reactions around key metabolite branch points can facilitate the study of metabolic control of complex metabolic networks. This top-down Metabolic Control Analysis is exemplified through the introduction of group control coefficients whose magnitudes provide a measure of the relative impact of each reaction group on the overall network flux, as well as on the overall network stability, following enzymatic amplification. In this article, the authors demonstrate the application of previously developed theory to the determination of group flux control coefficients. Experimental data for the changes in metabolic fluxes obtained in response to the introduction of six different environmental perturbations are used to determine the group flux control coefficients for three reaction groups formed around the phosphoenolpyruvate/pyruvate branch point. The consistency of the obtained group flux control coefficient estimates is systematically analyzed to ensure that all necessary conditions are satisfied. The magnitudes of the determined control coefficients suggest that the control of lysine production flux in Corynebacterium glutamicum cells at a growth base state resides within the lysine biosynthetic pathway that begins with the PEP/PYR carboxylation anaplorotic pathway.

  8. Volumetric Modulated Arc Therapy Planning for Primary Prostate Cancer With Selective Intraprostatic Boost Determined by {sup 18}F-Choline PET/CT

    SciTech Connect

    Kuang, Yu; Wu, Lili; Hirata, Emily; Miyazaki, Kyle; Sato, Miles

    2015-04-01

    Purpose: This study evaluated expected tumor control and normal tissue toxicity for prostate volumetric modulated arc therapy (VMAT) with and without radiation boosts to an intraprostatically dominant lesion (IDL), defined by {sup 18}F-choline positron emission tomography/computed tomography (PET/CT). Methods and Materials: Thirty patients with localized prostate cancer underwent {sup 18}F-choline PET/CT before treatment. Two VMAT plans, plan{sub 79} {sub Gy} and plan{sub 100-105} {sub Gy}, were compared for each patient. The whole-prostate planning target volume (PTV{sub prostate}) prescription was 79 Gy in both plans, but plan{sub 100-105} {sub Gy} added simultaneous boost doses of 100 Gy and 105 Gy to the IDL, defined by 60% and 70% of maximum prostatic uptake on {sup 18}F-choline PET (IDL{sub suv60%} and IDL{sub suv70%}, respectively, with IDL{sub suv70%} nested inside IDL{sub suv60%} to potentially enhance tumor specificity of the maximum point dose). Plan evaluations included histopathological correspondence, isodose distributions, dose-volume histograms, tumor control probability (TCP), and normal tissue complication probability (NTCP). Results: Planning objectives and dose constraints proved feasible in 30 of 30 cases. Prostate sextant histopathology was available for 28 cases, confirming that IDL{sub suv60%} adequately covered all tumor-bearing prostate sextants in 27 cases and provided partial coverage in 1 case. Plan{sub 100-105} {sub Gy} had significantly higher TCP than plan{sub 79} {sub Gy} across all prostate regions for α/β ratios ranging from 1.5 Gy to 10 Gy (P<.001 for each case). There were no significant differences in bladder and femoral head NTCP between plans and slightly lower rectal NTCP (endpoint: grade ≥ 2 late toxicity or rectal bleeding) was found for plan{sub 100-105} {sub Gy}. Conclusions: VMAT can potentially increase the likelihood of tumor control in primary prostate cancer while observing normal tissue tolerances through

  9. Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil - ongoing activities in Working Project 2.5 of COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Slob, Evert

    2015-04-01

    This work will endeavour to review the current status of research activities carried out in Working Project 2.5 'Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil' within the framework of Working Group 2 'GPR surveying of pavements, bridges, tunnels and buildings; underground utility and void sensing' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). Overall, the Project includes 55 Participants from over 21 countries representing 33 Institutions. By considering the type of Institution, a percentage of 64% (35 units) comes from the academic world, while Research Centres and Companies include, respectively, the 27% (15 units) and 9% (5 units) of Institutions. Geographically speaking, Europe is the continent most represented with 18 out of 21 countries, followed by Africa (2 countries) and Asia (1 country). In more details and according to the Europe sub-regions classification provided by the United Nations, Southern Europe includes 39% of countries, Western Europe 27%, while Northern and Eastern Europe are equally present with 17% of countries each. Relying on the main purpose of Working Project 2.5, namely, the ground-penetrating radar-based evaluation of volumetric water content in structures, substructures , foundations, and soils, four main issues have been overall addressed over the first two years of activities. The first one, has been related to provide a comprehensive state of the art on the topic, due to the wide-ranging applications covered in the main disciplines of civil engineering, differently demanding. In this regard, two main publications reviewing the state of the art have been produced [1,2]. Secondly, discussions among Working Group Chairs and other Working Project Leaders have been undertaken and encouraged to avoid the risk of overlapping amongst similar topics from other Working

  10. Experimental determination of airplane mass and inertial characteristics

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1974-01-01

    Current practices are evaluated for experimentally determining airplane center of gravity, moments of inertia, and products of inertia. The techniques discussed are applicable to bodies other than airplanes. In pitching- and rolling-moment-of-inertia investigations with the airplane mounted on and pivoted about knife edges, the nonlinear spring moments that occur at large amplitudes of oscillation can be eliminated by using the proper spring configuration. The single-point suspension double-pendulum technique for obtaining yawing moments of inertia, products of inertia, and the inclination of the principal axis provides accurate results from yaw-mode oscillation data, provided that the sway-mode effects are minimized by proper suspension rig design. Rocking-mode effects in the data can be isolated.

  11. Experimental determination of three dimensional liquid rocket nozzle admittances.

    NASA Technical Reports Server (NTRS)

    Zinn, B. T.; Bell, W. A.; Daniel, B. R.; Smith, A. J., Jr.

    1972-01-01

    The three dimensional nozzle admittance, an important parameter in combustion instability studies, was experimentally measured for several nozzle configurations. The admittance values were obtained using a modification of the classical impedance tube technique. The modified impedance tube method measures the admittance of a duct termination in the presence of one dimensional mean flow and three dimensional oscillations. Values of the nozzle admittance were obtained from pressure amplitude measurements taken at discrete points along the length of the tube. To determine the effects of nozzle geometry, nozzles were tested with half-angles of 15, 30, and 45 degrees and entrance Mach numbers of 0.08, 0.16, and 0.20. The admittance results are presented as functions of nondimensional frequency for mixed first tangential-longitudinal modes. These results are compared with available theoretical predictions and favorable agreement between theory and experiment is shown.

  12. Evolutionary determination of experimental parameters for ptychographical imaging

    SciTech Connect

    Shenfield, Alex; Rodenburg, John M.

    2011-06-15

    The Ptychographical Iterative Engine (PIE) algorithm is a recently developed novel method of Coherent Diffractive Imaging (CDI) that uses multiple overlapping diffraction patterns to reconstruct an image. This method has successfully produced high quality reconstructions at both optical and X-ray wavelengths but the need for accurate knowledge of the probe positions is currently a limiting factor in the production of high resolution reconstructions at electron wavelengths. This paper examines the shape of the search landscape for producing optimal image reconstructions in the specific case of electron microscopy and then shows how evolutionary search methods can be used to reliably determine experimental parameters in the electron microscopy case (such as the spherical aberration in the probe and the probe positions).

  13. Methods for determining the CO2 sorption capacity of coal: Experimental and theoretical high pressure isotherms

    NASA Astrophysics Data System (ADS)

    Weishauptová, Zuzana; Přibyl, Oldřich

    2016-04-01

    volumetric sorption apparatus working within the temperature range of 30°C to 65°C at a pressure of 15 MPa was used for measuring the CO2 high pressure isotherms. The data for constructing the theoretical high pressure isotherm were obtained from a gravimetric sorption apparatus and a mercury porosimeter. The Dubinin, Langmuir, and Gibbs equations were used for evaluating the data. The measured experimental high pressure isotherms were compared with the theoretical isotherms using linearized Langmuir isotherms. The Langmuir parameters confirmed a reasonable correspondence between the sorption capacities derived using the two approaches applied here.

  14. Volumetric PIV with a Plenoptic Camera

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Fahringer, Tim

    2012-11-01

    Plenoptic cameras have received attention recently due to their ability to computationally refocus an image after it has been acquired. We describe the development of a robust, economical and easy-to-use volumetric PIV technique using a unique plenoptic camera built in our laboratory. The tomographic MART algorithm is used to reconstruct pairs of 3D particle volumes with velocity determined using conventional cross-correlation techniques. 3D/3C velocity measurements (volumetric dimensions of 2 . 8 ' ' × 1 . 9 ' ' × 1 . 6 ' ') of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. This work has been supported by the Air Force Office of Scientific Research,(Grant #FA9550-100100576).

  15. Experimentally Determined Interfacial Area Between Immiscible Fluids in Porous Media

    SciTech Connect

    Crandall, Dustin; Niessner, J; Hassanizadeh, S.M; Smith, Duane

    2008-01-01

    When multiple fluids flow through a porous medium, the interaction between the fluid interfaces can be of great importance. While this is widely recognized in practical applications, numerical models often disregard interactios between discrete fluid phases due to the computational complexity. And rightly so, for this level of detail is well beyond most extended Darcy Law relationships. A new model of two-phase flow including the interfacial area has been proposed by Hassarizadeh and Gray based upon thermodynamic principles. A version of this general equation set has been implemented by Nessner and Hassarizadeh. Many of the interfacial parameters required by this equation set have never been determined from experiments. The work presented here is a description of how the interfacial area, capillary pressure, interfacial velocity and interfacial permeability from two-phase flow experiments in porous media experiments can be used to determine the required parameters. This work, while on-going, has shown the possibility of digitizing images within translucent porous media and identifying the location and behavior of interfaces under dynamic conditions. Using the described methods experimentally derived interfacial functions to be used in larger scale simulations are currently being developed. In summary, the following conclusions can be drawn: (1) by mapping a pore-throat geometry onto an image of immiscible fluid flow, the saturation of fluids and the individual interfaces between the fluids can be identified; (2) the resulting saturation profiles of the low velocity drainage flows used in this study are well described by an invasion percolation fractal scaling; (3) the interfacial area between fluids has been observed to increase in a linear fashion during the initial invasion of the non-wetting fluid; and (4) the average capillary pressure within the entire cell and representative elemental volumes were observed to plateau after a small portion of the volume was

  16. Determination of gunshot residues with image analysis: an experimental study.

    PubMed

    Tuğcu, Harun; Yorulmaz, Coşkun; Bayraktaroğlu, Görgün; Uner, Hüseyin Bülent; Karslioğlu, Yildirim; Koç, Sermet; Ulukan, Mustafa Ozer; Celasun, Bülent

    2005-09-01

    In firearm injuries, assessment of the firing range and determination of entrance and exit wounds are important. For this reason, evaluation of the amount and distribution of gunshot residues (GSRs) is necessary. Several methods and techniques for GSR analysis have been developed. Although these methods are relatively sensitive and specific, they may require expensive dedicated equipment. Therefore, a simple, easily applicable, more convenient method is needed. A total of 40 experimental shots were made to calf skin from distances of 0, 2.5, 5, 10, 20, 30, 45, and 60 cm. Eighty samples were taken from the right and left sides of the wounds, and Alizarin Red S dye staining was performed. The amounts of GSR particles were measured with image analysis. GSRs were detected in all shots. The mean size of the distribution area of barium and lead elements around the wound had a significant negative correlation with increasing shooting distance (r = -0.97, p < 0.001). As the distance increased, the amount of GSR decreased, and this decrease rate was nonlinear. Variance analysis suggested significant differences between data groups depending on range (p < 0.001). The image analysis method may solve some of the standardization problems for evaluation of GSRs. GSR detection with the image analysis method does not require experienced personnel and may be a suitable method for scientific studies and for routine purposes. PMID:16261988

  17. Experimental Determination of Chemical Diffusion within Secondary Organic Aerosol Particles

    SciTech Connect

    Abramson, Evan H.; Imre, D.; Beranek, Josef; Wilson, Jacqueline; Zelenyuk, Alla

    2013-02-28

    Formation, properties, transformations, and temporal evolution of secondary organic aerosols (SOA) particles strongly depend on particle phase. Recent experimental evidence from a number of groups indicates that SOA is in a semi-solid phase, the viscosity of which remained unknown. We find that when SOA is made in the presence of vapors of volatile hydrophobic molecules the SOA particles absorb and trap them. Here, we illustrate that it is possible to measure the evaporation rate of these molecules that is determined by their diffusion in SOA, which is then used to calculate a reasonably accurate value for the SOA viscosity. We use pyrene as a tracer molecule and a-pinene SOA as an illustrative case. It takes ~24 hours for half the pyrene to evaporate to yield a viscosity of 10^8 Pa s for a-pinene. This viscosity is consistent with measurements of particle bounce and evaporation rates. We show that viscosity of 10^8 Pa s implies coalescence times of minutes, consistent with the findings that SOA particles are spherical. Similar measurements on aged SOA particles doped with pyrene yield a viscosity of 10^9 Pa s, indicating that hardening occurs with time, which is consistent with observed decrease in water uptake and evaporation rate with aging.

  18. Experimental Techniques Verified for Determining Yield and Flow Surfaces

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Ellis, Rod; Lissenden, Cliff J.

    1998-01-01

    Structural components in aircraft engines are subjected to multiaxial loads when in service. For such components, life prediction methodologies are dependent on the accuracy of the constitutive models that determine the elastic and inelastic portions of a loading cycle. A threshold surface (such as a yield surface) is customarily used to differentiate between reversible and irreversible flow. For elastoplastic materials, a yield surface can be used to delimit the elastic region in a given stress space. The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory, but at elevated temperatures, material response can be highly time dependent. Thus, viscoplastic theories have been developed to account for this time dependency. Since the key to many of these theories is experimental validation, the objective of this work (refs. 1 and 2) at the NASA Lewis Research Center was to verify that current laboratory techniques and equipment are sufficient to determine flow surfaces at elevated temperatures. By probing many times in the axial-torsional stress space, we could define the yield and flow surfaces. A small offset definition of yield (10 me) was used to delineate the boundary between reversible and irreversible behavior so that the material state remained essentially unchanged and multiple probes could be done on the same specimen. The strain was measured with an off-the-shelf multiaxial extensometer that could measure the axial and torsional strains over a wide range of temperatures. The accuracy and resolution of this extensometer was verified by comparing its data with strain gauge data at room temperature. The extensometer was found to have sufficient resolution for these experiments. In addition, the amount of crosstalk (i.e., the accumulation of apparent strain in one direction when strain in the other direction is applied) was found to be negligible. Tubular specimens were induction heated to determine the flow

  19. Experimental determination of boron isotope fractionation in seawater

    NASA Astrophysics Data System (ADS)

    Klochko, K.; Kaufman, A. J.; Yao, W.; Byrne, R. H.; Tossell, J. A.

    2005-12-01

    The boron isotopic composition of marine carbonates is believed to be a useful tracer of seawater pH, which may then be used to reconstruct atmospheric pCO2 through time. Use of this proxy requires an intimate understanding of chemical kinetics and thermodynamic isotope exchange reactions between the two dominant boron-bearing species in seawater: boric acid B(OH)3 and borate ion B(OH)4-, which is preferentially incorporated into the carbonate lattice. However, due to our inability to quantitatively isolate these species from seawater, the magnitude of boron isotope fractionation at different temperatures and salinities has not previously been empirically measured. All paleo-pH studies have relied on the boron isotope equilibrium constant (11-10Kb = 1.0194 at 25°C) estimated theoretically in 1977 by Kakihana and colleagues. Here we present results of empirical determination of the boron isotope equilibrium constant at different temperatures and ionic strengths. The determinations are based on titration of isotopically labeled solutions, containing either 10B(OH)3 or 11B(OH)3, with NaOH. The pH of the titrated solutions is precisely measured using thymol blue indicator absorbance ratios. Differences in solution pH or, equivalently, borate/boric acid pK values between the isotopically substituted solutions, provides the desired equilibrium constant for the reaction: 10B(OH)3 + 11B(OH)4- <=> 11B(OH)3 + 10B(OH)4-. We have performed experiments to assess the influence of the temperature (25 and 40°C), ionic strength (0.05 and 0.7 molar) and medium composition (pure water, 0.6 M KCl, and synthetic seawater) on the isotopic equilibrium constant. Within experimental uncertainty maximum of ±0.002 (1σ), our results show only a weak dependence of the equilibrium constant on the above factors. The boron isotope equilibrium constant in seawater (S = 35) was determined to be 1.0269 ± 0.0013 at 25°C (1σ, n=6), which is in poor agreement with the theoretical basis for all

  20. Recent Experimental Advances to Determine (noble) Gases in Waters

    NASA Astrophysics Data System (ADS)

    Kipfer, R.; Brennwald, M. S.; Huxol, S.; Mächler, L.; Maden, C.; Vogel, N.; Tomonaga, Y.

    2013-12-01

    In aquatic systems noble gases, radon, and bio-geochemically conservative transient trace gases (SF6, CFCs) are frequently applied to determine water residence times and to reconstruct past environmental and climatic conditions. Recent experimental breakthroughs now enable ● to apply the well-established concepts of terrestrial noble gas geochemistry in waters to the minute water amounts stored in sediment pore space and in fluid inclusions (A), ● to determine gas exchange processes on the bio-geochemical relevant time scales of minutes - hours (B), and ● to separate diffusive and advective gas transport in soil air (C). A. Noble-gas analysis in water samples (< 1 g) facilitates determining the solute transport in the pore space and identifying the origin of bio- and geogenic fluids in (un) consolidated sediments [1]. Advanced techniques that combine crushing and sieving speleothem samples in ultra-high-vacuum to a specific grain size allow to separate air and water-bearing fluid inclusions and thus enables noble-gas-based reconstruction of environmental conditions from water masses as small as 1mg [2]. B. The coupling of noble gas analysis with approaches of gas chromatography permits combined analysis of noble gases and other gases species (e.g., SF6, CFCs, O2, N2) from a single water sample. The new method substantially improves ground water dating by SF6 and CFCs as excess air is quantified from the same sample and hence can adequately be corrected for [3]. Portable membrane-inlet mass spectrometers enable the quasi-continuous and real-time analysis of noble gases and other dissolved gases directly in the field, allowing, for instance, quantification of O2 turnover rates on small time scales [4]. C. New technical developments perfect 222Rn analysis in water by the synchronous the determination of the short-lived 220Rn. The combined 220,222Rn analysis sheds light on the emanation behaviour of radon by identifying soil water content to be the crucial

  1. Volumetric Light-Field Excitation

    PubMed Central

    Schedl, David C.; Bimber, Oliver

    2016-01-01

    We explain how to concentrate light simultaneously at multiple selected volumetric positions by means of a 4D illumination light field. First, to select target objects, a 4D imaging light field is captured. A light field mask is then computed automatically for this selection to avoid illumination of the remaining areas. With one-photon illumination, simultaneous generation of complex volumetric light patterns becomes possible. As a full light-field can be captured and projected simultaneously at the desired exposure and excitation times, short readout and lighting durations are supported. PMID:27363565

  2. Volumetric Light-Field Excitation.

    PubMed

    Schedl, David C; Bimber, Oliver

    2016-01-01

    We explain how to concentrate light simultaneously at multiple selected volumetric positions by means of a 4D illumination light field. First, to select target objects, a 4D imaging light field is captured. A light field mask is then computed automatically for this selection to avoid illumination of the remaining areas. With one-photon illumination, simultaneous generation of complex volumetric light patterns becomes possible. As a full light-field can be captured and projected simultaneously at the desired exposure and excitation times, short readout and lighting durations are supported. PMID:27363565

  3. Rapid mapping of volumetric errors

    SciTech Connect

    Krulewich, D.; Hale, L.; Yordy, D.

    1995-09-13

    This paper describes a relatively inexpensive, fast, and easy to execute approach to mapping the volumetric errors of a machine tool, coordinate measuring machine, or robot. An error map is used to characterize a machine or to improve its accuracy by compensating for the systematic errors. The method consists of three steps: (1) modeling the relationship between the volumetric error and the current state of the machine; (2) acquiring error data based on length measurements throughout the work volume; and (3) optimizing the model to the particular machine.

  4. Multi-scale Heat Kernel based Volumetric Morphology Signature

    PubMed Central

    Wang, Gang; Wang, Yalin

    2015-01-01

    Here we introduce a novel multi-scale heat kernel based regional shape statistical approach that may improve statistical power on the structural analysis. The mechanism of this analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral mesh. In order to capture profound volumetric changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between two boundary surfaces by computing the streamline in the tetrahedral mesh. Secondly, we propose a multi-scale volumetric morphology signature to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the volumetric morphology signatures and generate the internal structure features. The multi-scale and physics based internal structure features may bring stronger statistical power than other traditional methods for volumetric morphology analysis. To validate our method, we apply support vector machine to classify synthetic data and brain MR images. In our experiments, the proposed work outperformed FreeSurfer thickness features in Alzheimer's disease patient and normal control subject classification analysis. PMID:26550613

  5. Experimental Determination of Structure Factors of Titanium Aluminum and Silicon

    NASA Astrophysics Data System (ADS)

    Subramanian, Swaminathan

    Brittleness of TiAl has been attributed to strong directional bonding by a number of researchers. Their predictions have been based on theoretical calculations of electron charge density distribution. It is necessary to complement these predictions by experimental measurements. The work described in this thesis, aimed towards that end, involves measurement of Debye-Waller factors by four circle x-ray diffraction and of structure factors by energy filtered convergent beam electron diffraction CBED methods. Stoichiometric single crystals are required for the measurement of Debye-Waller factors by the four circle x-ray diffraction method. Because of constraints imposed by the phase diagram only non-stoichiometric single crystal of TiAl are available. Measurement of Debye-Waller parameters have been attempted by using aluminum rich TiAl single crystals of compositions Ti54at%Al and Ti56at%Al. The symmetry of L1_0 structure of TiAl dictates that all reflections with Miller indices (hkl) not satisfying the condition h + k = 2n should be extinct. However, during the x-ray diffraction experiments diffuse diffracted intensities were observed for reflections of h + k = 2n + 1 type. This indicates the possibility of occupation of the excess Al atoms on the Ti-sites. If the excess Al atom preferentially occupies one of the Ti-sites, it would lead to the formation of L1_2 type TiAl_3 unit cells within the TiAl lattice. This notion has been further verified by least-squares refinement of the data obtained from Ti54at%Al single crystal. Also Debye-Waller factor values were different for equivalent Ti-sites in TiAl. The CBED method was developed for accurate structure factor measurement. Factors such as limitation due to the angular resolution of the aperture and complex matrix and perturbation treatment of absorption have been considered. Computer routines, incorporating these factors, have been developed for the calculation of CBED patterns and for matching the rocking curves

  6. Experimental methods of determining thermal properties of granite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of thermal properties of granite using the block method is discussed and compared with other methods. Problems that limit the accuracy of contact method in determining thermal properties of porous media are evaluated. Thermal properties of granite is determined in the laboratory with a...

  7. Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil - ongoing activities in Working Project 2.5 of COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Slob, Evert

    2015-04-01

    This work will endeavour to review the current status of research activities carried out in Working Project 2.5 'Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil' within the framework of Working Group 2 'GPR surveying of pavements, bridges, tunnels and buildings; underground utility and void sensing' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). Overall, the Project includes 55 Participants from over 21 countries representing 33 Institutions. By considering the type of Institution, a percentage of 64% (35 units) comes from the academic world, while Research Centres and Companies include, respectively, the 27% (15 units) and 9% (5 units) of Institutions. Geographically speaking, Europe is the continent most represented with 18 out of 21 countries, followed by Africa (2 countries) and Asia (1 country). In more details and according to the Europe sub-regions classification provided by the United Nations, Southern Europe includes 39% of countries, Western Europe 27%, while Northern and Eastern Europe are equally present with 17% of countries each. Relying on the main purpose of Working Project 2.5, namely, the ground-penetrating radar-based evaluation of volumetric water content in structures, substructures , foundations, and soils, four main issues have been overall addressed over the first two years of activities. The first one, has been related to provide a comprehensive state of the art on the topic, due to the wide-ranging applications covered in the main disciplines of civil engineering, differently demanding. In this regard, two main publications reviewing the state of the art have been produced [1,2]. Secondly, discussions among Working Group Chairs and other Working Project Leaders have been undertaken and encouraged to avoid the risk of overlapping amongst similar topics from other Working

  8. Efficient threshold for volumetric segmentation

    NASA Astrophysics Data System (ADS)

    Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel

    2015-07-01

    Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.

  9. Cigarette Experimentation in Mexican Origin Youth: Psychosocial and Genetic Determinants

    PubMed Central

    Wilkinson, Anna V.; Bondy, Melissa L.; Wu, Xifeng; Wang, Jian; Dong, Qiong; D’Amelio, Anthony M.; Prokhorov, Alexander V.; Pu, Xia; Yu, Robert K.; Etzel, Carol J.; Shete, Sanjay; Spitz, Margaret R.

    2011-01-01

    Background Established psychosocial risk factors increase the risk for experimentation among Mexican-origin youth. Now we comprehensively investigate the added contribution of select polymorphisms in candidate genetic pathways associated with sensation seeking, risk taking, and smoking phenotypes to predict experimentation. Methods Participants, (N=1,118 Mexican origin youth) recruited from a large population-based cohort study in Houston, Texas, provided prospective data on cigarette experimentation over three years. Psychosocial data were elicited twice—baseline and final follow-up. Participants were genotyped for 672 functional and tagging variants in the dopamine, serotonin and opioid pathways. Results After adjusting for gender and age, with a Bayesian False Discovery Probability set at 0.8 and prior probability of 0.05, six gene variants were significantly associated with risk of experimentation. After controlling for established risk factors, multivariable analyses revealed that participants with six or more risk alleles were 2.25 (95%CI: 1.62–3.13) times more likely to have experimented since baseline compared to participants with five or fewer. Among committed never smokers (N=872), three genes (OPRM1, SNAP25, HTR1B) were associated with experimentation as were all psychosocial factors. Among susceptible youth (N=246) older age at baseline, living with a smoker, and three different genes (HTR2A, DRD2, SLC6A3) predicted experimentation. Conclusions Our findings, which have implications for development of culturally-specific interventions, need to be validated in other ethnic groups. Impact These results suggest that variations in select genes interact with a cognitive predisposition toward smoking. In susceptible adolescents, the impact of the genetic variants appears to be larger compared to committed never smokers. PMID:22028400

  10. Experimentally determined water storage capacity in the Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Ferot, A.; Bolfan-Casanova, N.

    2010-12-01

    Trace amounts of hydrogen dissolved as defects in nominally anhydrous minerals (NAMs) in the mantle are believed to play a key role in physical and chemical processes in the Earth’s upper mantle. Hence, the estimation of water storage in mantle phases and solubility mechanisms are important in order to better understand the effect of water. Experimental data on water solubility in NAMs are available for upper mantle minerals such as olivine, pyroxenes and garnet. However, the majority of studies are based on the study of single phases, and at temperatures or pressures that are too low for the Earth’s upper mantle. The aim of this study is to constrain the combined effects of pressure, temperature and composition on water solubility in olivine and orthopyroxene under upper mantle conditions. The solubility of water in coexisting orthopyroxene and olivine was investigated by simultaneously synthesizing the two phases at high pressure and high temperature in a multi-anvil press. Experiments were performed under water-saturated conditions in the MSH systems with Fe and Al at 2.5, 5, 7.5 and 9 GPa and temperatures between 1175 and 1400°C. Integrated OH absorbances were determined using polarized infrared spectroscopy on doubly polished thin sections of randomly oriented crystals. Water solubility in olivine increases with pressure and decreases with temperature as has been described previously (Bali et al., 2008). The aluminum content strongly decreases in olivine with pressure from 0.09 wt% at 2.5 GPa and 1250°C to 0.04 wt% at 9 GPa and 1175°C. The incorporation of this trivalent cation in the system enhances water solubility in olivine even if present in trace amounts, however this behavior appears to reverse at high pressure. The effect of temperature on water solubility follows a bell-shaped curve with a maximum solubility in olivine and orthopyroxene at 1250°C. Aluminum is incorporated in orthopyroxene following the Tschermak substitution and strongly

  11. Experimental determination of the dynamics of an acoustically levitated sphere

    SciTech Connect

    Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  12. Aluminum Silicate System: Experimental Determination of the Triple Point.

    PubMed

    Bell, P M

    1963-03-15

    The kyanite-sillimanite-andalusite triple point exists in the pressure-temperature plane at 8 +/- 0.5 kb and 300 +/- 50 degrees C. Reactions are accomplished experimentally with a Bridgman opposed-anvil press (with an external furnace), modified to provide shearing of the sample charges. All three equilibrium boundaries are proved by reversed reactions. PMID:17812984

  13. Experimental determination of the dynamics of an acoustically levitated sphere

    NASA Astrophysics Data System (ADS)

    Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.

    2014-11-01

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  14. Determination of nuclear level densities from experimental information

    SciTech Connect

    Cole, B.J. ); Davidson, N.J. , P.O. Box 88, Manchester M60 1QD ); Miller, H.G. )

    1994-10-01

    A novel information theory based method for determining the density of states from prior information is presented. The energy dependence of the density of states is determined from the observed number of states per energy interval, and model calculations suggest that the method is sufficiently reliable to calculate the thermal properties of nuclei over a reasonable temperature range.

  15. Direct determination of the hit locations from experimental HPGe pulses

    NASA Astrophysics Data System (ADS)

    Désesquelles, P.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Dimmock, M. R.; Lazarus, I. H.; Ljungvall, J.; Nelson, L.; Nga, D.-T.; Nolan, P. J.; Rigby, S. V.; Simpson, J.; Van-Oanh, N.-T.

    2013-11-01

    The gamma-tracking technique optimises the determination of the energy and emission angle of gamma-rays detected by modern segmented HPGe detectors. This entails the determination, using the delivered pulse shapes, of the interaction points of the gamma-ray within the crystal. The direct method presented here allows the localisation of the hits using only a large sample of pulses detected in the actual operating conditions. No external crystal scanning system or pulse shape simulation code is needed. In order to validate this method, it is applied to sets of pulses obtained using the University of Liverpool scanning system. The hit locations are determined by the method with good precision.

  16. Experimental determination of the effective strong coupling constant

    SciTech Connect

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch

    2005-09-15

    We extract an effective strong coupling constant from low Q2 data on the Bjorken sum. Using sum rules, we establish its Q2-behavior over the complete Q2-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  17. Experimental Determination of Multipartite Entanglement with Incomplete Information

    NASA Astrophysics Data System (ADS)

    Aguilar, G. H.; Walborn, S. P.; Ribeiro, P. H. Souto; Céleri, L. C.

    2015-07-01

    Multipartite entanglement is very poorly understood despite all the theoretical and experimental advances of the last decades. Preparation, manipulation, and identification of this resource is crucial for both practical and fundamental reasons. However, the difficulty in the practical manipulation and the complexity of the data generated by measurements on these systems increase rapidly with the number of parties. Therefore, we would like to experimentally address the problem of how much information about multipartite entanglement we can access with incomplete measurements. In particular, it was shown that some types of pure multipartite entangled states can be witnessed without measuring the correlations [M. Walter et al., Science 340, 1205 (2013)] between parties, which is strongly demanding experimentally. We explore this method using an optical setup that permits the preparation and the complete tomographic reconstruction of many inequivalent classes of three- and four-partite entangled states, and compare complete versus incomplete information. We show that the method is useful in practice, even for nonpure states or nonideal measurement conditions.

  18. Volumetric (3D) compressive sensing spectral domain optical coherence tomography

    PubMed Central

    Xu, Daguang; Huang, Yong; Kang, Jin U.

    2014-01-01

    In this work, we proposed a novel three-dimensional compressive sensing (CS) approach for spectral domain optical coherence tomography (SD OCT) volumetric image acquisition and reconstruction. Instead of taking a spectral volume whose size is the same as that of the volumetric image, our method uses a sub set of the original spectral volume that is under-sampled in all three dimensions, which reduces the amount of spectral measurements to less than 20% of that required by the Shan-non/Nyquist theory. The 3D image is recovered from the under-sampled spectral data dimension-by-dimension using the proposed three-step CS reconstruction strategy. Experimental results show that our method can significantly reduce the sampling rate required for a volumetric SD OCT image while preserving the image quality. PMID:25426320

  19. Experimental determination of the effective strong coupling constant

    SciTech Connect

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch

    2007-07-01

    We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  20. Determining the extent of coarticulation: effects of experimental design.

    PubMed

    Gelfer, C E; Bell-Berti, F; Harris, K S

    1989-12-01

    The purpose of this letter is to explore some reasons for what appear to be conflicting reports regarding the nature and extent of anticipatory coarticulation, in general, and anticipatory lip rounding, in particular. Analyses of labial electromyographic and kinematic data using a minimal-pair paradigm allowed for the differentiation of consonantal and vocalic effects, supporting a frame versus a feature-spreading model of coarticulation. It is believed that the apparent conflicts of previous studies of anticipatory coarticulation might be resolved if experimental design made more use of contrastive minimal pairs and relied less on assumptions about feature specifications of phones. PMID:2600314

  1. Combined Volumetric and Surface Registration

    PubMed Central

    Zöllei, Lilla; Fischl, Bruce

    2009-01-01

    In this paper, we propose a novel method for the registration of volumetric images of the brain that optimizes the alignment of both cortical and subcortical structures. In order to achieve this, relevant geometrical information is extracted from a surface-based morph and diffused into the volume using the Navier operator of elasticity, resulting in a volumetric warp that aligns cortical folding patterns. This warp field is then refined with an intensity driven optical flow procedure that registers noncortical regions, while preserving the cortical alignment. The result is a combined surface and volume morph (CVS) that accurately registers both cortical and subcortical regions, establishing a single coordinate system suitable for the entire brain. PMID:19273000

  2. Improved volumetric imaging in tomosynthesis using combined multiaxial sweeps.

    PubMed

    Gersh, Jacob A; Wiant, David B; Best, Ryan C M; Bennett, Marcus C; Munley, Michael T; King, June D; McKee, Mahta M; Baydush, Alan H

    2010-01-01

    This study explores the volumetric reconstruction fidelity attainable using tomosynthesis with a kV imaging system which has a unique ability to rotate isocentrically and with multiple degrees of mechanical freedom. More specifically, we seek to investigate volumetric reconstructions by combining multiple limited-angle rotational image acquisition sweeps. By comparing these reconstructed images with those of a CBCT reconstruction, we can gauge the volumetric fidelity of the reconstructions. In surgical situations, the described tomosynthesis-based system could provide high-quality volumetric imaging without requiring patient motion, even with rotational limitations present. Projections were acquired using the Digital Integrated Brachytherapy Unit, or IBU-D. A phantom was used which contained several spherical objects of varying contrast. Using image projections acquired during isocentric sweeps around the phantom, reconstructions were performed by filtered backprojection. For each image acquisition sweep configuration, a contrasting sphere is analyzed using two metrics and compared to a gold standard CBCT reconstruction. Since the intersection of a reconstructed sphere and an imaging plane is ideally a circle with an eccentricity of zero, the first metric presented compares the effective eccentricity of intersections of reconstructed volumes and imaging planes. As another metric of volumetric reconstruction fidelity, the volume of one of the contrasting spheres was determined using manual contouring. By comparing these manually delineated volumes with a CBCT reconstruction, we can gauge the volumetric fidelity of reconstructions. The configuration which yielded the highest overall volumetric reconstruction fidelity, as determined by effective eccentricities and volumetric contouring, consisted of two orthogonally-offset 60° L-arm sweeps and a single C-arm sweep which shared a pivot point with one the L-arm sweeps. When compared to a similar configuration that

  3. Experimental Determination of Thermal Conductivity of Low-Density Ice

    NASA Technical Reports Server (NTRS)

    Coles, Willard D.

    1954-01-01

    The thermal conductivity of low-density ice has been computed from data obtained in an experimental investigation of the heat transfer and mass transfer by sublimation for an iced surface on a flat plate in a high-velocity tangential air stream. The results are compared with data from several sources on the thermal conductivity of packed snow and solid glaze ice. The results show good agreement with the equations for the thermal conductivity of packed snow as a function of snow density. The agreement of the curves for packed snow near the solid ice regime with the values of thermal conductivity, of ice indicates that the curves are applicable over the entire-ice-density range.

  4. An Experimental Investigation To Determine Interaction Between Rotating Bodies

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Volz, M. P.; Mazuruk, K.

    2003-01-01

    A brass (copper+zinc) wheel, with a 4-in diameter and 1.4 in thick, was used for this investigation. Ceramic ball bearings were used to safely spin the wheel up to 40,000 rpm. The wheel was also electrically insulated from the rest of the armature. For spinning, an air turbine was used. The rotational velocity was measured by two methods: (1) A simple strobe light and (2) a photodiode that detected laser beam pulses as they passed through a slot in the rotating shaft. The magnetic sensor is based on a giant magnetoresistivity, and consists of a balanced bridge circuitry. The position of the sensor was as close as possible to the rim of the wheel. The linear dimension of the sensor is approximately equal to 8 mm so that the offset from the surface is on the order of 15 percent. We did not use any goniometer system, so the accuracy of the angular position is not high, being estimated within a few degrees, with the main uncertainty being the direction of Earth's magnetic field. We attempted to fit the experimental data with the presented theory by selecting the best value for the electrical conductivity of the wheel. The results of this procedure are displayed, where the black dots represent experimental values. A slight misfit on the right shoulder can be due to slight angular misalignment from a 90 degree position. The obtained value for the resistivity is 43 n(OMEGA)m, which compares well with those listed. We can conclude, based on these measurements, that the proposed theory satisfactorily explains our experiments.

  5. Experimental determination of a Viviparus contectus thermometry equation.

    PubMed

    Bugler, Melanie J; Grimes, Stephen T; Leng, Melanie J; Rundle, Simon D; Price, Gregory D; Hooker, Jerry J; Collinson, Margaret E

    2009-09-01

    Experimental measurements of the (18)O/(16)O isotope fractionation between the biogenic aragonite of Viviparus contectus (Gastropoda) and its host freshwater were undertaken to generate a species-specific thermometry equation. The temperature dependence of the fractionation factor and the relationship between Deltadelta(18)O (delta(18)O(carb.) - delta(18)O(water)) and temperature were calculated from specimens maintained under laboratory and field (collection and cage) conditions. The field specimens were grown (Somerset, UK) between August 2007 and August 2008, with water samples and temperature measurements taken monthly. Specimens grown in the laboratory experiment were maintained under constant temperatures (15 degrees C, 20 degrees C and 25 degrees C) with water samples collected weekly. Application of a linear regression to the datasets indicated that the gradients of all three experiments were within experimental error of each other (+/-2 times the standard error); therefore, a combined (laboratory and field data) correlation could be applied. The relationship between Deltadelta(18)O (delta(18)O(carb.) - delta(18)O(water)) and temperature (T) for this combined dataset is given by: T = - 7.43( + 0.87, - 1.13)*Deltadelta18O + 22.89(+/- 2.09) (T is in degrees C, delta(18)O(carb.) is with respect to Vienna Pee Dee Belemnite (VPDB) and delta(18)O(water) is with respect to Vienna Standard Mean Ocean Water (VSMOW). Quoted errors are 2 times standard error).Comparisons made with existing aragonitic thermometry equations reveal that the linear regression for the combined Viviparus contectus equation is within 2 times the standard error of previously reported aragonitic thermometry equations. This suggests there are no species-specific vital effects for Viviparus contectus. Seasonal delta(18)O(carb.) profiles from specimens retrieved from the field cage experiment indicate that during shell secretion the delta(18)O(carb.) of the shell carbonate is not influenced by

  6. Potassium determinations using SEM, FAAS and XRF: some experimental notes

    NASA Astrophysics Data System (ADS)

    Liritzis, I.; et al.

    The calibration of Scanning Electron Microscopy coupled with Energy Dispersive X- Rays Spec-trometry (SEM-EDS) for elemental quantitative analysis is an important task for characterization, provenance and absolute dating purposes. In particular the potassium determination is an im-portant contributor to dose rate assessments in luminescence and Electron Spin Resonance (ESR) dating. Here a SEM-EDX is calibrated on different archaeological and geoarchaeological materials against standard laboratory samples as well as measured by micro X-Rays Fluorescence (μXRF) and flame atomic absorption spectroscopy (FAAS) techniques. A common linear relationship is obtained for most elements and certain rock types used and two clear linear regressions for two types of rocks; one for granite, diorite, microgranite and sediments and another ceramic sherds, soils, marble schists, breccia. Such linear regressions become readily available for a future fast, efficient and accu-rate way of potassium determination.

  7. Experimentally Determined Binding Energies of Astrophysically Relevant Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Behmard, Aida; Graninger, Dawn; Oberg, Karin I.

    2016-06-01

    Small hydrocarbons represent an important organic reservoir in a variety of interstellar environments. Constraints on desorption temperatures and binding energies of hydrocarbons are thus necessary for accurate predictions of where and in which phase these molecules exist. Through a series of temperature programmed desorption experiments, we determined the desorption temperatures and binding energies of 1, 2, and 3-carbon interstellar hydrocarbons (CH4, H3CCH3, H2CCH2, C3H8, HCCCH3, and C3H6). These empirically determined values can be used to inform observations and models of the molecular spatial distribution in protoplanetary disks, thus providing insight into planetesimal composition. In addition, knowledge of hydrocarbon binding energies will refine simulations of grain surface chemistry, allowing for better predictions of the chemical conditions that lead to the production of complex organic molecules vital for life.

  8. Experimentally Determined Coordinates for Three MILS Hydrophones Near Ascension Island

    SciTech Connect

    Harben, P. E.; Hollfelder, J. R.; Rodgers, A. J.

    1999-11-19

    We conducted an airgun survey in the waters of Ascension Island in May 1999 to determine new locations and depths for three Missile Impact Location System (MILS) hydrophones (ASC23, ASC24, and ASC26) currently in use by the Prototype International Data Center (PIDC) and the National Data Center (NDC). The nominal and new locations are summarized in Table 1. Although not rigorous, errors in the new locations and depths are conservatively estimated to be less than 100 m. The hydrophones are either on or near the ocean bottom in all three cases. The new depths are consistent with the following: Direct-phase airgun arrivals; Bathymetry determined along the track of the ship used for this airgun survey; Reflected phases from the airgun data; and Depths given in the original hydrophone installation report.

  9. Experimentally determined chaotic phase synchronization in a neuronal system

    PubMed Central

    Makarenko, Vladimir; Llinás, Rodolfo

    1998-01-01

    Mathematical analysis of the subthreshold oscillatory properties of inferior olivary neurons in vitro indicates that the oscillation is nonlinear and supports low dimensional chaotic dynamics. This property leads to the generation of complex functional states that can be attained rapidly via phase coherence that conform to the category of “generalized synchronization.” Functionally, this translates into neuronal ensemble properties that can support maximum functional permissiveness and that rapidly can transform into robustly determined multicellular coherence. PMID:9861041

  10. Experimentally Determined Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Watts, Carly; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vonau, Walt; Vogel, Matt; Conger, Bruce

    2015-01-01

    A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flowrate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.

  11. Experimental determination of storage ring optics using orbit response measurements

    NASA Astrophysics Data System (ADS)

    Safranek, J.

    1997-02-01

    The measured response matrix giving the change in orbit at beam position monitors (BPMs) with changes in steering magnet excitation can be used to accurately calibrate the linear optics in an electron storage ring [1-8]. A computer code called LOCO (Linear Optics from Closed Orbits) was developed to analyze the NSLS X-Ray Ring measured response matrix to determine: the gradients in all 56 quadrupole magnets; the calibration of the steering magnets and BPMs; the roll of the quadrupoles, steering magnets, and BPMs about the electron beam direction; the longitudinal magnetic centers of the orbit steering magnets; the horizontal dispersion at the orbit steering magnets; and the transverse mis-alignment of the electron orbit in each of the sextupoles. Random orbit measurement error from the BPMs propagated to give only 0.04% rms error in the determination of individual quadrupole gradients and 0.4 mrad rms error in the determination of individual quadrupole rolls. Small variations of a few parts in a thousand in the quadrupole gradients within an individual family were resolved. The optics derived by LOCO gave accurate predictions of the horizontal dispersion, the beta functions, and the horizontal and vertical emittances, and it gave good qualitative agreement with the measured vertical dispersion. The improved understanding of the X-Ray Ring has enabled us to increase the synchrotron radiation brightness. The LOCO code can also be used to find the quadrupole family gradients that best correct for gradient errors in quadrupoles, in sextupoles, and from synchrotron radiation insertion devices. In this way the design periodicity of a storage ring's optics can be restored. An example of periodicity restoration will be presented for the NSLS VUV Ring. LOCO has also produced useful results when applied to the ALS storage ring [8].

  12. Method for experimental determination of flutter speed by parameter identification

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Gilyard, Glenn B.

    1989-01-01

    A method for flight flutter testing is proposed which enables one to determine the flutter dynamic pressure from flights flown far below the flutter dynamic pressure. The method is based on the identification of the coefficients of the equations of motion at low dynamic pressures, followed by the solution of these equations to compute the flutter dynamic pressure. The initial results of simulated data reported in the present work indicate that the method can accurately predict the flutter dynamic pressure, as described. If no insurmountable difficulties arise in the implementation of this method, it may significantly improve the procedures for flight flutter testing.

  13. Experimental infrared measurements for hydrocarbon pollutant determination in subterranean waters

    NASA Astrophysics Data System (ADS)

    Lay-Ekuakille, A.; Palamara, I.; Caratelli, D.; Morabito, F. C.

    2013-01-01

    Subterranean waters are often polluted by industrial and anthropic effluents that are drained in subsoil. To prevent and control pollution, legislations of different developed countries require an online monitoring measurement, especially for detecting organic solvents (chlorinated and unchlorinated ones). Online measurements include both real-time and no real-time measurements. In general, it is difficult to implement real-time measurements in stricto sensu for online acquisitions on aqueous effluents since they need to be processed by a modeling. This research presents an experimental measurement system based on infrared (IR) spectroscopy for aqueous effluents containing hydrocarbons and capable of displaying excellent values of pollutant concentrations even in instable conditions; the system is able to detect pollutants either in laminar or turbulent flow. The results show the possibility of avoiding the use of "Pitot tube" that is employed to create a stagnation point in order to convert kinetic energy into potential one. This conversion allows the transformation of a turbulent flow in a laminar flow making easy measurement of pollutants included in an aqueous effluent. Obviously, "Pitot tube" is also used for other fluid effluents. The obtained results have been compared with those produced by means of sophisticated IR instrumentation for laboratory applications.

  14. The Microbiota Determines Susceptibility to Experimental Autoimmune Uveoretinitis

    PubMed Central

    Heissigerova, Jarmila; Seidler Stangova, Petra; Klimova, Aneta; Svozilkova, Petra; Hrncir, Tomas; Stepankova, Renata; Kverka, Miloslav; Tlaskalova-Hogenova, Helena; Forrester, John V.

    2016-01-01

    The microbiota is a crucial modulator of the immune system. Here, we evaluated how its absence or reduction modifies the inflammatory response in the murine model of experimental autoimmune uveoretinitis (EAU). We induced EAU in germ-free (GF) or conventionally housed (CV) mice and in CV mice treated with a combination of broad-spectrum antibiotics either from the day of EAU induction or from one week prior to induction of disease. The severity of the inflammation was assessed by fundus biomicroscopy or by histology, including immunohistology. The immunophenotyping of T cells in local and distant lymph nodes was performed by flow cytometry. We found that GF mice and mice where the microbiota was reduced one week before EAU induction were protected from severe autoimmune inflammation. GF mice had lower numbers of infiltrating macrophages and significantly less T cell infiltration in the retina than CV mice with EAU. GF mice also had reduced numbers of IFN-γ and IL-17-producing T cells and increased numbers of regulatory T cells in the eye-draining lymph nodes. These data suggest that the presence of microbiota during autoantigen recognition regulates the inflammatory response by influencing the adaptive immune response. PMID:27294159

  15. Experimental determination of fragment excitation energies in multifragmentation events

    SciTech Connect

    Marie, N.; Natowitz, J.B.; Cibor, J.; Hagel, K.; Wada, R.; Chbihi, A.; Le Fevre, A.; Salou, S.; Wieleczko, J.P.; Gingras, L.; Auger, G.; Laville, J.L.; Saint-Laurent, F.; Tirel, O.; Assenard, M.; Eudes, P.; Germain, M.; Rahmani, A.; Reposeur, T.; Bacri, C.O.; Borderie, B.; Frankland, J.D.; Plagnol, E.; Rivet, M.F.; Bocage, F.; Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Genouin-Duhamel, E.; Lecolley, J.F.; Lefort, T.; Le Neindre, N.; Lopez, O.; Louvel, M.; Nguyen, A.D.; Peter, J.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Buchet, P.; Charvet, J.L.; Dayras, R.; Dore, D.; Legrain, R.; Nalpas, L.; Volant, C.; Parlog, M.; Tabacaru, G.; Rosato, E.; Gourio, D.; Majka, Z.

    1998-07-01

    For 50 MeV/nucleon {sup 129}Xe+{sup nat}Sn multifragmentation events, we deduced, by means of correlation techniques, the multiplicities of the hydrogen and helium isotopes which were emitted by the hot primary excited fragments produced at the stage of the disassembly of an equilibrated hot source. We also derived the relative kinetic energy distributions between the primary clusters and the light charged particles that they evaporate. From the comparison between the secondary multiplicities observed experimentally and the multiplicities predicted by the GEMINI model, we concluded that the source breaks into primary fragments which are characterized by the same N/Z ratio as the combined system. Knowing the secondary light charged particle multiplicities and kinetic energies, we reconstructed the average charges of the hot fragments and we estimated their mean excitation energies. The fragment excitation energies are equal to 3.0 MeV/nucleon for the full range of intermediate mass fragment atomic number. This global constancy indicates that, on the average, thermodynamical equilibrium was achieved at the disassembly stage of the source. {copyright} {ital 1998} {ital The American Physical Society}

  16. Experimental determination of visibility modeling parameters for aircraft

    NASA Astrophysics Data System (ADS)

    Boettcher, Evelyn J.; Maurer, Tana; Murrill, Steven R.; Miller, Brian

    2010-04-01

    The Federal Aviation Administration (FAA) is presently engaged in research to quantify the visibility of aircraft under two important scenarios: aircraft observed directly by human operators in air traffic control towers (ATCT's), and aircraft observed by human operators through unmanned aerial vehicle (UAV) sensors viewed through ground-based display systems. Previously, an ATCT visibility analysis software tool (FAA Vis) was developed by the U.S. Army Research Laboratory (ARL) in collaboration with the U.S. Army's Night Vision and Electronic Sensors Directorate (NVESD) and the FAA. This tool predicts the probability of detection, recognition, and identification of various aircraft by human observers as a function of range and ATCT height. More recently, a baseline version of a UAV See-And- Avoid visibility analysis software tool was also developed by ARL, again in collaboration with NVESD and the FAA. Important to the calibration of these tools is the empirical determination of target discrimination difficulty criteria. Consequently, a set of human perception experiments were designed and conducted to empirically determine the target recognition and identification discrimination difficulty criteria for a representative set of aircraft. This paper will report on the results and analyses of those experiments.

  17. Determination of dynamic fracture toughness using a new experimental technique

    NASA Astrophysics Data System (ADS)

    Cady, Carl M.; Liu, Cheng; Lovato, Manuel L.

    2015-09-01

    In other studies dynamic fracture toughness has been measured using Charpy impact and modified Hopkinson Bar techniques. In this paper results will be shown for the measurement of fracture toughness using a new test geometry. The crack propagation velocities range from ˜0.15 mm/s to 2.5 m/s. Digital image correlation (DIC) will be the technique used to measure both the strain and the crack growth rates. The boundary of the crack is determined using the correlation coefficient generated during image analysis and with interframe timing the crack growth rate and crack opening can be determined. A comparison of static and dynamic loading experiments will be made for brittle polymeric materials. The analysis technique presented by Sammis et al. [1] is a semi-empirical solution, however, additional Linear Elastic Fracture Mechanics analysis of the strain fields generated as part of the DIC analysis allow for the more commonly used method resembling the crack tip opening displacement (CTOD) experiment. It should be noted that this technique was developed because limited amounts of material were available and crack growth rates were to fast for a standard CTOD method.

  18. Experimental determinations of Mueller scattering matrices for nonspherical particles.

    PubMed

    Perry, R J; Hunt, A J; Huffman, D R

    1978-09-01

    Measurements have been made to determine all sixteen elements of the Mueller scattering matrix for two types of nonspherical particles. Rounded particles of ammonium sulfate and nearly cubic particles of sodium chloride in the 0.1-1.0-mum size range have been prepared by nebulizing salt water solutions and drying the droplets. Scanning electron micrographs are used to determine size distributions used in Mie calculations of all matrix elements. The expected symmetry of the scattering matrices across the diagonal was confirmed, and the expected eight of the sixteen elements were found to be zero within measurement accuracy. The rounded particles were found accurately to obey Mie theory, while the cubic particles were poorly described by Mie theory for some matrix elements and some angles. Total intensity and linear polarization measurements are presented also for a series of increasing sizes of rounded and cubic particles. A discussion of the effect of nonsphericity on the various matrix elements is given, and applications of these results are given to analysis of particle properties in the laboratory, the clouds of Venus, reflection nebulae, the zodiacal light, and atmospheric particulates. PMID:20203854

  19. FELIX: a volumetric 3D laser display

    NASA Astrophysics Data System (ADS)

    Bahr, Detlef; Langhans, Knut; Gerken, Martin; Vogt, Carsten; Bezecny, Daniel; Homann, Dennis

    1996-03-01

    In this paper, an innovative approach of a true 3D image presentation in a space filling, volumetric laser display will be described. The introduced prototype system is based on a moving target screen that sweeps the display volume. Net result is the optical equivalent of a 3D array of image points illuminated to form a model of the object which occupies a physical space. Wireframe graphics are presented within the display volume which a group of people can walk around and examine simultaneously from nearly any orientation and without any visual aids. Further to the detailed vector scanning mode, a raster scanned system and a combination of both techniques are under development. The volumetric 3D laser display technology for true reproduction of spatial images can tremendously improve the viewers ability to interpret data and to reliably determine distance, shape and orientation. Possible applications for this development range from air traffic control, where moving blips of light represent individual aircrafts in a true to scale projected airspace of an airport, to various medical applications (e.g. electrocardiography, computer-tomography), to entertainment and education visualization as well as imaging in the field of engineering and Computer Aided Design.

  20. First experimental determination of the solubility constant of coffinite

    NASA Astrophysics Data System (ADS)

    Szenknect, Stephanie; Mesbah, Adel; Cordara, Théo; Clavier, Nicolas; Brau, Henri-Pierre; Le Goff, Xavier; Poinssot, Christophe; Ewing, Rodney C.; Dacheux, Nicolas

    2016-05-01

    Dissolution experiments have been performed in order to determine the solubility constant of coffinite, USiO4. Several assemblages of phases were used in under-saturated experiments performed in 0.1 mol L-1 HCl under Ar atmosphere, as well as in air. These samples were fully-characterized and were composed of either USiO4, solely, or USiO4 and additional oxide byproducts that resulted from the synthesis procedure. The solubility constant of coffinite was determined at 25 °C and 1 bar (log *KS°(USiO4, cr) = -5.25 ± 0.05), as well as the standard free energy of formation of coffinite (ΔfG°(298 K) = -1867.6 ± 3.2 kJ mol-1), which enables one to infer the relative stability of coffinite and uraninite as a function of groundwater composition. Geochemical simulations using PHREEQC 2 software and the Thermochimie data base indicate that coffinite precipitates at 25 °C under reducing conditions, at pH = 6, for H4SiO4(aq) concentration of 7 × 10-5 mol L-1 and U(OH)4(aq) concentration of 10-11 mol L-1. The ΔfG° value determined was used to calculate the standard free energy associated with the formation of coffinite from a mixture of uraninite and quartz. The value obtained (Δr,oxG° = 20.6 ± 5.2 kJ mol-1) indicates unambiguously that coffinite is less stable than the quartz + uraninite mixture at 25 °C. Geochemical simulations using PHREEQC 2 software indicate that coffinite precipitates in solutions supersaturated with respect to UO2(cr), but undersaturated with respect to UO2(am) in aqueous solutions with silica concentrations typical of groundwater. These favorable conditions during the formation of sedimentary uranium ore deposits, as well as slow dissolution kinetics, explain the common occurrence of coffinite.

  1. Experimental determination of circumferential properties of fresh carotid artery plaques.

    PubMed

    Lawlor, Michael G; O'Donnell, Michael R; O'Connell, Barry M; Walsh, Michael T

    2011-06-01

    Carotid endarterectomy (CEA) is currently accepted as the gold standard for interventional revascularisation of diseased arteries belonging to the carotid bifurcation. Despite the proven efficacy of CEA, great interest has been generated in carotid angioplasty and stenting (CAS) as an alternative to open surgical therapy. CAS is less invasive compared with CEA, and has the potential to successfully treat lesions close to the aortic arch or distal internal carotid artery (ICA). Following promising results from two recent trials (CREST; Carotid revascularisation endarterectomy versus stenting trial, and ICSS; International carotid stenting study) it is envisaged that there will be a greater uptake in carotid stenting, especially amongst the group who do not qualify for open surgical repair, thus creating pressure to develop computational models that describe a multitude of plaque models in the carotid arteries and their reaction to the deployment of such interventional devices. Pertinent analyses will require fresh human atherosclerotic plaque material characteristics for different disease types. This study analysed atherosclerotic plaque characteristics from 18 patients tested on site, post-surgical revascularisation through endarterectomy, with 4 tissue samples being excluded from tensile testing based on large width-length ratios. According to their mechanical behaviour, atherosclerotic plaques were separated into 3 grades of stiffness. Individual and group material coefficients were then generated analytically using the Yeoh strain energy function. The ultimate tensile strength (UTS) of each sample was also recorded, showing large variation across the 14 atherosclerotic samples tested. Experimental Green strains at rupture varied from 0.299 to 0.588 and the Cauchy stress observed in the experiments was between 0.131 and 0.779 MPa. It is expected that this data may be used in future design optimisation of next generation interventional medical devices for the

  2. Determining Pressure and Velocity Fields from Experimental Schlieren Data

    NASA Astrophysics Data System (ADS)

    Lee, Frank M.; Allshouse, Michael R.; Morrison, P. J.; Swinney, Harry L.

    2015-11-01

    Internal gravity waves generated by tidal flow over bottom topography in the ocean are important because they contribute significantly to the energy composition of the ocean. Determination of the instantaneous internal wave energy flux requires knowledge of the pressure and velocity fields, each of which is difficult to measure in the ocean or the laboratory. However, the density perturbation field can be measured using a laboratory technique known as ``synthetic schlieren.'' We present an analytical method for deducing both the pressure and velocity fields from the density perturbation field. This yields the instantaneous energy flux of linear internal waves. Our method is verified in tests with data from a Navier-Stokes direct numerical simulation. The method is then applied to laboratory schlieren data obtained for the conditions in the numerical simulations. MRA and HLS were supported by ONR. FML and PJM supported by DOE contract DE-FG02-04ER-54742.

  3. Experimental determination of the distribution of tail states of hydrogenated amorphous silicon: A transient photocurrent analysis

    SciTech Connect

    Webb, D.P.; Chan, F.Y.M.; Zou, X.C.; Chan, Y.C.; Lam, Y.W.; Lin, S.H.; O'Leary, S.K.; Lim, P.K.

    1997-07-01

    Recent experimental developments have cast doubt on the validity of the common assumption that the distribution of tail states of hydrogenated amorphous silicon exhibits a single exponential functional form. The authors employ transient photocurrent decay measurements to determine this distribution of tail states. In their approach, however, they determine the distribution of tail states directly from the experimental data, without assuming, a priori, a specific functional form. It is found that these experimental results are consistent with other more recent experimental determinations of the distribution of tail states, suggesting the possibility of deviations from a single exponential distribution of tail states in hydrogenated amorphous silicon.

  4. On the Experimental Determination of the One-Way Speed of Light

    ERIC Educational Resources Information Center

    Perez, Israel

    2011-01-01

    In this paper the question of the isotropy of the one-way speed of light is addressed from an experimental perspective. In particular, we analyse two experimental methods commonly used in its determination. The analysis is aimed at clarifying the view that the one-way speed of light cannot be determined by techniques in which physical entities…

  5. Experimentally determined spectral optimization for dedicated breast computed tomography

    SciTech Connect

    Prionas, Nicolas D.; Huang, Shih-Ying; Boone, John M.

    2011-02-15

    Purpose: The current study aimed to experimentally identify the optimal technique factors (x-ray tube potential and added filtration material/thickness) to maximize soft-tissue contrast, microcalcification contrast, and iodine contrast enhancement using cadaveric breast specimens imaged with dedicated breast computed tomography (bCT). Secondarily, the study aimed to evaluate the accuracy of phantom materials as tissue surrogates and to characterize the change in accuracy with varying bCT technique factors. Methods: A cadaveric breast specimen was acquired under appropriate approval and scanned using a prototype bCT scanner. Inserted into the specimen were cylindrical inserts of polyethylene, water, iodine contrast medium (iodixanol, 2.5 mg/ml), and calcium hydroxyapatite (100 mg/ml). Six x-ray tube potentials (50, 60, 70, 80, 90, and 100 kVp) and three different filters (0.2 mm Cu, 1.5 mm Al, and 0.2 mm Sn) were tested. For each set of technique factors, the intensity (linear attenuation coefficient) and noise were measured within six regions of interest (ROIs): Glandular tissue, adipose tissue, polyethylene, water, iodine contrast medium, and calcium hydroxyapatite. Dose-normalized contrast to noise ratio (CNRD) was measured for pairwise comparisons among the six ROIs. Regression models were used to estimate the effect of tube potential and added filtration on intensity, noise, and CNRD. Results: Iodine contrast enhancement was maximized using 60 kVp and 0.2 mm Cu. Microcalcification contrast and soft-tissue contrast were maximized at 60 kVp. The 0.2 mm Cu filter achieved significantly higher CNRD for iodine contrast enhancement than the other two filters (p=0.01), but microcalcification contrast and soft-tissue contrast were similar using the copper and aluminum filters. The average percent difference in linear attenuation coefficient, across all tube potentials, for polyethylene versus adipose tissue was 1.8%, 1.7%, and 1.3% for 0.2 mm Cu, 1.5 mm Al, and 0.2 mm

  6. Depolarising primate experimentation: the good, the bad and the determined.

    PubMed

    Hudson, Michelle

    2009-12-01

    Until I began working at FRAME, I was not really aware of the Three Rs or FRAME's work to promote and progress them. It soon became clear to me that it made scientific sense and that it could make a difference to many thousands of laboratory animals. As an alternatives advocate, I regularly experience optimism, frustration and determination. This is illustrated most clearly by the primate research dilemma. Here, I describe the positive and negative experiences I have had whilst working toward the goal of replacing primate experiments, and how these have led me to undertake a multidisciplinary PhD project on primate use in biomedical research. The aim is to examine how research scientists view the opportunities and challenges involved in the use of primates in biomedical science, and to investigate the feasibility of phasing out their use. As a result of the research, I hope to provide a new perspective, to depolarise the debate and bring about a constructive dialogue between all parties as to how and when primate research could be replaced. PMID:20105018

  7. Non-invasive experimental determination of a CT source model.

    PubMed

    Alikhani, Babak; Büermann, Ludwig

    2016-01-01

    Non-invasive methods to determine equivalent X-ray source models of a CT scanner are presented. A high-precision technique called TRIC ("Time Resolved Integrated Charge") was developed and used to characterize the bow tie filters (BT) of the CT scanner installed at Physikalisch-Technische Bundesanstalt (PTB). Aluminum (Al) and polymethyl methacrylate (PMMA) equivalent thicknesses of the BT filters at all tube high voltages were evaluated, assuming that those consist of only one material. Thereby two different dose probes were used, a solid state detector and an ionization chamber, the former characterized by a significant and the latter by an almost negligible energy dependence of the air kerma response. A method was developed to correct for the energy dependence of the solid state dose probe. Next, a two-component material was assumed and equivalent BT filters were evaluated. The latter method was also applied using the known real BT filter materials and compared with the shape of the real BT filters. Finally, the results obtained by the TRIC method were compared with those obtained by using the so-called COBRA method ("Characterization Of Bow tie Relative Attenuation"), the latter being more suitable for measurements in a clinical environment. PMID:26602858

  8. Streptococcus pneumoniae capsule determines disease severity in experimental pneumococcal meningitis

    PubMed Central

    Grandgirard, Denis; Valente, Luca G.; Täuber, Martin G.; Leib, Stephen L.

    2016-01-01

    Streptococcus pneumoniae bacteria can be characterized into over 90 serotypes according to the composition of their polysaccharide capsules. Some serotypes are common in nasopharyngeal carriage whereas others are associated with invasive disease, but when carriage serotypes do invade disease is often particularly severe. It is unknown whether disease severity is due directly to the capsule type or to other virulence factors. Here, we used a clinical pneumococcal isolate and its capsule-switch mutants to determine the effect of capsule, in isolation from the genetic background, on severity of meningitis in an infant rat model. We found that possession of a capsule was essential for causing meningitis. Serotype 6B caused significantly more mortality than 7F and this correlated with increased capsule thickness in the cerebrospinal fluid (CSF), a stronger inflammatory cytokine response in the CSF and ultimately more cortical brain damage. We conclude that capsule type has a direct effect on meningitis severity. This is an important consideration in the current era of vaccination targeting a subset of capsule types that causes serotype replacement. PMID:27009189

  9. An experimental procedure to determine heat transfer properties of turbochargers

    NASA Astrophysics Data System (ADS)

    Serrano, J. R.; Olmeda, P.; Páez, A.; Vidal, F.

    2010-03-01

    Heat transfer phenomena in turbochargers have been a subject of investigation due to their importance for the correct determination of compressor real work when modelling. The commonly stated condition of adiabaticity for turbochargers during normal operation of an engine has been revaluated because important deviations from adiabatic behaviour have been stated in many studies in this issue especially when the turbocharger is running at low rotational speeds/loads. The deviations mentioned do not permit us to assess properly the turbine and compressor efficiencies since the pure aerodynamic effects cannot be separated from the non-desired heat transfer due to the presence of both phenomena during turbocharger operation. The correction of the aforesaid facts is necessary to properly feed engine models with reliable information and in this way increase the quality of the results in any modelling process. The present work proposes a thermal characterization methodology successfully applied in a turbocharger for a passenger car which is based on the physics of the turbocharger. Its application helps to understand the thermal behaviour of the turbocharger, and the results obtained constitute vital information for future modelling efforts which involve the use of the information obtained from the proposed methodology. The conductance values obtained from the proposed methodology have been applied to correct a procedure for measuring the mechanical efficiency of the tested turbocharger.

  10. Streptococcus pneumoniae capsule determines disease severity in experimental pneumococcal meningitis.

    PubMed

    Hathaway, Lucy J; Grandgirard, Denis; Valente, Luca G; Täuber, Martin G; Leib, Stephen L

    2016-03-01

    Streptococcus pneumoniaebacteria can be characterized into over 90 serotypes according to the composition of their polysaccharide capsules. Some serotypes are common in nasopharyngeal carriage whereas others are associated with invasive disease, but when carriage serotypes do invade disease is often particularly severe. It is unknown whether disease severity is due directly to the capsule type or to other virulence factors. Here, we used a clinical pneumococcal isolate and its capsule-switch mutants to determine the effect of capsule, in isolation from the genetic background, on severity of meningitis in an infant rat model. We found that possession of a capsule was essential for causing meningitis. Serotype 6B caused significantly more mortality than 7F and this correlated with increased capsule thickness in the cerebrospinal fluid (CSF), a stronger inflammatory cytokine response in the CSF and ultimately more cortical brain damage. We conclude that capsule type has a direct effect on meningitis severity. This is an important consideration in the current era of vaccination targeting a subset of capsule types that causes serotype replacement. PMID:27009189

  11. Preliminary analysis of problem of determining experimental performance of air-cooled turbine III : methods for determining power and efficiency

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H , Jr; Ziemer, Robert R

    1950-01-01

    Suggested formula are given for determining air-cooled turbine-performance characteristics, such as power and efficiency, as functions of certain parameters. These functions, generally being unknown, are determined from experimental data obtained from specific investigations. Special plotting methods for isolating the effect of each parameter are outlined.

  12. Synthetic fluid inclusions XIX. Experimental determination of the vapor-saturated liquidus of the system H2O-NaCl-FeCl2

    NASA Astrophysics Data System (ADS)

    Lecumberri-Sanchez, Pilar; Steele-MacInnis, Matthew; Bodnar, Robert J.

    2015-01-01

    Magmatic-hydrothermal fluids associated with felsic to intermediate composition magmas are generally dominated by (Na ± K)Cl, but often the fluids also contain significant concentrations of FeCl2. Previously, fluid inclusions containing such fluids were interpreted using the properties of H2O-NaCl because the effect of FeCl2 on the phase equilibrium and volumetric (PVTx) properties of aqueous fluids was essentially unknown. In this study, synthetic fluid inclusion experiments have been conducted to determine the vapor-saturated liquidus phase relations of the system H2O-NaCl-FeCl2. Microthermometric and microanalytical measurements on synthetic fluid inclusions have been combined with the limited existing data, as well as with predictions based on Pitzer's formalism, to determine the ternary cotectic and peritectic phase boundaries and liquidus fields. The liquidus is qualitatively similar to those of other ternary systems of H2O-NaCl plus divalent-cation chlorides (MgCl2 and CaCl2) and has been characterized through empirical equations that represent the liquid salinity on the ice- and halite-liquidus surfaces. The ice and halite liquidi intersect at a metastable cotectic curve, which can be used to determine fluid compositions in this system if metastable behavior is observed. Furthermore, based on the experimentally determined liquidus, bulk salinities of natural fluid inclusions can be determined from the last dissolution temperatures of ice and/or halite using the new empirical equations.

  13. Design, Implementation and Characterization of a Quantum-Dot-Based Volumetric Display

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-02-01

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others.

  14. Design, implementation and characterization of a quantum-dot-based volumetric display.

    PubMed

    Hirayama, Ryuji; Naruse, Makoto; Nakayama, Hirotaka; Tate, Naoya; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ohtsu, Motoichi; Ito, Tomoyoshi

    2015-01-01

    In this study, we propose and experimentally demonstrate a volumetric display system based on quantum dots (QDs) embedded in a polymer substrate. Unlike conventional volumetric displays, our system does not require electrical wiring; thus, the heretofore unavoidable issue of occlusion is resolved because irradiation by external light supplies the energy to the light-emitting voxels formed by the QDs. By exploiting the intrinsic attributes of the QDs, the system offers ultrahigh definition and a wide range of colours for volumetric displays. In this paper, we discuss the design, implementation and characterization of the proposed volumetric display's first prototype. We developed an 8 × 8 × 8 display comprising two types of QDs. This display provides multicolour three-type two-dimensional patterns when viewed from different angles. The QD-based volumetric display provides a new way to represent images and could be applied in leisure and advertising industries, among others. PMID:25683656

  15. Volumetric Properties of Dilute Aqueous Solutions of 1- and 2-propanol to 50 MPa and 373.15 K

    NASA Astrophysics Data System (ADS)

    Seitz, J.; Bahramian, J.; Blackwell, R.; Inaki, T.; York, D.; Schulte, M. D.

    2014-12-01

    The need to accurately model and understand reactions among organic compounds and biomolecules in solution is necessary to develop realistic chemical models for the reactions leading to the emergence of life and metabolic processes of extremophiles under elevated temperature and pressure conditions. Unfortunately, the scarcity of experimentally determined volumetric (and other) properties for important compounds at high temperatures and pressures leads to uncertainty in the calculation of reaction properties. Experimentally determined volumetric properties of aqueous solutions at non-standard conditions provide direct tests of current estimation methods and aid in the refinement of these methods. The goal of our research is to provide a database of experimentally determined volumetric properties. In previous studies, we have examined important organic molecules and biomolecules such as adenosine, coenzyme M and D-ribose. In this study, we investigate the volumetric properties of the structural isomers 1- and 2-propanol. 1-propanol (n-propanol) is a primary alcohol (CH3CH2CH2OH) and 2-propanol (isopropanol) is the simplest example of a secondary alcohol (CH3CHOHCH3). These compounds differ slightly in structure depending on to which carbon atom the hydroxyl group is bonded and will provide a sensitive test of current estimation methods and lead to more accurate predictions of the properties of complex aqueous systems at elevated temperatures and pressures. We obtained the densities of aqueous solutions of the alchohols using an Anton Paar DMA HP vibrating tube densimeter. Pressure was measured (pressure transducer) to an accuracy of ±0.01% and temperature was measured (integrated platinum thermometer) with an accuracy of ±0.05 K. Experimental uncertainty of density measurements is less than ±0.0001 g·cm-3. The partial molar volumes at infinite dilution (V∞) for 1- and 2-propanol were calculated from the measured densities and are shown in the figure at 0

  16. Factors that determine the severity of experimental myasthenia gravis.

    PubMed

    Drachman, D B; McIntosh, K R; Yang, B

    1998-05-13

    R antibody production than T cells with specificity for other Torpedo AChR epitopes. This results in production of greater amounts of AChR antibodies, including a critical subset that cross-reacts with autologous mouse AChR. The higher autoantibody levels contribute to the greater susceptibility to EAMG and to the greater severity of manifestations in the B6 strain compared with the bm12 strain. (4) There is a bias in B6 mice toward the production of AChR antibodies of IgG2b isotype. We suggest that T cells specific for alpha 146-162 may contribute to this isotype bias. The IgG2b antibodies appear to have particularly potent "myasthenogenic" effects in rats and mice. (5) Finally, it should be emphasized that these differences in immunological and clinical aspects of EAMG in B6 and bm12 mice are relative rather than absolute. T cells that respond to AChR epitopes other than alpha 146-162 can also provide help for AChR antibody production, albeit less potent. In a sense, this model represents a special case of molecular mimicry. In this case, the source of the foreign antigenic molecule is injection rather than the more usual route of infection. The antigen (Torpedo AChR) is one that these mice would never naturally encounter, and the critical amino acid (lysine 155) of the key epitope (alpha 146-162) is present only in the AChR of electric organs of electric fish and not in the AChR of mice, chickens, cows, or humans. The important point is that a detail of the structure of the foreign antigen--that is, a particular peptide of Torpedo AChR--can determine the severity of an antibody-mediated autoimmune disease, depending on how it interacts with a detail of the structure of the MHC Class II molecule and, in turn, on how the peptide/MHC Class II complex interacts with the available T cell repertoire. (ABSTRACT TRUNCATED) PMID:9668247

  17. Seismic volumetric flattening and segmentation

    NASA Astrophysics Data System (ADS)

    Lomask, Jesse

    Two novel algorithms provide seismic interpretation solutions that use the full dimensionality of the data. The first is volumetric flattening and the second is image segmentation for tracking salt boundaries. Volumetric flattening is an efficient full-volume automatic dense-picking method applied to seismic data. First local dips (step-outs) are calculated over the entire seismic volume. The dips are then resolved into time shifts (or depth shifts) in a least-squares sense. To handle faults (discontinuous reflections), I apply a weighted inversion scheme. Additional information is incorporated in this flattening algorithm as geological constraints. The method is tested successfully on both synthetic and field data sets of varying degrees of complexity including salt piercements, angular unconformities, and laterally limited faults. The second full-volume interpretation method uses normalized cuts image segmentation to track salt interfaces. I apply a modified version of the normalized cuts image segmentation (NCIS) method to partition seismic images along salt interfaces. The method is capable of tracking interfaces that are not continuous, where conventional horizon tracking algorithms may fail. This method partitions the seismic image into two groups. One group is inside the salt body and the other is outside. Where the two groups meet is the salt boundary. By imposing bounds and by distributing the algorithm on a parallel cluster, I significantly increase efficiency and robustness. This method is demonstrated to be effective on both 2D and 3D seismic data sets.

  18. Volumetric Acoustic Vector Intensity Probe

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2006-01-01

    A new measurement tool capable of imaging the acoustic intensity vector throughout a large volume is discussed. This tool consists of an array of fifty microphones that form a spherical surface of radius 0.2m. A simultaneous measurement of the pressure field across all the microphones provides time-domain near-field holograms. Near-field acoustical holography is used to convert the measured pressure into a volumetric vector intensity field as a function of frequency on a grid of points ranging from the center of the spherical surface to a radius of 0.4m. The volumetric intensity is displayed on three-dimensional plots that are used to locate noise sources outside the volume. There is no restriction on the type of noise source that can be studied. The sphere is mobile and can be moved from location to location to hunt for unidentified noise sources. An experiment inside a Boeing 757 aircraft in flight successfully tested the ability of the array to locate low-noise-excited sources on the fuselage. Reference transducers located on suspected noise source locations can also be used to increase the ability of this device to separate and identify multiple noise sources at a given frequency by using the theory of partial field decomposition. The frequency range of operation is 0 to 1400Hz. This device is ideal for the study of noise sources in commercial and military transportation vehicles in air, on land and underwater.

  19. Volumetric velocity measurements on flows through heart valves

    NASA Astrophysics Data System (ADS)

    Troolin, Daniel; Amatya, Devesh; Longmire, Ellen

    2009-11-01

    Volumetric velocity fields inside two types of artificial heart valves were obtained experimentally through the use of volumetric 3-component velocimetry (V3V). Index matching was used to mitigate the effects of optical distortions due to interfaces between the fluid and curved walls. The steady flow downstream of a mechanical valve was measured and the results matched well with previously obtained 2D PIV results, such as those of Shipkowitz et al. (2002). Measurements upstream and downstream of a deformable silicone valve in a pulsatile flow were obtained and reveal significant three-dimensional features of the flow. Plots and movies will be shown, and a detailed discussion of the flow and various experimental considerations will be included. Reference: Shipkowitz, T, Ambrus J, Kurk J, Wickramasinghe K (2002) Evaluation technique for bileaflet mechanical valves. J. Heart Valve Disease. 11(2) pp. 275-282.

  20. A volumetric flow sensor for automotive injection systems

    NASA Astrophysics Data System (ADS)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  1. A reduced volumetric expansion factor plot

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    1979-01-01

    A reduced volumetric expansion factor plot has been constructed for simple fluids which is suitable for engineering computations in heat transfer. Volumetric expansion factors have been found useful in correlating heat transfer data over a wide range of operating conditions including liquids, gases and the near critical region.

  2. A reduced volumetric expansion factor plot

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    1979-01-01

    A reduced volumetric expansion factor plot was constructed for simple fluids which is suitable for engineering computations in heat transfer. Volumetric expansion factors were found useful in correlating heat transfer data over a wide range of operating conditions including liquids, gases and the near critical region.

  3. Iterative reconstruction of volumetric particle distribution

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard

    2013-02-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.

  4. In vivo real-time volumetric synthetic aperture ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Bouzari, Hamed; Rasmussen, Morten F.; Brandt, Andreas H.; Stuart, Matthias B.; Nikolov, Svetoslav; Jensen, Jørgen A.

    2015-03-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological. This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° × 90° field-of-view was achieved. data were obtained using a 3.5 MHz 32 × 32 elements 2-D phased array transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak-temporal-average intensity for parallel beam-forming (PB) are 0.83 and 377.5mW/cm2, and for SA are 0.48 and 329.5mW/cm2. A human kidney was volumetrically imaged with SA and PB techniques simultaneously. Two radiologists for evaluation of the volumetric SA were consulted by means of a questionnaire on the level of details perceivable in the beam-formed images. The comparison was against PB based on the in vivo data. The feedback from the domain experts indicates that volumetric SA images internal body structures with a better contrast resolution compared to PB at all positions in the entire imaged volume. Furthermore, the autocovariance of a homogeneous area in the in vivo SA data, had 23.5% smaller width at the half of its maximum value compared to PB.

  5. Innovative system architecture for spatial volumetric acoustic seeing

    NASA Astrophysics Data System (ADS)

    Levin, Eugene; Sergeyev, Aleksandr V.

    2009-04-01

    Situational awareness is a critical issue for the modern battle and security systems improvement of which will increase human performance efficiency. There are multiple research project and development efforts based on omni-directional (fish-eye) electro-optical and other frequency sensor fusion systems implementing head-mounted visualization systems. However, the efficiency of these systems is limited by the human eye-brain system perception limitations. Humans are capable to naturally perceive the situations in front of them, but interpretation of omni-directional visual scenes increases the user's mental workload, increasing human fatigue and disorientation requiring more effort for object recognition. It is especially important to reduce this workload making rear scenes perception intuitive in battlefield situations where a combatant can be attacked from both directions. This paper describes an experimental model of the system fusion architecture of the Visual Acoustic Seeing (VAS) for representation spatial geometric 3D model in form of 3D volumetric sound. Current research in the area of auralization points to the possibility of identifying sound direction. However, for complete spatial perception it is necessary to identify the direction and the distance to an object by an expression of volumetric sound, we initially assume that the distance can be encoded by the sound frequency. The chain: object features -> sensor -> 3D geometric model-> auralization constitutes Volumetric Acoustic Seeing (VAS). Paper describes VAS experimental research for representing and perceiving spatial information by means of human hearing cues in more details.

  6. Experimental Determination of Paschen Curve and First Townsend Coefficient of Nitrogen Plasma Discharge

    NASA Astrophysics Data System (ADS)

    Wais, Sabah

    2011-10-01

    In the present work, an experimental study is performed to determine the first Townsend coefficient and Paschen curve for N2 gas chamber using a parallel plate geometrical configuration. Paschen curve coefficients are derived by exponential fitting of first Townsend coefficients data of plasma discharge. The experimental data is acquired at different working pressure and various electrode gap separations. Furthermore, the amplification process of the gas gain in non-uniform electric field is realized.

  7. Experimental and analytical determination of vibration characteristics of corrugated, flexibly supported, heat-shield panels

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1974-01-01

    Experimental and analytical natural frequencies, nodal patterns, and typical modal displacements for a corrugated, flexibly supported, heat-shield panel are discussed. Good correlation was found between the experimental data and NASTRAN analytical results for the corrugated panel over a relatively wide frequency spectrum covered in the investigation. Of the two experimental techniques used for mode shape and displacement measurements (a noncontacting displacement sensor system and a holographic technique using a helium-neon, continuous-wave laser), the holographic technique was found, in the present investigation, to be faster and better suited for determining a large number of complex nodal patterns of the corrugated panel.

  8. Experimentally determined stiffness and damping of an inherently compensated air squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1975-01-01

    Values of damping and stiffness were determined experimentally for an externally pressurized, inherently compensated, compressible squeeze-film damper up to excitation frequencies of 36,000 cycles per minute. Experimental damping values were higher than theory predicted at low squeeze numbers and less than predicted at high squeeze numbers. Experimental values of air film stiffness were less than theory predicted at low squeeze numbers and much greater at higher squeeze numbers. Results also indicate sufficient damping to attenuate amplitudes and forces at the critical speed when using three dampers in the flexible support system of a small, lightweight turborotor.

  9. Experimental determination of self-similarity constant for converging cylindrical shocks

    NASA Astrophysics Data System (ADS)

    Kjellander, Malte; Tillmark, Nils; Apazidis, Nicholas

    2011-11-01

    Guderley's self-similarity solution r = r0(1 - t/t0)α for strong converging cylindrical shocks is investigated experimentally for three different gases with adiabatic exponents γ = 1.13; 1.40; and 1.66 and various values of the initial Mach number. Corresponding values of the similarity exponent α which determines the strength of shock convergence are obtained for each gas thus giving the variation of α with γ. Schlieren imaging with multiple exposure technique is used to track the propagation of a single shock front during convergence. The present experimental results are compared with previous experimental, numerical, and theoretical investigations.

  10. Floating volumetric image formation using a dihedral corner reflector array device.

    PubMed

    Miyazaki, Daisuke; Hirano, Noboru; Maeda, Yuki; Yamamoto, Siori; Mukai, Takaaki; Maekawa, Satoshi

    2013-01-01

    A volumetric display system using an optical imaging device consisting of numerous dihedral corner reflectors placed perpendicular to the surface of a metal plate is proposed. Image formation by the dihedral corner reflector array (DCRA) is free from distortion and focal length. In the proposed volumetric display system, a two-dimensional real image is moved by a mirror scanner to scan a three-dimensional (3D) space. Cross-sectional images of a 3D object are displayed in accordance with the position of the image plane. A volumetric image is observed as a stack of the cross-sectional images. The use of the DCRA brings compact system configuration and volumetric real image generation with very low distortion. An experimental volumetric display system including a DCRA, a galvanometer mirror, and a digital micro-mirror device was constructed to verify the proposed method. A volumetric image consisting of 1024×768×400 voxels was formed by the experimental system. PMID:23292404

  11. Experimental and analytical determination of stability parameters for a balloon tethered in a wind

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Bennett, R. M.; Bland, S. R.

    1973-01-01

    Experimental and analytical techniques for determining stability parameters for a balloon tethered in a steady wind are described. These techniques are applied to a particular 7.64-meter-long balloon, and the results are presented. The stability parameters of interest appear as coefficients in linearized stability equations and are derived from the various forces and moments acting on the balloon. In several cases the results from the experimental and analytical techniques are compared and suggestions are given as to which techniques are the most practical means of determining values for the stability parameters.

  12. An experimental approach to determine the heat transfer coefficient in directional solidification furnaces

    NASA Technical Reports Server (NTRS)

    Banan, Mohsen; Gray, Ross T.; Wilcox, William R.

    1992-01-01

    The heat transfer coefficient between a molten charge and its surroundings in a Bridgman furnace was experimentally determined using in-situ temperature measurement. The ampoule containing an isothermal melt was suddenly moved from a higher temperature zone to a lower temperature zone. The temperature-time history was used in a lumped-capacity cooling model to evaluate the heat transfer coefficient between the charge and the furnace. The experimentally determined heat transfer coefficient was of the same order of magnitude as the theoretical value estimated by standard heat transfer calculations.

  13. Volumetric Properties and Fluid Phase Equilibria of CO2 + H2O

    SciTech Connect

    Capobianco, Ryan; Gruszkiewicz, Miroslaw {Mirek} S; Wesolowski, David J; Cole, David R; Bodnar, Robert

    2013-01-01

    The need for accurate modeling of fluid-mineral processes over wide ranges of temperature, pressure and composition highlighted considerable uncertainties of available property data and equations of state, even for the CO2 + H2O binary system. In particular, the solubility, activity, and ionic dissociation equilibrium data for the CO2-rich phase, which are essential for understanding dissolution/precipitation, fluid-matrix reactions, and solute transport, are uncertain or missing. In this paper we report the results of a new experimental study of volumetric and phase equilibrium properties of CO2 + H2O, to be followed by measurements for bulk and confined multicomponent fluid mixtures. Mixture densities were measured by vibrating tube densimetry (VTD) over the entire composition range at T = 200 and 250 C and P = 20, 40, 60, and 80 MPa. Initial analysis of the mutual solubilities, determined from volumetric data, shows good agreement with earlier results for the aqueous phase, but finds that the data of Takenouchi and Kennedy (1964) significantly overestimated the solubility of water in supercritical CO2 (by a factor of more than two at 200 C). Resolving this well-known discrepancy will have a direct impact on the accuracy of predictive modeling of CO2 injection in geothermal reservoirs and geological carbon sequestration through improved equations of state, needed for calibration of predictive molecular-scale models and large-scale reactive transport simulations.

  14. Survey of Volumetric Grid Generators

    NASA Technical Reports Server (NTRS)

    Woo, Alex; Volakis, John; Hulbert, Greg; Case, Jeff; Presley, Leroy L. (Technical Monitor)

    1994-01-01

    This document is the result of an Internet Survey of Volumetric grid generators. As such we have included information from only the responses which were sent to us. After the initial publication and posting of this survey, we would encourage authors and users of grid generators to send further information. Here is the initial query posted to SIGGRID@nas and the USENET group sci.physics.computational.fluid-dynamics. Date: Sun, 30 Jan 94 11:37:52 -0800 From: woo (Alex Woo x6010 227-6 rm 315) Subject: Info Sought for Survey of Grid Generators I am collecting information and reviews of both government sponsored and commercial mesh generators for large scientific calculations, both block structured and unstructured. If you send me a review of a mesh generator, please indicate its availability and cost. If you are a commercial concern with information on a product, please also include references for possible reviewers. Please email to woo@ra-next.arc.nasa.gov. I will post a summary and probably write a short note for the IEEE Antennas and Propagation Magazine. Alex Woo, MS 227-6 woo@ames.arc.nasa.gov NASA Ames Research Center NASAMAIL ACWOO Moffett Field, CA 94035-1000 SPANET 24582::W00 (415) 604-6010 (FAX) 604-4357 fhplabs,decwrl,uunet)!ames!woo Disclaimer: These are not official statements of NASA or EMCC. We did not include all the submitted text here. Instead we have created a database entry in the freely available and widely used BIBTeX format which has an Uniform Resource Locator (URL) field pointing to more details. The BIBTeX database is modeled after those available from the BIBNET project at University of Utah.

  15. Volumetric interpretation of protein adsorption kinetics

    NASA Astrophysics Data System (ADS)

    Barnthip, Naris

    Protein adsorption is believed to be a very important factor ultimately leading to a predictive basis for biomaterials design and improving biocompatibility. Standard adsorption theories are modified to accommodate experimental observations. Adsorption from single-protein solutions and competitive adsorption from binary solutions are mainly considered. The standard solution-depletion method of measuring protein adsorption is implemented with SDS-gel electrophoresis as a multiplexing, separation-and-quantification tool to measure protein adsorption to hydrophobic octyl sepharose (OS) adsorbent particles. Standard radiometric methods have also been used as a further check on the electrophoresis method mentioned above for purified-protein cases. Experimental results are interpreted in terms of an alternative kinetic model called volumetric interpretation of protein adsorption. A partitioning process between bulk solution and a three-dimensional interphase region that separates bulk solution from the physical adsorbent surface is the concept of the model. Protein molecules rapidly diffuse into an inflating interphase that is spontaneously formed by bringing a protein solution into contact with a physical surface, then follows by rearrangement of proteins within this interphase to achieve the maximum interphase concentration (dictated by energetics of interphase dehydration) within the thinnest (lowest volume) interphase possible. An important role of water in protein adsorption is emphasized and supported by this model. The fundamental aspects including the reversibility/irreversibility of protein adsorption, the multilayer adsorption, the applicability of thermodynamic/computational models, the capacity of protein adsorption, and the mechanism of so called Vroman effect are discussed and compared to the conventional theories. Superhydrophobic effect on the adsorption of human serum albumin is also examined.

  16. Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV)

    NASA Astrophysics Data System (ADS)

    Falahatpisheh, Ahmad; Kheradvar, Arash

    2015-11-01

    Measurement of 3D flow field inside the cardiac chambers has proven to be a challenging task. Current laser-based 3D PIV methods estimate the third component of the velocity rather than directly measuring it and also cannot be used to image the opaque heart chambers. Modern echocardiography systems are equipped with 3D probes that enable imaging the entire 3D opaque field. However, this feature has not yet been employed for 3D vector characterization of blood flow. For the first time, we introduce a method that generates velocity vector field in 4D based on volumetric echocardiographic images. By assuming the conservation of brightness in 3D, blood speckles are tracked. A hierarchical 3D PIV method is used to account for large particle displacement. The discretized brightness transport equation is solved in a least square sense in interrogation windows of size 163 voxels. We successfully validate the method in analytical and experimental cases. Volumetric echo data of a left ventricle is then processed in the systolic phase. The expected velocity fields were successfully predicted by V-Echo-PIV. In this work, we showed a method to image blood flow in 3D based on volumetric images of human heart using no contrast agent.

  17. Autologous Fat Grafting in Facial Volumetric Restoration

    PubMed Central

    Pasquale, Piombino; Gaetano, Marenzi; Giovanni, Dell’Aversana Orabona; Luigi, Califano; Gilberto, Sammartino

    2015-01-01

    Abstract The authors reported their surgical experience about structural fat grafting in the management of facial volumetric deficit. The purpose of this study was to assess the real indications, cosmetic results, complications, and global patient satisfaction of the Coleman technique in redefining facial contours in congenital and postoperative deformities. A retrospective analysis of 32 patients grafted according to Coleman's technique was performed, and the long-term outcomes and patient satisfaction were evaluated. The mean postoperative clinical follow-up was 14 months. The morphological changes were analyzed by comparing the photographic presurgical facial contour and the postoperative correction of soft tissue defects. All consecutive cases reported showed a progressive fat resorption for 3 months after surgery and its stable integration only after this period. Best results were performed in the treatment of genetically determined syndromes, such as the Franceschetti and Romberg syndromes. The authors suggest this surgical technique also for the treatment of unaesthetic cutaneous abscess cavity after incision and drainage. Unsatisfactory outcomes were obtained in the treatment of the posttraumatic facial scar, which needed more surgical procedures. PMID:25974786

  18. Experimental determination of the particle motions associated with the low order acoustic modes in enclosures

    NASA Technical Reports Server (NTRS)

    Byrne, K. P.; Marshall, S. E.

    1983-01-01

    A procedure for experimentally determining, in terms of the particle motions, the shapes of the low order acoustic modes in enclosures is described. The procedure is based on finding differentiable functions which approximate the shape functions of the low order acoustic modes when these modes are defined in terms of the acoustic pressure. The differentiable approximating functions are formed from polynomials which are fitted by a least squares procedure to experimentally determined values which define the shapes of the low order acoustic modes in terms of the acoustic pressure. These experimentally determined values are found by a conventional technique in which the transfer functions, which relate the acoustic pressures at an array of points in the enclosure to the volume velocity of a fixed point source, are measured. The gradient of the function which approximates the shape of a particular mode in terms of the acoustic pressure is evaluated to give the mode shape in terms of the particle motion. The procedure was tested by using it to experimentally determine the shapes of the low order acoustic modes in a small rectangular enclosure.

  19. Experimental and Theoretical Determination of Heavy Oil Viscosity Under Reservoir Conditions

    SciTech Connect

    Gabitto, Jorge; Barrufet, Maria

    2002-03-11

    The main objective of this research was to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes.

  20. Fast, Computer Supported Experimental Determination of Absolute Zero Temperature at School

    ERIC Educational Resources Information Center

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2014-01-01

    A simple and fast experimental method of determining absolute zero temperature is presented. Air gas thermometer coupled with pressure sensor and data acquisition system COACH is applied in a wide range of temperature. By constructing a pressure vs temperature plot for air under constant volume it is possible to obtain--by extrapolation to zero…

  1. Calculation and experimental determination of the fast neutron sensitivity of OSL detectors with hydrogen containing radiators

    NASA Astrophysics Data System (ADS)

    Fellinger, Jürgen; Henniger, Jürgen; Hübner, Klaus

    1984-11-01

    Detectors based on optically stimulated luminescence are useful for fast neutron dosimetry. For this one needs the neutron sensitivity of these detectors. We describe a procedure for the calculation of the neutron sensitivity. For CaF 2:Mn embedded in polyethylene the calculated values are compared with experimentally determined neutron sensitivities. There is good agreement.

  2. Determining the performance of energy wheels: Part 2 -- Experimental data and numerical validation

    SciTech Connect

    Simonson, C.J.; Ciepliski, D.L.; Besant, R.W.

    1999-07-01

    Experimentally measured and numerically simulated performance data are presented for an energy wheel operating in a wide range of conditions for mass flux, temperature, and humidity. Typically, the agreement between simulated and measured results is well within the experimental uncertainty. Both the simulated and numerical results show that the three effectiveness values (i.e., sensible, latent, and total) are unequal and each has its own unique sensitivity to operating conditions. Also, total effectiveness is shown to be a poor measurement of performance when the supply and exhaust inlet air enthalpies are nearly equal. Simulated results with the numerical model show that experimental results measured using half of the energy wheel, to reduce equipment sizes, underpredict the measured sensible effectiveness by up to 7%. The proposed method of determining energy wheel performance is to validate a detailed numerical model with a range of accurate experimental data and then use the model to predict performance for other operating conditions.

  3. Comparison of experimentally determined and mathematically predicted percutaneous penetration rates of chemicals.

    PubMed

    Korinth, Gintautas; Schaller, Karl Heinz; Bader, Michael; Bartsch, Rüdiger; Göen, Thomas; Rossbach, Bernd; Drexler, Hans

    2012-03-01

    The aim of the study was to evaluate the predictive potential of three different mathematical models for the percutaneous penetration of industrial solvents with respect to our experimental data. Percutaneous penetration rates (fluxes) from diffusion cell experiments of 11 chemicals were compared with fluxes predicted by mathematical models. The chemicals considered were three glycol ethers (2-butoxyethanol, diethylene glycol monobutyl ether and 1-ethoxy-2-propanol), three alcohols (ethanol, isopropanol and methanol), two glycols (ethylene glycol and 1,2-propanediol), one aromatic hydrocarbon (toluene) and two aromatic amines (aniline and o-toluidine). For the mathematical prediction of fluxes, models described by Fiserova-Bergerova et al. (Am J Ind Med 17:617-635 1990), Guy and Potts (Am J Ind Med 23:711-719 1993) and Wilschut et al. (Chemosphere 30:1275-1296 1995) were used. The molecular weights, octanol-water partition coefficients (LogP) and water solubilities of the compounds were obtained from a database for modelling. The fit between the mathematically predicted and experimentally determined fluxes was poor (R(2) = 0.04-0.29; linear regression). The flux differences ranged up to a factor of 412. For 4 compounds, the Guy and Potts model showed a closer fit with the experimental flux than the other models. The Wilschut et al. model showed a lower flux difference for 4 compounds as compared to experimental data than the models of Fiserova-Bergerova et al. and Guy and Potts. The Fiserova-Bergerova et al. model showed for 3 compounds a lower flux difference to experimental data than the other models. This study demonstrates large differences between mathematically predicted and experimentally determined fluxes. The percutaneous penetration as determined in diffusion cell experiments may be considerably overestimated as well as underestimated by mathematical models. Although the number of compounds in our comparison study is small, the results point out that none

  4. A model for the volumetric radiation characteristics of cellular ceramics

    SciTech Connect

    Fu, X.; Viskanta, R.; Gore, J.P.

    1997-12-01

    A unit cell based model for cellular ceramics was developed in conjunction with the discrete ordinates method for radiative transfer to predict theoretically the effective volumetric radiation characteristics of the cellular ceramics. Model input parameters include the porosity, pores per centimeter (PPC) and reflectivity of the solid material. Numerical calculations of the extinction coefficients and single scattering albedo are reported over the range of reflectivities from 0 to 1, porosities from 0.6 to 0.95 and PPC from 4 to 26. A comparison between model predictions and spectral emittance data for cellular ceramics reported in the literature shows agreement within 5 to 10% which is within experimental uncertainty.

  5. Accuracy of endodontic microleakage results: autoradiographic vs. volumetric measurements.

    PubMed

    Ximénez-Fyvie, L A; Ximénez-García, C; Carter-Bartlett, P M; Collado-Webber, F J

    1996-06-01

    The correlation between autoradiographic and volumetric leakage measurements was evaluated. Seventy-two anterior teeth with a single canal were selected and divided into three groups of 24. Group 1 served as control (no obturation), group 2 was obturated with gutta-percha only, and group 3 was obturated with gutta-percha and endodontic sealer. Samples were placed in a vertical position in 48-well cell culture plates and immersed in 1 ml of [14C]urea for 14 days. One-mm-thick horizontal serial sections were cut with a diamond disk cooled with liquid-nitrogen gas. Linear penetration was recorded by five independent evaluators from autoradiographs. Volumetric results were based on counts per minute registered in a liquid scintillation spectrometer. Pearson's correlation coefficient test was used to determine the lineal correlation between both methods of evaluation. No acceptable correlation values were found in any of the three groups (group 1, r = 0.34; group 2, r = 0.23; group 3, r = 0.20). Our results indicate that there is no correlation between linear and volumetric measurements of leakage. PMID:8934988

  6. Experimental determination of the solubility of iridium in silicate melts: Preliminary results

    NASA Technical Reports Server (NTRS)

    Borisov, Alexander; Dingwell, Donald B.; Oneill, Hugh ST.C.; Palme, Herbert

    1992-01-01

    Little is known of the geochemical behavior of iridium. Normally this element is taken to be chalcophile and/or siderophile so that during planetary differentiation processes, e.g., core formation, iridium is extracted from silicate phases into metallic phases. Experimental determination of the metal/silicate partition coefficient of iridium is difficult simply because it is so large. Also there are no data on the solubility behavior of iridium in silicate melts. With information on the solubility of iridium in silicate melts it is possible, in combination with experimental data for Fe-Ir alloys, to calculate the partition coefficient between a metallic phase and a silicate melt.

  7. Experimental level-structure determination in odd-odd actinide nuclei

    SciTech Connect

    Hoff, R.W.

    1985-04-04

    The status of experimental determination of level structure in odd-odd actinide nuclei is reviewed. A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei is applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation are derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings are used. Calculated and experimental level structures for /sup 238/Np, /sup 244/Am, and /sup 250/Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Applications of this modeling technique are discussed.

  8. Experimental determination of the relationship between permeability and microfracture-induced damage in bedded salt

    SciTech Connect

    Pfeifle, T.W.

    1998-03-01

    The development of deep underground structures (e.g., shafts, mines, storage and disposal caverns) significantly alters the stress state in the rock near the structure or opening. The effect of such an opening is to concentrate the far-field stress near the free surface. For soft rock such as salt, the concentrating effect of the opening induces deviatoric stresses in the salt that may be large enough to initiate microcracks which then propagate with time. The volume of rock susceptible to damage by microfracturing is often referred to as the disturbed rock zone and, by its nature, is expected to exhibit high permeability relative to that of the native, far-field rock. This paper presents laboratory data that characterize microfracture-induced damage and the effect this damage has on permeability for bedded salt from the Waste Isolation Pilot Plant located in southeastern New Mexico. Damage is induced in the salt through a series of tertiary creep experiments and quantified in terms of dilatant volumetric strain. The permeability of damaged specimens is then measured using nitrogen gas as the permeant. The range in damage investigated included dilatant volumetric strains from less than 0.03 percent to nearly 4.0 percent. Permeability values corresponding to these damage levels ranged from 1 {times} 10{sup {minus}18} m{sup 2} to 1 {times} 10{sup {minus}12} m{sup 2}. Two simple models were fitted to the data for use in predicting permeability from dilatant volumetric strain.

  9. Experimental Procedures for Determining the Invariant Triplet-Phases of X-Ray Reflections.

    NASA Astrophysics Data System (ADS)

    Nicolosi, Joseph Anthony

    The phases of x-ray reflections are retained when three-beams diffract simultaneously (Post, 1977, 1979). The phase information can be extracted from the angular distribution of diffracted intensity about the three beam setting. We have investigated methods of optimizng experimental procedures and have developed instrumentation for resolving the intensity asymmetries associated with n-beam interactions in centrosymmetric crystals. A device, which employs two crystals in a skew-parallel arrangement, was designed and used to produce monochromatic ((DELTA)(lamda)/(lamda) (TURN) 5 x 10('-4)) and highly collimated ((alpha)(,(theta)) (TURN) (alpha)(,(omega)) (LESSTHEQ) 60") incident radiation. A 6000 Watt rotating anode x-ray generator was used with a (300 (mu)m)('2) projected focus. An automated diffractometer, which incorporates "absolute" optical encoders, was used to orient and drive the study crystals with an accuracy of (+OR-) 0.001(DEGREES). These experimental procedures yielded an appreciable improvement in sensitivity over procedures used previously which utilized polychromatic and more divergent incident radiation. The sensitivity of our procedures has been checked using perfect crystals of Germanium and Silicon. The improved techniques were used to determine more than 200 triplet-phases experimentally in mosaic crystals of Lead Molybdate and Sulfamic Acid. The experimental phases agreed in all cases with those calculated from the known atomic coordinates of the compounds. The bases for generalized procedures to be used with crystals having large unit cells are discussed. Methods of applying the phase determining rules and estimating the approximate magnitudes of the n-beam interactions are described. The basis for a generalized experimental data collection procedure not restricted to the Renninger geometry is discussed. Such procedures require the use of automated techniques for calculation of experimental parameters of the samples studied.

  10. Theoretical and experimental determination of L -shell decay rates, line widths, and fluorescence yields in Ge

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Sampaio, J. M.; Madeira, T. I.; Parente, F.; Indelicato, P.; Marques, J. P.; Santos, J. P.; Hoszowska, J.; Dousse, J.-Cl.; Loperetti, L.; Zeeshan, F.; Müller, M.; Unterumsberger, R.; Beckhoff, B.

    2015-08-01

    Fluorescence yields (FYs) for the Ge L shell were determined by a theoretical and two experimental groups within the framework of the International Initiative on X-Ray Fundamental Parameters Collaboration. Calculations were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental value of the L3FY ωL 3 was determined at the Physikalisch-Technische Bundesanstalt undulator beamline of the synchrotron radiation facility BESSY II in Berlin, Germany, and the L α1 ,2 and L β1 line widths were measured at the Swiss Light Source, Paul Scherrer Institute, Switzerland, using monochromatized synchrotron radiation and a von Hamos x-ray crystal spectrometer. The measured fluorescence yields and line widths are compared to the corresponding calculated values.

  11. Experimental determination of carbon dioxide evolution during aerobic composting of agro-wastes.

    PubMed

    Tripathi, Shilpa; Srivastava, J K

    2012-10-01

    This work aims at optimal composting of agro-wastes like sugarcane bagasse, wood straw and soya husk. A mixture of these substances along with small quantity of food waste as the seed was composted aerobically and carbon dioxide evolved was determined experimentally using a composting system comprising aerobic digester, operating in near-optimal conditions with regard to adequacy of oxygen and temperature in the system. During aerobic composting of agro-waste carbon dioxide is produced due to degradation of different carbon fractions in the substrate. Carbon dioxide production rate, which is a measure of bacterial/fungal activity in composting systems, can be related to various process parameters like different carbon fractions present in the substrate and their reaction rates, progress and termination of compost phenomenon and stabilization of organic matter. This gives a balanced compromise between complexity of mathematical model and extensive experimentation, and can be used for determining optimum conditions for composting. PMID:25151714

  12. Experimental method for determination of bending and torsional rigidities of advanced composite laminates

    SciTech Connect

    Maeda, Takenori

    1995-11-01

    This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method is confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.

  13. On the experimental determination of the one-way speed of light

    NASA Astrophysics Data System (ADS)

    Pérez, Israel

    2011-07-01

    In this paper the question of the isotropy of the one-way speed of light is addressed from an experimental perspective. In particular, we analyse two experimental methods commonly used in its determination. The analysis is aimed at clarifying the view that the one-way speed of light cannot be determined by techniques in which physical entities close paths. The procedure employed here will provide epistemological tools so that physicists understand that a direct measurement of the speed not only of light but of any physical entity is by no means trivial. Our results shed light on the physics behind the experiments which may be of interest for both physicists with an elemental knowledge in special relativity and philosophers of science.

  14. A proposed experimental method for interpreting Doppler effect measurements and determining their precision

    NASA Technical Reports Server (NTRS)

    Klann, P. G.

    1973-01-01

    The principal problem in the measurement of the Doppler reactivity effect is separating it from the thermal reactivity effects of the expansion of the heated sample. It is shown in this proposal that the thermal effects of sample expansion can be experimentally determined by making additional measurements with porous samples having the same mass and/or volume as the primary sample. By combining these results with independent measurements of the linear temperature coefficient and the computed temperature dependence of the Doppler coefficient the magnitude of the Doppler coefficient may be extracted from the data. These addiational measurements are also useful to experimentally determine the precision of the reactivity oscillator technique used to measure the reactivity effects of the heated sample.

  15. Volumetric imaging with an amplitude-steered array.

    PubMed

    Frazier, Catherine H; Hughes, W Jack; O'Brien, William D

    2002-12-01

    Volumetric acoustic imaging is desirable for the visualization of underwater objects and structures; however, the implementation of a volumetric imaging system is difficult due to the high channel count of a fully populated two-dimensional array. Recently, a linear amplitude-steered array with a reduced electronics requirement was presented, which is capable of collecting a two-dimensional set of data with a single transmit pulse. In this study, we demonstrate the use of the linear amplitude-steered array and associated image formation algorithms for collecting and displaying volumetric data; that is, proof of principle of the amplitude-steering concept and the associated image formation algorithms is demonstrated. Range and vertical position are obtained by taking advantage of the frequency separation of a vertical linear amplitude-steered array. The third dimension of data is obtained by rotating the array such that the mainlobe is mechanically steered in azimuth. Data are collected in a water tank at the Pennsylvania State University Applied Research Laboratory for two targets: a ladder and three pipes. These data are the first experimental data collected with an amplitude-steered array for the purposes of imaging. The array is 10 cm in diameter and is operated in the frequency range of 80 to 304 kHz. Although the array is small for high-resolution imaging at these frequencies, the rungs of the ladder are recognizable in the images. The three pipes are difficult to discern in two of the projection images; however, the pipes separated in range are clear in the image showing vertical position versus range. The imaging concept is demonstrated on measured data, and the simulations agree well with the experimental results. PMID:12508995

  16. Volumetric imaging with an amplitude-steered array

    NASA Astrophysics Data System (ADS)

    Frazier, Catherine H.; Hughes, W. Jack; O'Brien, William D.

    2002-12-01

    Volumetric acoustic imaging is desirable for the visualization of underwater objects and structures; however, the implementation of a volumetric imaging system is difficult due to the high channel count of a fully populated two-dimensional array. Recently, a linear amplitude-steered array with a reduced electronics requirement was presented, which is capable of collecting a two-dimensional set of data with a single transmit pulse. In this study, we demonstrate the use of the linear amplitude-steered array and associated image formation algorithms for collecting and displaying volumetric data; that is, proof of principle of the amplitude-steering concept and the associated image formation algorithms is demonstrated. Range and vertical position are obtained by taking advantage of the frequency separation of a vertical linear amplitude-steered array. The third dimension of data is obtained by rotating the array such that the mainlobe is mechanically steered in azimuth. Data are collected in a water tank at the Pennsylvania State University Applied Research Laboratory for two targets: a ladder and three pipes. These data are the first experimental data collected with an amplitude-steered array for the purposes of imaging. The array is 10 cm in diameter and is operated in the frequency range of 80 to 304 kHz. Although the array is small for high-resolution imaging at these frequencies, the rungs of the ladder are recognizable in the images. The three pipes are difficult to discern in two of the projection images; however, the pipes separated in range are clear in the image showing vertical position versus range. The imaging concept is demonstrated on measured data, and the simulations agree well with the experimental results.

  17. An experimental method for directly determining the interconnectivity of melt in a partially molten system

    NASA Technical Reports Server (NTRS)

    Daines, Martha J.; Richter, Frank M.

    1988-01-01

    An experimental method for directly determining the degree of interconnectivity of melt in a partially molten system is discussed using an olivine-basalt system as an example. Samarium 151 is allowed time to diffuse through mixtures of olivine and basalt powder which have texturally equilibrated at 1350 C and 13 to 15 kbars. The final distribution of samarium is determined through examination of developed radiographs of the samples. Results suggest an interconnected melt network is established at melt fractions at least as low as 1 wt pct and all melt is completely interconnected at melt fractions at least as low as 2 wt pct for the system examined.

  18. Theoretical-experimental method of determining the drag coefficient of a harmonically oscillating thin plate

    NASA Astrophysics Data System (ADS)

    Egorov, A. G.; Kamalutdinov, A. M.; Paimushin, V. N.; Firsov, V. A.

    2016-03-01

    A method for determining the drag coefficient of a thin plate harmonically oscillating in a viscous incompressible fluid is proposed. The method is based on measuring the amplitude of deflections of cantilever-fixed thin plates exhibiting damping flexural oscillations with a frequency corresponding to the first mode and on solving an inverse problem of calculating the drag coefficient on the basis of the experimentally found logarithmic decrement of beam oscillations.

  19. Apollo 17 petrology and experimental determination of differentiation sequences in model moon compositions

    NASA Technical Reports Server (NTRS)

    Hodges, F. N.; Kushiro, I.

    1974-01-01

    Experimental studies of model moon compositions are discussed, taking into account questions related to the differentiation of the outer layer of the moon. Phase relations for a series of proposed lunar compositions have been determined and a petrographic and electron microprobe study was conducted on four Apollo 17 samples. Two of the samples consist of high-titanium mare basalts, one includes crushed anorthosite and gabbro, and another contains blue-gray breccia.

  20. Experimental determination of the dynamic tensile strength of liquid Sn, Pb, and Zn

    NASA Astrophysics Data System (ADS)

    Zaretsky, E. B.

    2016-07-01

    An experimental technique capable of determining the dynamic tensile (spall) strength of metals in the liquid state is described. Relying on this technique, spall data on samples of tin, lead, and zinc pre-heated to 20 K above their melting points were obtained. It is found that the spall strength of the metals is low, 40-100 MPa, but not zero and is, seemingly, affected by material purity and by the rate of tensile deformation preceding sample spallation.

  1. Experimental Methodology for Determining Optimum Process Parameters for Production of Hydrous Metal Oxides by Internal Gelation

    SciTech Connect

    Collins, J.L.

    2005-10-28

    The objective of this report is to describe a simple but very useful experimental methodology that was used to determine optimum process parameters for preparing several hydrous metal-oxide gel spheres by the internal gelation process. The method is inexpensive and very effective in collection of key gel-forming data that are needed to prepare the hydrous metal-oxide microspheres of the best quality for a number of elements.

  2. A volumetric flask as a projector

    NASA Astrophysics Data System (ADS)

    Limsuwan, P.; Asanithi, P.; Thongpool, V.; Piriyawong, V.; Limsuwan, S.

    2012-03-01

    A lens based on liquid in the confined volume of a volumetric flask was presented as a potential projector to observe microscopic floating organisms or materials. In this experiment, a mosquito larva from a natural pond was selected as a demonstration sample. By shining a light beam from a laser pointer of any visible wavelength through the volumetric flask filled with liquid, the movements of floating objects were clearly observed on a screen. The magnification was simply controlled by changing either the volume of the flask or the distance of the screen from the flask.

  3. Nonequilibrium volumetric response of shocked polymers

    SciTech Connect

    Clements, B E

    2009-01-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.

  4. Determination of hydroxy acids in cosmetics by chemometric experimental design and cyclodextrin-modified capillary electrophoresis.

    PubMed

    Liu, Pei-Yu; Lin, Yi-Hui; Feng, Chia Hsien; Chen, Yen-Ling

    2012-10-01

    A CD-modified CE method was established for quantitative determination of seven hydroxy acids in cosmetic products. This method involved chemometric experimental design aspects, including fractional factorial design and central composite design. Chemometric experimental design was used to enhance the method's separation capability and to explore the interactions between parameters. Compared to the traditional investigation that uses multiple parameters, the method that used chemometric experimental design was less time-consuming and lower in cost. In this study, the influences of three experimental variables (phosphate concentration, surfactant concentration, and methanol percentage) on the experimental response were investigated by applying a chromatographic resolution statistic function. The optimized conditions were as follows: a running buffer of 150 mM phosphate solution (pH 7) containing 0.5 mM CTAB, 3 mM γ-CD, and 25% methanol; 20 s sample injection at 0.5 psi; a separation voltage of -15 kV; temperature was set at 25°C; and UV detection at 200 nm. The seven hydroxy acids were well separated in less than 10 min. The LOD (S/N = 3) was 625 nM for both salicylic acid and mandelic acid. The correlation coefficient of the regression curve was greater than 0.998. The RSD and relative error values were all less than 9.21%. After optimization and validation, this simple and rapid analysis method was considered to be established and was successfully applied to several commercial cosmetic products. PMID:22996609

  5. Experimental determination of the distributed dynamic coefficients for a hydrodynamic fluid film bearing

    NASA Astrophysics Data System (ADS)

    Gyurko, John Harrison

    Most current rotor bearing analysis utilizes lumped parameter bearing coefficients to model the static and dynamic characteristics of fluid film bearings. By treating the stiffness and damping properties of the fluid film as acting upon the axial centerline of the rotor, these models are limited in their analysis to first order lateral rotor-bearing motion. The development of numerical methods that distribute the dynamic properties of the fluid film around the bearing circumference allow for higher order analysis of the motion between the bearing and rotor. Assessment of the accuracy of the numerical method used to calculate distributed dynamic fluid film bearing coefficients is performed by developing a novel hydrodynamic journal bearing test rig and experimental testing procedure capable of obtaining measured distributed dynamic coefficients over a range of bearing operating conditions. The instrumented bearing test rig is used to measure the dynamic bearing displacement and fluid film pressure responses from application of an externally applied excitation force. Least squares solution to a system of perturbated pressure equations, populated by measured displacement and pressure responses, is used to determine the hydrodynamic stiffness and damping properties for a finite region of the bearing surface. Incremental rotation of pressure sensors embedded in the body of the test bearing allow for measurement of the fluid film circumferential pressure distribution which is used to calculate a set of experimentally determined dynamic bearing coefficients. Distributed bearing coefficients derived from experimental measurements are compared to numerically calculated distributed coefficients as well as to lumped parameter coefficients generated from experimental and numerical methods found in the literature. Overall, the numerically calculated distributed coefficients successfully model both the circumferential distribution and the operating conditions of the experimental

  6. Experimental determination of Cm measurement related hardware parameters of the patch-clamp amplifier.

    PubMed

    Zhang, Hao; Xiong, Jun; Luo, Jie; Qu, Anlian

    2009-01-30

    Accurate Cm measurements rely on accurate determination of specific parameters of a patch-clamp amplifier (PCA). Hardware-related parameters, such as the resistance Rf and the stray capacitance Cf of the feedback resistor, the input capacitance Ci, the injection capacitance Cj, and the extra capacitances introduced by the BNC connector, are of significance in the sense of obtaining absolute estimates of cell parameters. In the present paper, a frequency-domain method, or the f-method for simplicity, is put forward to experimentally determine the actual values of basic circuit elements for our self-developed PCA. The f-method makes use of sine waves and amplitude/phase measurements instead of the square-wave responses to determine the above parameters of a PCA, and thereby calibrates the PAC for capacitance measurements. Experimental results prove that the f-method is excellent in determining hardware-related parameters, with 3-5% error of the impedance of the "10 MOmega setting", and about 2% error of the impedance of the "model cell" of the model circuit for our PCA. The f-method enables us not only to picture components of fast capacitances, but also to guarantee complete fast capacitance compensation; it may be applicable for other PCAs. PMID:18789969

  7. Volumetric measurement of tank volume

    NASA Technical Reports Server (NTRS)

    Walter, Richard T. (Inventor); Vanbuskirk, Paul D. (Inventor); Weber, William F. (Inventor); Froebel, Richard C. (Inventor)

    1991-01-01

    A method is disclosed for determining the volume of compressible gas in a system including incompressible substances in a zero-gravity environment consisting of measuring the change in pressure (delta P) for a known volume change rate (delta V/delta t) in the polytrophic region between isothermal and adiabatic conditions. The measurements are utilized in an idealized formula for determining the change in isothermal pressure (delta P sub iso) for the gas. From the isothermal pressure change (delta iso) the gas volume is obtained. The method is also applicable to determination of gas volume by utilizing work (W) in the compression process. In a passive system, the relationship of specific densities can be obtained.

  8. Experimental determinations of the eigenmodes for composite bars made with carbon and Kevlar-carbon fibers

    NASA Astrophysics Data System (ADS)

    Miriţoiu, C. M.; Stănescu, M. M.; Burada, C. O.; Bolcu, D.; Roşca, V.

    2015-11-01

    For modal identification, the single-point excitation method has been widely used in modal tests and it consists in applying a force in a given point and recording the vibratory structure response in all interest points, including the excitation point. There will be presented the experimental recordings for the studied bars (with Kevlar-carbon or carbon fibers), the frequency response function in Cartesian and polar coordinates. By using the frequency response functions we determine the eigenparameters for each bar. We present the final panel of the eigenmodes (with the damping factors, eigenfrequencies and critical damping) for each considered bar. Using the eigenfrequency of the first determined eigenmode, the bars stiffness has been determined. The presented bars can be used in practical engineering for: car or bus body parts, planes body parts, bullet-proof vests, reinforcements for sandwich beams, and so on.

  9. Experimental determination of the density matrix describing collisionally produced H(n = 3) atoms

    SciTech Connect

    Havener, C.C.; Rouze, N.; Westerveld, W.B.; Risley, A.J.S.

    1986-01-01

    An experimental technique and analysis procedure is described for determining the axially symmetric density matrix for collisionally produced H(n = 3) atoms by measuring the Stokes parameters which characterize the emitted Balmer- radiation as a function of axial and transverse electric fields applied in the collision cell. The electric fields induce strong characteristic variations in the Stokes parameters. The 14 independent elements of the density matrix are determined by fitting the observed Stokes parameters with signals calculated from a theoretical analysis of the experiment. The physical interpretation of the density matrix is presented in terms of graphs of the electron probability distribution and the electron current distribution. Examples of the determination of the density matrix are given for 40-, 60-, and 80-keV H +He electron-transfer collisions.

  10. Clinical Applications of Volumetric Modulated Arc Therapy

    SciTech Connect

    Matuszak, Martha M.; Yan Di; Grills, Inga; Martinez, Alvaro

    2010-06-01

    Purpose: To present treatment planning case studies for several treatment sites for which volumetric modulated arc therapy (VMAT) could have a positive impact; and to share an initial clinical experience with VMAT for stereotactic body radiotherapy (SBRT). Methods and Materials: Four case studies are presented to show the potential benefit of VMAT compared with conformal and intensity-modulated radiotherapy (IMRT) techniques in pediatric cancer, bone marrow-sparing whole-abdominopelvic irradiation (WAPI), and SBRT of the lung and spine. Details of clinical implementation of VMAT for SBRT are presented. The VMAT plans are compared with conventional techniques in terms of dosimetric quality and delivery efficiency. Results: Volumetric modulated arc therapy reduced the treatment time of spine SBRT by 37% and improved isodose conformality. Conformal and VMAT techniques for lung SBRT had similar dosimetric quality, but VMAT had improved target coverage and took 59% less time to deliver, although monitor units were increased by 5%. In a complex pediatric pelvic example, VMAT reduced treatment time by 78% and monitor units by 25% compared with IMRT. A double-isocenter VMAT technique for WAPI can spare bone marrow while maintaining good delivery efficiency. Conclusions: Volumetric modulated arc therapy is a new technology that may benefit different patient populations, including pediatric cancer patients and those undergoing concurrent chemotherapy and WAPI. Volumetric modulated arc therapy has been used and shown to be beneficial for significantly improving delivery efficiency of lung and spine SBRT.

  11. A Volumetric Flask as a Projector

    ERIC Educational Resources Information Center

    Limsuwan, P.; Asanithi, P.; Thongpool, V.; Piriyawong, V.; Limsuwan, S.

    2012-01-01

    A lens based on liquid in the confined volume of a volumetric flask was presented as a potential projector to observe microscopic floating organisms or materials. In this experiment, a mosquito larva from a natural pond was selected as a demonstration sample. By shining a light beam from a laser pointer of any visible wavelength through the…

  12. EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS

    SciTech Connect

    Dr. Jorge Gabitto; Maria Barrufet

    2003-05-01

    The USA deposits of heavy oils and tar sands contain significant energy reserves. Thermal methods, particularly steam drive and steam soak, are used to recover heavy oils and bitumen. Thermal methods rely on several displacement mechanisms to recover oil, but the most important is the reduction of crude viscosity with increasing temperature. The main objective of this research is to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes. First, we reviewed critically the existing literature choosing the most promising models for viscosity determination. Then, we modified an existing viscosity correlation, based on the corresponding states principle in order to fit more than two thousand commercial viscosity data. We collected data for compositional and black oil samples (absence of compositional data). The data were screened for inconsistencies resulting from experimental error. A procedure based on the monotonic increase or decrease of key variables was implemented to carry out the screening process. The modified equation was used to calculate the viscosity of several oil samples where compositional data were available. Finally, a simple procedure was proposed to calculate black oil viscosity from common experimental information such as, boiling point, API gravity and molecular weight.

  13. Cross-scale coefficient selection for volumetric medical image fusion.

    PubMed

    Shen, Rui; Cheng, Irene; Basu, Anup

    2013-04-01

    Joint analysis of medical data collected from different imaging modalities has become a common clinical practice. Therefore, image fusion techniques, which provide an efficient way of combining and enhancing information, have drawn increasing attention from the medical community. In this paper, we propose a novel cross-scale fusion rule for multiscale-decomposition-based fusion of volumetric medical images taking into account both intrascale and interscale consistencies. An optimal set of coefficients from the multiscale representations of the source images is determined by effective exploitation of neighborhood information. An efficient color fusion scheme is also proposed. Experiments demonstrate that our fusion rule generates better results than existing rules. PMID:22868528

  14. On the Equivalency of Experimental B(E2) Values Determined by Various Methods

    NASA Astrophysics Data System (ADS)

    Pritychenko, Boris; Birch, Michael; Singh, Balraj; Brookhaven National Laboratory Team; McMaster University Team

    2015-10-01

    Over the last 60 years a variety of experimental methods have been employed to determine reduced transition probabilities in even-even nuclei. Different methods and data analysis techniques imply a strong need for consistency checks of the reported results. To investigate the equivalence of different measurements we have used a recently-developed B(E2) ↑ database. For the first time transition probabilities for Doppler Shift Attenuation (DSA), Recoil Distance Doppler Shift (RDDS), Delayed Coincidences (DC), Nuclear Resonance Fluorescence (NRF) and Coulomb Excitation (CE) methods have been analyzed and compared in the Z = 6-94 region. The analysis of B(E2;01+ -->21+) values of the 100 frequently-studied even-even nuclei indicates these experimental methods produce equivalent results. Possible differences between the DSA and CE values near closed neutron and proton shells could be explained by the experimental deficiencies. Further comparisons of the present data with the inelastic electron scattering (EE') results also show agreement. These findings confirm equivalence of the major experimental methods for a wide range of nuclei. This work was funded by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy, under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LC.

  15. Theoretical and experimental determination of steering mechanism for Risley prism systems.

    PubMed

    Lu, Yafei; Zhou, Yuan; Hei, Mo; Fan, Dapeng

    2013-03-01

    Two different analytical methods, the first-order paraxial approximation method and the nonparaxial ray tracing method, are applied to determine the steering mechanism of the Risley prism system, including the pointing prediction and the complete and exact inverse orientation solutions. The analytical results obtained with the two different methods are investigated in detail about the pointing prediction and the two groups of inverse orientation solutions, respectively. Risley prism equipment for wide angular range beam scanning is assembled and the experimental setup is built to test the steering mechanism of the Risley prism system. Experimental results validate the availability of the nonparaxial ray tracing method to discuss the beam steering mechanism for the Risley prism system. PMID:23458790

  16. Nondestructive experimental determination of bimaterial rectangular cantilever spring constants in water

    SciTech Connect

    Snow, David E.; Kim, Dae Jung; Hope-Weeks, Louisa J.; Weeks, Brandon L.; Pitchimani, Rajasekar

    2008-08-15

    In order to address the issue of spring constant calibration in viscous fluids such as water, a new method is presented that allows for the experimental calibration of bimaterial cantilever spring constants. This method is based on modeling rectangular cantilever beam bending as a function of changing temperature. The temperature change is accomplished by heating water as it flows around the cantilever beams in an enclosed compartment. The optical static method of detection is used to measure the deflection of cantilever at the free end. Experimentally determined results are compared to Sader's method and to the Thermotune method most commonly used in cantilever calibrations. Results indicate that the new bimaterial thermal expansion method is accurate within 15%-20% of the actual cantilever spring constant, which is comparable to other nondestructive calibration techniques.

  17. Nondestructive experimental determination of bimaterial rectangular cantilever spring constants in water.

    PubMed

    Snow, David E; Weeks, Brandon L; Kim, Dae Jung; Pitchimani, Rajasekar; Hope-Weeks, Louisa J

    2008-08-01

    In order to address the issue of spring constant calibration in viscous fluids such as water, a new method is presented that allows for the experimental calibration of bimaterial cantilever spring constants. This method is based on modeling rectangular cantilever beam bending as a function of changing temperature. The temperature change is accomplished by heating water as it flows around the cantilever beams in an enclosed compartment. The optical static method of detection is used to measure the deflection of cantilever at the free end. Experimentally determined results are compared to Sader's method and to the Thermotune method most commonly used in cantilever calibrations. Results indicate that the new bimaterial thermal expansion method is accurate within 15%-20% of the actual cantilever spring constant, which is comparable to other nondestructive calibration techniques. PMID:19044356

  18. Experimental phase determination of the structure factor from Kossel line profile

    PubMed Central

    Faigel, G.; Bortel, G.; Tegze, M.

    2016-01-01

    Kossel lines are formed when radiation from point x-ray sources inside a single crystal are diffracted by the crystal itself. In principle, Kossel line patterns contain full information on the crystalline structure: phase and magnitude of the structure factors. The phase is coded into the profile of the lines. Although this was known for a long time, experimental realization has not been presented. In this work we demonstrate experimentally that phases can be directly determined from the profile of the Kossel lines. These measurements are interesting not only theoretically, but they would facilitate structure solution of samples within extreme conditions, such as high pressure, high and low temperatures, high magnetic fields and extremely short times. The parallel measurement of many diffraction lines on a stationary sample will allow a more efficient use of the new generation of x-ray sources the X-ray free electron lasers (XFELs). PMID:26965321

  19. Experimental phase determination of the structure factor from Kossel line profile.

    PubMed

    Faigel, G; Bortel, G; Tegze, M

    2016-01-01

    Kossel lines are formed when radiation from point x-ray sources inside a single crystal are diffracted by the crystal itself. In principle, Kossel line patterns contain full information on the crystalline structure: phase and magnitude of the structure factors. The phase is coded into the profile of the lines. Although this was known for a long time, experimental realization has not been presented. In this work we demonstrate experimentally that phases can be directly determined from the profile of the Kossel lines. These measurements are interesting not only theoretically, but they would facilitate structure solution of samples within extreme conditions, such as high pressure, high and low temperatures, high magnetic fields and extremely short times. The parallel measurement of many diffraction lines on a stationary sample will allow a more efficient use of the new generation of x-ray sources the X-ray free electron lasers (XFELs). PMID:26965321

  20. Experimentally determining the exchange parameters of quasi-two dimensional Heisenbert magnets

    SciTech Connect

    Singleton, John; Sengupta, P; Mcdonald, R D; Cox, S; Harrison, N; Goddard, P A; Lancaster, T; Blundell, S J; Pratt, F L; Manson, J L; Southerland, H I; Schlueter, J A

    2008-01-01

    Though long-range magnetic order cannot occur at temperatures T > 0 in a perfect two-dimensional (2D) Heisenberg magnet, real quasi-2D materials will invariably possess nonzero inter-plane coupling J{sub {perpendicular}} driving the system to order at elevated temperatures. This process can be studied using quantum Monte Carlo calculations. However, it is difficult to test the results of these calculations experimentally since for highly anisotropic materials in which the in-plane coupling is comparable with attainable magnetic fields J{sub {perpendicular}} is necessarily very small and inaccessible directly. In addition, because of the large anisotropy, the Neel temperatures are low and difficult to determine from thermodynamic measurements. Here, we present an elegant method of assessing the calculations via two independent experimental probes: pulsed-field magnetization in fields of up to 85 T, and muon-spin rotation.

  1. Experimental and Theoretical Determination of Dissociation Energies of Dispersion-Dominated Aromatic Molecular Complexes.

    PubMed

    Frey, Jann A; Holzer, Christof; Klopper, Wim; Leutwyler, Samuel

    2016-05-11

    The dissociation energy (D0) of an isolated and cold molecular complex in the gas-phase is a fundamental measure of the strength of the intermolecular interactions between its constituent moieties. Accurate D0 values are important for the understanding of intermolecular bonding, for benchmarking high-level theoretical calculations, and for the parametrization of force-field models used in fields ranging from crystallography to biochemistry. We review experimental and theoretical methods for determining gas-phase D0 values of M·S complexes, where M is a (hetero)aromatic molecule and S is a closed-shell "solvent" atom or molecule. The experimental methods discussed involve M-centered (S0 → S1) electronic excitation, which is often followed by ionization to the M(+)·S ion. The D0 is measured by depositing a defined amount of vibrational energy in the neutral ground state, giving M(‡)·S, the neutral S1 excited state, giving M*·S, or the M(+)·S ion ground state. The experimental methods and their relative advantages and disadvantages are discussed. Based on the electronic structure of M and S, we classify the M·S complexes as Type I, II, or III, and discuss characteristic properties of their respective potential energy surfaces that affect or hinder the determination of D0. Current theoretical approaches are reviewed, which comprise methods based on a Kohn-Sham reference determinant as well as wave function-based methods based on coupled-cluster theory. PMID:27055105

  2. Experimental determination of ablation vapor species from carbon phenolic heat-shield materials

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.

    1981-01-01

    The relative concentrations of vapors produced from carbon phenolic composites under thermal loadings approximating those expected at peak heating during vehicle entry into the atmospheres of the outer planets have been determined. The technique of vaporizing the surface of bulk samples by laser irradiation while measuring in situ the vapor species by mass spectrometry is described. Results show that vapor composition varies with irradiance level and with depth of heating (or extent of pyrolysis). Attempts are made to compare these experimental results with the theoretical predictions from computer codes.

  3. Experimental Determination of the Dominant Type of Auger Recombination in InGaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Galler, Bastian; Lugauer, Hans-Jürgen; Binder, Michael; Hollweck, Richard; Folwill, Yannick; Nirschl, Anna; Gomez-Iglesias, Alvaro; Hahn, Berthold; Wagner, Joachim; Sabathil, Matthias

    2013-11-01

    We investigate theoretically the influence of type and density of background carriers in the active region on the quantum efficiency of InGaN-based light emitters using an extension of the ABC rate model. A method to determine experimentally whether a certain type of Auger recombination is relevant in InGaN quantum wells is derived from these considerations. Using this approach, we show that the physical process which is the dominant cause for the efficiency droop is superlinear in the electron density and can thus be assigned to nnp-Auger recombination.

  4. Experimental Determination of High-Order Bending Elastic Constants of Lipid Bilayers.

    PubMed

    Toscano-Flores, Liliana G; Jacinto-Méndez, Damián; Carbajal-Tinoco, Mauricio D

    2016-06-30

    We present a method to describe the formation of small lipid vesicles in terms of three bending elastic constants that can be experimentally measured. Our method combines a general expression of the elastic free energy of the bilayer and the thermodynamic description of molecular aggregation. The resulting model requires the size distribution of liposomes, which is determined from the X-ray scattered intensity spectra of vesicular dispersions. By using two different preparation methods, we studied a series of vesicular solutions made of distinct lipids and we obtained their corresponding bending elastic constants that are consistent with known bending rigidities. PMID:27267752

  5. Determination of Absorption Coefficient of a Solution by a Simple Experimental Setup

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Deepak; Akhildev, C.; Sreenivasan, P. V.; Leelamma, K. K.; Joseph, Lyjo K.; Anila, E. I.

    2011-10-01

    The absorption coefficients of aqueous potassium permanganate (KMnO4) solution at 638.8 nm for various concentrations are determined using a simple experimental set up. The setup consists of He-Ne laser source (Red, 638.8 nm, 10 mW), a glass jar in which the KMnO4 sample is taken, a mirror strip inclined at 45° to direct the laser beam towards the bottom of the glass jar, a traveling microscope to adjust the position of light dependent resistor (LDR) and a digital multimeter to measure the resistance.

  6. Development of an experimental apparatus and protocol for determining antimicrobial activities of gaseous plant essential oils.

    PubMed

    Seo, Hyun-Sun; Beuchat, Larry R; Kim, Hoikyung; Ryu, Jee-Hoon

    2015-12-23

    There is a growing interest in the use of naturally-occurring antimicrobial agents such as plant essential oils (EOs) to inhibit the growth of hazardous and spoilage microorganisms in foods. Gaseous EOs (EO gases) have many potential applications in the food industry, including use as antimicrobial agents in food packaging materials and sanitizing agents for foods and food-contact surfaces, and in food processing environments. Despite the potentially beneficial applications of EO gases, there is no standard method to evaluate their antimicrobial activities. Thus, the present study was aimed at developing an experimental apparatus and protocol to determine the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) of EO gases against microorganisms. A sealed experimental apparatus was constructed for simultaneous evaluation of antimicrobial activities of EO gases at different concentrations without creating concentration gradients. A differential medium was then evaluated in which a color change allowed for the determination of growth of glucose-fermenting microorganisms. Lastly, an experimental protocol for the assessment of MIC and MLC values of EO gases was developed, and these values were determined for 31 EO gases against Escherichia coli O157:H7 as a model bacterium. Results showed that cinnamon bark EO gas had the lowest MIC (0.0391 μl/ml), followed by thyme-thymol EO gas (0.0781 μl/ml), oregano EO gas (0.3125 μl/ml), peppermint EO gas (0.6250 μl/ml), and thyme-linalool EO gas (0.6250 μl/ml). The order of the MLC values of the EO gases against the E. coli O157:H7 was thyme-thymol (0.0781 μl/ml)experimental apparatus and protocol enable rapid and accurate determination of the MIC and MLC values of EO gases and perhaps other types of gaseous antimicrobial agents. PMID:26350124

  7. First experimentally determined thermodynamic values of francium: hydration energy, energy of partitioning, and thermodynamic radius.

    PubMed

    Delmau, Lætitia H; Moine, Jérôme; Mirzadeh, Saed; Moyer, Bruce A

    2013-08-01

    The Gibbs energy of partitioning of Fr(+) ion between water and nitrobenzene has been determined to be 14.5 ± 0.6 kJ/mol at 25 °C, the first ever Gibbs energy of partitioning for francium in particular and the first ever solution thermodynamic quantity for francium in general. This value enabled the ionic radius and standard Gibbs energy of hydration for Fr(+) to be estimated as 173 pm and -251 kJ/mol, respectively, the former value being significantly smaller than previously thought. A new experimental method was established using a cesium dicarbollide as a cation-exchange agent, overcoming problems inherent to the trace-level concentrations of francium. The methodology opens the door to the study of the partitioning behavior of francium to other water-immiscible solvents and the determination of complexation constants for francium binding by receptor molecules. PMID:23848436

  8. Volumetric display based on multiple mini-projectors and a rotating screen

    NASA Astrophysics Data System (ADS)

    Song, Weitao; Zhu, Qiudong; Huang, Tao; Liu, Yue; Wang, Yongtian

    2015-01-01

    A method has been proposed to realize a transparent volumetric display using multiple mini-projectors and a rotating screen. Correct two-dimensional cross-sectional images are projected on a bidirectional scattering projection screen, which rotates to form a three-dimensional (3-D) image due to human vision persistence. An illumination subsystem is designed to ensure the accurate synchronization between the projectors and the rotating screen. Therefore, low-speed and low-cost miniature display devices can be used in the mini-projectors to realize dynamic volumetric imaging, which can satisfy all criteria of real 3-D vision with full color and high resolution. Experimental results of volumetric imaging realized by this method are also presented.

  9. Comparisons of surface vs. volumetric model-based registration methods using single-plane vs. bi-plane fluoroscopy in measuring spinal kinematics.

    PubMed

    Lin, Cheng-Chung; Lu, Tung-Wu; Wang, Ting-Ming; Hsu, Chao-Yu; Shih, Ting-Fang

    2014-02-01

    Several 2D-to-3D image registration methods are available for measuring 3D vertebral motion but their performance has not been evaluated under the same experimental protocol. In this study, four major types of fluoroscopy-to-CT registration methods, with different use of surface vs. volumetric models, and single-plane vs. bi-plane fluoroscopy, were evaluated: STS (surface, single-plane), VTS (volumetric, single-plane), STB (surface, bi-plane) and VTB (volumetric, bi-plane). Two similarity measures were used: 'Contour Difference' for STS and STB and 'Weighted Edge-Matching Score' for VTS and VTB. Two cadaveric porcine cervical spines positioned in a box filled with paraffin and embedded with four radiopaque markers were CT scanned to obtain vertebral models and marker coordinates, and imaged at ten static positions using bi-plane fluoroscopy for subsequent registrations using different methods. The registered vertebral poses were compared to the gold standard poses defined by the marker positions determined using CT and Roentgen stereophotogrammetry analysis. The VTB was found to have the highest precision (translation: 0.4mm; rotation: 0.3°), comparable with the VTS in rotations (0.3°), and the STB in translations (0.6mm). The STS had the lowest precision (translation: 4.1mm; rotation: 2.1°). PMID:24011956

  10. Experimental determination of the radial temperature profile in a non-neutral plasma

    NASA Astrophysics Data System (ADS)

    Hart, Grant W.

    2005-10-01

    In 1992 Eggleston, et al.^1 reported on a technique for measuring the radial temperature profile in a pure electron plasma by partially dumping the plasma onto a charge collector. Several of their assumptions do not apply to our plasma, and so last year^2 we reported on a modified method which uses a form of equilibrium calculation to determine the temperature. We applied the method to the results of a simulation and found that it gave the correct temperature distribution, but we had no experimental data to apply the method to. We have now applied it to real data and found that the method was extremely sensitive to experimental noise. We have modified the method to make it less sensitive to noise and compared it to the standard `evaporation' method. These experimental results will be presented. ^1D.L.Eggleston, C.F. Driscoll, B.R. Beck, A.W. Hyatt and J.H. Malmberg, Phys. Fluids B 4, 3432 (1992).^2Grant W. Hart and Bryan G. Peterson, Bull. Am. Phys. Soc. 49, 320.

  11. Hydrodynamic Radii of Intrinsically Disordered Proteins Determined from Experimental Polyproline II Propensities

    PubMed Central

    Tomasso, Maria E.; Tarver, Micheal J.; Devarajan, Deepa; Whitten, Steven T.

    2016-01-01

    The properties of disordered proteins are thought to depend on intrinsic conformational propensities for polyproline II (PPII) structure. While intrinsic PPII propensities have been measured for the common biological amino acids in short peptides, the ability of these experimentally determined propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs) has not been established. Presented here are results from molecular simulations of disordered proteins showing that the hydrodynamic radius (Rh) can be predicted from experimental PPII propensities with good agreement, even when charge-based considerations are omitted. The simulations demonstrate that Rh and chain propensity for PPII structure are linked via a simple power-law scaling relationship, which was tested using the experimental Rh of 22 IDPs covering a wide range of peptide lengths, net charge, and sequence composition. Charge effects on Rh were found to be generally weak when compared to PPII effects on Rh. Results from this study indicate that the hydrodynamic dimensions of IDPs are evidence of considerable sequence-dependent backbone propensities for PPII structure that qualitatively, if not quantitatively, match conformational propensities measured in peptides. PMID:26727467

  12. A validated spectrofluorimetric method for the determination of nifuroxazide through coumarin formation using experimental design

    PubMed Central

    2013-01-01

    Background Nifuroxazide (NF) is an oral nitrofuran antibiotic, having a wide range of bactericidal activity against gram positive and gram negative enteropathogenic organisms. It is formulated either in single form, as intestinal antiseptic or in combination with drotaverine (DV) for the treatment of gastroenteritis accompanied with gastrointestinal spasm. Spectrofluorimetry is a convenient and sensitive technique for pharmaceutical quality control. The new proposed spectrofluorimetric method allows its determination either in single form or in binary mixture with DV. Furthermore, experimental conditions were optimized using the new approach: Experimental design, which has many advantages over the old one, one variable at a time (OVAT approach). Results A novel and sensitive spectrofluorimetric method was designed and validated for the determination of NF in pharmaceutical formulation. The method was based upon the formation of a highly fluorescent coumarin compound by the reaction between NF and ethylacetoacetate (EAA) using sulfuric acid as catalyst. The fluorescence was measured at 390 nm upon excitation at 340 nm. Experimental design was used to optimize experimental conditions. Volumes of EAA and sulfuric acid, temperature and heating time were considered the critical factors to be studied in order to establish an optimum fluorescence. Each two factors were co-tried at three levels. Regression analysis revealed good correlation between fluorescence intensity and concentration over the range 20–400 ng ml-1. The suggested method was successfully applied for the determination of NF in pure and capsule forms. The procedure was validated in terms of linearity, accuracy, precision, limit of detection and limit of quantification. The selectivity of the method was investigated by analysis of NF in presence of the co-mixed drug DV where no interference was observed. The reaction pathway was suggested and the structure of the fluorescent product was proposed

  13. Determining the experimental leachability of copper, lead, and zinc in a harbor sediment and modeling.

    PubMed

    Chatain, Vincent; Blanc, Denise; Borschneck, Daniel; Delolme, Cécile

    2013-01-01

    The potential leaching of pollutants present in harbor sediments has to be evaluated in order to choose the best practices for managing them. Little is known about the speciation and mobility of heavy metals in these specific solid materials. The objective of this paper is to determine and model the leachability of copper, lead, and zinc present in harbor sediments in order to obtain essential new data. The mobility of inorganic contaminants in a polluted harbor sediment collected in France was investigated as a function of physicochemical conditions. The investigation relied mainly on the use of leaching tests performed in combination with mineralogical analysis and thermodynamic modeling using PHREEQC. The modeling phase was dedicated to both confirm the hypothesis formulated to explain the experimental results and improve the determination of the main physico-chemical parameters governing mobility. The experimental results and modeling showed that the release of copper, lead, and zinc is very low with deionized water which is due to the stability of the associated solid phases (organic matter, carbonate minerals, and/or iron sulfides) at natural slightly basic conditions. However, increased mobilization is observed under pH values below 6.0 and above 10.0. This methodology helped to consistently obtain the geochemical parameters governing the mobility of the contaminants studied. PMID:23086130

  14. Structural determinants of resveratrol for cell proliferation inhibition potency: experimental and docking studies of new analogs.

    PubMed

    Mazué, Frédéric; Colin, Didier; Gobbo, Jessica; Wegner, Maria; Rescifina, Antonio; Spatafora, Carmela; Fasseur, Dominique; Delmas, Dominique; Meunier, Philippe; Tringali, Corrado; Latruffe, Norbert

    2010-07-01

    Resveratrol is the subject of intense research because of the abundance of this compound in the human diet and as one of the most valuable natural chemopreventive agents. Further advances require new resveratrol analogs be used to identify the structural determinants of resveratrol for the inhibition potency of cell proliferation by comparing experimental and docking studies. Therefore, we synthesized new trans/(E)- and cis/(Z)-resveratrol - analogs not reported to date - by modifying the hydroxylation pattern of resveratrol and a double bond geometry. We included them in a larger panel of 14 molecules, including (Z)-3,5,4'-trimethoxystilbene, the most powerful molecule that is used as reference. Using a docking model complementary to experimental studies on the proliferation inhibition of the human colorectal tumor SW480 cell line, we show that methylation is the determinant substitution in inhibition efficacy, but only in molecules bearing a Z configuration. Most of the synthetic methylated derivatives (E or Z) stop mitosis at the M phase and lead to polyploid cells, while (E)-resveratrol inhibits cells at the S phase. Docking studies show that almost all of the docked structures of (Z)-polymethoxy isomers, but not most of the (E)-polymethoxy isomers substantially overlap the docked structure of combretastatin A-4, taken as reference ligand at the colchicine-tubulin binding site. PMID:20395019

  15. Experimental determination of the residual stresses in a Kraft recovery boiler tube

    SciTech Connect

    Wang, Xun-Li; Payzant, E.A.; Taljat, B.

    1997-07-01

    Neutron diffraction was used to determine the residual stresses in a spiral weld overlay tube used in Kraft recovery boilers by the pulp and paper industry. The specimen was a 2.5 inches OD carbon steel tube covered with a layer of Inconel 625 weld overlay. Residual strains in the carbon steel and weld overlay layers were determined using the ferritic (211) and austenitic (311) reflections, respectively. Residual stresses in each material were derived from the measured strains using Hooke`s law and appropriate elastic constants. Tensile stress regions were found not only in the weld metal but also in the heat affected zone in the carbon steel. The maximum tensile stress was located in the weld overlay layer and was found to be 360 MPa, or about 75% of the yield strength of the weld metal. The experimental data were compared with a finite element analysis based on an uncoupled thermal-mechanical formulation. Overall, the modeling results were in satisfactory agreement with the experimental data, although the hoop strain (stress) appears to have been overestimated by the finite element model. Additional neutron diffraction measurements on an annealed tube confirmed that these welding residual stresses were eliminated after annealing at 900{degrees}C for 20 minutes. 18 refs., 7 figs.

  16. Computational knee ligament modeling using experimentally determined zero-load lengths.

    PubMed

    Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin

    2012-01-01

    This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models. PMID:22523522

  17. Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths

    PubMed Central

    Bloemker, Katherine H; Guess, Trent M; Maletsky, Lorin; Dodd, Kevin

    2012-01-01

    This study presents a subject-specific method of determining the zero-load lengths of the cruciate and collateral ligaments in computational knee modeling. Three cadaver knees were tested in a dynamic knee simulator. The cadaver knees also underwent manual envelope of motion testing to find their passive range of motion in order to determine the zero-load lengths for each ligament bundle. Computational multibody knee models were created for each knee and model kinematics were compared to experimental kinematics for a simulated walk cycle. One-dimensional non-linear spring damper elements were used to represent cruciate and collateral ligament bundles in the knee models. This study found that knee kinematics were highly sensitive to altering of the zero-load length. The results also suggest optimal methods for defining each of the ligament bundle zero-load lengths, regardless of the subject. These results verify the importance of the zero-load length when modeling the knee joint and verify that manual envelope of motion measurements can be used to determine the passive range of motion of the knee joint. It is also believed that the method described here for determining zero-load length can be used for in vitro or in vivo subject-specific computational models. PMID:22523522

  18. Experimental conditions for determination of the neutrino mass hierarchy with reactor antineutrinos

    NASA Astrophysics Data System (ADS)

    Pac, Myoung Youl

    2016-01-01

    This article reports the optimized experimental requirements to determine neutrino mass hierarchy using electron antineutrinos (νbare) generated in a nuclear reactor. The features of the neutrino mass hierarchy can be extracted from the | Δ m312 | and | Δ m322 | oscillations by applying the Fourier sine and cosine transforms to the L / E spectrum. To determine the neutrino mass hierarchy above 90% probability, the requirements on the energy resolution as a function of the baseline are studied at sin2 ⁡ 2θ13 = 0.1. If the energy resolution of the neutrino detector is less than 0.04 /√{Eν} and the determination probability obtained from Bayes' theorem is above 90%, the detector needs to be located around 48-53 km from the reactor(s) to measure the energy spectrum of νbare. These results will be helpful for setting up an experiment to determine the neutrino mass hierarchy, which is an important problem in neutrino physics.

  19. Performance-scalable volumetric data classification for online industrial inspection

    NASA Astrophysics Data System (ADS)

    Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.

    2002-03-01

    Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.

  20. Left-ventricular boundary detection from spatiotemporal volumetric CT images

    NASA Astrophysics Data System (ADS)

    Tu, Hsiao-Kun; Matheny, Art; Goldgof, Dmitry B.

    1993-07-01

    This paper presents a new technique for LV boundary detection from 3-D volumetric cardiac images. The proposed method consists of boundary detection and boundary refinement stages. In the boundary detection stage, a spatio-temporal (4-D) gradient operator is used to capture the temporal gradients of dynamic LV boundaries and to smooth time uncorrelated noise. Spatio-temporal edge detection is performed outward from an approximate center of the left ventricle. In the boundary refinement stage, spherical harmonic model is fitted to the detected boundaries. Based on this model, false boundaries are removed; LV boundaries are recovered. A left ventricle is a bright, smooth region, varying in size over the heart cycle. This a priori knowledge is incorporated in detection and refinement of LV boundaries to reduce the effect of noise. The intensity of the inner (close to the center) neighbors of the LV boundary is brighter than the outer. The size of the left ventricle is used in boundary refinement to select proper boundaries to be fitted by the spherical harmonic mode. We demonstrate the advantages of 4-D edge detection over 3-D and the use of spherical harmonics to refine LV boundaries. Our experimental data is supplied by Dr. Eric Hoffman at University of Pennsylvania medical school and consists of 16 volumetric (128 by 128 by 118) CT images taken through a heart cycle.

  1. Experimental determination of the light-trapping-induced absorption enhancement factor in DSSC photoanodes

    PubMed Central

    Falconieri, Mauro

    2015-01-01

    Summary For dye-sensitized solar cells (DSSC), the fundamental process that determines the maximum short-circuit current is the absorption of light. In such devices, this is produced by the concurrent phenomena of light absorption by dye molecules and light trapping in the mesoporous, titania photoanode structure. The decoupling of these two phenomena is important for device characterization and the design of novel photoelectrode geometries with increased optical performance. In this paper, this task is addressed by introducing a spectral absorption enhancement factor as a parameter to quantify the light trapping effect. The experimental value of this parameter was obtained by comparing the experimentally determined fraction of absorbed light by a dye-sensitized photoanode with the light absorbed by the dye without the mesoporous titania structure. In order to gain more insight from this result, the fraction of light absorbed in the photoanode (on the basis of the dye loading capacity of the titania nanospheres) was also calculated by an optical model for the two extreme cases of the absence of light trapping and maximum light trapping. Accordingly, the photocurrent was calculated under the assumption of solar irradiation, which defined two useful boundaries. Using the experimentally derived values of the spectral absorption enhancement factor in the photoanode optical model, the DSSC short-circuit current can be calculated with good agreement with the value measured in practical devices based on the same photoanode structures. Therefore, our approach provides a realistic description of a practical device and can be exploited as an useful tool to assess the optical functionality of novel photoanode structures. PMID:25977859

  2. Comparison of experimentally and theoretically determined radiation characteristics of photosynthetic microorganisms

    NASA Astrophysics Data System (ADS)

    Kandilian, Razmig; Pruvost, Jérémy; Artu, Arnaud; Lemasson, Camille; Legrand, Jack; Pilon, Laurent

    2016-05-01

    This paper aims to experimentally and directly validate a recent theoretical method for predicting the radiation characteristics of photosynthetic microorganisms. Such predictions would facilitate light transfer analysis in photobioreactors (PBRs) to control their operation and to maximize their production of biofuel and other high-value products. The state of the art experimental method can be applied to microorganisms of any shape and inherently accounts for their non-spherical and heterogeneous nature. On the other hand, the theoretical method treats the microorganisms as polydisperse homogeneous spheres with some effective optical properties. The absorption index is expressed as the weighted sum of the pigment mass absorption cross-sections and the refractive index is estimated based on the subtractive Kramers-Kronig relationship given an anchor refractive index and wavelength. Here, particular attention was paid to green microalgae Chlamydomonas reinhardtii grown under nitrogen-replete and nitrogen-limited conditions and to Chlorella vulgaris grown under nitrogen-replete conditions. First, relatively good agreement was found between the two methods for determining the mass absorption and scattering cross-sections and the asymmetry factor of both nitrogen-replete and nitrogen-limited C. reinhardtii with the proper anchor point. However, the homogeneous sphere approximation significantly overestimated the absorption cross-section of C. vulgaris cells. The latter were instead modeled as polydisperse coated spheres consisting of an absorbing core containing pigments and a non-absorbing but strongly refracting wall made of sporopollenin. The coated sphere approximation gave good predictions of the experimentally measured integral radiation characteristics of C. vulgaris. In both cases, the homogeneous and coated sphere approximations predicted resonance in the scattering phase function that were not observed experimentally. However, these approximations were

  3. Experimental determination of the H2O-undersaturated peridotite solidus

    NASA Astrophysics Data System (ADS)

    Sarafian, E. K.; Gaetani, G. A.; Hauri, E. H.; Sarafian, A. R.

    2014-12-01

    Knowledge of the H2O-undersaturated lherzolite solidus places important constraints on the process of melt generation and mantle potential temperatures beneath oceanic spreading centers. The small concentration of H2O (~50-200 μg/g) dissolved in the oceanic mantle is thought to exert a strong influence on the peridotite solidus, but this effect has not been directly determined. The utility of existing experimental data is limited by a lack of information on the concentration of H2O dissolved in the peridotite and uncertainties involved with identifying small amounts of partial melt. We have developed an experimental approach for determining the peridotite solidus as a function of H2O content that overcomes these difficulties. Our initial results demonstrate that the solidus temperature for spinel lherzolite containing 150 μg/g H2O is higher than existing estimates for the anhydrous solidus. Our approach to determining the H2O-undersaturated lherzolite solidus is as follows. First, a small proportion (~5 %) of San Carlos olivine spheres, ~300 μm in diameter, are added to a peridotite synthesized from high-purity oxides and carbonates. Melting experiments are then conducted in pre-conditioned Au80Pd20 capsules over a range of temperatures at a single pressure using a piston-cylinder device. Water diffuses rapidly in olivine resulting in thorough equilibration between the olivine spheres and the surrounding fine-grained peridotite, and allowing the spheres to be used as hygrometers. After the experiment, the concentration of H2O dissolved in the olivine spheres is determined by secondary ion mass spectrometry. Melting experiments, spaced 20°C apart, were performed from 1250 to 1430°C at 1.5 GPa. The starting material has the composition of the depleted MORB mantle of Workman and Hart (2005) containing 0.13 wt% Na2O and 150 µg/g H2O. The concentration of H2O in the olivine spheres remains constant up to 1350°C, and then decreases systematically with increasing

  4. An intelligent, robust approach to volumetric aircraft sizing

    NASA Astrophysics Data System (ADS)

    Upton, Eric

    Advances in computational power have produced great strides in the later design and production portions of an aircraft's life cycle, and these advances have included the internal layout component of the design and manufacturing process. However, conceptual and preliminary design tools for internal layout remain primarily based on historical regressions and estimations---a situation that becomes untenable when considering revolutionary designs or component technologies. Bringing internal layout information forward in the design process can encourage the same level of benefits enjoyed by other disciplines as advances in aerodynamics, structures and other fields propagate forward in the design of complex systems. Accurate prediction of the volume required to contain all of an aircraft's internal components results in a more accurate prediction of aircraft specifications, mission effectiveness, and costs, helping determine if an aircraft is the best choice for continued development. This is not a computationally simple problem, however, and great care must be taken to ensure the efficiency of any proposed solution. Any solution must also address the uncertainty inherent in describing internal components early in the design process. Implementing a methodology that applies notions of an intelligent search for a solution, as well as deals robustly with component sizing, produces a high chance of success. Development of a robust, rapid method for assessing the volumetric characteristics of an aircraft in the context of the conceptual and preliminary design processes can offer many of the benefits of a complete internal layout without the immense assignment of resources typical in the detail phase of the design process. A simplified methodology for volumetrically sizing an aircraft is presented here as well as an assessment of the state-of-the-art techniques for volumetric considerations used in current aircraft design literature. A prototype tool using a combination of

  5. Temperature and volumetric water content petrophysical relationships in municipal solid waste for the interpretation of bulk electrical resistivity data

    NASA Astrophysics Data System (ADS)

    Pilawski, Tamara; Dumont, Gaël; Nguyen, Frédéric

    2015-04-01

    Landfills pose major environmental issues including long-term methane emissions, and local pollution of soil and aquifers but can also be seen as potential energy resources and mining opportunities. Water content in landfills determine whether solid fractions can be separated and recycled, and controls the existence and efficiency of natural or enhanced biodegradation. Geophysical techniques, such as electrical and electromagnetic methods have proven successful in the detection and qualitative investigation of sanitary landfills. However, their interpretation in terms of quantitative water content estimates makes it more challenging due to the influence of parameters such as temperature, compaction, waste composition or pore fluid. To improve the confidence given to bulk electrical resistivity data and to their interpretation, we established temperature and volumetric water content petrophysical relationships that we tested on field and laboratory electrical resistivity measurements. We carried out two laboratory experiments on leachates and waste samples from a landfill located in Mont-Saint-Guibert, Belgium. We determined a first relationship between temperature and electrical resistivity with pure and diluted leachates by progressively increasing the temperature from 5°C to 65°C, and then cooling down to 5°C. The second relationship was obtained by measuring electrical resistivity on waste samples of different volumetric water contents. First, we used the correlations obtained from the experiments to compare electrical resistivity measurements performed in a landfill borehole and on reworked waste samples excavated at different depths. Electrical resistivities were measured every 20cm with an electromagnetic logging device (EM39) while a temperature profile was acquired with optic fibres. Waste samples were excavated every 2m in the same borehole. We filled experimental columns with these samples and measured electrical resistivities at laboratory temperature

  6. Mode Content Determination of Terahertz Corrugated Waveguides Using Experimentally Measured Radiated Field Patterns.

    PubMed

    Jawla, Sudheer K; Nanni, Emilio A; Shapiro, Michael A; Woskov, Paul P; Temkin, Richard J

    2012-06-01

    This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique. PMID:25264391

  7. Mode Content Determination of Terahertz Corrugated Waveguides Using Experimentally Measured Radiated Field Patterns

    PubMed Central

    Jawla, Sudheer K.; Nanni, Emilio A.; Shapiro, Michael A.; Woskov, Paul P.; Temkin, Richard J.

    2012-01-01

    This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique. PMID:25264391

  8. Low-Pass Filtered Volumetric Shadows.

    PubMed

    Ament, Marco; Sadlo, Filip; Dachsbacher, Carsten; Weiskopf, Daniel

    2014-12-01

    We present a novel and efficient method to compute volumetric soft shadows for interactive direct volume visualization to improve the perception of spatial depth. By direct control of the softness of volumetric shadows, disturbing visual patterns due to hard shadows can be avoided and users can adapt the illumination to their personal and application-specific requirements. We compute the shadowing of a point in the data set by employing spatial filtering of the optical depth over a finite area patch pointing toward each light source. Conceptually, the area patch spans a volumetric region that is sampled with shadow rays; afterward, the resulting optical depth values are convolved with a low-pass filter on the patch. In the numerical computation, however, to avoid expensive shadow ray marching, we show how to align and set up summed area tables for both directional and point light sources. Once computed, the summed area tables enable efficient evaluation of soft shadows for each point in constant time without shadow ray marching and the softness of the shadows can be controlled interactively. We integrated our method in a GPU-based volume renderer with ray casting from the camera, which offers interactive control of the transfer function, light source positions, and viewpoint, for both static and time-dependent data sets. Our results demonstrate the benefit of soft shadows for visualization to achieve user-controlled illumination with many-point lighting setups for improved perception combined with high rendering speed. PMID:26356957

  9. An in vivo experimental model to determine antigenic variations among infectious bursal disease viruses.

    PubMed

    Durairaj, Vijay; Linnemann, Erich; Icard, Alan H; Williams, Susan M; Sellers, Holly S; Mundt, Egbert

    2013-08-01

    Infectious bursal disease virus (IBDV) is a double-stranded RNA virus causing infectious bursal disease in chickens. IBDV undergoes antigenic drift, so characterizing the antigenicity of IBDV plays an important role for identification and selection of vaccine candidates. In this study, an in vivo experimental model was developed to differentiate a new antigenic variant of IBDV. To this end, a hyper-immune serum to IBDV E/Del-type virus was generated in specific pathogen-free chickens and a standard volume of the hyper-immune serum was serially diluted and injected in specific pathogen-free birds via intravenous, subcutaneous, or intramuscular routes. The chickens were bled at different time points in order to evaluate the dynamics of virus neutralization titres. Based on the results, chickens were injected with different serum dilutions by the subcutaneous route. Twenty-four hours later, chickens were bled and then challenged with 100 median chicken infectious doses of the E/Del virus and a new IBDV variant. Chickens were euthanized at 7 days post infection and the bursa of Fabricius was removed for microscopic evaluation to determine the bursal lesion score. The determined virus neutralization titre along with the bursal lesion score was used to determine the breakthrough titre in the in vivo chicken model. Based on the data obtained, an antigenic subtype of IBDV was identified and determined to be different from E/Del. This model is a sensitive model for determination of IBDV antigenicity of non-tissue culture adapted IBDV. PMID:23662946

  10. Experimental and analytical determination of characteristics affecting light aircraft landing-gear dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, E. L.; Mcgehee, J. R.; Pappas, M. S.

    1977-01-01

    An experimental and analytical investigation was conducted to determine which characteristics of a light aircraft landing gear influence gear dynamic behavior significantly. The investigation focused particularly on possible modification for load control. Pseudostatic tests were conducted to determine the gear fore-and-aft spring constant, axial friction as a function of drag load, brake pressure-torque characteristics, and tire force-deflection characteristics. To study dynamic tire response, vertical drops were conducted at impact velocities of 1.2, 1.5, and 1.8 m/s onto a level surface; to determine axial-friction effects, a second series of vertical drops were made at 1.5 m/s onto surfaces inclined 5 deg and 10 deg to the horizontal. An average dynamic axial-friction coefficient of 0.15 was obtained by comparing analytical data with inclined surface drop test data. Dynamic strut bending and associated axial friction were found to be severe for the drop tests on the 10 deg surface.

  11. Optimizing the spectrofluorimetric determination of cefdinir through a Taguchi experimental design approach.

    PubMed

    Abou-Taleb, Noura Hemdan; El-Wasseef, Dalia Rashad; El-Sherbiny, Dina Tawfik; El-Ashry, Saadia Mohamed

    2016-05-01

    The aim of this work is to optimize a spectrofluorimetric method for the determination of cefdinir (CFN) using the Taguchi method. The proposed method is based on the oxidative coupling reaction of CFN and cerium(IV) sulfate. The quenching effect of CFN on the fluorescence of the produced cerous ions is measured at an emission wavelength (λem ) of 358 nm after excitation (λex ) at 301 nm. The Taguchi orthogonal array L9 (3(4) ) was designed to determine the optimum reaction conditions. The results were analyzed using the signal-to-noise (S/N) ratio and analysis of variance (ANOVA). The optimal experimental conditions obtained from this study were 1 mL of 0.2% MBTH, 0.4 mL of 0.25% Ce(IV), a reaction time of 10 min and methanol as the diluting solvent. The calibration plot displayed a good linear relationship over a range of 0.5-10.0 µg/mL. The proposed method was successfully applied to the determination of CFN in bulk powder and pharmaceutical dosage forms. The results are in good agreement with those obtained using the comparison method. Finally, the Taguchi method provided a systematic and efficient methodology for this optimization, with considerably less effort than would be required for other optimizations techniques. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26456088

  12. Volumetric 3D Display System with Static Screen

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  13. Predictive algorithms for determination of reflectance data from quantity of pigments within experimental dental resin composites

    PubMed Central

    2015-01-01

    Background Being able to estimate (predict) the final spectrum of reflectance of a biomaterial, especially when the final color and appearance are fundamental for their clinical success (as is the case of dental resin composites), could be a very useful tool for the industrial development of these type of materials. The main objective of this study was the development of predictive models which enable the determination of the reflectance spectrum of experimental dental resin composites based on type and quantity of pigments used in their chemical formulation. Methods 49 types of experimental dental resin composites were formulated as a mixture of organic matrix, inorganic filler, photo activator and other components in minor quantities (accelerator, inhibitor, fluorescent agent and 4 types of pigments). Spectral reflectance of all samples were measured, before and after artificial chromatic aging, using a spectroradiometer. A Multiple Nonlinear Regression Model (MNLR) was used to predict the values of the Reflectance Factors values in the visible range (380 nm-780 nm), before and after aging, from % Pigment (%P1, %P2, %P3 and %P4) within the formulation. Results The average value of the prediction error of the model was 3.46% (SD: 1.82) across all wavelengths for samples before aging and 3.54% (SD: 1.17) for samples after aging. The differences found between the predicted and measured values of the chromatic coordinates are smaller than the acceptability threshold and, in some cases, are even below the perceptibility threshold. Conclusions Within the framework of this pilot study, the nonlinear predictive models developed allow the prediction, with a high degree of accuracy, of the reflectance spectrum of the experimental dental resin composites. PMID:26329369

  14. Experimental infection of T4 Acanthamoeba genotype determines the pathogenic potential.

    PubMed

    Alves, Daniella de Sousa Mendes Moreira; Moraes, Aline Silva; Alves, Luciano Moreira; Gurgel-Gonçalves, Rodrigo; Lino Junior, Ruy de Souza; Cuba-Cuba, César Augusto; Vinaud, Marina Clare

    2016-09-01

    T4 is the Acanthamoeba genotype most related to cases of granulomatous amoebic encephalitis (GAE) in immunocompromised patients and of keratitis in contact lens wearers. The determination of the pathogenic potential of Acanthamoeba clinical and environmental isolates using experimental models is extremely important to elucidate the capacity of free-living organisms to establish and cause disease in hosts. The aim of this study was to compare and evaluate the histopathology and culture between two different routes of experimental infection of T4 Acanthamoeba isolated from environmental and clinical source in mice (intracranial and intraperitoneal). Swiss isogenic healthy mice were inoculated with 10(4) trophozoites by intracranial (IC) and intraperitoneal (IP) routes and observed during 21 days. The brains from animals inoculated by the IC route were collected and from the animals of the IP inoculation group, the brains, livers, kidneys, spleens, and lungs were removed. The organs were prepared and appropriately divided to be evaluated with histopathology and culture. There was no significant difference between the inoculation routes in terms of isolates recovery (χ(2) = 0.09; p = 0.76). In the IC group, isolate recovery rate was significantly higher in histopathology than the one achieved by culture (χ(2) = 6.45; p < 0.01). Experimental infection revealed that all isolates inoculated could be considered invasive because it was possible to recover evolutive forms of Acanthamoeba in both routes. This work represents the first in vivo pathogenicity assay of primary isolation source in Central region of Brazil showing in vivo pathogenicity and hematogenous spread capacity of these protozoa, improving the knowledge on free-living amoebae isolates. PMID:27164833

  15. An experimental correction proposed for an accurate determination of mass diffusivity of wood in steady regime

    NASA Astrophysics Data System (ADS)

    Zohoun, Sylvain; Agoua, Eusèbe; Degan, Gérard; Perre, Patrick

    2002-08-01

    This paper presents an experimental study of the mass diffusion in the hygroscopic region of four temperate species and three tropical ones. In order to simplify the interpretation of the phenomena, a dimensionless parameter called reduced diffusivity is defined. This parameter varies from 0 to 1. The method used is firstly based on the determination of that parameter from results of the measurement of the mass flux which takes into account the conditions of operating standard device (tightness, dimensional variations and easy installation of samples of wood, good stability of temperature and humidity). Secondly the reasons why that parameter has to be corrected are presented. An abacus for this correction of mass diffusivity of wood in steady regime has been plotted. This work constitutes an advanced deal nowadays for characterising forest species.

  16. The use of airborne imaging spectrometer data to determine experimentally induced variation in coniferous canopy chemistry

    NASA Technical Reports Server (NTRS)

    Swanberg, Nancy A.; Matson, Pamela A.

    1987-01-01

    It was experimentally determined whether induced differences in forest canopy chemical composition can be detected using data from the Airborne Imaging Spectrometer (AIS). Treatments were applied to an even-aged forest of Douglas fir trees. Work to date has stressed wet chemical analysis of foilage samples and correction of AIS data. Plot treatments were successful in providing a range of foliar N2 concentrations. Much time was spent investigating and correcting problems with the raw AIS data. Initial problems with groups of drop out lines in the AIS data were traced to the tape recorder and the tape drive. Custom adjustment of the tape drive led to recovery of most missing lines. Remaining individual drop out lines were replaced using average of adjacent lines. Application of a notch filter to the Fourier transform of the image in each band satisfactorily removed vertical striping. The aspect ratio was corrected by resampling the image in the line direction using nearest neighbor interpolation.

  17. An experimental study for determining human discomfort response to roll vibration

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Dempsey, T. K.; Clevenson, S. A.

    1976-01-01

    An experimental study using a passenger ride quality apparatus (PRQA) was conducted to determine the subjective reactions of passengers to roll vibrations. The data obtained illustrate the effect upon human comfort of several roll-vibration parameters: namely, roll acceleration level, roll frequency, and seat location (i.e., distance from axis of rotation). Results of an analysis of variance indicated that seat location had no effect on discomfort ratings of roll vibrations. The effect of roll acceleration level was significant, and discomfort ratings increased markedly with increasing roll acceleration level at all roll frequencies investigated. Of particular interest, is the fact that the relationship between discomfort ratings and roll acceleration level was linear in nature. The effect of roll frequency also was significant as was the interaction between roll acceleration level and roll frequency.

  18. Experimental determination of turbulence in a GH2-GOX rocket combustion chamber

    NASA Technical Reports Server (NTRS)

    Tou, P.; Russell, R.; Ohara, J.

    1974-01-01

    The intensity of turbulence and the Lagrangian correlation coefficient for a gaseous rocket combustion chamber have been determined from the experimental measurements of the tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and Spalding's numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber. An exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the maximum value of the intensity of turbulence is about 15% and the Lagrangian correlation coefficient drops to about 0.12 in one inch of the chamber length.

  19. Experimental determination of cloud influence on the spectral UV irradiance and implications for biological effects

    NASA Astrophysics Data System (ADS)

    Mateos, David; di Sarra, Alcide; Meloni, Daniela; di Biagio, Claudia; Sferlazzo, Damiano M.

    2011-08-01

    Measurements of UV spectra, total ozone, cloud cover, and cloud optical thickness, obtained at Lampedusa (central Mediterranean), are used to investigate the influence of clouds on the spectral UV irradiance, through the cloud modification factor (CMF), and on five biological processes. The CMF decreases with cloud optical thickness (COT), from about 0.5 for COT˜15 to 0.25 for COT˜45, and decreases with increasing wavelength above 315-320-nm. Observations display an increase in the CMF from 295 to 320-nm, which is related to enhanced absorption by tropospheric ozone due to the long photon path lengths under cloudy conditions. The use of a wavelength independent CMF instead of the experimentally determined spectral curves produces an overestimation of the biological effects of UV irradiance. The overestimation may be as large as 30% for the DNA damage, 20% for vitamin D synthesis, 12% for plant damage, and 8-10% for phytoplankton inhibition and erythema.

  20. Experimental determination and prediction of the gas-liquid n-hexadecane partition coefficients.

    PubMed

    Mutelet, F; Rogalski, M

    2001-07-20

    Experimental methods based on gas-phase chromatography were tested with a view to determine the gas-liquid n-hexadecane partition coefficients, log L16 of non-volatile compounds at 298.2 K. It was demonstrated that reliable values of log L16 of compounds more volatile than n-docosane can be obtained using either capillary, or packed columns. The main limitation of both methods is the column stability at high temperatures. Here we propose a new method based on the temperature gradient mode, to obtain log L16 of high-boiling compounds. A group contribution model is also presented in view to predicting log L16 values of non-volatile compounds. PMID:11510537

  1. Experimental determination of the transport number of water in Nafion 117 membrane

    SciTech Connect

    Fuller, T.F.; Newman, J. . Dept. of Chemical Engineering)

    1992-05-01

    The transport number of water in Nafion 117 membrane over a wide range of water contents is determined experimentally using a concentration cell. The transport number of water, the ratio f[sup m][sub o]/Z[sub o], is about 1.4 for a membrane equilibrated with saturated water vapor at 25[degrees]C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the concentration of water approaches zero. In this paper, the relationship between the transference number, the transport number, and the electro-osmotic drag coefficient is presented, and their relevance to water management is solid-polymer-electrolyte fuel cells is discussed. Results are compared with other data available in the literature and with the theoretical maximum.

  2. Time-Dependent Reversible-Irreversible Deformation Threshold Determined Explicitly by Experimental Technique

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Arnold, Steven M.

    2000-01-01

    Structural materials for the design of advanced aeropropulsion components are usually subject to loading under elevated temperatures, where a material's viscosity (resistance to flow) is greatly reduced in comparison to its viscosity under low-temperature conditions. As a result, the propensity for the material to exhibit time-dependent deformation is significantly enhanced, even when loading is limited to a quasi-linear stress-strain regime as an effort to avoid permanent (irreversible) nonlinear deformation. An understanding and assessment of such time-dependent effects in the context of combined reversible and irreversible deformation is critical to the development of constitutive models that can accurately predict the general hereditary behavior of material deformation. To this end, researchers at the NASA Glenn Research Center at Lewis Field developed a unique experimental technique that identifies the existence of and explicitly determines a threshold stress k, below which the time-dependent material deformation is wholly reversible, and above which irreversible deformation is incurred. This technique is unique in the sense that it allows, for the first time, an objective, explicit, experimental measurement of k. The underlying concept for the experiment is based on the assumption that the material s time-dependent reversible response is invariable, even in the presence of irreversible deformation.

  3. Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System

    PubMed Central

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better. PMID:23529116

  4. Experimental Determination of DT Yield in High Current DD Dense Plasma Focii

    SciTech Connect

    Lowe, D. R.; Hagen, E. C.; Meehan, B. T.; Springs, R. K.; O'Brien, R. J.

    2013-06-18

    Dense Plasma Focii (DPF), which utilize deuterium gas to produce 2.45 MeV neutrons, may in fact also produce DT fusion neutrons at 14.1 MeV due to the triton production in the DD reaction. If beam-target fusion is the primary producer of fusion neutrons in DPFs, it is possible that ejected tritons from the first pinch will interact with the second pinch, and so forth. The 2 MJ DPF at National Security Technologies’ Losee Road Facility is able to, and has produced, over 1E12 DD neutrons per pulse, allowing an accurate measurement of the DT/DD ratio. The DT/DD ratio was experimentally verified by using the (n,2n) reaction in a large piece of praseodymium metal, which has a threshold reaction of 8 MeV, and is widely used as a DT yield measurement system1. The DT/DD ratio was experimentally determined for over 100 shots, and then compared to independent variables such as tube pressure, number of pinches per shot, total current, pinch current and charge voltage.

  5. Determining the performance of energy wheels: Part 1 -- Experimental and numerical methods

    SciTech Connect

    Simonson, C.J.; Ciepliski, D.L.; Besant, R.W.

    1999-07-01

    Measuring and modeling the performance of energy recovery devices is difficult and, in some cases, may result in unacceptably high uncertainties. In this paper, controlled laboratory experiments and a detailed numerical model are presented, which, together with uncertainty analysis, can quantify the performance of energy wheels. A numerical model that has been developed from physical principles and an experimental method for determining the performance of energy wheels with acceptable uncertainties are detailed. Included is a pre-test, during-test, and post-test uncertainty analysis that allows the experimenter to estimate accurately precision (random) and bias (fixed) errors a priori, during, and a posteriori each experiment using energy and mass balances on the air-to-air energy recovery device as well as the characteristics of each instrument and the data acquisition system. A comprehensive set of measured data for the sensible, latent, and total effectiveness of an energy wheel is compared with the corresponding simulation results in Part 2 of this paper.

  6. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    PubMed

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better. PMID:23529116

  7. Combined Theoretical and Experimental Analysis of Processes Determining Cathode Performance in Solid Oxide Fuel Cells

    SciTech Connect

    Kukla, Maija M.; Kotomin, Eugene Alexej; Merkle, R.; Mastrikov, Yuri; Maier, J.

    2013-02-11

    Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980’s as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot’s cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.

  8. Numerical and Experimental Determination of the Geometric Far Field for Round Jets

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James; Brown, Cliff; Khavaran, Abbas

    2003-01-01

    To reduce ambiguity in the reporting of far field jet noise, three round jets operating at subsonic conditions have recently been studied at the NASA Glenn Research Center. The goal of the investigation was to determine the location of the geometric far field both numerically and experimentally. The combination of the WIND Reynolds-Averaged Navier-Stokes solver and the MGBK jet noise prediction code was used for the computations, and the experimental data was collected in the Aeroacoustic Propulsion Laboratory. While noise sources are distributed throughout the jet plume, at great distances from the nozzle the noise will appear to be emanating from a point source and the assumption of linear propagation is valid. Closer to the jet, nonlinear propagation may be a problem, along with the known geometric issues. By comparing sound spectra at different distances from the jet, both from computational methods that assume linear propagation, and from experiments, the contributions of geometry and nonlinearity can be separately ascertained and the required measurement distance for valid experiments can be established. It is found that while the shortest arc considered here (approx. 8D) was already in the geometric far field for the high frequency sound (St greater than 2.0), the low frequency noise due to its extended source distribution reached the geometric far field at or about 50D. It is also found that sound spectra at far downstream angles does not strictly scale on Strouhal number, an observation that current modeling does not capture.

  9. Active machine learning-driven experimentation to determine compound effects on protein patterns

    PubMed Central

    Naik, Armaghan W; Kangas, Joshua D; Sullivan, Devin P; Murphy, Robert F

    2016-01-01

    High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many conditions and targets without doing all possible experiments. We have previously described an active machine learning algorithm that can iteratively choose small sets of experiments to learn models of multiple effects. We now show that, with no prior knowledge and with liquid handling robotics and automated microscopy under its control, this learner accurately learned the effects of 48 chemical compounds on the subcellular localization of 48 proteins while performing only 29% of all possible experiments. The results represent the first practical demonstration of the utility of active learning-driven biological experimentation in which the set of possible phenotypes is unknown in advance. DOI: http://dx.doi.org/10.7554/eLife.10047.001 PMID:26840049

  10. Experimental Determination of the Electric Dipole Moment Function of the X Pi-2 Hydroxyl Radical

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Goorvitch, D.; Abrams, M. C.; Davis, S. P.; Benidar, A.; Farrenq, R.; Guelachvili, G.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    Laboratory infrared emission spectra of X 2piOH obtained with the Solar McMath FTS and the U. Paris (Orsay) FTS are used in an inversion procedure to experimentally determine the electric dipole moment function (EDMF) of the hydroxyl radical. The spectra produced at Kitt Peak show vibrational levels up to v = 10 and rotational lines in the range, -25.5 less than or equal to m less than or equal to 12.5. The following vibrational quantum number ranges were observed: for DELTA v = -1, v prime = 1 - 9, for DELTA v = -2, v prime = 2 - 10, and for DELTA v = - 3, v prime = 6 - 10. The spectra produced at Orsay show DELTA v = -1, with v prime = 1 - 4 and -22.5 less than or equal to m less than or equal to 9.5 as well as DELTA v = 0, with v prime= 1 - 3, and 9.5 less than or equal to m less than or equal to 25.5. The OH rovibrational wavefunctions used in the inversion procedure were calculated using a procedure which reproduces observed rotational constants with a high level of accuracy. Comparisons of our EDMF are made with previous experimental and theoretical work.

  11. Volumetrics of CO2 storage in deep saline formations.

    PubMed

    Steele-MacInnis, Matthew; Capobianco, Ryan M; Dilmore, Robert; Goodman, Angela; Guthrie, George; Rimstidt, J Donald; Bodnar, Robert J

    2013-01-01

    Concern about the role of greenhouse gases in global climate change has generated interest in sequestering CO(2) from fossil-fuel combustion in deep saline formations. Pore space in these formations is initially filled with brine, and space to accommodate injected CO(2) must be generated by displacing brine, and to a lesser extent by compression of brine and rock. The formation volume required to store a given mass of CO(2) depends on the storage mechanism. We compare the equilibrium volumetric requirements of three end-member processes: CO(2) stored as a supercritical fluid (structural or stratigraphic trapping); CO(2) dissolved in pre-existing brine (solubility trapping); and CO(2) solubility enhanced by dissolution of calcite. For typical storage conditions, storing CO(2) by solubility trapping reduces the volume required to store the same amount of CO(2) by structural or stratigraphic trapping by about 50%. Accessibility of CO(2) to brine determines which storage mechanism (structural/stratigraphic versus solubility) dominates at a given time, which is a critical factor in evaluating CO(2) volumetric requirements and long-term storage security. PMID:22916959

  12. Interactive visualization of solar mass ejection imager (SMEI) volumetric data

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Hick, P. P.; Jackson, Bernard V.

    2005-08-01

    We present a volume rendering system developed for the real time visualization and manipulation of 3D heliospheric volumetric solar wind density and velocity data obtained from the Solar Mass Ejection Imager (SMEI) and interplanetary scintillation (IPS) velocities over the same time period. Our system exploits the capabilities of the VolumePro 1000 board from TeraRecon, Inc., a low-cost 64-bit PCI board capable of rendering up to a 512-cubed array of volume data in real time at up to 30 frames per second on a standard PC. Many volume-rendering operations have been implemented with this system such as stereo/perspective views, animations of time-sequences, and determination of coronal mass ejection (CME) volumes and masses. In these visualizations we highlight one time period where a halo CMEs was observed by SMEI to engulf Earth on October 29, 2003. We demonstrate how this system is used to measure the distribution of structure and provide 3D mass for individual CME features, including the ejecta associated with the large prominence viewed moving to the south of Earth following the late October CME. Comparisons with the IPS velocity volumetric data give pixel by pixel and total kinetic energies for these events.

  13. Thermal stresses from large volumetric expansion during freezing of biomaterials.

    PubMed

    Shi, X; Datta, A K; Mukherjee, Y

    1998-12-01

    Thermal stresses were studied in freezing of biomaterials containing significant amounts of water. An apparent specific heat formulation of the energy equation and a viscoelastic model for the mechanics problem were used to analyze the transient axi-symmetric freezing of a long cylinder. Viscoelastic properties were measured in an Instron machine. Results show that, before phase change occurs at any location, both radial and circumferential stresses are tensile and keep increasing until phase change begins. The maximum principal tensile stress during phase change increases with a decrease in boundary temperature (faster cooling). This is consistent with experimentally observed fractures at a lower boundary temperature. Large volumetric expansion during water to ice transformation was shown to be the primary contributor to large stress development. For very rapid freezing, relaxation may not be significant, and an elastic model may be sufficient. PMID:10412455

  14. In-line hologram segmentation for volumetric samples.

    PubMed

    Orzó, László; Göröcs, Zoltán; Fehér, András; Tőkés, Szabolcs

    2013-01-01

    We propose a fast, noniterative method to segment an in-line hologram of a volumetric sample into in-line subholograms according to its constituent objects. In contrast to the phase retrieval or twin image elimination algorithms, we do not aim or require to reconstruct the complex wave field of all the objects, which would be a more complex task, but only provide a good estimate about the contribution of the particular objects to the original hologram quickly. The introduced hologram segmentation algorithm exploits the special inner structure of the in-line holograms and applies only the estimated supports and reconstruction distances of the corresponding objects as parameters. The performance of the proposed method is demonstrated and analyzed experimentally both on synthetic and measured holograms. We discussed how the proposed algorithm can be efficiently applied for object reconstruction and phase retrieval tasks. PMID:23292422

  15. Experimental determination of solvent-water partition coefficients and Abraham parameters for munition constituents.

    PubMed

    Liang, Yuzhen; Kuo, Dave T F; Allen, Herbert E; Di Toro, Dominic M

    2016-10-01

    There is concern about the environmental fate and effects of munition constituents (MCs). Polyparameter linear free energy relationships (pp-LFERs) that employ Abraham solute parameters can aid in evaluating the risk of MCs to the environment. However, poor predictions using pp-LFERs and ABSOLV estimated Abraham solute parameters are found for some key physico-chemical properties. In this work, the Abraham solute parameters are determined using experimental partition coefficients in various solvent-water systems. The compounds investigated include hexahydro-1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), hexahydro-1,3-dinitroso-5- nitro-1,3,5-triazine (DNX), 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), and 4-nitroanisole. The solvents in the solvent-water systems are hexane, dichloromethane, trichloromethane, octanol, and toluene. The only available reported solvent-water partition coefficients are for octanol-water for some of the investigated compounds and they are in good agreement with the experimental measurements from this study. Solvent-water partition coefficients fitted using experimentally derived solute parameters from this study have significantly smaller root mean square errors (RMSE = 0.38) than predictions using ABSOLV estimated solute parameters (RMSE = 3.56) for the investigated compounds. Additionally, the predictions for various physico-chemical properties using the experimentally derived solute parameters agree with available literature reported values with prediction errors within 0.79 log units except for water solubility of RDX and HMX with errors of 1.48 and 2.16 log units respectively. However, predictions using ABSOLV estimated solute parameters have larger prediction errors of up to 7.68 log units. This large discrepancy is probably due to the missing R2NNO2

  16. Power Outputs and Volumetric Eruption Rates for Ionian Volcanoes from Galileo-NIMS Data

    NASA Technical Reports Server (NTRS)

    Davies, A. G.

    2001-01-01

    Volumetric eruption rates for a number of Io volcanoes are calculated as a function of volcanic thermal output. Thermal output is determined using 2-temperature fits to NIMS data. Typical eruption rates are larger than terrestrial eruptions of similar style. Additional information is contained in the original extended abstract.

  17. TECHNIQUES TO MEASURE VOLUMETRIC FLOW AND PARTICULATE CONCENTRATION IN STACKS WITH CYCLONIC FLOW

    EPA Science Inventory

    The study determined that an in-stack venturi can accurately measure volumetric flow in stacks with a severe cyclonic flow profile. The design requirements of the venturi are described in the report. The report also describes a low head loss, egg crate-shaped device that effectiv...

  18. Experimental and Numerical Studies on Determination of Indirect Tensile Strength of Rocks

    NASA Astrophysics Data System (ADS)

    Erarslan, Nazife; Liang, Zheng Zhao; Williams, David John

    2012-09-01

    Indirect tension tests using Brisbane tuff Brazilian disc specimens under standard Brazilian jaws and various loading arcs were performed. The standard Brazilian indirect tensile tests caused catastrophic, crushing failure of the disc specimens, rather than the expected tensile splitting failure initiated by a central crack. This led to an investigation of the fracturing of Brazilian disc specimens and the existing indirect tensile Brazilian test using steel loading arcs with different angles. The results showed that the ultimate failure load increased with increasing loading arc angles. With no international standard for determining indirect tensile strength of rocks under diametral load, numerical modelling and analytical solutions were undertaken. Numerical simulations using RFPA2D software were conducted with a heterogeneous material model. The results predicted tensile stress in the discs and visually reproduced the progressive fracture process. It was concluded that standard Brazilian jaws cause catastrophic, crushing failure of the disc specimens instead of producing a central splitting crack. The experimental and numerical results showed that 20° and 30° loading arcs result in diametral splitting fractures starting at the disc centre. Moreover, intrinsic material properties (e.g. fracture toughness) may be used to propose the best loading configuration to determine the indirect tensile strength of rocks. Here, by using numerical outcomes and empirical relationships between fracture toughness and tensile strength, the best loading geometry to obtain the most accurate indirect tensile strength of rocks was the 2α = 30° loading arc.

  19. An Experimental and Analytical Evaluation of a Biaxial Test for Determining Shear Properties of Composite Materials

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.; Barnett, Terry R.

    1988-01-01

    The results of an experimental and analytical investigation of a biaxial tension/compression test for determining shear properties of composite materials are reported. Using finite element models of isotropic and orthotropic laminates, a specimen geometry was optimized. A kinematic fixture was designed to introduce an equal and opposite pair of forces into a specimen with a one inch square test section. Aluminum and several composite laminates with the optimized geometry and a configuration with large stress gradients were tested in the fixture. The specimens were instrumented with strain gages in the center of the test section for shear stiffness measurements. Pure shear strain was measured. The results from the experiments correlated well with finite element results. Failure of the specimens occurred through the center of the test section and appeared to have initiated at the high stress points. The results lead to the conclusion that the optimized specimen is suitable for determining shear modulus for composite materials. Further revisions to the specimen geometry are necessary if the method is to give shear strength data.

  20. Experimental test of a method for determining causal connectivities of species in reactions.

    PubMed

    Torralba, Antonio S; Yu, Kristine; Shen, Peidong; Oefner, Peter J; Ross, John

    2003-02-18

    Theoretical analysis has shown the possibility of determining causal connectivities of reacting species and the reaction mechanism in complex chemical and biochemical reaction systems by applying pulse changes of concentrations of one or more species, of arbitrary magnitude, and measuring the temporal response of as many species as possible. This method, limited to measured and pulsed species, is given here an experimental test on a part of glycolysis including the sequence of reactions from glucose to fructose 1,6-biphosphate, followed by the bifurcation of that sequence into two branches, one ending in glycerol 3-phosphate, the other in glyceraldehyde 3-phosphate. Pulses of concentrations of one species at a time are applied to the open system in a non-equilibrium stationary state, and the temporal responses in concentrations of six metabolites are measured by capillary zone electrophoresis. From the results of these measurements and the use of the theory for their interpretation, we establish the causal connectivities of the metabolites and thus the reaction mechanism, including the bifurcation of one chain of reactions into two. In this test case of the pulse method, no prior knowledge was assumed of the biochemistry of this system. We conclude that the pulse method is relatively simple and effective in determining reaction mechanisms in complex systems, including reactants, products, intermediates, and catalysts and their effectors. The method is likely to be useful for substantially more complex systems. PMID:12576555

  1. Lab-scale experimental strategy for determining micropollutant partition coefficient and biodegradation constants in activated sludge.

    PubMed

    Pomiès, M; Choubert, J M; Wisniewski, C; Miège, C; Budzinski, H; Coquery, M

    2015-03-01

    The nitrifying/denitrifying activated sludge process removes several micropollutants from wastewater by sorption onto sludge and/or biodegradation. The objective of this paper is to propose and evaluate a lab-scale experimental strategy for the determination of partition coefficient and biodegradation constant for micropollutant with an objective of modelling their removal. Four pharmaceutical compounds (ibuprofen, atenolol, diclofenac and fluoxetine) covering a wide hydrophobicity range (log Kow from 0.16 to 4.51) were chosen. Dissolved and particulate concentrations were monitored for 4 days, inside two reactors working under aerobic and anoxic conditions, and under different substrate feed conditions (biodegradable carbon and nitrogen). We determined the mechanisms responsible for the removal of the target compounds: (i) ibuprofen was biodegraded, mainly under aerobic conditions by cometabolism with biodegradable carbon, whereas anoxic conditions suppressed biodegradation; (ii) atenolol was biodegraded under both aerobic and anoxic conditions (with a higher biodegradation rate under aerobic conditions), and cometabolism with biodegradable carbon was the main mechanism; (iii) diclofenac and fluoxetine were removed by sorption only. Finally, the abilities of our strategy were evaluated by testing the suitability of the parameters for simulating effluent concentrations and removal efficiency at a full-scale plant. PMID:25300180

  2. A review of experimental methods for solid solubility determination in cryogenic systems

    NASA Astrophysics Data System (ADS)

    De Stefani, V.; Baba-Ahmed, A.; Richon, D.

    2004-09-01

    Over the past years, there have been a number of serious explosions in air industry, which have resulted in workers injuries and fatalities. At the same time, there has been an increase in the use of air separation products for industrial activities. The quality of air entering an air separation plant is of crucial importance for its safe and reliable operation and the interest in the solubility data of solids in cryogenic liquid solvents is closely connected to the problem of impurities accumulation in the process plant and storage tanks. Such accumulations, especially in liquid oxygen, may cause fouling and blockage in heat exchangers and pipelines and they may eventually cause serious explosions. For this reason the air contaminants composition in liquid oxygen must be determined with great precision. This paper aims at reviewing experimental methods for determining the solubility of solid compounds that may be present in the cryogenic liquefaction processing of air distillation. A review of the literature data on solubility of solids in liquid oxygen and nitrogen is included as well. Emphasis is given to the difficulties in setting-up measuring apparatuses working at extreme conditions, i.e. low compositions and low temperatures.

  3. Simple experimental method for alpha particle range determination in lead iodide films

    SciTech Connect

    Dmitriev, Yuri; Bennett, Paul R.; Cirignano, Leonard J.; Klugerman, Mikhail; Shah, Kanai S.

    2007-05-15

    An experimental method for determining the range of alpha particles in films based on I-V{sub s} analysis has been suggested. The range of 5.5 MeV alpha particles in PbI{sub 2} films determined by this technique is 30{+-}5 {mu}m, and this value is in agreement with the value calculated by SRIM (the stopping and range of ions in matter), r=24 {mu}m in PbI{sub 2}. More than 100 I-V{sub s} of PbI{sub 2} films with different thicknesses and quality have been analyzed, and the influence of alpha particle radiation on PbI{sub 2} I-V{sub s} curves has been studied. Developed analytical methods (dependence of current density on electric field and conception of surface defects) were used, and the method limitations are discussed. It was shown that I-V{sub s} demonstrate the tendency to obey Ohm's law under alpha radiation. On the other hand, dark conductivity of the lead iodide films shows a typical impure character that can lead to an overestimation of the alpha particles' range in PbI{sub 2} films. After films were exposed to alpha radiation, the dark resistivity and I-V shape of some films improved. Also, a weak decrease of the charge carrier concentration, due to a decrease of the ''surface defect'' concentration (''surface refining''), was registered after successive measurements of I-V{sub s}.

  4. Simple experimental method for alpha particle range determination in lead iodide films.

    PubMed

    Dmitriev, Yuri; Bennett, Paul R; Cirignano, Leonard J; Klugerman, Mikhail; Shah, Kanai S

    2007-05-01

    An experimental method for determining the range of alpha particles in films based on I-V(s) analysis has been suggested. The range of 5.5 MeV alpha particles in PbI(2) films determined by this technique is 30+/-5 microm, and this value is in agreement with the value calculated by SRIM (the stopping and range of ions in matter), r=24 microm in PbI(2). More than 100 I-V(s) of PbI(2) films with different thicknesses and quality have been analyzed, and the influence of alpha particle radiation on PbI(2) I-V(s) curves has been studied. Developed analytical methods (dependence of current density on electric field and conception of surface defects) were used, and the method limitations are discussed. It was shown that I-V(s) demonstrate the tendency to obey Ohm's law under alpha radiation. On the other hand, dark conductivity of the lead iodide films shows a typical impure character that can lead to an overestimation of the alpha particles' range in PbI(2) films. After films were exposed to alpha radiation, the dark resistivity and I-V shape of some films improved. Also, a weak decrease of the charge carrier concentration, due to a decrease of the "surface defect" concentration ("surface refining"), was registered after successive measurements of I-V(s). PMID:17552841

  5. Experimental determination of the deuterium binding energy with vacancies in tungsten

    NASA Astrophysics Data System (ADS)

    Zibrov, M.; Ryabtsev, S.; Gasparyan, Yu.; Pisarev, A.

    2016-08-01

    Deuterium (D) interaction with vacancies in tungsten (W) was studied using thermal desorption spectroscopy (TDS). In order to obtain a TDS spectrum with a prominent peak corresponding to D release from vacancies, a special procedure comprising damaging of a recrystallized W sample by low fluences of 10 keV/D ions, its annealing, and subsequent low-energy ion implantation, was utilized. This experimental sequence was performed several times in series; the only difference was the TDS heating rate that varied in the range of 0.15-4 K/s. The sum of the D binding energy (Eb) with vacancies and the activation energy for D diffusion (ED) in W was then directly determined from the slope of the Arrhenius-like plot ln(β / Tm2) versus 1/Tm, where β - heating rate and Tm - position of the respective peak in the TDS spectrum. The determined value of Eb + ED was 1.56 ± 0.06 eV.

  6. Computational tools for experimental determination and theoretical prediction of protein structure

    SciTech Connect

    O`Donoghue, S.; Rost, B.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. The authors intend to review the state of the art in the experimental determination of protein 3D structure (focus on nuclear magnetic resonance), and in the theoretical prediction of protein function and of protein structure in 1D, 2D and 3D from sequence. All the atomic resolution structures determined so far have been derived from either X-ray crystallography (the majority so far) or Nuclear Magnetic Resonance (NMR) Spectroscopy (becoming increasingly more important). The authors briefly describe the physical methods behind both of these techniques; the major computational methods involved will be covered in some detail. They highlight parallels and differences between the methods, and also the current limitations. Special emphasis will be given to techniques which have application to ab initio structure prediction. Large scale sequencing techniques increase the gap between the number of known proteins sequences and that of known protein structures. They describe the scope and principles of methods that contribute successfully to closing that gap. Emphasis will be given on the specification of adequate testing procedures to validate such methods.

  7. Preliminary analysis of problem of determining experimental performance of air-cooled turbine I : methods for determining heat-transfer characteristics

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H , Jr; Ziemer, Robert R

    1950-01-01

    In determining the experimental performance of an air-cooled turbine, the heat-transfer characteristics must be evaluated. The suggested formulas that are required to determine these characteristics are presented. The formulas have a form in which dependent parameters are expressed as unknown functions of independent parameters. Methods of experimenting to determine these functions are suggested. In some cases general heat-transfer discussions that lead to the suggested forms of the formulas are given.

  8. Determination of equivalent breast phantoms for different age groups of Taiwanese women: An experimental approach

    SciTech Connect

    Dong, Shang-Lung; Chu, Tieh-Chi; Lin, Yung-Chien; Lan, Gong-Yau; Yeh, Yu-Hsiu; Chen, Sharon; Chuang, Keh-Shih

    2011-07-15

    Purpose: Polymethylmethacrylate (PMMA) slab is one of the mostly used phantoms for studying breast dosimetry in mammography. The purpose of this study was to evaluate the equivalence between exposure factors acquired from PMMA slabs and patient cases of different age groups of Taiwanese women in mammography. Methods: This study included 3910 craniocaudal screen/film mammograms on Taiwanese women acquired on one mammographic unit. The tube loading, compressed breast thickness (CBT), compression force, tube voltage, and target/filter combination for each mammogram were collected for all patients. The glandularity and the equivalent thickness of PMMA were determined for each breast using the exposure factors of the breast in combination with experimental measurements from breast-tissue-equivalent attenuation slabs. Equivalent thicknesses of PMMA to the breasts of Taiwanese women were then estimated. Results: The average {+-} standard deviation CBT and breast glandularity in this study were 4.2 {+-} 1.0 cm and 54% {+-} 23%, respectively. The average equivalent PMMA thickness was 4.0 {+-} 0.7 cm. PMMA slabs producing equivalent exposure factors as in the breasts of Taiwanese women were determined for the age groups 30-49 yr and 50-69 yr. For the 4-cm PMMA slab, the CBT and glandularity values of the equivalent breast were 4.1 cm and 65%, respectively, for the age group 30-49 yr and 4.4 cm and 44%, respectively, for the age group 50-69 yr. Conclusions: The average thickness of PMMA slabs producing the same exposure factors as observed in a large group of Taiwanese women is less than that reported for American women. The results from this study can provide useful information for determining a suitable thickness of PMMA for mammographic dose survey in Taiwan. The equivalence of PMMA slabs and the breasts of Taiwanese women is provided to allow average glandular dose assessment in clinical practice.

  9. Efficient volumetric estimation from plenoptic data

    NASA Astrophysics Data System (ADS)

    Anglin, Paul; Reeves, Stanley J.; Thurow, Brian S.

    2013-03-01

    The commercial release of the Lytro camera, and greater availability of plenoptic imaging systems in general, have given the image processing community cost-effective tools for light-field imaging. While this data is most commonly used to generate planar images at arbitrary focal depths, reconstruction of volumetric fields is also possible. Similarly, deconvolution is a technique that is conventionally used in planar image reconstruction, or deblurring, algorithms. However, when leveraged with the ability of a light-field camera to quickly reproduce multiple focal planes within an imaged volume, deconvolution offers a computationally efficient method of volumetric reconstruction. Related research has shown than light-field imaging systems in conjunction with tomographic reconstruction techniques are also capable of estimating the imaged volume and have been successfully applied to particle image velocimetry (PIV). However, while tomographic volumetric estimation through algorithms such as multiplicative algebraic reconstruction techniques (MART) have proven to be highly accurate, they are computationally intensive. In this paper, the reconstruction problem is shown to be solvable by deconvolution. Deconvolution offers significant improvement in computational efficiency through the use of fast Fourier transforms (FFTs) when compared to other tomographic methods. This work describes a deconvolution algorithm designed to reconstruct a 3-D particle field from simulated plenoptic data. A 3-D extension of existing 2-D FFT-based refocusing techniques is presented to further improve efficiency when computing object focal stacks and system point spread functions (PSF). Reconstruction artifacts are identified; their underlying source and methods of mitigation are explored where possible, and reconstructions of simulated particle fields are provided.

  10. Volumetric Near-Field Microwave Plasma Generation

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Balla, R. Jeffrey; Herring, G. C.; Popovic, S.; Vuskovic, L.

    2003-01-01

    A periodic series of microwave-induced plasmoids is generated using the outgoing wave from a microwave horn and the reflected wave from a nearby on-axis concave reflector. The plasmoids are spaced at half-wavelength separations according to a standing-wave pattern. The plasmoids are enhanced by an effective focusing in the near field of the horn (Fresnel region) as a result of a diffractive narrowing. Optical imaging, electron density, and rotational temperature measurements characterize the near field plasma region. Volumetric microwave discharges may have application to combustion ignition in scramjet engines.

  11. Experimental Determination of in Situ Utilization of Lunar Regolith for Thermal Energy Storage

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1993-01-01

    A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister (25.4 cm diameter by 45.7 cm length) which contains simulated lunar regolith, a heater (either radiative or conductive), 9 heat shields, a heat transfer cold jacket, and 19 type B platinum rhodium thermocouples. The simulated lunar regolith is a basalt, mined and processed by the University of Minnesota, that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith. The properties include melt temperature (range), specific heat, thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. The physical characteristics of the melt pattern, material compatibility of the molten regolith, and the volatile gas emission will be investigated by heating a portion of the lunar regolith to its melting temperature (1435 K) in a 10(exp -4) pascal vacuum chamber, equipped with a gas spectrum analyzer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The analytical results of the code will be compared with the experimental data generated by the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.

  12. Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Stratmann, G.; Peter, T.

    2014-09-01

    This work presents experimental data of the temperature dependence of water activity in aqueous organic solutions relevant for tropospheric conditions (200-273 K). Water activity (aw) at low temperatures (T) is a crucial parameter for predicting homogeneous ice nucleation. We investigated temperature-dependent water activities, ice freezing and melting temperatures of solutions, and vapour pressures of a selection of atmospherically relevant aqueous organic systems. To measure aw over a wide composition range and with a focus on low temperatures, we use various aw measurement techniques and instruments: a dew point water activity meter, an electrodynamic balance (EDB), differential scanning calorimetry (DSC), and a setup to measure the total gas phase pressure at equilibrium over aqueous solutions. Water activity measurements were performed for aqueous multicomponent and multifunctional organic mixtures containing the functional groups typically found in atmospheric organic aerosols, such as hydroxyl, carboxyl, ketone, ether, ester, and aromatic groups. The aqueous organic systems studied at several fixed compositions over a considerable temperature range differ significantly in their temperature dependence. Aqueous organic systems of 1,4-butanediol and methoxyacetic acid show a moderate decrease in aw with decreasing temperature. The aqueous M5 system (a multicomponent system containing five different dicarboxylic acids) and aqueous 2-(2-ethoxyethoxy)ethanol solutions both show a strong increase of water activity with decreasing temperature at high solute concentrations for T < 270 K and T < 260 K, respectively. These measurements show that the temperature trend of aw can be reversed at low temperatures and that linear extrapolations of high-temperature data may lead to erroneous predictions. To avoid this, experimentally determined aw at low temperature are needed to improve thermodynamic models towards lower temperatures and for improved predictions of the ice

  13. Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Stratmann, G.; Peter, T.

    2014-05-01

    This work presents experimental data of the temperature dependence of water activity in aqueous organic solutions relevant for tropospheric conditions (200-273 K). Water activity (aw) at low temperatures (T) is a crucial parameter for predicting homogeneous ice nucleation. We investigated temperature dependent water activities, ice freezing and melting temperatures of solutions, and vapour pressures of a selection of atmospherically relevant aqueous organic systems. To measure aw over a wide composition range and with a focus on low temperatures, we use various aw measurement techniques and instruments: a dew point water activity meter, an electrodynamic balance (EDB), differential scanning calorimetry (DSC), and a setup to measure the total gas phase pressure at equilibrium over aqueous solutions. Water activity measurements were performed for aqueous multicomponent and multifunctional organic mixtures containing the functional groups typically found in atmospheric organic aerosols, such as hydroxyl, carboxyl, ketone, ether, ester, and aromatic groups. The aqueous organic systems studied at several fixed compositions over a considerable temperature range differ significantly in their temperature dependence. Aqueous organic systems of 1,4-butanediol and methoxyacetic acid show a moderate decrease in aw with decreasing temperature. The aqueous M5 system (a multicomponent system containing five different dicarboxylic acids) and aqueous 2-(2-ethoxyethoxy)ethanol solutions both show a strong increase of water activity with decreasing temperature at high solute concentrations for T<270 K and T<260 K, respectively. These measurements show that the temperature trend of aw can be reversed at low temperatures and that linear extrapolations of high temperature data may lead to erroneous predictions. To avoid this, experimentally determined aw at low temperature are needed to improve thermodynamic models towards lower temperatures and for improved predictions of the ice

  14. Experimental determination and characterization of the gap promoter of Bifidobacterium bifidum S17

    PubMed Central

    Sun, Zhongke; Westermann, Christina; Yuan, Jing; Riedel, Christian U

    2014-01-01

    The DNA sequence upstream of the glyceraldehyde 3-phosphate dehydrogenase gene (gap) of various strains of bifidobacteria is used in a number of vector systems for homologous and heterologous expression in this group of bacteria. To date none of the bifidobacterial gap promoters (Pgap) have been verified experimentally. Here, we probe a range of putative bifidobacterial promoters hypothesized to show high constitutive transcriptional activity using a β-glucuronidase reporter system. In silico analysis revealed a predicted bacterial promoter upstream of the gap gene of Bifidobacterium bifidum S17. The corresponding DNA sequences was cloned into the promoter probe vector pMDY23 and yielded highest reporter activities among the promoter sequences tested confirming previous studies. Using rapid amplification of cDNA ends (5′-RACE), we identified the transcription start site (TSS) of Pgap of B. bifidum S17. The experimentally determined TSS and the associated -10 and -35 regions do not match with the promoter predicted in silico. Moreover, a potential ribosome-binding site (RBS) was identified upstream of the ATG start codon of the gap gene, which is complementary to the 3′-end of the 16S rRNA with only 1 mismatch suggesting efficient initiation of translation. Alignment of the Pgap sequences of a number of representative bifidobacteria showed a high level of conservation and the presence of -35 and -10 regions, which are similar but not identical to the consensus promoter sequences of house-keeping genes of Escherichia coli and Bacillus subtilis. Collectively, these results confirm the suitability of Pgap for high level, constitutive expression in bifidobacteria. PMID:25482086

  15. Experimental Spinel Standards for Ferric Iron (Fe3+) Determination During Peridotite Partial Melting

    NASA Astrophysics Data System (ADS)

    Wenz, M. D.; Sorbadere, F.; Rosenthal, A.; Frost, D. J.; McCammon, C. A.

    2014-12-01

    The presence of ferric iron (Fe3+) in the mantle plays a significant role in the oxygen fugacity (fO2) of the Earth's interior. This has a wide range of implications for Earth related processes ranging from the composition of the atmosphere to magmatic phase relations during melting and crystallization processes [1]. A major source of Earth's mantle magmas is spinel peridotite. Despite its low abundance, spinel (Fe3+/ƩFe = 15-34%, [2]) is the main contributor of Fe3+to the melt upon partial melting. Analyses of Fe3+ on small areas of spinel and melt are required to study the Fe3+ behavior during partial melting of spinel peridotite. Fe K-edge X-ray Absorption Near Edge Structure (XANES) combines both high precision and small beam size, but requires standards with a wide range of Fe3+ content to obtain good calibration. Glasses with varying Fe3+ content are easily synthesized [3, 4]. Spinel, however, presents a challenge for experimental standards due to the low diffusion of Cr and Al preventing compositional homogeneity. Natural spinel standards are often used, but only cover a narrow Fe3+ range. Thus, there is a need for better experimental spinel standards over a wider range of fO2. Our study involves making experimental mantle spinels with variable Fe3+ content. We used a sol-gel auto-combustion method to synthesize our starting material [5]. FMQ-2, FMQ+0, and air fO2 conditions were established using a gas mixing furnace. Piston cylinder experiments were performed at 1.5GPa, and 1310 -1370°C to obtain solid material for XANES. To maintain distinct oxidizing conditions, three capsules were used: graphite for reduced, Re for intermediate and AuPd for oxidized conditions. The spinels were analyzed by Mössbauer spectroscopy. Fe3+/ƩFe ranged from 0.3 to 0.6. These values are consistent with the Fe edge position obtained using XANES analyses, between 7130 and 7132 eV, respectively. Our spinels are thus suitable standards for Fe3+ measurements in peridotite

  16. Dynamic rupture simulation with an experimentally-determined friction law leads to slip-pulse propagation

    NASA Astrophysics Data System (ADS)

    Liao, Z.; Chang, J. C.; Reches, Z.

    2013-12-01

    We simulate the dynamic rupture along a vertical, strike-slip fault in an elastic half-space. The fault has frictional properties that were determined in high-velocity, rotary shear apparatus Sierra-White granite. The experimental fault was abruptly loaded by a massive flywheel, which is assumed to simulate the loading of a fault patch during an earthquake, and termed Earthquake-Like-Slip Event (ELSE) (Chang et al., 2012). The experiments revealed systematic alteration between slip-weakening and slip-strengthening (Fig. 1A), and were considered as proxies of fault-patch behavior during earthquakes of M = 4-8. We used the friction-distance relations of these experiments to form an empirical slip-dependent friction model, ELSE-model (Fig. 1B). For the dynamic rupture simulation, we used the program of Ampuero (2002) (2D spectral boundary integral elements) designed for anti-plane (mode III) shear fracturing. To compare with published works, the calculations used a crust with mechanical properties and stress state of Version 3 benchmark of SCEC (Harris et al., 2004). The calculations with a fault of ELSE-model friction revealed: (1) Rupture propagation in a slip-pulse style with slip cessation behind the pulse; (2) Systematic decrease of slip distance away from the nucleation zone; and (3) Spontaneous arrest of the dynamic rupture without a barrier. These features suggest a rupture of a self-healing slip-pulse mode (Fig. 1C), in contrast to rupturing of a fault with linear slip-weakening friction (Fig. 1B) (Rojas et al., 2008) in crack-like mode and no spontaneous arrest. We deduce that the slip-pulse in our simulation results from the fast recovery of shear strength as observed in ELSE experiments, and argue that incorporating this experimentally-based friction model to rupture modeling produces realistic propagation style of earthquake rupture. Figure 1 Fault patch behavior during an earthquake. (A) Experimental evolution of frictional stress, slip velocity, and

  17. Bench-scale experimental determination of the thermal diffusivity of crushed tuff

    SciTech Connect

    Ryder, E.E.; Finley, R.E.; George, J.T.; Ho, C.K.; Longenbaugh, R.S.; Connolly, J.R.

    1996-06-01

    A bench-scale experiment was designed and constructed to determine the effective thermal diffusivity of crushed tuff. Crushed tuff particles ranging from 12.5 mm to 37.5 mm (0.5 in. to 1.5 in.) were used to fill a cylindrical volume of 1.58 m{sup 3} at an effective porosity of 0.48. Two iterations of the experiment were completed; the first spanning approximately 502 hours and the second 237 hours. Temperatures near the axial heater reached 700 degrees C, with a significant volume of the test bed exceeding 100 degrees C. Three post-test analysis techniques were used to estimate the thermal diffusivity of the crushed tuff. The first approach used nonlinear parameter estimation linked to a one dimensional radial conduction model to estimate thermal diffusivity from the first 6 hours of test data. The second method used the multiphase TOUGH2 code in conjunction with the first 20 hours of test data not only to estimate the crushed tuffs thermal diffusivity, but also to explore convective behavior within the test bed. Finally, the nonlinear conduction code COYOTE-II was used to determine thermal properties based on 111 hours of cool-down data. The post-test thermal diffusivity estimates of 5.0 x 10-7 m{sup 2}/s to 6.6 x 10-7 m{sup 2}/s were converted to effective thermal conductivities and compared to estimates obtained from published porosity-based relationships. No obvious match between the experimental data and published relationships was found to exist; however, additional data for other particle sizes and porosities are needed.

  18. Experimentally Determined Vapor Pressures of Carbon Dioxide from 167 to 87 K

    NASA Astrophysics Data System (ADS)

    Nelson, R. N.; Michael, B. P.; Allen, J. E., Jr.

    1999-09-01

    Carbon dioxide (CO{_2}) is a major constituent in the Martian atmosphere and its abundance is controlled by surface condensation primarily at the poles. Because the sublimation temperature is determined by the vapor pressure curve, the saturation law is arguably the most important physical property of CO{_2} for Mars. A number of different representations have been used for the vapor pressure of CO{_2}; however, they are all based on data taken sixty-five years ago (Meyers and Van Dusen 1933) or calculations and extrapolations based on that data (e.g., Brown and Ziegler 1980). Using our apparatus specifically designed for low-temperature measurements of thermodynamic properties, we have experimentally determined the vapor pressure of CO{_2} from 167 to 87 K, corresponding to a pressure range of 100 to 1.8x10{(-6}) Torr and set by our lowest measurable pressure. Our preliminary data have been fitted with a simple Clausius-Clapeyron representation and compared with an extrapolation of the form recommended by Brown and Ziegler (1980). For comparison the extrapolation predicts a pressure of 1.1x10{(-6}) Torr at 87 K, whereas our measured value is 1.8x10{(-6}) Torr at this temperature. Further refinement of the data to account for thermal transpiration and fitting with a more comprehensive three-parameter model are in progress. References: Brown, G. N., Jr. and Ziegler, W. T. 1980. In Advances in Cryogenic Engineering, vol. 25 (K. Timmerhaus and H. A. Snyder, Eds.), pp. 662-670. (New York: Plenum Press). Meyers, C. H. and Van Dusen, M. S. 1933, J. Res. Natl. Bur. Stndrds. 84, 2843. Support from NASA's Planetary Atmospheres Program is gratefully acknowledged.

  19. Accuracy of 3D volumetric image registration based on CT, MR and PET/CT phantom experiments.

    PubMed

    Li, Guang; Xie, Huchen; Ning, Holly; Citrin, Deborah; Capala, Jacek; Maass-Moreno, Roberto; Guion, Peter; Arora, Barbara; Coleman, Norman; Camphausen, Kevin; Miller, Robert W

    2008-01-01

    Registration is critical for image-based treatment planning and image-guided treatment delivery. Although automatic registration is available, manual, visual-based image fusion using three orthogonal planar views (3P) is always employed clinically to verify and adjust an automatic registration result. However, the 3P fusion can be time consuming, observer dependent, as well as prone to errors, owing to the incomplete 3-dimensional (3D) volumetric image representations. It is also limited to single-pixel precision (the screen resolution). The 3D volumetric image registration (3DVIR) technique was developed to overcome these shortcomings. This technique introduces a 4th dimension in the registration criteria beyond the image volume, offering both visual and quantitative correlation of corresponding anatomic landmarks within the two registration images, facilitating a volumetric image alignment, and minimizing potential registration errors. The 3DVIR combines image classification in real-time to select and visualize a reliable anatomic landmark, rather than using all voxels for alignment. To determine the detection limit of the visual and quantitative 3DVIR criteria, slightly misaligned images were simulated and presented to eight clinical personnel for interpretation. Both of the criteria produce a detection limit of 0.1 mm and 0.1 degree. To determine the accuracy of the 3DVIR method, three imaging modalities (CT, MR and PET/CT) were used to acquire multiple phantom images with known spatial shifts. Lateral shifts were applied to these phantoms with displacement intervals of 5.0+/-0.1 mm. The accuracy of the 3DVIR technique was determined by comparing the image shifts determined through registration to the physical shifts made experimentally. The registration accuracy, together with precision, was found to be: 0.02+/-0.09 mm for CT/CT images, 0.03+/-0.07 mm for MR/MR images, and 0.03+/-0.35 mm for PET/CT images. This accuracy is consistent with the detection limit

  20. BOREAS HYD-1 Volumetric Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Cuenca, Richard H.; Kelly, Shaun F.; Stangel, David E.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-1 team made measurements of volumetric soil moisture at the Southern Study Area (SSA) and Northern Study Area (NSA) tower flux sites in 1994 and at selected tower flux sites in 1995-97. Different methods were used to collect these measurements, including neutron probe and manual and automated Time Domain Reflectometry (TDR). In 1994, the measurements were made every other day at the NSA-OJP (Old Jack Pine), NSA-YJP (Young Jack Pine), NSA-OBS (Old Black Spruce), NSA-Fen, SSA-OJP, SSA-YJP, SSA-Fen, SSA-YA (Young Aspen), and SSA-OBS sites. In 1995-97, when automated equipment was deployed at NSA-OJP, NSA-YJP, NSA-OBS, SSA-OBS, and SSA-OA (Old Aspen), the measurements were made as often as every hour. The data are stored in tabular ASCII files. The volumetric soil moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  1. Volumetric capnography in the mechanically ventilated patient.

    PubMed

    Blanch, L; Romero, P V; Lucangelo, U

    2006-06-01

    Expiratory capnogram provides qualitative information on the waveform patterns associated with mechanical ventilation and quantitative estimation of expired CO2. Volumetric capnography simultaneously measures expired CO2 and tidal volume and allows identification of CO2 from 3 sequential lung compartments: apparatus and anatomic dead space, from progressive emptying of alveoli and alveolar gas. Lung heterogeneity creates regional differences in CO2 concentration and sequential emptying contributes to the rise of the alveolar plateau and to the steeper the expired CO2 slope. The concept of dead space accounts for those lung areas that are ventilated but not perfused. In patients with sudden pulmonary vascular occlusion due to pulmonary embolism, the resultant high V/Q mismatch produces an increase in alveolar dead space. Calculations derived from volumetric capnography are useful to suspect pulmonary embolism at the bedside. Alveolar dead space is large in acute lung injury and when the effect of positive end-expiratory pressure (PEEP) is to recruit collapsed lung units resulting in an improvement of oxygenation, alveolar dead space may decrease, whereas PEEP-induced overdistension tends to increase alveolar dead space. Finally, measurement of physiologic dead space and alveolar ejection volume at admission or the trend during the first 48 hours of mechanical ventilation might provide useful information on outcome of critically ill patients with acute lung injury or acute respiratory distress syndrome. PMID:16682932

  2. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy - Part 1: The Araucariaceae family

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Hautevelle, Y.; Michels, R.

    2013-03-01

    Twelve species of the conifer family Araucariaceae, including Araucaria (6 species), Agathis (3 species) and Wollemia (1 species) genera, were submitted to artificial maturation by confined pyrolysis. The aim of these experiments is to transform the biomolecules synthesized by these species into their homologous geomolecules in laboratory conditions. Determination of the diagenetic molecular signatures of Araucariaceae through experimentation on extant representatives allows us to complete our knowledge in botanical palaeochemotaxonomy. Such knowledge is relevant to palaeoenvironmental, environmental and archaeology purposes. All artificially diagenetic species of Araucariaceae are firstly characterized by a predominance of saturated tetracyclic diterpenoids including ent-beyerane, phyllocladanes and ent-kauranes. Moreover, Araucaria genus shows a high relative abundance of bicyclic sesquiterpenoids, particularly the cadalane-type compounds accompanied by those of eudesmane and bisabolane types as well as chamazulene and pentamethyl-dihydroindenes. Diterpenoids are of labdane, isopimarane and abietane types (essentially derived from abietanoic acids) as well as isohexyl alkylaromatic hydrocarbons. Compared to the tetracyclic diterpenoids, these compounds show a relatively lower abundance, reaching trace levels in the case of saturated abietanes. Distributions of sesquiterpenoids and diterpenoids of Agathis show some similarities to that of Araucaria, with the exception of one species, in which the tetracyclic compounds are absent and the abietane type (essentially derived from abietanoic acids) predominant. High similarities between the Wollemia and Araucaria genera are observed. Both are characterized by some high relative abundance of tetracyclic compounds with no predominance of other specific diterpenoids.

  3. Preliminary results of experimental measurements to determine microparticle charge in a complex plasma

    NASA Astrophysics Data System (ADS)

    Gillman, Eric; Amatucci, Bill

    2015-09-01

    Microparticles in a dusty plasma typically collect many of the more mobile electrons as they charge up and therefore typically attain a net negative potential. The charge on these microparticles is typically estimated by calculating the charge on a spherical capacitor at the floating potential or by making measurements of particles levitating in the plasma sheath. However, secondary processes can alter the charging process and are significantly altered in the plasma sheath. Currently there is no reliable method to measure microparticle surface charge in the bulk region of complex or dusty plasmas. A novel, non-invasive, experimental method of measuring the charging of microparticles in the bulk region of a plasma will be presented. Ions impinging directly upon the microparticle surface and interacting electrostatically with the charged microparticle, known as collisional and electrostatic Coulomb ion drag, respectively, slows particle acceleration due to gravity as the particle falls through a plasma discharge. Since ion and neutral drag are commonly the dominant forces on microparticles in complex plasmas, the reduced acceleration is measured without a plasma to determine the neutral drag. By repeating the measurement with a plasma and subtracting the neutral drag, the ion drag is obtained. The microparticle net charge is then ascertained from the ion drag on isolated grains falling through a plasma discharge. This work was supported by the Naval Research Laboratory Base Program.

  4. Theoretical and Experimental Determination of the Proton Affinity of (CF3CH2)2O

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.; Ball, David W.

    1998-01-01

    We report the experimental determination of the proton affinity of the molecule (CF3CH2)2O using chemical ionization mass spectrometry, and we compare it to the theoretical value obtained for protonation at the oxygen atom using the calculational methodology (MP2/6-31G**//MP2/3-21G). The proton affinity for this molecule as measured by bracketing experiments was between 724 kJ/mole and 741 kJ/mole. Ab initio (MP2/6-31G**//MP2/3-21G) calculations yield a value of about 729 kJ/mole, in agreement with the chemical ionization experiments. The results of these and related calculations suggest that the (MP2/6-31G**//MP2/3-21G) methodology is acceptable for estimating the proton affinities of partially-and fully-fluorinated methyl and ethyl ethers. We submit that any conclusions about the chemistry of fluoroether polymer lubricants based on their basicity can also be predicted reliably with such calculations.

  5. An experimental model to determine the level of antibiotics in irradiated tissues

    SciTech Connect

    Cruz, N.I.; Ariyan, S.; Miniter, P.; Andriole, V.T.

    1984-05-01

    An experimental study was designed using male Sprague-Dawley rats treated with a single dose of 1800 rads to an area of skin and soft tissue of the back measuring 2 X 3 cm. This dose was estimated to produce changes equivalent to 6000 rads in divided doses over 6 weeks. At intervals of 5, 10, and 15 weeks after irradiation, punch biopsies were taken from both irradiation, and nonirradiated skin areas of each animal 30 minutes after the intraperitoneal administration of gentamicin. Skin homogenates were prepared, and the antibiotic levels in these samples were determined by a bacterial growth inhibition assay. The antibiotic levels were found to be equal (16.1 +/- 6 micrograms/ml vs. 16.0 +/- 5 micrograms/ml) in both irradiated and nonirradiated skin at 5 weeks after radiation. However, at 10 and 15 weeks after radiation, the antibiotic levels had dropped to 9.9 +/- 3 micrograms/ml in irradiated skin compared with 14.1 +/- 4 micrograms/ml in normal skin (p less than 0.001) and with 5.4 micrograms/ml in irradiated skin vs. 11.8 +/- 5 micrograms/ml in nonirradiated skin (p less than 0.001), respectively. Results demonstrate that in spite of adequate gentamicin levels in the circulation and nonirradiated tissue in rats, gentamicin has a decreasing ability to diffuse into irradiated tissues with increasing intervals after therapeutic doses of radiation.

  6. Numerical and experimental determination of neutron characteristics in irradiation rigs operated in LVR-15 research reactor.

    PubMed

    Koleska, Michal; Viererbl, Ladislav; Lahodova, Zdena; Ernest, Jaroslav; Zmitkova, Jelena; Marek, Milan

    2014-10-01

    The LVR-15 reactor is a 10-MW research reactor mostly dedicated to material research and isotope production. Material testing can be performed in various irradiation loops and rigs. For specimen irradiation, several rig constructions can be used, including standard single-cell CHOUCA rigs or special dedicated multi-cell rigs. The temperature in the rigs is controlled by a temperature control system, which can be operated in a stable or pulsed mode, with regard to the rig design. Irradiation conditions in the rig are monitored by a set of various fluence detectors. From these detectors, neutron fluence and its energy distribution can be determined for the whole volume of irradiation samples. Besides measurement, irradiation conditions are calculated by the Monte Carlo code MCNPX, which provides a complete review of irradiation conditions including neutron fluence and its energy distribution in samples and detectors, radiation damage and radiation heating conditions for the rig. A set of experimental and theoretical characteristics for dedicated irradiation positions in the core reflector and in fuel will be provided. PMID:24972899

  7. Experimental determination of the coefficients of the hydraulic resistance of apertures in the rotary disks

    NASA Astrophysics Data System (ADS)

    Shvets, I. T.; Dyban, Ye. P.; Selyavin, G. F.; Stradomskiy, M. V.

    1988-01-01

    Following are some conclusions reached in the determination of the haydraulic resistance of apertures in rotary disks: (1) rotation of disk exerts a substantial influence on condition of course of air through apertures. In the large ratios of the velocity of the rotation of the mean flow rate in the aperture (order u/c = 2.5) the value of the coefficient of flow rate for the apertures with the sharp entering edges decreases approximately 6 times; (2) with sufficient high u/c (more than 4) effect of form of entering edges it is possible not to consider; (3) rounding of trailing edges virtually does not have effect on conditions of air flow through apertures in rotary disks; (4) coefficient of flow rate of apertures of square form investigated in work is close to coefficient of expenditure of cylindrical channels (with identical hydraulic radii); (5) relative depth of aperture in the range of relations 0.96 less than l/d less than 6.04 virtually does not have effect on dependence of value of coefficient of flow rate from rotation; (6) on the basis of analysis of experimental data in work empirical dependence of coefficients of flow rate and hydraulic resistance on parameters K and K, are obtained. The ratios indicated are valid for the disk, which rotates in the housing with the value relative to the axial clearance between the disk and the housing of more than 1.5.

  8. Analytical methods to determine electrochemical factors in electrotaxis setups and their implications for experimental design.

    PubMed

    Schopf, Anika; Boehler, Christian; Asplund, Maria

    2016-06-01

    Direct current (DC) stimulation can be used to influence the orientation and migratory behavior of cells and results in cellular electrotaxis. Experimental work on such phenomena commonly relies on electrochemical dissolution of silver:silver-chloride (Ag:AgCl) electrodes to provide the stimulation via salt bridges. The strong ionic flow can be expected to influence the cell culture environment. In order to shed more light on which effects that must be considered, and possibly counter balanced, we here characterize a typical DC stimulation system. Silver migration speed was determined by stripping voltammetry. pH variability with stimulation was measured by ratiometric image analysis and conductivity alterations were quantified via two electrode impedance spectroscopy. It could be concluded that pH shifts towards more acidic values, in a linear manner with applied charge, after the buffering capability of the culture medium is exceeded. In contrast, the influence on conductivity was of negligible magnitude. Silver ions could enter the culture chamber at low concentrations long before a clear effect on the viability of the cultured cells could be observed. A design rule of 1cm salt bridge per C of stimulation charge transferred was however sufficient to ensure separation between cells and silver at all times. PMID:26775205

  9. Comparison of theoretical and experimental determination of the flexing of scratch drive actuator plates

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Brown, James G.; Uttamchandani, Deepak G.

    2002-09-01

    The scratch drive actuator (SDA) is a key element in microelectromechanical System (MEMS) technology. The actuator can be designed to travel very long distance with precise step size. Various articles describe the characteristics of scratch drive actuators.3, 6, 8 The MEMS designer needs models of SDA in order to incorporate them into their Microsystems applications. The objective of our effort is to develop models for SDA when it is in the working state. In this paper, a suspended SDA plate actuated by electrostatic force is analyzed. A mathematical model is established based on electrostatic coupled mechanical theory. Two phases have been calculated because the plate will contact the bottom surface due to the electrostatic force. One phase is named non-contact mode, and another is named contact mode. From these two models, the relationship between applied voltage and contact distance has been obtained. The geometrical model of bending plate is established to determine the relationship between contact distance and step size. Therefore we can use those two results to obtain the result of step size versus applied voltage that we expect. Finally, couple-field electro-mechanical simulation has been done by commercial software IntelliSuite. We assume that the dimension of SDA plate and bushing are fixed. All the material properties are from JDSU Cronos MUMPs. A Veeco NT1000 surface profiling tool has been used to investigate the bending of SDA plate. The results of experimental and theoretical are compared.

  10. Experimental determination of in situ utilization of lunar regolith for thermal energy storage

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1992-01-01

    A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister which contains simulated lunar regolith, a heater, nine heat shields, a heat transfer cold jacket, and 19 type-B platinum rhodium thermocouples. The simulated lunar regolith is a basalt that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith, which include melt temperature, specific heat thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.

  11. Experimental determination of lead carbonate solubility at high ionic strengths: A Pitzer model description

    DOE PAGESBeta

    Xiong, Yongliang

    2015-05-06

    In this article, solubility measurements of lead carbonate, PbCO3(cr), cerussite, as a function of total ionic strengths are conducted in the mixtures of NaCl and NaHCO3 up to I = 1.2 mol•kg–1 and in the mixtures of NaHCO3 and Na2CO3 up to I = 5.2 mol•kg–1, at room temperature (22.5 ± 0.5 °C). The solubility constant (log Ksp) for cerussite, PbCO3(cr) = Pb2+ + CO32- was determined as –13.76 ± 0.15 (2σ) with a set of Pitzer parameters describing the specific interactions of PbCO3(aq), Pb(CO3)22-, and Pb(CO3)Cl– with the bulk-supporting electrolytes, based on the Pitzer model. The model developed inmore » this work can reproduce the experimental results including model-independent solubility values from the literature over a wide range of ionic strengths with satisfactory accuracy. The model is expected to find applications in numerous fields, including the accurate description of chemical behavior of lead in geological repositories, the modeling of formation of oxidized Pb–Zn ore deposits, and the environmental remediation of lead contamination.« less

  12. Experimental determination of optimum gutter brush parameters and road sweeping criteria for different types of waste.

    PubMed

    Abdel-Wahab, Magd M; Wang, Chong; Vanegas-Useche, Libardo V; Parker, Graham A

    2011-06-01

    The removal ability of gutter brushes for road sweeping for various debris types and different sweeping parameters is studied through experimental tests. The brushing test rig used comprises two commercial gutter brushes, a concrete test bed, and an asphalt test road with a gutter of 0.25 cm width and 10° slope. The brush-surface contact area is determined by sweeping sand on the concrete test bed. Sweeping problems are identified and discussed, and sweeping criteria for the different debris types are suggested. Also, optimum sweeping parameters are proposed for each debris type. In addition, debris removal mechanisms are discussed and analysed. The results indicate that for large heavy debris such as stones and gravel, it is not difficult to achieve large removal forces, because the steel bristles are relatively stiff. Conversely, high removal forces are not needed for particles of millimetre or micron sizes, but bristle curvature has to be appropriate to remove particles from road concavities. Finally, it is found that mud, especially dry mud on a rough surface, is the hardest debris to sweep, requiring a brush with a large tilt angle and a very large penetration to produce large removal forces. PMID:21277186

  13. Determining directional emissivity: Numerical estimation and experimental validation by using infrared thermography

    NASA Astrophysics Data System (ADS)

    Peeters, J.; Ribbens, B.; Dirckx, J. J. J.; Steenackers, G.

    2016-07-01

    Little research has examined that inaccurate estimations of directional emissivity form a major challenge during both passive and active thermographic measurements. Especially with the increasing use of complex curved shapes and the growing precision of thermal cameras, these errors limit the accuracy of the thermal measurements. In this work we developed a technique to estimate the directional emissivity using updated numerical simulations. The reradiation on concave surfaces is examined by thermal imaging of a homogeneous heated curved metal and nylon test sample. We used finite element modelling to predict the reradiation of concave structures in order to calculate the parameters of an approximating formula for the emissivity dependent on the angle to the normal vector on each element. The differences between experimental and numerical results of the steel test sample are explained using electron microscopy imaging and the validation on different materials. The results suggest that it is possible to determine the errors of thermal imaging testing of complex shapes using a numerical model.

  14. The experimental determination of the torsional barrier and shape for disilane.

    PubMed

    Moazzen-Ahmadi, N; Horneman, V-M

    2006-05-21

    The torsional spectrum of disilane was recorded for the first time under high-pressure-pathlength conditions and at a spectral resolution of 0.007 cm(-1) using a Bruker IFS-120 HR Fourier transform spectrometer. The spectrum shows six distinct Q branches. The most prominent Q branch is near 130 cm(-1) which is a blend of four components of the torsional fundamental. Of the remaining five, four were assigned to the first torsional hot band (v(4)=2<--1) and one to the second torsional hot band (v(4)=3<--2). Over 350 transitions were identified. An analysis of the torsional fundamental, the first torsional hot band, and the lower state combination differences from frequencies of the vibrational bands nu(9) and nu(9)+nu(4)-nu(4) was made to characterize the torsion-rotation Hamiltonian in the ground vibrational state. The barrier height, barrier shape, and the rotational constant about the Si-Si bond were determined to be 404.344(83) cm(-1), 2.255(65) cm(-1), and 43208(28) MHz, respectively. Comparison of simulated and the experimental spectra yielded (mu||-mu(perpendicular))/mu(perpendicular)= -4(1) for the torsional dipole moments. This ratio compares well with -3.39(6) for ethane. A comparison of molecular parameters obtained here is made with those for methyl silane and ethane. PMID:16729816

  15. The experimental determination of the torsional barrier and shape for disilane

    NASA Astrophysics Data System (ADS)

    Moazzen-Ahmadi, N.; Horneman, V.-M.

    2006-05-01

    The torsional spectrum of disilane was recorded for the first time under high-pressure-pathlength conditions and at a spectral resolution of 0.007cm-1 using a Bruker IFS-120 HR Fourier transform spectrometer. The spectrum shows six distinct Q branches. The most prominent Q branch is near 130cm-1 which is a blend of four components of the torsional fundamental. Of the remaining five, four were assigned to the first torsional hot band (v4=2←1) and one to the second torsional hot band (v4=3←2). Over 350 transitions were identified. An analysis of the torsional fundamental, the first torsional hot band, and the lower state combination differences from frequencies of the vibrational bands ν9 and ν9+ν4-ν4 was made to characterize the torsion-rotation Hamiltonian in the ground vibrational state. The barrier height, barrier shape, and the rotational constant about the Si-Si bond were determined to be 404.344(83)cm-1, 2.255(65)cm-1, and 43208(28)MHz, respectively. Comparison of simulated and the experimental spectra yielded (μ‖-μ⊥)/μ⊥=-4(1) for the torsional dipole moments. This ratio compares well with -3.39(6) for ethane. A comparison of molecular parameters obtained here is made with those for methyl silane and ethane.

  16. T-Cell Properties Determine Disease Site, Clinical Presentation, and Cellular Pathology of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Abromson-Leeman, Sara; Bronson, Rod; Luo, Yi; Berman, Michael; Leeman, Rebecca; Leeman, Joshua; Dorf, Martin

    2004-01-01

    Two distinct clinical phenotypes of experimental autoimmune encephalomyelitis are observed in BALB interferon-γ knockout mice immunized with encephalitogenic peptides of myelin basic protein. Conventional disease, characterized by ascending weakness and paralysis, occurs with greater frequency after immunizing with a peptide comprising residues 59 to 76. Axial-rotatory disease, characterized by uncontrolled axial rotation, occurs with greater frequency in mice immunized with a peptide corresponding to exon 2 of the full length 21.5-kd protein. The two clinical phenotypes are histologically distinguishable. Conventional disease is characterized by inflammation and demyelination primarily in spinal cord, whereas axial-rotatory disease involves inflammation and demyelination of lateral medullary areas of brain. Both types have infiltrates in which neutrophils are a predominating component. By isolating T cells and transferring disease to naïve recipients, we show here that the type of disease is determined entirely by the inducing T cell. Furthermore, studies using CXCR2 knockout recipients, unable to recruit neutrophils to inflammatory sites, show that although neutrophils are critical for some of these T cells to effect disease, there are also interferon-γ-deficient T cells that induce disease in the absence of both interferon-γ and neutrophils. These results highlight the multiplicity of T-cell-initiated effector pathways available for inflammation and demyelination. PMID:15509523

  17. Adaptive controller for volumetric display of neuroimaging studies

    NASA Astrophysics Data System (ADS)

    Bleiberg, Ben; Senseney, Justin; Caban, Jesus

    2014-03-01

    Volumetric display of medical images is an increasingly relevant method for examining an imaging acquisition as the prevalence of thin-slice imaging increases in clinical studies. Current mouse and keyboard implementations for volumetric control provide neither the sensitivity nor specificity required to manipulate a volumetric display for efficient reading in a clinical setting. Solutions to efficient volumetric manipulation provide more sensitivity by removing the binary nature of actions controlled by keyboard clicks, but specificity is lost because a single action may change display in several directions. When specificity is then further addressed by re-implementing hardware binary functions through the introduction of mode control, the result is a cumbersome interface that fails to achieve the revolutionary benefit required for adoption of a new technology. We address the specificity versus sensitivity problem of volumetric interfaces by providing adaptive positional awareness to the volumetric control device by manipulating communication between hardware driver and existing software methods for volumetric display of medical images. This creates a tethered effect for volumetric display, providing a smooth interface that improves on existing hardware approaches to volumetric scene manipulation.

  18. Experimental Determination and Thermodynamic Modeling of Electrical Conductivity of SRS Waste Tank Supernate

    SciTech Connect

    Pike, J.; Reboul, S.

    2015-06-01

    SRS High Level Waste Tank Farm personnel rely on conductivity probes for detection of incipient overflow conditions in waste tanks. Minimal information is available concerning the sensitivity that must be achieved such that that liquid detection is assured. Overly sensitive electronics results in numerous nuisance alarms for these safety-related instruments. In order to determine the minimum sensitivity required of the probe, Tank Farm Engineering personnel need adequate conductivity data to improve the existing designs. Little or no measurements of liquid waste conductivity exist; however, the liquid phase of the waste consists of inorganic electrolytes for which the conductivity may be calculated. Savannah River Remediation (SRR) Tank Farm Facility Engineering requested SRNL to determine the conductivity of the supernate resident in SRS waste Tank 40 experimentally as well as computationally. In addition, SRNL was requested to develop a correlation, if possible, that would be generally applicable to liquid waste resident in SRS waste tanks. A waste sample from Tank 40 was analyzed for composition and electrical conductivity as shown in Table 4-6, Table 4-7, and Table 4-9. The conductivity for undiluted Tank 40 sample was 0.087 S/cm. The accuracy of OLI Analyzer™ was determined using available literature data. Overall, 95% of computed estimates of electrical conductivity are within ±15% of literature values for component concentrations from 0 to 15 M and temperatures from 0 to 125 °C. Though the computational results are generally in good agreement with the measured data, a small portion of literature data deviates as much as ±76%. A simplified model was created that can be used readily to estimate electrical conductivity of waste solution in computer spreadsheets. The variability of this simplified approach deviates up to 140% from measured values. Generally, this model can be applied to estimate the conductivity within a factor of two. The comparison of the

  19. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display

    PubMed Central

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-01-01

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human–computer interactions, advertising, and entertainment. PMID:27526780

  20. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display.

    PubMed

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-01-01

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment. PMID:27526780

  1. Intervertebral disc segmentation and volumetric reconstruction from peripheral quantitative computed tomography imaging.

    PubMed

    Wong, Alexander; Mishra, Akshaya; Yates, Justin; Fieguth, Paul; Clausi, David A; Callaghan, Jack P

    2009-11-01

    An automatic system for segmenting and constructing volumetric representations of excised intervertebral discs from peripheral quantitative computed tomography (PQCT) imagery is presented. The system is designed to allow for automatic quantitative analysis of progressive herniation damage to the intervertebral discs under flexion/extension motions combined with a compressive load. Automatic segmentation and volumetric reconstruction of intervertebral disc from PQCT imagery is a very challenging problem due to factors such as streak artifacts and unclear material density separation between contrasted intervertebral disc and surrounding bone in the PQCT imagery, as well as the formation of multiple contrasted regions under axial scans. To address these factors, a novel multiscale level set approach based on the Mumford-Shah energy functional in iterative bilateral scale space is employed to segment the intervertebral disc regions from the PQCT imagery. A Delaunay triangulation is then performed based on the set of points associated with the intervertebral disc regions to construct the volumetric representation of the intervertebral disc. Experimental results show that the proposed system achieves segmentation and volumetric reconstructions of intervertebral discs with mean absolute distance error below 0.8 mm when compared to ground truth measurements. The proposed system is currently in operational use as a visualization tool for studying progressive intervertebral disc damage. PMID:19635691

  2. Experimental determination of vertical uprooting resistance for grass species used in flume experiments

    NASA Astrophysics Data System (ADS)

    Edmaier, K.; Crouzy, B.; Ennos, R.; Burlando, P.; Perona, P.

    2012-12-01

    Vegetation affects river morphodynamics by contributing to the stabilization of alluvial sediment via the root system. The survival and establishment of riparian pioneer vegetation on river bars and islands is determined by timescales of vegetation growth and flood interarrival times. Several laboratory experiments have investigated the role of vegetation in river morphodynamics but none of those has quantied the forces involved to produce uprooting of growing plants. Thus, parallel analyses on root resistance to uprooting are needed. In this work we investigate the uprooting resistance of young vegetation in laboratory experiments, where we vertically uprooted seedlings of Avena sativa and Medicago sativa. Uprooting force and work were related to the root structure (root length, number of roots, root tortuosity) and environmental conditions (grain size, saturation). We found the uprooting work of both species to follow a power law relation with the total root length which was found to be the main driving factor of the process. In addition, the number of roots was found to increase uprooting work. For similar total root length, the multi-root system of Avena sativa shows greater uprooting resistance in terms of work than the single-root system of Medicago sativa. Less sediment saturation produces higher uprooting forces and favors root breaking. Smaller sediment sizes lead to a higher uprooting resistance than bigger ones. Nevertheless, both saturation and grain size showed minor influence on the uprooting process compared to root characteristics. From measured uprooting forces of Avena sativa grown on sediment with a grain size distribution similar to that used in the flume experiments of Perona et al. (2012) we computed the ensemble probability of Avena sativa being uprooted by a particular drag force at certain growth stages, allowing us to compute a probability distribution of being uprooted in dependence of the root length and thus experimentally assess the

  3. Experimental determination of the influence of oxygen on the PRESAGE® dosimeter

    NASA Astrophysics Data System (ADS)

    Alqathami, Mamdooh; Blencowe, Anton; Ibbott, Geoffrey

    2016-01-01

    It is generally accepted that the PRESAGE® radiochromic dosimeter is not sensitive to oxygen, however, this claim has not been supported or verified experimentally. Therefore, the aim of this study was to experimentally determine the potential influence of oxygen on dose sensitivity of the PRESAGE® dosimeter and its reporting system. Batches of PRESAGE® and its radical initiator-leuco dye reporting system were prepared in aerobic and anaerobic conditions. The anaerobic batches were deoxygenated by bubbling nitrogen through the dosimeter precursors or reporting system for 10 min. The dosimeters and reporting systems were prepared in spectrophotometric cuvettes and glass vials, respectively, and were irradiated with 6 MV photons to various radiation doses. Changes in optical density of the dosimeters and reporting system before and after irradiation were measured using a spectrophotometer. The overall results show that oxygen has some influence on the dosimetric characteristics of PRESAGE®, although the radical initiator does appear to oxidize the leucomalachite green even in the presence of oxygen. Deoxygenation of the reporting system leads to an increase in sensitivity to radiation dose by ~30% when compared to the non-deoxygenated system. A minor increase in sensitivity (~5%) was also achieved by deoxygenating the PRESAGE® precursor prior to casting. In addition, dissolved oxygen measurements revealed low levels of dissolved oxygen (0.40  ±  0.04 mg l-1) in the polyurethane precursor used to fabricate the PRESAGE® dosimeters, as compared to water (8.60  ±  0.03 mg l-1) and the reporting system alone (1.30  ±  0.10 mg l-1). The results suggest that the presence of oxygen does not inhibit the radiochromic properties of the PRESAGE® system. However, deoxygenation of the dosimeter precursors prior to casting improves the dosimeters dose sensitivity by ~5%, which might be particularly useful for measuring low radiation doses

  4. Experimental Determination of Equilibrium and Non-equilibrium Thermodynamic Propertiesof Natural Porous Media.

    NASA Astrophysics Data System (ADS)

    Peluso, F.; Arienzo, I.

    Experimental investigation of the behavior of porous media is a field of interest of modern non-equilibrium thermodynamics. In the frame of a multi-disciplinary re- search project we are performing in our laboratory experimental tests to measure equilibrium and nonequilibrium thermodynamic properties of natural porous media. Aim of our study is to characterize some stone samples and to verify whether a mass transport due to coupled pressure and temperature gradients (thermo-mechanic) is ap- preciable in this kind of porous medium. We have designed an apparatus that allows to measure the volume flux across a porous sample at various, predefined pressures and temperatures, both in isothermal and non isothermal conditions. A mechanical piston compels a liquid to flow through the sample, previously saturated under vacuum with the same fluid. Knowing the geometrical dimensions of the stone, the volume flux is estimated by measuring the time needed to a known amount of liquid to flow across the sample. Measurements have been performed in isothermal conditions at various temperatures and in non-isothermal conditions. Non-isothermal measurements have been performed both in unsteady and steady-state thermal conditions. Before to be undergone to a measurement cycle, samples are dried and weighted. Then they are sat- urated under vacuum with pure distilled water and weighted once again. By difference between the two measurements, porosity is determined. In all examined samples the volume flux has been found linear with respect to the applied pressure at the various temperatures. The values of volume flux in unsteady thermal conditions are consid- erably higher than the one obtained at the same pressure in isothermal conditions at the higher temperature (T=+45rC). This could be the evidence of a thermo-mechanic effect, pushing the water from hot to cold. Once the steady thermal state is reached, however, this effect disappears. Only measurements performed in unsteady thermal

  5. Experimental determination of noble gas, SF6 and CO2 flow profiles through a porous sandstone

    NASA Astrophysics Data System (ADS)

    Kilgallon, Rachel; Gilfillan, Stuart; Edlmann, Katriona; McDermott, Chris

    2016-04-01

    The noble gases (He, Ne, Ar, Kr and Xe) and SF6 have recently been used as artificial and inherent tracers of CO2 flow and migration from within[1,2] and from geological reservoirs[3]. However, outstanding questions remain, particularly regarding the flow behaviour of the noble gases compared to CO2. Here we present results from specially constructed experimental equipment, which has been used to determine the factors affecting transport of noble gases relative to CO2 in a porous sandstone. The experimental setup consists of a sample loop that can be loaded with a desired gas mixture. This sample can be released as a pulse into a feeder gas stream through a flow cell. The flow cell consists of a 3.6 cm diameter core, which can be of any length. The sample is surrounded by aluminium foil and treated with epoxy resin inside stainless steel tubing. The flow cell is encased by two purpose designed dispersion end plates. Real-time analysis of the arrival peaks of the gases downstream is recorded using a Quadrupole Mass Spectrometer (QMS). For the experiments, a 0.96 m core of Fell Sandstone was selected to represent a porous media. Noble gases and SF6 pulses were flowed through a CO2 carrier gas at five different pressure gradients (10 - 50 kPa) with arrival profiles measured using the QMS. Surprisingly, peak arrival times of He were slower than the other noble gases at each pressure gradient. The differences in peak arrival times between He and other noble gases increased as pressure decreased and the curve profiles for each noble gas differ significantly. The heavier noble gases (Kr and Xe) along with SF6 show a steeper peak rise at initial appearance, but have a longer duration profile than the He curves. Interestingly, the breakthrough curve profiles for both Kr and Xe were similar to SF6 indicating that Kr and Xe could be substituted for SF6, which is a potent greenhouse gas, in tracing applications. In addition, CO2 pulses were passed through a N2 carrier gas. The

  6. Experimental Determination of the Partitioning Behavior of Noble Gases Between Carbonate and Silicate Liquids

    NASA Astrophysics Data System (ADS)

    Burnard, P.; Koga, K. T.

    2010-12-01

    Carbonatitic melts have been identified in the earth’s upper mantle and experimental evidence suggests that such melts are stable at mantle conditions. Due to high carbonatite/silicate partition coefficients for certain trace elements, and due to the low melting points, low viscosities and low dihedral angles of carbonatite liquids, these liquids play a significant role in trace element fractionation in the mantle. However, the solubilities of the noble gases in carbonatitic liquids are poorly constrained although initial data at low pressure (1 bar) surprisingly suggest that the noble gases are poorly soluble in carbonatite liquids [1]. Partitioning of noble gases relative to the parents of radiogenic noble gases - primarily U, Th and K - has consequences for the isotopic evolution of mantle noble gases, consequently determination of noble gas solubilities in carbonatite phases is of extreme interest for mantle geodynamics. Two-liquid experimental charges consisting of nephelenite and Na2CO3 were synthesized at 1145 C and pressures between 0.6 and 2.5 GPa in sealed Au-Pd capsules in a piston cylinder apparatus. The experimental runs were c. 12h in duration and the charges were quenched at >200 C min-1 to form two immiscibly separated glasses phases. The nephelenite glass starting material had been saturated with a noble gas mixture (0.5 He, 0.02 Ne, 0.48 Ar) prior to synthesis. This procedure introduced noble gases without creating a free gas phase. The noble gases (He and Ar only) were measured in 3 stages: 1) the capsule was pierced under vacuum and the ‘free gas’ residing in the capsule pore space was analysed; 2) the entire capsule was heated to 250 C and the gases liberated were analysed and 3) the nephelenite glass was melting by a CO2 laser and the gases liberated analysed. The first stage of the analysis was to measure any noble gases (principally He) that may have diffused out of the carbonatite during the quench or between the period (of a few

  7. Rapid mapping of volumetric machine errors using distance measurements

    SciTech Connect

    Krulewich, D.A.

    1998-04-01

    This paper describes a relatively inexpensive, fast, and easy to execute approach to maping the volumetric errors of a machine tool, coordinate measuring machine, or robot. An error map is used to characterize a machine or to improve its accuracy by compensating for the systematic errors. The method consists of three steps: (1) models the relationship between volumetric error and the current state of the machine, (2) acquiring error data based on distance measurements throughout the work volume; and (3)fitting the error model using the nonlinear equation for the distance. The error model is formulated from the kinematic relationship among the six degrees of freedom of error an each moving axis. Expressing each parametric error as function of position each is combined to predict the error between the functional point and workpiece, also as a function of position. A series of distances between several fixed base locations and various functional points in the work volume is measured using a Laser Ball Bar (LBB). Each measured distance is a non-linear function dependent on the commanded location of the machine, the machine error, and the location of the base locations. Using the error model, the non-linear equation is solved producing a fit for the error model Also note that, given approximate distances between each pair of base locations, the exact base locations in the machine coordinate system determined during the non-linear filling procedure. Furthermore, with the use of 2048 more than three base locations, bias error in the measuring instrument can be removed The volumetric errors of three-axis commercial machining center have been mapped using this procedure. In this study, only errors associated with the nominal position of the machine were considered Other errors such as thermally induced and load induced errors were not considered although the mathematical model has the ability to account for these errors. Due to the proprietary nature of the projects we are

  8. Experimental determination of carbon isotope fractionation between CaCO 3 and graphite

    NASA Astrophysics Data System (ADS)

    Deines, Peter; Eggler, David H.

    2009-12-01

    Carbon isotopic exchange between graphite and three polymorphs of CaCO 3 was investigated at temperatures of 600-1400 °C and at pressures from 1.4 to 2.3 GPa. Fractionation factors at all temperatures were determined by the partial exchange treatment of Northrop and Clayton (1966). Graphite starting material for the majority of the experiments was milled in water for 20-25 h, producing aggregates of nanosheets. The sheets range in width from 50 to 1000 nm and in thickness from 20 to 30 nm, and they retain hexagonal symmetry. Isotopic exchange appears to be the sum of surface exchange and interior exchange. At 1100-1400 °C, interior exchange exceeded surface exchange, probably by a combination of grain growth, as determined by increase in crystallite size, recrystallization, as observed in FESEM images, and diffusion. In some runs at 1200 and 1400 °C with an isotopic contrast between the initial graphite and calcite of close to 50‰, equilibrium fractionation was actually overstepped due to a kinetic effect. A weighted regression of fractionation factors from the high-temperature runs yields the line of equilibrium interior exchange: 1000lnα=3.28(0.07)×106/T2. Our calibration lies between the empirical geothermometers of Kitchen and Valley (1995) and Valley and O'Neil (1981) and, accordingly, with a substantial body of data from granulite-facies metamorphic rocks. At 600-700 °C surface exchange greatly exceeded interior exchange, with a much lower activation energy. Interior exchange was slight to nonexistent because there was no crystal growth, no recrystallization, and, probably, little diffusion. Fractionation factors are ˜1‰ higher than the interior exchange factors. Surface exchange probably occurred in the outer one or two unit cells of nanosheets. In previous experimental studies, similar surface-dominated fractionations apparently were measured, even at high temperatures. At 750-1000 °C, exchange rates and fractionation factors followed the low

  9. Deformation mechanisms of antigorite serpentinite at subduction zone conditions determined from experimentally and naturally deformed rocks

    NASA Astrophysics Data System (ADS)

    Auzende, Anne-Line; Escartin, Javier; Walte, Nicolas P.; Guillot, Stéphane; Hirth, Greg; Frost, Daniel J.

    2015-02-01

    We performed deformation-DIA experiments on antigorite serpentinite at pressures of 1-3.5 GPa and temperatures of between 400 and 650 °C, bracketing the stability of antigorite under subduction zone conditions. For each set of pressure-temperature (P-T) conditions, we conducted two runs at strain rates of 5 ×10-5 and 1 ×10-4 s-1. We complemented our study with a sample deformed in a Griggs-type apparatus at 1 GPa and 400 °C (Chernak and Hirth, 2010), and with natural samples from Cuba and the Alps deformed under blueschist/eclogitic conditions. Optical and transmission electron microscopies were used for microstructural characterization and determination of deformation mechanisms. Our observations on experimentally deformed antigorite prior to breakdown show that deformation is dominated by cataclastic flow with observable but minor contribution of plastic deformation (microkinking and (001) gliding mainly expressed by stacking disorder mainly). In contrast, in naturally deformed samples, plastic deformation structures are dominant (stacking disorder, kinking, pressure solution), with minor but also perceptible contribution of brittle deformation. When dehydration occurs in experiments, plasticity increases and is coupled to local embrittlement that we attribute to antigorite dehydration. In dehydrating samples collected in the Alps, embrittlement is also observed suggesting that dehydration may contribute to intermediate-depth seismicity. Our results thus show that semibrittle deformation operates within and above the stability field of antigorite. However, the plastic deformation recorded by naturally deformed samples was likely acquired at low strain rates. We also document that the corrugated structure of antigorite controls the strain accommodation mechanisms under subduction conditions, with preferred inter- and intra-grain cracking along (001) and gliding along both a and b. We also show that antigorite rheology in subduction zones is partly controlled

  10. Experimental determination of lead carbonate solubility at high ionic strengths: A Pitzer model description

    SciTech Connect

    Xiong, Yongliang

    2015-05-06

    In this article, solubility measurements of lead carbonate, PbCO3(cr), cerussite, as a function of total ionic strengths are conducted in the mixtures of NaCl and NaHCO3 up to I = 1.2 mol•kg–1 and in the mixtures of NaHCO3 and Na2CO3 up to I = 5.2 mol•kg–1, at room temperature (22.5 ± 0.5 °C). The solubility constant (log Ksp) for cerussite, PbCO3(cr) = Pb2+ + CO32- was determined as –13.76 ± 0.15 (2σ) with a set of Pitzer parameters describing the specific interactions of PbCO3(aq), Pb(CO3)22-, and Pb(CO3)Cl with the bulk-supporting electrolytes, based on the Pitzer model. The model developed in this work can reproduce the experimental results including model-independent solubility values from the literature over a wide range of ionic strengths with satisfactory accuracy. The model is expected to find applications in numerous fields, including the accurate description of chemical behavior of lead in geological repositories, the modeling of formation of oxidized Pb–Zn ore deposits, and the environmental remediation of lead contamination.

  11. Experimental evaluation of fatty acid profiles as a technique to determine dietary composition in benthic elasmobranchs.

    PubMed

    Beckmann, Crystal L; Mitchell, James G; Seuront, Laurent; Stone, David A J; Huveneers, Charlie

    2013-01-01

    Fatty acid (FA) analysis is a tool for dietary investigation that complements traditional stomach content analyses. Controlled feeding experiments were used to determine the extent to which the FA composition of diet is reflected in the liver and muscle tissue of the Port Jackson shark Heterodontus portusjacksoni. Over 10 wk, two groups of sharks were fed prawns or squid, which have distinct FA profiles. The percentage of total FA was significantly different for shark liver and muscle tissue when comparing controls with prawn- and squid-fed sharks. Compared with experimentally fed sharks, control shark muscle and liver had higher levels of 18:1n-9 and 20:2n-9. When comparing prawn- and squid-fed sharks, only liver tissue showed a significant difference in FA profiles. The livers of prawn-fed sharks were comparatively higher in 18:1n-7, 22:5n-3, 20:0, and 18:1n-9, while the squid-fed sharks had higher levels of 16:0 and 22:6n-3. These FAs in shark liver tissue were all reflective of higher amounts in their respective dietary items, demonstrating the conservative transfer of FA from diet to liver tissue. This study shows that liver and muscle FA profiles can be used as indicators of dietary change through the comparison of controls and fed sharks. The timescale of this study may not have been sufficient for capturing the integration of FA into muscle tissue because only liver FA profiles were useful to distinguish between sharks fed different diets. These findings have important implications for sampling design where FA profiles are used to infer dietary preferences. PMID:23434786

  12. Experimental determination of the Si isotope fractionation factor between liquid metal and liquid silicate

    NASA Astrophysics Data System (ADS)

    Hin, Remco C.; Fitoussi, Caroline; Schmidt, Max W.; Bourdon, Bernard

    2014-02-01

    The conditions of core formation and the abundances of the light elements in Earth's core remain debated. Silicon isotope fractionation provides a tool contributing to this subject. We present experimentally determined Si isotope fractionation factors between liquid metal and liquid silicate at 1450 °C and 1750 °C, which allow calibrating the temperature dependence of Si isotope fractionation. Experiments were performed in a centrifuging piston cylinder at 1 GPa, employing both graphite and MgO capsules. Tin was used to lower the melting temperature of the metal alloys for experiments performed at 1450 °C. Tests reveal that neither Sn nor C significantly affects Si isotope fractionation. An alkaline fusion technique was employed to dissolve silicate as well as metal phases prior to ion exchange chemistry and mass spectrometric analysis. The results show that metal is consistently enriched in light isotopes relative to the silicate, yielding average metal-silicate fractionation factors of -1.48±0.08‰ and -1.11±0.14‰ at 1450 °C and 1750 °C, respectively. The temperature dependence of equilibrium Si isotope fractionation between metal and silicate can thus be described as Δ30SiMetal-Silicate=-4.42(±0.05)×106/T2. The Si isotope equilibrium fractionation is thus about 1.7 times smaller than previously proposed on the basis of experiments. A consequence of this smaller fractionation is that the calculated difference between the Si isotope composition of the bulk Earth and that of the bulk silicate Earth generated by core formation is smaller than previously thought. It is therefore increasingly difficult to match the Si isotope composition of the bulk silicate Earth with that of chondrites for metal-silicate equilibration temperatures above ∼2500 K. This suggests that Si isotopes were more sensitive to the early stages of core formation when low oxygen fugacities allowed significant incorporation of Si into metal.

  13. Volumetric techniques: three-dimensional midface modeling

    PubMed Central

    Pierzchała, Ewa; Placek, Waldemar

    2014-01-01

    Aging is a complex process caused by many factors. The most important factors include exposure to UV radiation, smoking, facial muscle movement, gravity, loss and displacement of fat and bone resorption. As a symptom of aging, face loses elasticity, volume and cheerful look. While changing face proportions, the dominant part of a face is its bottom instead of the mid part. The use of three-dimensional face modelling techniques, particularly the mid-face – tear through and cheeks, restores the skin firmness, volume and healthy look. For this purpose the hyaluronic acid is used, calcium hydroxyapatite, and L-polylactic acid fillers. Volumetric techniques require precision and proper selection of the filling agent to give a sense of satisfaction to both the patient and the doctor. PMID:25610354

  14. Progressive Compression of Volumetric Subdivision Meshes

    SciTech Connect

    Laney, D; Pascucci, V

    2004-04-16

    We present a progressive compression technique for volumetric subdivision meshes based on the slow growing refinement algorithm. The system is comprised of a wavelet transform followed by a progressive encoding of the resulting wavelet coefficients. We compare the efficiency of two wavelet transforms. The first transform is based on the smoothing rules used in the slow growing subdivision technique. The second transform is a generalization of lifted linear B-spline wavelets to the same multi-tier refinement structure. Direct coupling with a hierarchical coder produces progressive bit streams. Rate distortion metrics are evaluated for both wavelet transforms. We tested the practical performance of the scheme on synthetic data as well as data from laser indirect-drive fusion simulations with multiple fields per vertex. Both wavelet transforms result in high quality trade off curves and produce qualitatively good coarse representations.

  15. Interactive stereoscopic rendering of volumetric environments.

    PubMed

    Wan, Ming; Zhang, Nan; Qu, Huamin; Kaufman, Arie E

    2004-01-01

    We present an efficient stereoscopic rendering algorithm supporting interactive navigation through large-scale 3D voxel-based environments. In this algorithm, most of the pixel values of the right image are derived from the left image by a fast 3D warping based on a specific stereoscopic projection geometry. An accelerated volumetric ray casting then fills the remaining gaps in the warped right image. Our algorithm has been parallelized on a multiprocessor by employing effective task partitioning schemes and achieved a high cache coherency and load balancing. We also extend our stereoscopic rendering to include view-dependent shading and transparency effects. We have applied our algorithm in two virtual navigation systems, flythrough over terrain and virtual colonoscopy, and reached interactive stereoscopic rendering rates of more than 10 frames per second on a 16-processor SGI Challenge. PMID:15382695

  16. Live volumetric imaging (LVI) intracardiac ultrasound catheter.

    PubMed

    Dausch, David E; Castellucci, John B; Gilchrist, Kristin H; Carlson, James B; Hall, Stephen D; von Ramm, Olaf T

    2013-01-01

    The Live Volumetric Imaging (LVI) catheter is capable of real-time 3D intracardiac echo (ICE) imaging, uniquely providing full volume sectors with deep penetration depth and high volume frame rate. The key enabling technology in this catheter is an integrated piezoelectric micromachined ultrasound transducer (pMUT), a novel matrix phased array transducer fabricated using semiconductor microelectromechanical systems (MEMS) manufacturing techniques. This technology innovation may enable better image guidance to improve accuracy, reduce risk, and reduce procedure time for transcatheter intracardiac therapies which are currently done with limited direct visualization of the endocardial tissue. Envisioned applications for LVI include intraprocedural image guidance of cardiac ablation therapies as well as transcatheter mitral and aortic valve repair. PMID:23773496

  17. Quantitative volumetric breast density estimation using phase contrast mammography

    NASA Astrophysics Data System (ADS)

    Wang, Zhentian; Hauser, Nik; Kubik-Huch, Rahel A.; D'Isidoro, Fabio; Stampanoni, Marco

    2015-05-01

    Phase contrast mammography using a grating interferometer is an emerging technology for breast imaging. It provides complementary information to the conventional absorption-based methods. Additional diagnostic values could be further obtained by retrieving quantitative information from the three physical signals (absorption, differential phase and small-angle scattering) yielded simultaneously. We report a non-parametric quantitative volumetric breast density estimation method by exploiting the ratio (dubbed the R value) of the absorption signal to the small-angle scattering signal. The R value is used to determine breast composition and the volumetric breast density (VBD) of the whole breast is obtained analytically by deducing the relationship between the R value and the pixel-wise breast density. The proposed method is tested by a phantom study and a group of 27 mastectomy samples. In the clinical evaluation, the estimated VBD values from both cranio-caudal (CC) and anterior-posterior (AP) views are compared with the ACR scores given by radiologists to the pre-surgical mammograms. The results show that the estimated VBD results using the proposed method are consistent with the pre-surgical ACR scores, indicating the effectiveness of this method in breast density estimation. A positive correlation is found between the estimated VBD and the diagnostic ACR score for both the CC view (p=0.033 ) and AP view (p=0.001 ). A linear regression between the results of the CC view and AP view showed a correlation coefficient γ = 0.77, which indicates the robustness of the proposed method and the quantitative character of the additional information obtained with our approach.

  18. Volumetric MRI data correlate to disease severity in metachromatic leukodystrophy

    PubMed Central

    Tillema, Jan-Mendelt; Derks, Marloes GM; Pouwels, Petra J W; de Graaf, Pim; van Rappard, Diane F; Barkhof, Frederik; Steenweg, Marjan E; van der Knaap, Marjo S; Wolf, Nicole I

    2015-01-01

    Objective Metachromatic leukodystrophy (MLD) is an inherited lysosomal disorder due to a deficiency in arylsulfatase A with progressive demyelination and neurological decline. This retrospective MRI study investigated the extent of cortical involvement at time of diagnosis, and clinical correlates to both conventional and regional volumetric measures of brain involvement. Methods 3D-T1-weighted MRI scans were used to determine cortical thickness and surface-based cerebral cortical gray matter (GM) and cerebral white matter (WM) volume (GMV and WMV), WM lesions, thalamus, and cerebellum. MRI-MLD severity scores were obtained from FLAIR images. Associations between clinical and imaging data were examined using correlation coefficients. Results Twenty patients with MLD (mean age 13.7 years, range 2–35) and 20 controls (mean age 13.9 years, range 2–40) were included. Compared with control subjects, late-infantile, and juvenile patients (n = 14) had significantly diminished cerebral cortical GMV and thalamus volume (P < 0.05), but did not differ in WMV and cortical thickness. Adult patients (n = 6) showed significantly reduced GMV, WMV and cortical thickness (all P < 0.05). Regional analysis showed statistically significant cortical thinning in the cingulate gyrus and most pronounced thinning with age in the frontal lobe of MLD patients. Intelligence quotient (IQ) correlated with MRI-MLD scores (r = −0.87, P < 0.001). Interpretation Significant cerebral cortical GMV loss is already present in early stages of MLD. IQ correlates with WM severity scores and lesion volume, but not with volumetric measures. In adult presentations, there is more pronounced global atrophy with GMV and WMV loss and accelerated cortical thinning, most prominently in the cingulate gyrus and frontal lobes. PMID:26401514

  19. Resolution and noise trade-off analysis for volumetric CT

    SciTech Connect

    Li Baojun; Avinash, Gopal B.; Hsieh, Jiang

    2007-10-15

    Until recently, most studies addressing the trade-off between spatial resolution and quantum noise were performed in the context of single-slice CT. In this study, we extend the theoretical framework of previous works to volumetric CT and further extend it by taking into account the actual shapes of the preferred reconstruction kernels. In the experimental study, we also attempt to explore a three-dimensional approach for spatial resolution measurement, as opposed to the conventional two-dimensional approaches that were widely adopted in previously published studies. By scanning a finite-sized sphere phantom, the MTF was measured from the edge profile along the spherical surface. Cases of different resolutions (and noise levels) were generated by adjusting the reconstruction kernel. To reduce bias, the total photon fluxes were matched: 120 kVp, 200 mA, and 1 s per gantry rotation. All data sets were reconstructed using a modified FDK algorithm under the same condition: Scan field-of-view (SFOV)=10 cm, and slice thickness=0.625 mm. The theoretical analysis indicated that the variance of noise is proportional to >4th power of the spatial resolution. Our experimental results supported this conclusion by showing the relationship is 4.6th (helical) or 5th (axial) power.

  20. Experimental and analytical methods for the determination of connected-pipe ramjet and ducted rocket internal performance

    NASA Astrophysics Data System (ADS)

    1994-07-01

    Connected-pipe, subsonic combustion ramjet and ducted rocket performance determination procedures used by the NATO countries have been reviewed and evaluated. A working document has been produced which provides recommended methods for reporting test results and delineates the parameters that are required to be measured. Explanations and detailed numerical examples are presented covering the determination of both theoretical and experimental performances, the use of air heaters and uncertainty and error analysis.

  1. TU-F-BRE-05: Experimental Determination of K Factor in Small Field Dosimetry

    SciTech Connect

    Das, I; Akino, Y; Francescon, P

    2014-06-15

    Purpose: Small-field dosimetry is challenging due to charged-particle disequilibrium, source occlusion and more importantly finite size of detectors. IAEA/AAPM has published approach to convert detector readings to dose by k factor. Manufacturers have been trying to provide various types of micro-detectors that could be used in small fields. However k factors depends on detector perturbations and are derived using Monte Carlo simulation. PTW has introduced a microDiamond for small-field dosimetry. An experimental approach is presented to derive the k factor for this detector. Methods: PTW microDiamond is a small volume detector with 1.1 mm radius and 1.0 micron thick synthetic diamond. Output factors were measured from 1×1cm2 to 12×12 cm2 on a Varian machine at various depths using various micro-detectors with published k factors. Dose is calculated as reading * K. Assuming k factor is accurate, output factor should be identical with every micro-detectors. Hence published k values (Francescon et al Med Phys 35, 504-513,2008) were used to covert readings and then output factors were computed. Based on the converged curve from other detectors, k factor for microDiamond was computed versus field size. Results: Traditional output factors as ratio of readings normalized to 10×10 cm2 differ significantly for micro-detectors for fields smaller than 3×3 cm2 which are now being used extensively. When readings are converted to dose, the output factor is independent of detector. Based on this method, k factor for microDiamond was estimated to be nearly constant 0.993±0.007 over varied field sizes. Conclusion: Our method provides a unique opportunity to determine the k factor for any unknown detector. It is shown that even though k factor depends on machine type due to focal spot, however for fields ≥1×1 cm2 this method provides accurate evaluation of k factor. Additionally microDiamond could be used with assumption that k factor is nearly unity.

  2. Experimental Determination of Phase Equilibria in the Silver-Copper Oxide System at High Temperature

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2007-06-01

    The phase diagram of silver-copper oxide was studied using thermal, microstructural and compositional analysis of quenched samples. The eutectic and monotectic temperature were found and compared to previous data. The miscibility gap was analyzed at higher temperatures than previous experimental work. The profile of the miscibility gap was found to extend from the monotectic composition and extend further into the copper rich portion than previously experimental work had show, which verifies a previous computational study.

  3. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  4. The experimental determination of the moments of inertia of airplanes by a simplified compound-pendulum method

    NASA Technical Reports Server (NTRS)

    Gracey, William

    1948-01-01

    A simplified compound-pendulum method for the experimental determination of the moments of inertia of airplanes about the x and y axes is described. The method is developed as a modification of the standard pendulum method reported previously in NACA report, NACA-467. A brief review of the older method is included to form a basis for discussion of the simplified method. (author)

  5. Effects of volumetric expansion in molecular crystals: A quantum mechanical investigation on aspirin and paracetamol most stable polymorphs

    NASA Astrophysics Data System (ADS)

    Adhikari, Kapil; Flurchick, Kenneth M.; Valenzano, Loredana

    2015-02-01

    This work reports a study performed at hybrid semi-empirical density functional level (B3LYP-D2*) of the physico-chemical properties of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) in their most stable crystalline forms. It is shown how effects arising from volumetric expansions influence the properties of the materials. Structural, energetic, and vibrational properties are in good agreement with experimental values reported at temperatures far from 0 K. Results show that the proposed approach is reliable enough to reproduce effects of volumetric expansion on lattice energies and other measurable physico-chemical observables related to inter-molecular forces.

  6. A comparison of 1D and 1.5D arrays for imaging volumetric flaws in small bore pipework

    NASA Astrophysics Data System (ADS)

    Barber, T. S.; Wilcox, P. D.; Nixon, A. D.

    2015-03-01

    1.5D arrays can be seen as a potentially ideal compromise between 1D arrays and 2D matrix arrays in terms of focusing capability, element density, weld coverage and data processing time. This paper presents an initial study of 1D and 1.5D arrays for high frequency (15MHz) imaging of volumetric flaws in small-bore (30-60mm outer diameter) thin-walled (3-8mm) pipework. A combination of 3D modelling and experimental work is used to determine Signal to Noise Ratio (SNR) improvement with a strong relationship between SNR and the longer dimension of element size observed. Similar behavior is demonstrated experimentally rendering a 1mm diameter Flat Bottom Hole (FBH) in Copper-Nickel alloy undetectable using a larger array element. A 3-5dB SNR increase is predicted when using a 1.5D array assuming a spherical reflector and a 2dB increase was observed on experimental trials with a FBH. It is argued that this improvement is likely to be a lower bound estimate due to the specular behavior of a FBH with future trials planned on welded samples with realistic flaws.

  7. Experimentally Determined Mechanical Properties of, and Models for, the Periodontal Ligament: Critical Review of Current Literature

    PubMed Central

    Fill, Ted S.; Carey, Jason P.; Toogood, Roger W.; Major, Paul W.

    2011-01-01

    Introduction. This review is intended to highlight and discuss discrepancies in the literature of the periodontal ligament's (PDL) mechanical properties and the various experimental approaches used to measure them. Methods. Searches were performed on biomechanical and orthodontic publications (in databases: Compendex, EMBASE, MEDLINE, PubMed, ScienceDirect, and Scopus). Results. The review revealed that significant variations exist, some on the order of six orders of magnitude, in the PDL's elastic constants and mechanical properties. Possible explanations may be attributable to different experimental approaches and assumptions. Conclusions. The discrepancies highlight the need for further research into PDL properties under various clinical and experimental loading conditions. Better understanding of the PDL's biomechanical behavior under physiologic and traumatic loading conditions might enhance the understanding of the PDL's biologic reaction in health and disease. Providing a greater insight into the response of the PDL would be instrumental to orthodontists and engineers for designing more predictable, and therefore more efficacious, orthodontic appliances. PMID:21772924

  8. Molecular cage occupancy of clathrate hydrates at infinite dilution: experimental determination and thermodynamic significance.

    PubMed

    Seol, Jiwoong; Lee, Jong-Won; Kim, Do-Youn; Takeya, Satoshi; Ripmeester, John A; Lee, Huen

    2010-01-21

    This study focuses on the cage occupancy of guest molecules in the infinitely dilute state. At the extreme conditions of highly diluted guest concentrations the direct measurements of the cage occupancy ratio representing the competitive inclusion of multiguest species appear to be so difficult because of spectroscopic intensity limitation, but its thermodynamic significance might be considerable due to the fact that the infinite-dilution value of the cage occupancy ratio can provide the valuable thermodynamic information as a very unique and guest-specific parameter. To experimentally identify gaseous guest populations in structure I (sI) and structure II (sII) cages, we used the solid-state nuclear magnetic resonance (NMR), gas chromatography, and direct gas measurements. Furthermore, we derived the simple and generalized thermodynamic equation related to cage occupancies at infinite dilution from the van der Waals-Platteeuw model. Both experimental and predicted values agree well within the experimental error range. PMID:20000371

  9. Experimental determination and thermodynamic modeling of the Ni-Re binary system

    NASA Astrophysics Data System (ADS)

    Yaqoob, Khurram; Joubert, Jean-Marc

    2012-12-01

    The phase diagram of the Ni-Re binary system has been partially reinvestigated by chemical, structural and thermal characterization of the arc melted alloys. The experimental results obtained during the present investigation were combined with the literature data and a new phase diagram of the Ni-Re binary system is proposed. In comparison with the Ni-Re phase diagram proposed by Nash et al. in 1985 [1], significant differences in the homogeneity domains, freezing ranges and peritectic reaction temperature were evidenced. On the other hand, thermodynamic modeling of the studied system by using the new experimental information has also been carried out with the help of the CALPHAD method. The calculated Ni-Re phase diagram showed a good agreement with the selected experimental information.

  10. Experimental and theoretical contributions to the determination of optical properties of synthetic paramelaconite

    SciTech Connect

    Pierson, J.F. Duverger, E.; Banakh, O.

    2007-03-15

    Paramelaconite (Cu{sub 4}O{sub 3}) is a metastable copper oxide that can be barely synthesised in 'pure' form. In this study, the reactive magnetron sputtering process was used to deposit Cu{sub 4}O{sub 3} films on silicon and glass substrates. The deposited films were characterised by X-ray diffraction (XRD), UV-visible-NIR spectroscopy and spectroscopic ellipsometry. For the first time, the refractive index and the extinction coefficient of Cu{sub 4}O{sub 3} were evaluated. The experimental values obtained from spectroscopic ellipsometry were compared to those calculated by a self-consistent approach using the Wien2k code. A very good agreement was found between the two sets of values. - Graphical abstract: Comparison between experimental (lines) and calculated (points) refractive index and extinction coefficient values. For experimental measurements, the film was deposited on silicon substrate.

  11. Volumetric properties of binary mixtures of benzene with cyano-based ionic liquids

    NASA Astrophysics Data System (ADS)

    Gonfa, Girma; Bustam, Mohamad Azmi; Moniruzzaman, Muhammad; Murugesan, Thanabalan

    2014-10-01

    The objective of this study is to investigate the volumetric properties of the binary mixtures comprised benzene and two ionic liquids, 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) and 1-butyl-3-methyl- imidazolium dicyanamide ([ BMIM ][ N ( CN )2]( . Densities (ρ) and viscosities (μ) of the binary mixtures were measured over a temperature range of 293.15 to 323.15 K and at atmospheric pressure. Excess molar volumes and viscosity deviations were calculated from the experimental densities and viscosities values. The volumetric properties of the mixtures were changed significantly with the change of compositions and temperatures. It was also found that the value of excess molar volume and viscosity deviations were negative (-ve) over the entire range of compositions. The results have been interpreted in terms of molecular interactions of ILs and benzene.

  12. Prospects for using high power x-rays as a volumetric heat source

    SciTech Connect

    Rosenberg, R.A.; Farrell, W.; Ma, Q.

    1997-09-01

    Third-generation, high-intensity, x-ray synchrotron radiation sources are capable of producing high heat-flux x-ray beams. In many applications finding ways to handle these powers is viewed as a burden. However, there are some technological applications where the deep penetration length of the x-rays may find beneficial uses as a volumetric heat source. In this paper the authors discuss the prospects for using high power x-rays for volumetric heating and report some recent experimental results. The particular applications they focus on are welding and surface heat treatment. The radiation source is an undulator at the Advanced Photon Source (APS). Results of preliminary tests on aluminum, aluminum metal matrix composites, and steel will be presented.

  13. Experimental Determination of Damage Threshold Characteristics of IR Compatible Optical Materials

    SciTech Connect

    Soong, Ken

    2011-05-20

    The accelerating gradient in a laser-driven dielectric accelerating structure is often limited by the laser damage threshold of the structure. For a given laser-driven dielectric accelerator design, we can maximize the accelerating gradient by choosing the best combination of the accelerator's constituent material and operating wavelength. We present here a model of the damage mechanism from ultrafast infrared pulses and compare that model with experimental measurements of the damage threshold of bulk silicon. Additionally, we present experimental measurements of a variety of candidate materials, thin films, and nanofabricated accelerating structures.

  14. Experimental study on determining factors of canopy interception using artificial Christmas trees

    NASA Astrophysics Data System (ADS)

    Murakami, Shigeki; Toba, Tae

    2013-04-01

    Evaporation of canopy interception (CI) is a major component of water balance in forested areas. Theoretically, the evaporation amount is dependent on the tree height, i.e. aerodynamic roughness. Nevertheless, the theory does not always explain the observed results and the observational fact that CI during rainfall is proportional to the rainfall intensity makes the problem paradoxical (Murakami, 2006). The objective of this study is to try to find the determining factors of CI in terms of the stand structure using artificial Christmas trees that is easy to modify the height and tree density. Two kinds of artificial Christmas trees were used: a) 65 cm high with the maximum canopy diameter of 30 cm, and b) 150 cm high with the greatest canopy diameter of 75 cm. We set those trees on three trays and left them outside to measure CI using natural rainfall. Artificial trees a) were set on Tray #1 and #2 measuring 178-cm-square. Artificial trees b) were fixed on Tray #3 with a size of 360-cm-square. Tray #1 was a control and the stand structure was unchanged throughout the experiment, i.e. tree height was 65 cm with 41 stems on the tray. Three experimental runs were conducted; Run #1 and #2 were to compare the effect of stem length (tree height) on CI. Run #3 was to evaluate the effect of thinning. The initial number of trees on each tray was 41 (Run #1 and #2), and it was reduced to 25 after thinning for Tray #2 and #3 (Run #3). At Run #1 tree heights of Tray #2 and #3 were 90 cm and 150 cm (original), respectively, and at Run #2 and #3 they were 120 cm and 240 cm, respectively. In Tray #1 canopy interception rate (IR, the ratio of CI to gross rainfall) was constant (12.1% to 13.3%). IR increased with tree height for each tree, i.e. a) and b). In Tray #2, i.e. tree a), IR increased from 19.7% to 22.8% after thinning, while in Tray #3, i.e. tree b), it diminished from 20.0% to 13.8%. Preliminary analysis showed that hourly CI is clearly proportional to hourly rainfall

  15. Experimental determination of neutron lifetimes through macroscopic neutron noise in the IPEN/MB-01 reactor

    SciTech Connect

    Gonnelli, Eduardo; Diniz, Ricardo

    2013-05-06

    The neutron lifetimes of the core, reflector, and global were experimentally obtained through macroscopic neutron noise in the IPEN/MB-01 reactor for five levels of subcriticality. The theoretical Auto Power Spectral Densities were derived by point kinetic equations taking the reflector effect into account, and one of the approaches consider an additional group of delayed neutrons.

  16. Random Volumetric MRI Trajectories via Genetic Algorithms

    PubMed Central

    Curtis, Andrew Thomas; Anand, Christopher Kumar

    2008-01-01

    A pseudorandom, velocity-insensitive, volumetric k-space sampling trajectory is designed for use with balanced steady-state magnetic resonance imaging. Individual arcs are designed independently and do not fit together in the way that multishot spiral, radial or echo-planar trajectories do. Previously, it was shown that second-order cone optimization problems can be defined for each arc independent of the others, that nulling of zeroth and higher moments can be encoded as constraints, and that individual arcs can be optimized in seconds. For use in steady-state imaging, sampling duty cycles are predicted to exceed 95 percent. Using such pseudorandom trajectories, aliasing caused by under-sampling manifests itself as incoherent noise. In this paper, a genetic algorithm (GA) is formulated and numerically evaluated. A large set of arcs is designed using previous methods, and the GA choses particular fit subsets of a given size, corresponding to a desired acquisition time. Numerical simulations of 1 second acquisitions show good detail and acceptable noise for large-volume imaging with 32 coils. PMID:18604305

  17. Volumetric depth peeling for medical image display

    NASA Astrophysics Data System (ADS)

    Borland, David; Clarke, John P.; Fielding, Julia R.; TaylorII, Russell M.

    2006-01-01

    Volumetric depth peeling (VDP) is an extension to volume rendering that enables display of otherwise occluded features in volume data sets. VDP decouples occlusion calculation from the volume rendering transfer function, enabling independent optimization of settings for rendering and occlusion. The algorithm is flexible enough to handle multiple regions occluding the object of interest, as well as object self-occlusion, and requires no pre-segmentation of the data set. VDP was developed as an improvement for virtual arthroscopy for the diagnosis of shoulder-joint trauma, and has been generalized for use in other simple and complex joints, and to enable non-invasive urology studies. In virtual arthroscopy, the surfaces in the joints often occlude each other, allowing limited viewpoints from which to evaluate these surfaces. In urology studies, the physician would like to position the virtual camera outside the kidney collecting system and see inside it. By rendering invisible all voxels between the observer's point of view and objects of interest, VDP enables viewing from unconstrained positions. In essence, VDP can be viewed as a technique for automatically defining an optimal data- and task-dependent clipping surface. Radiologists using VDP display have been able to perform evaluations of pathologies more easily and more rapidly than with clinical arthroscopy, standard volume rendering, or standard MRI/CT slice viewing.

  18. A hand-held immaterial volumetric display

    NASA Astrophysics Data System (ADS)

    Sand, Antti; Rakkolainen, Ismo

    2014-03-01

    We have created an ultralight, movable, "immaterial" fogscreen. It is based on the fogscreen mid-air imaging technology. The hand-held unit is roughly the size and weight of an ordinary toaster. If the screen is tracked, it can be swept in the air to create mid-air slices of volumetric objects, or to show augmented reality (AR) content on top of real objects. Interfacing devices and methodologies, such as hand and gesture trackers, camera-based trackers and object recognition, can make the screen interactive. The user can easily interact with any physical object or virtual information, as the screen is permeable. Any real objects can be seen through the screen, instead of e.g., through a video-based augmented reality screen. It creates a mixed reality setup where both the real world object and the augmented reality content can be viewed and interacted with simultaneously. The hand-held mid-air screen can be used e.g., as a novel collaborating or classroom tool for individual students or small groups.

  19. Volumetric imaging system for the ionosphere (VISION)

    NASA Astrophysics Data System (ADS)

    Dymond, Kenneth F.; Budzien, Scott A.; Nicholas, Andrew C.; Thonnard, Stefan E.; Fortna, Clyde B.

    2002-01-01

    The Volumetric Imaging System for the Ionosphere (VISION) is designed to use limb and nadir images to reconstruct the three-dimensional distribution of electrons over a 1000 km wide by 500 km high slab beneath the satellite with 10 km x 10 km x 10 km voxels. The primary goal of the VISION is to map and monitor global and mesoscale (> 10 km) electron density structures, such as the Appleton anomalies and field-aligned irregularity structures. The VISION consists of three UV limb imagers, two UV nadir imagers, a dual frequency Global Positioning System (GPS) receiver, and a coherently emitting three frequency radio beacon. The limb imagers will observe the O II 83.4 nm line (daytime electron density), O I 135.6 nm line (nighttime electron density and daytime O density), and the N2 Lyman-Birge-Hopfield (LBH) bands near 143.0 nm (daytime N2 density). The nadir imagers will observe the O I 135.6 nm line (nighttime electron density and daytime O density) and the N2 LBH bands near 143.0 nm (daytime N2 density). The GPS receiver will monitor the total electron content between the satellite containing the VISION and the GPS constellation. The three frequency radio beacon will be used with ground-based receiver chains to perform computerized radio tomography below the satellite containing the VISION. The measurements made using the two radio frequency instruments will be used to validate the VISION UV measurements.

  20. EXPERIMENTAL DETERMINATION OF CONTAMINANT METAL MOBILITY AS A FUNCTION OF TEMPERATURE, TIME, AND SOLUTION CHEMISTRY

    EPA Science Inventory

    We propose to determine the geochemical processes that control the mobility of Sr in the presence of clays (kaolinite, montmorillonite) and iron hydroxides (goethite) as a function of temperature, pH, and time. The objective of this work is to determine the fundamental data neede...

  1. Experimental method of determining the stress-strain state of bodies on the basis of the absorption of light

    SciTech Connect

    Myl`nikov, A.V.; Rudyak, Yu.A.

    1995-11-01

    Various analytical and experimental methods have been devised for determining stresses and strains in solids [1,2,4,5,6,7]. Among the experimental methods are optical methods based on the refraction and interference of light, polarization (photoelasticity), moire fringes, holographic effects, and other phenomena. All of these methods are based on changes in the index of refraction of electromagnetic waves as a result if the manifestation of optical anisotropy in loaded specimens made of special materials. They also rely on precise measurements of strains of loaded objects obtained by holographic techniques.

  2. Sensitivity of the interpretation of the experimental ion thermal diffusivity to the determination of the ion conductive heat flux

    SciTech Connect

    Stacey, W. M.

    2014-04-15

    A moments equation formalism for the interpretation of the experimental ion thermal diffusivity from experimental data is used to determine the radial ion thermal conduction flux that must be used to interpret the measured data. It is shown that the total ion energy flux must be corrected for thermal and rotational energy convection, for the work done by the flowing plasma against the pressure and viscosity, and for ion orbit loss of particles and energy, and expressions are presented for these corrections. Each of these factors is shown to have a significant effect on the interpreted ion thermal diffusivity in a representative DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] discharge.

  3. Experimental determination of single-event upset (SEU) as a function of collected charge in bipolar integrated circuits

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Malone, C. J.; Smith, L. S.

    1984-01-01

    Single-Event Upset (SEU) in bipolar integrated circuits (ICs) is caused by charge collection from ion tracks in various regions of a bipolar transistor. This paper presents experimental data which have been obtained wherein the range-energy characteristics of heavy ions (Br) have been utilized to determine the cross section for soft-error generation as a function of charge collected from single-particle tracks which penetrate a bipolar static RAM. The results of this work provide a basis for the experimental verification of circuit-simulation SEU modeling in bipolar ICs.

  4. Determination of nitrogen in coal macerals using electron microprobe technique-experimental procedure

    USGS Publications Warehouse

    Mastalerz, Maria; Gurba, L.W.

    2001-01-01

    This paper discusses nitrogen determination with the Cameca SX50 electron microprobe using PCO as an analyzing crystal. A set of conditions using differing accelerating voltages, beam currents, beam sizes, and counting times were tested to determine parameters that would give the most reliable nitrogen determination. The results suggest that, for the instrumentation used, 10 kV, current 20 nA, and a counting time of 20 s provides the most reliable nitrogen determination, with a much lower detection limit than the typical concentration of this element in coal. The study demonstrates that the electron microprobe technique can be used to determine the nitrogen content of coal macerals successfully and accurately. ?? 2001 Elsevier Science B.V. All rights reserved.

  5. Development of Mathematical Models for Detecting Micron Scale Volumetric Defects in Thin Film Coatings

    NASA Astrophysics Data System (ADS)

    Gaigals, G.; Donerblics, M.; Dreifogels, G.

    2016-04-01

    The focus of the present research is to investigate possibilities of volumetric defect detection in thin film coatings on glass substrates by means of high definition imaging with no complex optical systems, such as lenses, and to determine development and construction feasibility of a defectoscope employing the investigated methods. Numerical simulations were used to test the proposed methods. Three theoretical models providing various degrees of accuracy and feasibility were studied.

  6. Toward a Philosophy and Theory of Volumetric Nonthermal Processing.

    PubMed

    Sastry, Sudhir K

    2016-06-01

    Nonthermal processes for food preservation have been under intensive investigation for about the past quarter century, with varying degrees of success. We focus this discussion on two volumetrically acting nonthermal processes, high pressure processing (HPP) and pulsed electric fields (PEF), with emphasis on scientific understanding of each, and the research questions that need to be addressed for each to be more successful in the future. We discuss the character or "philosophy" of food preservation, with a question about the nature of the kill step(s), and the sensing challenges that need to be addressed. For HPP, key questions and needs center around whether its nonthermal effectiveness can be increased by increased pressures or pulsing, the theoretical treatment of rates of reaction as influenced by pressure, the assumption of uniform pressure distribution, and the need for (and difficulties involved in) in-situ measurement. For PEF, the questions include the rationale for pulsing, difficulties involved in continuous flow treatment chambers, the difference between electroporation theory and experimental observations, and the difficulties involved in in-situ measurement and monitoring of electric field distribution. PMID:27149642

  7. Range estimation of cetaceans with compact volumetric arrays.

    PubMed

    Zimmer, Walter M X

    2013-09-01

    Passive acoustic monitoring is the method of choice to detect whales and dolphins that are acoustically active and to monitor their underwater behavior. The NATO Science and Technology Organization Centre for Maritime Research and Experimentation has recently implemented a compact passive acoustic monitor (CPAM), consisting of three arrays of two hydrophones each that are combined in a fixed three-dimensional arrangement and that may be towed at depths of more than 100 m. With its volumetric configuration, the CPAM is capable of estimating the three-dimensional direction vector of arriving sounds and under certain conditions on relative geometry between the whale and hydrophone array, the CPAM may also estimate the range to echolocating animals. Basic ranging methods assume constant sound speed and apply straightforward geometry to obtain depth and distance to the sound source. Alternatively, ray-tracing based methods may be employed to integrate the information provided by real sound speed profiles. Both ranging methods combine measurements of sound arrival angles and surface reflection delays and are easily implemented in real-time applications, whereby one could promote the ray-tracing approach as the preferred method because it may integrate real sound speed profiles. PMID:23968058

  8. Iterative Reconstruction of Volumetric Particle Distribution for 3D Velocimetry

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard; Neal, Douglas

    2011-11-01

    A number of different volumetric flow measurement techniques exist for following the motion of illuminated particles. For experiments that have lower seeding densities, 3D-PTV uses recorded images from typically 3-4 cameras and then tracks the individual particles in space and time. This technique is effective in flows that have lower seeding densities. For flows that have a higher seeding density, tomographic PIV uses a tomographic reconstruction algorithm (e.g. MART) to reconstruct voxel intensities of the recorded volume followed by the cross-correlation of subvolumes to provide the instantaneous 3D vector fields on a regular grid. A new hybrid algorithm is presented which iteratively reconstructs the 3D-particle distribution directly using particles with certain imaging properties instead of voxels as base functions. It is shown with synthetic data that this method is capable of reconstructing densely seeded flows up to 0.05 particles per pixel (ppp) with the same or higher accuracy than 3D-PTV and tomographic PIV. Finally, this new method is validated using experimental data on a turbulent jet.

  9. A synthetic diamond diode in volumetric modulated arc therapy dosimetry

    SciTech Connect

    Zani, Margherita; Bucciolini, Marta; Casati, Marta; Talamonti, Cinzia; Marinelli, Marco; Prestopino, Giuseppe; Tonnetti, Alessia; Verona-Rinati, Gianluca

    2013-09-15

    Purpose: The aim of this work is to investigate the behavior of a single crystal diamond diode (SCDD) for volumetric modulated arc therapy (VMAT) dose verifications. This delivery technique is one of the most severe test of a dosimeter performance due to the modulation of the dose rate achieved by simultaneously changing the velocity of the gantry and the position of the collimator leaves. The performed measurements with VMAT photon beams can therefore contribute to an overall global validation of the device to be used in dose distribution verifications.Methods: The SCDD response to 6 MVRX has been tested and compared with reference ionization chambers and treatment planning system (TPS) calculations in different experiments: (a) measurements of output factors for small field sizes (square fields of side ranging between 8 mm and 104 mm) by SCDD and A1SL ionization chamber; (b) angular dependence evaluation of the entire experimental set-up by SCDD, A1SL, and Farmer ionization chambers; and (c) acquisition of dose profiles for a VMAT treatment of a pulmonary disease in latero-lateral and gantry-target directions by SCDD and A1SL ionization chamber.Results: The output factors measured by SCDD favorably compare with the ones obtained by A1SL, whose response is affected by the lack of charged particle equilibrium and by averaging effect when small fields are involved. From the experiment on angular dependence, a good agreement is observed among the diamond diode, the ion chambers, and the TPS. In VMAT profiles, the absorbed doses measured by SCDD and A1SL compare well with the TPS calculated ones. An overall better agreement is observed in the case of the diamond dosimeter, which is also showing a better accuracy in terms of distance to agreement in the high gradient regions.Conclusions: Synthetic diamond diodes, whose performance were previously studied for conformal and IMRT radiotherapy techniques, were found to be suitable detectors also for dosimetric measurements

  10. Simple determination of performance of explosives without using any experimental data.

    PubMed

    Keshavarz, Mohammad Hossein

    2005-03-17

    A simple procedure is introduced by which detonation pressure of CaHbNcOd explosives can be predicted from a, b, c, d and calculated gas phase heat of formation of explosives at any loading density without using any assumed detonation products and experimental data. It is shown here that the loading density, simply calculated heat of formation by additivity rule and atomic composition can be integrated into an empirical formula for predicting the detonation pressure of proposed explosives. Calculated detonation pressures by the introduced method for both pure and explosive formulations show good agreement with respect to measured detonation pressure over a wide range of loading density. The deviations are within about experimental errors. PMID:15752845

  11. Genome-wide experimental determination of barriers to horizontal gene transfer.

    PubMed

    Sorek, Rotem; Zhu, Yiwen; Creevey, Christopher J; Francino, M Pilar; Bork, Peer; Rubin, Edward M

    2007-11-30

    Horizontal gene transfer, in which genetic material is transferred from the genome of one organism to that of another, has been investigated in microbial species mainly through computational sequence analyses. To address the lack of experimental data, we studied the attempted movement of 246,045 genes from 79 prokaryotic genomes into Escherichia coli and identified genes that consistently fail to transfer. We studied the mechanisms underlying transfer inhibition by placing coding regions from different species under the control of inducible promoters. Our data suggest that toxicity to the host inhibited transfer regardless of the species of origin and that increased gene dosage and associated increased expression may be a predominant cause for transfer failure. Although these experimental studies examined transfer solely into E. coli, a computational analysis of gene-transfer rates across available bacterial and archaeal genomes supports that the barriers observed in our study are general across the tree of life. PMID:17947550

  12. Genome-wide experimental determination of barriers to horizontal gene transfer

    SciTech Connect

    Rubin, Edward; Sorek, Rotem; Zhu, Yiwen; Creevey, Christopher J.; Francino, M. Pilar; Bork, Peer; Rubin, Edward M.

    2007-09-24

    Horizontal gene transfer, in which genetic material is transferred from the genome of one organism to another, has been investigated in microbial species mainly through computational sequence analyses. To address the lack of experimental data, we studied the attempted movement of 246,045 genes from 79 prokaryotic genomes into E. coli and identified genes that consistently fail to transfer. We studied the mechanisms underlying transfer inhibition by placing coding regions from different species under the control of inducible promoters. Their toxicity to the host inhibited transfer regardless of the species of origin and our data suggest that increased gene dosage and associated increased expression is a predominant cause for transfer failure. While these experimental studies examined transfer solely into E. coli, a computational analysis of gene transfer rates across available bacterial and archaeal genomes indicates that the barriers observed in our study are general across the tree of life.

  13. Methods for determining the internal thrust of scramjet engine modules from experimental data

    NASA Technical Reports Server (NTRS)

    Voland, Randall T.

    1990-01-01

    Methods for calculating zero-fuel internal drag of scramjet engine modules from experimental measurements are presented. These methods include two control-volume approaches, and a pressure and skin-friction integration. The three calculation techniques are applied to experimental data taken during tests of a version of the NASA parametric scramjet. The methods agree to within seven percent of the mean value of zero-fuel internal drag even though several simplifying assumptions are made in the analysis. The mean zero-fuel internal drag coefficient for this particular engine is calculated to be 0.150. The zero-fuel internal drag coefficient when combined with the change in engine axial force with and without fuel defines the internal thrust of an engine.

  14. Experimental determination of the laminar separation bubble characteristics on an airfoil at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Omeara, M. M.; Mueller, T. J.

    1986-01-01

    An experimental investigation was conducted in order to document the structure and behavior of laminar separation bubbles at low Reynolds numbers. Data of this type is necessary if the currently insufficient analytical and numerical models are to be improved. The laminar separation bubble which forms on a NACA 66(3)-018 airfoil model was surveyed at chord Reynolds numbers ranging from 50,000 to 200,000 at angles of attack from 8 to 12 degrees. The effects of the various testing conditions on the separation bubble were isolated, and the data was analyzed in relation to existing separation bubble correlations in order to test their low Reynolds number applicability. This analysis indicated that the chord Reynolds number and the disturbance environment strongly influence the experimental pressure distributions. These effects must be included in any analytic prediction technique applied to the low Reynolds number flight regime.

  15. Experimentally determining the locations of two astigmatic images for an underwater light source

    NASA Astrophysics Data System (ADS)

    Yang, Pao-Keng; Liu, Jian-You; Ying, Shang-Ping

    2015-05-01

    Images formed by an underwater object from light rays refracted in the sagittal and tangential planes are located at different positions for an oblique viewing position. The overlapping of these two images from the observer's perspective will thus prevent the image-splitting astigmatism from being directly observable. In this work, we present a heuristic method to experimentally visualize the astigmatism. A point light source is used as an underwater object and the emerging wave front is recorded using a Shack-Hartmann wave-front sensor. The wave front is found to deform from a circular paraboloid to an elliptic paraboloid as the viewing position changes from normal to oblique. Using geometric optics, we derive an analytical expression for the image position as a function of the rotating angle of an arm used to carry the wave-front sensor in our experimental setup. The measured results are seen to be in good agreement with the theoretical predictions.

  16. An ultrasonic theoretical and experimental approach to determine thickness and wave speed in layered media.

    PubMed

    de Sousa, Ana Valéria Greco; Pereira, Wagner Coelho de Albuquerque; Machado, João Carlos

    2007-02-01

    This work presents an ultrasonic method to characterize the layers of a stratified medium, using independent measurements of wave speed and thickness of each layer. The model, based on geometrical acoustics, includes refraction. Two transducers are used: one active (3.4 MHz) and a hydrophone as a receptor, which is moved laterally through 15 positions. The distance between the transducers and the delay between the echoes, from the interfaces separating the layers, received by them are used to estimate the speed and thickness. Three types of layered phantoms were used: Ph1 made with alcohol/acrylic, Ph2 made with polyvinyl chloride/water/acrylic, and Ph3 made with acrylic/water/polyvinyl chloride. The experimental results for speed of sound and layer thickness presented an experimental mean relative error, for thickness and wave speed, lower than 7.0% and 6.6%, respectively. PMID:17328335

  17. A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy

    SciTech Connect

    Tsai, Tsung-Yuan; Lu, Tung-Wu; Chen, Chung-Ming; Kuo, Mei-Ying; Hsu, Horng-Chaung

    2010-03-15

    Purpose: Accurate measurement of the three-dimensional (3D) rigid body and surface kinematics of the natural human knee is essential for many clinical applications. Existing techniques are limited either in their accuracy or lack more realistic experimental evaluation of the measurement errors. The purposes of the study were to develop a volumetric model-based 2D to 3D registration method, called the weighted edge-matching score (WEMS) method, for measuring natural knee kinematics with single-plane fluoroscopy to determine experimentally the measurement errors and to compare its performance with that of pattern intensity (PI) and gradient difference (GD) methods. Methods: The WEMS method gives higher priority to matching of longer edges of the digitally reconstructed radiograph and fluoroscopic images. The measurement errors of the methods were evaluated based on a human cadaveric knee at 11 flexion positions. Results: The accuracy of the WEMS method was determined experimentally to be less than 0.77 mm for the in-plane translations, 3.06 mm for out-of-plane translation, and 1.13 deg. for all rotations, which is better than that of the PI and GD methods. Conclusions: A new volumetric model-based 2D to 3D registration method has been developed for measuring 3D in vivo kinematics of natural knee joints with single-plane fluoroscopy. With the equipment used in the current study, the accuracy of the WEMS method is considered acceptable for the measurement of the 3D kinematics of the natural knee in clinical applications.

  18. Volumetric breast density evaluation from ultrasound tomography images

    SciTech Connect

    Glide-Hurst, Carri K.; Duric, Neb; Littrup, Peter

    2008-09-15

    Previous ultrasound tomography work conducted by our group showed a direct correlation between measured sound speed and physical density in vitro, and increased in vivo sound speed with increasing mammographic density, a known risk factor for breast cancer. Building on these empirical results, the purpose of this work was to explore a metric to quantify breast density using our ultrasound tomography sound speed images in a manner analogous to computer-assisted mammogram segmentation for breast density analysis. Therefore, volumetric ultrasound percent density (USPD) is determined by segmenting high sound speed areas from each tomogram using a k-means clustering routine, integrating these results over the entire volume of the breast, and dividing by whole-breast volume. First, a breast phantom comprised of fat inclusions embedded in fibroglandular tissue was scanned four times with both our ultrasound tomography clinical prototype (with 4 mm spatial resolution) and CT. The coronal transmission tomograms and CT images were analyzed using semiautomatic segmentation routines, and the integrated areas of the phantom's fat inclusions were compared between the four repeated scans. The average variability for inclusion segmentation was {approx}7% and {approx}2%, respectively, and a close correlation was observed in the integrated areas between the two modalities. Next, a cohort of 93 patients was imaged, yielding volumetric coverage of the breast (45-75 sound speed tomograms/patient). The association of USPD with mammographic percent density (MPD) was evaluated using two measures: (1) qualitative, as determined by a radiologist's visual assessment using BI-RADS Criteria and (2) quantitative, via digitization and semiautomatic segmentation of craniocaudal and mediolateral oblique mammograms. A strong positive association between BI-RADS category and USPD was demonstrated [Spearman {rho}=0.69 (p<0.001)], with significant differences between all BI-RADS categories as assessed

  19. Experimental determination of turbulent buffeting effects in tube bundles: Final report

    SciTech Connect

    Johnson, J.E.; Simonis, J.C.

    1988-05-01

    Dynamic lift and drag force correlations for the first and second row of tubes of a square pitch tube array (P/D=1.44) are presented for upstream turbulence intensity and integral scale lengths. These correlations were developed from experimental testing of full scale heat exchanger tubes in water under controlled and measured turbulent flow conditions. Turbulent buffeting effects for upstream turbulence intensities up to 15% and scale lengths of /1/2/ to 1 tube diameter are discussed.

  20. Density-Dependent Demographic Variation Determines Extinction Rate of Experimental Populations

    PubMed Central

    2005-01-01

    Understanding population extinctions is a chief goal of ecological theory. While stochastic theories of population growth are commonly used to forecast extinction, models used for prediction have not been adequately tested with experimental data. In a previously published experiment, variation in available food was experimentally manipulated in 281 laboratory populations of Daphnia magna to test hypothesized effects of environmental variation on population persistence. Here, half of those data were used to select and fit a stochastic model of population growth to predict extinctions of populations in the other half. When density-dependent demographic stochasticity was detected and incorporated in simple stochastic models, rates of population extinction were accurately predicted or only slightly biased. However, when density-dependent demographic stochasticity was not accounted for, as is usual when forecasting extinction of threatened and endangered species, predicted extinction rates were severely biased. Thus, an experimental demonstration shows that reliable estimates of extinction risk may be obtained for populations in variable environments if high-quality data are available for model selection and if density-dependent demographic stochasticity is accounted for. These results suggest that further consideration of density-dependent demographic stochasticity is required if predicted extinction rates are to be relied upon for conservation planning. PMID:15934788

  1. Experimental determination and thermodynamic modeling of the Ni-Re binary system

    SciTech Connect

    Yaqoob, Khurram; Joubert, Jean-Marc

    2012-12-15

    The phase diagram of the Ni-Re binary system has been partially reinvestigated by chemical, structural and thermal characterization of the arc melted alloys. The experimental results obtained during the present investigation were combined with the literature data and a new phase diagram of the Ni-Re binary system is proposed. In comparison with the Ni-Re phase diagram proposed by Nash et al. in 1985 [1], significant differences in the homogeneity domains, freezing ranges and peritectic reaction temperature were evidenced. On the other hand, thermodynamic modeling of the studied system by using the new experimental information has also been carried out with the help of the CALPHAD method. The calculated Ni-Re phase diagram showed a good agreement with the selected experimental information. - Graphical abstract: Ni-Re phase diagram according to the present study. Highlights: Black-Right-Pointing-Pointer Re-investigation of the Ni-Re phase diagram. Black-Right-Pointing-Pointer Extended phase field of the hcp phase. Black-Right-Pointing-Pointer Different freezing ranges and peritectic reaction temperature. Black-Right-Pointing-Pointer Thermodynamic modeling of the studied system by using the CALPHAD method.

  2. Computational and experimental determinations of the UV adsorption of polyvinylsilsesquioxane-silica and titanium dioxide hybrids.

    PubMed

    Wang, Haiyan; Lin, Derong; Wang, Di; Hu, Lijiang; Huang, Yudong; Liu, Li; Loy, Douglas A

    2014-01-01

    Sunscreens that absorb UV light without photodegradation could reduce skin cancer. Polyvinyl silsesquioxanes are known to have greater thermal and photochemical stability than organic compounds, such as those in sunscreens. This paper evaluates the UV transparency of vinyl silsesquioxanes (VS) and its hybrids with SiO2(VSTE) and TiO2(VSTT) experimentally and computationally. Based on films of VS prepared by sol-gel polymerization, using benzoyl peroxide as an initiator, vinyltrimethoxysilane (VMS) formulated oligomer through thermal curing. Similarly, VSTE films were prepared from VMS and 5-25 wt-% tetraethoxysilane (TEOS) and VSTT films were prepared from VMS and 5-25 wt-% titanium tetrabutoxide (TTB). Experimental average transparencies of the modified films were found to be about 9-14% between 280-320 nm, 67-73% between 320-350nm, and 86-89% between 350-400nm. Computation of the band gap was absorption edges for the hybrids in excellent agreement with experimental data. VS, VSTE and VSTT showed good absorption in UV-C and UV-B range, but absorbed virtually no UV-A. Addition of SiO2 or TiO2 does not improve UV-B absorption, but on the opposite increases transparency of thin films to UV. This increase was validated with molecular simulations. Results show computational design can predict better sunscreens and reduce the effort of creating sunscreens that are capable of absorbing more UV-B and UV-A. PMID:24211950

  3. Determination of localization accuracy based on experimentally acquired image sets: applications to single molecule microscopy.

    PubMed

    Tahmasbi, Amir; Ward, E Sally; Ober, Raimund J

    2015-03-23

    Fluorescence microscopy is a photon-limited imaging modality that allows the study of subcellular objects and processes with high specificity. The best possible accuracy (standard deviation) with which an object of interest can be localized when imaged using a fluorescence microscope is typically calculated using the Cramér-Rao lower bound, that is, the inverse of the Fisher information. However, the current approach for the calculation of the best possible localization accuracy relies on an analytical expression for the image of the object. This can pose practical challenges since it is often difficult to find appropriate analytical models for the images of general objects. In this study, we instead develop an approach that directly uses an experimentally collected image set to calculate the best possible localization accuracy for a general subcellular object. In this approach, we fit splines, i.e. smoothly connected piecewise polynomials, to the experimentally collected image set to provide a continuous model of the object, which can then be used for the calculation of the best possible localization accuracy. Due to its practical importance, we investigate in detail the application of the proposed approach in single molecule fluorescence microscopy. In this case, the object of interest is a point source and, therefore, the acquired image set pertains to an experimental point spread function. PMID:25837101

  4. Experimental determination of series resistance of p-n junction diodes and solar cells

    NASA Technical Reports Server (NTRS)

    Chen, P. J.; Pao, S. C.; Neugroschel, A.; Lindholm, F. A.

    1978-01-01

    Various methods for determining the series resistance of p-n junction diodes and solar cells are described and compared. New methods involving the measurement of the ac admittance are shown to have certain advantages over methods proposed earlier.

  5. Experimental determination of the principal moments of inertia of the Helios prototype spacecraft

    NASA Technical Reports Server (NTRS)

    Gayman, W. H.; Liechti, K.

    1974-01-01

    The moment of inertia of the Helios Spacecraft about its spin axis was determined by use of a roll-fixture using two sets of crossed flexure pivots as elastic constraints. The test procedure entailed measurement of a system oscillation period with each of a set of added moment-of-inertia increments. The tare effect of the fixture was determined by a like process and was subtracted from the gross value to yield the spacecraft roll moment of inertia to an estimated accuracy of 0.2%. Lateral moments of inertia (i.e., about each of three axes normal to the spin axis) were determined by a gravity pendulum method that makes use of the fact that any physical pendulum has a minimum period of oscillation determined by a particular distance from the axis of rotation to the system center of gravity.

  6. Experimentally Determining the Molar Mass of Carbon Dioxide Using a Mylar Balloon.

    ERIC Educational Resources Information Center

    Jackson, Barbara Albers; Crouse, David J.

    1998-01-01

    Describes how to determine the mass of a gas in a flexible, lightweight container and argues that the buoyant force of air needs to be taken into account. Recommends the use of mylar and describes equipment preparation. (DDR)

  7. The Experimental Determination of Thermal Neutron Flux in the Radiochemistry Curriculum

    ERIC Educational Resources Information Center

    Grant, Patrick M.

    1977-01-01

    Describes an experiment for determining the thermal neutron flux of the light-water nuclear reactor at the University of California, Irvine. The difficulty of the activity can be varied to match the student's level of proficiency. (SL)

  8. Experimental determination of correlations for mean heat transfer coefficients in plate fin and tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Taler, Dawid

    2012-09-01

    This paper presents a numerical method for determining heat transfer coefficients in cross-flow heat exchangers with extended heat exchange surfaces. Coefficients in the correlations defining heat transfer on the liquid- and air-side were determined using a nonlinear regression method. Correlation coefficients were determined from the condition that the sum of squared liquid and air temperature differences at the heat exchanger outlet, obtained by measurements and those calculated, achieved minimum. Minimum of the sum of the squares was found using the Levenberg-Marquardt method. The uncertainty in estimated parameters was determined using the error propagation rule by Gauss. The outlet temperature of the liquid and air leaving the heat exchanger was calculated using the analytical model of the heat exchanger.

  9. Experimental and Monte Carlo determination of the TG-43 dosimetric parameters for the model 9011 THINSeed brachytherapy source

    SciTech Connect

    Kennedy, R. M.; Davis, S. D.; Micka, J. A.; DeWerd, L. A.

    2010-04-15

    Purpose: AAPM TG-43 brachytherapy dosimetry parameters for a new, smaller diameter {sup 125}I brachytherapy source (THINSeed, model 9011) were determined using LiF:Mg,Ti thermoluminescent dosimeter (TLD-100) microcubes and Monte Carlo simulations. Methods: Two polymethyl methacrylate phantoms were machined to hold TLD-100 microcubes at specific locations for the experimental determination of the radial dose function, dose-rate constant, and anisotropy functions of the new source. The TG-43 parameters were also calculated using Monte Carlo simulations. For comparison, the model 6711 source was also investigated. Results: Experimental results for both models 9011 and 6711 sources showed good agreement with Monte Carlo values, as well as with previously published values. Conclusions: The TG-43 parameters for the new source model are similar to those of model 6711; however, they represent two separate sources and TG-43 parameters used in treatment planning must be source specific.

  10. Determination of Young’s modulus by studying the flexural vibrations of a bar: experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Pradhan, R.; Dhara, A. K.; Panchadhyayee, P.; Syam, D.

    2016-01-01

    An experimental method has been devised to study the flexural vibrations of a bar to accurately determine the Young’s modulus of its material. The vibrations are maintained electrically with the help of tiny magnets glued at the free end of the bar. The distinctive element in the present work is the determination of higher resonant frequencies with notable accuracy along with the fundamental. The actual values of the resonant frequencies in zero magnet-mass condition are obtained from the extrapolated plots of the observed resonant frequencies versus the mass of the magnet. A theoretical model is also developed for the fundamental mode based upon which numerical results are obtained and found to be in conformity with these experimental findings.

  11. Commissioning of Volumetric Modulated Arc Therapy (VMAT)

    SciTech Connect

    Bedford, James L. Warrington, Alan P.

    2009-02-01

    Purpose: Volumetric modulated arc therapy (VMAT) involves the simultaneous use of dynamic multileaf collimator (DMLC) techniques and gantry arcing; appropriate quality assurance is therefore required. This article describes the development and implementation of procedures for commissioning VMAT on a commercial linear accelerator (Elekta PreciseBeam VMAT with MLCi and Beam Modulator heads). Materials and Methods: Tests for beam flatness and symmetry at the variable dose rates required for VMAT were performed. Multileaf collimator (MLC) calibration was investigated using dynamic prescriptions. The cumulative dose delivered by a sliding window aperture was measured and compared with calculated values. Rotational accuracy was evaluated using dynamic prescriptions which required accurate correlated motion of both gantry and MLC leaves. Finally, measured and calculated dose distributions for complete VMAT treatment plans were compared and evaluated. Results: Beam symmetry was found to be better than 3% down to dose rates of 75 MU/min. MLC calibration provided continuity of dose at match planes of better than 4%, which was comparable to interleaf leakage effects. Integrated sliding window doses were within 3% of those calculated. Tests for rotational accuracy showed uniformity of peripheral dose mostly within {+-}4% of local control point dose, or approximately {+-}0.2% of total central dose. A two-arc prostate case showed an absolute dose difference between calculations and measurements of less than 3%, with gamma (3% and 3 mm) of better than 95%. Conclusions: VMAT has been successfully commissioned and has been introduced into clinical use. The Elekta DMLC has also been shown to be suitable for sliding window delivery.

  12. Volumetric optoacoustic monitoring of endovenous laser treatments

    NASA Astrophysics Data System (ADS)

    Fehm, Thomas F.; Deán-Ben, Xosé L.; Schaur, Peter; Sroka, Ronald; Razansky, Daniel

    2016-03-01

    Chronic venous insufficiency (CVI) is one of the most common medical conditions with reported prevalence estimates as high as 30% in the adult population. Although conservative management with compression therapy may improve the symptoms associated with CVI, healing often demands invasive procedures. Besides established surgical methods like vein stripping or bypassing, endovenous laser therapy (ELT) emerged as a promising novel treatment option during the last 15 years offering multiple advantages such as less pain and faster recovery. Much of the treatment success hereby depends on monitoring of the treatment progression using clinical imaging modalities such as Doppler ultrasound. The latter however do not provide sufficient contrast, spatial resolution and three-dimensional imaging capacity which is necessary for accurate online lesion assessment during treatment. As a consequence, incidence of recanalization, lack of vessel occlusion and collateral damage remains highly variable among patients. In this study, we examined the capacity of volumetric optoacoustic tomography (VOT) for real-time monitoring of ELT using an ex-vivo ox foot model. ELT was performed on subcutaneous veins while optoacoustic signals were acquired and reconstructed in real-time and at a spatial resolution in the order of 200μm. VOT images showed spatio-temporal maps of the lesion progression, characteristics of the vessel wall, and position of the ablation fiber's tip during the pull back. It was also possible to correlate the images with the temperature elevation measured in the area adjacent to the ablation spot. We conclude that VOT is a promising tool for providing online feedback during endovenous laser therapy.

  13. Treatment planning for volumetric modulated arc therapy

    SciTech Connect

    Bedford, James L.

    2009-11-15

    Purpose: Volumetric modulated arc therapy (VMAT) is a specific type of intensity-modulated radiation therapy (IMRT) in which the gantry speed, multileaf collimator (MLC) leaf position, and dose rate vary continuously during delivery. A treatment planning system for VMAT is presented. Methods: Arc control points are created uniformly throughout one or more arcs. An iterative least-squares algorithm is used to generate a fluence profile at every control point. The control points are then grouped and all of the control points in a given group are used to approximate the fluence profiles. A direct-aperture optimization is then used to improve the solution, taking into account the allowed range of leaf motion of the MLC. Dose is calculated using a fast convolution algorithm and the motion between control points is approximated by 100 interpolated dose calculation points. The method has been applied to five cases, consisting of lung, rectum, prostate and seminal vesicles, prostate and pelvic lymph nodes, and head and neck. The resulting plans have been compared with segmental (step-and-shoot) IMRT and delivered and verified on an Elekta Synergy to ensure practicality. Results: For the lung, prostate and seminal vesicles, and rectum cases, VMAT provides a plan of similar quality to segmental IMRT but with faster delivery by up to a factor of 4. For the prostate and pelvic nodes and head-and-neck cases, the critical structure doses are reduced with VMAT, both of these cases having a longer delivery time than IMRT. The plans in general verify successfully, although the agreement between planned and measured doses is not very close for the more complex cases, particularly the head-and-neck case. Conclusions: Depending upon the emphasis in the treatment planning, VMAT provides treatment plans which are higher in quality and/or faster to deliver than IMRT. The scheme described has been successfully introduced into clinical use.

  14. Comprehensive volumetric confocal microscopy with adaptive focusing

    PubMed Central

    Kang, DongKyun; Yoo, Hongki; Jillella, Priyanka; Bouma, Brett E.; Tearney, Guillermo J.

    2011-01-01

    Comprehensive microscopy of distal esophagus could greatly improve the screening and surveillance of esophageal diseases such as Barrett’s esophagus by providing histomorphologic information over the entire region at risk. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that can be configured to image the entire distal esophagus by helically scanning the beam using optics within a balloon-centering probe. It is challenging to image the human esophagus in vivo with balloon-based SECM, however, because patient motion and anatomic tissue surface irregularities decenter the optics, making it difficult to keep the focus at a predetermined location within the tissue as the beam is scanned. In this paper, we present a SECM probe equipped with an adaptive focusing mechanism that can compensate for tissue surface irregularity and dynamic focal variation. A tilted arrangement of the objective lens is employed in the SECM probe to provide feedback signals to an adaptive focusing mechanism. The tilted configuration also allows the probe to obtain reflectance confocal data from multiple depth levels, enabling the acquisition of three-dimensional volumetric data during a single scan of the probe. A tissue phantom with a surface area of 12.6 cm2 was imaged using the new SECM probe, and 8 large-area reflectance confocal microscopy images were acquired over the depth range of 56 μm in 20 minutes. Large-area SECM images of excised swine small intestine tissue were also acquired, enabling the visualization of villous architecture, epithelium, and lamina propria. The adaptive focusing mechanism was demonstrated to enable acquisition of in-focus images even when the probe was not centered and the tissue surface was irregular. PMID:21698005

  15. Increasing the volumetric efficiency of Diesel engines by intake pipes

    NASA Technical Reports Server (NTRS)

    List, Hans

    1933-01-01

    Development of a method for calculating the volumetric efficiency of piston engines with intake pipes. Application of this method to the scavenging pumps of two-stroke-cycle engines with crankcase scavenging and to four-stroke-cycle engines. The utility of the method is demonstrated by volumetric-efficiency tests of the two-stroke-cycle engines with crankcase scavenging. Its practical application to the calculation of intake pipes is illustrated by example.

  16. Experimental verification of a computational technique for determining ground reactions in human bipedal stance.

    PubMed

    Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2007-01-01

    We have developed a three-dimensional (3D) biomechanical model of human standing that enables us to study the mechanisms of posture and balance simultaneously in various directions in space. Since the two feet are on the ground, the system defines a kinematically closed-chain which has redundancy problems that cannot be resolved using the laws of mechanics alone. We have developed a computational (optimization) technique that avoids the problems with the closed-chain formulation thus giving users of such models the ability to make predictions of joint moments, and potentially, muscle activations using more sophisticated musculoskeletal models. This paper describes the experimental verification of the computational technique that is used to estimate the ground reaction vector acting on an unconstrained foot while the other foot is attached to the ground, thus allowing human bipedal standing to be analyzed as an open-chain system. The computational approach was verified in terms of its ability to predict lower extremity joint moments derived from inverse dynamic simulations performed on data acquired from four able-bodied volunteers standing in various postures on force platforms. Sensitivity analyses performed with model simulations indicated which ground reaction force (GRF) and center of pressure (COP) components were most critical for providing better estimates of the joint moments. Overall, the joint moments predicted by the optimization approach are strongly correlated with the joint moments computed using the experimentally measured GRF and COP (0.78 < or = r(2) < or = 0.99,median,0.96) with a best-fit that was not statistically different from a straight line with unity slope (experimental=computational results) for postures of the four subjects examined. These results indicate that this model-based technique can be relied upon to predict reasonable and consistent estimates of the joint moments using the predicted GRF and COP for most standing postures. PMID

  17. Comparison of Experimental and Theoretical Determined Terahertz Attenuation in Controlled Rain

    NASA Astrophysics Data System (ADS)

    Ma, Jianjun; Vorrius, Francis; Lamb, Lucas; Moeller, Lothar; Federici, John F.

    2015-12-01

    The effects of rain attenuation on 0.1- to 1-THz frequencies are reported in this paper. The THz pulses propagate through a rain chamber over a 4-m distance and are measured by THz time-domain spectroscopy (THz-TDS). A rain chamber is designed to generate controllable and reproducible rain conditions with different intensities. Image analysis software is employed to characterize the distribution of generated raindrop sizes. Theoretical THz power attenuations due to rain are calculated using Mie scattering theory and are compared with our measurements. Results show that both experimental and theoretical results are in very good agreement with each other.

  18. Experimental determination of resonant frequencies by transient scattering from conducting spheres and cylinders

    NASA Astrophysics Data System (ADS)

    Tseng, F.-I.; Sarkar, T. K.

    1984-09-01

    A new experimental technique to measure resonant frequencies of a target is presented. A Tektronix WP 1310 waveform processing system has been employed, which features signal processing software with extensive control over instruments, waveform manipulations, and graphic display. Numerous transient waveforms scattered from spheres and cylinders of various sizes have been recorded. A recently developed data-processing technique has been described and applied to these transient waveforms to extract their resonant frequencies. With the use of a new window designed to have a low near-sidelobe level, the modified fast Fourier transform (FFT) is shown to be able to improve the measurement capability of the system.

  19. A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation

    PubMed Central

    Liu, Mao; Lu, Cheng; Tieu, Kiet Anh; Peng, Ching-Tun; Kong, Charlie

    2015-01-01

    A crystal plasticity finite element method (CPFEM) model has been developed to investigate the mechanical properties and micro-texture evolution of single-crystal aluminum induced by a sharp Berkovich indenter. The load-displacement curves, pile-up patterns and lattice rotation angles from simulation are consistent with the experimental results. The pile-up phenomenon and lattice rotation have been discussed based on the theory of crystal plasticity. In addition, a polycrystal tensile CPFEM model has been established to explore the relationship between indentation hardness and yield stress. The elastic constraint factor C is slightly larger than conventional value 3 due to the strain hardening. PMID:26464128

  20. Experimental determination of magnetohydrodynamic seawater thruster performance in a two Tesla test facility

    SciTech Connect

    Picologlou, B.; Doss, E.; Black, D.; Sikes, W.C.

    1992-09-01

    A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate MHD thruster performance computer models. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rational are discussed. finally, representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.

  1. Experimental determination of magnetohydrodynamic seawater thruster performance in a two Tesla test facility

    SciTech Connect

    Picologlou, B.; Doss, E.; Black, D. ); Sikes, W.C. )

    1992-01-01

    A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate MHD thruster performance computer models. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rational are discussed. finally, representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.

  2. Analytical and experimental procedures for determining propagation characteristics of millimeter-wave gallium arsenide microstrip lines

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1989-01-01

    In this report, a thorough analytical procedure is developed for evaluating the frequency-dependent loss characteristics and effective permittivity of microstrip lines. The technique is based on the measured reflection coefficient of microstrip resonator pairs. Experimental data, including quality factor Q, effective relative permittivity, and fringing for 50-omega lines on gallium arsenide (GaAs) from 26.5 to 40.0 GHz are presented. The effects of an imperfect open circuit, coupling losses, and loading of the resonant frequency are considered. A cosine-tapered ridge-guide text fixture is described. It was found to be well suited to the device characterization.

  3. Experimental examination of the hypothesis of local determinability in the plastic deformation of metals

    NASA Astrophysics Data System (ADS)

    Ohashi, Y.; Kurita, Y.; Suzuki, T.; Tokuda, M.

    1981-02-01

    ILYUSHIN'S general plasticity theory expressed in a vector space corresponding to the deviatoric tensor space is available in formulating precise stress-strain relations of inelastic deformations by incorporating the deformation history of metals under complex loadings. In this case, the hypothesis of local determinability proposed by L ENSKY (1960) is useful for determining the explicit form of the stress-strain relation. In the present paper, the hypothesis is discussed by using not only data obtained by an experiment in which the history effect on the succeeding deformation is clearly estimated, but also data described in previous work. As the result, the hypothesis of local determinability has been confirmed to hold with high accuracy in every case.

  4. Chaos and simple determinism in reversed field pinch plasmas: Nonlinear analysis of numerical simulation and experimental data

    SciTech Connect

    Watts, C.A.

    1993-09-01

    In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.

  5. Visualization and volumetric structures from MR images of the brain

    SciTech Connect

    Parvin, B.; Johnston, W.; Robertson, D.

    1994-03-01

    Pinta is a system for segmentation and visualization of anatomical structures obtained from serial sections reconstructed from magnetic resonance imaging. The system approaches the segmentation problem by assigning each volumetric region to an anatomical structure. This is accomplished by satisfying constraints at the pixel level, slice level, and volumetric level. Each slice is represented by an attributed graph, where nodes correspond to regions and links correspond to the relations between regions. These regions are obtained by grouping pixels based on similarity and proximity. The slice level attributed graphs are then coerced to form a volumetric attributed graph, where volumetric consistency can be verified. The main novelty of our approach is in the use of the volumetric graph to ensure consistency from symbolic representations obtained from individual slices. In this fashion, the system allows errors to be made at the slice level, yet removes them when the volumetric consistency cannot be verified. Once the segmentation is complete, the 3D surfaces of the brain can be constructed and visualized.

  6. Experimental determination of the permeability in the lacunar-canalicular porosity of bone.

    PubMed

    Gailani, Gaffar; Benalla, Mohammed; Mahamud, Rashal; Cowin, Stephen C; Cardoso, Luis

    2009-10-01

    Permeability of the mineralized bone tissue is a critical element in understanding fluid flow occurring in the lacunar-canalicular porosity (PLC) compartment of bone and its role in bone nutrition and mechanotransduction. However, the estimation of bone permeability at the tissue level is affected by the influence of the vascular porosity in macroscopic samples containing several osteons. In this communication, both analytical and experimental approaches are proposed to estimate the lacunar-canalicular permeability in a single osteon. Data from an experimental stress-relaxation test in a single osteon are used to derive the PLC permeability by curve fitting to theoretical results from a compressible transverse isotropic poroelastic model of a porous annular disk under a ramp loading history (2007, "Compressible and Incompressible Constituents in Anisotropic Poroelasticity: The Problem of Unconfined Compression of a Disk," J. Mech. Phys. Solids, 55, pp. 161-193; 2008, "The Unconfined Compression of a Poroelastic Annular Cylindrical Disk," Mech. Mater., 40(6), pp. 507-523). The PLC tissue intrinsic permeability in the radial direction of the osteon was found to be dependent on the strain rate used and within the range of O(10(-24))-O(10(-25)). The reported values of PLC permeability are in reasonable agreement with previously reported values derived using finite element analysis (FEA) and nanoindentation approaches. PMID:19831477

  7. Experimental determination of the complex stiffness tensor and Euler angles in anisotropic media using ultrasonic waves

    SciTech Connect

    Alaoui-Ismaili, N.; Guy, P.; Chassignole, B.

    2014-02-18

    The aim of this work is to measure the complex elastic tensor and Euler angles in very complex anisotropic media like austenitic steel welds, by inverse problem resolution from experimental data. The obtained experimental characteristics of the anisotropic material will be injected in a FE code developed by EDF enabling the simulation of an actual ultrasonic NDE of welds. The present work aims to provide reliable input data to the 3D future development of the code. In particular, this complex elastic tensor will allow to predict by modeling beam skewing ant attenuation in an austenitic weld. The investigation of such anisotropic media is very complex because of the directional dependency of the elastic stiffness tensor. Then we will discuss the use of a hybrid genetic algorithm to overcome this difficulty. The identification method is based on waveforms spectra reconstruction associated to a physical model describing wave propagation in plates, during underwater measurements. The entire procedure is qualified and validated using simulated data. Moreover, a comparison of the estimated elastic coefficients with literature values and ultrasonic measurements obtained in transmission is also given, at the end of the paper.

  8. Experimental determination and computational interpretation of biophysical properties of lipid bilayers enriched by cholesteryl hemisuccinate.

    PubMed

    Kulig, Waldemar; Jurkiewicz, Piotr; Olżyńska, Agnieszka; Tynkkynen, Joona; Javanainen, Matti; Manna, Moutusi; Rog, Tomasz; Hof, Martin; Vattulainen, Ilpo; Jungwirth, Pavel

    2015-02-01

    Cholesteryl hemisuccinate (CHS) is one of the cholesterol-mimicking detergents not observed in nature. It is, however, widely used in protein crystallography, in biochemical studies of proteins, and in pharmacology. Here, we performed an extensive experimental and theoretical study on the behavior of CHS in lipid membranes rich in unsaturated phospholipids. We found that the deprotonated form of CHS (that is the predominant form under physiological conditions) does not mimic cholesterol very well. The protonated form of CHS does better in this regard, but also its ability to mimic the physical effects of cholesterol on lipid membranes is limited. Overall, although ordering and condensing effects characteristic to cholesterol are present in systems containing any form of CHS, their strength is appreciably weaker compared to cholesterol. Based on the considerable amount of experimental and atomistic simulation data, we conclude that these differences originate from the fact that the ester group of CHS does not anchor it in an optimal position at the water-membrane interface. The implications of these findings for considerations of protein-cholesterol interactions are briefly discussed. PMID:25450348

  9. Experimental Determination of the Permeability in the Lacunar-Canalicular Porosity of Bone

    PubMed Central

    Gailani, Gaffar; Benalla, Mohammed; Mahamud, Rashal; Cowin, Stephen C.; Cardoso, Luis

    2010-01-01

    Permeability of the mineralized bone tissue is a critical element in understanding fluid flow occurring in the lacunar-canalicular porosity (PLC) compartment of bone and its role in bone nutrition and mechanotransduction. However, the estimation of bone permeability at the tissue level is affected by the influence of the vascular porosity (PV) in macroscopic samples containing several osteons. In this communication, both analytical and experimental approaches are proposed to estimate the lacunar-canalicular permeability in a single osteon. Data from an experimental stress-relaxation test in a single osteon is used to derive the PLC permeability by curve fitting to theoretical results from a compressible transverse isotropic poroelastic model of a porous annular disk under a ramp loading history (Cowin and Mehrabadi 2007; Gailani and Cowin 2008). The PLC tissue intrinsic permeability in the radial direction of the osteon was found to be dependent on the strain rate used and within the range of O(10−24)−O(10−25). The reported values of PLC permeability are in reasonable agreement with previously reported values derived using FEA and nanoindentation approaches. PMID:19831477

  10. Urban artificial light emission function determined experimentally using night sky images

    NASA Astrophysics Data System (ADS)

    Solano Lamphar, Héctor Antonio; Kocifaj, Miroslav

    2016-09-01

    To date, diverse approximations have been developed to interpret the radiance of a night sky due to light emissions from ground-based light sources. The radiant intensity distribution as a function of zenith angle is one of the most unknown properties because of the collective effects of all artificial, private and public lights. The emission function (EF) is, however, a key property in modeling the skyglow under arbitrary conditions, and thus it is equally required by modelers, light pollution researchers, and also experimentalists who are using specialized devices to study the diffuse light of a night sky. In this paper, we present the second generation of a dedicated measuring system intended for routine monitoring of a night sky in any region. The experimental technology we have developed is used to interpret clear sky radiance data recorded at a set of discrete distances from a town (or city) with the aim to infer the fraction of upwardly emitted light (F), that is a parameter scaling the bulk EF. The retrieval of the direct upward emissions has been improved by introducing a weighting factor that is used to eliminate imperfections of experimental data and thus to make the computation of F more stable when processing the radiance data taken at two adjacent measuring points. The field experiments made in three Mexican cities are analyzed and the differences found are discussed.

  11. Experimental determination of the complex stiffness tensor and Euler angles in anisotropic media using ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Alaoui-Ismaili, N.; Guy, P.; Chassignole, B.

    2014-02-01

    The aim of this work is to measure the complex elastic tensor and Euler angles in very complex anisotropic media like austenitic steel welds, by inverse problem resolution from experimental data. The obtained experimental characteristics of the anisotropic material will be injected in a FE code developed by EDF enabling the simulation of an actual ultrasonic NDE of welds. The present work aims to provide reliable input data to the 3D future development of the code. In particular, this complex elastic tensor will allow to predict by modeling beam skewing ant attenuation in an austenitic weld. The investigation of such anisotropic media is very complex because of the directional dependency of the elastic stiffness tensor. Then we will discuss the use of a hybrid genetic algorithm to overcome this difficulty. The identification method is based on waveforms spectra reconstruction associated to a physical model describing wave propagation in plates, during underwater measurements. The entire procedure is qualified and validated using simulated data. Moreover, a comparison of the estimated elastic coefficients with literature values and ultrasonic measurements obtained in transmission is also given, at the end of the paper.

  12. Experimentally determined rock-fluid interactions applicable to a natural hot dry rock geothermal system

    SciTech Connect

    Charles, R.W.; Holley, C.E. Jr.; Tester, J.W.; Blatz, L.A.; Grigsby, C.O.

    1980-02-01

    The Los Alamos Scientific Laboratory is pursuing laboratory and field experiments in the development of the Hot Dry Rock concept of geothermal energy. The field program consists of experiments in a hydraulically fractured region of low permeability in which hot rock is intercepted by two wellbores. These experiments are designed to test reservoir engineering parameters such as: heat extraction rates, water loss rates, flow characteristics including impedance and buoyancy, seismic activity and fluid chemistry. Laboratory experiments have been designed to provide information on the mineral reactivity which may be encountered in the field program. Two experimental circulation systems have been built to study the rates of dissolution and alteration in dynamic flow. Solubility studies have been done in agitated systems. To date, pure minerals, samples of the granodiorite from the actual reservoir and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to observations made in field experiments done in a hot dry rock reservoir at a depth of approximately 3 km with initial rock temperatures of 150 to 200/sup 0/C.

  13. Computed optical interferometric tomography for high-speed volumetric cellular imaging.

    PubMed

    Liu, Yuan-Zhi; Shemonski, Nathan D; Adie, Steven G; Ahmad, Adeel; Bower, Andrew J; Carney, P Scott; Boppart, Stephen A

    2014-09-01

    Three-dimensional high-resolution imaging methods are important for cellular-level research. Optical coherence microscopy (OCM) is a low-coherence-based interferometry technology for cellular imaging with both high axial and lateral resolution. Using a high-numerical-aperture objective, OCM normally has a shallow depth of field and requires scanning the focus through the entire region of interest to perform volumetric imaging. With a higher-numerical-aperture objective, the image quality of OCM is affected by and more sensitive to aberrations. Interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) are computed imaging techniques that overcome the depth-of-field limitation and the effect of optical aberrations in optical coherence tomography (OCT), respectively. In this work we combine OCM with ISAM and CAO to achieve high-speed volumetric cellular imaging. Experimental imaging results of ex vivo human breast tissue, ex vivo mouse brain tissue, in vitro fibroblast cells in 3D scaffolds, and in vivo human skin demonstrate the significant potential of this technique for high-speed volumetric cellular imaging. PMID:25401012

  14. Computed optical interferometric tomography for high-speed volumetric cellular imaging

    PubMed Central

    Liu, Yuan-Zhi; Shemonski, Nathan D.; Adie, Steven G.; Ahmad, Adeel; Bower, Andrew J.; Carney, P. Scott; Boppart, Stephen A.

    2014-01-01

    Three-dimensional high-resolution imaging methods are important for cellular-level research. Optical coherence microscopy (OCM) is a low-coherence-based interferometry technology for cellular imaging with both high axial and lateral resolution. Using a high-numerical-aperture objective, OCM normally has a shallow depth of field and requires scanning the focus through the entire region of interest to perform volumetric imaging. With a higher-numerical-aperture objective, the image quality of OCM is affected by and more sensitive to aberrations. Interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO) are computed imaging techniques that overcome the depth-of-field limitation and the effect of optical aberrations in optical coherence tomography (OCT), respectively. In this work we combine OCM with ISAM and CAO to achieve high-speed volumetric cellular imaging. Experimental imaging results of ex vivo human breast tissue, ex vivo mouse brain tissue, in vitro fibroblast cells in 3D scaffolds, and in vivo human skin demonstrate the significant potential of this technique for high-speed volumetric cellular imaging. PMID:25401012

  15. Bulk volumetric liquid water content in a seasonal snowpack: modeling its dynamics in different climatic conditions

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2015-12-01

    We focus on the dynamics of volumetric liquid water content in seasonal snow covers. This is a key variable describing the fate of snowpacks during the melting season. However, its measurement and/or prediction by means of models at high spatial and temporal resolutions is still difficult due to both practical and theoretical reasons. To overcome these limitations in operational applications, we test the capability of a one-dimensional model to predict the dynamics of bulk volumetric liquid water content during a snow season. Multi-year data collected in three experimental sites in Japan are used as an evaluation. These sites are subjected to different climatic conditions. The model requires the calibration of one or two parameters, according to the degree of detail used. Either a simple temperature-index or a coupled melt-freeze temperature-index approach are considered to predict melting and/or melt-freeze dynamics of liquid water. Results show that, if melt-freeze dynamics are modeled, median absolute differences between data and predictions are consistently lower than 1 vol% at the sites where data of liquid water content are available. In addition, we find also that the model predicts correctly a dry condition in 80% of the observed cases at a site where calibration data are scarce. At the same site, observed isothermal conditions of the snow cover at 0 °C correspond to predictions of bulk volumetric liquid water content that are greater than 0.

  16. Experimental determination of unknown masses and their positions in a mechanical black box

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Bhupati; Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura

    2013-07-01

    An experiment with a mechanical black box containing unknown masses is presented. The experiment involves the determination of these masses and their locations by performing some nondestructive tests. The set-ups are inexpensive and easy to fabricate. They are very useful to gain an understanding of some well-known principles of mechanics.

  17. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    ERIC Educational Resources Information Center

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  18. Experimental Determination of pK[subscript a] Values by Use of NMR Chemical Shifts, Revisited

    ERIC Educational Resources Information Center

    Gift, Alan D.; Stewart, Sarah M.; Bokashanga, Patrick Kwete

    2012-01-01

    This laboratory experiment, using proton NMR spectroscopy to determine the dissociation constant for heterocyclic bases, has been modified from a previously described experiment. A solution of a substituted pyridine is prepared using deuterium oxide (D[subscript 2]O) as the solvent. The pH of the solution is adjusted and proton NMR spectra are…

  19. Experimental Determination of Unknown Masses and Their Positions in a Mechanical Black Box

    ERIC Educational Resources Information Center

    Chakrabarti, Bhupati; Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura

    2013-01-01

    An experiment with a mechanical black box containing unknown masses is presented. The experiment involves the determination of these masses and their locations by performing some nondestructive tests. The set-ups are inexpensive and easy to fabricate. They are very useful to gain an understanding of some well-known principles of mechanics.

  20. Experimental determination of the contraction coefficient of a free jet of water

    NASA Astrophysics Data System (ADS)

    Njock Libii, Josué; Hartenstein, Matt; Torres, Javier D.

    2001-03-01

    It is shown how the diameter of the jet of water exiting a hole near the base of a cylindrical container can be determined without knowing the total drain time. The contraction coefficient can be found from two measurements of the speed of the jet - one obtained from conservation of mass and the other by using projectile motion.

  1. Experimental determination of Henry's law constants of trifluoroacetic acid at 278-298 K

    NASA Astrophysics Data System (ADS)

    Kutsuna, Shuzo; Hori, Hisao

    Equilibrium partial pressures of trifluoroacetic acid ( P C(O)OH) over aqueous trifluoroacetic acid test solutions were determined at 278.15, 288.15, and 298.15 K. The concentration of undissociated trifluoroacetic acid ( C C(O)OH) in each test solution was determined by means of attenuated total reflection IR spectroscopy and window factor analysis. From the linear relationship between P C(O)OH and C C(O)OH, the Henry's law constant of trifluoroacetic acid ( KH) at 298.15 K was determined to be 5800±700 mol dm -3 atm -1 and KH at temperature T in K was determined to be KH=5780 exp[-4120×(1/298.15-1/ T)] in mol dm -3 atm -1. The KH value at 298.15 K was 0.65 times the reported value [Bowden, D.J., Clegg, S.L., Brimblecombe, P., 1996. The Henry's law constant of trifluoroacetic acid and its partitioning into liquid water in the atmosphere. Chemosphere 32, 405-420] for p Ka=0.47 and it was equal to that for p Ka=0.2.

  2. Experimental Determination of the Mass of Air Molecules from the Law of Atmospheres.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Galvin, Vincent, Jr.

    1979-01-01

    A gas pressure gauge has been constructed for use in a student experiment involving the law of atmospheres. From pressure data obtained at selected elevations the average mass of air molecules is determined and compared to that calculated from the molecular weights and percentages of constituents to the air. (Author/BB)

  3. Volumetric measurements of the cerebrospinal fluid spaces in demented subjects and controls

    SciTech Connect

    Gado, M.; Hughes, C.P.; Danziger, W.; Chi, D.; Jost, G.; Berg, L.

    1982-08-01

    Forty-seven subjects 65 to 80 years of age, of whom 20 were demented and 27 were normal, were studied by computed tomography. Volumetric indices of ventricular (V%) and sulcal size (S%) were determined by pixel counts without knowledge of clinical status. V% was 5.30 (+/-1.92) for the controls and 10.46 (+/-4.78) for the demented subjects. S% was 6.14 (+/-2.51) for the controls and 10.61 (+/-3.32) for the demented subjects. In each case, differences between the two groups were significant (p <0.0001). When a subsample of 29 scans was analyzed using linear and volumetric measurements, the linear measurements showed less pronounced differences between the demented subjects and the controls. These findings explain the conflicting results of different investigators concerning variations in ventricular and sulcal size in dementia and normal aging.

  4. Real-Time Volumetric Phase Monitoring: Advancing Chemical Analysis by Countercurrent Separation.

    PubMed

    Pauli, Guido F; Pro, Samuel M; Chadwick, Lucas R; Burdick, Thomas; Pro, Luke; Friedl, Warren; Novak, Nick; Maltby, John; Qiu, Feng; Friesen, J Brent

    2015-07-21

    Countercurrent separation (CCS) utilizes the differential partitioning behavior of analytes between two immiscible liquid phases. We introduce the first platform ("CherryOne") capable of real-time monitoring, metering, and control of the dynamic liquid-liquid CCS process. Automated phase monitoring and volumetrics are made possible with an array of sensors, including the new permittivity-based phase metering apparatus (PMA). Volumetric data for each liquid phase are converted into a dynamic real-time display of stationary phase retention (Sf) and eluent partition coefficients (K), which represent critical parameters of CCS reproducibility. When coupled with the elution-extrusion operational mode (EECCC), automated Sf and K determination empowers untargeted and targeted applications ranging from metabolomic analysis to preparative purifications. PMID:26152934

  5. Verbal Memory Decline following DBS for Parkinson’s Disease: Structural Volumetric MRI Relationships

    PubMed Central

    Geevarghese, Ruben; Lumsden, Daniel E.; Costello, Angela; Hulse, Natasha; Ayis, Salma; Samuel, Michael; Ashkan, Keyoumars

    2016-01-01

    Background Parkinson’s disease is a chronic degenerative movement disorder. The mainstay of treatment is medical. In certain patients Deep Brain Stimulation (DBS) may be offered. However, DBS has been associated with post-operative neuropsychology changes, especially in verbal memory. Objectives Firstly, to determine if pre-surgical thalamic and hippocampal volumes were related to verbal memory changes following DBS. Secondly, to determine if clinical factors such as age, duration of symptoms or motor severity (UPDRS Part III score) were related to verbal memory changes. Methods A consecutive group of 40 patients undergoing bilateral Subthalamic Nucleus (STN)-DBS for PD were selected. Brain MRI data was acquired, pre-processed and structural volumetric data was extracted using FSL. Verbal memory test scores for pre- and post-STN-DBS surgery were recorded. Linear regression was used to investigate the relationship between score change and structural volumetric data. Results A significant relationship was demonstrated between change in List Learning test score and thalamic (left, p = 0.02) and hippocampal (left, p = 0.02 and right p = 0.03) volumes. Duration of symptoms was also associated with List Learning score change (p = 0.02 to 0.03). Conclusion Verbal memory score changes appear to have a relationship to pre-surgical MRI structural volumetric data. The findings of this study provide a basis for further research into the use of pre-surgical MRI to counsel PD patients regarding post-surgical verbal memory changes. PMID:27557088

  6. Inverse Identification of Temperature-Dependent Volumetric Heat Capacity by Neural Networks

    NASA Astrophysics Data System (ADS)

    Czél, Balázs; Woodbury, Keith A.; Gróf, Gyula

    2013-02-01

    An artificial neural network (NN)-based solution of the inverse heat conduction problem of identifying the temperature-dependent volumetric heat capacity function of a solid material is presented in this paper. The inverse problem was defined according to the evaluation of the BICOND thermophysical property measurement method. The volumetric heat capacity versus temperature function is to be determined using the measured transient temperature history of a single sensor. In this study, noiseless and noisy artificial measurements were generated by the numerical solution of the corresponding direct heat conduction problem. The inverse problem was solved by back-propagation and radial basis function type neural networks applying the whole history mapping approach. The numerical tests included the comparison of two different data representations of the network inputs (i.e., temperature vs. time and time vs. temperature) and accuracy analysis of the two network types with noiseless and noisy inputs. Based on the results presented, it can be stated that feed-forward NNs are powerful tools in a non-iterative solution of function estimation inverse heat conduction problems and they are likely to be very effective in evaluation of real measured temperature histories to determine the volumetric heat capacity as an arbitrary function of temperature.

  7. Experimental and theoretical determination of the opto-acoustic spectrum of silicon

    NASA Astrophysics Data System (ADS)

    Lawler, H. M.; Steigerwald, A.; Gregory, J.; Krzyzanowska, H.; Tolk, N. H.

    2014-04-01

    Knowledge of the photon energy-dependent photo-elastic (PE) response for a wide range of semiconductors is essential for the development of opto-electronic platforms. Coherent acoustic phonon spectroscopy provides a novel approach to measure depth-dependent optical properties in semiconductor materials with high resolution. Here we report measurements and calculations for bulk silicon in the photon energy range 1.5-3.4 eV. First-principles calculations of the PE spectra show remarkable agreement with the opto-acoustic measurements. These results show promise that this combined experimental and theoretical approach can be effective in characterizing defect induced modification in PE response as a function of depth and defect concentration.

  8. Experimental and analytical determination of gear tooth temperatures with oil jet lubrication

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Akin, L. S.

    1982-01-01

    Gear tooth average and instantaneous surface temperatures were measured with a fast response infrared radiometric microscope, while operating at arious speeds, loads and oil jet pressures. Increased oil jet pressure had a significant effect on both average and peak surface temperatures at all test conditions, increasing the speed at constant load and increasing the load at constant speed causes a significant rise in average and peak surface temperatures of gear teeth. A gear tooth temperature analysis was conducted by a finite element method combined with a calculated heat input and oil jet impingment depth with estimated heat transfer coefficients based on the experimental data. It is concluded that oil jet pressures required for adequate cooling at high load and speed conditions must be high enough to get full penetration depth of the teeth.

  9. Experimental determination of the tonal noise sources in a centrifugal fan

    NASA Astrophysics Data System (ADS)

    Velarde-Suárez, Sandra; Ballesteros-Tajadura, Rafael; Pablo Hurtado-Cruz, Juan; Santolaria-Morros, Carlos

    2006-08-01

    In this work, an experimental study about the aerodynamic tonal noise sources in a centrifugal fan with backward-curved blades has been carried out. Acoustic pressure measurements at the fan exit duct and pressure fluctuation measurements on the volute surface have been made for different flow rates. A correlation study of both pressure signals has been made in order to explain some of the features of the aerodynamic tonal noise generation. A strong source of noise caused by the interaction between the fluctuating flow leaving the impeller and the volute tongue is appreciated. The unsteady forces exerted on the fan blades constitute another noise generation mechanism, which affects the whole extension of the impeller, thus transmitting pressure fluctuations to the entire volute casing. The relative importance of this mechanism compared to the impeller-tongue interaction depends on the flow rate.

  10. Modelling and experimental determination of the replication of a cylindrical shape relief

    NASA Astrophysics Data System (ADS)

    Sahli, M.; Millot, C.; Roques-Carmes, C.; Malek, C. Khan; Gelin, J. C.

    2007-04-01

    In that paper, one uses the concepts of contact mechanics to describe the quality of reproduction of cylindrical cavity shape by hot embossing. It results in a negative replica of the initial shape. This model takes into account the deformation of the polymer material imposed by the forming process. These results point out the influence of experimental parameters (temperature, pressure) as well as those of the elastic modulus (Young's modulus and Poisson's ratio). The analytical data are compared with the metrology results obtained using a scanning mechanical microscope in two or three-dimensional mode. The set of data enables a predictive approach of the engraving quality depending on the polymer mechanical properties. The final goal is to adapt this model to the hot embossing process.

  11. Reciprocity-based experimental determination of dynamic forces and moments: A feasibility study

    NASA Technical Reports Server (NTRS)

    Ver, Istvan L.; Howe, Michael S.

    1994-01-01

    BBN Systems and Technologies has been tasked by the Georgia Tech Research Center to carry Task Assignment No. 7 for the NASA Langley Research Center to explore the feasibility of 'In-Situ Experimental Evaluation of the Source Strength of Complex Vibration Sources Utilizing Reciprocity.' The task was carried out under NASA Contract No. NAS1-19061. In flight it is not feasible to connect the vibration sources to their mounting points on the fuselage through force gauges to measure dynamic forces and moments directly. However, it is possible to measure the interior sound field or vibration response caused by these structureborne sound sources at many locations and invoke principle of reciprocity to predict the dynamic forces and moments. The work carried out in the framework of Task 7 was directed to explore the feasibility of reciprocity-based measurements of vibration forces and moments.

  12. Experimental determination of U and Th partitioning between clinopyroxene and natural and synthetic basaltic liquid

    NASA Technical Reports Server (NTRS)

    Latourrette, T. Z.; Burnett, D. S.

    1992-01-01

    Experimental measurements of U and the partition coefficients between clinopyroxene and synthetic and natural basaltic liquid are presented. The results demonstrate that crystal-liquid U-Th fractionation is fO2-dependent and that U in terrestrial magmas is not entirely tetravalent. During partial melting, the liquid will have a Th/U ratio less than the clinopyroxene in the source. The observed U-238 - Th-230 disequilibrium in MORB requires that the partial melt should have a U/Th ratio greater than the bulk source and therefore cannot result from clinopyroxene-liquid partitioning. Further, the magnitudes of the measured partition coefficients are too small to generate significant U-Th fractionation in either direction. Assuming that clinopyroxene contains the bulk of the U and Th in the MORB source, the results indicate that U-238 - Th-230 disequilibrium in MORB may not be caused by partial melting at all.

  13. Interactive Visualization of Solar Mass Ejection Imager (SMEI) Volumetric Data

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hick, P. P.; Jackson, B. V.

    2004-12-01

    We present a volume rendering system developed for the real time visualization and manipulation of 3D heliospheric volumetric solar wind density and velocity data obtained from the Solar Mass Ejection Imager (SMEI) and interplanetary scintillation (IPS) velocities over the same time period. Our system exploits the capabilities of the VolumePro 1000 board from TeraRecon, Inc., a low-cost 64-bit PCI board capable of rendering up to a 512-cubed array of volume data in real time at up to 30 frames per second on a standard PC. Many volume-rendering operations have been implemented with this system such as stereo/perspective views, animations of time-sequences, and determination of CME volumes and masses. In these visualizations we highlight two time periods where halo CMEs were observed by SMEI to engulf Earth, on May 30, 2003 and on October 29, 2003. We demonstrate how this system is used to measure the distribution of structure and provide 3D mass for individual CME features, including the ejecta associated with the large prominence viewed moving to the south of Earth following the late October CME.

  14. Normative biometrics for fetal ocular growth using volumetric MRI reconstruction

    PubMed Central

    Velasco-Annis, Clemente; Gholipour, Ali; Afacan, Onur; Prabhu, Sanjay P.; Estroff, Judy A.; Warfield, Simon K.

    2015-01-01

    Objective To determine normative ranges for fetal ocular biometrics between 19 and 38 weeks gestational age (GA) using volumetric MRI reconstruction. Method 3D images of 114 healthy fetuses between 19 and 38 weeks GA were created using super-resolution volume reconstructions from MRI slice acquisitions. These 3D images were semi-automatically segmented to measure fetal orbit volume, binocular distance (BOD), interocular distance (IOD), and ocular diameter (OD). Results All biometry correlated with GA (Volume, CC = 0.9680; BOD, CC = 0.9552; OD, CC = 0.9445; and IOD, CC = 0.8429), and growth curves were plotted against linear and quadratic growth models. Regression analysis showed quadratic models to best fit BOD, IOD and OD, and a linear model to best fit volume. Conclusion Orbital volume had the greatest correlation with GA, though BOD and OD also showed strong correlation. The normative data found in this study may be helpful for the detection of congenital fetal anomalies with more consistent measurements than are currently available. PMID:25601041

  15. Volumetric Survey Speed: A Figure of Merit for Transient Surveys

    NASA Astrophysics Data System (ADS)

    Bellm, Eric C.

    2016-08-01

    Time-domain surveys can exchange sky coverage for revisit frequency, complicating the comparison of their relative capabilities. By using different revisit intervals, a specific camera may execute surveys optimized for discovery of different classes of transient objects. We propose a new figure of merit, the instantaneous volumetric survey speed, for evaluating transient surveys. This metric defines the trade between cadence interval and snapshot survey volume and so provides a natural means of comparing survey capability. The related metric of areal survey speed imposes a constraint on the range of possible revisit times: we show that many modern time-domain surveys are limited by the amount of fresh sky available each night. We introduce the concept of “spectroscopic accessibility” and discuss its importance for transient science goals requiring followup observing. We present an extension of the control time algorithm for cases where multiple consecutive detections are required. Finally, we explore how survey speed and choice of cadence interval determine the detection rate of transients in the peak absolute magnitude–decay timescale phase space.

  16. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy - Part 1: The Araucariaceae family

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Hautevelle, Y.; Michels, R.

    2012-08-01

    Several extant species of the Araucariaceae family (one of the families of conifers) were invested for the experimental artificial maturation by confined pyrolysis, in order to realize the transformation of biomolecules to geomolecules in laboratory conditions. The experimental study of diagenetized molecular signatures of the Araucariaceae species (common, inter- and infra-generic characteristics) allow to complete our knowledge in botanical palaeochemotaxonomy. Such knowledge is relevant to the reconstitution of palaeoflora and palaeoclimatic reconstruction, archaeology and environmental studies. In this work, major carbon skeleton types of Araucariaceae are detected in the organic solvent extracts of fresh and pyrolyzed plants using gas chromatography-mass spectrometry. The results show that all species of Araucariaceae are firstly characterized by a predominance of saturated tetracyclic diterpenoids. Moreover, the Araucaria genus shows a high relative abundance of bicyclic sesquiterpenoids, particularly compounds of the cadalane-type compounds accompanied by those of eudesmane-type, bisabolane-type as well as chamazulene, pentamethyl-dihydroindenes. Diterpenoids are of the labdane-type, isopimarane, abietane-type (essentially derived from abietanoic acids) as well as isohexyl alkylaromatic hydrocarbons. Compared to the tetracyclic diterpenoids, these compounds show a relatively lower abundance, reaching trace levels in the case of saturated abietanes. Distribution of sesqui- and diterpenoids of Agathis shows some similarities to that of Araucaria, with the exception of one species, in which the tetracyclic compounds are absent and the abietane-type (essentially derived from abietanoic acids) predominant. High similarities between the Wollemia and Araucaria genera are observed. Both are characterized by some high relative abundance of tetracyclic compounds with no predominance of other specific diterpenoids.

  17. Experimental and numerical determination of the mechanical response of teeth with reinforced posts.

    PubMed

    Papadopoulos, Triantafillos; Papadogiannis, Dimitris; Mouzakis, Dionysios E; Giannadakis, Konstantinos; Papanicolaou, George

    2010-06-01

    The aim of this study was to evaluate the mechanical behavior of endodontically treated teeth restored with fiber reinforced composite posts versus titanium posts, by both experimental testing and numerical simulation (finite element analysis (FEA)). Forty maxillary central incisors were endodontically treated to a size 45 file and then obturated using gutta-percha points and sealer with the lateral condensation technique. The teeth were divided into four groups of ten teeth each. All the posts were of similar dimensions. The first group was restored using carbon fiber reinforced posts (CB), the second and third groups were restored using glass fiber reinforced posts (DP and FW, respectively), and the fourth group (control group) was restored using conventional titanium posts (PP). Half of the specimens of every group were submitted to hydrothermal cycling (2000 cycles, at 5 °C and 55 °C, respectively). All specimens were loaded until failure at a 45° angle with respect to the longitudinal axis at a cross head speed of 0.5 mm min(-1). A two-dimensional finite element model was designed in order to simulate the experimentally obtained results. Mechanical testing revealed that teeth restored with titanium posts exhibited the highest fracture strength. Debonding of the core was the main failure mode observed in glass fiber posts, whereas vertical root fractures were observed in the titanium posts. FEA revealed that the maximum stresses were developed at the interface between the post, dentin and the composite core critical regions in all three cases. Hydrothermal cycling had no significant effect on the fracture behavior of fiber reinforced composite posts. PMID:20505232

  18. Arrival time determined by vertical array: Experimental results in shallow water

    NASA Astrophysics Data System (ADS)

    Too, Gee-Pinn J.; Wang, Chih-Chung K.; Chen, Chifang; Lynch, Jim; Newhall, Arthur

    2002-11-01

    The arrival time determined by vertical array is a useful parameter to apply matched field processing (MFP) methods for source localization. In this paper, the procedure including wavelet transform for extracting the signal, adaptive filter for retrieving the signal, and wigner-vill distribution for determining the arrival time between sensors is presented. During the South China Sea ASIAEX Experiment, the 103 m deep source was towed by a ship. The data receiving system was a satellite-buoy underwater measurement system with a 16-element vertical line array. The experiment showed that the data was collected with very good quality. Results of this procedure are more efficient, and faster than earlier results based on power spectrum for MFP.

  19. Experimental determination of micromachined discrete and continuous device spring constants using nanoindentation method

    NASA Astrophysics Data System (ADS)

    Chan, M. L.; Tay, Francis E.; Logeeswaran, V. J.; Zeng, Kaiyang; Shen, Lu; Chau, Fook S.

    2002-04-01

    A rapid and accurate static and quasi-static method for determining the out-of-plane spring constraints of cantilevers and a micromachined vibratory sensor is presented. In the past, much of the effort in nanoindentation application was to investigate the thin-film mechanical properties. In this paper, we have utilized the nanoindentation method to measure directly some micromachined device (e.g. microgyroscope) spring constants. The cantilevers and devices tested were fabricated using the MUMPS process and an SOI process (patent pending). Spring constants are determined using a commercial nanoindentation apparatus UMIS-2000 configured with both Berkovich and spherical indenter tip that can be placed onto the device with high accuracy. Typical load resolution is 20micrometers N to 0.5N and a displacement resolution of 0.05nm. Information was deduced from the penetration depth versus load curves during both loading and unloading.

  20. Experimental determination of the metastable zone width of borax decahydrate by ultrasonic velocity measurement

    NASA Astrophysics Data System (ADS)

    Gürbüz, H.; Özdemir, B.

    2003-05-01

    The metastable zone width of borax decahydrate (disodium tetraborate decahydrate), represented by the maximum undercooling Δ Tmax, both in pure and impure aqueous solutions were determined according to polythermal method by using the ultrasonic technique. It is found that the metastable zone width of borax decahydrate in pure solutions determined by ultrasonic method fulfills well the linear relation between logΔ Tmax and log(-d T/d t). However, the sensitivity of the method using the ultrasonic technique increases with increasing saturation temperature, probably due to the increase of temperature dependence of solubility with increasing saturation temperature. A comparison of the nucleation temperatures from ultrasonic measurements and from visual determination shows that both detection techniques give almost the same results for borax decahydrate. The results obtained from ultrasonic measurements show, that the presence of Ca 2+ as impurity has only a small effect on the metastable zone width of borax decahydrate as long as the impurity concentrations is in the range of 25-200 ppm. Similar to the effect of Ca 2+, Mg 2+ also has a small effect on the metastable zone width of borax up to the impurity concentration of 100 ppm. However, the presence of 200 ppm Mg 2+ results in a reasonable increase of the metastable zone width.

  1. Experimentally Determined Overall Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vogel, Matt; Vonaue, Walt; Conger, Bruce; Stein, James

    2015-01-01

    A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the overall heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flow rate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.

  2. Volumetric modulated arc radiotherapy for esophageal cancer

    SciTech Connect

    Vivekanandan, Nagarajan; Sriram, Padmanaban; Syam Kumar, S.A.; Bhuvaneswari, Narayanan; Saranya, Kamalakannan

    2012-04-01

    A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V{sub 20Gy} and V{sub 30Gy} dose levels (range, 4.62-17.98%) compared with IMRT plans. The mean dose and D{sub 35%} of heart for the RA plans were better than the IMRT by 0.5-5.8%. Mean V{sub 10Gy} and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15-20 Gy) in the range of 14-16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20-25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans.

  3. Semiautomatic segmentation of liver metastases on volumetric CT images

    SciTech Connect

    Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng

    2015-11-15

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accurately delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation

  4. Estimation of Volumetric Breast Density from Digital Mammograms

    NASA Astrophysics Data System (ADS)

    Alonzo-Proulx, Olivier

    Mammographic breast density (MBD) is a strong risk factor for developing breast cancer. MBD is typically estimated by manually selecting the area occupied by the dense tissue on a mammogram. There is interest in measuring the volume of dense tissue, or volumetric breast density (VBD), as it could potentially be a stronger risk factor. This dissertation presents and validates an algorithm to measure the VBD from digital mammograms. The algorithm is based on an empirical calibration of the mammography system, supplemented by physical modeling of x-ray imaging that includes the effects of beam polychromaticity, scattered radation, anti-scatter grid and detector glare. It also includes a method to estimate the compressed breast thickness as a function of the compression force, and a method to estimate the thickness of the breast outside of the compressed region. The algorithm was tested on 26 simulated mammograms obtained from computed tomography images, themselves deformed to mimic the effects of compression. This allowed the determination of the baseline accuracy of the algorithm. The algorithm was also used on 55 087 clinical digital mammograms, which allowed for the determination of the general characteristics of VBD and breast volume, as well as their variation as a function of age and time. The algorithm was also validated against a set of 80 magnetic resonance images, and compared against the area method on 2688 images. A preliminary study comparing association of breast cancer risk with VBD and MBD was also performed, indicating that VBD is a stronger risk factor. The algorithm was found to be accurate, generating quantitative density measurements rapidly and automatically. It can be extended to any digital mammography system, provided that the compression thickness of the breast can be determined accurately.

  5. Recommended volumetric capacity definitions and protocols for accurate, standardized and unambiguous metrics for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Parilla, Philip A.; Gross, Karl; Hurst, Katherine; Gennett, Thomas

    2016-03-01

    The ultimate goal of the hydrogen economy is the development of hydrogen storage systems that meet or exceed the US DOE's goals for onboard storage in hydrogen-powered vehicles. In order to develop new materials to meet these goals, it is extremely critical to accurately, uniformly and precisely measure materials' properties relevant to the specific goals. Without this assurance, such measurements are not reliable and, therefore, do not provide a benefit toward the work at hand. In particular, capacity measurements for hydrogen storage materials must be based on valid and accurate results to ensure proper identification of promising materials for further development. Volumetric capacity determinations are becoming increasingly important for identifying promising materials, yet there exists controversy on how such determinations are made and whether such determinations are valid due to differing methodologies to count the hydrogen content. These issues are discussed herein, and we show mathematically that capacity determinations can be made rigorously and unambiguously if the constituent volumes are well defined and measurable in practice. It is widely accepted that this occurs for excess capacity determinations and we show here that this can happen for the total capacity determination. Because the adsorption volume is undefined, the absolute capacity determination remains imprecise. Furthermore, we show that there is a direct relationship between determining the respective capacities and the calibration constants used for the manometric and gravimetric techniques. Several suggested volumetric capacity figure-of-merits are defined, discussed and reporting requirements recommended. Finally, an example is provided to illustrate these protocols and concepts.

  6. Experimentally determined Si isotope fractionation between silicate and Fe metal and implications for Earth's core formation

    NASA Astrophysics Data System (ADS)

    Shahar, Anat; Ziegler, Karen; Young, Edward D.; Ricolleau, Angele; Schauble, Edwin A.; Fei, Yingwei

    2009-10-01

    Stable isotope fractionation amongst phases comprising terrestrial planets and asteroids can be used to elucidate planet-forming processes. To date, the composition of the Earth's core remains largely unknown though cosmochemical and geophysical evidence indicates that elements lighter than iron and nickel must reside there. Silicon is often cited as a light element that could explain the seismic properties of the core. The amount of silicon in the core, if any, can be deduced from the difference in 30Si/ 28Si between meteorites and terrestrial rocks if the Si isotope fractionation between silicate and Fe-rich metal is known. Recent studies (e.g., [Georg R.B., Halliday A.N., Schauble E.A., Reynolds B.C., 2007. Silicon in the Earth's core. Nature 447 (31), 1102-1106.]; [Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F., Reynolds, B. C., 2009. Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core. Earth Planet. Sci. Lett. 287, 77-85.]) showing (sometimes subtle) differences between 30Si/ 28Si in meteorites and terrestrial rocks suggest that Si missing from terrestrial rocks might be in the core. However, any conclusion based on Earth-meteorite comparisons depends on the veracity of the 30Si/ 28Si fractionation factor between silicates and metals at appropriate conditions. Here we present the first direct experimental evidence that silicon isotopes are not distributed uniformly between iron metal and rock when equilibrated at high temperatures. High-precision measurements of the silicon isotope ratios in iron-silicon alloy and silicate equilibrated at 1 GPa and 1800 °C show that Si in silicate has higher 30Si/ 28Si than Si in metal, by at least 2.0‰. These findings provide an experimental foundation for using isotope ratios of silicon as indicators of terrestrial planet formation processes. They imply that if Si isotope equilibrium existed during segregation of Earth

  7. Experimental determination of systems suitable for study as monotectic binary metallic alloy solidification models

    NASA Technical Reports Server (NTRS)

    Smith, J. E., Jr.

    1985-01-01

    Transparent binary metallic alloy solidification models are important in attempts to understand the processes causing liquid-liquid and solid-liquid phase transformations in metallic alloy systems. These models permit visual observation of the phase transformation and the processes proceding solidification. The number of these transparent monotectic binary models needs to be expanded to distinguish between the unique and general phenomena observed. The expansion of the number of accurately determined monotectic phase diagrams of model systems, and contribution to a data base for eventual use with UNIFAC group contribution methods is examined.

  8. Third-order elastic constants of diamond determined from experimental data

    NASA Astrophysics Data System (ADS)

    Winey, J. M.; Hmiel, A.; Gupta, Y. M.

    2016-06-01

    The pressure derivatives of the second-order elastic constants (SOECs) of diamond were determined by analyzing previous sound velocity measurements under hydrostatic stress [McSkimin and Andreatch, J. Appl. Phys., vol. 43, 1972, pp. 2944] [4]. Our analysis corrects an error in the previously reported results. Using the corrected pressure derivatives, together with published data for the nonlinear elastic response of shock-compressed diamond [Lang and Gupta, Phys. Rev. Lett., vol. 106, 2011, pp. 125502] [3], a complete and corrected set of third-order elastic constants (TOECs) is presented that differs significantly from TOECs published previously.

  9. Experimental determination of safe atmospheric exposure concentrations of JP-10 jet fuel. Final technical report

    SciTech Connect

    Haun, C.C.; Kinkead, E.R.; Vernot, E.H.; MacEwen, J.D.; Bruner, R.H.

    1985-11-01

    Four animal species were exposed for 1 year to 100 ppm (556 cu mg/m) JP-10 to determine its long-term toxic and oncogenic effects. Rats, mice, and hamsters were maintained for 1 year poste posure, while dogs were held for 5 years post exposure. Mean body weights of exposed hamsters and make rats were lower than controls during exposure. Weight recovery occurred in hamsters, but not in male rats during post exposure phase of the study. Significant JP-10 exposure-related effects were renal tubular nephrosis together with an increase in benign and malignant renal-cell tumors in male rats.

  10. Experimental Determination of Linear Dynamics of Two-Spool Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Novik, David; Heppler, Herbert

    1954-01-01

    Transfer functions descriptive of the response of most engine variables were determined from transient data that were obtained from approximate step inputs in fuel flow and in exhaust-nozzle area. The speed responses of both spools to fuel flow and to turbine-inlet temperature appeared as identical first-order lags. Response to exhaust-nozzle area was characterized by a first-order lag response of the outer-spool speed, accompanied by virtually no change in inner-spool speed.

  11. Evaluation of experimental methods for determining dynamic stiffness and damping of composite materials

    NASA Technical Reports Server (NTRS)

    Bert, C. W.; Clary, R. R.

    1974-01-01

    Various methods potentially usable for determining dynamic stiffness and damping of composite materials are reviewed. Of these, the following most widely used techniques are singled out for more detailed discussion: free vibration, pulse propagation, and forced vibration response. To illustrate the usefulness and validity of dynamic property data, their application in dynamic analyses and comparison with measured structural response are described for the following composite-material structures: free-free sandwich beam with glass-epoxy facings, clamped-edge sandwich plate with similar facings, free-end sandwich conical shell with similar facings, and boron-epoxy free plate with layers arranged at various orientations.

  12. Chromium basalts - Experimental determination of redox states and partitioning among synthetic silicate phases

    NASA Technical Reports Server (NTRS)

    Schreiber, H. D.; Haskin, L. A.

    1976-01-01

    Experiments were performed on silicate compositions in the forsterite-anorthite-silica and forsterite-anorthite-diopside systems to determine the relative amounts of Cr(II), Cr(III), and Cr(VI) over a wide range of oxygen partial pressures from 10 to the -10th to 1 atm at 1500 and 1550 C. Redox states were measured by visible absorption spectroscopy and electron paramagnetic resonance spectroscopy and titration. It was found that Cr is present almost exclusively as Cr(III) in terrestrial basaltic liquids and as a mixture of Cr(III) and Cr(II) in lunar basaltic liquids.

  13. Experimental program to determine long term characteristics of the MDE pressure transducers

    NASA Technical Reports Server (NTRS)

    Parker, C. D.

    1973-01-01

    The pressure cell sensors developed for the Pioneer 10/G meteoroid detection experiments (MDE) were investigated to enhance their application and their potential as a sensor in other MDE applications. Their Paschen characteristics were also investigated, and the effects of variations in geometry, Ni-63 platings (for initial ionizations) and sealing pressures were determined. The effects of extensive pre-flight testing and proton and heavy ion space radiation were investigated. Flight-quality pressure panels/cells were committed to long term testing to demonstrate their suitability for the Pioneer 10/G Missions.

  14. Experimental determination of frequency response function estimates for flexible joint industrial manipulators with serial kinematics

    NASA Astrophysics Data System (ADS)

    Saupe, Florian; Knoblach, Andreas

    2015-02-01

    Two different approaches for the determination of frequency response functions (FRFs) are used for the non-parametric closed loop identification of a flexible joint industrial manipulator with serial kinematics. The two applied experiment designs are based on low power multisine and high power chirp excitations. The main challenge is to eliminate disturbances of the FRF estimates caused by the numerous nonlinearities of the robot. For the experiment design based on chirp excitations, a simple iterative procedure is proposed which allows exploiting the good crest factor of chirp signals in a closed loop setup. An interesting synergy of the two approaches, beyond validation purposes, is pointed out.

  15. Experimental determination of the Fermi surface of Sr3Ir4Sn13

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoye; Goh, Swee K.; Tompsett, David A.; Yu, Wing Chi; Klintberg, Lina; Friedemann, Sven; Tan, Hong'En; Yang, Jinhu; Chen, Bin; Imai, M.; Yoshimura, Kazuyoshi; Gamza, Monika B.; Grosche, F. Malte; Sutherland, Michael L.

    2016-06-01

    The stannide family of materials A3T4 Sn13 (A =La ,Sr ,Ca ; T =Ir ,Rh ) is interesting due to the interplay between a tunable lattice instability and phonon-mediated superconductivity with Tc˜5 -7 K . In Sr3Ir4Sn13, a structural transition temperature T˜147 K associated with this instability has been reported, which is believed to result from a superlattice distortion of the high-temperature phase on cooling. Here we report an experimental study of the electronic structure of a member of this material family, Sr3Ir4Sn13, through measurements of quantum oscillations and comparison with density functional theory calculations. Our measurements reveal good agreement with theory using the lattice parameters consistent with a body-centered-cubic lattice of symmetry I 4 ¯3 d of the low-temperature phase. The study of the fermiology of Sr3Ir4Sn13 that we present here should help inform models of multiband superconductivity in the superconducting stannides.

  16. Experimental manipulation of seed shadows of an Afrotropical tree determines drivers of recruitment.

    PubMed

    Poulsen, John R; Clark, Connie J; Bolker, Benjamin M

    2012-03-01

    The loss of animals in tropical forests may alter seed dispersal patterns and reduce seedling recruitment of tree species, but direct experimental evidence is scarce. We manipulated dispersal patterns of Manilkara mabokeensis, a monkey-dispersed tree, to assess the extent to which spatial distributions of seeds drive seedling recruitment. Based on the natural seed shadow, we created seed distributions with seeds deposited under the canopy ("no dispersal"), with declining density from the tree ("natural dispersal"), and at uniform densities ("good dispersal"). These distributions mimicked dispersal patterns that could occur with the extirpation of monkeys, low levels of hunting, and high rates of seed dispersal. We monitored seedling emergence and survival for 18 months and recorded the number of leaves and damage to leaves. "Good dispersal" increased seedling survival by 26%, and "no dispersal" decreased survival by 78%, relative to "natural dispersal." Using a mixed-effects survival model, we decoupled the distance and density components of the seed shadow: seedling survival depended on the seed density, but not on the distance from the tree. Although community seedling diversity tended to decrease with longer dispersal distances, we found no conclusive evidence that patterns of seed dispersal influence the diversity of the seedling community. Local seed dispersal does affect seedling recruitment and survival, with better dispersal resulting in higher seedling recruitment; hence the loss of dispersal services that comes with the reduction or extirpation of seed dispersers will decrease regeneration of some tree species. PMID:22624205

  17. Highly precise experimental device for determining the heat capacity of liquids under pressure.

    PubMed

    González-Salgado, D; Valencia, J L; Troncoso, J; Carballo, E; Peleteiro, J; Romaní, L; Bessières, D

    2007-05-01

    An experimental device for making isobaric heat capacity measurements of liquids under pressure is presented. The device is an adaptation of the Setaram micro-DSC II atmospheric-pressure microcalorimeter, including modifications of vessels and a pressure line allowing the pressure in the measurement system to be set, controlled, and stabilized. The high sensitivity of the apparatus combined with a suitable calibration procedure allows very accurate heat capacity measurements under pressure to be made. The relative uncertainty in the isobaric molar heat capacity measurements provided by the new device is estimated to be 0.08% at atmospheric pressure and 0.2% at higher levels. The device was validated from isobaric molar heat capacity measurements for hexane, nonane, decane, undecane, dodecane, and tridecane, all of which were highly consistent with reported data. It also possesses a high sensitivity as reflected in its response to changes in excess isobaric molar heat capacity with pressure, which were examined in this work for the first time by making heat capacity measurements throughout the composition range of the 1-hexanol+n-hexane system. Finally, preliminary measurements at several pressures near the critical conditions for the nitromethane+2-butanol binary system were made that testify to the usefulness of the proposed device for studying critical phenomena in liquids under pressure. PMID:17552856

  18. SMA actuators for vibration control and experimental determination of model parameters dependent on ambient airflow velocity

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.

    2016-05-01

    This article demonstrates the practical applicability of a method of modelling shape memory alloys (SMAs) as actuators. For this study, a pair of SMA wires was installed in an antagonistic manner to form an actuator, and a linear differential equation that describes the behaviour of the actuator’s generated force relative to its input voltage was derived for the limited range below the austenite onset temperature. In this range, hysteresis need not be considered, and the proposed SMA actuator can therefore be practically applied in linear control systems, which is significant because large deformations accompanied by hysteresis do not necessarily occur in most vibration control cases. When specific values of the parameters used in the differential equation were identified experimentally, it became clear that one of the parameters was dependent on ambient airflow velocity. The values of this dependent parameter were obtained using an additional SMA wire as a sensor. In these experiments, while the airflow distribution around the SMA wires was varied by changing the rotational speed of the fans in the wind tunnels, an input voltage was conveyed to the SMA actuator circuit, and the generated force was measured. In this way, the parameter dependent on airflow velocity was estimated in real time, and it was validated that the calculated force was consistent with the measured one.

  19. Experimental and computational determination of the hydrodynamics of mini vessel dissolution testing systems.

    PubMed

    Wang, Bing; Armenante, Piero M

    2016-08-20

    Mini vessel dissolution testing systems consist of a small-scale 100-mL vessel with a small paddle impeller, similar to the USP Apparatus 2, and are typically utilized when only small amounts of drug product are available during drug development. Despite their common industrial use, mini vessels have received little attention in the literature. Here, Computational Fluid Dynamics (CFD) was used to predict velocity profiles, flow patterns, and strain rate distribution in a mini vessel at different agitation speeds. These results were compared with experimental velocity measurements obtained with Particle Image Velocimetry (PIV). Substantial agreement was observed between CFD results and PIV data. The flow is strongly dominated by the tangential velocity component. Secondary flows consist of vertical upper and lower recirculation loops above and below the impeller. A low recirculation zone was observed in the lower part of the vessel. The radial and axial velocities in the region just below the impeller are very small especially in the innermost core zone below the paddle, where tablet dissolution occurs. Increasing agitation speed reduces the radius of this zone, which is always present at any speed, and only modestly increases the tangential flow intensity, with significant implication for dissolution testing in mini vessels. PMID:27317988

  20. Determination of DNA damage in experimental liver intoxication and role of N-acetyl cysteine.

    PubMed

    Aksit, Hasan; Bildik, Aysegül

    2014-11-01

    The present study aimed at detecting DNA damage and fragmentation as well as histone acetylation depending on oxidative stress caused by CCl4 intoxication. Also, the protective role of N-acetyl cysteine, a precursor for GSH, in DNA damage is investigated. Sixty rats were used in this study. In order to induce liver toxicity, CCl4 in was dissolved in olive oil (1/1) and injected intraperitoneally as a single dose (2 ml/kg). N-acetyl cysteine application (intraperitoneal, 50 mg/kg/day) was started 3 days prior to CCl4 injection and continued during the experimental period. Control groups were given olive oil and N-acetyl cysteine. After 6 and 72 h of CCl4 injection, blood and liver tissue were taken under ether anesthesia. Nuclear extracts were prepared from liver. Changes in serum AST and ALT activities as well as MDA, TAS, and TOS levels showed that CCl4 caused lipid peroxidation and liver damage. However, lipid peroxidation and liver damage were reduced in the N-acetyl cysteine group. Increased levels in 8-hydroxy-2-deoxy guanosine and histone acetyltransferase activities, decreased histone deacetylase activities, and DNA breakage detected in nuclear extracts showed that CCl4 intoxication induces oxidative stress and apoptosis in rat liver. The results of the present study indicate that N-acetyl cysteine has a protective effect on CCl4-induced DNA damage. PMID:24819310

  1. Determination of effective miRNAs in wound healing in an experimental Rat Model.

    PubMed

    Coskunpinar, E; Arkan, H; Dedeoglu, B G; Aksoz, I; Polat, E; Araz, T; Aydos, A; Oztemur, Y; Akbas, F; Onaran, I

    2015-01-01

    The larvae of Lucilia sericata have been used for centuries as medicinal maggots in the healing of wounds. The present study aimed to screen potential microRNAs related to ES-induced wound healing in rat skin wounds and to investigate the potential mechanisms contributing to accelerated wound healing. Healthy, male, 12 weeks old Wistar albino rats weighing 250-300 g were supplied by the Animal Experimental Center. All animal studies were performed in accordance with the NIH Guide for the Care and Use of Laboratory Animals. Wistar albino rats were treated by ES after post wounding and the differentially expressed miRNAs in wound biopsies were screened by microarray analysis at the end of treatments for 4,7 and 10 days. In addition, bioinformatics approaches were used to identify the potential target genes of differentially expressed miRNAs and the functions of their target genes. We found a significant up-regulation of rno-miR-99a* and rno-mir-877 in response to ES treatment. Further investigation of rno-miR-99a* and rno-mir-877 and their target genes (TGFa, TNF, TAGLN, MAPK1, MMP-9) implicated in present study could provide new insight for an understanding lead to the development of new treatment strategies. The identified miRNAs can be new biomarkers for ES- induced wound healing. PMID:26718435

  2. Experimental determination of the linear biphasic constitutive coefficients of human fetal proximal femoral chondroepiphysis.

    PubMed

    Brown, T D; Singerman, R J

    1986-01-01

    The mechanical properties of the cartilaginous regions of the proximal femoral epiphysis are an important factor in load transmission through the hip joint of young children. Cylindrical test specimens excised from the chondroepiphysis of human stillborn femoral heads were subjected to uniaxial loading in peripherally-unconfined compression, using a ramp/plateau input strain history. The corresponding load vs time curves were analyzed in terms of a recent analytical solution for a linear biphasic material (the well-known KLM model), allowing calculation of that model's three fundamental constitutive coefficients (permeability, equilibrium modulus and solid-phase Poisson ratio) for this material. The numerical algorithm developed to evaluate the biphasic solution yielded very precise replication of previously published KLM parametric plots. When fitted to experimental load histories, however, the model provided only a rather loose approximation of specimen behavior, due apparently to a substantial underestimation of the transient response component associated with interstitial fluid transport. Averaged over the series, the best-fit values for permeability (2.51 X 10(-15) m4 Ns-1) and equilibrium modulus (0.699 MPa) were in the range of values accepted for human adult articular cartilage. A consequence of the coarseness of the analytical curve fits was that a solid-phase Poisson ratio of 0.0 was inferred for all specimens. The permeability vs equilibrium modulus exhibited a nearly linear (r = 0.74) inverse relationship similar to that reported for adult articular cartilage. PMID:3771582

  3. Problems in the experimental determination of substrate-specific H+/O ratios during respiration.

    PubMed

    Hendler, R W; Shrager, R I

    1987-10-01

    Krab et al. (1984) have recently tried to resolve the long-standing controversy as to whether the mechanistic H+/O coupling ratio for electrons passing through sites II and III of the mammalian electron transport chain to O2 is 6 or 8. Using a mathematical model they concluded that the higher number reported by Costa et al. (1984) was an overestimate because of the unaccounted for delayed response of the O2 electrode. Responding to criticisms of Lehninger et al. (1985), they have recently used (Krab and Wikström, 1986) an improved mathematical model which shows that the higher number found by Costa et al. was probably due to an inadequate accounting for the effects of the proton leak process which accompanies the translocation process. The impression is left that the situation is now resolved in favor of the lower number. We agree that the procedures of Costa et al. do not properly account for the leak process, and provide further evidence in this paper of the magnitude of the problem. However, we disagree that the number 6.0, favored by Wikström et al., rests on any more solid experimental support. We provide evidence here for this conclusion and raise the question as to whether or not any unique, fixed, integral number exists for the H+/O ratio accompanying the oxidation of a particular substrate. PMID:2826412

  4. REVIEW: A review of in vivo experimental methods to determine the composition of the human body

    NASA Astrophysics Data System (ADS)

    Sutcliffe, J. F.

    1996-05-01

    This review of experimental methods employed in the measurement of the composition of the human body covers the developments that have occurred over the past 30 years. Early methods such as hydrodensitometry and skinfold anthropometry have been superseded by dual-energy x-ray absorptiometry and bioelectrical impedance spectroscopy. The measurement of the whole-body abundance of certain elements by isotopic dilution, neutron activation analysis and x-ray fluorescence can give important information of clinical significance, but neutron activation facilities remain available in only a few centres worldwide. The relatively simple, rapid and risk-free electrical methods such as multifrequency bioelectrical impedance analysis, which can be employed at the bedside, have been found to be more complicated in their interpretation. Electromagnetic methods may only measure the composition of the human body at its surface. X-ray computed tomography and magnetic resonance imaging have not yet been employed much in body composition measurements. Some models for the composition of the human body are reviewed.

  5. Experimental determination of thermal turbulence effects on a propagating laser beam

    NASA Astrophysics Data System (ADS)

    Ndlovu, Sphumelele C.; Chetty, Naven

    2015-08-01

    The effect of turbulence on propagating laser beams has been a subject of interest since the evolution of lasers back in 1959. In this work, an inexpensive and reliable technique for producing interferograms using a point diffraction interferometer (PDI) was considered to experimentally study the turbulence effects on a laser beam propagating through air. The formed interferograms from a propagating beamwere observed and digitally processed to study the strength of atmospheric turbulence. This technique was found to be sensitive enough to detect changes in applied temperature with distance between the simulated turbulence and laser path. These preliminary findings indicated that we can use a PDI method to detect and localise atmospheric turbulence parameters. Such parameters are very important for use in the military (defence laser weapons) and this is vital for South Africa (SA) since it has natural resources, is involved in peace keeping and mediation for other countries, and hence must have a strong defence system that will be able to locate, detect and destroy incoming missiles and other threatening atmospheric systems in order to protect its environment and avoid the initiation of countermeasures on its land.

  6. Assessment of Magnetostatic Interaction Effects on Thellier Paleointensity Determination by Experimental Simulations

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Zhao, X.

    2009-05-01

    The ability to control magnetic interactions between grains is of fundamental importance in paleointensity studies. We continued to perform experimental simulations to help understand the effect of magnetostatic interaction on Thellier type paleointensity experiments, using artificial synthesized magnetite grains mixed with both pseudo-single domain (PSD) and multidomain (MD) particles. Magnetite powders were mixed either with an Aron ceramic or were dispersed in matrix of Seto porcelain clay. The effects of interaction between grains can be observed from the magnetic behavior of specimens with different inter-grain distances. The maximum effect of domain's interaction can be estimated by comparing the behavior of specimens with large inter-grain distance (i.e., mostly dispersed-grains) with that of ideal non-interacting SD grains. Our results clearly show that (1) the interaction between grains (rather than domain's interaction) has particular disastrous effects on the Thellier-Coe paleointensity experiment; (2) interaction of large inter- grain distance samples adds an almost negative constant value to the applied external field (i.e., acting as an internal demagnetizing field); (3) interaction in shorter inter-grain distance samples mainly generates the difference in blocking and unblocking temperatures of the sample. Detailed results will be presented and discussed at the meeting.

  7. Diaplectic Glass Content in Experimentally Shock-loaded Quartz Determined by X-Ray Powder Diffraction

    NASA Technical Reports Server (NTRS)

    Skala, R.; Hoerz, F.; Langenhorst, F.

    2003-01-01

    Quartz is the most common mineral of terrestrial crustal rocks and thus a widespread indicator for impact cratering and associated shock metamorphism. Planar deformation features (PDFs) are among the most prominent and diagnostic shock features in quartz and they represent thin lamellae of glass that formed via solid-state transformations. This socalled 'diaplectic' glass becomes pervasive at higher pressures and results in optically isotropic and X-ray-amorphous phases that resemble texturally the original quartz grains (without evidence of melt flow). In the past, it has been shown that the amount of this amorphous material in experimentally shock-loaded quartz correlates with peak shock pressure. Both reports derive the glass content from density measurements of individual crystals employing the equation X(%) = (rho(sub x) - rho(sub 0))/(rho(sub x) - rho(sub gl)), where x and 0 stands for X-ray and average (optical) density, respectively. The density of glass, rho(sub gl), was adopted as 2.2 g/cu cm. Though the same procedures had been applied, the resulting glass content differs significantly among the above studies. In the present study, we are using a new approach based solely on the integral intensity of a single, carefully selected reflection in the XRD pattern, and we will compare our data to those reported in the literature.

  8. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins

    PubMed Central

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements. PMID:21087992

  9. Experimental test of instability enhanced collisional friction for determining ion loss in two ion species plasmas

    SciTech Connect

    Hershkowitz, N.; Yip, C.-S.; Severn, G. D.

    2011-05-15

    Recent experiments have shown that ions in weakly collisional plasmas containing two ion species of comparable densities approximately reach a common velocity at the sheath edge equal to the bulk plasma ion sound velocity. A recent theory [S. D. Baalrud, C. C. Hegna, and J. D. Callen, Phys. Rev. Lett. 103, 205002 (2009)] suggests that this is a consequence of collisional friction between the two ion species enhanced by the two stream instability. The theory finds that the difference in velocities at the sheath edge depends on the relative concentrations of the two ions. The difference in velocities is small, with both species approaching to the bulk sound velocity, when the concentrations are comparable, and is large, with each species reaching its own Bohm velocity, when the relative concentration differences are large. To test these findings, drift velocities of Ar and Xe ions were measured with laser-induced fluorescence in Ar-Xe and He-Xe plasmas and combined with ion acoustic wave and plasma potential data. In addition, electron temperature was varied by a Maxwell demon [K. R. MacKenzie et al., App. Phys. Lett. 18, 529 (1971)]. The predictions were found to be in excellent agreement with the experimental data. The generalized Bohm criterion in two ion species plasmas is also verified in a wider variety of relative ion concentrations.

  10. Determining Host Metabolic Limitations on Viral Replication via Integrated Modeling and Experimental Perturbation

    PubMed Central

    Birch, Elsa W.; Ruggero, Nicholas A.; Covert, Markus W.

    2012-01-01

    Viral replication relies on host metabolic machinery and precursors to produce large numbers of progeny - often very rapidly. A fundamental example is the infection of Escherichia coli by bacteriophage T7. The resource draw imposed by viral replication represents a significant and complex perturbation to the extensive and interconnected network of host metabolic pathways. To better understand this system, we have integrated a set of structured ordinary differential equations quantifying T7 replication and an E. coli flux balance analysis metabolic model. Further, we present here an integrated simulation algorithm enforcing mutual constraint by the models across the entire duration of phage replication. This method enables quantitative dynamic prediction of virion production given only specification of host nutritional environment, and predictions compare favorably to experimental measurements of phage replication in multiple environments. The level of detail of our computational predictions facilitates exploration of the dynamic changes in host metabolic fluxes that result from viral resource consumption, as well as analysis of the limiting processes dictating maximum viral progeny production. For example, although it is commonly assumed that viral infection dynamics are predominantly limited by the amount of protein synthesis machinery in the host, our results suggest that in many cases metabolic limitation is at least as strict. Taken together, these results emphasize the importance of considering viral infections in the context of host metabolism. PMID:23093930

  11. Experimental and Analytical Determination of the Geometric Far Field for Round Jets

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James E.; Brown, Clifford E.; Khavaran, Abbas

    2005-01-01

    An investigation was conducted at the NASA Glenn Research Center using a set of three round jets operating under unheated subsonic conditions to address the question: "How close is too close?" Although sound sources are distributed at various distances throughout a jet plume downstream of the nozzle exit, at great distances from the nozzle the sound will appear to emanate from a point and the inverse-square law can be properly applied. Examination of normalized sound spectra at different distances from a jet, from experiments and from computational tools, established the required minimum distance for valid far-field measurements of the sound from subsonic round jets. Experimental data were acquired in the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center. The WIND computer program solved the Reynolds-Averaged Navier-Stokes equations for aerodynamic computations; the MGBK jet-noise prediction computer code was used to predict the sound pressure levels. Results from both the experiments and the analytical exercises indicated that while the shortest measurement arc (with radius approximately 8 nozzle diameters) was already in the geometric far field for high-frequency sound (Strouhal number >5), low-frequency sound (Strouhal number <0.2) reached the geometric far field at a measurement radius of at least 50 nozzle diameters because of its extended source distribution.

  12. Experimental determination of the spinel-garnet boundary in a Martian mantle composition

    NASA Technical Reports Server (NTRS)

    Patera, E. S.; Holloway, J. R.

    1982-01-01

    The high pressure reaction orthopyroxene + clinopyroxene + spinel to garnet + olivine is applicable to the mantle of Mars. Experimental reversals of this reaction in the system CaO-MgO-FeO-Al2O3-SiO2 have been made in the range 1000-1200 C using the bulk composition proposed by Morgan and Anders (1980). At 1000 C, 1100 C, and 1200 C the garnet-out equilibrium is bracketed at 10.8 + or - 0.5, 12.6 + or - 0.5, and 15.2 + or - 0.5 kbars, respectively. A dP/dT slope of 14.0 bar/K at 1000 C increasing to 26.0 bar/K at 1200 C has been inferred. Depending on bulk composition, the mantle of Mars is inferred to have a phase assemblage of either olivine + clinopyroxene + orthopyroxene + garnet or olivine + clinopyroxene + garnet + spinel. In the second, the partial melts will not be buffered by olivine and orthopyroxene and will have markedly lower silica activities than those of the terrestrial mantle.

  13. Experimental determination of the temperature-dependent penetration depth in V/sub 3/Si

    SciTech Connect

    Christen, D.K.; Kerchner, H.R.; Sekula, S.T.; Chang, Y.K.

    1984-03-01

    Small angle neutron diffraction from the flux-line lattice (FLL) in a high quality, single crystal of superconducting V/sub 3/Si has been used to deduce the low-field penetration depth lambda (T). An absolute determination is possible because the FLL form factor F/sub hk/ is essentially single-valued in the scattering vector magnitude absolute value of K/sub hk/, as well as nearly London-like at low field. We obtain lambda (0) = 102 +- 1 nm, 20% to 30% larger than previous determinations of the London penetration depth lambda/sub L/ (0). The temperature dependence of lambda (T) is found to deviate from that of the BCS theory. An assessment of the data indicates the most prominent source of the discrepancy is due to strong electron-phonon coupling, and we find 2..delta..(0)/k/sub B/T/sub c/ = 3.88 +- 0.07, in reasonable agreement with values found in the literature.

  14. Experimental determination of the performance of a four-way diffuser with variable area

    SciTech Connect

    Kenyon, A.E.; Kirkpatrick, A.T.

    1998-10-01

    This paper examines how effectively a room air diffuser with a variable outlet area can produce a constant throw with varying flow rate. The diffuser for this study is a four-way diffuser with hinged surfaces providing a variable outlet area on two of its sides. The throws were measured downstream of one of the two fixed area outlets. Throw measurements for five fixed outlet areas were used to determine the outlet area variation with flow rate necessary for constant throw performance. These results were compared with the outlet area variation from measurements with a known spring restoring force on the surfaces to determine the variation of the restoring force needed for a constant throw. In order to provide this restoring force, a lever arm/counterweight mechanism was installed in the diffuser, and the diffuser throw performance was evaluated. In a given flow rate range (75 cfm to 160 cfm) the throw from the lever arm/counterweight diffuser was found to remain more constant than the stationary area or vertical spring throws.

  15. Simultaneous HPLC determination of 22 components of essential oils; method robustness with experimental design.

    PubMed

    Porel, A; Sanyal, Y; Kundu, A

    2014-01-01

    The aim of the present study was the development and validation of a simple, precise and specific reversed phase HPLC method for the simultaneous determination of 22 components present in different essential oils namely cinnamon bark oil, caraway oil and cardamom fruit oil. The chromatographic separation of all the components was achieved on Wakosil-II C18 column with mixture of 30 mM ammonium acetate buffer (pH 4.7), methanol and acetonitrile in different ratio as mobile phase in a ternary linear gradient mode. The calibration graphs plotted with five different concentrations of each component were linear with a regression coefficient R(2) >0.999. The limit of detection and limit of quantitation were estimated for all the components. Effect on analytical responses by small and deliberate variation of critical factors was examined by robustness testing with Design of Experiment employing Central Composite Design and established that this method was robust. The method was then validated for linearity, precision, accuracy, specificity and demonstrated to be applicable to the determination of the ingredients in commercial sample of essential oil. PMID:24799735

  16. A new bioseed for determination of wastewater biodegradability: analysis of the experimental procedure.

    PubMed

    Ballesteros Martín, M M; Esteban García, B; Ortega-Gómez, E; Sánchez Pérez, J A

    2014-01-01

    A new bioassay proposed in the patent P201300029 was applied to a pre-treated wastewater containing a mixture of commercial pesticides to simulate a recalcitrant industrial wastewater in order to determine its biodegradability. The test uses a mixture of standardized inoculum of the lyophilized bacteria Pseudomonas putida with the proper proportion of salts and minerals. The results highlight that biodegradation efficiency can be calculated using a gross parameter (chemical oxygen demand (COD)) which facilitates the biodegradability determination for routine water biodegradability analysis. The same trend was observed throughout the assay with the dehydrated and fresh inoculums, and only a difference of 5% in biodegradation efficiency (E f) was observed. The obtained results showed that the P. putida biodegradability assay can be used as a commercial test with a lyophilized inoculum in order to monitor the ready biodegradability of an organic pollutant or a WWTP influent. Moreover, a combination of the BOD5/COD ratio and the P. putida biodegradability test is an attractive alternative in order to evaluate the biodegradability enhancement in water pre-treated with advanced oxidation processes (AOPs). PMID:24136578

  17. Experimental determination of radiated internal wave power without pressure field data

    SciTech Connect

    Lee, Frank M.; Morrison, P. J.; Paoletti, M. S.; Swinney, Harry L.

    2014-04-15

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ψ. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  18. Experimental design of membrane sensor for selective determination of phenazopyridine hydrochloride based on computational calculations.

    PubMed

    Attia, Khalid A M; El-Abasawi, Nasr M; Abdel-Azim, Ahmed H

    2016-04-01

    Computational study has been done electronically and geometrically to select the most suitable ionophore to design a novel sensitive and selective electrochemical sensor for phenazopyridine hydrochloride (PAP). This study has revealed that sodium tetraphenylbarate (NaTPB) fits better with PAP than potassium tetrakis (KTClPB). The sensor design is based on the ion pair of PAP with NaTPB using dioctyl phthalate as a plasticizer. Under optimum conditions, the proposed sensor shows the slope of 59.5 mV per concentration decade in the concentration range of 1.0 × 10(-2)-1.0 × 10(-5) M with detection limit 8.5 × 10(-6) M. The sensor exhibits a very good selectivity for PAP with respect to a large number of interfering species as inorganic cations and sugars. The sensor enables track of determining PAP in the presence of its oxidative degradation product 2, 3, 6-Triaminopyridine, which is also its toxic metabolite. The proposed sensor has been successfully applied for the selective determination of PAP in pharmaceutical formulation. Also, the obtained results have been statistically compared to a reported electrochemical method indicating no significant difference between the investigated method and the reported one with respect to accuracy and precision. PMID:26838908

  19. Theoretical and experimental determination of the crystal structures of cesium–molybdenum chloride

    NASA Astrophysics Data System (ADS)

    Saito, Norio; Wada, Yoshiki; Lemoine, Pierric; Cordier, Stéphane; Grasset, Fabien; Ohsawa, Takeo; Saito, Noriko; Cross, Jeffrey S.; Ohashi, Naoki

    2016-07-01

    We herein report the structure-property relationships of the octahedral molybdenum metal cluster compound, Cs2[Mo6Cl14]. Using purified samples, we attempted to determine if Cs2[Mo6Cl14] possesses crystalline polarity. Heat treatment was performed prior to characterization to remove impurities, as X-ray powder diffraction and Fourier transformation infrared spectroscopy studies suggested the unit cell of Cs2[Mo6Cl14] expanded with the insertion of water molecules and/or hydroxyl moieties. Geometry optimization and total energy calculations by density functional theory calculations were conducted to determine whether Cs2[Mo6Cl14] crystallizes in centrosymmetric (P\\bar{3}1c) or non-centrosymmetric (P31c) space groups. Furthermore, the results of the optical studies, along with the absence of a second harmonic generation, and the observation of a strong third harmonic generation, supported the hypothesis that inversion symmetry exists in the Cs2[Mo6Cl14] lattice. The space group of Cs2[Mo6Cl14] was therefore identified as P\\bar{3}1c symmetry.

  20. Simultaneous HPLC Determination of 22 Components of Essential Oils; Method Robustness with Experimental Design

    PubMed Central

    Porel, A.; Sanyal, Y.; Kundu, A.

    2014-01-01

    The aim of the present study was the development and validation of a simple, precise and specific reversed phase HPLC method for the simultaneous determination of 22 components present in different essential oils namely cinnamon bark oil, caraway oil and cardamom fruit oil. The chromatographic separation of all the components was achieved on Wakosil–II C18 column with mixture of 30 mM ammonium acetate buffer (pH 4.7), methanol and acetonitrile in different ratio as mobile phase in a ternary linear gradient mode. The calibration graphs plotted with five different concentrations of each component were linear with a regression coefficient R2 >0.999. The limit of detection and limit of quantitation were estimated for all the components. Effect on analytical responses by small and deliberate variation of critical factors was examined by robustness testing with Design of Experiment employing Central Composite Design and established that this method was robust. The method was then validated for linearity, precision, accuracy, specificity and demonstrated to be applicable to the determination of the ingredients in commercial sample of essential oil. PMID:24799735

  1. Experimental studies for determining human discomfort response to vertical sinusoidal vibration

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Leatherwood, J. D.

    1975-01-01

    A study was conducted to investigate several problems related to methodology and design of experiments to obtain human comfort response to vertical sinusoidal vibration. Specifically, the studies were directed to the determination of (1) the adequacy of frequency averaging of vibration data to obtain discomfort predictors, (2) the effect of practice on subject ratings, (3) the effect of the demographic factors of age, sex, and weight, and (4) the relative importance of seat and floor vibrations in the determination of measurement and criteria specification location. Results indicate that accurate prediction of discomfort requires knowledge of both the acceleration level and frequency content of the vibration stimuli. More importantly, the prediction of discomfort was shown to be equally good based upon either floor accelerations or seat accelerations. Furthermore, it was demonstrated that the discomfort levels in different seats resulting from similar vibratory imputs were equal. Therefore, it was recommended that criteria specifications and acceleration measurements be made at the floor location. The results also indicated that practice did not systematically influence discomfort responses nor did the demographic factors of age, weight, and sex contribute to the discomfort response variation.

  2. Determining Experimental Parameters for Thermal-Mechanical Forming Simulation considering Martensite Formation in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Schmid, Philipp; Liewald, Mathias

    2011-08-01

    The forming behavior of metastable austenitic stainless steel is mainly dominated by the temperature-dependent TRIP effect (transformation induced plasticity). Of course, the high dependency of material properties on the temperature level during forming means the temperature must be considered during the FE analysis. The strain-induced formation of α'-martensite from austenite can be represented by using finite element programs utilizing suitable models such as the Haensel-model. This paper discusses the determination of parameters for a completely thermal-mechanical forming simulation in LS-DYNA based on the material model of Haensel. The measurement of the martensite evolution in non-isothermal tensile tests was performed with metastable austenitic stainless steel EN 1.4301 at different rolling directions between 0° and 90 °. This allows an estimation of the influence of the rolling direction to the martensite formation. Of specific importance is the accuracy of the martensite content measured by magnetic induction methods (Feritscope). The observation of different factors, such as stress dependence of the magnetisation, blank thickness and numerous calibration curves discloses a substantial important influence on the parameter determination for the material models. The parameters obtained for use of Haensel model and temperature-dependent friction coefficients are used to simulate forming process of a real component and to validate its implementation in the commercial code LS-DYNA.

  3. Abiotic constraints eclipse biotic resistance in determining invasibility along experimental vernal pool gradients.

    PubMed

    Gerhardt, Fritz; Collinge, Sharon K

    2007-04-01

    Effective management of invasive species requires that we understand the mechanisms determining community invasibility. Successful invaders must tolerate abiotic conditions and overcome resistance from native species in invaded habitats. Biotic resistance to invasions may reflect the diversity, abundance, or identity of species in a community. Few studies, however, have examined the relative importance of abiotic and biotic factors determining community invasibility. In a greenhouse experiment, we simulated the abiotic and biotic gradients typically found in vernal pools to better understand their impacts on invasibility. Specifically, we invaded plant communities differing in richness, identity, and abundance of native plants (the "plant neighborhood") and depth of inundation to measure their effects on growth, reproduction, and survival of five exotic plant species. Inundation reduced growth, reproduction, and survival of the five exotic species more than did plant neighborhood. Inundation reduced survival of three species and growth and reproduction of all five species. Neighboring plants reduced growth and reproduction of three species but generally did not affect survival. Brassica rapa, Centaurea solstitialis, and Vicia villosa all suffered high mortality due to inundation but were generally unaffected by neighboring plants. In contrast, Hordeum marinum and Lolium multiflorum, whose survival was unaffected by inundation, were more impacted by neighboring plants. However, the four measures describing plant neighborhood differed in their effects. Neighbor abundance impacted growth and reproduction more than did neighbor richness or identity, with growth and reproduction generally decreasing with increasing density and mass of neighbors. Collectively, these results suggest that abiotic constraints play the dominant role in determining invasibility along vernal pool and similar gradients. By reducing survival, abiotic constraints allow only species with the

  4. Determining appropriate imaging parameters for kilovoltage intrafraction monitoring: an experimental phantom study

    NASA Astrophysics Data System (ADS)

    Wallace, D.; Ng, J. A.; Keall, P. J.; O'Brien, R. T.; Poulsen, P. R.; Juneja, P.; Booth, J. T.

    2015-06-01

    Kilovoltage intrafraction monitoring (KIM) utilises the kV imager during treatment for real-time tracking of prostate fiducial markers. However, its effectiveness relies on sufficient image quality for the fiducial tracking task. To guide the performance characterisation of KIM under different clinically relevant conditions, the effect of different kV parameters and patient size on image quality, and quantification of MV scatter from the patient to the kV detector panel were investigated in this study. Image quality was determined for a range of kV acquisition frame rates, kV exposure, MV dose rates and patient sizes. Two methods were used to determine image quality; the ratio of kV signal through the patient to the MV scatter from the patient incident on the kilovoltage detector, and the signal-to-noise ratio (SNR). The effect of patient size and frame rate on MV scatter was evaluated in a homogeneous CIRS pelvis phantom and marker segmentation was determined utilising the Rando phantom with embedded markers. MV scatter incident on the detector was shown to be dependent on patient thickness and frame rate. The segmentation code was shown to be successful for all frame rates above 3 Hz for the Rando phantom corresponding to a kV to MV ratio of 0.16 and an SNR of 1.67. For a maximum patient dimension less than 36.4 cm the conservative kV parameters of 5 Hz at 1 mAs can be used to reduce dose while retaining image quality, where the current baseline kV parameters of 10 Hz at 1 mAs is shown to be adequate for marker segmentation up to a patient dimension of 40 cm. In conclusion, the MV scatter component of image quality noise for KIM has been quantified. For most prostate patients, use of KIM with 10 Hz imaging at 1 mAs is adequate however image quality can be maintained and imaging dose reduced by altering existing acquisition parameters.

  5. Determining appropriate imaging parameters for kilovoltage intrafraction monitoring: an experimental phantom study.

    PubMed

    Wallace, D; Ng, J A; Keall, P J; O'Brien, R T; Poulsen, P R; Juneja, P; Booth, J T

    2015-06-21

    Kilovoltage intrafraction monitoring (KIM) utilises the kV imager during treatment for real-time tracking of prostate fiducial markers. However, its effectiveness relies on sufficient image quality for the fiducial tracking task. To guide the performance characterisation of KIM under different clinically relevant conditions, the effect of different kV parameters and patient size on image quality, and quantification of MV scatter from the patient to the kV detector panel were investigated in this study. Image quality was determined for a range of kV acquisition frame rates, kV exposure, MV dose rates and patient sizes. Two methods were used to determine image quality; the ratio of kV signal through the patient to the MV scatter from the patient incident on the kilovoltage detector, and the signal-to-noise ratio (SNR). The effect of patient size and frame rate on MV scatter was evaluated in a homogeneous CIRS pelvis phantom and marker segmentation was determined utilising the Rando phantom with embedded markers. MV scatter incident on the detector was shown to be dependent on patient thickness and frame rate. The segmentation code was shown to be successful for all frame rates above 3 Hz for the Rando phantom corresponding to a kV to MV ratio of 0.16 and an SNR of 1.67. For a maximum patient dimension less than 36.4 cm the conservative kV parameters of 5 Hz at 1 mAs can be used to reduce dose while retaining image quality, where the current baseline kV parameters of 10 Hz at 1 mAs is shown to be adequate for marker segmentation up to a patient dimension of 40 cm. In conclusion, the MV scatter component of image quality noise for KIM has been quantified. For most prostate patients, use of KIM with 10 Hz imaging at 1 mAs is adequate however image quality can be maintained and imaging dose reduced by altering existing acquisition parameters. PMID:26057776

  6. Experimental determination of quantum-well lifetime effect on large-signal resonant tunneling diode switching time

    NASA Astrophysics Data System (ADS)

    Growden, Tyler A.; Brown, E. R.; Zhang, Weidong; Droopad, Ravi; Berger, Paul R.

    2015-10-01

    An experimental determination is presented of the effect the quantum-well lifetime has on a large-signal resonant tunneling diode (RTD) switching time. Traditional vertical In0.53Ga0.47As/AlAs RTDs were grown, fabricated, and characterized. The switching time was measured with a high-speed oscilloscope and found to be close to the sum of the calculated RC-limited 10%-90% switching time and the quantum-well quasibound-state lifetime. This method displays experimental evidence that the two intrinsic resonant-tunneling characteristic times act independently, and that the quasibound-state lifetime then serves as a quantum-limit on the large-signal speed of RTDs.

  7. Experimental determination of quantum-well lifetime effect on large-signal resonant tunneling diode switching time

    SciTech Connect

    Growden, Tyler A.; Berger, Paul R.; Brown, E. R.; Zhang, Weidong; Droopad, Ravi

    2015-10-12

    An experimental determination is presented of the effect the quantum-well lifetime has on a large-signal resonant tunneling diode (RTD) switching time. Traditional vertical In{sub 0.53}Ga{sub 0.47}As/AlAs RTDs were grown, fabricated, and characterized. The switching time was measured with a high-speed oscilloscope and found to be close to the sum of the calculated RC-limited 10%–90% switching time and the quantum-well quasibound-state lifetime. This method displays experimental evidence that the two intrinsic resonant-tunneling characteristic times act independently, and that the quasibound-state lifetime then serves as a quantum-limit on the large-signal speed of RTDs.

  8. Experimental Determination of the Electrostatic Nature of Carbonyl Hydrogen-Bonding Interactions Using IR-NMR Correlations.

    PubMed

    Kashid, Somnath M; Bagchi, Sayan

    2014-09-18

    Hydrogen-bonding plays a fundamental role in the structure, function, and dynamics of various chemical and biological systems. Understanding the physical nature of interactions and the role of electrostatics in hydrogen-bonding has been the focus of several theoretical and computational research. We present an experimental approach involving IR-(13)C NMR correlations to determine the electrostatic nature of carbonyl hydrogen-bonding interactions. This report provides a direct experimental evidence of the classical nature of hydrogen-bonding interaction in carbonyls, independent of any theoretical approximation. These results have important implications in chemistry and biology and can be applied to probe the reaction mechanisms involving carbonyl activation/stabilization by hydrogen bonds using spectroscopic techniques. PMID:26276334

  9. Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose

  10. Experimental Determination of the Energy Consumed by Magmatic Fragmentation and Implication for Conduit Dynamics

    NASA Astrophysics Data System (ADS)

    Alatorre-Ibarguengoitia, M. A.; Dingwell, D. B.

    2008-12-01

    Magmatic fragmentation during explosive eruptions consumes a significant amount of mechanical energy in the generation of new surface area. This leads to a reduction in the energy that can be converted into kinetic energy driving the ejection of the pyroclasts. Models of fragmentation to date have largely neglected the energy balance involved in the magmatic fragmentation. This is understandable as the mechanical energy consumed during magma fragmentation is not known and it is not possible to measure it directly during volcanic explosions. New insights may however be achieved from rapid decompression experiments using natural volcanic samples in the fragmentation bomb apparatus. We performed a number of fragmentation experiments with natural samples at high temperature (850 C) at different pressures and measured the maximum ejection speed of the resulting particles. Then we collected the fragmented particles and repeated the experiments at the same pressures. The speeds observed in the fragmentation experiments are systematically lower than the ones with pre-fragmented particles due to the energy consumed during fragmentation. This energy is not constant but depends on the minimum pressure required to completely fragment the samples (fragmentation threshold) which is inversely related to the porosity of the sample. Therefore, the effective pressure driving the gas-pyroclasts mixture corresponds to the gas pressure minus the fragmentation threshold. This generality should be taken into account in theoretical models. As an application we present a 1-D model of the ejection speed of a caprock driven by the expansion of a gas-pyroclast mixture. The calculated speeds are consistent with the experimental results and can be applied in the calculation of the maximum range of ballistic projectiles to improve hazard assessment.

  11. Deformation Mechanisms of Antigorite Serpentinite at Subduction Zone Conditions Determined from Experimentally and Naturally Deformed Rocks

    NASA Astrophysics Data System (ADS)

    Auzende, A. L.; Escartin, J.; Walte, N.; Guillot, S.; Hirth, G.; Frost, D. J.

    2014-12-01

    The rheology of serpentinite, and particularly that of antigorite-bearing rocks, is of prime importance for understanding subduction zone proceses, including decoupling between the downwelling slab and the overriding plate, exhumation of high-pressure rocks, fluids pathways and, more generally, mantle wedge dynamics. We present results from deformation-DIA experiments on antigorite serpentinite performed under conditions relevant of subduction zones (1-3.5 GPa ; 400-650°C). We complemented our study with a sample deformed in a Griggs-type apparatus at 1 GPa and 400°C (Chernak and Hirth, EPSL, 2010), and with natural samples from Cuba and the Alps deformed under blueschist/eclogitic conditions. Our observations on experimental samples of antigorite deformed within its stability field show that deformation is dominated by cataclastic flow; we can only document a minor contribution of plastic deformation. In naturally deformed samples, deformation-related plastic structures largely dominate strain accommodation, but we also document a minor contribution of brittle deformation. When dehydration occurs in experiments, plasticity increases, and is coupled to local embrittlement attributed to hydraulic fracturating due to the migration of dehydration fluids. Our results thus show that semibrittle deformation operates within and above the stability field of antigorite. We also document that the corrugated structure of antigorite has a control on the strain accommodation mechanisms under subduction conditions, with preferred inter and intra-cracking along (001) and gliding along both a and b. Deformation dominated by brittle processes, as observed in experiments, may occur during deformation at elevated (seismic?) strain rates, while plastic deformation, as observed in naturally deformed rocks, may correspond instead to low strain rates instead (aseismic creep?). We also discuss the role of antigorite rheology and mode of deformation on fluid transport.

  12. Experimental determination of the regional deposition of aerosol particles in the human respiratory tract

    SciTech Connect

    Stahlhofen, W.; Gebhart, J.; Heyder, J.

    1980-06-01

    The experimental techniques and the results of inhalation studies with radioaerosols on normal non-smokers for mouth-breathing are described and discussed. Monodisperse iron oxide particles tagged with /sup 198/Au are produced with a spinning top generator in the aerodynamic size range between 1 to 10 ..mu..m. An aerosol inhalation apparatus enables the subjects to breathe under standardized conditions with respect to tidal volume and breathing frequency. The calculation of total deposition is based upon measurements of the number of in- and exhaled particles per breath by means of photometric methods and pneumotachography. The retention of the radioactive particles present in the body after aerosol administration is measured with a body counter designed and constructed for these experiments. Retention measurements as functions of time after inhalation are carried out in extrathoracic-, chest- and stomach-position. The body counter consists of four shielded NaF(Tl)-dectors. Characteristic feature of the body counter is its low sensitivity to neighboring organs and to neighboring regions within the respiratory tract. For the evaluation of extrathoracic deposition, the activity measured in the stomach immediately after inhalation is added to extrathoracic activity. The elimination of material from the chest is found to be much slower for the material deposited in the alveolar region than for the amount deposited in the tracheobronchial tree. This allows the intrathoracic deposition to be divided into tracheolbronchial and alveolar deposition by means of the different slopes of the normalized chest retention function. Different normalized chest retention functions are presented and analyzed with respect to their different elimination rats belonging to the tracheobronchial and alveolar region. Total, tracheobronchial, alveolar and extrathoracic deposition data are reported in the aerodynamic diameter range between 1 and 10 ..mu..m.

  13. Theoretical principles of experimental methods for determining the thermal diffusivity of soils

    NASA Astrophysics Data System (ADS)

    Mikayilov, F. D.; Shein, E. V.

    2010-05-01

    Mathematical models for predicting the heat transfer in soils are used for the management of the soil thermal conditions; the development of different soil constructions; the analysis of the thermal effects related to the loosening or compaction of the surface soil layers, the sanding of peat, and the application of friable mulching materials; and the description of many other phenomena and processes. The experimental support of the development and functioning of these models is provided by the function of thermal diffusivity, which describes the thermal diffusivity as a function of the water content and can be derived using the methods based on the solution of direct and inverse problems of heat transfer. On the basis of the different boundary conditions and sine-shaped daily and annual temperature cycles, a number of equations were proposed for calculating the thermal diffusivity that contained logarithms, arctangents of amplitudes, and the phase shift between the daily temperatures at two depths. A mean-integral solution was obtained for the estimation of the average temperature in a specific soil layer. A number of methods were developed starting from the analysis of the temperature dynamics on the basis of four daily observations at the same depth with 6-hour intervals, and nomograms were given for the rapid and simple calculation of the soil thermal diffusivity at a specific depth. The developed methods can be used for assessing the soil thermal diffusivity under natural conditions, which should improve the reliability, accuracy, and adequacy and expand the application range of predictive mathematical models for the thermal regime of soils.

  14. Experimental determination of barium isotope fractionation during diffusion and adsorption processes at low temperatures

    NASA Astrophysics Data System (ADS)

    van Zuilen, Kirsten; Müller, Thomas; Nägler, Thomas F.; Dietzel, Martin; Küsters, Tim

    2016-08-01

    Variations in barium (Ba) stable isotope abundances measured in low and high temperature environments have recently received increasing attention. The actual processes controlling Ba isotope fractionation, however, remain mostly elusive. In this study, we present the first experimental approach to quantify the contribution of diffusion and adsorption on mass-dependent Ba isotope fractionation during transport of aqueous Ba2+ ions through a porous medium. Experiments have been carried out in which a BaCl2 solution of known isotopic composition diffused through u-shaped glass tubes filled with silica hydrogel at 10 °C and 25 °C for up to 201 days. The diffused Ba was highly fractionated by up to -2.15‰ in δ137/134Ba, despite the low relative difference in atomic mass. The time-dependent isotope fractionation can be successfully reproduced by a diffusive transport model accounting for mass-dependent differences in the effective diffusivities of the Ba isotope species (D137Ba /D134Ba =(m134 /m137) β). Values of β extracted from the transport model were in the range of 0.010-0.011. Independently conducted batch experiments revealed that adsorption of Ba onto the surface of silica hydrogel favoured the heavier Ba isotopes (α = 1.00015 ± 0.00008). The contribution of adsorption on the overall isotope fractionation in the diffusion experiments, however, was found to be small. Our results contribute to the understanding of Ba isotope fractionation processes, which is crucial for interpreting natural isotope variations and the assessment of Ba isotope ratios as geochemical proxies.

  15. Calibration errors on experimental slant total electron content (TEC) determined with GPS

    NASA Astrophysics Data System (ADS)

    Ciraolo, L.; Azpilicueta, F.; Brunini, C.; Meza, A.; Radicella, S. M.

    2007-02-01

    The Global Positioning System (GPS) has become a powerful tool for ionospheric studies. In addition, ionospheric corrections are necessary for the augmentation systems required for Global Navigation Satellite Systems (GNSS) use. Dual-frequency carrier-phase and code-delay GPS observations are combined to obtain ionospheric observables related to the slant total electron content (sTEC) along the satellite-receiver line-of-sight (LoS). This observable is affected by inter-frequency biases [IFB; often called differential code biases (DCB)] due to the transmitting and the receiving hardware. These biases must be estimated and eliminated from the data in order to calibrate the experimental sTEC obtained from GPS observations. Based on the analysis of single differences of the ionospheric observations obtained from pairs of co-located dual-frequency GPS receivers, this research addresses two major issues: (1) assessing the errors translated from the code-delay to the carrier-phase ionospheric observable by the so-called levelling process, applied to reduce carrier-phase ambiguities from the data; and (2) assessing the short-term stability of receiver IFB. The conclusions achieved are: (1) the levelled carrier-phase ionospheric observable is affected by a systematic error, produced by code-delay multi-path through the levelling procedure; and (2) receiver IFB may experience significant changes during 1 day. The magnitude of both effects depends on the receiver/antenna configuration. Levelling errors found in this research vary from 1.4 total electron content units (TECU) to 5.3 TECU. In addition, intra-day vaiations of code-delay receiver IFB ranging from 1.4 to 8.8 TECU were detected.

  16. An Experimental Study in Determining Energy Expenditure from Treadmill Walking using Hip-Worn Inertial Sensors

    PubMed Central

    Vathsangam, Harshvardhan; Emken, Adar; Schroeder, E. Todd; Spruijt-Metz, Donna; Sukhatme, Gaurav S.

    2011-01-01

    This paper describes an experimental study in estimating energy expenditure from treadmill walking using a single hip-mounted triaxial inertial sensor comprised of a triaxial accelerometer and a triaxial gyroscope. Typical physical activity characterization using accelerometer generated counts suffers from two drawbacks - imprecison (due to proprietary counts) and incompleteness (due to incomplete movement description). We address these problems in the context of steady state walking by directly estimating energy expenditure with data from a hip-mounted inertial sensor. We represent the cyclic nature of walking with a Fourier transform of sensor streams and show how one can map this representation to energy expenditure (as measured by V O2 consumption, mL/min) using three regression techniques - Least Squares Regression (LSR), Bayesian Linear Regression (BLR) and Gaussian Process Regression (GPR). We perform a comparative analysis of the accuracy of sensor streams in predicting energy expenditure (measured by RMS prediction accuracy). Triaxial information is more accurate than uniaxial information. LSR based approaches are prone to outlier sensitivity and overfitting. Gyroscopic information showed equivalent if not better prediction accuracy as compared to accelerometers. Combining accelerometer and gyroscopic information provided better accuracy than using either sensor alone. We also analyze the best algorithmic approach among linear and nonlinear methods as measured by RMS prediction accuracy and run time. Nonlinear regression methods showed better prediction accuracy but required an order of magnitude of run time. This paper emphasizes the role of probabilistic techniques in conjunction with joint modeling of triaxial accelerations and rotational rates to improve energy expenditure prediction for steady-state treadmill walking. PMID:21690001

  17. Experimental and theoretical determination of the magnetic susceptibility of C60 and C70

    NASA Astrophysics Data System (ADS)

    Haddon, R. C.; Schneemeyer, L. F.; Waszczak, J. V.; Glarum, S. H.; Tycko, R.; Dabbagh, G.; Kortan, A. R.; Muller, A. J.; Mujsce, A. M.; Rosseinsky, M. J.; Zahurak, S. M.; Makhija, A. V.; Thiel, F. A.; Raghavachari, K.; Cockayne, E.; Elser, V.

    1991-03-01

    THE magnetic susceptibility of C60 and the possibility of magnetic-field-induced π-electron ring currents in this carbon spheroid have been of interest since the initial experiments on carbon clusters1. If the molecule is regarded as a sphere with a radius of 3.5 Å, on which 60 electrons are free to move, the Pauling ring-current model predicts a ring-current diamagnetic susceptibility 41 times the π-electron ring-current magnetic susceptibility of benzene with the field normal to the plane of the six-membered ring2,3. London theory predicts, however, that the π-electron ring currents in C60 should be weakly paramagnetic or diamagnetic, depending on the relative bond strengths used in the calculation2,3. With the availability of macroscopic quantities of C60 (ref. 4), it is now possible to study experimentally the magnetic properties of the molecule. Here we report on such measurements. We find that the diamagnetism of C60 is small, a result that we attribute to excited-state paramagnetic contributions to the π-electron ring-current magnetic susceptibility. Thus C60 seems to be an aromatic molecule with a vanishingly small π-electron ring-current magnetic susceptibility. We have performed similar measurements on C70, which indicate an appreciable π-electron diamagnetism, consistent with theoretical calculations. We attribute the differences in magnetic properties of these two molecules to their different fractions of five-membered ring structures. The fullerenes may thus constitute a class of compounds of 'ambiguous' aromatic character, traditional measures of which will not provide an adequate classification.

  18. Experimental design methodology applied to mercury determination: hair samples as a mercury bioindicator.

    PubMed

    Karimi, Mohammad; Aboufazeli, Forouzan; Zhad, Hamid Reza Lotfi Zadeh; Sadeghi, Omid; Najafi, Ezzatollah

    2015-01-01

    The application of modified magnetic nanoparticles in extraction of trace Hg was investigated. For this purpose, surfaces of magnetic nanoparticles were modified by 2-picolamine and then utilized as a solid-phase sorbent for Hg(II) extraction. A statistical method, based on surface response design, has been used for the optimization of Hg ion elution from the magnetic nanoparticles. The sorbed Hg ions were eluted quantitatively with 5.5 mL of a solution containing 0.8 M HCl and 0.08 M EDTA after 12 min. The recovery value in this method was 98.6% with RSD of 1.4%, and the obtained LOD was 0.01 ng/mL. The preconcentration factor was calculated to be 179. The method was applied to the determination of hair Hg content for biomonitoring purposes. PMID:25857894

  19. Experimental determination of the neutron channeling length in a planar waveguide

    SciTech Connect

    Kozhevnikov, S. V. Ignatovich, V. K.; Ott, F.; Ruehm, A.; Major, J.

    2013-10-15

    In neutron waveguides, the neutron wave is confined inside the guiding layer of the structure and can escape from the layer edge as a microbeam. The channeling within the guiding layer is accompanied by an exponential decay of the neutron wave function density inside the waveguide. Here, we report direct determination of the corresponding decay constant, termed the neutron channeling length. For this, we measured the microbeam intensity as a function of the length of a neutron absorbing layer of variable length placed onto the surface of a waveguide structure. Such planar neutron waveguides transform a conventional neutron beam into an extremely narrow but slightly divergent microbeam, which can be used for the investigation of nanostructures with submicron spatial resolution.

  20. Experimental determination of the spatial scale of a prey patch from the predator's perspective.

    PubMed

    Birk, Matthew A; White, J Wilson

    2014-03-01

    Foraging theory predicts that predators should prefer foraging in habitat patches with higher prey densities. However, density depends on the spatial scale at which a "patch" is defined by an observer. Ecologists strive to measure prey densities at the same scale that predators do, but many natural landscapes lack obvious, well-defined prey patches. Thus one must determine the scale at which predators define patches of prey. We estimated the scale at which guppies, Poecilia reticulata, selected patches of zooplankton prey using a behavioral assay. Guppies could choose between two prey arrays, each manipulated to have a density that depended on the spatial scale at which density was calculated. We estimated the scale of guppy foraging by comparing guppy preferences across a series of trials in which we systematically varied the scale associated with "high" prey density. This approach enables the application of foraging theory to non-discrete habitats and prey landscapes. PMID:24241641

  1. Experimental validation of a two-dimensional shear-flow model for determining acoustic impedance

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Watson, Willie R.; Jones, Michael G.

    1987-01-01

    Tests were conducted to validate a two-dimensional shear-flow analytical model for determining the acoustic impedance of a liner test specimen in a grazing-incidence, grazing-flow environment. The tests were limited to a test specimen chosen to exhibit minimal effects of grazing flow so that the results obtained by using the shear-flow analytical model would be expected to match those obtained from normal-incidence impedance measurements. Impedances for both downstream and upstream sound propagation were generally consistent with those from normal-incidence measurements. However, sensitivity of the grazing-incidence impedance to small measurement or systematic errors in propagation constant varied dramatically over the range of test frequencies.

  2. Experimental determination of the magnetic phase diagram of Gd/Fe multilayers

    NASA Astrophysics Data System (ADS)

    Hahn, W.; Loewenhaupt, M.; Huang, Y. Y.; Felcher, G. P.; Parkin, S. S. P.

    1995-12-01

    By combining magnetization, Kerr effect measurements, and polarized neutron reflectometry we have determined the magnetic state of [Fe 35 Å/Gd 50 Å]×15 multilayers at different points of the H-T phase diagram. We confirm the predictions of Camley and co-workers for an idealized magnetic superlattice with antiferromagnetic interfacial coupling. The magnetic moments of the Fe and Gd layers are opposite with those of Gd becoming larger below a compensating temperature. The magnetic moments are aligned parallel to the applied magnetic field below a certain value, and then they take a twisted arrangement as the field is increased. The transition may start from the surface or the interior, depending on whether the magnetization of the surface layer is oriented in or opposite to the field direction.

  3. Experimental Determination of ETS Particle Deposition in a Low Ventilation Room

    SciTech Connect

    Xu, M.; Nematollahi, M.; Sextro, R.G.; Gadgil, A.J.; Nazaroff, W.W.

    1993-05-01

    Deposition on indoor surfaces is an important removal mechanism for tobacco smoke particles. We report measurements of deposition rates of environmental tobacco smoke particles in a room-size chamber. The deposition rates were determined from the changes in measured concentrations by correcting for the effects of coagulation and ventilation. The air flow turbulent intensity parameter was determined independently by measuring the air velocities in the chamber. Particles with diameters smaller than 0.25 {micro}m coagulate to form larger particles of sizes between 0.25-0.5 {micro}m. The effect of coagulation on the particles larger than 0.5 {micro}m was found to be negligible. Comparison between our measurements and calculations using Crump and Seinfeld's theory showed smaller measured deposition rates for particles from 0.1 to 0.3 {micro}m in diameter and greater measured deposition rates for particles larger than 0.6 {micro}m at three mixing intensities. Comparison of Nazaroff and Cass model for natural convection flow showed good agreement with the measurements for particles larger than 0.1 {micro}m in diameter, however, measured deposition rates exceeded model prediction by a factor of approximately four for particles in size range 0.05-0.1 {micro}m diameter. These results were used to predict deposition of sidestream smoke particles on interior surfaces. Calculations predict that in 10 hours after smoking one cigarette, 22% of total sidestream particles by mass will deposit on interior surfaces at 0.03 air change per hour (ACH), 6% will deposit at 0.5 ACH, and 3% will deposit at 1 ACH.

  4. Experimentally determined soil organic matter-water sorption coefficients for different classes of natural toxins and comparison with estimated numbers.

    PubMed

    Schenzel, Judith; Goss, Kai-Uwe; Schwarzenbach, René P; Bucheli, Thomas D; Droge, Steven T J

    2012-06-01

    Although natural toxins, such as mycotoxins or phytoestrogens are widely studied and were recently identified as micropollutants in the environment, many of their environmentally relevant physicochemical properties have not yet been determined. Here, the sorption affinity to Pahokee peat, a model sorbent for soil organic matter, was investigated for 29 mycotoxins and two phytoestrogens. Sorption coefficients (K(oc)) were determined with a dynamic HPLC-based column method using a fully aqueous mobile phase with 5 mM CaCl(2) at pH 4.5. Sorption coefficients varied from less than 10(0.7) L/kg(oc) (e.g., all type B trichothecenes) to 10(4.0) L/kg(oc) (positively charged ergot alkaloids). For the neutral compounds the experimental sorption data set was compared with predicted sorption coefficients using various models, based on molecular fragment approaches (EPISuite's KOCWIN or SPARC), poly parameter linear free energy relationship (pp-LFER) in combination with predicted descriptors, and quantum-chemical based software (COSMOtherm)). None of the available models was able to adequately predict absolute K(oc) numbers and relative differences in sorption affinity for the whole set of neutral toxins, largely because mycotoxins exhibit highly complex structures. Hence, at present, for such compounds fast and consistent experimental techniques for determining sorption coefficients, as the one used in this study, are required. PMID:22540838

  5. Experimental determination of the thickness of aluminum cascade pipes in the presence of UF6 gas during enrichment measurements

    NASA Astrophysics Data System (ADS)

    Lombardi, M. L.; Favalli, A.; Goda, J. M.; Ianakiev, K. D.; MacArthur, D. W.; Moss, C. E.

    2012-04-01

    We present a method of determining the wall thickness of a pipe in a Gas Centrifuge Enrichment Plant (GCEP) when an empty pipe measurement is not feasible. Our method uses an X-ray tube for transmission measurements and a lanthanum bromide (LaBr3) scintillation detector on the opposite side of the pipe. Two filters, molybdenum (K-edge 20.0 keV) and palladium (K-edge 24.35 keV) are used to transform the bremsstrahlung spectra produced by the X-ray tube into more useful, sharply peaked, spectra. The maximum energies of the peaks are determined by the K-edges of the filters. The attenuation properties of the uranium hexafluoride (UF6) gas allow us to determine wall thickness by looking at the ratio of selected regions of interest (ROIs) of the Mo and Pd transmitted spectra. While the attenuation factor at these two transmission energies in the UF6 gas is nearly equal, attenuation in the aluminum pipe wall at these two energies differs by a factor of about 60. This difference allows measurement of attenuation in the pipe independent of attenuation in the UF6 gas. Feasibility studies were performed using analytical calculations, and filter thicknesses were optimized. In order to experimentally validate our attenuation measurement method, a UF6 source with variable enrichment and pipe thickness was built. We describe the experimental procedure used to verify our previous calculations and present recent results.

  6. Volumetric Lattice Boltzmann Simulation for Fluid dynamics and Turbulence in Practical Syringes

    NASA Astrophysics Data System (ADS)

    Lima, Everton; Deep, Debanjan; Yu, Huidan (Whitney)

    2012-11-01

    We conduct numerical experiments to study fluid dynamics and turbulence in syringes using volumetric lattice Boltzmann method (VLBM) that is developed for dealing with arbitrary moving boundaries. Several common used medical syringes are used to predict the efficiency and safety of syringes experiencing low flow infusion rates. It is found that smaller size syringes reach a steady flow rate much sooner than larger ones, which are in quantitative agreement with experimental results. The relation between the syringe size and its steady flow rate is revealed. At low flow rates, corner vortices are observed. We explore conditions that lead to turbulent flow aiming to aid safer syringe application in nursing practices.

  7. Volumetric flow rate comparisons for water and product on pasteurization systems.

    PubMed

    Schlesser, J E; Stroup, W H; McKinstry, J A

    1994-04-01

    A flow calibration tube system was assembled to determine the volumetric flow rates for water and various dairy products through a holding tube, using three different flow promotion methods. With the homogenizer, the volumetric flow rates of water and reconstituted skim milk were within 1.5% of each other. With the positive displacement pump, the flow rate for reconstituted skim milk increased compared with that for water as the pressure increased or temperature decreased. The largest increase in flow rate was at 310-kPa gauge and 20 degrees C. On a magnetic flow meter system, the volumetric flow rates of water and reconstituted skim milk were within .5% of the flow rate measured from the volume collected in a calibrated tank. The flow rate of whole milk was similar to that of skim milk on the three flow promoters evaluated. Ice milk mix increased the flow rate of the positive displacement pump, but not the homogenizer and magnetic flow meter system. PMID:8201053

  8. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    NASA Astrophysics Data System (ADS)

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-02-01

    SummaryTwo physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32 m diameter by 0.99 m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed. Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1 cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9 cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6 cm of water and 55.9 cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat

  9. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    USGS Publications Warehouse

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-01-01

    Two physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32. m diameter by 0.99. m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed.Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1. cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9. cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6. cm of water and 55.9. cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix

  10. Evaluation of the Malvern optical particle monitor. [Volumetric size distribution

    SciTech Connect

    Anderson, R. J.; Johnson, E.

    1983-07-01

    The Malvern 2200/3300 Particle Sizer is a laser-based optical particle sizing device which utilizes the principle of Fraunhofer Diffraction as the means of particle size measurement. The instrument is designed to analyze particle sizes in the range of 1 to 1800 microns diameter through a selection of lenses for the receiving optics. It is not a single-particle counter but rather an ensemble averager over the distribution of particles present in the measuring volume. Through appropriate measurement techniques, the instrument can measure the volumetric size distribution of: solids in gas or liquid suspension; liquid droplets in gas or other immiscible liquids; and, gas bubbles in liquid. (Malvern Handbook, Version 1.5). This report details a limited laboratory evaluation of the Malvern system to determine its operational characteristics, limitations, and accuracy. This investigation focused on relatively small particles in the range of 5 to 150 microns. Primarily, well characterized particles of coal in a coal and water mixture were utilized, but a selection of naturally occurring, industrially generated, and standard samples (i.e., glass beads) wer also tested. The characteristic size parameter from the Malvern system for each of these samples was compared with the results of a Coulter particle counter (Model TA II) analysis to determine the size measurement accuracy. Most of the particulate samples were suspended in a liquid media (water or isoton, plus a dispersant) for the size characterization. Specifically, the investigations contained in this report fall into four categories: (a) Sample-to-lense distance and sample concentration studies, (b) studies testing the applicability to aerosols, (c) tests of the manufacturer supplied software, and (d) size measurement comparisons with the results of Coulter analysis. 5 references, 15 figures, 2 tables.

  11. Determining potential 30/20 GHZ domestic satellite system concepts and establishment of a suitable experimental configuration

    NASA Technical Reports Server (NTRS)

    Stevens, G. H.; Anzic, G.

    1979-01-01

    NASA is conducting a series of millimeter wave satellite communication systems and market studies to: (1) determine potential domestic 30/20 GHz satellite concepts and market potential, and (2) establish the requirements for a suitable technology verification payload which, although intended to be modest in capacity, would sufficiently demonstrate key technologies and experimentally address key operational issues. Preliminary results and critical issues of the current contracted effort are described. Also included is a description of a NASA-developed multibeam satellite payload configuration which may be representative of concepts utilized in a technology flight verification program.

  12. Volumetric loss quantification using ultrasonic inductively coupled transducers

    NASA Astrophysics Data System (ADS)

    Gong, Peng; Hay, Thomas R.; Greve, David W.; Oppenheim, Irving J.

    2015-03-01

    The pulse-echo method is widely used for plate and pipe thickness measurement. However, the pulse echo method does not work well for detecting localized volumetric loss in thick-wall tubes, as created by erosion damage, when the morphology of volumetric loss is irregular and can reflect ultrasonic pulses away from the transducer, making it difficult to detect an echo. In this paper, we propose a novel method using an inductively coupled transducer to generate longitudinal waves propagating in a thick-wall aluminum tube for the volumetric loss quantification. In the experiment, longitudinal waves exhibit diffraction effects during the propagation which can be explained by the Huygens-Fresnel principle. The diffractive waves are also shown to be significantly delayed by the machined volumetric loss on the inside surface of the thick-wall aluminum tube. It is also shown that the inductively coupled transducers can generate and receive similar ultrasonic waves to those from wired transducers, and the inductively coupled transducers perform as well as the wired transducers in the volumetric loss quantification when other conditions are the same.

  13. Volumetric image display for complex 3D data visualization

    NASA Astrophysics Data System (ADS)

    Tsao, Che-Chih; Chen, Jyh Shing

    2000-05-01

    A volumetric image display is a new display technology capable of displaying computer generated 3D images in a volumetric space. Many viewers can walk around the display and see the image from omni-directions simultaneously without wearing any glasses. The image is real and possesses all major elements in both physiological and psychological depth cues. Due to the volumetric nature of its image, the VID can provide the most natural human-machine interface in operations involving 3D data manipulation and 3D targets monitoring. The technology creates volumetric 3D images by projecting a series of profiling images distributed in the space form a volumetric image because of the after-image effect of human eyes. Exemplary applications in biomedical image visualization were tested on a prototype display, using different methods to display a data set from Ct-scans. The features of this display technology make it most suitable for applications that require quick understanding of the 3D relations, need frequent spatial interactions with the 3D images, or involve time-varying 3D data. It can also be useful for group discussion and decision making.

  14. Experimental Determination of the Antineutrino Spectrum of the Fission Products of U238

    NASA Astrophysics Data System (ADS)

    Haag, N.; Gütlein, A.; Hofmann, M.; Oberauer, L.; Potzel, W.; Schreckenbach, K.; Wagner, F. M.

    2014-03-01

    An experiment was performed at the scientific neutron source FRM II in Garching to determine the cumulative antineutrino spectrum of the fission products of U238. Target foils of natural uranium were irradiated with a thermal and a fast neutron beam and the emitted β spectra were recorded with a γ-suppressing electron telescope. The obtained β spectrum of the fission products of U235 was normalized to the data of the magnetic spectrometer BILL. This method strongly reduces systematic errors in the U238 measurement. The β spectrum of U238 was converted into the corresponding ν¯e spectrum. The final ν¯e spectrum is given in 250 keV bins in the range from 2.875 to 7.625 MeV with an energy-dependent error of 3.5% at 3 MeV, 7.6% at 6 MeV, and ≳14% at energies ≳7 MeV (68% confidence level). Furthermore, an energy-independent uncertainty of ˜3.3% due to the absolute normalization is added. Compared to the generally used summation calculations, the obtained spectrum reveals a spectral distortion of ˜10% but returns the same value for the mean cross section per fission for the inverse beta decay.

  15. Experimental determination of the Boltzmann constant: An undergraduate laboratory exercise for molecular physics or physical chemistry

    NASA Astrophysics Data System (ADS)

    Campbell, H. M.; Boardman, B. M.; DeVore, T. C.; Havey, D. K.

    2012-12-01

    This article describes an undergraduate laboratory exercise that uses optical spectroscopy to determine the magnitude and the uncertainty of the Boltzmann constant kb. The more accurate approach uses photoacoustic spectroscopy to measure the Doppler-broadened line profile of individual spectral lines of N2O to extract kb. Measurements and estimates of the uncertainties in the quantities needed to calculate kb from the line profiles are then used to estimate the uncertainty in kb. This experiment is unusual in that it uses advanced laser-based spectroscopy techniques to emphasize standard practices of uncertainty analysis. The core instrumentation is modular and relatively affordable; it requires a tunable single-mode laser, photoreceiver, optical cell, and vacuum pump. If this instrumentation is not available, an alternate approach can be performed which uses the intensity of each rotational transition of an infrared band to measure kb. Although there is more uncertainty using the alternate approach, low concentrations of CO2, DCl, or N2O give reasonable results for the magnitude of kb. Student assessment results indicate retention and mastery of the concept of combined measurement uncertainty.

  16. Experimental determination of metal sorption and transport parameters for graphene oxide

    NASA Astrophysics Data System (ADS)

    Duster, Thomas Alan

    The goal of this dissertation is to measure the ability of graphene oxide (GO) to sorb protons and metals, and to assess its mobility in saturated porous media. In Chapter 2 and Chapter 3, we illustrate that multi-layered GO (MLGO) exhibits a striking capacity to buffer aqueous solutions and sorb metals, with the sorption behaviors being influenced in varying degrees by pH and ionic strength. We use surface complexation modeling to calculate equilibrium constants for the surface sorption reactions between MLGO and protons, Cd, Pb, and U(VI), and we account for ionic strength effects as a competition between the target adsorbate and Na from the background electrolyte. In Chapter 4, we use deposition rate coefficient measurements to establish that pH, ionic strength, and sand surface coatings all play critical roles in determining the transport of single-layered GO (SLGO) through laboratory columns. Collectively, the sorption and mobility measurements in this dissertation are tailored to better inform remediation strategies that employ GO as a sorbent in natural and engineered systems.

  17. Experimental results for the rapid determination of the freezing point of fuels

    NASA Technical Reports Server (NTRS)

    Mathiprakasam, B.

    1984-01-01

    Two methods for the rapid determination of the freezing point of fuels were investigated: an optical method, which detected the change in light transmission from the disappearance of solid particles in the melted fuel; and a differential thermal analysis (DTA) method, which sensed the latent heat of fusion. A laboratory apparatus was fabricated to test the two methods. Cooling was done by thermoelectric modules using an ice-water bath as a heat sink. The DTA method was later modified to eliminate the reference fuel. The data from the sample were digitized and a point of inflection, which corresponds to the ASTM D-2386 freezing point (final melting point), was identified from the derivative. The apparatus was modifified to cool the fuel to -60 C and controls were added for maintaining constant cooling rate, rewarming rate, and hold time at minimum temperature. A parametric series of tests were run for twelve fuels with freezing points from -10 C to -50 C, varying cooling rate, rewarming rate, and hold time. Based on the results, an optimum test procedure was established. The results showed good agreement with ASTM D-2386 freezing point and differential scanning calorimetry results.

  18. Diffusion kinetics of Fe 2+ and Mg in aluminous spinel . experimental determination and applications

    NASA Astrophysics Data System (ADS)

    Liermann, Hanns-Peter; Ganguly, Jibamitra

    2002-09-01

    The diffusion coefficients of Fe 2+ and Mg in aluminous spinel at ˜20 kb, 950 to 1325°C, and at 30 kb, 1125°C have been determined via diffusion couple experiments and numerical modeling of the induced diffusion profiles. The oxygen fugacity, fO 2, was constrained by graphite encapsulating materials. The retrieved self-diffusion coefficients of Fe 2+ and Mg at ˜20 kb, 950 to 1325°C, fit well the Arrhenian relation, D = D 0exp(-Q/RT), where Q is the activation energy, with D 0(Fe) = 1.8 (±2.8) × 10 -5, D 0(Mg) = 1.9 (±1.4) × 10 -5 cm 2/s, Q(Fe) = 198 ± 19, and Q(Mg) = 202 ± 8 kJ/mol. Comparison with the data at 30 kb suggests an activation volume of ˜5 cm 3/mol. From analysis of compositional zoning in natural olivine-spinel assemblages in ultramafic rocks, previous reports concluded that D(Fe-Mg) in spinel with Cr/(Cr + Al) ≤0.5 is ˜10 times that in olivine. The diffusion data in spinel and olivine have been applied to the problems of preservation of Mg isotopic inhomogeneity in spinel within the plagioclase-olivine inclusions in Allende meteorite and cooling rates of terrestrial ultramafic rocks.

  19. Experimental and numerical determination of cellular traction force on polymeric hydrogels

    PubMed Central

    Ng, Soon Seng; Li, Chuan; Chan, Vincent

    2011-01-01

    Anchorage-dependent cells such as smooth muscle cells (SMCs) rely on the transmission of actomyosin-generated traction forces to adhere and migrate on the extracellular matrix. The cellular traction forces exerted by SMCs on substrate can be measured from the deformation of substrate with embedded fluorescent markers. With the synchronous use of phase-contrast and fluorescent microscopy, the deformation of polyacrylamide (PAM) gel substrate can be quantitatively determined using particle image velocimetry. This displacement map is then input as boundary conditions for the stress analysis on PAM gel by the finite-element method. In addition to optical microscopy, atomic force microscopy was also used to characterize the PAM substrate using the contact mode, from which the elasticity of PAM can be quantified using Hertzian theory. This provides baseline information for the stress analysis of PAM gel deformation. The material model introduced for the computational part is the Mooney–Rivlin constitutive law because of its long proven usefulness in predicting polymers' mechanical behaviour. Numerical results showed that adhesive stresses are high around the cell edges, which is in accordance with the general phenomena of cellular focal adhesion. Further calculations on the total traction forces indicate a slightly contact-dominated regime for a broad range of Mooney–Rivlin stiffnesses. PMID:23050082

  20. Experimental determination of the effects of moisture on composite-to-composite adhesive joints

    NASA Technical Reports Server (NTRS)

    Deiasi, R. J.; Schulte, R. L.

    1981-01-01

    The primary mode of moisture ingress into bonded composite joints is determined using a nuclear probe for deuterium (NPD) to measure the localized D2O content along the length of the adhesive (FM-300 and EA-9601) and through the thickness of bonded composite speciments. Calculated diffusivities and NPD measured equilibrium moisture contents are used to predict the moisture profiles along the length of the adhesives as a function of exposure time, temperature, and relative humidity. These results are compared with the observed moisture profiles to evaluate the extent of enhanced edge diffusion. The FM-300 adhesive exhibits good agreement between measured and predicted profiles at 49 C, 70% and 90% RH, and 77 C, 70% RH. At 77 C, 90% RH, the measured moisture content near the adhesive edge is substantially larger than the predicted level. The EA-9601 adhesive also shows good agreement at 49 C, 70% and 90% RH, but at 77 C, the concentration of D20 near the edges is enhanced at each humidity level. The effect of moisture content on the bond shear strength at room temperature and at elevated temperature is evaluated.