Science.gov

Sample records for exploration systems aes

  1. AES3; Automated Estimating System

    SciTech Connect

    Holder, D.A.

    1988-06-01

    AES3 (Automated Estimating System) is designed to aid in the preparation and reporting of construction cost estimates. The system provides an easy method for entering and updating the detailed cost, schedule, and escalation information contained in a typical construction cost estimate. AES combines this information to calculate both unescalated and escalated values for the estimate. These costs can be reported at varying levels of detail. AES consists of two major programs: the Standard Value program and the Estimate Creation/Update/Scheduling/Contingency/Reporting program. The first program is used to enter and modify the construction craft rates, percentage mark-up factors, and the escalation rates that are to be used on each estimate created using the system. The Estimating program is used to enter and update the detailed cost estimates, create and/or update a project schedule file, combine several estimates to form a project cost estimate, produce reports, and perform various analysis functions. AES uses menus and formatted input screens to guide the user through the estimate creation/update process. A pricing database is available for cost retrieval and lookup. Context-sensitive messages explaining each input field are available with the touch of a single key. AES uses three types of screens: option screens, input screens, and display screens. An option screen allows the user to select a specific task (e.g. Estimate creation or Report Generation on the Main Menu screen). An input screen (e.g. the Estimate Record screen) is used primarily to enter or modify data. The Bill of Material Directory screen is an example of the display screen. It is used to display the Bill of Material records and permits the user to choose among several options; however, entry or modification of data is not allowed.

  2. 22 CFR 120.30 - The Automated Export System (AES).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false The Automated Export System (AES). 120.30 Section 120.30 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS 120.30 The Automated Export System (AES). The Automated Export System (AES) is the Department...

  3. 22 CFR 120.30 - The Automated Export System (AES).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false The Automated Export System (AES). 120.30 Section 120.30 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS 120.30 The Automated Export System (AES). The Automated Export System (AES) is the Department...

  4. 22 CFR 120.30 - The Automated Export System (AES).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false The Automated Export System (AES). 120.30 Section 120.30 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS 120.30 The Automated Export System (AES). The Automated Export System (AES) is the Department...

  5. AES4.0; Automated Estimating System

    SciTech Connect

    Holder, D.A.

    1991-09-30

    AES4.0 is designed to aid in the preparation and reporting of construction cost estimates. The systems provides an easy method for entering and updating the detailed cost, schedule, contingency, and escalation formation contained in a typical construction or other project cost estimate. AES4 combines this information to calculate both unescalated and escalated and cash flow values for the project. These costs can be reported at varying levels of detail. This packages consists of two major programs: the Standard Value program and the Estimate Creation/Update/Scheduling/Contingency/Reporting program. The first program is used to enter and modify the construction craft rates, percentage mark-up factors, and the escalation rates that are to be used on each estimate created using the system. The Estimating program is used to enter and update the detailed cost estimates, create project cost estimate, produce reports, and perform various analysis functions. Menus and formatted input screens are used to guide the user through the estimate creation/update process. A pricing database is available for cost retrieval and lookup. Context-sensitive messages explaining each input field are available with the touch of a single key. AES4.0 uses three types of screens: option screens, input screens, and display screens. An option screen allows the user to select a specific task (e.g. Estimate creation or Report Generation on the Main Menu screen). An input screen (e.g. the Estimate Record screen) is used primarily to enter or modify data. The Bill of Material Directory screen is an example of the display screen. It is used to display the Bill of Material records and permits the user to choose among several options: however, entry or modification of data is not allowed.

  6. Automated Estimating System (AES), Version 5. 1, User's manual

    SciTech Connect

    Schwarz, R.K.; Holder, D.A.

    1992-08-01

    This document describes Version 5.1 of the Automated Estimating System (AES), a personal computer-based software package. The AES is designed to aid in the creation, updating, and reporting of project cost estimates for the Estimating and Scheduling Department of the Martin Marietta Energy Systems, Inc., Engineering Division. AES provides formatted input screens to guide the user though the estimate creation/update process and provides several standardized reports that allow cost to be sorted and summarized in many different formats and at several levels of aggregation.

  7. 15 CFR 758.2 - Automated Export System (AES).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Option 2 requires the electronic filing of all information required for export prior to export (15 CFR 30...) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS EXPORT... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Automated Export System (AES)....

  8. 15 CFR 758.2 - Automated Export System (AES).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Option 2 requires the electronic filing of all information required for export prior to export (15 CFR 30...) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS EXPORT... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Automated Export System (AES)....

  9. 15 CFR 758.2 - Automated Export System (AES).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Option 2 requires the electronic filing of all information required for export prior to export (15 CFR 30...) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS EXPORT... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Automated Export System (AES)....

  10. 15 CFR 758.2 - Automated Export System (AES).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Option 2 requires the electronic filing of all information required for export prior to export (15 CFR 30...) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS EXPORT... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Automated Export System (AES)....

  11. 15 CFR 758.2 - Automated Export System (AES).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Option 2 requires the electronic filing of all information required for export prior to export (15 CFR 30... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Automated Export System (AES). 758.2 Section 758.2 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade...

  12. 22 CFR 120.30 - The Automated Export System (AES).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Commerce, Bureau of Census, electronic filing of export information. The AES shall serve as the primary...). Also, requests for special reporting may be made by DDTC on a case-by-case basis, (e.g.,...

  13. 22 CFR 120.30 - The Automated Export System (AES).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Commerce, Bureau of Census, electronic filing of export information. The AES shall serve as the primary...). Also, requests for special reporting may be made by DDTC on a case-by-case basis, (e.g.,...

  14. Automated Estimating System (AES), Version 5.1, User`s manual. Revision 4

    SciTech Connect

    Schwarz, R.K.; Holder, D.A.

    1992-08-01

    This document describes Version 5.1 of the Automated Estimating System (AES), a personal computer-based software package. The AES is designed to aid in the creation, updating, and reporting of project cost estimates for the Estimating and Scheduling Department of the Martin Marietta Energy Systems, Inc., Engineering Division. AES provides formatted input screens to guide the user though the estimate creation/update process and provides several standardized reports that allow cost to be sorted and summarized in many different formats and at several levels of aggregation.

  15. Automated Estimating System (AES): Version 6.1: User`s manual. Revision 6

    SciTech Connect

    Schwarz, R.K.; Holder, D.A.

    1996-03-01

    This document describes Version 6.1 of the Automated Estimating System (AES), a personal computer-based software package. The AES is designed to aid in the creation, updating, and reporting of project cost estimates for the Estimating and Scheduling Engineering Department of Central Engineering Services of Lockheed Martin Energy Systems,Inc. AES provides formatted input screens to guide the user through the estimate creation/update process and provides several standardized reports that allow cost to be sorted and summarized in many different formats and at several levels of aggregation.

  16. Data mining based full ceramic bearing fault diagnostic system using AE sensors.

    PubMed

    He, David; Li, Ruoyu; Zhu, Junda; Zade, Mikhail

    2011-12-01

    Full ceramic bearings are considered the first step toward full ceramic, oil-free engines in the future. No research on full ceramic bearing fault diagnostics using acoustic emission (AE) sensors has been reported. Unlike their steel counterparts, signal processing methods to extract effective AE fault characteristic features and fault diagnostic systems for full ceramic bearings have not been developed. In this paper, a data mining based full ceramic bearing diagnostic system using AE based condition indicators (CIs) is presented. The system utilizes a new signal processing method based on Hilbert Huang transform to extract AE fault features for the computation of CIs. These CIs are used to build a data mining based fault classifier using a k-nearest neighbor algorithm. Seeded fault tests on full ceramic bearing outer race, inner race, balls, and cage are conducted on a bearing diagnostic test rig and AE burst data are collected. The effectiveness of the developed fault diagnostic system is validated using real full ceramic bearing seeded fault test data. PMID:21990335

  17. Automated Estimating System (AES), Standard Value Update Program, user`s manual

    SciTech Connect

    Schwartz, R.K.; Holder, D.A.

    1994-08-01

    This manual contains instructions for operating the Standard Value Update Program. This program is operated and controlled by selected individuals in the Estimating and Scheduling Engineering Department of the Martin Marietta Energy Systems, Inc., Engineering Division. It is used to control and standardized input into the Automated Estimating System (AES) Estimating program, a person computer-based software package designed to aid in the creation, updating, and reporting of project cost estimates. The AES Estimating program is documented in a separate user`s manual.

  18. iPAS: AES Flight System Technology Maturation for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Othon, William L.

    2014-01-01

    In order to realize the vision of expanding human presence in space, NASA will develop new technologies that can enable future crewed spacecraft to go far beyond Earth orbit. These technologies must be matured to the point that future project managers can accept the risk of incorporating them safely and effectively within integrated spacecraft systems, to satisfy very challenging mission requirements. The technologies must also be applied and managed within an operational context that includes both on-board crew and mission support on Earth. The Advanced Exploration Systems (AES) Program is one part of the NASA strategy to identify and develop key capabilities for human spaceflight, and mature them for future use. To support this initiative, the Integrated Power Avionics and Software (iPAS) environment has been developed that allows engineers, crew, and flight operators to mature promising technologies into applicable capabilities, and to assess the value of these capabilities within a space mission context. This paper describes the development of the integration environment to support technology maturation and risk reduction, and offers examples of technology and mission demonstrations executed to date.

  19. 76 FR 4089 - Proposed Information Collection; Comment Request; Automated Export System (AES) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... Canada enables the United States to substitute Canadian import statistics for U.S. export statistics. Similarly, in accordance with the MOU, Canada substitutes U.S. import statistics for Canadian exports to the... Census Bureau Proposed Information Collection; Comment Request; Automated Export System (AES)...

  20. Exploration geochemical technique for the determination of preconcentrated organometallic halides by ICP-AES

    USGS Publications Warehouse

    Motooka, J.M.

    1988-01-01

    An atomic absorption extraction technique which is widely used in geochemical exploration for the determination of Ag, As, Au, Bi, Cd, Cu, Mo, Pb, Sb, and Zn has been modified and adapted to a simultaneous inductively coupled plasma-atomic emission instrument. the experimental and operating parameters are described for the preconcentration of the metals into their organometallic halides and for the determination of the metals. Lower limits of determination are equal to or improved over those for flame atomic absorption (except Au) and ICP results are very similar to the accepted AA values, with precision for the ICP data in excess of that necessary for exploration purposes.

  1. Phase stability in the systems AeAl(2-x)Mgx (Ae = Ca, Sr, Ba): electron concentration and size controlled variations on the laves phase structural theme.

    PubMed

    Amerioun, Shahrad; Yokosawa, Tadahiro; Lidin, Sven; Hussermann, Ulrich

    2004-07-26

    The systems AeAl(2-x)Mgx (Ae = Ca, Sr, Ba) display electron concentration induced Laves phase structural changes. However, the complete sequence MgCu2 --> MgNi2 --> MgZn2 with increasing x (decreasing electron count) is only observed for Ae = Ca. Compounds SrAl(2-x)Mgx (0 < x < or = 2) and BaAl(2-x)Mgx (x = 0.85 and 2.0) were synthesized and structurally characterized by X-ray diffraction experiments. For the Sr system the structural sequence CeCu2 --> MgNi2 --> MgZn2 occurs with increasing Mg content x. Thus, larger Sr does not allow the realization of the MgCu2 structure at low x. For Ae = Ba a binary compound BaAl2 does not exist, but more Ba-rich Ba7Al13 forms. The reinvestigation of the crystal structure of Ba7Al13 by selected area and convergent beam electron diffraction in a transmission electron microscope revealed a superstructure, which subsequently could be refined from single X-ray diffraction data. The formula unit of the superstructure is Ba21Al40 (space group P31m, Z = 1, a = 10.568(1) angstroms, c = 17.205(6) angstroms). In Ba21Al40 a size match problem between Ba and Al present in Ba7Al13 is resolved. The structure of Ba7Al13 (Ba21Al40) can be considered as a Ba excess variant of the hexagonal MgNi2 Laves phase type structure. An incommensurately modulated variant of the MgNi2 structure is obtained for phases BaAl(2-x)Mgx with x = 0.8-1. At even higher Mg concentrations a structural change to the proper MgZn2 type structure takes place. PMID:15257605

  2. Validation of the French version of the Acceptability E-scale (AES) for mental E-health systems.

    PubMed

    Micoulaud-Franchi, Jean-Arthur; Sauteraud, Alain; Olive, Jérôme; Sagaspe, Patricia; Bioulac, Stéphanie; Philip, Pierre

    2016-03-30

    Despite the increasing use of E-health systems for mental-health organizations, there is a lack of psychometric tools to evaluate their acceptability by patients with mental disorders. Thus, this study aimed to translate and validate a French version of the Acceptability E-scale (AES), a 6-item self-reported questionnaire that evaluates the extent to which patients find E-health systems acceptable. A forward-backward translation of the AES was performed. The psychometric properties of the French AES version, with construct validity, internal structural validity and external validity (Pearson's coefficient between AES scores and depression symptoms on the Beck Depression Inventory II) were analyzed. In a sample of 178 patients (mean age=46.51 years, SD=12.91 years), the validation process revealed satisfactory psychometric properties: factor analysis revealed two factors: "Satisfaction" (3 items) and "Usability" (3 items) and Cronbach's alpha was 0.7. No significant relation was found between AES scores and depression symptoms. The French version of the AES revealed a two-factor scale that differs from the original version. In line with the importance of acceptability in mental health and with a view to E-health systems for patients with mental disorders, the use of the AES in psychiatry may provide important information on acceptability (i.e., satisfaction and usability). PMID:26809367

  3. Desktop system for accounting, audit, and research in A&E.

    PubMed Central

    Taylor, C J; Brain, S G; Bull, F; Crosby, A C; Ferguson, D G

    1997-01-01

    The development of a database for audit, research, and accounting in accident and emergency (A&E) is described. The system uses a desktop computer, an optical scanner, sophisticated optical mark reader software, and workload management data. The system is highly flexible, easy to use, and at a cost of around 16,000 pounds affordable for larger departments wishing to move towards accounting. For smaller departments, it may be an alternative to full computerisation. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 PMID:9132200

  4. [Study on ultrasonic nebulizer sample feeding system for ICP-AES].

    PubMed

    Zhou, Shi-Ping; Duan, Chang-Qun; Fu, Hui; Li, Jing; Han, Qing-Li; Ao, Xin-Yu

    2009-08-01

    The sample feeding system of inductively coupled plasma atomic emission spectrometry (ICP-AES) is pneumatic nebulization system, but its efficiency is not good. The ultrasonic nebulization technology possesses advantages of high nebulization efficient and fine droplets, and it is free of blocking phenomenon. It has good application perspective in nebulization technology. In the present paper the authors study the working conditions of ultrasonic nebulizer such as carrier gas flow, injection time, injection rate and mode of washing that are likely to affect the detection results, and study the detecting conditions of several elements such as As and Se etc. that have poorly detection limits in normal ICP-AES methods. At the same time, the application of them in biochemical samples was studied. Testing results show that carrier gas flow, injection rate and injection time can greatly affect the intensity of spectral lines, and the ultrasonic nebulizer sample feeding system can increase the spectral line intensity and decrease the detection limit elements such as As, Pb, Se, Bi, Ge, Mo, Cd and Cu by about 10-25 times. Moreover, this ultrasonic nebulizer sample feeding system can reduce the time of memory effect by washing the sample cell. PMID:19839351

  5. Optimal exploration systems

    NASA Astrophysics Data System (ADS)

    Klesh, Andrew T.

    This dissertation studies optimal exploration, defined as the collection of information about given objects of interest by a mobile agent (the explorer) using imperfect sensors. The key aspects of exploration are kinematics (which determine how the explorer moves in response to steering commands), energetics (which determine how much energy is consumed by motion and maneuvers), informatics (which determine the rate at which information is collected) and estimation (which determines the states of the objects). These aspects are coupled by the steering decisions of the explorer. We seek to improve exploration by finding trade-offs amongst these couplings and the components of exploration: the Mission, the Path and the Agent. A comprehensive model of exploration is presented that, on one hand, accounts for these couplings and on the other hand is simple enough to allow analysis. This model is utilized to pose and solve several exploration problems where an objective function is to be minimized. Specific functions to be considered are the mission duration and the total energy. These exploration problems are formulated as optimal control problems and necessary conditions for optimality are obtained in the form of two-point boundary value problems. An analysis of these problems reveals characteristics of optimal exploration paths. Several regimes are identified for the optimal paths including the Watchtower, Solar and Drag regime, and several non-dimensional parameters are derived that determine the appropriate regime of travel. The so-called Power Ratio is shown to predict the qualitative features of the optimal paths, provide a metric to evaluate an aircrafts design and determine an aircrafts capability for flying perpetually. Optimal exploration system drivers are identified that provide perspective as to the importance of these various regimes of flight. A bank-to-turn solar-powered aircraft flying at constant altitude on Mars is used as a specific platform for analysis using the coupled model. Flight-paths found with this platform are presented that display the optimal exploration problem characteristics. These characteristics are used to form heuristics, such as a Generalized Traveling Salesman Problem solver, to simplify the exploration problem. These heuristics are used to empirically show the successful completion of an exploration mission by a physical explorer.

  6. The Peculiar Binary System AE Aquarii from its Characteristic Multi-wavelength Emission

    NASA Astrophysics Data System (ADS)

    Oruru, B.; Meintjes, P. J.

    2014-01-01

    The multi-wavelength properties of the novalike variable system AE Aquarii are discussed in terms of the interaction between the accretion inflow from a late-type main sequence star and the magnetosphere of a fast rotating white dwarf. This results in an efficient magnetospheric propeller process and particle acceleration. The spin-down of the white dwarf at a period rate of 5.6410-14 s s-1 results in a huge spin-down luminosity of Ls-d ? 6 1033 erg s-1. Hence, the observed non-thermal hard X-ray emission and VHE and TeV gamma-ray emission may suggest that AE Aquarii can be placed in the category of spin-powered pulsars. Besides, observed hard X-ray luminosity of LX,hard ? 5 1030 erg s-1 constitutes 0.1 % of the total spin-down luminosity of the white dwarf. This paper will discuss some recent theoretical studies and data analysis of the system.

  7. Exploration EVA System

    NASA Technical Reports Server (NTRS)

    Kearney, Lara

    2004-01-01

    In January 2004, the President announced a new Vision for Space Exploration. NASA's Office of Exploration Systems has identified Extravehicular Activity (EVA) as a critical capability for supporting the Vision for Space Exploration. EVA is required for all phases of the Vision, both in-space and planetary. Supporting the human outside the protective environment of the vehicle or habitat and allow ing him/her to perform efficient and effective work requires an integrated EVA "System of systems." The EVA System includes EVA suits, airlocks, tools and mobility aids, and human rovers. At the core of the EVA System is the highly technical EVA suit, which is comprised mainly of a life support system and a pressure/environmental protection garment. The EVA suit, in essence, is a miniature spacecraft, which combines together many different sub-systems such as life support, power, communications, avionics, robotics, pressure systems and thermal systems, into a single autonomous unit. Development of a new EVA suit requires technology advancements similar to those required in the development of a new space vehicle. A majority of the technologies necessary to develop advanced EVA systems are currently at a low Technology Readiness Level of 1-3. This is particularly true for the long-pole technologies of the life support system.

  8. Solar system exploration

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Ramlose, Terri (Editor)

    1989-01-01

    The goal of planetary exploration is to understand the nature and development of the planets, as illustrated by pictures from the first two decades of spacecraft missions and by the imaginations of space artists. Planets, comets, asteroids, and moons are studied to discover the reasons for their similarities and differences and to find clues that contain information about the primordial process of planet origins. The scientific goals established by the National Academy of Sciences as the foundation of NASA's Solar System Exploration Program are covered: to determine the nature of the planetary system, to understand its origin and evolution, the development of life on Earth, and the principles that shape present day Earth.

  9. Implementation of the AES as a Hash Function for Confirming the Identity of Software on a Computer System

    SciTech Connect

    Hansen, Randy R.; Bass, Robert B.; Kouzes, Richard T.; Mileson, Nicholas D.

    2003-01-20

    This paper provides a brief overview of the implementation of the Advanced Encryption Standard (AES) as a hash function for confirming the identity of software resident on a computer system. The PNNL Software Authentication team chose to use a hash function to confirm software identity on a system for situations where: (1) there is limited time to perform the confirmation and (2) access to the system is restricted to keyboard or thumbwheel input and output can only be displayed on a monitor. PNNL reviewed three popular algorithms: the Secure Hash Algorithm - 1 (SHA-1), the Message Digest - 5 (MD-5), and the Advanced Encryption Standard (AES) and selected the AES to incorporate in software confirmation tool we developed. This paper gives a brief overview of the SHA-1, MD-5, and the AES and sites references for further detail. It then explains the overall processing steps of the AES to reduce a large amount of generic data-the plain text, such is present in memory and other data storage media in a computer system, to a small amount of data-the hash digest, which is a mathematically unique representation or signature of the former that could be displayed on a computer's monitor. This paper starts with a simple definition and example to illustrate the use of a hash function. It concludes with a description of how the software confirmation tool uses the hash function to confirm the identity of software on a computer system.

  10. Advanced Exploration Systems Water Architecture Study Interim Results

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2013-01-01

    The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.

  11. Exploration Medical System Demonstration

    NASA Technical Reports Server (NTRS)

    Rubin, D. A.; Watkins, S. D.

    2014-01-01

    BACKGROUND: Exploration class missions will present significant new challenges and hazards to the health of the astronauts. Regardless of the intended destination, beyond low Earth orbit a greater degree of crew autonomy will be required to diagnose medical conditions, develop treatment plans, and implement procedures due to limited communications with ground-based personnel. SCOPE: The Exploration Medical System Demonstration (EMSD) project will act as a test bed on the International Space Station (ISS) to demonstrate to crew and ground personnel that an end-to-end medical system can assist clinician and non-clinician crew members in optimizing medical care delivery and data management during an exploration mission. Challenges facing exploration mission medical care include limited resources, inability to evacuate to Earth during many mission phases, and potential rendering of medical care by non-clinicians. This system demonstrates the integration of medical devices and informatics tools for managing evidence and decision making and can be designed to assist crewmembers in nominal, non-emergent situations and in emergent situations when they may be suffering from performance decrements due to environmental, physiological or other factors. PROJECT OBJECTIVES: The objectives of the EMSD project are to: a. Reduce or eliminate the time required of an on-orbit crew and ground personnel to access, transfer, and manipulate medical data. b. Demonstrate that the on-orbit crew has the ability to access medical data/information via an intuitive and crew-friendly solution to aid in the treatment of a medical condition. c. Develop a common data management framework that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all activities pertaining to crew health and life sciences. d. Ensure crew access to medical data during periods of restricted ground communication. e. Develop a common data management framework that allows for scalability, extensibility, and interoperability of data sources and data users. f. Lower total cost of ownership for development and sustainment of peripheral hardware and software that use EMSD for data management. g. Provide a better standard of healthcare for crew members through reductions in the time required by crew and ground personnel to provide medical treatment and the number of crew errors experienced during treatment.

  12. Cluster Chemistry in Electron-Poor Ae-Pt-Cd Systems (Ae=Ca, Sr, Ba): (Sr,Ba)Pt2Cd4, Ca6Pt8Cd16, and Its Known Antitype Er6Pd16Sb8

    SciTech Connect

    Samal, Saroj L.; Gulo, Fakhili; Corbett, John D.

    2013-02-18

    Three new ternary polar intermetallic compounds, cubic Ca6Pt8Cd16, and tetragonal (Sr, Ba)Pt2Cd4 have been discovered during explorations of the Ae–Pt–Cd systems. Cubic Ca6Pt8Cd16 (Fm-3m, Z = 4, a = 13.513(1) Å) contains a 3D array of separate Cd8 tetrahedral stars (TS) that are both face capped along the axes and diagonally bridged by Pt atoms to generate the 3D anionic network Cd8[Pt(1)]6/2[Pt(2)]4/8. The complementary cationic surface of the cell consists of a face-centered cube of Pt(3)@Ca6 octahedra. This structure is an ordered ternary variant of Sc11Ir4 (Sc6Ir8Sc16), a stuffed version of the close relative Na6Au7Cd16, and a network inverse of the recent Er6Sb8Pd16 (compare Ca6Pt8Cd16). The three groups of elements each occur in only one structural version. The new AePt2Cd4, Ae = Sr, Ba, are tetragonal (P42/mnm,Z = 2, a ≈ 8.30 Å, c ≈ 4.47 Å) and contain chains of edge-sharing Cd4 tetrahedra along c that are bridged by four-bonded Ba/Sr. LMTO-ASA and ICOHP calculation results and comparisons show that the major bonding (Hamilton) populations in Ca6Pt8Cd16 and Er6Sb8Pd16 come from polar Pt–Cd and Pd–Sb interactions, that Pt exhibits larger relativistic contributions than Pd, that characteristic size and orbital differences are most evident for Sb 5s, Pt8, and Pd16, and that some terms remain incomparable, Ca–Cd versus Er–Pd.

  13. Atmosphere Explorer control system software (version 1.0)

    NASA Technical Reports Server (NTRS)

    Villasenor, A.

    1972-01-01

    The basic design is described of the Atmosphere Explorer Control System (AECS) software used in the testing, integration, and flight contol of the AE spacecraft and experiments. The software performs several vital functions, such as issuing commands to the spacecraft and experiments, receiving and processing telemetry data, and allowing for extensive data processing by experiment analysis programs. The major processing sections are: executive control section, telemetry decommutation section, command generation section, and utility section.

  14. AES Water Architecture Study Interim Results

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam J.

    2012-01-01

    The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems in order to enable NASA human exploration missions beyond low earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near term missions beyond LEO. The secondary objective is to continue to advance mid-readiness level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near and long term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit environmental control and life support systems (ECLSS) definition. This study is being performed in three phases. Phase I of this study established the scope of the study through definition of the mission requirements and constraints, as well as indentifying all possible WRS configurations that meet the mission requirements. Phase II of this study focused on the near term space exploration objectives by establishing an ISS-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.

  15. Exploring the Physical, Chemical and Thermal Characteristics of a New Potentially Insensitive High Explosive: RX-55-AE-5

    SciTech Connect

    Weese, R K; Burnham, A K; Turner, H C; Tran, T D

    2006-06-05

    Current work at the Energetic Materials Center, EMC, at Lawrence Livermore National Laboratory (LLNL) includes both understanding properties of old explosives and measuring properties of new ones [1]. The necessity to know and understand the properties of energetic materials is driven by the need to improve performance and enhance stability to various stimuli, such as thermal, friction and impact insult. This review will concentrate on the physical properties of RX-55-AE-5, which is formulated from heterocyclic explosive, 2,6-diamino-3,5-dinitropyrazine-1-oxide, LLM-105, and 2.5% Viton A. Differential scanning calorimetry (DSC) was used to measure a specific heat capacity, C{sub p}, of {approx} 0.950 J/g{center_dot} C and a thermal conductivity, {kappa}, of {approx} 0.475 W/m{center_dot} C. The LLNL kinetics modeling code Kinetics05 and the Advanced Kinetics and Technology Solutions (AKTS) code Thermokinetics were both used to calculate Arrhenius kinetics for decomposition of LLM-105. Both obtained an activation energy barrier E {approx} 180 kJ mol{sup -1} for mass loss in an open pan. Thermal mechanical analysis, TMA, was used to measure the coefficient of thermal expansion (CTE). The CTE for this formulation was calculated to be {approx} 61 {micro}m/m{center_dot} C. Impact, spark, friction are also reported.

  16. Comparative Analysis of Continuous Acoustic Emission (AE) Data, Acquired from 12 and 16 Bit Streaming Systems during Rock Deformation Experiments

    NASA Astrophysics Data System (ADS)

    Flynn, J.; Goodfellow, S. D.; Nasseri, M. H.; Reyes-Montes, J. M.; Young, R.

    2013-12-01

    A comparative analysis of continuous acoustic emission (AE) data acquired during a triaxial compression test, using a 12-bit and a 16-bit acquisition system, is presented. A cylindrical sample (diameter 50.1 mm and length 125 mm) of Berea sandstone was triaxally deformed at a confining pressure of 15 MPa and a strain rate of 1.6E-06 s-1. The sample was loaded differentially until failure occurred at approximately ?1 = 160 MPa. AE activity was monitored for the duration of the experiment by an array of 8 broadband piezoelectric transducers coupled to the rock sample. Raw signals were amplified by 40 dB using pre-amplifiers equipped with filter modules with a frequency passband of 100 kHz to 1 MHz. The amplifiers had a split output enabling the measured signal to be fed into a 12-bit and a 16-bit acquisition system. AE waveforms were continuously recorded at 10 MS/s on 8 data acquisition channels per system. Approximately 4,500 events were harvested and source located from the continuous data for each system. P-wave arrivals were automatically picked and event locations calculated using the downhill Simplex method and a time-varying transverse isotropic velocity model based on periodical surveys across the sample. Events detected on the 12-bit and 16-bit systems were compared both in terms of their P-wave picks and their source locations. In the early stages of AE activity, there appeared to be little difference between P-wave picks and hypocenter locations from both data sets. As the experiment progressed into the post-peak stress regime, which was accompanied by an increase in AE rate and amplitude, fewer events could be harvested from the 12-bit data compared to the 16-bit data. This is linked to the observation of a higher signal-to-noise ratio on AE waveforms harvested from the 16-bit stream compared to those from the 12-bit stream, which results in an easier identification of P-wave onsets. Similarly a higher confidence in source location is expected. Analysis of the continuous waveform data in both time and frequency domains was performed to analyse changes in AE energy and frequency content throughout the duration of the experiment. This analysis is particularly relevant as the sample approaches failure, as high rates of induced AE events make it difficult to harvest and analyse individual events. Changes in frequency content have been previously observed and associated with microcrack coalescence and the induction of large fractures both in the laboratory and in the monitoring of reservoir stimulations. The comparative analysis shows that the higher resolution in the 16-bit stream provides greater detail in the identification of onset times of sample failure and particularly the changes in amplitude in the different frequency bands.

  17. Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Trinh, Diep; Gostowski, Rudy; King, Eric; Mattox, Emily M.; Watson, David; Thomas, John

    2012-01-01

    "NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the carbon dioxide (CO2) removal hardware design and sorbent screening and characterization effort in support of the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project within the AES program. A companion paper discusses development of atmosphere revitalization models and simulations for this project.

  18. Exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Henderson, A., Jr. (Editor); Grey, J.

    1974-01-01

    The potential achievements of solar system exploration are outlined, and a course of action is suggested which will maximize the rewards. Also provided is a sourcebook of information on the solar system and the technology being brought to bear for its exploration. The document explores the degree to which three practical questions can be answered: why it is necessary to explore the solar system, why understanding of the solar system is important to us, and why we cannot wait until all terrestrial problems are solved before an attempt is made to solve problems in space.

  19. Exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Henderson, A., Jr.; Grey, J.

    1974-01-01

    A sourcebook of information on the solar system and the technology used for its exploration is presented. An outline of the potential achievements of solar system exploration is given along with a course of action which maximizes the rewards to mankind.

  20. Data exploration systems for databases

    NASA Technical Reports Server (NTRS)

    Greene, Richard J.; Hield, Christopher

    1992-01-01

    Data exploration systems apply machine learning techniques, multivariate statistical methods, information theory, and database theory to databases to identify significant relationships among the data and summarize information. The result of applying data exploration systems should be a better understanding of the structure of the data and a perspective of the data enabling an analyst to form hypotheses for interpreting the data. This paper argues that data exploration systems need a minimum amount of domain knowledge to guide both the statistical strategy and the interpretation of the resulting patterns discovered by these systems.

  1. Early Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Pickering, W. H.

    2002-01-01

    spacecraft could be made to travel to the moon and the planets. The Soviets sent the first lunar mission past the moon in January 1959. The third Luna, October 1959, took some photographs of the back side of the moon. The U.S. Mariner spacecraft, in December 1962, was the first spacecraft to fly close to another planet, Venus. Both countries continued to send increasingly complex missions to the planets of the solar system. The Soviets concentrated on Mars and Venus. The U.S. sent spacecraft to all of the planets except Pluto. Neptune was visited in August 1989.

  2. Exobiology in Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C. (Editor); Schwartz, Deborah E. (Editor); Huntington, Judith L. (Editor)

    1992-01-01

    A symposium, 'Exobiology in Solar System Exploration,' was held on 24-26 Aug. 1988. The symposium provided an in-depth investigation of the role of Exobiology in solar system exploration. It is expected that the symposium will provide direction for future participation of the Exobiology community in solar system exploration and alert the Planetary community to the continued importance of an Exobiology Flight Program. Although the focus of the symposium was primarily on Exobiology in solar system exploration missions, several ground based and Earth-orbital projects such as the Search for Extraterrestrial Intelligence, Gas Grain Facility, and Cosmic Dust Collection Facility represent upcoming research opportunities planned to accommodate the goals and objectives of the Exobiology community as well. This report contains papers for all but one of the presentations given at the symposium.

  3. Fission Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  4. Sorbent Structural Impacts Due to Humidity on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.

  5. Millimeter Source 13 S in R CrA:Observations of a Proto-Herbig Ae System Candidate

    NASA Astrophysics Data System (ADS)

    Saul, M.

    2015-08-01

    Compelled to observe a young, intermediate mass (IM) protostar candidate, we image velocity structure in a variety of molecular lines toward a strong millimeter continuum peak, MMS 13, in the young stellar object cluster R Corona Australis. We report the detection of N2H+ (1-0) and C34S (2-1) corresponding to a filamentary IM core coincident with a site of turbulent flow convergence and Spitzer infrared emission minimum. Several emission features including a central decay of turbulence, kinematic signatures of bulk infall, and strong winds support mass and age estimates in indicating the presence of a proto-Herbig Ae system in the region. Channeling of center velocity flow with turbulence amplification along the rotation axis drives wind generation in the system candidate.

  6. The Exploration Water Recovery System

    NASA Technical Reports Server (NTRS)

    ORourke, Mary Jane E.; Carter, Layne; Holder, Donald W.; Tomes, Kristin M.

    2006-01-01

    The Exploration Water Recovery System is designed towards fulfillment of NASA s Vision for Space Exploration, which will require elevation of existing technologies to higher levels of optimization. This new system, designed for application to the Exploration infrastructure, presents a novel combination of proven air and water purification technologies. The integration of unit operations is modified from that of the current state-of-the-art water recovery system so as to optimize treatment of the various waste water streams, contaminant loads, and flow rates. Optimization is achieved primarily through the removal of volatile organic contaminants from the vapor phase prior to their absorption into the liquid phase. In the current state-of-the-art system, the water vapor in the cabin atmosphere is condensed, and the volatile organic contaminants present in that atmosphere are absorbed into the aqueous phase. Removal of contaminants the5 occurs via catalytic oxidation in the liquid phase. Oxidation kinetics, however, dictate that removal of volatile organic contaminants from the vapor phase can inherently be more efficient than their removal from the aqueous phase. Taking advantage of this efficiency reduces the complexity of the water recovery system. This reduction in system complexity is accompanied by reductions in the weight, volume, power, and resupply requirements of the system. Vapor compression distillation technology is used to treat the urine, condensate, and hygiene waste streams. This contributes to the reduction in resupply, as incorporation of vapor compression distillation technology at this point in the process reduces reliance on the expendable ion exchange and adsorption media used in the current state-of-the-art water recovery system. Other proven technologies that are incorporated into the Exploration Water Recovery System include the Trace Contaminant Control System and the Volatile Removal Assembly.

  7. Exploration of the Solar System.

    ERIC Educational Resources Information Center

    Henderson, Arthur, Jr., Ed.; Grey, Jerry, Ed.

    This review is one of a series of assessments and reviews prepared in the public interest by the American Institute of Aeronautics and Astronautics (AIAA). The purpose of this review is to outline the potential achievements of solar system exploration and suggest a course of action which will maximize the rewards to mankind. A secondary purpose is

  8. Measurements of the ambient photoelectron spectrum from Atmosphere Explorer. I - AE-E measurements below 300 km during solar minimum conditions. II - AE-E measurements from 300 to 1000 km during solar minimum conditions

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Doering, J. P.; Potemra, T. A.; Brace, L. H.

    1980-01-01

    A study is presented of the ambient photoelectron spectrum below 300 km which includes 500 AE-E orbits observed from Dec. 13, 1975 to Feb. 24, 1976. The daytime photoelectron spectrum from 1 to 100 eV was illustrated by several spectra; high resolution 10-32 eV spectra show the widths of the photoelectron lines and the variation of the linewidth and intensity with altitude. The photoelectron flux below 300 km is constant over a period of several months; the photoelectron lines between 20 and 30 eV are very sharp when the total plasma density is low, but broaden at high altitudes as the plasma density builds up during the day. The photo-electron flux above 300 km had an intensity and energy spectrum characteristic of the 250-300 km region only in the presence of low plasma density at the satellite altitude. The flux at high altitudes was extremely variable 3 h after sunrise as a result of attenuation and energy loss to thermal plasma along the path of escaping electrons.

  9. Expert systems in seismic exploration

    SciTech Connect

    Denham, L.R.

    1985-02-01

    Artificial intelligence research has produced few practical results in most of its branches. However, expert systems in limited fields of expertise are potentially practical and cost-effective tools in many fields of exploration geophysics. Recent breakthroughs, such as writing expert systems in languages less exotic than Lisp, have made it possible to install a practical expert system on even the smallest computer. A recently published expert system written in Forth compiles a rule base into very compact code, and then uses it to reach decisions based on data supplied by the user. Such a system makes it possible for a small computer to be the geophysicist's advisor on many different subjects, because one expert system can use any number of rule bases. The expert system then becomes a practical tool for standardizing the decision-making process, even in comparatively trivial areas.

  10. [Determination of inorganic elements in the soil-grass-animal system by sealed microwave digestion ICP-AES].

    PubMed

    Xin, Guo-Sheng; Hu, Zheng; Zhou, Wei; Yang, Zhi-Qiang; Guo, Xu-Sheng; Long, Rui-Jun

    2010-02-01

    The contents of inorganic elements including K, Ca, Na, Mg, P, S, Fe, Cu, Mn, Zn, Mo, and Co in the soil-grass-animal mineral system from Qinghai Tibetan Plateau were determined by ICP-AES using high pressure system-sealed microwave digestion. The sample of soil was digested with HNO3-HF-H2O2 acids system, but others including pasture, animal fur, liver, and serum were digested with HNO3-H2O2 acids system. The operation would be simplified and the blank value would be decreased with the above acids systems. The results were proved to be reliable with the relative standard deviation being 0.271%-2.633% for Ca, 2.971%-4.854% for Co, 0.372%-2.874% for Cu, 0.600%-3.683% for Fe, 0.347%-2.829% for K, 0.626%-2.593% for Mg, 0.705%-4.828% for Mn, 2.946%-4.622% for Mo, 0.689%-3.621% for Na, 0.422%-3.890% for P, and 0.143%-4.622% for S, 0.166%-2.399% for Zn, and all of them were less than 5% for all the elements, and the recovery being 97.1%-101.4% for Ca, 93.5%-112.5% for Co, 95.2%-104.0% for Cu, 96.9%-104.2% for Fe, 96.1%-105.6% for K, 96.2%-102.8% for Mg, 91.5%-108.9% for Mn, 95.0%-113.5% for Mo, 95.2%-101.8% for Na, 94.7%-100.7% for P, 98.3%-108.4% for S, and 97.5%-102.0% for Zn by adding standard recovery experiment. The results of determination were proved that the method of sealed microwave digestion ICP-AES was sensitive, precise, easy to operate and rapid for the determination of inorganic elements in the soil-grass-animal mineral system, and could satisfy the sample examination request. The methods and results were meaningful to research on the soil-pasture-animal mineral system including the contents of mineral elements, the circulation of mineral elements, the interaction, and the application of mineral additive. PMID:20384164

  11. Asteroid Exploration with Autonomic Systems

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike

    2004-01-01

    NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. The prospective ANTS (Autonomous Nano Technology Swarm) mission comprises autonomous agents including worker agents (small spacecra3) designed to cooperate in asteroid exploration under the overall authoriq of at least one ruler agent (a larger spacecraft) whose goal is to cause science data to be returned to Earth. The ANTS team (ruler plus workers and messenger agents), but not necessarily any individual on the team, will exhibit behaviors that qualify it as an autonomic system, where an autonomic system is defined as a system that self-reconfigures, self-optimizes, self-heals, and self-protects. Autonomic system concepts lead naturally to realistic, scalable architectures rich in capabilities and behaviors. In-depth consideration of a major mission like ANTS in terms of autonomic systems brings new insights into alternative definitions of autonomic behavior. This paper gives an overview of the ANTS mission and discusses the autonomic properties of the mission.

  12. What do weak magnetic fields mean for magnetospheric accretion in Herbig AeBe star+disk systems?

    NASA Astrophysics Data System (ADS)

    Aarnio, A. N.; Monnier, J. D.; Harries, T. J.; Acreman, D. M.

    2014-08-01

    In the presently favored picture of star formation, mass is transferred from disk to star via magnetospheric accretion and out of the system via magnetically driven outflows. This magnetically mediated mass flux is a fundamental process upon which the evolution of the star, disk, and forming planetary system depends. Our current understanding of these processes is heavily rooted in young solar analogs, T Tauri Stars (TTS). We have come to understand recently, however, that the higher mass pre-main sequence (PMS) Herbig AeBe (HAeBe) stars have dramatically weaker dipolar fields than their lower mass counterparts. We present our current observational and theoretical efforts to characterize magnetospherically mediated mass transfer within HAeBe star+disk systems. We have gathered a rich spectroscopic and interferometric data set for several dozen HAeBe stars in order to measure accretion and mass loss rates, assess wind and magnetospheric accretion properties, and determine how spectral lines and interferometric visibilities are diagnostic of these processes. For some targets, we have observed spectral line variability and will discuss ongoing time-series spectroscopic efforts.

  13. Power systems for space exploration

    SciTech Connect

    Shipbaugh, C.; Solomon, K.A.

    1992-01-01

    The Outreach Program was designed to solicit creative ideas from academia, research institutions, private enterprises, and the general public and is intended to be helpful in defining promising technical areas and program paths for more detailed study. To the Outreach Program, a number of power system concepts were proposed. In conclusion, there are a number of advanced concepts for space power and propulsion sources that deserve study if we want to expand our ability to not only explore space, but to utilize it. Advanced nuclear concepts and power beaming concepts are two areas worthy of detailed assessments.

  14. Power systems for space exploration

    NASA Astrophysics Data System (ADS)

    Shipbaugh, Calvin; Solomon, Kenneth A.

    The Outreach Program was designed to solicit creative ideas from academia, research institutions, private enterprises, and the general public and is intended to be helpful in defining promising technical areas and program paths for more detailed study. To the Outreach Program, a number of power system concepts were proposed. In conclusion, there are a number of advanced concepts for space power and propulsion sources that deserve study if we want to expand our ability to not only explore space, but to utilize it. Advanced nuclear concepts and power beaming concepts are two areas worthy of detailed assessments.

  15. Biospheres and solar system exploration

    NASA Technical Reports Server (NTRS)

    Paine, Thomas O.

    1990-01-01

    The implications of biosphere technology is briefly examined. The exploration status and prospects of each world in the solar system is briefly reviewed, including the asteroid belt, the moon, and comets. Five program elements are listed as particularly critical for future interplanetary operations during the coming extraterrestrial century. They include the following: (1) a highway to Space (earth orbits); (2) Orbital Spaceports to support spacecraft assembly, storage, repair, maintenance, refueling, launch, and recovery; (3) a Bridge Between Worlds to transport cargo and crews to the moon and beyond to Mars; (4) Prospecting and Resource Utilization Systems to map and characterize the resources of planets, moons, and asteroids; and (5) Closed Ecology Biospheres. The progress in these five field is reviewed.

  16. Crystal structure and bonding in BaAu5Ga2 and AeAu4+xGa3-x (Ae = Ba and Eu): hexagonal diamond-type Au frameworks and remarkable cation/anion partitioning in the Ae-Au-Ga systems.

    PubMed

    Smetana, Volodymyr; Steinberg, Simon; Card, Nathan; Mudring, Anja-Verena; Miller, Gordon J

    2015-02-01

    Five new polar intermetallic compounds in the Ae-Ga-Au system (Ae = Ba, Eu), BaAu(5)Ga(2) (I), BaAu(4.3)Ga(2.7) (II), Ba(1.0)Au(4.5)Ga(2.4 )(III), EuAu(4.8)Ga(2.2) (IV), and Eu(1.1)Au(4.4)Ga(2.2) (V), have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. I crystallizes in the orthorhombic crystal system with a large unit cell [Pearson symbol oP64; Pnma, Z = 8, a = 8.8350(5) Å, b = 7.1888(3)Å, c = 20.3880(7) Å], whereas all other compounds are hexagonal [hP24; P6̅2m, Z = 3, a = 8.54-8.77(1) Å, c = 7.19-7.24(1) Å]. Both structures contain mutually orthogonal layers of Au(6) hexagons in chair and boat conformations, resulting in a hexagonal diamond-like network. Ae atoms and additional (Au/Ga)(3) groups are formally encapsulated by (Au(6))(2) distorted hexagonal prisms formed of three edge-sharing hexagons in the boat conformation or, alternatively, lie between two Au(6) hexagons in the chair conformation. The (Au/Ga)(3) groups can be substituted by Ae atoms in some of the hexagonal structures with no change to the structural symmetry. Tight-binding electronic structure calculations using linear-muffin-tin-orbital methods on idealized models "BaAu(5)Ga(2)" and "BaAu(4)Ga(3)" show both compounds to be metallic with evident pseudogaps near the corresponding Fermi levels. The integrated crystal orbital Hamilton populations are dominated by Au-Au and Au-Ga orbital interactions, although Ba-Au and Ba-Ga contributions are significant. Furthermore, Au-Au interactions vary considerably along different directions in the unit cells, with the largest values for the hexagons in the boat conformation and the lowest values for those in the chair conformation. II revealed that partial substitution of Au atoms in the hexagonal diamond net by a post-transition element (Ga) may occur in this family, whereas the sizes of the (Au/Ga)(3) groups and strong Ba-Au covalent interactions allow for their mutual replacement in the voids. PMID:25494103

  17. Exploration Medical System Demonstration Project

    NASA Technical Reports Server (NTRS)

    Chin, D. A.; McGrath, T. L.; Reyna, B.; Watkins, S. D.

    2011-01-01

    A near-Earth Asteroid (NEA) mission will present significant new challenges including hazards to crew health created by exploring a beyond low earth orbit destination, traversing the terrain of asteroid surfaces, and the effects of variable gravity environments. Limited communications with ground-based personnel for diagnosis and consultation of medical events require increased crew autonomy when diagnosing conditions, creating treatment plans, and executing procedures. Scope: The Exploration Medical System Demonstration (EMSD) project will be a test bed on the International Space Station (ISS) to show an end-to-end medical system assisting the Crew Medical Officers (CMO) in optimizing medical care delivery and medical data management during a mission. NEA medical care challenges include resource and resupply constraints limiting the extent to which medical conditions can be treated, inability to evacuate to Earth during many mission phases, and rendering of medical care by a non-clinician. The system demonstrates the integration of medical technologies and medical informatics tools for managing evidence and decision making. Project Objectives: The objectives of the EMSD project are to: a) Reduce and possibly eliminate the time required for a crewmember and ground personnel to manage medical data from one application to another. b) Demonstrate crewmember's ability to access medical data/information via a software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities. d) Develop a common data management architecture that allows for scalability, extensibility, and interoperability of data sources and data users. e) Lower total cost of ownership for development and sustainment of peripheral hardware and software that use EMSD for data management f) Provide better crew health via the reduction in crew errors, crew time, and ground time.

  18. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies rely largely on sending environmental samples back to Earth. The LSS project is developing onboard analysis capabilities that will replace the need to return air and water samples from space for ground analysis. Air Revitalization- The air revitalization task is comprised of work in carbon dioxide removal, oxygen generation and recovery and trace contamination and particulate control. The CO2 Removal and associated air drying development efforts under the LSS project are focused both on improving the current SOA technology on the ISS and assessing and examining the viability of other sorbents and technologies available in academia and industry. The Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an effort to supply O2 to the crew at the required conditions, to recover O2 from metabolic CO2, and to recycle recovered O2 back to the cabin environment. Current state-of-the-art oxygen generation systems aboard space station are capable of generating or recovering approximately 40% of required oxygen; for exploration missions this percentage needs to be greatly increased. A spacecraft cabin trace contaminant and particulate control system serves to keep the environment below the spacecraft maximum allowable concentration (SMAC) for chemicals and particulates. Both passive (filters) and active (scrubbers) methods contribute to the overall TC & PC design. Work in the area of trace contamination and particulate control under the LSS project is focused on making improvements to the SOA TC & PC systems on ISS to improve performance and reduce consumables. Wastewater Processing and Water Management- A major goal of the LSS project is the development of water recovery systems to support long duration human exploration beyond LEO. Current space station wastewater processing and water management systems distill urine and wastewater to recover water from urine and humidity condensate in the spacecraft at a approximately 74% recovery rate. For longer, farther missions into deep space, that recovery rate must be greatly increased so that astronauts can journey for months without resupply cargo ships from Earth.

  19. NASA Center for Intelligent Robotic Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE.

  20. AE: ACIS Extract

    NASA Astrophysics Data System (ADS)

    Broos, Patrick; Townsley, Leisa; Getman, Konstantin; Bauer, Franz

    2012-03-01

    ACIS Extract (AE), written in the IDL language, provides innovative and automated solutions to the varied challenges found in the analysis of X-ray data taken by the ACIS instrument on NASA's Chandra observatory. AE addresses complications found in many Chandra projects: large numbers of point sources (hundreds to several thousand), faint point sources, misaligned multiple observations of an astronomical field, point source crowding, and scientifically relevant diffuse emission. AE can perform virtually all the data processing and analysis tasks that lie between Level 2 ACIS data and publishable LaTeX tables of point-like and diffuse source properties and spectral models.

  1. Hormonal imprinting of the microsomal enzyme system in adults. Microsomal activity change in response to estrogen (DES, AE) treatment during liver regeneration.

    PubMed

    Csaba, G; Szeberényi, S Z; Dobozy, O

    1987-10-01

    Estrogen (diethylstilbestrol-DES or allylestrenol-AE) treatment applied to rats of both sexes during liver regeneration following subtotal hepatectomy had a long lasting influence on the inducibility by phenobarbital of the hepatic microsomal enzyme system of the females. The enzyme activities of the DES-treated females differed hardly from the baseline two weeks after treatment, but increased almost two-fold over control on induction with phenobarbital 5 and 7 weeks later. The AE-treated females showed a smaller although yet significant, enzyme activity increase only at 7 weeks. The influence of estrogens was negligible, and inhibitory rather than stimulatory, in the males. It appears that, in appropriate conditions, enzyme imprinting can also be induced in adult organisms, since, in all probability, availability for imprinting depends not so much on the age of the organism, as on the developmental state of the target cell. PMID:3428868

  2. Computer Simulation and Modeling of CO2 Removal Systems for Exploration 2013-2014

    NASA Technical Reports Server (NTRS)

    Coker, R.; Knox, J.; Gomez, C.

    2015-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project and the follow-on Life Support Systems (LSS) project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper will describes the testing and 1-D modeling of the combined water desiccant and carbon dioxide sorbent subsystems of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  3. Mineralogical basis for the interpretation of multi-element (ICP-AES), oxalic acid, and aqua regia partial digestions of stream sediments for reconnaissance exploration geochemistry

    USGS Publications Warehouse

    Church, S.E.; Mosier, E.L.; Motooka, J.M.

    1987-01-01

    We have applied partial digestion procedures, primarily oxalic acid and aqua regia leaches, to several regional geochemical reconnaissance studies carried out using Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) analytical methods. We have chosen to use these two acids because the oxalic acid primarily attacks those compounds formed during secondary geochemical processes, whereas aqua regia will digest the primary sulfide phases as well as secondary phases. Application of the partial digestion technique has proven superior to total digestion because the concentration of metals in hydromorphic compounds and the sulfides is enhanced relative to the metals bound in the unattacked silicate phases. The aqua regia digestion attacks and leaches metals from the mafic chain silicates and the phyllosilicates (coordination number of VI or more), yielding a characteristic geochemical signature, but does not leach appreciable metal from many other silicates. In order to interpret the results from these leach studies, we have initiated an investigation of a large suite of hand-picked mineral separates. The study includes analyses of about two hundred minerals representing the common rock-forming minerals as well as end-member compositions of various silicates, oxides, sulfides, carbonates, sulfates, and some vanadates, molybdates, tungstates, and phosphates. The objective of this study is to evaluate the effect of leaching by acids of particular lattice sites in specific mineral structures. ?? 1987.

  4. Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Barton, Richard J.; Wagner, Raymond S.; Lansdowne, Chatwin

    2014-01-01

    The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight.

  5. Venus Exploration opportunities within NASA's Solar System Exploration roadmap

    NASA Technical Reports Server (NTRS)

    Balint, Tibor; Thompson, Thomas; Cutts, James; Robinson, James

    2006-01-01

    Science goals to understand the origin, history and environment of Venus have been driving international space exploration missions for over 40 years. Past missions include the Magellan and Pioneer-Venus missions by the US; the Venera program by the USSR; and the Vega missions through international cooperation. Furthermore, the US National Research Council (NRC), in the 2003 Solar System Exploration (SSE) Decadal Survey, identified Venus as a high priority target, thus demonstrating a continuing interest in Earth's sister planet. In response to the NRC recommendation, the 2005 NASA SSE Roadmap included a number of potential Venus missions arching through all mission classes from small Discovery, to medium New Frontiers and to large Flagship class missions. While missions in all of these classes could be designed as orbiters with remote sensing capabilities, the desire for scientific advancements beyond our current knowledge - including what we expect to learn from the ongoing ESA Venus Express mission - point to in-situ exploration of Venus.

  6. Anarchy in AE Aquarii

    NASA Astrophysics Data System (ADS)

    Welsh, W. F.

    Interest in AE Aqr remains high, as evidenced by the lively discussion that took place during the workshop. In this contribution I briefly remark on the results I presented at the workshop, then address topics that were raised during the discussion. I attempt to preserve the spirit and flavor of that discussion.

  7. Galileo: exploration of Jupiter's system

    SciTech Connect

    Johnson, T.V.; Yeates, C.M.; Colin, L.; Fanale, F.P.; Frank, L.; Hunten, D.M.

    1985-06-01

    The scientific objectives of the Galileo mission to the Jovian system is presented. Topics discussed include the history of the project, our current knowledge of the system, the objectives of interrelated experiments, mission design, spacecraft, and instruments. The management, scientists, and major contractors for the project are also given.

  8. Galileo: Exploration of Jupiter's system

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Yeates, C. M.; Colin, L.; Fanale, F. P.; Frank, L.; Hunten, D. M.

    1985-01-01

    The scientific objectives of the Galileo mission to the Jovian system is presented. Topics discussed include the history of the project, our current knowledge of the system, the objectives of interrelated experiments, mission design, spacecraft, and instruments. The management, scientists, and major contractors for the project are also given.

  9. SIM_EXPLORE: Software for Directed Exploration of Complex Systems

    NASA Technical Reports Server (NTRS)

    Burl, Michael; Wang, Esther; Enke, Brian; Merline, William J.

    2013-01-01

    Physics-based numerical simulation codes are widely used in science and engineering to model complex systems that would be infeasible to study otherwise. While such codes may provide the highest- fidelity representation of system behavior, they are often so slow to run that insight into the system is limited. Trying to understand the effects of inputs on outputs by conducting an exhaustive grid-based sweep over the input parameter space is simply too time-consuming. An alternative approach called "directed exploration" has been developed to harvest information from numerical simulators more efficiently. The basic idea is to employ active learning and supervised machine learning to choose cleverly at each step which simulation trials to run next based on the results of previous trials. SIM_EXPLORE is a new computer program that uses directed exploration to explore efficiently complex systems represented by numerical simulations. The software sequentially identifies and runs simulation trials that it believes will be most informative given the results of previous trials. The results of new trials are incorporated into the software's model of the system behavior. The updated model is then used to pick the next round of new trials. This process, implemented as a closed-loop system wrapped around existing simulation code, provides a means to improve the speed and efficiency with which a set of simulations can yield scientifically useful results. The software focuses on the case in which the feedback from the simulation trials is binary-valued, i.e., the learner is only informed of the success or failure of the simulation trial to produce a desired output. The software offers a number of choices for the supervised learning algorithm (the method used to model the system behavior given the results so far) and a number of choices for the active learning strategy (the method used to choose which new simulation trials to run given the current behavior model). The software also makes use of the LEGION distributed computing framework to leverage the power of a set of compute nodes. The approach has been demonstrated on a planetary science application in which numerical simulations are used to study the formation of asteroid families.

  10. Exploring the Distant Solar System

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Brown, M. E.

    2009-09-01

    Despite the mounting evidence of an outer edge to the Kuiper belt, several bodies well outside of 50 AU have been discovered including orbits dynamically detached from Neptune. Studying this unexplored population of primordial bodies beyond the Kuiper belt provides a unique opportunity to study the creation and evolution of the early solar system. In particular, the distant solar system object Sedna exists in a region far away from the Kuiper belt and must have been emplaced in its orbit at an earlier time when massive unknown bodies were present in or near the solar system. The orbits of these distant Sedna-like bodies are dynamically frozen and serve as a fossilized record of their formation. We have performed a deep sky survey to search for the most distant bodies in the solar system. With the Subaru Prime Focus Camera (Suprime-Cam) on the 8.2-m Subaru telescope we have surveyed 43 square degrees within 50 degrees of the ecliptic down to a limiting R magnitude of 25.5. Using a two night baseline, our survey is sensitive to motion out to distances of 1200 AU. We present the results of this survey. We examine the radial distribution of the Kuiper belt and discuss the implications for the extended scattered disk and a distant Sedna-like population beyond the Kuiper belt.

  11. Communication System Architecture for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Braham, Stephen P.; Alena, Richard; Gilbaugh, Bruce; Glass, Brian; Norvig, Peter (Technical Monitor)

    2001-01-01

    Future human missions to Mars will require effective communications supporting exploration activities and scientific field data collection. Constraints on cost, size, weight and power consumption for all communications equipment make optimization of these systems very important. These information and communication systems connect people and systems together into coherent teams performing the difficult and hazardous tasks inherent in planetary exploration. The communication network supporting vehicle telemetry data, mission operations, and scientific collaboration must have excellent reliability, and flexibility.

  12. Geologic exploration of solar system

    SciTech Connect

    Wood, C.A.

    1987-11-01

    The processes that must have operated on the early Earth have been deduced from evidence from ancient surfaces of the Moon and planets. In particular, such comparative studies have demonstrated that only two geologic processes have been widespread throughout the history of the solar system: impact cratering and volcanism. Impact craters have formed throughout solar system history, indeed the planets themselves were formed by the accumulation of millions of smaller planetesimals, each of which formed an impact crater. Earth could not have escaped the intense bombardment that churned the surfaces of Mars, Mercury, and the Moon. The impact cratering rate dramatically declined about 3.9 billion years ago, but craters 10 km across still form on the Earth on the average of one every 140,000 years, and the 1.5-km wide Meteor Crater in Arizona formed only about 25,000 years ago. Volcanic flows and cones have been observed on nearly all planets and moons in the solar system; the variety and duration of volcanism are directly related to planet mass. Thus, a relatively large planet like the Earth has a wide range of volcanic morphologies and compositions, with activity continuing throughout Earth history. In contrast, the smaller Moon produced a narrow compositional range of basaltic lava flows, with most of the lavas having erupted about 3 billion years ago. Water and sulfur volcanism have also been discovered on the cold satellites of the outer solar system, thus expanding their terrestrial concept of volcanism. Many other processes and materials exist in the solar system, but the Earth remains unique in its richness of resources to support humans. Discovery and exploitation of extraterrestrial resources are beginning and must be greatly increased to prepare for their future as a space-faring race.

  13. Exploring Earth Systems Through STEM

    NASA Astrophysics Data System (ADS)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2015-04-01

    During the 2010 school year, grade 8 science teachers at Dwight D. Eisenhower Middle School in Wyckoff, New Jersey, began using the draft of A Framework for K-12 Science Education to transition to the Next Generation Science Standards. In an evolutionary process of testing and revising, teachers work collaboratively to develop problem-based science, technology, engineering, and mathematics (STEM) units that integrate earth science, physical science, and life science topics. Students explore the interconnections of Earth's atmosphere, lithosphere, hydrosphere, and biosphere through problem-based learning. Problem-based learning engages students in (1) direct observations in the field and classroom, (2) collection and analysis of data from remote sensors and hand-held sensors, and (3) analysis of physical, mathematical, and virtual models. Students use a variety of technologies and applications in their investigations, for example iPad apps, Google Classroom, and Vernier sensors. Data from NASA, NOAA, non-government organizations, and scientific research papers inspire student questions and spark investigations. Teachers create materials and websites to support student learning. Teachers curate reading, video, simulations, and other Internet resources for students. Because curriculum is standards-based as opposed to textbook-based, teacher participation in workshops and institutes frequently translates into new or improved study units. Recent programs include Toyota International Teacher Program to Costa Rica, Japan Society Going Global, Siemens STEM Academy, U.S. Naval Academy SET Sail, and NJSTA Maitland P. Simmons Memorial Award Summer Institute. Unit themes include weather and climate, introduction to general chemistry and biochemistry, and cells and heredity. Each if the three 12-week units has embedded engineering challenges inspired by current events, community needs, and/or the work of scientists. The unit segments begin with a problem, progress to observations and data collection, and end with an engineering application. English language arts and mathematics skills are developed through performance assessments that include written arguments that require students to state a claim and support the claim with evidence, analysis, and reasoning. Student selected capstone projects are completed during the final three weeks of the school year. Partnerships with universities, research scientists, and science centers are essential to the development of unit challenges. Collaborative projects have included studies of iron cycling in the Ross Sea with scientists from Rutgers University, climate and climate change using NASA data and resources from Liberty Science Center, human and natural impacts on endangered species with San Diego Zoo Institute for Conservation Research, and air quality monitoring with the University of Northern Iowa. Grant funds have supported student research projects involving air quality improvement, urban heat island mitigation, alternative energies, and sustainability.

  14. Water Recovery Systems for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Pickering, Karen D.

    2007-01-01

    As NASA prepares for the Vision for Space Exploration, advances in technology for water recovery systems are necessary to enable future missions. This paper examines the proposed water recovery systems for the initial Constellation exploration missions as well as the capability gaps that exist in the current technology portfolio. We discuss how these gaps will be addressed with future technology development. In addition, the paper reviews how the water recovery system matures throughout the sequence of planned exploration missions, to ultimately support a 180-day lunar mission.

  15. Indonesian petroleum systems and exploration efficiency

    SciTech Connect

    Howes, J.V.C.; Tisnawijaya, S.

    1996-12-31

    The Republic of Indonesia has over 40 productive petroleum systems and more than 100 speculative petroleum systems. Since the first oil discoveries in the 1880`s, cumulative discovered ultimately recoverable petroleum resources in Indonesia have reached 50 billion barrels of oil equivalent. There are eight principal producing areas and nearly 1,000 oil and gas fields. Most of these resources have been found in the last 50 years. Successful exploration continues; at least two discoveries per year are made which exceed 50 million barrels of oil equivalent reserves. Productive/petroleum system source types are split almost equally between marine and deltaic-lacustrine facies. The majority of source rocks are Tertiary in age; Mesozoic source rocks are restricted to Eastern Indonesia. Discovery process analysis indicates generally high exploration efficiency in Indonesia. An upwardly convex discovery process curve typifies many systems, reflecting both exploration efficiency and maturity; this pattern is well displayed in areas such as Central Sumatra and Salawati. A much more random or straight line process curve, as seen in West Natuna, occurs where more complex petroleum systems have inhibited exploration efficiency. An inverted, or concave upward curve, seen in some Java petroleum systems, is probably economically driven, related to development of domestic Indonesian gas markets. Several curves, such as those for the North Sumatra:Bampo-Peutu and East Kalimantan:Tanjung systems are dominated by single fields. Different exploration phases can be recognized in many systems, each phase having its own specific exploration statistics.

  16. Indonesian petroleum systems and exploration efficiency

    SciTech Connect

    Howes, J.V.C.; Tisnawijaya, S. )

    1996-01-01

    The Republic of Indonesia has over 40 productive petroleum systems and more than 100 speculative petroleum systems. Since the first oil discoveries in the 1880's, cumulative discovered ultimately recoverable petroleum resources in Indonesia have reached 50 billion barrels of oil equivalent. There are eight principal producing areas and nearly 1,000 oil and gas fields. Most of these resources have been found in the last 50 years. Successful exploration continues; at least two discoveries per year are made which exceed 50 million barrels of oil equivalent reserves. Productive petroleum system source types are split almost equally between marine and deltaic-lacustrine facies. The majority of source rocks are Tertiary in age; Mesozoic source rocks are restricted to Eastern Indonesia. Discovery process analysis indicates generally high exploration efficiency in Indonesia. An upwardly convex discovery process curve typifies many systems, reflecting both exploration efficiency and maturity; this pattern is well displayed in areas such as Central Sumatra and Salawati. A much more random or straight line process curve, as seen in West Natuna, occurs where more complex petroleum systems have inhibited exploration efficiency. An inverted, or concave upward curve, seen in some Java petroleum systems, is probably economically driven, related to development of domestic Indonesian gas markets. Several curves, such as those for the North Sumatra:Bampo-Peutu and East Kalimantan:Tanjung systems are dominated by single fields. Different exploration phases can be recognized in many systems, each phase having its own specific exploration statistics.

  17. Cascade Helps JPL Explore the Solar System

    NASA Technical Reports Server (NTRS)

    Burke, G. R.

    1996-01-01

    At Jet Propulsion Laboratory (JPL), we are involved with the unmanned exploration of the solar system. Unmanned probes observe the planet surfaces using radar and optical cameras to take a variety of measurements.

  18. Bio-Inspired Engineering of Exploration Systems

    NASA Technical Reports Server (NTRS)

    Thakoor, Sanita

    2003-01-01

    The multidisciplinary concept of "bioinspired engineering of exploration systems" (BEES) is described, which is a guiding principle of the continuing effort to develop biomorphic explorers as reported in a number of articles in the past issues of NASA Tech Briefs. The intent of BEES is to distill from the principles found in successful nature-tested mechanisms of specific crucial functions that are hard to accomplish by conventional methods but that are accomplished rather deftly in nature by biological organisms. The intent is not just to mimic operational mechanisms found in a specific biological organism but to imbibe the salient principles from a variety of diverse bio-organisms for the desired crucial function. Thereby, we can build explorer systems that have specific capabilities endowed beyond nature, as they will possess a combination of the best nature-tested mechanisms for that particular function. The approach consists of selecting a crucial function, for example, flight or some selected aspects of flight, and develop an explorer that combines the principles of those specific attributes as seen in diverse flying species into one artificial entity. This will allow going beyond biology and achieving unprecedented capability and adaptability needed in encountering and exploring what is as yet unknown. A classification of biomorphic flyers into two main classes of surface and aerial explorers is illustrated in the figure, with examples of a variety of biological organisms that provide the inspiration in each respective subclass. Such biomorphic explorers may possess varied mobility modes: surface-roving, burrowing, hopping, hovering, or flying, to accomplish surface, subsurface, and aerial exploration. Preprogrammed for a specific function, they could serve as one-way communicating beacons, spread over the exploration site, autonomously looking for/at the targets of interest. In a hierarchical organization, these biomorphic explorers would report to the next level of exploration mode (say, a large conventional lander/rover) in the vicinity. A widespread and affordable exploration of new/hazardous sites at lower cost and risk would thus become possible by utilizing a faster aerial flyer to cover long ranges and deploying a variety of function- specific, smaller biomorphic explorers for distributed sensing and local sample acquisition. Several conceptual biomorphic missions for planetary and terrestrial exploration applications have been illustrated in "Surface-Launched Explorers for Reconnaissance/ Scouting" (NPO-20871), NASA Tech Briefs, Vol. 26, No. 4 (April, 2002), page 69 and "Bio-Inspired Engineering of Exploration Systems," Journal of Space Mission Architecture, Issue 2, Fall 2000, pages 49-79.

  19. In situ measurements of plasma drift velocity and enhanced NO/+/ in the auroral electrojet by the Bennett spectrometer on AE-C. [Atmosphere Explorer-C satellite

    NASA Technical Reports Server (NTRS)

    Brinton, H. C.

    1975-01-01

    Simultaneous measurements of ion composition and plasma drift velocity by the Bennett mass spectrometer on the Atmosphere Explorer-C satellite reveal a direct correlation between enhancements in NO(+) concentration and ion drift velocity in the southern auroral oval. Low altitude (137 to 250 km) data obtained between 1700 and 2400 hr magnetic local time on October 22, 1974, reveal a region of westward plasma flow at velocities up to 1.3 km/s between 62 and 68 deg invariant latitude, with corresponding NO(+) enhancements of up to a factor of 20. A narrow region of reverse flow at about 0.9 km/s was also measured. These drift observations are consistent with convective flow patterns derived from electric field measurements, and their correlation with NO(+) appears to support the suggestion that NO(+) enhancements would be expected in regions of drift owing to the dependence on ion energy of the reaction O(+) + N2 yields NO(+) + N.

  20. Petrologic Constraints on Amorphous and Crystalline Magnesium Silicates: Dust Formation and Evolution in Selected Herbig Ae/Be Systems

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A.

    2013-07-01

    The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and "amorphous silicates with olivine and pyroxene stoichiometry" around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting "astronomical nomenclature" and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the "Principle of Actualism" that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

  1. PETROLOGIC CONSTRAINTS ON AMORPHOUS AND CRYSTALLINE MAGNESIUM SILICATES: DUST FORMATION AND EVOLUTION IN SELECTED HERBIG Ae/Be SYSTEMS

    SciTech Connect

    Rietmeijer, Frans J. M.; Nuth, Joseph A.

    2013-07-01

    The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and ''amorphous silicates with olivine and pyroxene stoichiometry'' around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting ''astronomical nomenclature'' and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the ''Principle of Actualism'' that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite {+-} tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

  2. Solar System Exploration, 1995-2000

    NASA Technical Reports Server (NTRS)

    Squyres, S.; Varsi, G.; Veverka, J.; Soderblom, L.; Black, D.; Stern, A.; Stetson, D.; Brown, R. A.; Niehoff, J.; Squibb, G.

    1994-01-01

    Goals for planetary exploration during the next decade include: (1) determine how our solar system formed, and understand whether planetary systems are a common phenomenon through out the cosmos; (2) explore the diverse changes that planets have undergone throughout their history and that take place at present, including those that distinguish Earth as a planet; (3) understand how life might have formed on Earth, whether life began anywhere else in the solar system, and whether life (including intelligent beings) might be a common cosmic phenomenon; (4) discover and investigate natural phenomena that occur under conditions not realizable in laboratories; (5) discover and inventory resources in the solar system that could be used by human civilizations in the future; and (6) make the solar system a part of the human experience in the same way that Earth is, and hence lay the groundwork for human expansion into the solar system in the coming century. The plan for solar system exploration is motivated by these goals as well as the following principle: The solar system exploration program will conduct flight programs and supporting data analysis and scientific research commensurate with United States leadership in space exploration. These programs and research must be of the highest scientific merit, they must be responsive to public excitement regarding planetary exploration, and they must contribute to larger national goals in technology and education. The result will be new information, which is accessible to the public, creates new knowledge, and stimulates programs of education to increase the base of scientific knowledge in the general public.

  3. Modular, Intelligent Power Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Button, Robert

    2006-01-01

    NASA's new Space Exploration Initiative demands that vehicles, habitats, and rovers achieve unprecedented levels of reliability, safety, effectiveness, and affordability. Modular and intelligent electrical power systems are critical to achieving those goals. Modular electrical power systems naturally increase reliability and safety through built-in fault tolerance. These modular systems also enable standardization across a multitude of systems, thereby greatly increasing affordability of the programs. Various technologies being developed to support this new paradigm for space power systems will be presented. Examples include the use of digital control in power electronics to enable better performance and advanced modularity functions such as distributed, master-less control and series input power conversion. Also, digital control and robust communication enables new levels of power system control, stability, fault detection, and health management. Summary results from recent development efforts are presented along with expected future technology development needs required to support NASA's ambitious space exploration goals.

  4. Development of an Exploration-Class Cascade Distillation System: Flight Like Prototype Design Status

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam C.; Callahan, Michael R.

    2016-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. The CDS provides a similar function to the state of the art (SOA) vapor compressor distiller (VCD) currently employed on the International Space Station, but its control scheme and ancillary components are judged to be more straightforward and simpler to implement into a more reliable and efficient system. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). A preliminary design fo the CDS 2.0 was presented to the project in September 2014. Following this review, detailed design of the system continued. The existing ground test prototype was used as a platform to demonstrate key 2.0 design and operational concepts to support this effort and mitigate design risk. A volumetric prototype was also developed to evaluate the packaging design for operability and maintainability. The updated system design was reviewed by the AES LSS Project and other key stakeholders in September 2015. This paper details the status of the CDS 2.0 design.

  5. Clinical epidemiology of human AE in Europe.

    PubMed

    Vuitton, D A; Demonmerot, F; Knapp, J; Richou, C; Grenouillet, F; Chauchet, A; Vuitton, L; Bresson-Hadni, S; Millon, L

    2015-10-30

    This review gives a critical update of the situation regarding alveolar echinococcosis (AE) in Europe in humans, based on existing publications and on findings of national and European surveillance systems. All sources point to an increase in human cases of AE in the "historic endemic areas" of Europe, namely Germany, Switzerland, Austria and France and to the emergence of human cases in countries where the disease had never been recognised until the end of the 20th century, especially in central-eastern and Baltic countries. Both increase and emergence could be only due to methodological biases; this point is discussed in the review. One explanation may be given by changes in the animal reservoir of the parasite, Echinococcus multilocularis (increase in the global population of foxes in Europe and its urbanisation, as well as a possible increased involvement of pet animals as definitive infectious hosts). The review also focuses onto 2 more original approaches: (1) how changes in therapeutic attitudes toward malignant and chronic inflammatory diseases may affect the epidemiology of AE in the future in Europe, since a recent survey of such cases in France showed the emergence of AE in patients with immune suppression since the beginning of the 21st century; (2) how setting a network of referral centres in Europe based on common studies on the care management of patients might contribute to a better knowledge of AE epidemiology in the future. PMID:26346900

  6. Overview: Exobiology in solar system exploration

    NASA Technical Reports Server (NTRS)

    Carle, Glenn C.; Schwartz, Deborah E.

    1992-01-01

    In Aug. 1988, the NASA Ames Research Center held a three-day symposium in Sunnyvale, California, to discuss the subject of exobiology in the context of exploration of the solar system. Leading authorities in exobiology presented invited papers and assisted in setting future goals. The goals they set were as follows: (1) review relevant knowledge learned from planetary exploration programs; (2) detail some of the information that is yet to be obtained; (3) describe future missions and how exobiologists, as well as other scientists, can participate; and (4) recommend specific ways exobiology questions can be addressed on future exploration missions. These goals are in agreement with those of the Solar System Exploration Committee (SSEC) of the NASA Advisory Council. Formed in 1980 to respond to the planetary exploration strategies set forth by the Space Science Board of the National Academy of Sciences' Committee on Planetary and Lunar Exploration (COMPLEX), the SSEC's main function is to review the entire planetary program. The committee formulated a long-term plan (within a constrained budget) that would ensure a vital, exciting, and scientifically valuable effort through the turn of the century. The SSEC's goals include the following: determining the origin, evolution, and present state of the solar system; understanding Earth through comparative planetology studies; and revealing the relationship between the chemical and physical evolution of the solar system and the appearance of life. The SSEC's goals are consistent with the over-arching goal of NASA's Exobiology Program, which provides the critical framework and support for basic research. The research is divided into the following four elements: (1) cosmic evolution of the biogenic compounds; (2) prebiotic evolution; (3) origin and early evolution of life; and (4) evolution of advanced life.

  7. Integrated Systems Health Management for Space Exploration

    NASA Technical Reports Server (NTRS)

    Uckun, Serdar

    2005-01-01

    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.

  8. The Solar System: Recent Exploration Results

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The solar system has been visited by space probes, ranging from the Mariner Mercury-Venus mission exploring inward toward the sun, and continuing through the Voyager probes out into interstellar space and (on its way now) the New Horizons probe to Pluto and the Kuiper belt. This talk examines what we know of the planets of the solar system from probes, and talks about where we will go from here.

  9. Future exploration of the outer solar system

    NASA Astrophysics Data System (ADS)

    Johnson, T.

    Exploration of the outer solar system is constrained by vast distances, consequent communications and light time limitations, power, and long flight times. Early reconnaissance missions (Pioneer 10 and 11, Voyager 1 and 2) employed relatively fast trajectories resulting in very fast fly-bys. The next generation of exploration (Galileo and Cassini) has been characterized by spacecraft with large propellant systems and relatively slow (gravity assist) trajectories needed energetically to achieve orbit around Jupiter and Saturn. All of these spacecraft utilized radioisotope thermoelectric generators for reliable, but modest power. Future exploration priorities require highly capable spacecraft systems that go into orbit around the primary planet and then perform multiple tasks (e.g. orbiting individual moons and delivering surface and atmospheric scientific probes). To achieve major scientific advances will require significant increases in communication rates, improved instrumentation and high power available for experiments. Fission-powered nuclear electric propulsion is being studied to meet these requirements. A Jupiter Icy Moons Orbiter is proposed as the first of this class of new, highly capable missions. The paper will review the scientific rationale for the JIMO mission and prospects for applying these techniques to exploration of Saturn and the other outer planets.

  10. A System of Systems Approach for Martian Exploration

    NASA Astrophysics Data System (ADS)

    Semrud, E. B.; Evans, B. W.; Fredericks, B.; Wells, D.

    2012-06-01

    A system of systems is designed for characterization of the Martian atmosphere and exploration of lava tubes in preparation for human colonization. Multiple expendable deployable sensor packages ensure mission success with a high level of redundancy.

  11. The Small Explorer power system electronics

    NASA Technical Reports Server (NTRS)

    Dakermanji, G.; Carlsson, U.; Temkin, D.; Culver, H.; Rodriguez, G. E.; Ahmad, A.

    1991-01-01

    The power system electronics for the NASA Goddard Space Flight Center Small Explorer Satellites are intended to satisfy various planned missions. The selected topology is a direct energy transfer (DET) system with the battery connected directly to the bus. The shunt control technique is a linear sequential full shunt which provides a simple solar array interface and can support both 3 axis stabilized and spinner satellites. In addition, it can meet stringent electromagnetic interference requirements which are expected on some Small Explorer Missions. The Power Systems Electronics (PSE) performs battery charge control using both temperature compensated charge/discharge ratio ampere hour integration and voltage-temperature control. The PSE includes all the circuits needed to perform telemetry and command functions using an optical MIL-STD-1773 interface.

  12. Matt Rogers on AES Energy Storage

    ScienceCinema

    Rogers, Matt

    2013-05-29

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

  13. Matt Rogers on AES Energy Storage

    SciTech Connect

    Rogers, Matt

    2010-01-01

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

  14. Exotic propulsion systems - A space exploration imperative

    NASA Astrophysics Data System (ADS)

    Haloulakos, V. E.

    1992-07-01

    Treatment is given to the need for and use of unusual propulsion systems in the forthcoming development of space vehicles. The requirements of lunar and Martian outposts are set forth, and the expected delta velocities, vehicle masses, and specific energy levels are listed. Exotic propulsion systems are considered that can provide the specific impulse levels needed for the scenarios discussed. Discussed are antimatter propulsion, teleportation, and antigravity machines, and the theoretical and practical implications of their development and use are mentioned. The use of antiprotons in medical treatment and materials processing is explained and extended to the propulsion application. The paper demonstrates the potential of exotic propulsion systems to contribute to space exploration.

  15. Visually Exploring Worldwide Incidents Tracking System Data

    SciTech Connect

    Chhatwal, Shree D.; Rose, Stuart J.

    2008-01-27

    This paper presents refinements of an existing analytic tool, Juxter, which was developed for the visualization of multi-dimensional categorical data, and explores its application to support exploration and interaction with open source Worldwide Incidents Tracking System (WITS) data. The volume and complexity of data available on terrorism makes it hard to analyze. Information systems that can efficiently and effectively collect, access, analyze, and report terrorist incidents can help in further studies focused on preventing, detecting, and responding to terrorist attacks. Existing interfaces to the WITS data support advanced search capabilities, and geolocation but lack functionality for identifying patterns and trends. To better support efficient browsing we have refined Juxter’s existing capabilities for filtering, selecting, and sorting elements and categories within the visualization.

  16. Micro and Nano Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Manohara, Harish

    2007-01-01

    This slide presentation reviews the use of micro and nano systems in Space exploration. Included are: an explanation of the rationales behind nano and micro technologies for space exploration, a review of how the devices are fabricated, including details on lithography with more information on Electron Beam (E-Beam) lithography, and X-ray lithography, a review of micro gyroscopes and inchworm Microactuator as examples of the use of MicroElectoMechanical (MEMS) technology. Also included is information on Carbon Nanotubes, including a review of the CVD growth process. These micro-nano systems have given rise to the next generation of miniature X-ray Diffraction, X-ray Fluorescence instruments, mass spectrometers, and terahertz frequency vacuum tube oscillators and amplifiers, scanning electron microscopes and energy dispersive x-ray spectroscope. The nanotechnology has also given rise to coating technology, such as silicon nanotip anti-reflection coating.

  17. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  18. Exploration missions with a solar bimodal system

    NASA Astrophysics Data System (ADS)

    Zubrin, Robert; Chew, Gilbert; Lowther, Scott

    1997-01-01

    This paper reports the results of an examination of planetary missions performed using a solar bimodal power and propulsion system. The Air force Phillips Laboratory has initiated an Integrated Solar Upper Stage (ISUS) technology demonstration program intended to mature solar bimodal technology to flight demonstration. The ISUS development program has focused on decreasing the cost of placing military satellites in high Earth orbits. This is accomplished by providing high specific impulse thrust for orbital transfer of spacecraft launched from smaller and less expensive boosters. This paper, however, reviews the applications of the ISUS technology to NASA solar system exploration missions. Mission analysis is presented showing the capability of the ISUS to deliver payloads from LEO to orbit around the Moon, Mars, Jupiter and Saturn. Both direct and gravity assisted trajectories are included, as are mission plans including both staged and unstaged strategies for Earth escape. A minimum mass spacecraft system for solar system exploration is presented, and used as a baseline to develop estimates of potential science payload deliverable to each planetary destination of interest as a function of launch booster capability. Booster fairing packaging considerations are examined. Earth escape time using a variety of perigee-kick orbit transfer strategies is also calculated, as is the communication capability of the ISUS as a function of planetary destination. It is shown that the ISUS offers significant potential as a propulsion system supporting interplanetary exploration. In general, it is found that the optimal trajectories for maximum science return require staging the spacecraft off the ISUS shortly before escape from the Earth. Providing other supporting technologies are developed, such a strategy would also allow the ISUS to be returned to LEO for reuse after each mission.

  19. Exploration Medical System Demonstration (EMSD) Project

    NASA Technical Reports Server (NTRS)

    Chin, Duane

    2012-01-01

    The Exploration Medical System Demonstration (EMSD) is a project under the Exploration Medical Capability (ExMC) element managed by the Human Research Program (HRP). The vision for the EMSD is to utilize ISS as a test bed to show that several medical technologies needed for an exploration mission and medical informatics tools for managing evidence and decision making can be integrated into a single system and used by the on-orbit crew in an efficient and meaningful manner. Objectives: a) Reduce and even possibly eliminate the time required for on-orbit crew and ground personnel (which include Surgeon, Biomedical Engineer (BME) Flight Controller, and Medical Operations Data Specialist) to access and move medical data from one application to another. b) Demonstrate that the on-orbit crew has the ability to access medical data/information using an intuitive and crew-friendly software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management framework and architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities.

  20. The Advanced Exploration Systems Water Recovery Project: Innovation on 2 Fronts

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam M.; Neumeyer, Derek; Shull, Sarah

    2012-01-01

    As NASA looks forward to sending humans farther away from Earth, we will have to develop a transportation architecture that is highly reliable and that can sustain life for long durations without the benefit of Earth s proximity for continuous resupply or even operational guidance. NASA has consistently been challenged with performing great feats of innovation, but particularly in this time of economic stress, we are challenged to go farther with less. The Advanced Exploration Systems (AES) projects were implemented to address both of these needs by not only developing innovative technologies, but by incorporating innovative management styles and processes that foster the needed technical innovation given a small amount of resources. This presentation explains how the AES Water Recovery Project is exhibiting innovation on both fronts; technical and process. The AES Water Recovery Project (WRP) is actively engineering innovative technologies in order to maximize the efficiency of water recovery. The development of reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support (ECLS) is critical to enable long-duration human missions outside of low-Earth orbit. Recycling of life support consumables is necessary to reduce resupply mass and provide for vehicle autonomy. To address this, the WRP is working on a rotary distiller that has shown enhanced performance over the state-of-the-art (SOA). Additionally, the WRP is looking at innovative ways to address issues present in the state-of-the-art (SOA) systems pertaining to toxicity and calcium scale buildup. As an AES project, the WRP has a more streamlined Skunk Works like approach to technology development intended to reduce overhead but achieve a more refined end product. The project has incorporated key partnerships between NASA centers as well as between NASA and industry. A minimal project management style has been implemented such that risks are managed and milestones tracked without overburdening the team with reporting demands that take them away from their work. A lean Systems Engineering (SE) approach has been implemented where project objectives are defined and vetted early without overprescribing the process or limiting the ability to innovate. Finally, we are working with existing flight hardware support organizations like operations, safety, materials and others to impact the system design at the breadboard level. This type of early input is a key to ensuring that the technologies are developed on the right track to becoming space flight worthy.

  1. The Mars Exploration Rover Instrument Positioning System

    NASA Technical Reports Server (NTRS)

    Baumgartner, Eric T.; Bonitz, Robert G.; Shiraishi, Lori R.; Melko, Joseph P.; Leger, P. Chris

    2005-01-01

    During Mars Exploration Rover (MER) surface operations, the scientific data gathered by the in situ instrument suite has been invaluable with respect to the discovery of a significant water history at Meridiani Planum and the hint of water processes at work in Gusev Crater. Specifically, the ability to perform precision manipulation from a mobile platform (i.e., mobile manipulation) has been a critical part of the successful operation of Spirit and Opportunity rovers. As such, this paper describes the MER Instrument Positioning System that allows the in situ instruments to operate and collect their important science data using a robust, dexterous robotic arm combined with visual target selection and autonomous software functions.

  2. Automated Operations Development for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide "single button" intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system onboard the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System, along with the execution component design from within the HAL 9000 Space Operating System, this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA's Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  3. Automated Operations Development for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Haddock, Angie; Stetson, Howard K.

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide single button intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system on-board the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System [1] , along with the execution component design from within the HAL 9000 Space Operating System [2] , this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA s Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  4. Flash LIDAR Systems for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Dissly, Richard; Weinberg, J.; Weimer, C.; Craig, R.; Earhart, P.; Miller, K.

    2009-01-01

    Ball Aerospace offers a mature, highly capable 3D flash-imaging LIDAR system for planetary exploration. Multi mission applications include orbital, standoff and surface terrain mapping, long distance and rapid close-in ranging, descent and surface navigation and rendezvous and docking. Our flash LIDAR is an optical, time-of-flight, topographic imaging system, leveraging innovations in focal plane arrays, readout integrated circuit real time processing, and compact and efficient pulsed laser sources. Due to its modular design, it can be easily tailored to satisfy a wide range of mission requirements. Flash LIDAR offers several distinct advantages over traditional scanning systems. The entire scene within the sensor's field of view is imaged with a single laser flash. This directly produces an image with each pixel already correlated in time, making the sensor resistant to the relative motion of a target subject. Additionally, images may be produced at rates much faster than are possible with a scanning system. And because the system captures a new complete image with each flash, optical glint and clutter are easily filtered and discarded. This allows for imaging under any lighting condition and makes the system virtually insensitive to stray light. Finally, because there are no moving parts, our flash LIDAR system is highly reliable and has a long life expectancy. As an industry leader in laser active sensor system development, Ball Aerospace has been working for more than four years to mature flash LIDAR systems for space applications, and is now under contract to provide the Vision Navigation System for NASA's Orion spacecraft. Our system uses heritage optics and electronics from our star tracker products, and space qualified lasers similar to those used in our CALIPSO LIDAR, which has been in continuous operation since 2006, providing more than 1.3 billion laser pulses to date.

  5. Space Launch System for Exploration and Science

    NASA Astrophysics Data System (ADS)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a low-risk, direct return of Martian material. For the Europa Clipper mission the SLS eliminates Venus and Earth flybys, providing a direct launch to the Jovian system, arriving four years earlier than missions utilizing existing launch vehicles. This architecture allows increased mass for radiation shielding, expansion of the science payload and provides a model for other outer planet missions. SLS provides a direct launch to the Uranus system, reducing travel time by two years when compared to existing launch capabilities. SLS can launch the Advanced Technology Large-Aperture Space Telescope (ATLAST 16 m) to SEL2, providing researchers 10 times the resolution of the James Webb Space Telescope and up to 300 times the sensitivity of the Hubble Space Telescope. SLS is the only vehicle capable of deploying telescopes of this mass and size in a single launch. It simplifies mission design and reduces risks by eliminating the need for multiple launches and in-space assembly. SLS greatly shortens interstellar travel time, delivering the Interstellar Explorer to 200 AU in about 15 years with a maximum speed of 63 km/sec--13.3 AU per year (Neptune orbits the sun at an approximate distance of 30 AU ).

  6. A Water Recovery System Evolved for Exploration

    NASA Technical Reports Server (NTRS)

    ORourke, Mary Jane E.; Perry, Jay L.; Carter, Donald L.

    2006-01-01

    A new water recovery system designed towards fulfillment of NASA's Vision for Space Exploration is presented. This water recovery system is an evolution of the current state-of-the-art system. Through novel integration of proven technologies for air and water purification, this system promises to elevate existing technology to higher levels of optimization. The novel aspect of the system is twofold: Volatile organic contaminants will be removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase, and vapor compression distillation technology will be used to process the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removal of volatile organic contaminants from the vapor phase is more efficient. Treatment of the various waste streams by VCD will reduce the load on the expendable ion exchange and adsorption media which follow, and on the aqueous-phase volatile removal assembly further downstream. Incorporating these advantages will reduce the weight, volume, and power requirements of the system, as well as resupply.

  7. Equilibrium and kinetic properties of a fast iminodiacetate based chelating ion exchanger and its incorporation in a FIA-ICP-AES system.

    PubMed

    Hashemi, P; Olin, A

    1997-06-01

    The equilibrium and kinetic properties of an iminodiacetate (IDA) based chelating ion exchanger with a crosslinked agarose, Novarose, as support has been investigated. The second and third acidity constants and some complexation constants of the ligand were determined for adsorbents with metal binding capacities of 140, 55 and 18 micromol ml(-1), respectively. The adsorbent of medium capacity showed fast adsorption and desorption of Cu(II), Cd(II), Ni(II) and Ca(II) both in the batch and column mode. It was found to be about 50 times faster than Chelex-100 (50-100 mesh) in accumulation of these metal ions in the batch mode. Studies of the adsorbent in a flow system, using a 5 mm x 6 mm i.d. column, indicated quantitative accumulation of Cu(II), Cd(II), and Ni(II) at volumetric flow rates up to 110 ml min(-1). Linear calibration curves with r > 0.999 and signal enhancement factors up to 1300 were obtained. Preconcentration by a FIA system connected to an ICP-AES instrument will make simultaneous measurement of ultratrace concentrations of a number of metal ions possible within reasonable cycle times due to the high flow rates which can be used with the adsorbent. Trace amounts of cadmium and copper in tap water were determined successfully at 60 ml min(-1). However, copper and nickel in tap water are strongly complexed and do not accumulate quantitatively even at low flow rates. Hence a sample pretreatment is needed. Copper was completely adsorbed after UV-treatment of the sample. PMID:18966835

  8. Exploring the opioid system by gene knockout.

    PubMed

    Kieffer, Brigitte L; Gavriaux-Ruff, Claire

    2002-04-01

    The endogenous opioid system consists of three opioid peptide precursor genes encoding enkephalins (preproenkephalin, Penk), dynorphins (preprodynorphin, Pdyn) and beta-endorphin (betaend), proopiomelanocortin (POMC) and three receptor genes encoding mu-opiod receptor (MOR), delta-opiod receptor (DOR) and kappa-opiod receptor (KOR). In the past years, all six genes have been inactivated in mice by homologous recombination. The analysis of spontaneous behavior in mutant mice has demonstrated significant and distinct roles of each gene in modulating locomotion, pain perception and emotional behaviors. The observation of opposing phenotypes of MOR- and DOR-deficient mice in several behaviors highlights unexpected roles for DOR to be further explored genetically and using more specific delta compounds. The analysis of responses of mutant mice to exogenous opiates has definitely clarified the essential role of MOR in both morphine analgesia and addiction, and demonstrated that DOR and KOR remain promising targets for pain treatment. These studies also show that prototypic DOR agonists partially require MOR for their biological activity and provide some support for the postulated mu-delta interactions in vivo. Finally, data confirm and define a role for several genes of the opioid system in responses to other drugs of abuse, and the triple opioid receptor knockout mutant allows exploring non-classical opioid pharmacology. In summary, the study of null mutant mice has extended our previous knowledge of the opioid system by identifying the molecular players in opioid pharmacology and physiology. Future studies should involve parallel behavioral analysis of mice lacking receptors and peptides and will benefit from more sophisticated gene targeting approaches, including site-directed and anatomically-restricted mutations. PMID:12015197

  9. Logistics Modeling for Lunar Exploration Systems

    NASA Technical Reports Server (NTRS)

    Andraschko, Mark R.; Merrill, R. Gabe; Earle, Kevin D.

    2008-01-01

    The extensive logistics required to support extended crewed operations in space make effective modeling of logistics requirements and deployment critical to predicting the behavior of human lunar exploration systems. This paper discusses the software that has been developed as part of the Campaign Manifest Analysis Tool in support of strategic analysis activities under the Constellation Architecture Team - Lunar. The described logistics module enables definition of logistics requirements across multiple surface locations and allows for the transfer of logistics between those locations. A key feature of the module is the loading algorithm that is used to efficiently load logistics by type into carriers and then onto landers. Attention is given to the capabilities and limitations of this loading algorithm, particularly with regard to surface transfers. These capabilities are described within the context of the object-oriented software implementation, with details provided on the applicability of using this approach to model other human exploration scenarios. Some challenges of incorporating probabilistics into this type of logistics analysis model are discussed at a high level.

  10. Biology-Inspired Explorers for Space Systems

    NASA Astrophysics Data System (ADS)

    Ramohalli, Kumar; Lozano, Peter; Furfaro, Roberto

    2002-01-01

    Building upon three innovative technologies, each of which received a NTR award from NASA, a specific explorer is described. This "robot" does away with conventional gears, levers, pulleys,.... And uses "Muscle Materials" instead; these shape-memory materials, formerly in the Nickel-Titanium family, but now in the much wider class of ElectroActivePolymers(EAP), have the ability to precisely respond to pre"programmed" shape changes upon application of an electrical input. Of course, the pre"programs" are at the molecular level, much like in biological systems. Another important feature is the distributed power. That is, the power use in the "limbs" is distributed, so that if one "limb" should fail, the others can still function. The robot has been built and demonstrated to the media (newspapers and television). The fundamental control aspects are currently being worked upon, and we expect to have a more complete mathematical description of its operation. Future plans, and specific applications for reliable planetary exploration will be outlined.

  11. Optimization of the Carbon Dioxide Removal Assembly (CDRA-4EU) in Support of the International Space System and Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Stanley, Christine M.

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The Carbon Dioxide (CO2) removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort utilizes a virtual Carbon Dioxide Removal Assembly, revision 4 (CDRA-4) test bed to test a large number of potential operational configurations with independent variations in flow rate, cycle time, heater ramp rate, and set point. Initial ground testing will provide prerequisite source data and provide baseline data in support of the virtual CDRA. Once the configurations with the highest performance and lowest power requirements are determined by the virtual CDRA, the results will be confirmed by testing these configurations with the CDRA-4EU ground test hardware. This paper describes the initial ground testing of select configurations. The development of the virtual CDRA under the AES-LSS Project will be discussed in a companion paper.

  12. Mars exploration rovers orbit determination system modeling

    NASA Astrophysics Data System (ADS)

    Wawrzyniak, Geoffrey; Baird, Darren; Graat, Eric; McElrath, Tim; Portock, Brian; Watkins, Michael

    2006-06-01

    From June 2003 to January 2004, two spinning spacecraft journeyed from Earth to Mars. A team of navigators at the Jet Propulsion Laboratory (JPL) accurately determined the orbits of both Mars Exploration Rovers, Spirit and Opportunity. For the navigation process to be successful, the team needed to know how nongravitational effects and how measurement system properties affected the trajectory and data modeling. To accomplish this, in addition to the standard gravitational and radiometric modeling of the spacecraft, a calibration was performed on each spacecraft to determine the amount of ?V that might occur during a turn, a high-fidelity solar-radiation-pressure model was created, the spin signature was removed from the tracking data, the station locations of the Deep Space Network were resurveyed, and a model of interplanetary charged particles was developed. The result of this effort was near-perfect accuracy, surpassing the tight atmospheric-entry requirements for navigation of both spacecraft.

  13. Spacecraft Radio Scintillation and Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1993-01-01

    When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of the scintillation measurements, and to highlight some of the scientific results obtained to date. Special emphasis is placed on comparing the remote sensing features of planetary and terrestrial scintillation measurements, and on contrasting spacecraft and natural radio source scintillation measurements. I will first discuss planetary atmospheres and ionospheres, and then the solar wind.

  14. Conceptual Drivers for an Exploration Medical System

    NASA Technical Reports Server (NTRS)

    Antonsen, E.; Canga, M.

    2016-01-01

    Interplanetary spaceflight provides unique challenges that have not been encountered in prior spaceflight experience. Extended distance and timeframes introduce new challenges such as an inability to resupply medications and consumables, inability to evacuate injured or ill crew, and communication delays that introduce a requirement for some level of autonomous medical capability. Because of these challenges the approaches used in prior programs have limited application to a proposed three year Mars mission. This paper proposes a paradigm shift in the approach to medical risk mitigation for crew health and mission objectives threatened by inadequate medical capabilities in the setting of severely limited resources. A conceptual approach is outlined to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this new paradigm. Using NASA Design Reference Missions this process assesses each mission phase to deconstruct medical needs at any point during a mission. Two operational categories are proposed, nominal operations (pre-planned activities) and contingency operations (medical conditions requiring evaluation) that meld clinical needs and research needs into a single system. These definitions are used to derive a task level analysis to support quantifiable studies into a medical capabilities trade. This trade allows system design to proceed from both a mission centric and ethics-based approach to medical limitations in an exploration class mission.

  15. (abstract) Airborne Emission Spectrometer (AES)

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard

    1994-01-01

    AES is a low-cost analog of the TES downlooking modes. Because AES operates at ambient temperature, limb-viewing is not possible. The first flight of AES took place in April 1994 on the NASA P3B aircraft out of Wallops Island, VA. While planned as an engineering test flight, spectra were successfully acquired both over the Atlantic Ocean and the area of the Great Dismal Swamp on the Virginia-North Carolina border. At this writing (July 1994), a second series of flights on the NASA DC8 aircraft out of Ames RC,CA is in progress. By the time of the workshop, a third series using the NASA C130 should have been accomplished.

  16. Cross Cutting Structural Design for Exploration Systems

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B.

    2007-01-01

    The challenge of our new National Space Policy and NASA's Vision for Space Exploration (VSE) is keyed to the development of more effective space access and transportation systems. Optimizing in-space systems through innovative cross cutting structural designs that reduce mass, combine functional requirements and improve performance can significantly advance spacecraft designs to meet the ever growing demands of our new National Space Policy. Dependence on limited structural designs is no longer an option. We must create robust materials, forms, function and evolvable systems. We must advance national policy objectives in the design, development, test and operation of multi-billion dollar new generation crew capsules by enabling them to evolve in meeting the requirements of long duration missions to the moon and mars. This paper discusses several current issues and major design drivers for consideration in structural design of advanced spacecraft systems. Approaches to addressing these multifunctional requirements is presented as well as a discussion on utilizing Functional Analysis System Technique (FAST) in developing cross cutting structural designs for future spacecraft. It will be shown how easy it is to deploy such techniques in any conceptual architecture definition or ongoing preliminary design. As experts in merging mission, safety and life support requirements of the frail human existence into robust vehicle and habitat design, we will conquer the final frontier, harness new resources and develop life giving technologies for mankind through more innovative designs. The rocket equation tells us that a reduction in mass optimizes our propulsive results. Primary and secondary structural elements provide for the containment of gases, fluids and solids; translate and sustain loads/impacts; conduct/radiate thermal energy; shield from the harmful effects of radiation; provide for grounding/bonding of electrical power systems; compartmentalize operational functions; and provide physical interface with multiple systems. How can we redefine, combine, substitute, rearrange and otherwise modify our structural systems to reduce mass? New technologies will be needed to fill knowledge gaps and propagate new design methods. Such an integrated process is paramount in maintaining U.S. leadership and in executing our national policy goals. The cross cutting process can take many forms, but all forms will have a positive affect on the demanding design environment through initial radical thinking. The author will illustrate such cross cutting results achievable through a formal process called FAST. The FAST example will be used to show how a multifunctional structural system concept for long duration spacecraft might be generated.

  17. Exploring our outer solar system - The Giant Planet System Observers

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Sittler, E. C., Jr.; Sturner, S. J.; Pitman, J. T.

    As space-faring peoples now work together to plan and implement future missions that robotically prepare for landing humans to explore the Moon, and later Mars, the time is right to develop evolutionary approaches for extending this next generation of exploration beyond Earth's terrestrial planet neighbors to the realm of the giant planets. And while initial fly-by missions have been hugely successful in providing exploratory surveys of what lies beyond Mars, we need to consider now what robotic precursor mission capabilities we need to emplace that prepare us properly, and comprehensively, for long-term robotic exploration, and eventual human habitation, beyond Mars to the outer reaches of our solar system. To develop practical strategies that can establish prioritized capabilities, and then develop a means for achieving those capabilities within realistic budget and technology considerations, and in reasonable timeframes, is our challenge. We suggest one component of such an approach to future outer planets exploration is a series of Giant Planets System Observer (GPSO) missions that provide for long- duration observations, monitoring, and relay functions to help advance our understanding of the outer planets and thereby enable a sound basis for planning their eventual exploration by humans. We envision these missions as being comparable to taking Hubble-class remote-sensing facilities, along with the space physics capabilities of long-lived geospace and heliospheric missions, to the giant planet systems and dedicating long observing lifetimes (HST, 16 yr.; Voyagers, 29 yr.) to the exhaustive study and characterization of those systems. GPSO missions could feature 20-yr+ extended mission lifetimes, direct inject trajectories to maximize useful lifetime on target, placement strategies that take advantage of natural environment shielding (e.g., Ganymede magnetic field) where possible, orbit designs having favorable planetary system viewing geometries, comprehensive broadband remote sensing capabilities, a complementary and redundant science instrument suite, fully autonomous operations, high bandwidth science data downlink, advanced solar power technologies (supplemented where necessary), functional interfaces that are compatible with future small fly-by missions, and fail-safe features for mission operations and planetary protection, 1 among other considerations. We describe in this paper one example of a GPSO-type mission our team has been formulating as a practical approach that addresses many of the most highly-rated future science exploration needs in the Jovian system, including the exploration of Europa, observation of Io and Ganymede, and characterization of the Jovian atmosphere. We call this mission concept the Ganymede Exploration Observer with Probes (GEOP), and describe its architecture, mission design, system features, science capabilities, key trades, and notional development plan for implementation within the next decade. 2

  18. Automatic Event Detection in Noisy Environment for Material Process Monitoring by Laser AE Method

    NASA Astrophysics Data System (ADS)

    Ito, K.; Kuriki, H.; Araki, H.; Kuroda, S.; Enoki, M.

    2014-06-01

    Laser acoustic emission (AE) method is a unique in-situ and non-contact nondestructive evaluation (NDE) method. It has a capability to detect signals generated from crack generation and propagation, friction and other physical phenomena in materials even in high temperature environment. However, laser AE system has lower signal-to-noise ratio compared to the conventional AE system using PZT sensors, so it is difficult to apply this method in noisy environment. A novel AE measurement system to detect events in such difficult environments was developed. This system could continuously record all AE waveforms and enable unrestricted post-analyses. Noise reduction filters in frequency domain coupling with a new AE event extraction using multiple threshold values showed a good potential for AE signal processing. This system was successfully applied for crack monitoring of plasma spray deposition process of ceramic coating.

  19. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  20. Whipple: Exploring the Solar System Beyond Neptune

    NASA Astrophysics Data System (ADS)

    Alcock, Charles; Whipple Science Team

    2010-10-01

    Whipple is a Discovery-class mission that will explore the outer Solar System by searching for the occultations of bright (R<14) stars by small bodies. Whipple will test current theoretical models of the origin of our Solar System by studying directly the populations of small objects that lie beyond the orbit of Neptune, including the Kuiper Belt and scattered disk, the region surrounding Sedna, and the Oort Cloud. Whipple will measure size distributions as a function of (three dimensional) position for these populations. These data will help elucidate the process of formation of macroscopic bodies in the primitive solar system, the history of giant planet migration, and the interactions of planet scattering with the local stellar environment that led to the population of the Oort Cloud, and possibly during the first few million years, of the Sedna region. Whipple will employ a photometer comprising a Schmidt-Cassegrain optical design with a 77 cm aperture, imaging onto a focal plane subtending 37 square degrees. The focal plane will comprise nine CMOS devices that can be read out at high cadence. The spacecraft will be launched into an Earth-leading solar orbit, and will be able to stare at fields distributed over a wide range of ecliptic latitudes and longitudes. Whipple will image star fields and produce high signal-to-noise photometric light curves for stars at a variety of cadences: 10,000 stars at 40 Hz, 20,000 stars at 20 Hz, or 40,000 stars at 10 Hz. These light curves will be examined on the spacecraft for possible events of interest, which will then be transmitted to ground for further analysis.

  1. NASA Advanced Explorations Systems: Concepts for Logistics to Living

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Howe, A. Scott; Flynn, Michael T.; Howard, Robert

    2012-01-01

    The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project strives to enable a largely mission-independent cradle-to-grave-to-cradle approach to minimize logistics contributions to total mission architecture mass. The goals are to engineer logistics materials, common crew consumables, and container configurations to meet the following five basic goals: 1. Minimize intrinsic logistics mass and improve ground logistics flexibility. 2. Allow logistics components to be directly repurposed for on-orbit non-logistics functions (e.g., crew cabin outfitting) thereby indirectly reducing mass/volume. 3. Compact and process logistics that have not been directly repurposed to generate useful on-orbit components and/or compounds (e.g., radiation shielding, propellant, other usable chemical constituents). 4. Enable long-term stable storage and disposal of logistics end products that cannot be reused or repurposed (e.g., compaction for volume reduction, odor control, and maintenance of crew cabin hygienic conditions). 5. Allow vehicles in different mission phases to share logistics resources. This paper addresses the work being done to meet the second goal, the direct repurposing of logistics components to meet other on-orbit needs, through a strategy termed Logistics to Living (L2L). L2L has several areas but can be defined as repurposing or converting logistical items (bags, containers, foam, components, etc.) into useful crew items or life support augmentation on-orbit after they have provided their primary logistics function. The intent is that by repurposing items, dedicated crew items do not have to be launched and overall launch mass is decreased. For non-LEO missions, the vehicle interior volume will be relatively fixed so L2L will enable this volume to be used more effectively through reuse and rearrangement of logistical components. Past work in the area of L2L has already conceptually developed several potential technologies [Howe, Howard 2010]. Several of the L2L concepts that have shown the most potential in the past are based on NASA cargo transfer bags (CTBs) or their equivalents which are currently used to transfer cargo to and from the ISS. A high percentage of all logistics supplies are packaging mass and for a 6-month mission a crew of four might need over 100 CTBs. These CTBs are used for on-orbit transfer and storage but eventually becomes waste after use since down mass is very limited. The work being done in L2L also considering innovative interior habitat construction that integrate the CTBs into the walls of future habitats. The direct integration could provide multiple functions: launch packaging, stowage, radiation protection, water processing, life support augmentation, as well as structure. Reuse of these CTBs would reduce the amount of waste generated and also significantly reduce future up mass requirements for exploration missions. Also discussed here is the L2L water wall , an innovative reuse of an unfolded CTB as a passive water treatment system utilizing forward osmosis. The bags have been modified to have an inner membrane liner that allows them to purify wastewater. They may also provide a structural water-wall element that can be used to provide radiation protection and as a structural divider. Integration of the components into vehicle/habitat architecture and consideration of operations concepts and human factors will be discussed. In the future these bags could be designed to treat wastewater, concentrated brines, and solid wastes, and to dewater solid wastes and produce a bio-stabilized construction element. This paper will describe the follow-on work done in design, fabrication and demonstrations of various L2L concepts, including advanced CTBs for reuse/repurposing, internal outfitting studies and the CTB-based forward osmosis water wall.

  2. A Computer Based Educational and Career Exploration System.

    ERIC Educational Resources Information Center

    Minor, Frank J.

    The actual workings of the Educational and Career Exploration System (ECES) are described. The functions of the system are divided into three general phases: (1) an occupational information bank for exploring occupations; (2) an educational information bank for exploring training programs and educational areas of study; and (3) a junior…

  3. Gravity waves in the thermosphere observed by the AE satellites

    NASA Technical Reports Server (NTRS)

    Gross, S. H.; Reber, C. A.; Huang, F. T.

    1983-01-01

    Atmospheric Explorer (AE) satellite data were used to investigate the spectra characteristics of wave-like structure observed in the neutral and ionized components of the thermosphere. Power spectral analysis derived by the maximum entropy method indicate the existence of a broad spectrum of scale sizes for the fluctuations ranging from tens to thousands of kilometers.

  4. The inner zone electron model AE-5

    NASA Technical Reports Server (NTRS)

    Teague, M. J.; Vette, J. I.

    1972-01-01

    A description is given of the work performed in the development of the inner radiation zone electron model, AE-5. A complete description of the omnidirectional flux model is given for energy thresholds E sub T in the range 4.0 E sub T/(MeV) 0.04 and for L values in the range 2.8 L 1.2 for an epoch of October 1967. Confidence codes for certain regions of B-L space and certain energies are given based on data coverage and the assumptions made in the analysis. The electron model programs that can be supplied to a user are referred to. One of these, a program for accessing the model flux at arbitrary points in B-L space and arbitrary energies, includes the latest outer zone electron model and proton model. The model AE-5, is based on data from five satellites, OGO 1, OGO 3, 1963-38C, OV3-3, and Explorer 26, spanning the period December 1964 to December 1967.

  5. DESM: portal for microbial knowledge exploration systems

    PubMed Central

    Salhi, Adil; Essack, Magbubah; Radovanovic, Aleksandar; Marchand, Benoit; Bougouffa, Salim; Antunes, Andre; Simoes, Marta Filipa; Lafi, Feras F.; Motwalli, Olaa A.; Bokhari, Ameerah; Malas, Tariq; Amoudi, Soha Al; Othum, Ghofran; Allam, Intikhab; Mineta, Katsuhiko; Gao, Xin; Hoehndorf, Robert; C. Archer, John A.; Gojobori, Takashi; Bajic, Vladimir B.

    2016-01-01

    Microorganisms produce an enormous variety of chemical compounds. It is of general interest for microbiology and biotechnology researchers to have means to explore information about molecular and genetic basis of functioning of different microorganisms and their ability for bioproduction. To enable such exploration, we compiled 45 topic-specific knowledgebases (KBs) accessible through DESM portal (www.cbrc.kaust.edu.sa/desm). The KBs contain information derived through text-mining of PubMed information and complemented by information data-mined from various other resources (e.g. ChEBI, Entrez Gene, GO, KOBAS, KEGG, UniPathways, BioGrid). All PubMed records were indexed using 4 538 278 concepts from 29 dictionaries, with 1 638 986 records utilized in KBs. Concepts used are normalized whenever possible. Most of the KBs focus on a particular type of microbial activity, such as production of biocatalysts or nutraceuticals. Others are focused on specific categories of microorganisms, e.g. streptomyces or cyanobacteria. KBs are all structured in a uniform manner and have a standardized user interface. Information exploration is enabled through various searches. Users can explore statistically most significant concepts or pairs of concepts, generate hypotheses, create interactive networks of associated concepts and export results. We believe DESM will be a useful complement to the existing resources to benefit microbiology and biotechnology research. PMID:26546514

  6. DESM: portal for microbial knowledge exploration systems.

    PubMed

    Salhi, Adil; Essack, Magbubah; Radovanovic, Aleksandar; Marchand, Benoit; Bougouffa, Salim; Antunes, Andre; Simoes, Marta Filipa; Lafi, Feras F; Motwalli, Olaa A; Bokhari, Ameerah; Malas, Tariq; Amoudi, Soha Al; Othum, Ghofran; Allam, Intikhab; Mineta, Katsuhiko; Gao, Xin; Hoehndorf, Robert; C Archer, John A; Gojobori, Takashi; Bajic, Vladimir B

    2016-01-01

    Microorganisms produce an enormous variety of chemical compounds. It is of general interest for microbiology and biotechnology researchers to have means to explore information about molecular and genetic basis of functioning of different microorganisms and their ability for bioproduction. To enable such exploration, we compiled 45 topic-specific knowledgebases (KBs) accessible through DESM portal (www.cbrc.kaust.edu.sa/desm). The KBs contain information derived through text-mining of PubMed information and complemented by information data-mined from various other resources (e.g. ChEBI, Entrez Gene, GO, KOBAS, KEGG, UniPathways, BioGrid). All PubMed records were indexed using 4 538 278 concepts from 29 dictionaries, with 1 638 986 records utilized in KBs. Concepts used are normalized whenever possible. Most of the KBs focus on a particular type of microbial activity, such as production of biocatalysts or nutraceuticals. Others are focused on specific categories of microorganisms, e.g. streptomyces or cyanobacteria. KBs are all structured in a uniform manner and have a standardized user interface. Information exploration is enabled through various searches. Users can explore statistically most significant concepts or pairs of concepts, generate hypotheses, create interactive networks of associated concepts and export results. We believe DESM will be a useful complement to the existing resources to benefit microbiology and biotechnology research. PMID:26546514

  7. The Space Launch System: NASA's Exploration Rocket

    NASA Technical Reports Server (NTRS)

    Blackerby, Christopher; Cate, Hugh C., III

    2013-01-01

    Powerful, versatile, and capable vehicle for entirely new missions to deep space. Vital to NASA's exploration strategy and the Nation's space agenda. Safe, affordable, and sustainable. Engaging the U.S. aerospace workforce and infrastructure. Competitive opportunities for innovations that affordably upgrade performance. Successfully meeting milestones in preparation for Preliminary Design Review in 2013. On course for first flight in 2017.

  8. Exploration Systems Town Hall Meeting - Duration: 48 minutes.

    NASA Video Gallery

    Doug Cooke, Associate Administrator for NASA's Exploration Systems Mission Directorate, discusses the future during a question and answer session with employees at NASA Headquarters on April 19, 2010.

  9. Optimization of System Maturity and Equivalent System Mass for Exploration Systems Development Planning

    NASA Technical Reports Server (NTRS)

    Magnaye, Romulo; Tan, Weiping; Ramirez-Marquez, Jose; Sauser, Bruce

    2010-01-01

    The Exploration Systems Mission Directorate of the National Aeronautics and Space Administration (NASA) is currently pursuing the development of the next generation of human spacecraft and exploration systems throughout the Constellation Program. This includes, among others, habitation technologies for supporting lunar and Mars exploration. The key to these systems is the Exploration Life Support (ELS) system that composes several technology development projects related to atmosphere revitalization, water recovery, waste management and habitation. The proper functioning of these technologies is meant to produce sufficient and balanced resources of water, air, and food to maintain a safe and comfortable environment for long-term human habitation and exploration of space.

  10. A New Direction for NASA's Solar System Exploration Research Virtual Institute: Combining Science and Exploration

    NASA Astrophysics Data System (ADS)

    Bailey, B.; Daou, D.; Schmidt, G.; Pendleton, Y.

    2014-04-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the research efforts of the new nine domestic teams that constitute the U.S. complement of the Institute and how we will engage the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

  11. Power Systems for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1998-01-01

    Power system options were reviewed for their appropriateness to meet mission requirements and guidelines. Contending system technologies include: solar, nuclear, isotopic, electro-chemical and chemical. Mission elements can basically be placed into two categories; in-space transportation systems, both cargo and piloted; and surface systems, both stationary and mobile. All transportation and surface element power system requirements were assessed for application synergies that would suggest common hardware (duplicates of the same or similar design) or multi-use (reuse system in a different application/location), wherever prudent.

  12. Covering the Bases: Exploring Alternative Systems

    ERIC Educational Resources Information Center

    Kurz, Terri L.; Garcia, Jorge

    2015-01-01

    Since the 1950s, the understanding of how the base 10 system works has been encouraged through alternative base systems (Price 1995; Woodward 2004). If high school students are given opportunities to learn other base systems and analyze what they denote, we believe that they will better understand the structure of base 10 and its operations

  13. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    1997-01-01

    This summary of international nonfuel mineral exploration activities for 1996 uses available data from literature, industry, and US Geological Survey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on minerals industry direction are drawn from these data.

  14. Intelligent Systems: Shaping the Future of Aeronautics and Space Exploration

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje; Lohn, Jason; Kaneshige, John

    2004-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become important for NASA's future roles in Aeronautics and Space Exploration. Intelligent systems will enable safe, cost and mission-effective approaches to air& control, system design, spacecraft autonomy, robotic space exploration and human exploration of Moon, Mars, and beyond. In this talk, we will discuss intelligent system technologies and expand on the role of intelligent systems in NASA's missions. We will also present several examples of which some are highlighted m this extended abstract.

  15. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    2001-01-01

    Part of an annual review of mines and mineral resources in the U.S. An overview of nonfuel-mineral exploration in 2000 is presented. Principal exploration target was gold exploration in Latin America, Australia, and the U.S. There was a decrease of 18 percent in the exploration budget for gold as compared with the budget for 1999. Statistical information on nonfuel-mineral exploration worldwide is presented, analyzed, and interpreted.

  16. New Thematic Solar System Exploration Products for Scientists and Educators

    NASA Technical Reports Server (NTRS)

    Lowes, Lesile; Wessen, Alice; Davis, Phil; Lindstrom, Marilyn

    2004-01-01

    The next several years are an exciting time in the exploration of the solar system. NASA and its international partners have a veritable armada of spaceships heading out to the far reaches of the solar system. We'll send the first spacecraft beyond our solar system into interstellar space. We'll launch our first mission to Pluto and the Kuiper Belt and just our second to Mercury (the first in 30 years). We'll continue our intensive exploration of Mars and begin our detailed study of Saturn and its moons. We'll visit asteroids and comets and bring home pieces of the Sun and a comet. This is truly an unprecedented period of exploration and discovery! To facilitate access to information and to provide the thematic context for these missions NASA s Solar System Exploration Program and Solar System Exploration Education Forum have developed several products.

  17. Human System Drivers for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Steinberg, Susan; Charles, John B.

    2010-01-01

    Evaluation of DRM4 in terms of the human system includes the ability to meet NASA standards, the inclusion of the human system in the design trade space, preparation for future missions and consideration of a robotic precursor mission. Ensuring both the safety and the performance capability of the human system depends upon satisfying NASA Space Flight Human System Standards.1 These standards in turn drive the development of program-specific requirements for Near-earth Object (NEO) missions. In evaluating DRM4 in terms of these human system standards, the currently existing risk models, technologies and biological countermeasures were used. A summary of this evaluation is provided below in a structure that supports a mission architecture planning activities. 1. Unacceptable Level of Risk The duration of the DRM4 mission leads to an unacceptable level of risk for two aspects of human system health: A. The permissible exposure limit for space flight radiation exposure (a human system standard) would be exceeded by DRM4. B. The risk of visual alterations and abnormally high intracranial pressure would be too high. 1

  18. Telecommunications systems evolution for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary; De Paula, Ramon P.; Edwards, Charles D. Jr; Komarek, Thomas; Edwards, Bernard L.; Edwards, Bernard L.; Kerridge, Stuart J.; Diehl, Roger; Franklin, Stephen F.

    2003-01-01

    This paper describes the evolution of telecommunication systems at Mars. It reviews the telecommunications capabilities, technology and limiting factors of current and planned Mars orbiters from Mars Global Surveyor to the planned Mars Telecommunications Orbiter (MTO).

  19. Electrical system options for space exploration

    NASA Technical Reports Server (NTRS)

    Bercaw, Robert W.; Cull, Ronald C.

    1991-01-01

    The need for a space power utility concept is discussed and the impact of this concept on the engineering of space power systems is examined. Experiences gained from Space Station Freedom and SEI systems studies are used to discuss the factors that may affect the choice of frequency standards on which to build such a space power utility. Emphasis is given to electrical power control, conditioning, and distribution subsystems.

  20. Influence of the operating parameters and of the sample introduction system on time correlation of line intensities using an axially viewed CCD-based ICP-AES system

    NASA Astrophysics Data System (ADS)

    Grotti, Marco; Todol, Jos Luis; Mermet, Jean Michel

    2010-02-01

    The influence of the acquisition and operating parameters on time correlation between emission line intensities was investigated using axially viewed inductively coupled plasma-multichannel-based emission spectrometry and various sample introduction systems. It was found that to obtain flicker-noise limited signals, necessary to compensate for time-correlated signal fluctuations by internal standardization, the flicker-noise magnitude of the sample introduction system, the integration time and the emission line intensity had to be considered. The highest correlation between lines was observed for ultrasonic nebulization with desolvatation, the noisiest system among those considered, for which the contribution of the uncorrelated shot-noise was negligible. In contrast, for sample introduction systems characterized by lower flicker-noise levels, shot-noise led to high, non-correlated RSD values, making the internal standard method to be much less efficient. To minimize shot-noise, time correlation was improved by increasing the emission line intensities and the integration time. Improvement in repeatability did not depend only on time correlation, but also on the ratio between the relative standard deviations of the analytical and reference lines. The best signal compensation was obtained when RSD values of the reference and analytical lines were similar, which is usually obtained when the system is flicker-noise limited, while departure from similarity can lead to a degradation of repeatability when using the internal standard method. Moreover, the use of so-called robust plasma conditions, i.e. a high power (1500 W) along with a low carrier gas flow rate (0.8 L/min) improved also the compensation. Finally, high correlation and consequent improvement in repeatability by internal standardization was observed also in the presence of complex matrices (sediment and soil samples), although a matrix-induced degradation of the correlation between lines was generally observed when using ultrasonic nebulization.

  1. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    2000-01-01

    This summary of international nonfuel mineral exploration activities for 1999 draws upon available data from literature, industry and US Geological Survey (USGS) specialists. The report documents data on exploration budgets by region and commodity and identifies significant mineral discoveries and exploration target areas. It also discusses government programs affecting the mineral exploration industry. And it presents inferences and observations on mineral industry direction based on these data and discussions.

  2. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    1998-01-01

    This summary of international nonfuel mineral exploration activities for 1997 draws upon available data from literature, industry and US Geological Sulvey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on mineral industry direction are drawn from these data and discussions.

  3. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.; Porter, K.E.

    1999-01-01

    This summary of international nonfuel mineral exploration activities for 1998 draws on available data from literature, industry and US Geological Survey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on mineral industry direction are drawn from these data and discussions.

  4. NASA's Solar System Exploration Research Virtual Institute: Combining Science and Exploration

    NASA Astrophysics Data System (ADS)

    Bailey, B.; Schmidt, G.; Daou, D.; Pendleton, Y.

    2015-10-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science andexploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the research efforts of the nine domestic teams that constitute the U.S. complement of the Institute and how we will engage the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

  5. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications. PMID:18598141

  6. Geothermal energy from the Pannonian Basins System: An outcrop analogue study of exploration target horizons in Hungary

    NASA Astrophysics Data System (ADS)

    Götz, Annette E.; Sass, Ingo; Török, Ákos

    2015-04-01

    The characterization of geothermal reservoirs of deep sedimentary basins is supported by outcrop analogue studies since reservoir characteristics are strongly related to the sedimentary facies and thus influence the basic direction of geothermal field development and applied technology (Sass & Götz, 2012). Petro- and thermophysical rock properties are key parameters in geothermal reservoir characterization and the data gained from outcrop samples serve to understand the reservoir system. New data from the Meso- and Cenozoic sedimentary rocks of Budapest include carbonates and siliciclastics of Triassic, Eocene, Oligocene and Miocene age, exposed on the western side of the river Danube in the Buda Hills (Götz et al., 2014). Field and laboratory analyses revealed distinct horizons of different geothermal potential and thus, enable to identify and interpret corresponding exploration target horizons in geothermal prone depths in the Budapest region as well as in the Hungarian sub-basins of the Pannonian Basins System (Zala and Danube basins, Great Plain) exhibiting geothermal anomalies. References Götz, A.E., Török, Á., Sass, I., 2014. Geothermal reservoir characteristics of Meso- and Cenozoic sedimentary rocks of Budapest (Hungary). German Journal of Geosciences, 165, 487-493. Sass, I., Götz, A.E., 2012. Geothermal reservoir characterization: a thermofacies concept. Terra Nova, 24, 142-147.

  7. Exploring the Solar System with ALMA

    NASA Astrophysics Data System (ADS)

    Moullet, A.

    2015-12-01

    The unprecedented capabilities offered by the Atacama Large Millimeter Array (ALMA) in terms of sensitivity, high spectral resolution and instantaneous imaging are very well suited to study a variety of science cases in the Solar System. Observations performed in Early Science already provided cutting edge atmospheric measurements in Solar System targets as diverse as Venus, giant planets and moons. The upcoming availability of extended configurations will enable high-resolution mapping, as demonstrated by the first thermal image of an asteroid's surface obtained during the Long Baselines Campaign. ALMA provides a unique access to atmospheric properties such as thermal structure, dynamics and composition, as well as radiative and thermal surface properties. These measurements are highly complementary of observations from planetary missions and large ground-based observatories, and essential to constrain the processes acting upon planetary surfaces and atmospheres.

  8. The Solar System in the Age of Space Exploration

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2011-06-01

    We are celebrating the 50th anniversary of the launch of Sputnik, which began the space age. Though the manned exploration of the solar system has been limited to the Moon, in NASA's Apollo Program that ended over 35 years ago, robotic exploration of the solar system continues to be very successful. This paper explores the latest space mission and other observations of each planet and of each type of solar-system object, including dwarf planets, asteroids, and comets, as well as the sun.

  9. Participatory Exploration: The Role of the User Contribution System

    NASA Technical Reports Server (NTRS)

    Skytland, Nicholas G.

    2009-01-01

    This viewgraph presentation explores how NASA can apply the global shift in demographics, the popularity of collaborative technology and the desire for participation to the future of space exploration. Included in this is a review of the evolution of work, the engagement gap, user contribution systems and a case study concerning the "digital astronaut".

  10. National Aeronautics and Space Administration Exploration Systems Interim Strategy

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Contents include the following: 1. The Exploration Systems Mission Directorate within NASA. Enabling the Vision for Space Exploration. The Role of the Directorate. 2. Strategic Context and Approach. Corporate Focus. Focused, Prioritized Requirements. Spiral Transformation. Management Rigor. 3. Achieving Directorate Objectives. Strategy to Task Process. Capability Development. Research and Technology Development. 4. Beyond the Horizon. Appendices.

  11. Exploring Equilibrium Systems with Nonequilibrium Simulations

    NASA Astrophysics Data System (ADS)

    Ballard, Andrew J.

    Equilibrium sampling is at the core of computational thermodynamics, aiding our understanding of various phenomena in the natural sciences including phase coexistence, molecular solvation, and protein folding. Despite the widespread development of novel sampling strategies over the years, efficient simulation of large complex systems remains a challenge. While the majority of current methods such as simulated tempering, replica exchange, and Monte Carlo methods rely solely on the use of equilibrium techniques, recent results in statistical physics have uncovered the possibility to sample equilibrium states through nonequilibrium simulations. In our first study we present a new replica exchange sampling strategy, "Replica Exchange with Nonequilibrium Switches," which uses nonequilibrium simulations to enhance equilibrium sampling. In our method, trial swap configurations between replicas are generated through nonequilibrium switching simulations which act to drive the replicas towards each other in phase space. By means of these switching simulations we can increase an effective overlap between replicas, enhancing the probability that these moves are accepted and ultimately leading to more effective sampling of the underlying energy landscape. Simulations on model systems reveal that our method can be beneficial in the case of low replica overlap, able to match the efficiency of traditional replica exchange while using fewer processors. We also demonstrate how our method can be applied for the calculation of solvation free energies. In a second, separate study, we investigate the dynamics leading to the dissociation of Na+Cl-- in water. Here we employ tools of rare event sampling to deduce the role of the surrounding water molecules in promoting the dissociation of the ion pair. We first study the thermodynamic forces leading to dissociation, finding it to be driven energetically and opposed entropically. In further analysis of the system dynamics, we deduce a) the spatial extent over which solvent fluctuations influence dissociation, b) the role of sterics and electrostatics, and c) the importance of inertia in enhancing the reaction probability.

  12. Exoproteomics: exploring the world around biological systems.

    PubMed

    Armengaud, Jean; Christie-Oleza, Joseph A; Clair, Gérémy; Malard, Véronique; Duport, Catherine

    2012-10-01

    The term 'exoproteome' describes the protein content that can be found in the extracellular proximity of a given biological system. These proteins arise from cellular secretion, other protein export mechanisms or cell lysis, but only the most stable proteins in this environment will remain in abundance. It has been shown that these proteins reflect the physiological state of the cells in a given condition and are indicators of how living systems interact with their environments. High-throughput proteomic approaches based on a shotgun strategy, and high-resolution mass spectrometers, have modified the authors' view of exoproteomes. In the present review, the authors describe how these new approaches should be exploited to obtain the maximum useful information from a sample, whatever its origin. The methodologies used for studying secretion from model cell lines derived from eukaryotic, multicellular organisms, virulence determinants of pathogens and environmental bacteria and their relationships with their habitats are illustrated with several examples. The implication of such data, in terms of proteogenomics and the discovery of novel protein functions, is discussed. PMID:23194272

  13. Aerocapture - A system design for planetary exploration

    NASA Technical Reports Server (NTRS)

    Cruz, M. I.; Armento, R. F.; Giles, W. H.

    1979-01-01

    The paper presents the results of a study that developed conceptual designs of an atmospheric entry system with moderate to high L/D ratios to establish the concepts of aerocapture into low circular Mars orbits from hyperbolic flyby trajectories. The payloads considered in this study were those currently conceived for the Mars Sample Return (MSR) mission including single mission (SM) and multi-mission (MM) modes. The design concepts developed are also applicable (with small modification) for establishment of closed orbits about Venus and Saturn. The MSR mission payload requires an orbiter, lander, ascent vehicle, and rover, with a total mass of approximately 4000 kg. The emphasis during the study was placed on development of concepts for aerodynamic configuration, the aeroshell design, and a guidance, navigation, and control subsystem.

  14. Power System for Venus Surface Exploration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Mellott, Kenneth

    2002-01-01

    A radioisotope power and cooling system is designed to provide electrical power for a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep electronic components at a temperature below ambient. The fundamental cooling parameters are the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density (90 bar CO2) atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus, with a small contribution of heat generation from electronics and sensors. Both thermoelectric (RTG) and dynamic power conversion systems were analyzed, based on use of a standard isotope (General-purpose heat source, or GPHS) brick. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500-watt power class, laboratory-tested Stirling engines. The overall efficiency is calculated to be 23.36 %. The mass of the power converter is estimated at approximately 21.6 kg. Additional information is included in the original extended abstract.

  15. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    2005-01-01

    The worldwide budget for nonferrous, nonfuel mineral exploration was expected to increase by 58 percent in 2004 from the 2003 budget, according to Metals Economics Group (MEG) of Halifax, Nova Scotia. The increase comes two years after a five-year period of declining spending for mineral exploration (1998 to 2002). Figures suggest a subsequent 27 percent increase in budgeted expenditures from 2002 to 2003. For the second consecutive year, all regional exploration budget estimates were anticipated to increase.

  16. The Rosetta Mission - Exploring Solar System Formation

    NASA Astrophysics Data System (ADS)

    Schulz, Rita; O'Rourke, L.; Altobelli, N.; Grieger, B.; Kueppers, M.

    2012-10-01

    The International Rosetta Mission, ESAs first Planetary Cornerstone, is a rendezvous mission with a comet nucleus combining an Orbiter with a Lander. Rosetta is on its way to meet Jupiter-family comet 67P/Churyumov-Gerasimenko in 2014. It will go in orbit around the comet nucleus when it is still far away from the Sun, and escort it for more than a year along its pre- and post-perihelion orbit. With the 12 scientific instruments on board the Orbiter, Rosetta will investigate the nucleus and the inner coma as well as their evolution as a function of increasing and decreasing solar flux input. Moreover, the Lander Philae will get down onto the surface of the nucleus at a time when it is still at a low state of activity, and analyse comet nucleus material in-situ with the 10 instruments on board. Launched in 2004 Rosetta has already completed all four gravity assists (3 at Earth, 1 at Mars) that were necessary to acquire the orbital energy needed to rendezvous and go in orbit around the comet nucleus. After the second and third Earth gravity assist Rosetta performed close fly-bys at the main-belt asteroids (2867) Steins and (21) Lutetia. Both have turned out to be extraordinary, hence a very good choice for close inspection. The spacecraft is now in hibernation while moving further into the outer solar system. It will wake up on 20 January 2014, at 4.5 AU heliocentric distance to proceed to its rendezvous. Rosetta will reach the comet in May 2014 and go into close orbit in September 2014. The landing of Philae is planned for 11 November 2014 at a heliocentric distance of 3 AU. After a five-day prime Lander mission, both the Orbiter and the Lander will enter the routine scientific phase, escorting the comet to perihelion and beyond.

  17. Exploring the Inner Solar System During IPA

    NASA Astrophysics Data System (ADS)

    Weir, H. M.; Stockman, S. A.; Carter, B. L.; Bleacher, L. V.

    2008-12-01

    During 2009, the International Year of Astronomy, both the MESSENGER mission to Mercury and the Lunar Reconnaissance Orbiter (LRO) mission to orbit the Moon will use key mission milestones to engage the public. For the MESSENGER mission key millstones will be the release to the public of data from the Oct 6th 2008, flyby and the Sept 29th 2009 third and last Mercury flyby before MESSENGER orbits Mercury in 2011. IYA activities will include participating in 365 Days of Astronomy podcasts, making the second flyby data publicly available and exciting the public with images from the third flyby. The data from the first flyby can be seen in a variety of locations across the country on Science on a Sphere. During IYA, the MESSENGER mission will also be reaching a wide variety of audiences through social media networking such as Facebook and Twitter. Informal education communities will be able to include Mercury data in their IYA programming through the distribution of MESSENGER data through the NASA Museum Alliance. The LRO mission will return the public's attention to our nearest neighbor, the Moon, in 2009. As a result, the public will see high resolution images of the Moon never seen before. LRO will also engage the public in the lunar observation program. Starting in early 2009, LRO and Lunar CRater Observation and Sensing Satellite (LCROSS) will be launched, and will continue their science missions throughout IYA. The public will be encouraged to make observations of the Moon during critical maneuvers for the LRO and LCROSS missions, including the LCROSS encounter, impacting the Moon which will occur in 2009. These events will help shift the public's attention to the Moon, and highlight the role our nearest neighbor plays in helping scientists learn about the early history of our Solar System. In addition to viewing LRO images and observing the Moon, the public can learn about the Moon, LRO, LCROSS, and past lunar missions virtually via the "Return to the Moon Hall" on CoLab Island in Second Life. As with MESSENGER, LRO will also be featured on Facebook, Twitter and the Museum Alliance.

  18. NASA's Solar System Exploration Research Virtual Institute: Science and Technology for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, Greg; Bailey, Brad; Gibbs, Kristina

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and development and support of the international community. As part of its mission, SSERVI acts as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. The nine domestic SSERVI teams that comprise the U.S. complement of the Institute engage with the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. SSERVI represents a close collaboration between science, technology and exploration enabling a deeper, integrated understanding of the Moon and other airless bodies as human exploration moves beyond low Earth orbit. SSERVI centers on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, with additional aspects of related technology development, including a major focus on human exploration-enabling efforts such as resolving Strategic Knowledge Gaps (SKGs). The Institute focuses on interdisciplinary, exploration-related science focused on airless bodies targeted as potential human destinations. Areas of study represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. This research profile integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. New opportunities for both domestic and international partnerships are continually generated through these research and community development efforts, and SSERVI can further serve as a model for joint international scientific efforts through its creation of bridges across disciplines and between countries. Since the inception of the NASA Lunar Science Institute (SSERVIs predecessor), it has and will continue to contribute in many ways toward the advancement of lunar science and the eventual human exploration of the Moon.

  19. Benchmarking Text Understanding Systems to Human Performance: An Exploration.

    ERIC Educational Resources Information Center

    Butler, Frances A.; And Others

    This study, part of a larger effort to develop a methodology for evaluating intelligent computer systems (Artificial Intelligence Systems), explores the use of benchmarking as an evaluation technique. Benchmarking means comparing the performance of intelligent computer systems with human performance on the same task. Benchmarking in evaluation has

  20. Medical and technology requirements for human solar system exploration missions

    NASA Technical Reports Server (NTRS)

    Nicogossian, Arnauld; Harris, Leonard; Couch, Lana; Sulzman, Frank; Gaiser, Karen

    1989-01-01

    Measures that need to be taken to cope with the health problems posed by zero gravity and radiation in manned solar system exploration missions are discussed. The particular systems that will be used aboard Space Station Freedom are addressed, and relevant human factors problems are examined. The development of a controlled ecological life support system is addressed.

  1. Plutonium well logging with the photoneutron uranium exploration system

    SciTech Connect

    Baker, M.P.; Marks, T.

    1982-09-01

    The Los Alamos National Laboratory prototype photoneutron uranium exploration system was recently demonstrated at the Hanford site near Richland, Washington, for Rockwell-Hanford Operations (Rockwell). The demonstration determined the field performance capabilities of the uranium exploration system for in situ, downhole measurements of transuranic waste concentrations. The uranium exploration system is indeed capable of detecting plutonium in the test wells at the waste sites investigated. The excellent signal-to-background ratio (15:1 in the worst case) of the system made positive plutonium determinations possible despite neutron backgrounds caused by spontaneous fission and (..cap alpha..,n) emitters. We present all the data collected from seven test wells and guidance for interpreting the data relative to the known uranium ore calibration of the system. The demonstration indicated no operational difficulties in the waste site environment, and routine use by Rockwell personnel appears practical.

  2. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.

    2002-01-01

    Exploration budgets fell for a fourth successive year in 2001. These decreases reflected low mineral commodity prices, mineral-market investment reluctance, company failures and a continued trend of company mergers and takeovers.

  3. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    SciTech Connect

    R. C. O'Brien; S. D. Howe; J. E. Werner

    2010-09-01

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  4. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Mercury and Saturn Exploration

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2015-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.

  5. Space Medicine Issues and Healthcare Systems for Space Exploration Medicine

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Jones, Jeff

    2007-01-01

    This viewgraph presentation reviews issues of health care in space. Some of the issues reviewed are: (1) Physiological adaptation to microgravity, partial gravity, (2) Medical events during spaceflight, (3) Space Vehicle and Environmental and Surface Health Risks, (4) Medical Concept of Operations (CONOPS), (4a) Current CONOPS & Medical Hardware for Shuttle (STS) and ISS, (4b) Planned Exploration Medical CONOPS & Hardware needs, (5) Exploration Plans for Lunar Return Mission & Mars, and (6) Developing Medical Support Systems.

  6. Nanotube-based Sensors and Systems for Outer Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Noca, F.; Hunt, B. D.; Hoenk, M. E.; Choi, D.; Kowalczyk, R.; Williams, R.; Xu, J.; Koumoutsakos, P.

    2001-01-01

    Direct sensing and processing at the nanometer scale offer NASA the opportunity to expand its capabilities in deep space exploration, particularly for the search for signatures of life, the analysis of planetary oceans and atmospheres, and communications systems. Carbon nanotubes, with their unique mechanical, electrical, and radiation-tolerant properties, are a promising tool for this exploration. We are developing devices based on carbon nanotubes, including sensors, actuators, and oscillators. Additional information is contained in the original extended abstract.

  7. The CAPA Integrative Online System for College Major Exploration

    ERIC Educational Resources Information Center

    Betz, Nancy E.; Borgen, Fred H.

    2010-01-01

    Career assessment has advanced on several fronts, enabling a CAPA integrative online system for exploring college majors with unprecedented precision and utility. The key inventories in the system are the CAPA Confidence Inventory (CCI), with its 6 general and 27 specific scales, and the CAPA Interest Inventory, with its 6 general and 35 specific

  8. The CAPA Integrative Online System for College Major Exploration

    ERIC Educational Resources Information Center

    Betz, Nancy E.; Borgen, Fred H.

    2010-01-01

    Career assessment has advanced on several fronts, enabling a CAPA integrative online system for exploring college majors with unprecedented precision and utility. The key inventories in the system are the CAPA Confidence Inventory (CCI), with its 6 general and 27 specific scales, and the CAPA Interest Inventory, with its 6 general and 35 specific…

  9. Multiple-Agent Air/Ground Autonomous Exploration Systems

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang; Chao, Tien-Hsin; Tarbell, Mark; Dohm, James M.

    2007-01-01

    Autonomous systems of multiple-agent air/ground robotic units for exploration of the surfaces of remote planets are undergoing development. Modified versions of these systems could be used on Earth to perform tasks in environments dangerous or inaccessible to humans: examples of tasks could include scientific exploration of remote regions of Antarctica, removal of land mines, cleanup of hazardous chemicals, and military reconnaissance. A basic system according to this concept (see figure) would include a unit, suspended by a balloon or a blimp, that would be in radio communication with multiple robotic ground vehicles (rovers) equipped with video cameras and possibly other sensors for scientific exploration. The airborne unit would be free-floating, controlled by thrusters, or tethered either to one of the rovers or to a stationary object in or on the ground. Each rover would contain a semi-autonomous control system for maneuvering and would function under the supervision of a control system in the airborne unit. The rover maneuvering control system would utilize imagery from the onboard camera to navigate around obstacles. Avoidance of obstacles would also be aided by readout from an onboard (e.g., ultrasonic) sensor. Together, the rover and airborne control systems would constitute an overarching closed-loop control system to coordinate scientific exploration by the rovers.

  10. The Educational and Career Exploration System: Field Trial and Evaluation.

    ERIC Educational Resources Information Center

    Bohn, Martin J.; And Others

    The results of a field test of a computer-assisted counseling system, conducted in a suburban high school are presented. Three questions were asked: (1) does the education and career exploration system function adequately? (2) does it effect students' vocational development? and (3) what reactions does it elicit from students, parents, counselors,

  11. Hybrid Exploration Agent Platform and Sensor Web System

    NASA Technical Reports Server (NTRS)

    Stoffel, A. William; VanSteenberg, Michael E.

    2004-01-01

    A sensor web to collect the scientific data needed to further exploration is a major and efficient asset to any exploration effort. This is true not only for lunar and planetary environments, but also for interplanetary and liquid environments. Such a system would also have myriad direct commercial spin-off applications. The Hybrid Exploration Agent Platform and Sensor Web or HEAP-SW like the ANTS concept is a Sensor Web concept. The HEAP-SW is conceptually and practically a very different system. HEAP-SW is applicable to any environment and a huge range of exploration tasks. It is a very robust, low cost, high return, solution to a complex problem. All of the technology for initial development and implementation is currently available. The HEAP Sensor Web or HEAP-SW consists of three major parts, The Hybrid Exploration Agent Platforms or HEAP, the Sensor Web or SW and the immobile Data collection and Uplink units or DU. The HEAP-SW as a whole will refer to any group of mobile agents or robots where each robot is a mobile data collection unit that spends most of its time acting in concert with all other robots, DUs in the web, and the HEAP-SWs overall Command and Control (CC) system. Each DU and robot is, however, capable of acting independently. The three parts of the HEAP-SW system are discussed in this paper. The Goals of the HEAP-SW system are: 1) To maximize the amount of exploration enhancing science data collected; 2) To minimize data loss due to system malfunctions; 3) To minimize or, possibly, eliminate the risk of total system failure; 4) To minimize the size, weight, and power requirements of each HEAP robot; 5) To minimize HEAP-SW system costs. The rest of this paper discusses how these goals are attained.

  12. Waveform Analysis of AE in Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1998-01-01

    Advanced, waveform based acoustic emission (AE) techniques have been developed to evaluate damage mechanisms in the testing of composite materials. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. Much more precise source location can also be obtained in comparison to conventional, threshold crossing arrival time determination techniques. Two successful examples of the application of Modal AE are presented in this work. In the first, the initiation of transverse matrix cracking in cross-ply, tensile coupons was monitored. In these tests, it was documented that the same source mechanism, matrix cracking, can produce widely different AE signal amplitudes dependent on laminate stacking sequence and thickness. These results, taken together with well known propagation effects of attenuation and dispersion of AE signals in composite laminates, cast further doubt on the validity of simple amplitude or amplitude distribution analysis for AE source determination. For the second example, delamination propagation in composite ring specimens was monitored. Pressurization of these composite rings is used to simulate the stresses in a composite rocket motor case. AE signals from delamination propagation were characterized by large amplitude flexural plate mode components which have long signal durations because of the large dispersion of this mode.

  13. Intelligent systems for the autonomous exploration of Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Furfaro, Roberto; Lunine, Jonathan I.; Kargel, Jeffrey S.; Fink, Wolfgang

    2008-04-01

    Future planetary exploration of the outer satellites of the Solar System will require higher levels of onboard automation, including autonomous determination of sites where the probability of significant scientific findings is highest. Generally, the level of needed automation is heavily influenced by the distance between Earth and the robotic explorer(s) (e.g. spacecraft(s), rover(s), and balloon(s)). Therefore, planning missions to the outer satellites mandates the analysis, design and integration within the mission architecture of semi- and/or completely autonomous intelligence systems. Such systems should (1) include software packages that enable fully automated and comprehensive identification, characterization, and quantification of feature information within an operational region with subsequent target prioritization and selection for close-up reexamination; and (2) integrate existing information with acquired, "in transit" spatial and temporal sensor data to automatically perform intelligent planetary reconnaissance, which includes identification of sites with the highest potential to yield significant geological and astrobiological information. In this paper we review and compare some of the available Artificial Intelligence (AI) schemes and their adaptation to the problem of designing expert systems for onboard-based, autonomous science to be performed in the course of outer satellites exploration. More specifically, the fuzzy-logic framework proposed is analyzed in some details to show the effectiveness of such a scheme when applied to the problem of designing expert systems capable of identifying and further exploring regions on Titan and/or Enceladus that have the highest potential to yield evidence for past or present life. Based on available information (e.g., Cassini data), the current knowledge and understanding of Titan and Enceladus environments is evaluated to define a path for the design of a fuzzy-based system capable of reasoning over collected data and capable of providing the inference required to autonomously optimize future outer satellites explorations.

  14. Orion Launch Abort System Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.

  15. Scientific Assessment of NASA's Solar System Exploration Roadmap

    NASA Technical Reports Server (NTRS)

    1996-01-01

    At its June 24-28, 1996, meeting, the Space Studies Board's Committee on Planetary and Lunar Exploration (COMPLEX), chaired by Ronald Greeley of Arizona State University, conducted an assessment of NASA's Mission to the Solar System Roadmap report. This assessment was made at the specific request of Dr. Jurgen Rahe, NASA's science program director for solar system exploration. The assessment includes consideration of the process by which the Roadmap was developed, comparison of the goals and objectives of the Roadmap with published National Research Council (NRC) recommendations, and suggestions for improving the Roadmap.

  16. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other astronauts. This technology will be described and discussed in the context of future exploration missions and the major new capabilities enabled by such systems. Finally, plans and directions for the future of autonomous systems will be presented.

  17. Nuclear power systems for lunar and Mars exploration

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Bozek, J. M.

    1990-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.

  18. Nuclear power systems for lunar and Mars exploration

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Bozek, J. M.

    1990-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and the power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.

  19. The NASA Advanced Exploration Systems Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; Scott, John; Power, Kevin P.

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse (Isp) above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation systems.

  20. Nuclear power systems for Lunar and Mars exploration

    SciTech Connect

    Sovie, R.J.; Bozek, J.M.

    1994-09-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

  1. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

  2. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2009-01-01

    NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems (LSS) project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles thermal control system. NASA s Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of approximately six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

  3. Radioisotope-based Nuclear Power Strategy for Exploration Systems Development

    SciTech Connect

    Schmidt, George R.; Houts, Michael G.

    2006-01-20

    Nuclear power will play an important role in future exploration efforts. Its benefits pertain to practically all the different timeframes associated with the Exploration Vision, from robotic investigation of potential lunar landing sites to long-duration crewed missions on the lunar surface. However, the implementation of nuclear technology must follow a logical progression in capability that meets but does not overwhelm the power requirements for the missions in each exploration timeframe. It is likely that the surface power infrastructure, particularly for early missions, will be distributed in nature. Thus, nuclear sources will have to operate in concert with other types of power and energy storage systems, and must mesh well with the power architectures envisioned for each mission phase. Most importantly, they must demonstrate a clear advantage over other non-nuclear options (e.g., solar power, fuel cells) for their particular function. This paper describes a strategy that does this in the form of three sequential system developments. It begins with use of radioisotope generators currently under development, and applies the power conversion technology developed for these units to the design of a simple, robust reactor power system. The products from these development efforts would eventually serve as the foundation for application of nuclear power systems for exploration of Mars and beyond.

  4. Information technology aided exploration of system design spaces

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Kiper, James D.; Kalafat, Selcuk

    2004-01-01

    We report on a practical application of information technology techniques to aid system engineers effectively explore large design spaces. We make use of heuristic search, visualization and data mining, the combination of which we have implemented wtihin a risk management tool in use at JPL and NASA.

  5. Lunar Dust Characterization for Exploration Life Support Systems

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.

    2007-01-01

    Lunar dust effects can have a significant impact on the performance and maintenance of future exploration life support systems. Filtration systems will be challenged by the additional loading from lunar dust, and mitigation technology and strategies have to be adapted to protect sensitive equipment. An initial characterization of lunar dust and simulants was undertaken. The data emphasize the irregular morphology of the dust particles and the frequency dependence of lunar dust layer detachment from shaken surfaces.

  6. An inertial fusion propulsion scheme for solar system exploration

    NASA Astrophysics Data System (ADS)

    Kammash, Terry; Galbraith, David L.

    1991-01-01

    A novel fusion scheme that combines the favorable aspects of both inertial and magnetic confinement approaches is analyzed as a propulsion device for potential utilization in solar system exploration. Using an appropriate set of equations for the plasma dynamics and the magnetic nozzle, we assess the system's propulsive capability by applying the results to a round trip mission to Mars. We find that such a device would allow a massive vehicle to make the journey in less than five months.

  7. Mars Exploration Rover: thermal design is a system engineering activity

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Glenn T.; Avila, Arturo; Awaya, Henry I.; Krylo, Robert; Novak, Keith; Phillips, Charles

    2003-01-01

    The Mars Exploration Rovers (MER), were launched in June and July of 2003, repsectively and successfully landed on Mars in early and late January of 2004, repectively. The flight system architecture implemented many successful features of the Mars Pathfinder (MPF) system: A cruise stage that transported an entry vehicle that housed the Lander, which in turn, used airbags to cushion the Rover during the landing event.

  8. An inertial fusion propulsion scheme for solar system exploration

    SciTech Connect

    Kammash, T.; Galbraith, D.L. )

    1991-01-05

    A novel fusion scheme that combines the favorable aspects of both inertial and magnetic confinement approaches is analyzed as a propulsion device for potential utilization in solar system exploration. Using an appropriate set of equations for the plasma dynamics and the magnetic nozzle, we assess the system's propulsive capability by applying the results to a round trip mission to Mars. We find that such a device would allow a massive vehicle to make the journey in less than five months.

  9. Gel-forming METKAxAE system for selective water shutoff and enhanced oil recovery from Permocarbonic deposit in Usinskoye oilfield

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Stasyeva, L. A.; Kozlov, V. V.; Kuvshinov, V. A.

    2015-10-01

    Presented are the results on the study of a gel-forming METKA system. The kinetics of gelation and rheological properties have been investigated in the system "methylcellulose-aqueous phase" in the temperature range of 20-250C. The efficiency of applying the gel-forming METKA system at filtration through water-saturated models and in the process of residual oil after-washing from two parallel columns with different permeability have been estimated.

  10. Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.

    2001-01-01

    The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.

  11. A Modular Robotic System with Applications to Space Exploration

    NASA Technical Reports Server (NTRS)

    Hancher, Matthew D.; Hornby, Gregory S.

    2006-01-01

    Modular robotic systems offer potential advantages as versatile, fault-tolerant, cost-effective platforms for space exploration, but a sufficiently mature system is not yet available. We describe the possible applications of such a system, and present prototype hardware intended as a step in the right direction. We also present elements of an automated design and optimization framework aimed at making modular robots easier to design and use, and discuss the results of applying the system to a gait optimization problem. Finally, we discuss the potential near-term applications of modular robotics to terrestrial robotics research.

  12. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  13. Exploring the Art and Science of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Jansma, P. A.

    2012-01-01

    There has been much discussion of late in the NASA systems engineering community about the fact that systems engineering cannot be just about process and technical disciplines. The belief is that there is both an art and science to systems engineering, and that both aspects are necessary for designing and implementing a successful system or mission. How does one go about differentiating between and characterizing these two aspects? Some say that the art of systems engineering is about designing systems that not only function well, but that are also elegant, beautiful and engaging. What does that mean? How can you tell when a system has been designed with that holistic "art" component? This paper attempts to answer these questions by exploring various ways of looking at the Art and Science of Systems Engineering.

  14. Power system requirements and selection for the space exploration initiative

    SciTech Connect

    Biringer, K.L. ); Bartine, D.E. ); Buden, D. ); Foreman, J. ); Harrison, S. )

    1991-01-01

    The Space Exploration Initiative (SEI) seeks to reestablish a US program of manned and unmanned space exploration. The President has called for a program which includes a space station element, a manned habitation of the moon, and a human exploration of Mars. The NASA Synthesis Group has developed four significantly different architectures for the SEI program. One key element of a space exploration effort is the power required to support the missions. The Power Speciality Team of the Synthesis Group was tasked with assessing and evaluating the power requirements and candidate power technologies for such missions. Inputs to the effort came from existing NASA studies as well as other governments agency inputs such as those from DOD and DOE. In addition, there were industry and university briefings and results of solicitations from the AIAA and the general public as part of the NASA outreach effort. Because of the variety of power needs in the SEI program, there will be a need for multiple power system technologies including solar, nuclear and electrochemical. Due to the high rocket masses required to propel payloads to the moon and beyond to Mars, there is great emphasis placed on the need for high power density and high energy density systems. Power system technology development work is needed results will determine the ultimate technology selections. 23 refs., 10 figs.

  15. Exploring various flux vector splittings for the magnetohydrodynamic system

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Montecinos, Gino I.; Toro, Eleuterio F.

    2016-04-01

    In this paper we explore flux vector splittings for the MHD system of equations. Our approach follows the strategy that was initially put forward in Toro and Vázquez-Cendón (2012) [55]. We split the flux vector into an advected sub-system and a pressure sub-system. The eigenvalues and eigenvectors of the split sub-systems are then studied for physical suitability. Not all flux vector splittings for MHD yield physically meaningful results. We find one that is completely useless, another that is only marginally useful and one that should work well in all regimes where the MHD equations are used. Unfortunately, this successful flux vector splitting turns out to be different from the Zha-Bilgen flux vector splitting. The eigenvalues and eigenvectors of this favorable FVS are explored in great detail in this paper. The pressure sub-system holds the key to finding a successful flux vector splitting. The eigenstructure of the successful flux vector splitting for MHD is thoroughly explored and orthonormalized left and right eigenvectors are explicitly catalogued. We present a novel approach to the solution of the Riemann problem formed by the pressure sub-system for the MHD equations. Once the pressure sub-system is solved, the advection sub-system follows naturally. Our method also works very well for the Euler system. Our FVS successfully captures isolated, stationary contact discontinuities in MHD. However, we explain why any FVS for MHD is not adept at capturing isolated, stationary Alfvenic discontinuities. Several stringent one-dimensional Riemann problems are presented to show that the method works successfully and can effectively capture the full panoply of wave structures that arise in MHD. This includes compound waves and switch-on and switch-off shocks that arise because of the non-convex nature of the MHD system.

  16. Simulation Based Acquisition for NASA's Office of Exploration Systems

    NASA Technical Reports Server (NTRS)

    Hale, Joe

    2004-01-01

    In January 2004, President George W. Bush unveiled his vision for NASA to advance U.S. scientific, security, and economic interests through a robust space exploration program. This vision includes the goal to extend human presence across the solar system, starting with a human return to the Moon no later than 2020, in preparation for human exploration of Mars and other destinations. In response to this vision, NASA has created the Office of Exploration Systems (OExS) to develop the innovative technologies, knowledge, and infrastructures to explore and support decisions about human exploration destinations, including the development of a new Crew Exploration Vehicle (CEV). Within the OExS organization, NASA is implementing Simulation Based Acquisition (SBA), a robust Modeling & Simulation (M&S) environment integrated across all acquisition phases and programs/teams, to make the realization of the President s vision more certain. Executed properly, SBA will foster better informed, timelier, and more defensible decisions throughout the acquisition life cycle. By doing so, SBA will improve the quality of NASA systems and speed their development, at less cost and risk than would otherwise be the case. SBA is a comprehensive, Enterprise-wide endeavor that necessitates an evolved culture, a revised spiral acquisition process, and an infrastructure of advanced Information Technology (IT) capabilities. SBA encompasses all project phases (from requirements analysis and concept formulation through design, manufacture, training, and operations), professional disciplines, and activities that can benefit from employing SBA capabilities. SBA capabilities include: developing and assessing system concepts and designs; planning manufacturing, assembly, transport, and launch; training crews, maintainers, launch personnel, and controllers; planning and monitoring missions; responding to emergencies by evaluating effects and exploring solutions; and communicating across the OExS enterprise, within the Government, and with the general public. The SBA process features empowered collaborative teams (including industry partners) to integrate requirements, acquisition, training, operations, and sustainment. The SBA process also utilizes an increased reliance on and investment in M&S to reduce design risk. SBA originated as a joint Industry and Department of Defense (DoD) initiative to define and integrate an acquisition process that employs robust, collaborative use of M&S technology across acquisition phases and programs. The SBA process was successfully implemented in the Air Force s Joint Strike Fighter (JSF) Program.

  17. Variations in lowstand systems tracts: Constraints on exploration

    SciTech Connect

    Brown, L.F. Jr.

    1991-03-01

    Results of worldwide exploration of lowstand systems tracts support continued application and evaluation of Exxon's cyclic sequence concepts but indicate the need for a better understanding of erosional and depositional variations possible along ancient lowstand coastlines. Exxon's idealized siliciclastic (type 1) model applies where a major highstand fluvial system was entrenched during falling relative sea level, eroding canyons and contributing sediments to lowstand depositional systems. Canyons and incised valleys were filled by late lowstand and retrogradational (transgressive) systems. Not explicit in Exxon's scenario are lowstand tracts at sites of minor entrenched coastal-plain streams or along interdeltaic or nondeltaic margins. A spectrum of systems tracts, identified along ancient basin margins, provides clues for predicting lowstand targets. In the absence of rivers, basin-floor sediments were supplied locally by headward-slumping submarine canyons and erosion of contributary valleys into subaerially exposed highstand shelf and/or strandline systems. Submarine erosion typically continued during subsequent rise and highstand of sea level, and sediments may have been introduced to basin floors through canyons from active retrogradational and highstand longshore systems. Headwardly eroded canyons and valleys were not always filled during subsequent transgression and highstand, leading to long-term multiple erosional/depositional cycles to produce some of the world's major ancient canyon complexes. The type and distribution of highstand systems tracts strongly influenced the quality and distribution of sandstone reservoir potential in subsequent lowstand tracts and, therefore, may help guide deep-water exploration along ancient basin margins.

  18. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. The vehicle will be able to deliver greater mass to orbit than any contemporary launch vehicle. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads.

  19. Towards a sustainable modular robot system for planetary exploration

    NASA Astrophysics Data System (ADS)

    Hossain, S. G. M.

    This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.

  20. NASA's Space Launch System: A Cornerstone Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, scheduled for first launch in 2017, will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 12 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.

  1. NASA Space Launch System: A Cornerstone Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2014-01-01

    Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, sched will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 14 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.

  2. Advanced AE Techniques in Composite Materials Research

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1996-01-01

    Advanced, waveform based acoustic emission (AE) techniques have been successfully used to evaluate damage mechanisms in laboratory testing of composite coupons. An example is presented in which the initiation of transverse matrix cracking was monitored. In these tests, broad band, high fidelity acoustic sensors were used to detect signals which were then digitized and stored for analysis. Analysis techniques were based on plate mode wave propagation characteristics. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. This technique also allows much more precise source location than conventional, threshold crossing arrival time determination techniques. To apply Modal AE concepts to the interpretation of AE on larger composite specimens or structures, the effects of modal wave propagation over larger distances and through structural complexities must be well characterized and understood. To demonstrate these effects, measurements of the far field, peak amplitude attenuation of the extensional and flexural plate mode components of broad band simulated AE signals in large composite panels are discussed. These measurements demonstrated that the flexural mode attenuation is dominated by dispersion effects. Thus, it is significantly affected by the thickness of the composite plate. Furthermore, the flexural mode attenuation can be significantly larger than that of the extensional mode even though its peak amplitude consists of much lower frequency components.

  3. NASA's Space Launch System: An Enabling Capability for International Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

  4. ERP System Implementation: An Oil and Gas Exploration Sector Perspective

    NASA Astrophysics Data System (ADS)

    Mishra, Alok; Mishra, Deepti

    Enterprise Resource Planning (ERP) systems provide integration and optimization of various business processes which leads to improved planning and decision quality, smoother coordination between business units resulting in higher efficiency, and quicker response time to customer demands and inquiries. This paper reports challenges, opportunities and outcome of ERP implementation in Oil & Gas exploration sector. This study will facilitate in understanding transition, constraints and implementation of ERP in this sector and also provide guidelines from lessons learned in this regard.

  5. Framework for the Parametric System Modeling of Space Exploration Architectures

    NASA Technical Reports Server (NTRS)

    Komar, David R.; Hoffman, Jim; Olds, Aaron D.; Seal, Mike D., II

    2008-01-01

    This paper presents a methodology for performing architecture definition and assessment prior to, or during, program formulation that utilizes a centralized, integrated architecture modeling framework operated by a small, core team of general space architects. This framework, known as the Exploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), enables: 1) a significantly larger fraction of an architecture trade space to be assessed in a given study timeframe; and 2) the complex element-to-element and element-to-system relationships to be quantitatively explored earlier in the design process. Discussion of the methodology advantages and disadvantages with respect to the distributed study team approach typically used within NASA to perform architecture studies is presented along with an overview of EXAMINE s functional components and tools. An example Mars transportation system architecture model is used to demonstrate EXAMINE s capabilities in this paper. However, the framework is generally applicable for exploration architecture modeling with destinations to any celestial body in the solar system.

  6. Thrombin mutant W215A/E217A treatment improves neurological outcome and attenuates central nervous system damage in experimental autoimmune encephalomyelitis.

    PubMed

    Verbout, Norah G; Yu, Xiaolin; Healy, Laura D; Phillips, Kevin G; Tucker, Erik I; Gruber, Andrs; McCarty, Owen J T; Offner, Halina

    2015-02-01

    Multiple sclerosis (MS) is a neuroinflammatory disease characterized by demyelination and axonal damage of the central nervous system. The pathogenesis of MS has also been linked to vascular inflammation and local activation of the coagulation system, resulting in perivascular fibrin deposition. Treatment of experimental autoimmune encephalomyelitis (EAE), a model of human MS, with antithrombotic and antiinflammatory activated protein C (APC) reduces disease severity. Since recombinant APC (Drotecogin alfa), originally approved for the treatment of severe sepsis, is not available for human MS studies, we tested the hypothesis that pharmacologic activation of endogenous protein C could likewise improve the outcome of EAE. Mice were immunized with murine myelin oligodendrocyte glycoprotein (MOG) peptides and at the onset of EAE symptoms, were treated every other day with either WE thrombin (25 ?g/kg; i.v.), a selective recombinant protein C activator thrombin analog, or saline control. Mice were monitored for changes in disease score until euthanized for ex vivo analysis of inflammation. Administration of WE thrombin significantly ameliorated clinical severity of EAE, reduced inflammatory cell infiltration and demyelination, suppressed the activation of macrophages comprising the CD11b + population and reduced accumulation of fibrin (ogen) in the spinal cord. These data suggest that symptomatic MS may respond to a treatment strategy that involves temporal pharmacological enhancement of endogenous APC generation. PMID:24810631

  7. Visual exploration of 2D autonomous dynamical systems

    NASA Astrophysics Data System (ADS)

    Mller, Thomas; Sadlo, Filip

    2015-05-01

    In an introductory course on dynamical systems or Hamiltonian mechanics, vector field diagrams are a central tool to show a systems qualitative behaviour in a certain domain. Because of their low sampling rates and the involved issues of vector normalization, these plots give only a coarse insight and are unable to convey the vector field behaviour at locations with high variation, in particular in the neighbourhood of critical points. Similarly, automatic generation of phase portraits based on traditional sampling cannot precisely capture separatrices or limit cylces. In this paper, we present ASysViewer, an application for the interactive visual exploration of two-dimensional autonomous dynamical systems, using line integral convolution techniques for visualization, and grid-based techniques to extract critical points and separatrices. ASysViewer is addressed to undergraduate students during their first course in dynamical systems or Hamiltonian mechanics.

  8. The Environment of the Optically Brightest Herbig Ae Star, HD 104237

    NASA Astrophysics Data System (ADS)

    Grady, C. A.; Woodgate, B.; Torres, Carlos A. O.; Henning, Th.; Apai, D.; Rodmann, J.; Wang, Hongchi; Stecklum, B.; Linz, H.; Williger, G. M.; Brown, A.; Wilkinson, E.; Harper, G. M.; Herczeg, G. J.; Danks, A.; Vieira, G. L.; Malumuth, E.; Collins, N. R.; Hill, R. S.

    2004-06-01

    We investigate the environment of the nearest Herbig Ae star, HD 104237, with a multiwavelength combination of optical coronagraphic, near-IR, and mid-IR imaging supported by optical, UV, and far-ultraviolet spectroscopy. We confirm the presence of T Tauri stars associated with the Herbig Ae star HD 104237, noted by Feigelson et al. We find that two of the stars within 15" of HD 104237 have IR excesses, potentially indicating the presence of circumstellar disks, in addition to the Herbig Ae star itself. We derive a new spectral type of A7.5Ve-A8Ve for HD 104237 and find log(L/Lsolar)=1.39. With these data, HD 104237 has an age of t~5 Myr, in agreement with the estimates for the other members of the association. HD 104237 is still actively accreting, with a conspicuous UV/far-UV excess seen down to 1040 Å, and is driving a bipolar microjet termed HH 669. This makes it the second, older Herbig Ae star now known to have a microjet. The presence of the microjet enables us to constrain the circumstellar disk to r<=0.6" (70 AU) with an inclination angle of i=18deg+14-11 from pole-on. The absence of a spatially extended continuum and fluorescent H2 emission near Lyα is in agreement with the prediction of shadowed disk models for the IR spectral energy distribution. With the high spatial density of disks in this group of stars, proximity, and minimal reddening, HD 104237 and its companions should serve as ideal laboratories for probing the comparative evolution of planetary systems. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA Contract NAS5-26555. Based on observations made with ESO's TIMMI2 camera on La Silla, Chile, under program ID 71.C-0438. Based on observations made with the ESO VLT and the Near-IR Adaptive Optics System+Conica, under program ID 71.C-0143. Based on observations made under the ON-ESO agreement for the joint operation of the 1.52 m ESO telescope. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985.

  9. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the "proving ground" of lunar-vicinity space to enabling high-energy transits through the outer solar system. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO). Preparations are also underway to evolve the vehicle into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO. Even the initial configuration of SLS will be able to deliver greater mass to orbit than any contemporary launch vehicle, and the evolved configuration will have greater performance than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. The basic capabilities of SLS have been driven by studies on the requirements of human deep-space exploration missions, and continue to be validated by maturing analysis of Mars mission options, including the Global Exploration Roadmap. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. As SLS draws closer to its first launch, the Program is maturing concepts for future capability upgrades, which could begin being available within a decade. These upgrades, from multiple unique payload accommodations to an upper stage providing more power for inspace propulsion, have ramifications for a variety of missions, from human exploration to robotic science.

  10. NASA Technology Area 07: Human Exploration Destination Systems Roadmap

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near-Earth objects (NEOs), which > 95% are asteroidal bodies, Phobos, Deimos, Mars, and beyond. The HEDS technology roadmap will strategically guide NASA and other U.S. Government agency technology investments that will result in capabilities enabling human exploration missions to diverse destinations generating high returns on investments.

  11. New photometric investigation of the Herbig Ae/Be star HD 52721, a close binary system: Evidence for the existence of large-scale azimuthal inhomogeneities

    NASA Astrophysics Data System (ADS)

    Pavlovskiy, S. E.; Pogodin, M. A.; Kupriyanov, V. V.; Gorshanov, D. L.

    2015-06-01

    We present new results of our photometry for the Herbig Be star HD 52721 obtained from January 16 to March 25, 2013. A new data reduction technique is used. Using this technique, we have also reanalyzed the previous results of our photometry for this object pertaining to the period from March 7 to March 28, 2010. The Be star HD 52721 is known as an eclipsing variable with the period P = 1d. 610. Two photometric minima observed during one period are a peculiarity of its photometric variability. They are separated in phase of the period P by 0.5 and differ from one another in depth by 0 m . 04. We have also detected additional minima observed at the phases of maximum brightness. We hypothesize that they can be associated with the existence of local azimuthal inhomogeneities rotating synchronously with the orbital motion of the binary component stars in the circumstellar envelope. When processing our CCD frames, we have applied an efficient CCD-frame rejection method that has allowed the accuracy of observations to be increased considerably. The CCD frames have been further processed using the Apex II software package, which is a universal software platform for astronomical image processing. We justify the need for additional photometric observations of HD 52721 in various color bands to confirm the hypothesis about the existence of azimuthal inhomogeneities in the program binary system and to analyze their physical properties.

  12. A continuous hydride-generation system for direct current plasma atomic-emission spectrometry (DCP-AES) Determination of arsenic and selenium.

    PubMed

    Ek, P; Huldn, S G

    1987-05-01

    A continuously operating hydride-generation system has been developed for determination of volatile hydride-forming elements such as arsenic and selenium by d.c. plasma atomic-emission spectrometry. Arsenic and selenium are converted into their hydrides by reduction with sodium borohydride. The hydrides evolved are stripped from the liquid phase in a gas/liquid separator and are continuously fed into the d.c. plasma by a small argon stream. Under optimized operating conditions the detection limits (3s) obtained for arsenic and selenium are 0.3 and 0.5, mug/l., respectively. The precision at the 5 mu/l. level is better than 4% r.s.d. The measurement time, including sample introduction and three replicate measurements with 5-sec integration per sample is about 1 min. The effects of well known interferents such as copper and nickel have been investigated. For minimizing their interference continuous addition of 1, 10-phenanthroline as masking agent has been found useful. The method has been tested by its use for analysing NBS standard reference materials. PMID:18964343

  13. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    NASA Astrophysics Data System (ADS)

    Clark, John S.; Borowski, Stanley K.; McIlwain, Melvin C.; Pellaccio, Dennis G.

    1992-09-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the 'next generation' of space propulsion systems - the key to space exploration.

  14. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Borowski, Stanley K.; Mcilwain, Melvin C.; Pellaccio, Dennis G.

    1992-01-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the 'next generation' of space propulsion systems - the key to space exploration.

  15. Enabling Exploration Through the International Docking System Standard

    NASA Technical Reports Server (NTRS)

    Hatfield, Caris A.

    2011-01-01

    Human exploration missions beyond low earth orbit will likely require international cooperation in order to leverage limited resources. International standards can help enable cooperative missions by providing well understood, predefined interfaces allowing compatibility between unique spacecraft and systems. The International Space Station (ISS) partnership has developed a publically available International Docking System Standard (IDSS) that provides a solution to one of these key interfaces by defining a common docking interface. The docking interface provides a way for even dissimilar spacecraft to dock for exchange of crew and cargo, as well as enabling the assembly of large space systems. This paper provides an overview of the key attributes of the IDSS, an overview of the NASA Docking System (NDS), and the plans for updating the ISS with IDSS compatible interfaces. The NDS provides a state of the art, low impact docking system that will initially be made available to commercial crew and cargo providers. The ISS will be used to demonstrate the operational utility of the IDSS interface as a foundational technology for cooperative exploration.

  16. NASA'S Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA’s Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA’s future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency’s Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle’s potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle’s evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.

  17. NASA's Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA's future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency's Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle's evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.

  18. Telecommunications and navigation systems design for manned Mars exploration missions

    NASA Technical Reports Server (NTRS)

    Hall, Justin R.; Hastrup, Rolf C.

    1989-01-01

    This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.

  19. Telecommunications and navigation systems design for manned Mars exploration missions

    NASA Astrophysics Data System (ADS)

    Hall, Justin R.; Hastrup, Rolf C.

    1989-06-01

    This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.

  20. NASA's Solar System Exploration Research Virtual Institute (SSERVI)

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne J.

    2015-11-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA’s Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies.NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships.The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and international partners, as well as information about outreach efforts and future opportunities to participate in SSERVI.

  1. Mariner Mark II and the exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1983-01-01

    NASA's Solar System Exploration Committee has proposed the Mariner Mark II concept for the next generation of deep-space planetary observation missions, which will yield Voyager- and Galileo-quality focused data sets at a fraction of the costs associated with those spacecraft. Cost-limiting strategies under consideration include the use of reconfigurable designs, a multimission ground support system, and the incorporation of such selected new technologies as an all-X band telemetry system, fiber-optic rate sensors for use as an inertial reference system, image compression, and electronic and optical disk data distribution. It is believed possible to meet cost goals of 150-300 million/mission. The missions under consideration are comet rendezvous and sample return, main belt asteroid flybys, and orbits, flybys and probes of Saturn, Titan, Neptune and Uranus.

  2. NASA'S RPS Design Reference Mission Set for Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.

    2007-01-01

    NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could support NASA's RPS technology development planning, and provide an understanding of fuel need trades over the next three decades.

  3. NASA's RPS Design Reference Mission Set for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.

    2007-01-01

    NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set. Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could support NASA's RPS technology development planning, and provide an understanding of fuel need trades over the next three decades.

  4. Multi-Attribute Tradespace Exploration in Space System Design

    NASA Astrophysics Data System (ADS)

    Ross, A. M.; Hastings, D. E.

    2002-01-01

    The complexity inherent in space systems necessarily requires intense expenditures of resources both human and monetary. The high level of ambiguity present in the early design phases of these systems causes long, highly iterative, and costly design cycles. This paper looks at incorporating decision theory methods into the early design processes to streamline communication of wants and needs among stakeholders and between levels of design. Communication channeled through formal utility interviews and analysis enables engineers to better understand the key drivers for the system and allows a more thorough exploration of the design tradespace. Multi-Attribute Tradespace Exploration (MATE), an evolving process incorporating decision theory into model and simulation- based design, has been applied to several space system case studies at MIT. Preliminary results indicate that this process can improve the quality of communication to more quickly resolve project ambiguity, and enable the engineer to discover better value designs for multiple stakeholders. MATE is also being integrated into a concurrent design environment to facilitate the transfer knowledge of important drivers into higher fidelity design phases. Formal utility theory provides a mechanism to bridge the language barrier between experts of different backgrounds and differing needs (e.g. scientists, engineers, managers, etc). MATE with concurrent design couples decision makers more closely to the design, and most importantly, maintains their presence between formal reviews.

  5. FINESSE: Field Investigations to Enable Solar System Science and Exploration

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer; Lim, Darlene; Colaprete, Anthony

    2015-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, near-Earth asteroids (NEAs) and Phobos and Deimos. We follow the philosophy that "science enables exploration and exploration enables science." 1) FINESSE Science: Understand the effects of volcanism and impacts as dominant planetary processes on the Moon, NEAs, and Phobos & Deimos. 2) FINESSE Exploration: Understand which exploration concepts of operations (ConOps) and capabilities enable and enhance scientific return. To accomplish these objectives, we are conducting an integrated research program focused on scientifically-driven field exploration at Craters of the Moon National Monument and Preserve in Idaho and at the West Clearwater Lake Impact Structure in northern Canada. Field deployments aimed at reconnaissance geology and data acquisition were conducted in 2014 at Craters of the Moon National Monument and Preserve. Targets for data acquisition included selected sites at Kings Bowl eruptive fissure, lava field and blowout crater, Inferno Chasm vent and outflow channel, North Crater lava flow and Highway lava flow. Field investigation included (1) differential GPS (dGPS) measurements of lava flows, channels (and ejecta block at Kings Bowl); (2) LiDAR imaging of lava flow margins, surfaces and other selected features; (3) digital photographic documentation; (4) sampling for geochemical and petrographic analysis; (5) UAV aerial imagery of Kings Bowl and Inferno Chasm features; and (6) geologic assessment of targets and potential new targets. Over the course of the 5-week field FINESSE campaign to the West Clearwater Impact Structure (WCIS) in 2014, the team focused on several WCIS research topics, including impactites, central uplift formation, the impact-generated hydrothermal system, multichronometer dating of impact products, and using WCIS as an analog test site for crew studies of sampling protocols. The FINESSE team visited and mapped all of the major islands within West Clearwater Lake. Excellent cliff exposures around the coasts of many of the islands allowed a general stratigraphy of impactites to be defined. Notable differences to previous work includes the discovery of a monomict lithic breccia and a medium to coarse grained impact melt rock. In addition, ample rock samples were returned from West Clearwater for geochronology study. Geochronology work centers around laboratory analyses of these samples (and samples collected in the future or obtained from archives housed at the Canadian Geological Survey). Samples returned from the FINESSE field season have been evaluated for suitability for geochronologic analysis, and selected samples have been crushed for mineral separation and/or sawed for the preparation of polished petrologic thin sections. Heavy minerals (e.g., zircon, titanite, and apatite) will be separated from the crushed material for (U-Th)/He geochronology. The sections will be used for laser ablation 40Ar/39Ar research after neutron irradiation. This presentation will highlight the exciting science and exploration work conducted by FINESSE, as well as future plans for continued research.

  6. Crew Exploration Vehicle (CEV) Potable Water System Verification Description

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie; DeVera, Jean; Vega, Leticia; Adam, Nik; Steele, John; Gazda, Daniel; Roberts, Michael

    2009-01-01

    The Crew Exploration Vehicle (CEV), also known as Orion, will ferry a crew of up to six astronauts to the International Space Station (ISS), or a crew of up to four astronauts to the moon. The first launch of CEV is scheduled for approximately 2014. A stored water system on the CEV will supply the crew with potable water for various purposes: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain quality of the water transferred from the Orbiter to the ISS and stored in Contingency Water Containers (CWCs). In the CEV water system, the ionic silver biocide is expected to be depleted from solution due to ionic silver plating onto the surfaces of the materials within the CEV water system, thus negating its effectiveness as a biocide. Since the biocide depletion is expected to occur within a short amount of time after loading the water into the CEV water tanks at the Kennedy Space Center (KSC), an additional microbial control is a 0.1 micron point of use filter that will be used at the outlet of the Potable Water Dispenser (PWD). Because this may be the first time NASA is considering a stored water system for longterm missions that does not maintain a residual biocide, a team of experts in materials compatibility, biofilms and point of use filters, surface treatment and coatings, and biocides has been created to pinpoint concerns and perform testing to help alleviate those concerns related to the CEV water system. Results from the test plans laid out in the paper presented to SAE last year (Crew Exploration Vehicle (CEV) Potable Water System Verification Coordination, 2008012083) will be detailed in this paper. Additionally, recommendations for the CEV verification will be described for risk mitigation in meeting the physicochemical and microbiological requirements on the CEV PWS.

  7. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2011-01-01

    The now-cancelled Constellation Program included the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, were planned to be manned space vehicles while the third element was much more diverse and included several sub-elements. Among other things, these sub-elements were Rovers and a Lunar Habitat. The planned missions involving these systems and vehicles included several risks and design challenges. Due to the unique thermal operating environment, many of these risks and challenges were associated with the vehicles thermal control system. NASA s Exploration Technology Development Program (ETDP) consisted of various technology development projects. The project chartered with mitigating the aforementioned thermal risks and design challenges was the Thermal Control System Development for Exploration Project. These risks and design challenges were being addressed through a rigorous technology development process that was planned to culminate with an integrated thermal control system test. Although the technologies being developed were originally aimed towards mitigating specific Constellation risks, the technology development process is being continued within a new program. This continued effort is justified by the fact that many of the technologies are generically applicable to future spacecraft thermal control systems. The current paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing a material compatibility assessment for a promising thermal control system working fluid. The to-date progress and lessons-learned from these development efforts will be discussed throughout the paper.

  8. An inertial fusion propulsion scheme for solar system exploration

    NASA Astrophysics Data System (ADS)

    Kammash, Terry; Galbraith, David L.

    The paper analyzes a novel fusion scheme that combines the favorable aspects of both inertial and magnetic confinement approaches as a propulsion device for potential application in solar system exploration. An appropriate set of equations for the plasma dynamics and the magnetic nozzle is used to assess the system's propulsive capability by applying the results to a round trip mission to Mars. It is found that such a device would allow a massive vehicle to make the journey in less than five months. It is shown that catalyzed deuterium-deuterium fuel results in a somewhat poorer propulsion performance than deuterium-tritium though at a significantly lower neutron production. The velocity increment generated by this system and the corresponding trip time are in excellent agreement with the predictions of Irving and Blum (1959).

  9. An inertial fusion propulsion scheme for solar system exploration

    NASA Technical Reports Server (NTRS)

    Kammash, Terry; Galbraith, David L.

    1991-01-01

    The paper analyzes a novel fusion scheme that combines the favorable aspects of both inertial and magnetic confinement approaches as a propulsion device for potential application in solar system exploration. An appropriate set of equations for the plasma dynamics and the magnetic nozzle is used to assess the system's propulsive capability by applying the results to a round trip mission to Mars. It is found that such a device would allow a massive vehicle to make the journey in less than five months. It is shown that catalyzed deuterium-deuterium fuel results in a somewhat poorer propulsion performance than deuterium-tritium though at a significantly lower neutron production. The velocity increment generated by this system and the corresponding trip time are in excellent agreement with the predictions of Irving and Blum (1959).

  10. Thermal Protection Materials Technology for NASA's Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Lawerence, Timtohy W.; Gubert, Michael K.; Flynn, Kevin C.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2005-01-01

    To fulfill the President s Vision for Space Exploration - successful human and robotic missions between the Earth and other solar system bodies in order to explore their atmospheres and surfaces - NASA must reduce trip time, cost, and vehicle weight so that payload and scientific experiment capabilities are maximized. As a collaboration among NASA Centers, this project will generate products that will enable greater fidelity in mission/vehicle design trade studies, support risk reduction for material selections, assist in optimization of vehicle weights, and provide the material and process templates for development of human-rated qualification and certification Thermal Protection System (TPS) plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on technologies that reduce vehicle weight by minimizing the need for propellant. These missions use the destination planet s atmosphere to slow the spacecraft. Such mission profiles induce heating environments on the spacecraft that demand thermal protection heatshields. This program offers NASA essential advanced thermal management technologies needed to develop new lightweight nonmetallic TPS materials for critical thermal protection heatshields for future spacecraft. Discussion of this new program (a December 2004 new start) will include both initial progress made and a presentation of the work to be preformed over the four-year life of the program. Additionally, the relevant missions and environments expected for Exploration Systems vehicles will be presented, along with discussion of the candidate materials to be considered and of the types of testing to be performed (material property tests, space environmental effects tests, and Earth and Mars gases arc jet tests).

  11. Expert systems in exploration: can they be cost-effective

    SciTech Connect

    Lyon, R.P.J.

    1987-05-01

    PROSPECTOR is the best-known application of an expert system in exploration. Others exist for gamma-ray well logging analysis but are in general company-restricted and not in the open literature. PROSPECTOR, however, is comprised of a large set of elegant subprograms, each designed for a specific goal - generally for hard minerals. The program is expensive, costly to run, and requires a mainframe (usually a LISP machine) for operation. Recently, a microcomputer-based version (u-PROSPECTOR) has become available, but it still follows the formal artificial intelligence (AI) syntax of PROSPECTOR. In the Remote Sensing Laboratory at Stanford, they have been experimenting with low-end ($100-$1000) AI programs. The development of these has been driven by (1) the explosion of availability of microcomputers and (2) the realization by developers that the marketplace has many more Fortran and C-language machines available than the dedicated (and expensive) LISP units. This paper will discuss those commercially available, low-priced AI shells as applied to several of the simplest exploration problems - spectral pattern recognition and texture in radar imagery - and extrapolate their usefulness to more complex decision-making steps in exploration practice.

  12. Overview of an Integrated Medical System for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Watkins, Sharmila; Rubin, David

    2013-01-01

    The Exploration Medical Capability (ExMC) element of the NASA Human Research Program (HRP) is charged with addressing the risk of unacceptable health and mission outcomes due to limitations of inflight medical capabilities. The Exploration Medical System Demonstration (EMSD) is a project within the ExMC element aimed at reducing this risk by improving the medical capabilities available for exploration missions. The EMSD project will demonstrate, on the ground and on ISS, the integration of several components felt to be essential to the delivery of medical care during long ]duration missions outside of low Earth orbit. The components of the EMSD include the electronic medical record, assisted medical procedure software, medical consumables tracking technology and RFID ] tagged consumables, video conferencing capability, ultrasound device and probes (ground demonstration only), peripheral biosensors, and the software to allow communication among the various components (middleware). This presentation seeks to inform our international partners of the goals and objectives of the EMSD and to foster collaboration opportunities related to this and future projects.

  13. System for Multiplexing Acoustic Emission (AE) Instrumentation

    NASA Technical Reports Server (NTRS)

    Prosser, William H. (Inventor); Perey, Daniel F. (Inventor); Gorman, Michael R. (Inventor); Scales, Edgar F. (Inventor)

    2003-01-01

    An acoustic monitoring device has at least two acoustic sensors with a triggering mechanism and a multiplexing circuit. After the occurrence of a triggering event at a sensor, the multiplexing circuit allows a recording component to record acoustic emissions at adjacent sensors. The acoustic monitoring device is attached to a solid medium to detect the occurrence of damage.

  14. Pipe Explorer{trademark} surveying system. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-06-01

    The US Department of Energy`s (DOE) Chicago Operations Office and the DOE`s Federal Energy Technology Center (FETC) developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial decontamination and decommissioning (D and D) technologies in comparison with current baseline technologies. The Pipe Explorer{trademark} system was developed by Science and Engineering Associates, Inc. (SEA), Albuquerque, NM as a deployment method for transporting a variety of survey tools into pipes and ducts. Tools available for use with the system include alpha, beta and gamma radiation detectors; video cameras; and pipe locator beacons. Different versions of this technology have been demonstrated at three other sites; results of these demonstrations are provided in an earlier Innovative Technology Summary Report. As part of a D and D project, characterization radiological contamination inside piping systems is necessary before pipes can be recycled, remediated or disposed. This is usually done manually by surveying over the outside of the piping only, with limited effectiveness and risk of worker exposure. The pipe must be accessible to workers, and embedded pipes in concrete or in the ground would have to be excavated at high cost and risk of exposure to workers. The advantage of the Pipe Explorer is its ability to perform in-situ characterization of pipe internals.

  15. Grading NASA's Solar System Exploration Program: A Midterm Report

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Committee on Assessing the Solar System Exploration Program has reviewed NASA's progress to date in implementing the recommendations made in the National Research Council's (NRC's) solar system exploration decadal survey covering the period 2003-2013, New Frontiers in the Solar System, and in its Mars Architecture report, Assessment of NASA s Mars Architecture 2007-2016. The committee assessed NASA's progress with respect to each individual recommendation in these two reports, assigning an academic-style grade, explaining the rationale for the grade and trend, and offering recommendations for improvement. The committee generally sought to develop recommendations in cases where it determined that the grade, the trend, or both were worrisome and that the achievement of a decadal survey recommendation would require some kind of corrective action on NASA's part. This usually meant that the committee sought to offer a recommendation when the grade was a "C" or lower. However, the committee did offer recommendations in connection with some higher grades when it believed that minor corrective action was possible and desirable. More importantly, the committee did not offer recommendations for some of the activities given lower grades, particularly in the enabling technologies area (Chapter 6), because the committee determined that only the restoration of funding and the development of a strategic technology development program would solve these problems.

  16. Advanced Avionics and Processor Systems for Space and Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Ray, Robert E.; Johnson, Michael A.; Cressler, John D.

    2009-01-01

    NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.

  17. AE mass spectrometer antechamber study

    NASA Technical Reports Server (NTRS)

    Herzog, R. F.

    1971-01-01

    The formation of CO2 and H2O in a gold plated antechamber was investigated when a beam of oxygen is introduced. It was found that at room temperature the formation of CO2 and H2O is negligibly small. However, at the top temperature (197 C) which could be achieved with the existing system, both products were formed in significant quantities. Desorption of CO2 and H2O at this temperature is still slow and incomplete which accounts for the delayed response to the beam conditions. Although the catalytic reactions take place already with molecular oxygen, the reactions are significantly enhanced if the oxygen beam is partially dissociated.

  18. Orion Launch Abort System Performance on Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. A number of flight tests have been conducted and are planned to demonstrate the performance and enable certification of the Orion Spacecraft. Exploration Flight Test 1, the first flight test of the Orion spacecraft, was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. Orion's first flight was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety, such as heat shield performance, separation events, avionics and software performance, attitude control and guidance, parachute deployment and recovery operations. One of the key separation events tested during this flight was the nominal jettison of the LAS. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. The LAS nominal jettison event on Exploration Flight Test 1 occurred at six minutes and twenty seconds after liftoff (See Fig. 3). The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. A suite of developmental flight instrumentation was included on the flight test to provide data on spacecraft subsystems and separation events. This paper will focus on the flight test objectives and performance of the LAS during ascent and nominal jettison. Selected LAS subsystem flight test data will be presented and discussed in the paper. Exploration Flight Test -1 will provide critical data that will enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.

  19. Performance Assessment of the Exploration Water Recovery System

    NASA Technical Reports Server (NTRS)

    Carter. D. Layne; Tabb, David; Perry, Jay

    2008-01-01

    A new water recovery system architecture designed to fulfill the National Aeronautics and Space Administration s (NASA) Space Exploration Policy has been tested at the Marshall Space Flight Center (MSFC). This water recovery system architecture evolved from the current state-of-the-art system developed for the International Space Station (ISS). Through novel integration of proven technologies for air and water purification, this system promises to elevate existing system optimization. The novel aspect of the system is twofold. First, volatile organic compounds (VOC) are removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase. Second, vapor compression distillation (VCD) technology processes the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removing VOCs from the vapor phase is more efficient. Treating the various waste streams by VCD reduces the load on the expendable ion exchange and adsorption media which follows, as well as the aqueous-phase catalytic oxidation process further downstream. This paper documents the results of testing this new architecture.

  20. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  1. A personal airbag system for the Orion Crew Exploration Vehicle

    NASA Astrophysics Data System (ADS)

    Do, Sydney; de Weck, Olivier

    2012-12-01

    Airbag-based methods for crew impact attenuation have been highlighted as a potential simple, lightweight means of enabling safe land-landings for the Orion Crew Exploration Vehicle, and the next generation of ballistic shaped spacecraft. To investigate the feasibility of this concept during a nominal 7.62 m/s Orion landing, a full-scale personal airbag system 24% lighter than the Orion baseline has been developed, and subjected to 38 drop tests on land. Through this effort, the system has demonstrated the ability to maintain the risk of injury to an occupant during a 7.85 m/s, 0 impact angle land-landing to within the NASA specified limit of 0.5%. In accomplishing this, the personal airbag system concept has been proven to be feasible. Moreover, the obtained test results suggest that by implementing anti-bottoming airbags to prevent direct contact between the system and the landing surface, the system performance during landings with 0 impact angles can be further improved, by at least a factor of two. Additionally, a series of drop tests from the nominal Orion impact angle of 30 indicated that severe injury risk levels would be sustained beyond impact velocities of 5 m/s. This is a result of the differential stroking of the airbags within the system causing a shearing effect between the occupant seat structure and the spacecraft floor, removing significant stroke from the airbags.

  2. Crew Exploration Vehicle Potable Water System Verification Description

    NASA Technical Reports Server (NTRS)

    Tuan, George; Peterson, Laurie J.; Vega, Leticia M.

    2010-01-01

    A stored water system on the crew exploration vehicle (CEV) will supply the crew with potable water for: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain the quality of the water, transferred from the orbiter to the International Space Station, stored in contingency water containers. In the CEV water system, a depletion of the ionic silver biocide is expected due to ionic silver-plating onto the surfaces of materials within the CEV water system, thus negating its effectiveness as a biocide. Because this may be the first time NASA is considering a stored water system for long-term missions that do not maintain a residual biocide, a team of experts in materials compatibility, biofilms and point-of-use filters, surface treatment and coatings, and biocides has been created to pinpoint concerns and perform the testing that will help alleviate concerns related to the CEV water system.

  3. Utilizing Radioisotope Power Systems for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Schreiner, Timothy M.

    2005-01-01

    The Vision for Space Exploration has a goal of sending crewed missions to the lunar surface as early as 2015 and no later than 2020. The use of nuclear power sources could aid in assisting crews in exploring the surface and performing In-Situ Resource Utilization (ISRU) activities. Radioisotope Power Systems (RPS) provide constant sources of electrical power and thermal energy for space applications. RPSs were carried on six of the crewed Apollo missions to power surface science packages, five of which still remain on the lunar surface. Future RPS designs may be able to play a more active role in supporting a long-term human presence. Due to its lower thermal and radiation output, the planned Stirling Radioisotope Generator (SRG) appears particularly attractive for manned applications. The MCNPX particle transport code has been used to model the current SRG design to assess its use in proximity with astronauts operating on the surface. Concepts of mobility and ISRU infrastructure were modeled using MCNPX to analyze the impact of RPSs on crewed mobility systems. Strategies for lowering the radiation dose were studied to determine methods of shielding the crew from the RPSs.

  4. Wide-Field Infrared Explorer spacecraft system design.

    NASA Astrophysics Data System (ADS)

    Everett, D. F.; Sparr, L. M.

    Following a formal and competitive process, the Wide-Field Infrared Explorer (WIRE) instrument was selected in 1994 to become a participant in NASA/Goddard Space Flight Center's Small Explorer Program (SMEX). The WIRE instrument will be used to conduct a deep infrared, extragalactic science survey 500 times more sensitive than the Infrared Astronomy Satellite (IRAS) Faint Source Catalog. The WIRE spacecraft is being configured to be placed into a 470540 km sun-synchronous orbit. The WIRE instrument will be delivered to NASA/Goddard Space Flight Center in early 1998 to undergo integration and test with the WIRE spacecraft bus and subsequently will be launched in the fall of 1998. The SMEX program uses a strict design-to-cost approach to manage and to contain overall mission cost. This paper presents the major instrument, operational and cost requirements driving the spacecraft systems design for the mechanical, structural, thermal, attitude control, command and data handling, power and electrical systems.

  5. The Exploration of the Pluto System by New Horizons

    NASA Astrophysics Data System (ADS)

    Stern, S. Alan; NASA New Horizons Team

    2016-01-01

    The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long term activity raise fundamental questions about how small planets remain active many billions of years (Gyr) after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its North Pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected. In this talk I will summarize the objectives of the New Horizons mission, its scientific payload, and survey key results obtained to date about Pluto and its system of moons.

  6. Cosmic Background Explorer (COBE) transfer orbit attitude control system

    NASA Technical Reports Server (NTRS)

    Placanica, Samuel J.; Flatley, Thomas W.

    1986-01-01

    The Cosmic Background Explorer (COBE) spacecraft will be launched by the Shuttle from Vandenberg AFB into a 300 km altitude, 99 deg inclination, 6 a.m. or 6 p.m. ascending node orbit. After release from the Remote Manipulator System (RMS) arm, an on-board monopropellant hydrazine propulsion system will raise the orbit altitude to 900 km. The spacecraft continuously spins during transfer orbit operations with the spin axis nominally horizontal and in or near the orbit plane. The blowdown propulsion system consists of twelve 5 lb thrusters (3 'spin', 3 'despin', and 6 'axial') with the latter providing initially 30 lb of force parallel to the spin axis for orbit raising. The spin/despin jets provide a constant roll rate during the transfer orbit phase of the mission and the axials control pitch and yaw. The axial thrusters are pulsed on for attitude control during coast periods and are normally on- and off-modulated for control during orbit raising. Attitude sensors employed in the control loops include an array of two-axis digital sun sensors and three planar earth scanners for position measurements, as well as six gyroscopes for rate information. System redundancy is achieved by means of unique three-axes-in-a-plane geometry. This triaxial concept results in a fail-safe operational system with no performance degradation for many different component failure modes.

  7. Fission Power System Technology for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Houts, Michael

    2011-01-01

    Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.

  8. Orbital Stability of Spacecraft Exploring Multiple Asteroid Systems

    NASA Astrophysics Data System (ADS)

    Burns, Keaton; Marchis, F.; Bellerose, J.

    2011-05-01

    Space missions to study the composition and formation histories of multiple asteroid systems require the identification of safe orbits for the observing spacecraft. To identify regions of orbital stability, we developed an n-body simulation and Monte Carlo scheme to test a large selection of orbits around the components of multiple asteroid systems. Our n-body program integrates the equations of motion of the spacecraft, asteroid system components, and the sun for 20 days, taking into account solar radiation pressure on the spacecraft and modeling asteroids as systems of rigid points when their shape model is known. We utilized a Monte Carlo scheme to test the stability of polar and retrograde orbits from uniformly distributed starting positions with normally distributed tangential velocities around each component. We present preliminary results of simulations testing hundreds of thousands of polar and retrograde orbits around the components of the 2001 SN263 near-earth triple asteroid system, and the (90) Antiope doublet and (45) Eugenia triple systems in the main-belt. These systems are potential targets for several space mission concepts, including: the Amor mission to visit and land on the components of 2001 SN263, Jones et al. (LPSC 42, #2695, 2011), the Diversity mission to explore several asteroid systems including (45) Eugenia and (90) Antiope, Marchis et al. (LPSC 42, #2062, 2011), and the ASTER mission to visit a NEA multiple asteroid, Sukhanov et al. (Cosmic Research 48-5, p. 443-450, 2010). Analysis of stable regions in position and velocity may assist in planning scientific orbits and instrumental specifications for such missions.

  9. Exploration Systems Development (ESD) Approach to Enterprise Risk Management

    NASA Technical Reports Server (NTRS)

    Bauder, Stephen P.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Development (ESD) Division has implemented an innovative approach to Enterprise Risk Management under a unique governance structure and streamlined integration model. ESD's mission is to design and build the capability to extend human existence to deep space. The Enterprise consists of three Programs: Space Launch System (SLS), Orion, and Ground Systems Development and Operations (GSDO). The SLS is a rocket and launch system that will be capable of powering humans, habitats, and support systems to deep space. Orion will be the first spacecraft in history capable of taking humans to multiple destinations within deep space. GSDO is modernizing Kennedy's spaceport to launch spacecraft built and designed by both NASA and private industry. ESD's approach to Enterprise Risk Management is commensurate with affordability and a streamlined management philosophy. ESD Enterprise Risk Management leverages off of the primary mechanisms for integration within the Enterprise. The Enterprise integration approach emphasizes delegation of authority to manage and execute the majority of cross-program activities and products to the individual Programs, while maintaining the overall responsibility for all cross-program activities at the Division. The intent of the ESD Enterprise Risk Management approach is to improve risk communication, to avoid replication and/or contradictory strategies, and to minimize overhead process burden. This is accomplished by the facilitation and integration of risk information within ESD. The ESD Division risks, Orion risks, SLS risks, and GSDO risks are owned and managed by the applicable Program. When the Programs have shared risks with multiple consequences, they are jointly owned and managed. When a risk is associated with the integrated system that involves more than one Program in condition, consequence, or mitigation plan, it is considered an Exploration Systems Integration (ESI) Risk. An ESI risk may require visibility and risk handling by multiple organizations. The Integrated Risk Working Group (IRWG) is a small team of Risk experts that are responsible for collaborating and communicating best practices. In addition, the forum facilitates proper integration of risks across the Enterprise. The IRWG uses a Continuous Risk Management approach for facilitating the identification, analysis, planning, tracking, and controlling of ESI Risks. The ESD Division, Programs, and Integrated Task Teams identify ESI Risks. The IRWG maintains a set of metrics for understanding Enterprise Risk process and the overall Risk Posture. The team is also actively involved in the modeling of risk for Enterprise Performance Management. With the Enterprise being constrained in Schedule and Budget, and with significant technical complexity, the appropriate use of Risk Management techniques is crucial to the success of the Enterprise. The IRWG achieves this through the modified approach, providing a forum for collaboration on risks that cross boundaries between the separate entities.

  10. Exploration of geothermal systems using hyperspectral thermal infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Reath, Kevin A.; Ramsey, Michael S.

    2013-09-01

    Visible near infrared (VNIR), short-wave infrared (SWIR), and thermal infrared (TIR) remote sensing has long been used for geothermal exploration. Specific focus on the TIR region (8-12 ?m) has resulted in major-rock-forming mineral classes being identified and their areal percentages to be more easily mapped due in part to the linear mixing behavior of TIR emission. To understand the mineral compositional and thermal distribution of active geothermal surfaces systems, hyperspectral TIR data from the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) airborne sensor were acquired over the Salton Sea, CA geothermal fields by The Aerospace Corporation on March 26, 2009 and April 6, 2010. SEBASS collects 128 wavelength channels at ~ 1 m spatial resolution. Such high resolution data are rarely available for this type of scientific analysis and enabled the identification of rare mineral assemblages associated with the geothermally-active areas. One surface unit with a unique spectrum, believed to be a magnesium sulfate of unknown hydration state, was identified for the first time in the SEBASS data. The abundance and distribution of this mineral varied between 2009 and 2010 likely due to the precipitation conditions. Data obtained by the SEBASS sensor were also regressed to the 32 channel spectral resolution of the Mineral and Gas Identifier (MAGI) airborne sensor in order to test sensitivity limits. At this lower spectral resolution, all surface minerals were still effectively identified and therefore validated data at MAGI resolution are still very effective for accurate surface compositional mapping. A similar approach used at active geothermal areas in other semi-arid regions around the world has the potential to better characterize transient mineralogy, identify "indicators minerals", understand the influence of surface and ground water, and ultimately to locate new geothermal targets for future exploration. Furthermore, new Mineral and Gas Identification (MAGI) data serve as an excellent precursor for future spaceborne TIR data such as the system proposed for the Hyperspectral Infrared Imager (HyspIRI) instrument.

  11. Astrobiology as an Integrating Theme in Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Jakosky, B. M.

    2003-12-01

    The discipline of astrobiology examines (i) the origin and evolution of life on Earth and the detailed interplay between biological and planetary evolution, (ii) the evolution of our solar system and the potential and actual distribution of life within it, (iii) the occurrence of planets around other stars and their potential for life, and (iv) the interplay between each of these areas. In our own solar system, astrobiology encompasses much more than just the search for life on Mars or Europa. Our goal is to understand the nature of planetary habitability--which planets have evolved to have environments that are habitable by microorganisms, and which have not. By understanding the processes that control the architecture of our solar system, we can extrapolate how these same processes might have played out in other planetary systems and what the distribution of habitability might be beyond our own system. In this context, Mars and Europa appear as potentially habitable worlds either today or in the past, Ganymede and Callisto might have deep subsurface oceans and be habitable, Venus might have been habitable early on but does not appear to be today, and Titan probably has had intermittent liquid water as well as ongoing chemical evolution involving organic molecules. Looking more broadly, the origin and the evolution of the gas-giant planets and their dynamical effects have had a major influence on the terrestrial planets; the characteristics of the Kuiper belt and Oort cloud influence our understanding of early chemical and volatile processes that affect habitability; and asteroids have had a tremendous impact on the terrestrial planets throughout their history. In order to understand planetary habitability in general, and the implications of a discovery of the presence or absence of life on any given object, we need to understand the detailed origin and evolution of our solar system as a whole and of the individual bodies within it. A broad program of planetary exploration is the best way to investigate the astrobiology of our solar system.

  12. Crew Exploration Vehicle (CEV) Potable Water System Verification Description

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie; DeVera, Jean; Vega, Leticia; Adam, Nik; Steele, John; Rector, Tony; Gazda, Daniel; Roberts, Michael

    2008-01-01

    The Crew Exploration Vehicle (CEV), also known as Orion, will ferry a crew of up to six astronauts to the International Space Station (ISS), or a crew of up to four astronauts to the moon. The first launch of CEV is scheduled for approximately 2014. A stored water system on the CEV will supply the crew with potable water for various purposes: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain quality of the water transferred from the Orbiter to the ISS and stored in Contingency Water Containers (CWCs). In the CEV water system, the ionic silver biocide is expected to be depleted from solution due to ionic silver plating onto the surfaces of the materials within the CEV water system, thus negating its effectiveness as a biocide. Since the biocide depletion is expected to occur within a short amount of time after loading the water into the CEV water tanks at the Kennedy Space Center (KSC), an additional microbial

  13. Active Learning for Directed Exploration of Complex Systems

    NASA Technical Reports Server (NTRS)

    Burl, Michael C.; Wang, Esther

    2009-01-01

    Physics-based simulation codes are widely used in science and engineering to model complex systems that would be infeasible to study otherwise. Such codes provide the highest-fidelity representation of system behavior, but are often so slow to run that insight into the system is limited. For example, conducting an exhaustive sweep over a d-dimensional input parameter space with k-steps along each dimension requires k(sup d) simulation trials (translating into k(sup d) CPU-days for one of our current simulations). An alternative is directed exploration in which the next simulation trials are cleverly chosen at each step. Given the results of previous trials, supervised learning techniques (SVM, KDE, GP) are applied to build up simplified predictive models of system behavior. These models are then used within an active learning framework to identify the most valuable trials to run next. Several active learning strategies are examined including a recently-proposed information-theoretic approach. Performance is evaluated on a set of thirteen synthetic oracles, which serve as surrogates for the more expensive simulations and enable the experiments to be replicated by other researchers.

  14. Avionic architecture requirements for Space Exploration Initiative systems

    NASA Technical Reports Server (NTRS)

    Herbella, C. G.; Brown, D. C.

    1991-01-01

    The authors discuss NASA's Strategic Avionics Technology Working Group (SATWG) and the results of the first study commissioned by the SATWG, the Space Avionics Requirements Study (SARS). The goal of the SARS task was to show that an open avionics architecture, using modular, standardized components, could be applied across the wide range of systems that comprise the Space Exploration Initiative. The study addressed systems ranging from expendable launch vehicles and the space station to surface systems such as Mars or lunar rovers and habitats. Top-level avionics requirements were derived from characterizations of each of the systems considered. Then a set of avionics subsystems were identified, along with estimates of the numbers and types of modules needed to meet the requirements. Applicability of these results across the infrastructure was then illustrated. In addition to these tasks, critical technologies were identified, characterized, and assessed in terms of their criticality and impact on the program. Design, development, test, and evaluation methods were addressed to identify potential areas of improvement.

  15. Exploring the Solar System with a Human Orrery

    NASA Astrophysics Data System (ADS)

    Newbury, Peter R.; Gendre, M. A.; Gladman, B.; Kasian, L. E.; Meger, N.

    2009-05-01

    Astronomy instructors, and those teaching other sciences, are slowly coming to the realization that it's not what the instructor does that matters - it's what the students do for themselves. To foster this approach to learning, the instructor's role is to provide an environment - an engaging task, a target for the students' focus and guidance - in which the students discover the concepts for themselves. With this role in mind, for a large class of undergraduate non-Science majors, we adapted the human orrery designed by the Armagh Observatory in Northern Ireland into one that can be easily built and explored by a class of 30-40 students in a 1-hour tutorial. Students actively and individually explore the scale of the Solar System and the motion of the planets. As the human orrery requires a large, open space, we staged the activity in the foyer of the University library as a public outreach event celebrating IYA2009, generating tremendous enthusiasm and support from students, faculty, library staff and University administration. This work is supported by the Carl Wieman Science Education Initiative at the University of British Columbia.

  16. The Herbig Ae Star PDS2

    NASA Astrophysics Data System (ADS)

    Cowley, C. R.; Hubrig, S.

    2014-11-01

    We present a preliminary abundance analysis of the isolated Herbig Ae star PDS2 (CD -53 251, 2MASS J01174349-5233307). Our adopted model has T_eff = 6500K, log(g) = 3.5. It is likely that PDS2 belongs to the class of young stars with abundances resembling the λ Bootis stars. Based on Data obtained from the ESO Science Archive Facility

  17. UWB Tracking System Design for Lunar/Mars Exploration

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia

    2006-01-01

    This paper describes a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as high data rate, fine time resolution, low power spectral density, and multipath immunity. A two-cluster prototype design using commercially available UWB products is proposed to implement the Angle Of Arrival (AOA) tracking methodology in this research effort. An AOA technique using the Time Difference Of Arrival (TDOA) information is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. After the UWB radio at each cluster is used to obtain the TDOA estimates from the UWB signal sent from the target, the TDOA data is converted to AOA data to find the angle of arrival, assuming this is a far field application. Since the distance between two clusters is known, the target position is computed by a simple triangulation. Simulations show that the average tracking error at a range of 610 meters is 2.7595 meters, less than 0.5% of the tracking range. Outdoor tests to track the SCOUT vehicle (The Science Crew Operations and Utility Testbed) near the Meteor Crater, Flagstaff, Arizona were performed on September 12-13, 2005. The tracking performance was obtained with less than 1% tracking error at ranges up to 2000 feet. No RF interference with on-board GPS, video, voice and telemetry systems was detected. Outdoor tests demonstrated the UWB tracking capability.

  18. New approaches to planetary exploration - Spacecraft and information systems design

    NASA Technical Reports Server (NTRS)

    Diaz, A. V.; Neugebauer, M.; Stuart, J.; Miller, R. B.

    1983-01-01

    Approaches are recommended for use by the NASA Solar System Exploration Committee (SSEC) in lowering the costs of planetary missions. The inclusion of off-the-shelf hardware, i.e., configurations currently in use for earth orbits and constructed on a nearly assembly-line basis, is suggested. Alterations would be necessary for the thermal control, power supply, telecommunications equipment, and attitude sensing in order to be serviceable as a planetary observer spacecraft. New technology can be developed only when cost reduction for the entire mission would be realized. The employment of lower-cost boost motors, or even integrated boost motors, for the transfer out of earth orbit is indicated, as is the development of instruments that do not redundantly gather the same data as previous planetary missions. Missions under consideration include a Mars geoscience climatology Orbiter, a lunar geoscience Orbiter, a near-earth asteroid rendezvous, a Mars aeronomy Orbiter, and a Venus atmospheric probe.

  19. Mission building blocks for outer solar system exploration.

    NASA Technical Reports Server (NTRS)

    Herman, D.; Tarver, P.; Moore, J.

    1973-01-01

    Description of the technological building blocks required for exploring the outer planets with maximum scientific yields under stringent resource constraints. Two generic spacecraft types are considered: the Mariner and the Pioneer. Following a discussion of the outer planet mission constraints, the evolutionary development of spacecraft, probes, and propulsion building blocks is presented. Then, program genealogies are shown for Pioneer and Mariner missions and advanced propulsion systems to illustrate the soundness of a program based on spacecraft modification rather than on the development of new spacecraft for each mission. It is argued that, for minimum costs, technological advancement should occur in an evolutionary manner from mission to mission. While this strategy is likely to result in compromises on specific missions, the realization of the overall objectives calls for an advance commitment to the entire mission series.

  20. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A number of problems related to the design, construction and evaluation of an autonomous roving planetary vehicle and its control and operating systems intended for an unmanned exploration of Mars are studied. Vehicle configuration, dynamics, control, systems and propulsion; systems analysis; terrain sensing and modeling and path selection; and chemical analysis of samples are included.

  1. Human Outer Solar System Exploration via Q-Thruster Technology

    NASA Technical Reports Server (NTRS)

    Joosten, B. Kent; White, Harold G.

    2014-01-01

    Propulsion technology development efforts at the NASA Johnson Space Center continue to advance the understanding of the quantum vacuum plasma thruster (QThruster), a form of electric propulsion. Through the use of electric and magnetic fields, a Q-thruster pushes quantum particles (electrons/positrons) in one direction, while the Qthruster recoils to conserve momentum. This principle is similar to how a submarine uses its propeller to push water in one direction, while the submarine recoils to conserve momentum. Based on laboratory results, it appears that continuous specific thrust levels of 0.4 - 4.0 N/kWe are achievable with essentially no onboard propellant consumption. To evaluate the potential of this technology, a mission analysis tool was developed utilizing the Generalized Reduced Gradient non-linear parameter optimization engine contained in the Microsoft Excel® platform. This tool allowed very rapid assessments of "Q-Ship" minimum time transfers from earth to the outer planets and back utilizing parametric variations in thrust acceleration while enforcing constraints on planetary phase angles and minimum heliocentric distances. A conservative Q-Thruster specific thrust assumption (0.4 N/kWe) combined with "moderate" levels of space nuclear power (1 - 2 MWe) and vehicle specific mass (45 - 55 kg/kWe) results in continuous milli-g thrust acceleration, opening up realms of human spaceflight performance completely unattainable by any current systems or near-term proposed technologies. Minimum flight times to Mars are predicted to be as low as 75 days, but perhaps more importantly new "retro-phase" and "gravity-augmented" trajectory shaping techniques were revealed which overcome adverse planetary phasing and allow virtually unrestricted departure and return opportunities. Even more impressively, the Jovian and Saturnian systems would be opened up to human exploration with round-trip times of 21 and 32 months respectively including 6 to 12 months of exploration at the destinations. Finally, interstellar trip times are assessed at milli-g acceleration levels.

  2. Supporting exploration and collaboration in scientific workflow systems

    NASA Astrophysics Data System (ADS)

    Marini, L.; Kooper, R.; Bajcsy, P.; Myers, J.

    2007-12-01

    As the amount of observation data captured everyday increases, running scientific workflows will soon become a fundamental step of scientific inquiry. Current scientific workflow systems offer ways to link together data, software and computational resources, but often accomplish this by requiring a deep understanding of the system with a steep learning curve. Thus, there is a need to lower user adoption barriers for workflow systems and improve the plug-and-play functionality of these systems. We created a system that allows the user to easily create and share workflows, data and algorithms. Our goal of lowering user adoption barriers is to support discoveries and to provide means for conducting research more efficiently. Current paradigms for workflow creation focus on the visual programming using a graph based metaphor. This can be a powerful metaphor in the hands of expert users, but can become daunting when graphs become large, the steps in the graph include engineering level steps such as loading and visualizing data, and the users are not very familiar with all the possible tools available. We present a different method of workflow creation that co- exists with the standard graph based editors. The method builds on exploratory interface using a macro- recording style, and focuses on the data being analyzed during the step by step creation of the workflow. Instead of storing data in system specific data structures, the use of more flexible open standards that are platform independent would create systems that are easier to extend and that provide a simple interface for external applications to query and analyze the data and metadata produced. We have explored and implemented a system that stores workflows and related metadata using the Resource Description Framework (RDF) metadata model and that is build on top of the Tupelo data and metadata archiving system. The scientific workflow system connects to shared content repositories, where users can easily share data, workflows, algorithms and annotations. Examples of the above methodologies will be illustrated using a prototype workflow solution called Cyberintegrator and a use case scenario being developed by the Corpus Christi Bay WATERS Network test bed (a group of collaborating domain scientists from Texas and Illinois) involving monitoring, predicting and understanding of the hypoxia problem in Corpus Christi Bay.

  3. Introducing NASA's Solar System Exploration Research Virtual Institute

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne

    The Solar System Exploration Research Virtual Institute (SSERVI) is focused on the Moon, near Earth asteroids, and the moons of Mars. Comprised of competitively selected teams across the U.S., a growing number of international partnerships around the world, and a small central office located at NASA Ames Research Center, the institute advances collaborative research to bridge science and exploration goals. As a virtual institute, SSERVI brings unique skills and collaborative technologies for enhancing collaborative research between geographically disparate teams. SSERVI is jointly funded through the NASA Science Mission Directorate and the NASA Human Exploration and Operations Mission Directorate. Current U.S. teams include: Dr. Jennifer L. Heldmann, NASA Ames Research Center, Moffett Field, CA; Dr. William Farrell, NASA Goddard Space Flight Center, Greenbelt, MD; Prof. Carlé Pieters, Brown University, Providence, RI; Prof. Daniel Britt, University of Central Florida, Orlando, FL; Prof. Timothy Glotch, Stony Brook University, Stony Brook, NY; Dr. Mihaly Horanyi, University of Colorado, Boulder, CO; Dr. Ben Bussey, Johns Hopkins Univ. Applied Physics Laboratory, Laurel, MD; Dr. David A. Kring, Lunar and Planetary Institute, Houston, TX; and Dr. William Bottke, Southwest Research Institute, Boulder, CO. Interested in becoming part of SSERVI? SSERVI Cooperative Agreement Notice (CAN) awards are staggered every 2.5-3yrs, with award periods of five-years per team. SSERVI encourages those who wish to join the institute in the future to engage current teams and international partners regarding potential collaboration, and to participate in focus groups or current team activities now. Joining hand in hand with international partners is a winning strategy for raising the tide of Solar System science around the world. Non-U.S. science organizations can propose to become either Associate or Affiliate members on a no-exchange-of-funds basis. Current international partners include: Canada, Germany, Israel, Netherlands, Saudi Arabia, South Korea, and the United Kingdom. Discussions are ongoing to bring several more partners into the fold. These partnerships have impacted lunar science in a number of ways, resulting in such efforts and groups as the Pan-European Lunar Science Consortium and the Canadian Sudbury Field School. For more information visit sservi.nasa.gov

  4. Fossil-Fuel C02 Emissions Database and Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.

    2012-04-01

    Fossil-Fuel C02 Emissions Database and Exploration System Misha Krassovski and Tom Boden Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production each year at global, regional, and national spatial scales. These estimates are vital to climate change research given the strong evidence suggesting fossil-fuel emissions are responsible for unprecedented levels of carbon dioxide (CO2) in the atmosphere. The CDIAC fossil-fuel emissions time series are based largely on annual energy statistics published for all nations by the United Nations (UN). Publications containing historical energy statistics make it possible to estimate fossil-fuel CO2 emissions back to 1751 before the Industrial Revolution. From these core fossil-fuel CO2 emission time series, CDIAC has developed a number of additional data products to satisfy modeling needs and to address other questions aimed at improving our understanding of the global carbon cycle budget. For example, CDIAC also produces a time series of gridded fossil-fuel CO2 emission estimates and isotopic (e.g., C13) emissions estimates. The gridded data are generated using the methodology described in Andres et al. (2011) and provide monthly and annual estimates for 1751-2008 at 1 latitude by 1 longitude resolution. These gridded emission estimates are being used in the latest IPCC Scientific Assessment (AR4). Isotopic estimates are possible thanks to detailed information for individual nations regarding the carbon content of select fuels (e.g., the carbon signature of natural gas from Russia). CDIAC has recently developed a relational database to house these baseline emissions estimates and associated derived products and a web-based interface to help users worldwide query these data holdings. Users can identify, explore and download desired CDIAC fossil-fuel CO2 emissions data. This presentation introduces the architecture and design of the new relational database and web interface, summarizes the present state and functionality of the Fossil-Fuel CO2 Emissions Database and Exploration System, and highlights future plans for expansion of the relational database and interface.

  5. Large-scale waves in the ionosphere observed by the AE satellite

    NASA Technical Reports Server (NTRS)

    Gross, S. H.; Reber, C. A.; Huang, F.

    1981-01-01

    Atmospheric Explorer (AE) satellite data were used to establish whether coherent waves in the gravity wave range are present in both neutral and ionized media in the thermosphere. The AE-C data in particular are shown. Data consist of the in situ argon, helium, nitrogen, and oxygen densities, plasma density, and ion and electron temperatures. Filtering provides the fluctuation signals for each which are spectrum analyzed for power and cross spectra. The observed frequencies are essentially proportional to the spatial wavenumbers along the satellite track. Scale sizes range from thousands to tens of kilometers.

  6. Exploring No-SQL alternatives for ALMA monitoring system

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Merino, Patricio; Pea, Leonel; Bartsch, Marcelo; Aguirre, Alvaro; Ibsen, Jorge

    2014-07-01

    The Atacama Large Millimeter /submillimeter Array (ALMA) will be a unique research instrument composed of at least 66 reconfigurable high-precision antennas, located at the Chajnantor plain in the Chilean Andes at an elevation of 5000 m. This paper describes the experience gained after several years working with the monitoring system, which has a strong requirement of collecting and storing up to 150K variables with a highest sampling rate of 20.8 kHz. The original design was built on top of a cluster of relational database server and network attached storage with fiber channel interface. As the number of monitoring points increases with the number of antennas included in the array, the current monitoring system demonstrated to be able to handle the increased data rate in the collection and storage area (only one month of data), but the data query interface showed serious performance degradation. A solution based on no-SQL platform was explored as an alternative to the current long-term storage system. Among several alternatives, mongoDB has been selected. In the data flow, intermediate cache servers based on Redis were introduced to allow faster streaming of the most recently acquired data to web based charts and applications for online data analysis.

  7. Polarimetric Exploration of Solar System Small Bodies: Search for Habitability

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma A.

    2015-08-01

    The overarching goals for the remote sensing and robotic exploration of our solar system and exoplanetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. These goals can be realized with the inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy. Since all objects have unique polarimetric signatures, like fingerprints, much can be learned about the scattering object. Although polarization, in general, is elliptical by nature, special cases such as linear and circular polarimetric signatures provide insight into the various types of scattering media and are valuable tools to be developed. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. The search for habitability can benefit from spectrophotopolarimetry. While linear polarization of reflected light by solar system objects (planetary atmospheres, satellites, rings systems, comets, asteroids, dust, etc.) provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects, circular polarization and related chirality) or handedness, a property of molecules that exhibit mirror-image symmetry, similar to right and left hands) can serve as diagnostic of biological activity. All known life forms on earth are chiral and pre-dominantly left-handed. However, many of these applications suffer from lack of detailed observations, instrumentation, dedicated missions and numerical/retrieval methods. I will present a review of the field, with advances made in instrumentation, measurements and applications to prospective missions.

  8. Multiple transport functions of a red blood cell anion exchanger, tAE1: its role in cell volume regulation

    PubMed Central

    Guizouarn, Hlne; Gabillat, Nicole; Motais, Ren; Borgese, Franck

    2001-01-01

    It was previously shown that expressed in Xenopus oocyte the mouse (mAE1) and the trout (tAE1) anion exchanger behave differently: both elicit anion exchange activity but only tAE1 induces a transport of organic solutes correlated with a chloride channel activity. The present data, obtained by measurement of Xenopus oocyte membrane permeability and conductance, provide evidence that tAE1 also induces a large increase in Na+ and K+ permeability inhibited by several AE1 inhibitors. This inhibition does not result from an effect on the driving force for electrodiffusion but represents a direct effect on the cation pathway. As a control, expression of cystic fibrosis transmembrane conductance regulator (CFTR) having, once stimulated by 3-isobutyl-1-methylxanthine (IBMX), the same anion conductance magnitude as tAE1 did not induce any cation movement. Chloride exchange, channel activity and cation transport induced by anion exchanger expression are inhibited by free or covalently bound H2DIDS as well. This covalent inhibition is reversed by the point mutation of Lys-522, the covalent binding site of H2DIDS to the protein. These data reveal that tAE1 itself acts both as an anion exchanger and as a channel of broad selectivity. All results obtained by expression of AE1 isoforms in Xenopus oocytes and those obtained in erythrocytes are consistent with the proposal that, in nucleated erythrocytes, tAE1 functions as the swelling-activated osmolyte anion channel involved in cell volume regulation. In contrast AE1 from mammalian red cells, which do not regulate their volume, lacks swelling-activated osmolyte channel properties. tAE1 illustrates the ability of a specific transport system to be a multifunctional protein exhibiting other transport functions when submitted to regulation. PMID:11533139

  9. Addressing Human System Risks to Future Space Exploration

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Francisco, D. R.; Davis, J. R.

    2015-01-01

    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then assessed the likelihood and consequences of each risk against each DRM, using three levels of likelihood (Low: less than or equal to 0.1%; Medium: 0.1%–1.0%; High: greater than or equal to 1.0%) and four levels of consequence ranging from Very Low (temporary or insignificant) to High (death, loss of mission, or significant reduction to length or quality of life). Quantitative evidence from clinical, operational, and research sources were used whenever available. Qualitative evidence was used when quantitative evidence was unavailable. Expert opinion was used whenever insufficient evidence was available. Results: A set of 30 risks emerged that will require further mitigation efforts before being accepted by the Agency. The likelihood by consequence risk assessment process provided a means of prioritizing among the risks identified. For each of the high priority risks, a plan was developed to perform research, technology, or standards development thought necessary to provide suitable reduction of likelihood or consequence to allow agency acceptance. Conclusion: The HSRB process has successfully identified a complete set of risks to human space travelers on planned exploration missions based on the best evidence available today. Risk mitigation plans have been established for the highest priority risks. Each risk will be reassessed annually to track the progress of our risk mitigation efforts.

  10. ATHLETE: A Cargo-Handling Vehicle for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2011-01-01

    As part of the NASA Exploration Technology Development Program, the Jet Propulsion Laboratory is developing a vehicle called ATHLETE: the All-Terrain Hex-Limbed Extra-Terrestrial Explorer. Each vehicle is based on six wheels at the ends of six multi-degree-of-freedom limbs. Because each limb has enough degrees of freedom for use as a general-purpose leg, the wheels can be locked and used as feet to walk out of excessively soft or other extreme terrain. Since the vehicle has this alternative mode of traversing through or at least out of extreme terrain, the wheels and wheel actuators can be sized for nominal terrain. There are substantial mass savings in the wheel and wheel actuators associated with designing for nominal instead of extreme terrain. These mass savings are comparable-to or larger-than the extra mass associated with the articulated limbs. As a result, the entire mobility system, including wheels and limbs, can be about 25% lighter than a conventional mobility chassis. A side benefit of this approach is that each limb has sufficient degrees-of-freedom to use as a general-purpose manipulator (hence the name "limb" instead of "leg"). Our prototype ATHLETE vehicles have quick-disconnect tool adapters on the limbs that allow tools to be drawn out of a "tool belt" and maneuvered by the limb. A power-take-off from the wheel actuates the tools, so that they can take advantage of the 1+ horsepower motor in each wheel to enable drilling, gripping or other power-tool functions. Architectural studies have indicated that one useful role for ATHLETE in planetary (moon or Mars) exploration is to "walk" cargo off the payload deck of a lander and transport it across the surface. Recent architectural approaches are focused on the concept that the lander descent stage will use liquid hydrogen as a propellant. This is the highest performance chemical fuel, but it requires very large tanks. A natural geometry for the lander is to have a single throttleable rocket engine on the centerline at the bottom, and to have the propellant tanks arranged as compactly as possible around and above that engine, with nearly-straight structural load paths that carry the heavy LO2 tanks as well as the ascent stage or cargo on a top deck. (The requirement for exactly one descent engine stems from the need to avoid symmetry planes in the exhaust plume that can entrain surface particles and loft them up into the system at hypervelocity.) This geometry is especially attractive since abort considerations drive the ascent stage to have as much open space around it as possible, in case the ascent stage needs to fire away from an out-of-control descent stage. These considerations lead to a configuration where the cargo deck of the lander is relatively high off the ground (over 6 meters in current concepts, using a 10-meter diameter launch shroud). These considerations have led some observers to presume that there is a "lander offloading problem". ATHLETE has been demonstrated as a solution to this problem, walking cargo off the high deck. This paper describes the applicability of the ATHLETE concept to exploration of the moon, Mars and even to Near- Earth Objects. Recent field test results for long-range traverse are described, along with plans for testing in the simulated microgravity environment of a NEO.

  11. Joint Radioisotope Electric Propulsion Studies - Neptune System Explorer

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Amini, Rashied; Ervin, Joan; Lang, Jared; Landau, Damon; Oleson, Steven; Spilker, Thomas; Strange, Nathan

    2011-01-01

    The Neptune System Explorer (NSE) mission concept study assessed opportunities to conduct Cassini-like science at Neptune with a radioisotope electric propulsion (REP) based spacecraft. REP is based on powering an electric propulsion (EP) engine with a radioisotope power source (RPS). The NSE study was commissioned under the Joint Radioisotope Electric Propulsion Studies (JREPS) project, which sought to determine the technical feasibility of flagship class REP applications. Within JREPS, special emphasis was given toward identifying tall technology tent poles, as well as recommending any new RPS technology developments that would be required for complicated REP missions. Based on the goals of JREPS, multiple RPS (e.g. thermoelectric and Stirling based RPS) and EP (e.g. Hall and ion engines) technology combinations were traded during the NSE study to determine the most favorable REP design architecture. Among the findings from the study was the need for >400We RPS systems, which was driven by EP operating powers and the requirement for a long-lived mission in the deep solar system. Additionally multiple development and implementation risks were identified for the NSE concept, as well as REP missions in general. Among the strengths of the NSE mission would be the benefits associated with RPS and EP use, such as long-term power (approx. 2-3kW) at Neptune and flexible trajectory options for achieving orbit or tours of the Neptune system. Although there are still multiple issues to mitigate, the NSE concept demonstrated distinct advantages associated with using REP for deep space flagship-class missions.

  12. ATHLETE: A Limbed Vehicle for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2012-01-01

    As part of the Human-Robot Systems project funded by NASA, the Jet Propulsion Laboratory has developed a vehicle called ATHLETE: the All-Terrain Hex-Limbed Extra-Terrestrial Explorer. Each vehicle is based on six wheels at the ends of six multi-degree-of-freedom limbs. Because each limb has enough degrees of freedom for use as a general-purpose leg, the wheels can be locked and used as feet to walk out of excessively soft or other extreme terrain. Since the vehicle has this alternative mode of traversing through or at least out of extreme terrain, the wheels and wheel actuators can be sized for nominal terrain. There are substantial mass savings in the wheel and wheel actuators associated with designing for nominal instead of extreme terrain. These mass savings are comparable-to or larger-than the extra mass associated with the articulated limbs. As a result, the entire mobility system, including wheels and limbs, can be about 25% lighter than a conventional mobility chassis. A side benefit of this approach is that each limb has sufficient degrees-of-freedom to use as a general-purpose manipulator (hence the name "limb" instead of "leg"). Our prototype ATHLETE vehicles have quick-disconnect tool adapters on the limbs that allow tools to be drawn out of a "tool belt" and maneuvered by the limb.

  13. Ares V: Application to Solar System Scientific Exploration

    NASA Technical Reports Server (NTRS)

    Elliott, John; Spilker, Thomas; Reh, Kim; Smith, David; Woodcock, Gordon

    2008-01-01

    The development of the Ares V launch vehicle will provide levels of performance unseen since the days of Apollo. This capability, like the Saturn V before it, is being developed primarily for crewed lunar missions. However, the tremendous jump in performance offered by the Ares V launch system has tremendous potential for the furtherance of robotic solar system exploration missions as well. Preliminary performance assessments indicate that Ares V could deliver 5 times the payload to Mars as compared to the most capable US expendable launch vehicle available today. Beyond Mars, the outer planets offer a number of high-priority investigations with compelling science. Presently, missions to these destinations are only achievable using indirect flights with gravity assist trajectories and, in many cases, suffer from long flight times. An Ares V with an upper stage could capture these missions using direct flights with shorter interplanetary transfer times that would enable extensive in situ investigations and possibly the return of samples to Earth. This paper lays out an estimate of Ares V performance for moderate and high C3 missions, and goes on to discuss a range of revolutionary mission concepts that could be enabled by this significant in-crease in launch capability.

  14. AE4 is a DIDS-sensitive Cl(-)/HCO(-)(3) exchanger in the basolateral membrane of the renal CCD and the SMG duct.

    PubMed

    Ko, Shigeru B H; Luo, Xiang; Hager, Henrik; Rojek, Alexandra; Choi, Joo Young; Licht, Christoph; Suzuki, Makoto; Muallem, Shmuel; Nielsen, Sren; Ishibashi, Kenichi

    2002-10-01

    The renal cortical collecting duct (CCD) plays an important role in systemic acid-base homeostasis. The beta-intercalated cells secrete most of the HCO(-)(3), which is mediated by a luminal, DIDS-insensitive, Cl(-)/HCO(-)(3) exchange. The identity of the luminal exchanger is a matter of debate. Anion exchanger isoform 4 (AE4) cloned from the rabbit kidney was proposed to perform this function (Tsuganezawa H et al. J Biol Chem 276: 8180-8189, 2001). By contrast, it was proposed (Royaux IE et al. Proc Natl Acad Sci USA 98: 4221-4226, 2001) that pendrin accomplishes this function in the mouse CCD. In the present work, we cloned, localized, and characterized the function of the rat AE4. Northern blot and RT-PCR showed high levels of AE4 mRNA in the CCD. Expression in HEK-293 and LLC-PK(1) cells showed that AE4 is targeted to the plasma membrane. Measurement of intracellular pH (pH(i)) revealed that AE4 indeed functions as a Cl(-)/HCO(-)(3) exchanger. However, AE4 activity was inhibited by DIDS. Immunolocalization revealed species-specific expression of AE4. In the rat and mouse CCD and the mouse SMG duct AE4 was in the basolateral membrane. By contrast, in the rabbit, AE4 was in the luminal and lateral membranes. In both, the rat and rabbit CCD AE4 was in alpha-intercalated cells. Importantly, localization of AE4 was not affected by the systemic acid-base status of the rats. Therefore, we conclude that expression and possibly function of AE4 is species specific. In the rat and mouse AE4 functions as a Cl(-)/HCO(-)(3) exchanger in the basolateral membrane of alpha-intercalated cells and may participate in HCO(-)(3) absorption. In the rabbit AE4 may contribute to HCO(-)(3) secretion. PMID:12225984

  15. Artificial epi-Retinal Prosthesis (AeRP)

    NASA Astrophysics Data System (ADS)

    Doorish, John F.

    2006-09-01

    There are several research projects going on around the world, which are attempting to develop a prosthetic device to restore sight to the blind. This paper describes the efforts of Second Sight of New York, Inc. The device being developed is called an Artificial epi-Retinal Prosthesis (AeRP), which is basically a small optical computer that fits into the intraocular space of the eye. The AeRP is designed to draw light into the device by specially designed fibre optics. The light is digitized by the fibre optic system and then directed to individual photodiode cells making up concentric cylinders thus providing several hundred photodiode cells in the device. The produced electrical stimulation from each cell is then delivered to the retinal ganglion cells by a specially designed delivery system utilizing electrically conducting polymer strands (ECP), which sit on an umbrella at the back of the device. The retinal ganglion cells receive the electrical stimulation, which would then be transmitted through the visual system of the brain. There are several innovations in this approach as compared to the other projects. They include, first the design, which will allow for a high number of PC to produce electrical stimulation that will stimulate multiple RGC per PC; the use of the ECP strands has not been used in such an approach before this. Tests have revealed that nerve cells have a good affinity for the material of the ECP. The use of the ECP as well as the fact that the AeRP is completely photovoltaic, with no external power sources, implies that there will not be high heat build-up in the back of the eye, which might damage RGC. A smaller version of the AeRP called the Mini epi-Retinal Prosthesis (MeRP) is the subject of a complimentary paper. It is being built now and will be tested in cell culture studies to determine the efficacy of the design and materials. No actual implants have been performed yet.

  16. Design of an unmanned Martian polar exploration system

    NASA Astrophysics Data System (ADS)

    Baldwin, Curt; Chitwood, Denny; Demann, Brian; Ducheny, Jordan; Hampton, Richard; Kuhns, Jesse; Mercer, Amy; Newman, Shawn; Patrick, Chris; Polakowski, Tony

    1994-07-01

    The design of an unmanned Martian polar exploration system is presented. The system elements include subsystems for transportation of material from earth to Mars, study of the Martian north pole, power generation, and communications. Early next century, three Atlas 2AS launch vehicles will be used to insert three Earth-Mars transfer vehicles, or buses, into a low-energy transfer orbit. Capture at Mars will be accomplished by aerobraking into a circular orbit. Each bus contains four landers and a communications satellite. Six of the twelve total landers will be deployed at 60 deg intervals along 80 deg N, and the remaining six landers at 5 deg intervals along 30 deg E from 65 deg N to 90 deg N by a combination of retrorockets and parachutes. The three communications satellites will be deployed at altitudes of 500 km in circular polar orbits that are 120 deg out of phase. These placements maximize the polar coverage of the science and communications subsystems. Each lander contains scientific equipment, two microrovers, power supplies, communications equipment, and a science computer. The lander scientific equipment includes a microweather station, seismometer, thermal probe, x-ray spectrometer, camera, and sounding rockets. One rover, designed for short-range (less than 2 km) excursions from the lander, includes a mass spectrometer for mineral analysis, an auger/borescope system for depth profiling, a deployable thermal probe, and charge coupled device cameras for terrain visualization/navigation. The second rover, designed for longer-range (2-5 km) excursions from the lander, includes radar sounding/mapping equipment, a seismometer, and laser ranging devices. Power for all subsystems is supplied by a combination of solar cells, Ni-H batteries, and radioisotope thermoelectric generators. Communications are sequenced from rovers, sounding rockets, and remote sensors to the lander, then to the satellites, through the Deep Space Network to and from earth.

  17. Design of an unmanned Martian polar exploration system

    NASA Technical Reports Server (NTRS)

    Baldwin, Curt; Chitwood, Denny; Demann, Brian; Ducheny, Jordan; Hampton, Richard; Kuhns, Jesse; Mercer, Amy; Newman, Shawn; Patrick, Chris; Polakowski, Tony

    1994-01-01

    The design of an unmanned Martian polar exploration system is presented. The system elements include subsystems for transportation of material from earth to Mars, study of the Martian north pole, power generation, and communications. Early next century, three Atlas 2AS launch vehicles will be used to insert three Earth-Mars transfer vehicles, or buses, into a low-energy transfer orbit. Capture at Mars will be accomplished by aerobraking into a circular orbit. Each bus contains four landers and a communications satellite. Six of the twelve total landers will be deployed at 60 deg intervals along 80 deg N, and the remaining six landers at 5 deg intervals along 30 deg E from 65 deg N to 90 deg N by a combination of retrorockets and parachutes. The three communications satellites will be deployed at altitudes of 500 km in circular polar orbits that are 120 deg out of phase. These placements maximize the polar coverage of the science and communications subsystems. Each lander contains scientific equipment, two microrovers, power supplies, communications equipment, and a science computer. The lander scientific equipment includes a microweather station, seismometer, thermal probe, x-ray spectrometer, camera, and sounding rockets. One rover, designed for short-range (less than 2 km) excursions from the lander, includes a mass spectrometer for mineral analysis, an auger/borescope system for depth profiling, a deployable thermal probe, and charge coupled device cameras for terrain visualization/navigation. The second rover, designed for longer-range (2-5 km) excursions from the lander, includes radar sounding/mapping equipment, a seismometer, and laser ranging devices. Power for all subsystems is supplied by a combination of solar cells, Ni-H batteries, and radioisotope thermoelectric generators. Communications are sequenced from rovers, sounding rockets, and remote sensors to the lander, then to the satellites, through the Deep Space Network to and from earth.

  18. Solar Power System Evaluated for the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2000-01-01

    The electric power system is a crucial element of any mission for the human exploration of the Martian surface. The bulk of the power generated will be delivered to crew life support systems, extravehicular activity suits, robotic vehicles, and predeployed in situ resource utilization (ISRU) equipment. In one mission scenario, before the crew departs for Mars, the ISRU plant operates for 435 days producing liquefied methane and oxygen for ascent-stage propellants and water for crew life support. About 200 days after ISRU production is completed, the crew arrives for a 500-day surface stay. In this scenario, the power system must operate for a total of 1130 days (equivalent to 1100 Martian "sols"), providing 400 MW-hr of energy to the ISRU plant and up to 18 kW of daytime user power. A photovoltaic power-generation system with regenerative fuel cell (RFC) energy storage has been under study at the NASA Glenn Research Center at Lewis Field. The conceptual power system is dominated by the 4000- m2 class photovoltaic array that is deployed orthogonally as four tent structures, each approximately 5 m on a side and 100-m long. The structures are composed of composite members deployed by an articulating mast, an inflatable boom, or rover vehicles, and are subsequently anchored to the ground. Array panels consist of thin polymer membranes with thin-film solar cells. The array is divided into eight independent electrical sections with solar cell strings operating at 600 V. Energy storage is provided by regenerative fuel cells based on hydrogen-oxygen proton exchange membrane technology. Hydrogen and oxygen reactants are stored in gaseous form at 3000 psi, and the water produced is stored at 14.7 psi. The fuel cell operating temperature is maintained by a 40-m2 deployable pumped-fluid loop radiator that uses water as the working fluid. The power management and distribution (PMAD) architecture features eight independent, regulated 600-Vdc channels. Power management and distribution power cables use various gauges of copper conductors with ethylene tetrafluoroethylene insulation. To assess power system design options and sizing, we developed a dedicated Fortran code to predict detailed power system performance and estimate system mass. This code also modeled the requisite Mars surface environments: solar insolation, Sun angles, dust storms, dust deposition, and thermal and ultraviolet radiation. Using this code, trade studies were performed to assess performance and mass sensitivities to power system design parameters (photovoltaic array geometry and orientation) and mission parameters (landing date and landing site latitude, terrain slope, and dust storm activity). Mission analysis cases were also run. Power results are shown in this graph for an analysis case with a September 1, 2012, landing date; 18.95 North latitude landing site; two seasonal dusts storms; and tent arrays. To meet user load requirements and the ISRU energy requirement, an 8-metric ton (MT) power system and 4000-m2 photovoltaic array area were required for the assumed advanced CuInS2 thin-film solar cell technology. In this figure, the top curve is the average daytime photovoltaic array power, the middle curve is average daytime user load power, and the bottom curve is nighttime power. At mission day 1, daytime user power exceeds 120 kW before falling off to 80 kW at the end of the mission. Throughout the mission, nighttime user power is set to the nighttime power requirement. In this analysis, "nighttime" is defined as the 13- to 15-hr period when array power output is below the daytime power requirement. During dust storms, power system capability falls off dramatically so that by mission day 900, a daily energy balance cannot be maintained. Under these conditions, the ISRU plant is placed in standby mode, and the regenerative fuel cell energy storage is gradually discharged to meet user loads.

  19. Multiple Independent Introductions of HIV-1 CRF01_AE Identified in China: What Are the Implications for Prevention?

    PubMed Central

    Zhang, Xiaoyan; Xu, Jianqing

    2013-01-01

    Background HIV-1 CRF01_AE accounts for an important fraction of HIV infections in Asia including China, but little is known about the phylogenetic and evolutionary history of this CRF (circulating recombinant form). In the current study, we collected a large number of 1,957 CRF01_AE gag p17 sequences with known sampling year (1990-2010) from 5 global regions representing 15 countries to better understand the phylogenetic relationships and epidemic history of CRF01_AE strains in China. Methodology/Principal Findings CRF01_AE gag p17 sequences were retrieved from public databases to explore phylogenetic relationships and phylogeographic dynamics of CRF01_AE in Asia by using maximum-likelihood phylogenetics and Bayesian coalescent-based analyses. We found close phylogenetic relationships between sequences from Thailand, Vietnam and China. Moreover, at least 5 independent introductions and 5 independent autochthonous clades of CRF01_AE, which descended from Thailand or Vietnam were identified in China from 1991 through 2003. Conclusion/Significance The current study not only defines the migration of CRF01_AE clades to/in Asia, but also demonstrates the criticalness of identifying the circulating strains in the population for the development of vaccine and microbicides. PMID:24282546

  20. Cascade Distillation System Development

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah

    2014-01-01

    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  1. Overview of NASA FINESSE (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Results

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer L.; Lim, Darlene S. S.; Hughes, S.; Kobs, S.; Garry, B.; Osinski, G. R.; Hodges, K.; Kobayashi, L.; Colaprete, A.

    2015-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our moon, Mars' moons Phobos and Deimos, and near-Earth asteroids. Scientific study focuses on planetary volcanism (e.g., the formation of volcanoes, evolution of magma chambers and the formation of multiple lava flow types, as well as the evolution and entrapment of volatile chemicals) and impact cratering (impact rock modification, cratering mechanics, and the chronologic record). FINESSE conducts multiple terrestrial field campaigns (Craters of the Moon National Monument and Preserve in Idaho for volcanics, and West Clearwater Impact Structure in Canada for impact studies) to study such features as analogs relevant to our moon, Phobos, Deimos, and asteroids. Here we present the science and exploration results from two deployments to Idaho (2014, 2015) and our first deployment to Canada (2014). FINESSE was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint effort by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  2. Explorations of Mariana Arc Volcanoes Reveal New Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Baker, E. T.; Chadwick, W. W., Jr.; Lupton, J. E.; Resing, J. A.; Massoth, G. J.; Nakamura, K.

    2004-01-01

    Some 20,000 km of volcanic arcs, roughly one-third the length of the global mid-ocean ridge (MOR) system, rim the western Pacific Ocean. Compared to 25 years of hydrothermal investigations along MORs, exploration of similar activity on the estimated ~600 submarine arc volcanoes is only beginning [Ishibashi and Urabe, 1995; De Ronde et al., 2003]. To help alleviate this under-sampling, the R/V T. G. Thompson was used in early 2003 (9 February to 5 March) to conduct the first complete survey of hydrothermal activity along 1200 km of the Mariana intra-oceanic volcanic arc. This region includes both the Territory of Guam and the Commonwealth of the Northern Mariana Islands. The expedition mapped over 50 submarine volcanoes with stunning new clarity (Figures 1 and 2) and found active hydrothermal discharge at 12 sites, including the southern back-arc site. This includes eight new sites along the arc (West Rota, Northwest Rota, E. Diamante, Zealandia Bank, Maug Caldera, Ahyi, Daikoku, and Northwest Eifuku) and four sites of previously known hydrothermal activity (Seamount X, Esmeralda, Kasuga 2, and Nikko) (Figures 1 and 2). The mapping also fortuitously provided a ``before'' image of the submarine flanks of Anatahan Island, which had its first historical eruption on 10 May 2003 (Figures 1 and 3).

  3. The invention that opened the solar system to exploration

    NASA Astrophysics Data System (ADS)

    Minovitch, Michael A.

    2010-05-01

    The invention of gravity-propelled interplanetary space travel (also known as "gravity-assist trajectories") in the early 1960s broke the high-energy barrier of classical space travel based on reaction propulsion, and made possible the exploration of the entire solar system with instrumented spacecraft. In this concept, a free-fall spacecraft is launched from a launch planet P 1 to a nearby planet P 2 such that its gravitational field (superimposed on the gravitational field of the Sun) catapults the vehicle to another planet P 3, which in turn is used to repeat the process. Thus, through a series of planetary encounters, a gravity-propelled trajectory P 1-P 2-P 3-P 4--P N is generated. This paper describes how the invention was conceived and how the difficult mathematical problem of computing the trajectories was solved in order to numerically investigate and use the invention in actual missions. The crucial roles played by the UCLA Computing Facility and the Departments of Mathematics and Physics are also described.

  4. Chaotic appearance of the AE index

    NASA Technical Reports Server (NTRS)

    Shan, L.-H.; Hansen, P.; Goertz, C. K.; Smith, R. A.

    1991-01-01

    Results are reported from a stochastic analysis of a 5-day time series of the geomagnetic AE index during an active period. The original data, the power spectrum, and the autocorrelation function are shown, and the steps in the analysis are described in detail. It is found that the autocorrelation time scale is about 50 min, giving a correlation dimension (for the construction of a time series of m-dimensional vectors) of 2.4. This result is consistent with either colored-noise or deterministic-chaos magnetosphere models, indicating the need for further investigation.

  5. BOREAS AES MARSII Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Atkinson, G. Barrie; Funk, Barry; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    Canadian AES personnel collected several data sets related to surface and atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from six MARSII meteorology stations in the BOREAS region in Canada. Parameters include site, time, temperature, dewpoint, visibility, wind speed, wind gust, wind direction, two cloud groups, precipitation, and station pressure. Temporally, the data cover the period of May to September 1994. Geo-graphically, the stations are spread across the provinces of Saskatchewan and Manitoba. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.

  6. BOREAS AES READAC Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Atkinson, G. Barrie; Funk, Barry; Hall, Forrest G. (Editor); Knapp, David E. (Editor)

    2000-01-01

    Canadian AES personnel collected and processed data related to surface atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from one READAC meteorology station in Hudson Bay, Saskatchewan. Parameters include day, time, type of report, sky condition, visibility, mean sea level pressure, temperature, dewpoint, wind, altimeter, opacity, minimum and maximum visibility, station pressure, minimum and maximum air temperature, a wind group, precipitation, and precipitation in the last hour. The data were collected non-continuously from 24-May-1994 to 20-Sep-1994. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.

  7. A quantitative relationship between AE and Kp

    SciTech Connect

    Rostoker, G. )

    1991-04-01

    In the early days of space research, geomagnetic activity levels were quantified by the 3-hr Kp index evaluated using data from an array of middle-latitude magnetic observatories. In more recent times, the hourly average auroral electrojet AE index has been commonly used as an indicator of the level of magnetospheric activity. In order to quantitatively compare correlations of particle and field signatures of the solar-terrestrial interaction made using these two indices, it would be useful to have a quantitative relationship between them. In this report, the author provides such a relationship together with an evaluation of the circumstances under which the relationship is suspect.

  8. Paeoveitols A-E from Paeonia veitchii.

    PubMed

    Liang, Wen-Juan; Ma, Yun-Bao; Geng, Chang-An; Huang, Xiao-Yan; Xu, Hong-Bo; Zhang, Xue-Mei; Chen, Ji-Jun

    2015-10-01

    Paeoveitols A-E (1-5), involving three monoterpenes and two benzofuran constituents, were isolated from Paeonia veitchii. Their structures were determined based on extensive spectral analyses (IR, UV, MS, 1D and 2D NMR), and the absolute configuration of compound 1 was confirmed by single-crystal X-ray diffraction. By the agitating human melatonin receptor 1 (MT1) assay on HEK293 cell line in vitro, compound 4 showed weak activity with the agitation rate of 22.52% at the concentration of 1.79 mM. PMID:26241495

  9. Radio Aurora Explorer: Mission science and radar system

    NASA Astrophysics Data System (ADS)

    Bahcivan, H.; Cutler, J. W.

    2012-04-01

    The Radio Aurora Explorer (RAX) satellite is the first of several satellites funded under the NSF CubeSat-based Space Weather and Atmospheric Research Program. RAX is a ground-to-space bi-static radar remote sensing experiment designed to measure and understand the causes of meter-scale ionospheric irregularities. Also known as field-aligned irregularities (FAI), such non-thermal, coherent fluctuations of electron density occur in response to strong ionospheric flows or plasma density gradients during geomagnetic disturbances and are considered a space weather concern due to disruption to communication and navigation signals. The RAX CubeSat was launched in November 2010 and conducted a single experiment in coordination with the Poker Flat Incoherent Scatter Radar. Due to geophysical inactivity, e.g., lack of strong ionospheric electric fields and low ionospheric densities, no FAI were expected or observed. However, the radar receiver payload operation was successfully demonstrated, including the capability to sense signals as low as -110 dBm, the capability of transmitter-receiver synchronization and accurate ranging, processing of 1.2 GB of raw radar data on board in less than 1 hour, and the downlink of the science results within three-four passes. Analysis of the payload data shows that the noise level is sufficiently low. Although the interference level is a concern, it does not appear to significantly limit the measurements. Toward the end of December 2010, the solar power system gradually degraded and the mission terminated in early February 2011 after prolonged loss of contact with the satellite. Meanwhile, RAX II was launched in October 2011 to a polar orbit. This paper describes the RAX science and radar system and presents the results from the first experiment conducted.

  10. Fossil-Fuel C02 Emissions Database and Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.; Andres, R. J.; Blasing, T. J.

    2012-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production at global, regional, and national spatial scales. The CDIAC emission time series estimates are based largely on annual energy statistics published at the national level by the United Nations (UN). CDIAC has developed a relational database to house collected data and information and a web-based interface to help users worldwide identify, explore and download desired emission data. The available information is divided in two major group: time series and gridded data. The time series data is offered for global, regional and national scales. Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). The gridded data presents annual and monthly estimates. Annual data presents a time series recording 1 latitude by 1 longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2008. The monthly, fossil-fuel CO2 emissions estimates from 1950-2008 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2011), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). This presentation introduces newly build database and web interface, reflects the present state and functionality of the Fossil-Fuel CO2 Emissions Database and Exploration System as well as future plans for expansion.

  11. Mid-IR Spectra Herbig Ae/Be Stars

    NASA Technical Reports Server (NTRS)

    Wooden, Diane; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Herbig Ae/Be stars are intermediate mass pre-main sequence stars, the higher mass analogues to the T Tauri stars. Because of their higher mass, they are expected form more rapidly than the T Tauri stars. Whether the Herbig Ae/Be stars accrete only from collapsing infalling envelopes or whether accrete through geometrically flattened viscous accretion disks is of current debate. When the Herbig Ae/Be stars reach the main sequence they form a class called Vega-like stars which are known from their IR excesses to have debris disks, such as the famous beta Pictoris. The evolutionary scenario between the pre-main sequence Herbig Ae/Be stars and the main sequence Vega-like stars is not yet revealed and it bears on the possibility of the presence of Habitable Zone planets around the A stars. Photometric studies of Herbig Ae/Be stars have revealed that most are variable in the optical, and a subset of stars show non-periodic drops of about 2 magnitudes. These drops in visible light are accompanied by changes in their colors: at first the starlight becomes reddened, and then it becomes bluer, the polarization goes from less than 0.1 % to roughly 1% during these minima. The theory postulated by V. Grinnin is that large cometary bodies on highly eccentric orbits occult the star on their way to being sublimed, for systems that are viewed edge-on. This theory is one of several controversial theories about the nature of Herbig Ae/Be stars. A 5 year mid-IR spectrophotometric monitoring campaign was begun by Wooden and Butner in 1992 to look for correlations between the variations in visible photometry and mid-IR dust emission features. Generally the approximately 20 stars that have been observed by the NASA Ames HIFOGS spectrometer have been steady at 10 microns. There are a handful, however, that have shown variable mid-IR spectra, with 2 showing variations in both the continuum and features anti-correlated with visual photometry, and 3 showing variations in the emission features only while the continuum level remained unchanged. The first 2 stars mentioned probably have reprocessing envelopes. The other 3 stars gives important clues to the controversy over the geometry of the gas and dust around these pre-main sequence stars: the steady underlying 10 microns continuum and variable features indicates that an optically thick continuum probably arising from an accretion disk is decoupled from the optically thin emission features which may arise in a disk atmosphere. Bernadette Rodgers has joined this monitoring campaign in the near-IR using GRIMII with the goal of detecting variations in the hot dust continuum and the gas density in the dense accretion region close to these stars.

  12. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1971-01-01

    Investigation of problems related to control of a mobile planetary vehicle according to a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: (1) overall systems analysis; (2) vehicle configuration and dynamics; (3) toroidal wheel design and evaluation; (4) on-board navigation systems; (5) satellite-vehicle navigation systems; (6) obstacle detection systems; (7) terrain sensing, interpretation and modeling; (8) computer simulation of terrain sensor-path selection systems; and (9) chromatographic systems design concept studies. The specific tasks which have been undertaken are defined and the progress which has been achieved during the period July 1, 1971 to December 31, 1971 is summarized.

  13. Decryption-decompression of AES protected ZIP files on GPUs

    NASA Astrophysics Data System (ADS)

    Duong, Tan Nhat; Pham, Phong Hong; Nguyen, Duc Huu; Nguyen, Thuy Thanh; Le, Hung Duc

    2011-10-01

    AES is a strong encryption system, so decryption-decompression of AES encrypted ZIP files requires very large computing power and techniques of reducing the password space. This makes implementations of techniques on common computing system not practical. In [1], we reduced the original very large password search space to a much smaller one which surely containing the correct password. Based on reduced set of passwords, in this paper, we parallel decryption, decompression and plain text recognition for encrypted ZIP files by using CUDA computing technology on graphics cards GeForce GTX295 of NVIDIA, to find out the correct password. The experimental results have shown that the speed of decrypting, decompressing, recognizing plain text and finding out the original password increases about from 45 to 180 times (depends on the number of GPUs) compared to sequential execution on the Intel Core 2 Quad Q8400 2.66 GHz. These results have demonstrated the potential applicability of GPUs in this cryptanalysis field.

  14. Exploring the Earth System through online interactive models

    NASA Astrophysics Data System (ADS)

    Coogan, L. A.

    2013-12-01

    Upper level Earth Science students commonly have a strong background of mathematical training from Math courses, however their ability to use mathematical models to solve Earth Science problems is commonly limited. Their difficulty comes, in part, because of the nature of the subject matter. There is a large body of background ';conceptual' and ';observational' understanding and knowledge required in the Earth Sciences before in-depth quantification becomes useful. For example, it is difficult to answer questions about geological processes until you can identify minerals and rocks and understand the general geodynamic implications of their associations. However, science is fundamentally quantitative. To become scientists students have to translate their conceptual understanding into quantifiable models. Thus, it is desirable for students to become comfortable with using mathematical models to test hypotheses. With the aim of helping to bridging the gap between conceptual understanding and quantification I have started to build an interactive teaching website based around quantitative models of Earth System processes. The site is aimed at upper-level undergraduate students and spans a range of topics that will continue to grow as time allows. The mathematical models are all built for the students, allowing them to spend their time thinking about how the ';model world' changes in response to their manipulation of the input variables. The web site is divided into broad topics or chapters (Background, Solid Earth, Ocean and Atmosphere, Earth history) and within each chapter there are different subtopic (e.g. Solid Earth: Core, Mantle, Crust) and in each of these individual webpages. Each webpage, or topic, starts with an introduction to the topic, followed by an interactive model that the students can use sliders to control the input to and watch how the results change. This interaction between student and model is guided by a series of multiple choice questions that the student answers and immediately gets feedback whether the answer is correct or not. This way the students can ensure they understand the concepts before moving on. A discussion forum for the students to discuss the topics is in development and each page has a feedback option to allow both numerical (1-10) and written feedback on how useful the webpage was. By the end of exploring any given process students are expected to understand how the different parameters explored by the model interact to control the results. They should appreciate why the controlling equations look the way they do (all equations needed to develop the models are present in the introduction) and how these interact to control the results. While this is no substitute to students undertaking the calculations for themselves this approach allows a much wider range of topics to be explored quantitatively than if the students have to code all models themselves.

  15. Nuclear electric power and propulsion system for earth orbital and solar system exploration applications

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1979-01-01

    This paper discusses the design of a Nuclear Electric Propulsion (NEP) system, selection of thrusters and propellant. Outer planet exploration requirements are compared to earth orbital power requirements and a nuclear electric power system with a power level of 200 to 250 kWe is recommended. Current technology appears capable of accomplishing the early missions and growth potential exists for accomplishing more difficult later missions without significant changes in the basic system.

  16. NASA Langley Research Center Systems Analysis & Concepts Directorate Participation in the Exploration Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Keyes, Jennifer; Troutman, Patrick A.; Saucillo, Rudolph; Cirillo, William M.; Cavanaugh, Steve; Stromgren, Chel

    2006-01-01

    The NASA Langley Research Center (LaRC) Systems Analysis & Concepts Directorate (SACD) began studying human exploration missions beyond low Earth orbit (LEO) in the year 1999. This included participation in NASA s Decadal Planning Team (DPT), the NASA Exploration Team (NExT), Space Architect studies and Revolutionary Aerospace Systems Concepts (RASC) architecture studies that were used in formulating the new Vision for Space Exploration. In May of 2005, NASA initiated the Exploration Systems Architecture Study (ESAS). The primary outputs of the ESAS activity were concepts and functional requirements for the Crewed Exploration Vehicle (CEV), its supporting launch vehicle infrastructure and identification of supporting technology requirements and investments. An exploration systems analysis capability has evolved to support these functions in the past and continues to evolve to support anticipated future needs. SACD had significant roles in supporting the ESAS study team. SACD personnel performed the liaison function between the ESAS team and the Shuttle/Station Configuration Options Team (S/SCOT), an agency-wide team charged with using the Space Shuttle to complete the International Space Station (ISS) by the end of Fiscal Year (FY) 2010. The most significant of the identified issues involved the ability of the Space Shuttle system to achieve the desired number of flights in the proposed time frame. SACD with support from the Kennedy Space Center performed analysis showing that, without significant investments in improving the shuttle processing flow, that there was almost no possibility of completing the 28-flight sequence by the end of 2010. SACD performed numerous Lunar Surface Access Module (LSAM) trades to define top level element requirements and establish architecture propellant needs. Configuration trades were conducted to determine the impact of varying degrees of segmentation of the living capabilities of the combined descent stage, ascent stage, and other elements. The technology assessment process was developed and implemented by SACD as the ESAS architecture was refined. SACD implemented a rigorous and objective process which included (a) establishing architectural functional needs, (b) collection, synthesis and mapping of technology data, and (c) performing an objective decision analysis resulting in technology development investment recommendations. The investment recommendation provided budget, schedule, and center/program allocations to develop required technologies for the exploration architecture, as well as the identification of other investment opportunities to maximize performance and flexibility while minimizing cost and risk. A summary of the trades performed and methods utilized by SACD for the Exploration Systems Mission Directorate (ESAS) activity is presented along with how SACD is currently supporting the implementation of the Vision for Space Exploration.

  17. Future NASA solar system exploration activities: A framework for international cooperation

    NASA Technical Reports Server (NTRS)

    French, Bevan M.; Ramlose, Terri; Briggs, Geoffrey A.

    1992-01-01

    The goals and approaches for planetary exploration as defined for the NASA Solar System Exploration Program are discussed. The evolution of the program since the formation of the Solar System Exploration Committee (SSEC) in 1980 is reviewed and the primary missions comprising the program are described.

  18. An operations and command systems for the extreme ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Korsmeyer, David J.; Olson, Eric C.; Wong, Gary

    1994-01-01

    About 40% of the budget of a scientific spacecraft mission is usually consumed by Mission Operations & Data Analysis (MO&DA) with MO driving these costs. In the current practice, MO is separated from spacecraft design and comes in focus relatively late in the mission life cycle. As a result, spacecraft may be designed that are very difficult to operate. NASA centers have extensive MO expertise but often lessons learned in one mission are not exploited for other parallel or future missions. A significant reduction of MO costs is essential to ensure a continuing and growing access to space for the scientific community. We are addressing some of these issues with a highly automated payload operations and command system for an existing mission, the Extreme Ultraviolet Explorer (EUVE). EUVE is currently operated jointly by the Goddard Space Flight Center (GSFC), responsible for spacecraft operations, and the Center for Extreme Ultraviolet Astrophysics (CEA) of the University of California, Berkeley, which controls the telescopes and scientific instruments aboard the satellite. The new automated system is being developed by a team including personnel from the NASA Ames Research Center (ARC), the Jet Propulsion Laboratory (JPL) and the Center for EUV Astrophysics (CEA). An important goal of the project is to provide AI-based technology that can be easily operated by nonspecialists in AI. Another important goal is the reusability of the techniques for other missions. Models of the EUVE spacecraft need to be built both for planning/scheduling and for monitoring. In both cases, our modeling tools allow the assembly of a spacecraft model from separate sub-models of the various spacecraft subsystems. These sub-models are reusable; therefore, building mission operations systems for another small satellite mission will require choosing pre-existing modules, reparametrizing them with respect to the actual satellite telemetry information, and reassembling them in a new model. We briefly describe the EUVE mission and indicate why it is particularly suitable for the task. Then we briefly outline our current work in mission planning/scheduling and spacecraft and instrument health monitoring.

  19. Propulsion Health Management System Development for Affordable and Reliable Operation of Space Exploration Systems

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Maul, William A.; Garg, Sanjay

    2007-01-01

    The constraints of future Exploration Missions will require unique integrated system health management capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays, all require an integrated approach to health management that can span distinct, yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation and support the Exploration Mission from beginning to end. Propulsion is a critical part of any space exploration mission, and monitoring the health of the propulsion system is an integral part of assuring mission safety and success. Health management is a somewhat ubiquitous technology that encompasses a large spectrum of physical components and logical processes. For this reason, it is essential to develop a systematic plan for propulsion health management system development. This paper provides a high-level perspective of propulsion health management systems, and describes a logical approach for the future planning and early development that are crucial to planned space exploration programs. It also presents an overall approach, or roadmap, for propulsion health management system development and a discussion of the associated roadblocks and challenges.

  20. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys

    NASA Astrophysics Data System (ADS)

    Minrik, P.; Krl, R.; Jane?ek, M.

    2013-09-01

    Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.

  1. Exploration Systems Development Division Quarterly - Duration: 11 minutes.

    NASA Video Gallery

    NASA is continuing to make great strides towards sending humans farther than we have ever gone before. Take a look at the work being done by teams all across the nation on NASA’s exploration prog...

  2. Exploring the Inner Solar System - Duration: 55 minutes.

    NASA Video Gallery

    Chief Scientist of NASA's Goddard Space Flight Center, Dr. Jim Garvin, takes us on a journey of Earth, the moon, and our neighboring planets. Why does space matter? Why is exploring these destinati...

  3. Electrical Properties of Ice and Implications for Solar System Exploration

    NASA Astrophysics Data System (ADS)

    Stillman, D. E.; Grimm, R. E.

    2008-03-01

    Electrical-property measurements of ice and ice-silicate mixtures versus temperature show that EM geophysical exploration (dielectric spectroscopy, EM induction, and GPR) can be used on many planetary bodies to detect and characterize subsurface ice.

  4. Exploring the Deep Biosphere: Probing Microbial Systems at Earth's Extremes

    NASA Astrophysics Data System (ADS)

    Sobecky, Patricia

    2007-08-01

    Exploring Subseafloor Life With the Integrated Ocean Drilling Program, Vancouver, British Columbia, Canada, 3-5 October 2006 Deep drilling of marine sediments and oceanic crust offers a unique opportunity to explore how life persists and evolves in the Earth's deepest subsurface ecosystems. Resource availability deep beneath the seafloor may impose constraints on microbial growth and dispersal patterns that differ greatly from the surface world. Processes that mediate microbial evolution and diversity may also be very different in these habitats. Communities in parts of the deep subsurface may resemble primordial microbial ecosystems, and may serve as analogues of life on other planets that have, or once had, water. In short, the deep biosphere is one of the least explored biomes on Earth and deserves intense exploration.

  5. Talent in the taxi: a model system for exploring expertise

    PubMed Central

    Woollett, Katherine; Spiers, Hugo J.; Maguire, Eleanor A.

    2009-01-01

    While there is widespread interest in and admiration of individuals with exceptional talents, surprisingly little is known about the cognitive and neural mechanisms underpinning talent, and indeed how talent relates to expertise. Because many talents are first identified and nurtured in childhood, it can be difficult to determine whether talent is innate, can be acquired through extensive practice or can only be acquired in the presence of the developing brain. We sought to address some of these issues by studying healthy adults who acquired expertise in adulthood. We focused on the domain of memory and used licensed London taxi drivers as a model system. Taxi drivers have to learn the layout of 25?000 streets in London and the locations of thousands of places of interest, and pass stringent examinations in order to obtain an operating licence. Using neuropsychological assessment and structural and functional magnetic resonance imaging, we addressed a range of key questions: in the context of a fully developed brain and an average IQ, can people acquire expertise to an exceptional level; what are the neural signatures, both structural and functional, associated with the use of expertise; does expertise change the brain compared with unskilled control participants; does it confer any cognitive advantages, and similarly, does it come at a cost to other functions? By studying retired taxi drivers, we also consider what happens to their brains and behaviour when experts stop using their skill. Finally, we discuss how the expertise of taxi drivers might relate to the issue of talent and innate abilities. We suggest that exploring talent and expertise in this manner could have implications for education, rehabilitation of patients with cognitive impairments, understanding individual differences and possibly conditions such as autism where exceptional abilities can be a feature. PMID:19528024

  6. Talent in the taxi: a model system for exploring expertise.

    PubMed

    Woollett, Katherine; Spiers, Hugo J; Maguire, Eleanor A

    2009-05-27

    While there is widespread interest in and admiration of individuals with exceptional talents, surprisingly little is known about the cognitive and neural mechanisms underpinning talent, and indeed how talent relates to expertise. Because many talents are first identified and nurtured in childhood, it can be difficult to determine whether talent is innate, can be acquired through extensive practice or can only be acquired in the presence of the developing brain. We sought to address some of these issues by studying healthy adults who acquired expertise in adulthood. We focused on the domain of memory and used licensed London taxi drivers as a model system. Taxi drivers have to learn the layout of 25,000 streets in London and the locations of thousands of places of interest, and pass stringent examinations in order to obtain an operating licence. Using neuropsychological assessment and structural and functional magnetic resonance imaging, we addressed a range of key questions: in the context of a fully developed brain and an average IQ, can people acquire expertise to an exceptional level; what are the neural signatures, both structural and functional, associated with the use of expertise; does expertise change the brain compared with unskilled control participants; does it confer any cognitive advantages, and similarly, does it come at a cost to other functions? By studying retired taxi drivers, we also consider what happens to their brains and behaviour when experts stop using their skill. Finally, we discuss how the expertise of taxi drivers might relate to the issue of talent and innate abilities. We suggest that exploring talent and expertise in this manner could have implications for education, rehabilitation of patients with cognitive impairments, understanding individual differences and possibly conditions such as autism where exceptional abilities can be a feature. PMID:19528024

  7. How to Extend the Capabilities of Space Systems for Long Duration Space Exploration Systems

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Waterman, Robert D.; KrishnaKumar, Kalmanje; Waterman, Susan J.

    2005-01-01

    For sustainable Exploration Missions the need exists to assemble systems-of-systems in space, on the Moon or on other planetary surfaces. To fulfill this need new and innovative system architecture is needed that can be satisfied with the present lift capability of existing rocket technology without the added cost of developing a new heavy lift vehicle. To enable ultra-long life missions with minimum redundancy and lighter mass the need exists to develop system soft,i,are and hardware reconfigurability, which enables increasing functionality and multiple use of launched assets while at the same time overcoming any components failures. Also the need exists to develop the ability to dynamically demate and reassemble individual system elements during a mission in order to work around failed hardware or changed mission requirements. Therefore to meet the goals of Space Exploration Missions in hiteroperability and Reconfigurability, many challenges must be addressed to transform the traditional static avionics architecture into architecture with dynamic capabilities. The objective of this paper is to introduce concepts associated with reconfigurable computer systems; review the various needs and challenges associated with reconfigurable avionics space systems; provide an operational example that illustrates the needs applicable to either the Crew Exploration Vehicle or a collection of "Habot like" mobile surface elements; summarize the approaches that address key challenges to acceptance of a Flexible, Intelligent, Modular and Affordable reconfigurable avionics space system.

  8. Exploring Planetary System Evolution Through High-Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Esposito, Thomas; Fitzgerald, Michael P.; Kalas, Paul; Graham, James R.; Millar-Blanchaer, Max; Gpies Team

    2015-01-01

    Direct imaging of circumstellar disks provides unique information about planetary system construction and evolution. Several hundred nearby main-sequence stars are known to host debris disks, which are produced by mutual collisions of orbiting planetesimals during a phase thought to coincide with terrestrial planet formation. Therefore, detection of the dust in such systems through scattered near-infrared starlight offers a view of the circumstellar environment during the epoch of planet assembly. We have used ground-based coronagraphic angular differential imaging (ADI) with Keck NIRC2 and Gemini Planet Imager (GPI) to investigate disk structures that may act as signposts of planets. ADI and its associated image processing algorithms (e.g., LOCI) are powerful tools for suppressing the stellar PSF and quasistatic speckles that can contaminate disk signal. However, ADI PSF-subtraction also attenuates disk surface brightness in a spatially- and parameter-dependent manner, thereby biasing photometry and compromising inferences regarding the physical processes responsible for the dust distribution. To account for this disk "self-subtraction," we developed a novel technique to forward model the disk structure and compute a self-subtraction map for a given ADI-processed image. Applying this method to NIRC2 near-IR imaging of the HD 32297 debris disk, we combined the high signal-to-noise ratio (S/N) of ADI data with unbiased photometry to measure midplane curvature in the edge-on disk and a break in the disk's radial brightness profile. Such a break may indicate the location of a planetesimal ring that is a source of the light-scattering micron-sized grains. For the HD 61005 debris disk, we examined similar data together with GPI 1.6-micron polarization data and detected the dust ring's swept-back morphology, brightness asymmetry, stellocentric offset, and inner clearing. To study the physical mechanism behind these features, we explored how eccentricity and mutual inclination affect disk morphology by constructing self-subtracted scattered-light models (using our forward-modeling technique) and comparing them with complementary NIRC2 (several-arcsecond scales) and GPI (high S/N close to the star) observations.

  9. LOCATING THE ACCRETION FOOTPRINT ON A HERBIG Ae STAR: MWC 480

    SciTech Connect

    Grady, C. A.; Hamaguchi, K.; Stecklum, B.; Woodgate, B. E.; McCleary, J. E.; Williger, G. M.; Sitko, M. L.; Hines, D.; Menard, F.; Brittain, S.; Troutmann, M.; Donehew, B.; Wisniewski, J. P.; Lynch, D. K.; Russell, R. W.; Rudy, R. J.; Day, A. N.; Shenoy, A.

    2010-08-20

    Accretion is a fundamental process which establishes the dynamics of the protoplanetary disk and the final properties of the forming star. In solar-type stars, the star-disk coupling is determined by the magnetic field structure, which is responsible for funneling material from the disk midplane to higher latitudes on the star. Here, we use pan-chromatic data for the Herbig Ae star MWC 480 to address whether similar processes occur in intermediate-mass stars. MWC 480 has X-ray emission typical of actively accreting Herbig Ae stars, but with {approx}10x more photoelectric absorption than expected from optical and FUV data. We consider three sources for the absorption: the disk, absorption in a wind or jet, and accretion. While we detect the disk in scattered light in a re-analysis of archival Hubble Space Telescope data, the data are consistent with grazing illumination of the dust disk. We find that MWC 480's disk is stratified, geometrically thin, and is not responsible for the observed photoelectric absorption. MWC 480 drives a bipolar jet, but with a mass-loss rate that is low compared to other Herbig Ae stars, where the outflow is more favorably oriented and enhanced photoelectric absorption is not seen. This excludes a jet or wind origin for the enhanced photoelectric absorption. We compare MWC 480's O VI emission with other Herbig Ae stars. The distribution of the emission in inclination, and lack of a correlation of profile shape and system inclination excludes equatorially confined accretion for the FUSE Herbig Ae stars. The photoelectric absorption data further suggest that the accretion footprint on MWC 480 and other Herbig Ae stars is located at high-temperate, rather than polar, latitudes. These findings support the presence of funneled accretion in MWC 480 and Herbig Ae stars, strengthening the parallel to T Tauri stars.

  10. Crustal stress, seismicity, acoustic emission (AE), and tectonics: the Kefallinì;a (Greece) case study

    NASA Astrophysics Data System (ADS)

    Gregori, G. P.; Poscolieri, M.; Paparo, G.; Ventrice, G.; de Simone, S.; Rafanelli, C.

    2009-04-01

    New inferences - confirming previous results (see references)- are presented dealing with a few years Acoustic Emission (AE) records collected at Kefallinìa (Ionian Islands, Greece). A physical distinction between HF (high frequency) vs. LF (low frequency) AE is required. Step-wise changes of the AE underground conductivity are evidenced, and can be suitably handled. "Smooth" results concern (i) the annual variation, (ii) some long-lasting stress "solitons" crossing through the area, and (iii) tidal effects. In particular, every AE station can be operated like a monitoring station both for Earth's tides and for the free oscillations of the Earth. In addition, Kefallinìa exhibits a much peculiar groundwater circulation, in which conduit flow is dominant, that originates a specific (and unique) AE effect. By means of AE time-series analysis, "extreme" or "catastrophic" events can be also monitored and possibly related to relevant tectonic occurrences (either earthquakes, or maybe other occasional phenomena). They can be investigated, and have a regional - rather than local - character. Therefore, every interpretation based on a single station record - being biased by some arbitrariness - can only result indicative. A standardized procedure and software is proposed for routine AE data handling and analysis. References.: Lagios et al., 2004. In Proc. SCI 2004 (The 8th World Multi-Conference on Systemics, Cybernetics and Informatic), Orlando, Florida, July 1004, 6 pp. Poscolieri et al., 2006. In. G. Cello and B. D. Malamud, (eds), 2006. Geol. Soc. London, Special Publ., 261, 63-78. Poscolieri et al., 2006a. Nat. Hazards Earth Syst. Sci., 6, 961-971.

  11. Locating the Accretion Footprint on a Herbig Ae Star: MWC 480

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Hamaguchi, K.; Schneider, G.; Stecklum, B.; Woodgate, B. E.; McCleary, J. E.; Williger, G. M.; Sitko, M. L.; Menard, F.; Henning, Th.; Brittain, S.; Troutmann, M.; Donehew, B.; Hines, D.; Wisniewski, J. P.; Lynch, D. K.; Russell, R. W.; Rudy, R. J.; Day, A. M.; Shenoy, A.; Wilner, D.; Silverston, M.; Bouret, J.-C.; Clampin, M.; Petre, R.

    2011-01-01

    Accretion is a fundamental process which establishes the dynamics of the protoplanetary disk and the final properties of the forming star. In solar-type stars, the star-disk coupling is determined by the magnetic field structure, which is responsible for funneling material from the disk midplane to higher latitudes on the star. Here, we use pan-chromatic data for the Herbig Ae star MWC 480 to address whether similar processes occur in intermediate-mass stars. MWC 480 has X-ray emission typical of actively accreting Herbig Ae stars, but with 5-9 x more photoelectric absorption than expected from optical and FUV data. We consider 3 sources for the absorption: the disk absorption in a wind or jet, and accretion. While we detect the disk in scattered light in are-analysis of archival HST data. the data are consistent with grazing illumination of the dust disk. We find that MWC 480's disk is stratified, geometrically thin, and is not responsible for the observed photoelectric absorption. MWC 480 drives a bipolar jet, but with a mass loss rate which is low compared to other Herbig Ae stars, where the outflow is more favorably oriented and enhanced photoelectric absorption is not seen. This excludes a jet or wind origin for the enhanced photoelectric absorption. We compare MWC 480's 0 VI emission with other Herbig Ae stars. The distribution of the emission in inclination, and lack of a correlation of profile shape and system inclination excludes equatorially-confined accretion for the FUSE Herbig Ae stars. The photoelectric absorption data further suggest that the accretion footprint on MWC 480 and other Herbig Ae stars is located at high temperate, rather than polar, latitudes. These findings support the presence of funneled accretion in MWC 480 and Herbig Ae stars, strengthening the parallel to T Tauri stars.

  12. Atmosphere explorer and the IMS

    NASA Technical Reports Server (NTRS)

    Spencer, N. W.

    1982-01-01

    The Atmosphere Explorer (AE) program provided assistance to participants in the International Magnetosphere Study (IMS). The AE program, which began about 1970 employed three spacecraft in three complementary orbits. The program initiated a concept of a common data base, which is, a data base shared by all the participating investigators, to facilitate the correlation of the measured parameters. The immediate goal of the AE program has been study of the thermosphere, giving particular attention to photochemistry. Three satellites, AE-C, D, and E, were launched into orbits of 68 deg, 90 deg, and 19 deg inclination respectively in December 1973, October 1975, and November 1975. An instrument complement description is provided, and the AE data base is discussed.

  13. Exploring the Early Bombardment of the Inner Solar System

    NASA Astrophysics Data System (ADS)

    Bottke, W.

    2014-04-01

    The early bombardment history of the Inner Solar System is recorded in a number of interesting places (e.g., the surprisingly high abundance of highly siderophile abundances found in the Earth, Moon, and Mars, the observed impact basins found on Mercury, the Moon and Mars, various properties of main belt asteroids and meteorites, etc.). To date, two dominant scenarios have been used to explain these constraints: (i) most impacts came from the tail end of a monotonically-decreasing impactor population created by planet formation processes, and (ii) most impacts were produced by a terminal cataclysm that caused a spike in the impactor flux starting ~4 Gy ago. Interestingly, using numerical studies linked to the available constraints, we find that both scenarios are needed to explain observations. For (i), we will show that leftover planetesimals from the terrestrial planet region were long-lived enough to hit various worlds long after the end of core formation. The record left behind can be used in interesting ways to probe the nature of terrestrial planet formation. For (ii), we will explore new applications of the so-called Nice model, which provides a plausible dynamical mechanism capable of creating a spike of comets/asteroid impactors. Our results suggest that many "late heavy bombardment" impactors came from an unexpected source, and that they possibly continued to hit Earth, Venus, and Mars well after basin formation terminated on the Moon. Interestingly, the history of the Hadean Earth (ca. 4.0-4.5 billion years ago) may be closely linked to this bombardment. With few known rocks older than ~3.8 Ga, the main constraints from this era come from ancient submillimeter zircon grains. Using our bombardment model, we will argue that the surface of the Hadean Earth was widely reprocessed by impacts through mixing and heating of its uppermost layers. This model not only may explains the Pb-Pb age distribution of ancient zircons but also the absence of most early terrestrial rocks. We predict life originating in the Hadean would need to be both hardy and mobile enough to survive these extreme conditions.

  14. In-Situ Production of Solar Power Systems for Exploration

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Criswell, David R.

    1999-01-01

    Current proposals for developing an extended human presence, beyond space stations, on the Moon and Mars increasingly consider the processing of non-terrestrial materials essential for keeping the Earth launch burden reasonable. Utilization of in-situ resources for construction of lunar and Mars bases will initially require assessment of resource availability followed by the development of economically acceptable and technically feasible extractive processes. In regard to materials processing and fabrication the lower gravity level on the Moon (0.125 g) and Mars (0.367 g) will dramatically change the presently accepted hierarchy of materials in terms of specific properties, a factor which must be understood and exploited. Furthermore, significant changes are expected in the behavior of liquid materials during processing. In casting, for example, mold filling and associated solidification processes have to be reevaluated. Finally microstructural development and therefore material properties, presently being documented through on-going research in microgravity science and applications, needs to be understood and scaled to the reduced gravity environments. One of the most important elements of a human planetary base is power production. Lunar samples and geophysical measurements returned by the Apollo missions provide detailed data on the composition and physical characteristics of the lunar materials and environment. Based on this knowledge and extrapolations of terrestrial industrial experience it is clear that several types of solar-to-electric converters can be manufactured on the Moon. It is conceivable that well over 90% of a solar-to- electric power system could be made from lunar materials. Production and utilization of photovoltaic devices for solar energy production on Earth is primarily driven by the market economy. On Earth a production plant for photovoltaic devices is intimately linked to the planets massive industrial base. A selection of off the shelf refined materials are available as well as cheap fast transportation on demand. The processes takes place (except for the few seconds reprieve in shot towers etc.) under one gravity, with solar radiation significantly modulated by weather, and under conditions where one atmosphere is free and high vacuum is cumbersome and expensive. Off Earth, on lunar or Mars bases, the cost of photovoltaic power is driven by transport costs - Earth launch, deep space transport, landing on the planetary surface. Thus there is a premium for processes that are materials self-sufficient or for closed loop in-situ processes. The lack of differentiated ores on the Moon, and lack of explored minerals on Mars and interplanetary space give a premium to universal/non-ore-specific mineral extractive processes. Initially a semiconductor/photovoltaic production facility will build on no conveniently located industrial base, further increasing the premium on closed loop self sufficient processes.

  15. Solar Mesosphere Explorer optical-mechanical systems engineering

    NASA Technical Reports Server (NTRS)

    Gause, K. A.; Stuart, J. R.

    1979-01-01

    Mission overview of the Solar Mesosphere Explorer is presented along with design analysis and summaries of results. The Solar Mesosphere Explorer is a spin stabilized satellite carrying a complement of four Ebert-Fastie spectrometers and a four-channel Mersenne radiometer. Description of the spectrometer is given including a telescope and its aberrations. The radiometer is also described with consideration given to isothermal and thermal design, a Winston paraboloid, and optical tolerances. These five instruments are for measuring the earth's ozone density and distribution and providing quantitative data about those processes which govern the formation and destruction of ozone.

  16. Binaries among Herbig Ae/Be stars.

    NASA Astrophysics Data System (ADS)

    Leinert, C.; Richichi, A.; Haas, M.

    1997-02-01

    We have studied the circumstellar environment of 31 Herbig Ae/Be and related stars in the near infrared by means of speckle-interferometry. For the brighter objects we reach or approximate diffraction-limited resolution of =~0.1" (typically 100 AU at the object). Of the resolved objects some show halos, some have a companion. Here we restrict ourselves to a discussion of binarity in this sample. Eleven objects have companions, five of which constitute subarcsecond binaries, mostly found by us. Although the sample is small and neither homogeneous nor complete, it indicates a similar high incidence of binaries as found in recent surveys among T Tauri stars. Where the data allow it, we discuss the nature of the companions.

  17. BOREAS AES Campbell Scientific Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Atkinson, G. Barrie; Funk, Barrie; Knapp. David E. (Editor); Hall, Forrest G. (Editor)

    2000-01-01

    Canadian AES personnel collected data related to surface and atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from 14 automated meteorology stations located across the BOREAS region. Included in this data are parameters of date, time, mean sea level pressure, station pressure, temperature, dew point, wind speed, resultant wind speed, resultant wind direction, peak wind, precipitation, maximum temperature in the last hour, minimum temperature in the last hour, pressure tendency, liquid precipitation in the last hour, relative humidity, precipitation from a weighing gauge, and snow depth. Temporally, the data cover the period of August 1993 to December 1996. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.

  18. Multiple Lookup Table-Based AES Encryption Algorithm Implementation

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Liu, Wenyi; Zhang, Huixin

    Anew AES (Advanced Encryption Standard) encryption algorithm implementation was proposed in this paper. It is based on five lookup tables, which are generated from S-box(the substitution table in AES). The obvious advantages are reducing the code-size, improving the implementation efficiency, and helping new learners to understand the AES encryption algorithm and GF(28) multiplication which are necessary to correctly implement AES[1]. This method can be applied on processors with word length 32 or above, FPGA and others. And correspondingly we can implement it by VHDL, Verilog, VB and other languages.

  19. MEASURING THE STELLAR ACCRETION RATES OF HERBIG Ae/Be STARS

    SciTech Connect

    Donehew, Brian; Brittain, Sean E-mail: sbritt@clemson.edu

    2011-02-15

    The accretion rate of young stars is a fundamental characteristic of these systems. While accretion onto T Tauri stars has been studied extensively, little work has been done on measuring the accretion rate of their intermediate-mass analogs, the Herbig Ae/Be stars. Measuring the stellar accretion rate of Herbig Ae/Bes is not straightforward both because of the dearth of metal absorption lines available for veiling measurements and the intrinsic brightness of Herbig Ae/Be stars at ultraviolet wavelengths where the brightness of the accretion shock peaks. Alternative approaches to measuring the accretion rate of young stars by measuring the luminosity of proxies such as the Br {gamma} emission line have not been calibrated. A promising approach is the measurement of the veiling of the Balmer discontinuity. We present measurements of this veiling as well as the luminosity of Br {gamma}. We show that the relationship between the luminosity of Br {gamma} and the stellar accretion rate for classical T Tauri stars is consistent with Herbig Ae stars but not Herbig Be stars. We discuss the implications of this finding for understanding the interaction of the star and disk for Herbig Ae/Be stars.

  20. New techniques in astrodynamics for moon systems exploration

    NASA Astrophysics Data System (ADS)

    Campagnola, Stefano

    ESA and NASA scientific missions to the Jupiter and Saturn systems will answer fundamental questions on the habitability of icy worlds. The missions include unprecedented challenges, as the spacecraft will be placed in closed, stable orbits near the surface of the moons. This thesis presents methods to design trajectories that tour the moons and ultimately insert the spacecraft into orbits around them, while mitigating the mission costs and/or risks. A first technique is the endgame, a sequence of moon flyby preceding the orbit insertion. Historically, the endgame is designed with two approaches with different results: the vinfinity-leveraging transfer (VILT) approach leads to high-Deltav (hundreds of m/s), short time-of-flight (months) endgames, while the multi-body approach leads to low-Deltav (tens of m/s), long time-of-flight (years) endgames. This work analyzes and develops both approaches. We introduce a fast design method to automatically compute VILT endgames, which were previously designed in an ad-hoc manner. We also derive an important simple quadrature formula for the minimum Deltav attainable with this approach. This formula is the first important result of this work, as it provides a lower bound for assessment studies. We explain and develop the complex multi-body approach introducing the Tisserand-Poincare (T-P) graph, which is the second important result of this work. It provides a link between the two approaches, and shows the intersections between low-energy trajectories around different moons. With the T-P graph we design a five-month transfer between low-altitude orbits at Europa and Ganymede, using almost half the Deltav of the Hohmann transfer. We then focus on missions to low-mass moons, like Enceladus. We show that nontangent VILT (an extension of the traditional VILT) significantly reduce the Deltav while maintaining a satisfactory transfer time (< 4 years in the Saturn system). With a new design method we compute a 52 gravity-assist trajectory from Titan to Enceladus. The time of flight is 2.7 years, and the Deltav is almost 10 times better then the Titan-Enceladus Hohmann-like transfer. This trajectory and the design method are the third important contribution of this work; they enable a new class of missions which were previously considered unfeasible. Finally we study the capture problem, which seeks chaotic trajectories with multiple orbit insertion opportunities. We explore the solution space extending the design techniques used by ESA for the BepiColombo mission capture to Mercury. Such problems are better modeled in the spatial, elliptic, restricted three-body problem, which we analyze in detail. We define new regions of motions and to compute new families of periodic orbits and their stability properties. This analysis is the fourth important contribution of this work. Finally we show that capture trajectories shadow the manifolds of special periodic and quasi periodic orbits. This is the last important contribution of this report, as if both explains the complex dynamics of capture trajectories, and suggests new ways to design them.

  1. Detection of accreting circumstellar gas around weak emission-line Herbig Ae/Be stars

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Perez, M. R.; The, P. S.

    1993-01-01

    Archival and recent International Ultraviolet Explorer (IUE) high dispersion spectra of late B stars which reveal the presence of accreting gas with velocities as high as 350 km/s, collisional ionization of the accreting gas to temperatures above the stellar T(sub eff), and column densities intermediate between those observed toward classical Herbig Ae/Be stars and the nearby proto-planetary system beta Pictoris are presented. One of the stars HD 176386, while lacking obvious optical signatures of youth, is a member of the R CrA star formation region, and with an inferred age of 2.8 Myr has not yet arrived on the zero-age main sequence (ZAMS). The other object, an isolated, field B star with pronounced IR excess due to warm, circumstellar dust, 51 Oph, exhibits only modest H(alpha) emission. The combination of high velocity, accreting gas in systems with IR excesses due to circumstellar dust suggests that not only are these objects candidate proto-planetary systems, but that they may represent an extension to higher stellar masses of the weak-emission pre-main sequence (PMS) stars.

  2. A possible scenario of the flaring activity in AE Aqr

    NASA Astrophysics Data System (ADS)

    Isakova, P. B.; Zhilkin, A. G.; Bisikalo, D. V.; Ikhsanov, N. R.

    2016-02-01

    The flow structure in magnetic cataclysmic variables with strong magnetic field and fast rotation of the white dwarf was investigated. We model the AE Aqr system as a representative observational object whose spin period of the white dwarf is about 1000 times shorter than the orbital period of the system. Observations show that in spite of the fast rotation some part of the material from the inner Lagrangian point is present in the Roche lobe of the white dwarf. We analyze the possible physical mechanisms that can lead to the less effective angular momentum transfer from the rotating magnetosphere to the inflowing material. Among these mechanisms are the ambipolar diffusion, the pressure of the magneto-dipole radiation, the relativistic retard of magnetic field lines and the incomplete penetration of the magnetic field to plasma. Results of our analysis show that the last mechanism is the most effective. Taking this effect into account we can find the flow structure that is in an agreement with observations. The unique flaring activity is the most prominent property of the AE Aqr system. In this system, the active and quiescent phases alternate. The flaring activity may be caused by the transitions between the laminar and turbulent regimes. In the laminar regime, the flow goes around the star and collides with the material flowing from the inner Lagrangian point. As a result the shock occurs which produces the flow turbulence. In the turbulent regime, the magnetosphere pushes the material away from the Roche lobe of the white dwarf and the flow becomes quickly laminar again.

  3. Integrated Design for Marketing and Manufacturing team: An examination of LA-ICP-AES in a mobile configuration. Final report

    SciTech Connect

    Not Available

    1994-05-01

    The Department of Energy (DOE) has identified the need for field-deployable elemental analysis devices that are safer, faster, and less expensive than the fixed laboratory procedures now used to screen hazardous waste sites. As a response to this need, the Technology Integration Program (TIP) created a mobile, field-deployable laser ablation-inductively coupled plasma-atomic emission spectrometry (LA-ICP-AES) sampling and analysis prototype. Although the elemental. screening prototype has been successfully field-tested, continued marketing and technical development efforts are required to transfer LA-ICP-AES technology to the commercial sector. TIP established and supported a student research and design group called the Integrated Design for Marketing and Manufacturing (IDMM) team to advance the technology transfer of mobile, field-deployable LA-ICP-AES. The IDMM team developed a conceptual design (which is detailed in this report) for a mobile, field-deployable LA-ICP-AES sampling and analysis system, and reports the following findings: Mobile, field-deployable LA-ICP-AES is commercially viable. Eventual regulatory acceptance of field-deployable LA-ICP-AES, while not a simple process, is likely. Further refinement of certain processes and components of LA-ICP-AES will enhance the device`s sensitivity and accuracy.

  4. A ribosomal protein AgRPS3aE from halophilic Aspergillus glaucus confers salt tolerance in heterologous organisms.

    PubMed

    Liang, Xilong; Liu, Yiling; Xie, Lixia; Liu, Xiaodan; Wei, Yi; Zhou, Xiaoyang; Zhang, Shihong

    2015-01-01

    High salt in soils is one of the abiotic stresses that significantly reduces crop yield, although saline lands are considered potential resources arable for agriculture. Currently, genetic engineering for enhancing salt tolerance is being tested as an efficient and viable strategy for crop improvement. We previously characterized a large subunit of the ribosomal protein RPL44, which is involved in osmotic stress in the extremely halophilic fungus Aspergillus glaucus. Here, we screened another ribosomal protein (AgRPS3aE) that also produced high-salt tolerance in yeast. Bioinformatics analysis indicated that AgRPS3aE encodes a 29.2 kDa small subunit of a ribosomal protein belonging to the RPS3Ae family in eukaryotes. To further confirm its protective function against salinity, we expressed AgRPS3aE in three heterologous systems, the filamentous fungus Magnaporthe oryzae and two model plants Arabidopsis and tobacco. Overexpression of AgRPS3aE in all tested transformants significantly alleviated stress symptoms compared with controls, suggesting that AgRPS3aE functions not only in fungi but also in plants. Considering that ribosomal proteins are housekeeping components in organisms from prokaryotes to eukaryotes, we propose that AgRPS3aE is one of the optimal genes for improving high-salt tolerance in crops. PMID:25642759

  5. A Ribosomal Protein AgRPS3aE from Halophilic Aspergillus glaucus Confers Salt Tolerance in Heterologous Organisms

    PubMed Central

    Liang, Xilong; Liu, Yiling; Xie, Lixia; Liu, Xiaodan; Wei, Yi; Zhou, Xiaoyang; Zhang, Shihong

    2015-01-01

    High salt in soils is one of the abiotic stresses that significantly reduces crop yield, although saline lands are considered potential resources arable for agriculture. Currently, genetic engineering for enhancing salt tolerance is being tested as an efficient and viable strategy for crop improvement. We previously characterized a large subunit of the ribosomal protein RPL44, which is involved in osmotic stress in the extremely halophilic fungus Aspergillus glaucus. Here, we screened another ribosomal protein (AgRPS3aE) that also produced high-salt tolerance in yeast. Bioinformatics analysis indicated that AgRPS3aE encodes a 29.2 kDa small subunit of a ribosomal protein belonging to the RPS3Ae family in eukaryotes. To further confirm its protective function against salinity, we expressed AgRPS3aE in three heterologous systems, the filamentous fungus Magnaporthe oryzae and two model plants Arabidopsis and tobacco. Overexpression of AgRPS3aE in all tested transformants significantly alleviated stress symptoms compared with controls, suggesting that AgRPS3aE functions not only in fungi but also in plants. Considering that ribosomal proteins are housekeeping components in organisms from prokaryotes to eukaryotes, we propose that AgRPS3aE is one of the optimal genes for improving high-salt tolerance in crops. PMID:25642759

  6. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Gisser, D. G.; Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Yerazunis, S. Y.

    1975-01-01

    Problems related to an unmanned exploration of the planet Mars by means of an autonomous roving planetary vehicle are investigated. These problems include: design, construction and evaluation of the vehicle itself and its control and operating systems. More specifically, vehicle configuration, dynamics, control, propulsion, hazard detection systems, terrain sensing and modelling, obstacle detection concepts, path selection, decision-making systems, and chemical analyses of samples are studied. Emphasis is placed on development of a vehicle capable of gathering specimens and data for an Augmented Viking Mission or to provide the basis for a Sample Return Mission.

  7. Fission Technology for Exploring and Utilizing the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,

  8. PDS 144: THE FIRST CONFIRMED Herbig Ae-Herbig Ae WIDE BINARY

    SciTech Connect

    Hornbeck, J. B.; Williger, G. M.; Lauroesch, J. T.; Grady, C. A.; Perrin, M. D.; Grogin, N. A.; Wisniewski, J. P.; Tofflemire, B. M.; Brown, A.; Holtzman, J. A.; Arraki, K.; Hamaguchi, K.; Woodgate, B.; Petre, R.; Bonfield, D. G.; Daly, B.

    2012-01-01

    PDS 144 is a pair of Herbig Ae stars that are separated by 5.''35 on the sky. It has previously been shown to have an A2Ve Herbig Ae star viewed at 83 Degree-Sign inclination as its northern member and an A5Ve Herbig Ae star as its southern member. Direct imagery revealed a disk occulting PDS 144 N-the first edge-on disk observed around a Herbig Ae star. The lack of an obvious disk in direct imagery suggested PDS 144 S might be viewed face-on or not physically associated with PDS 144 N. Multi-epoch Hubble Space Telescope imagery of PDS 144 with a 5 year baseline demonstrates PDS 144 N and S are comoving and have a common proper motion with TYC 6782-878-1. TYC 6782-878-1 has previously been identified as a member of Upper Sco sub-association A at d = 145 {+-} 2 pc with an age of 5-10 Myr. Ground-based imagery reveals jets and a string of Herbig-Haro knots extending 13' (possibly further) which are aligned to within 7 Degree-Sign {+-} 6 Degree-Sign on the sky. By combining proper motion data and the absence of a dark mid-plane with radial velocity data, we measure the inclination of PDS 144 S to be i = 73 Degree-Sign {+-} 7 Degree-Sign . The radial velocity of the jets from PDS 144 N and S indicates they, and therefore their disks, are misaligned by 25 Degree-Sign {+-} 9 Degree-Sign . This degree of misalignment is similar to that seen in T Tauri wide binaries.

  9. PDS 144: The First Confirmed Herbig Ae-Herbig Ae Wide Binary

    NASA Technical Reports Server (NTRS)

    Hornbeck, J. B.; Grady, C. A.; Perrin, M. D.; Wisniewski, J. P.; Tofflemire, B. M.; Brown, A.; Holtzman, J. A.; Arraki, K.; Hamaguchi, K.; Woodgate, B.; Petre, R.; Daly, B.; Grogin, N. A.; Bonfield, D. G.; Williger, G. M.; Lauroesch, J. T.

    2012-01-01

    PDS 144 is a pair of Herbig Ae stars that are separated by 5.35" on the sky. It has previously been shown to have an A2Ve Herbig Ae star viewed at 83 deg inclination as its northern member and an A5Ve Herbig Ae star as its southern member. Direct imagery revealed a disk occulting PDS 144 N - the first edge-on disk observed around a Herbig Ae star. The lack of an obvious disk in direct imagery suggested PDS 144 S might be viewed face-on or not physically associated with PDS 144 N. Multi-epoch HST imagery of PDS 144 with a 5 yr baseline demonstrates PDS 144 N & S are comoving and have a common proper motion with TYC 6782-878-1. TYC 6782-878-1 has previously been identified as a member of Upper Sco sub-association A at d = 145 +/- 2 pc with an age of 5 - 10 Myr. Ground-based imagery reveals jets and a string of HH knots extending 13' (possibly further) which are aligned to within 7 deg +/- 6 deg on the sky. By combining proper motion data and the absence of a dark mid-plane with radial velocity data, we measure the inclination of PDS 144 S to be i = 73 deg +/- 7 deg. The radial velocity of the jets from PDS 144 N & S indicates they, and therefore their disks, are misaligned by 25 deg +/- 9 deg.. This degree of misalignment is similar to that seen in T-Tauri wide binaries.

  10. Uses of AES and RGA to study neutron-irradiation-enhanced segregation to internal surfaces

    SciTech Connect

    Gessel, G.R.; White, C.L.

    1980-01-01

    The high flux of point defects to sinks during neutron irradiation can result in segregation of impurity or alloy additions to metals. Such segregants can be preexisting or produced by neutron-induced transmutations. This segregation is known to strongly influence swelling and mechanical properties. Over a period of years, facilities have been developed at ORNL incorporating AES and RGA to examine irradiated materials. Capabilities of this system include in situ tensile fracture at elevated temperatures under ultrahigh vacuum 10/sup -10/ torr and helium release monitoring. AES and normal incidence inert ion sputtering are exploited to examine segregation at the fracture surface and chemical gradients near the surface.

  11. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. V.; Yerazunis, S. W.

    1973-01-01

    Problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars are reported. Problem areas include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis, terrain modeling and path selection; and chemical analysis of specimens. These tasks are summarized: vehicle model design, mathematical model of vehicle dynamics, experimental vehicle dynamics, obstacle negotiation, electrochemical controls, remote control, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, and chromatograph model evaluation and improvement.

  12. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Moyer, W. R.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1973-01-01

    The following tasks related to the design, construction, and evaluation of a mobile planetary vehicle for unmanned exploration of Mars are discussed: (1) design and construction of a 0.5 scale dynamic vehicle; (2) mathematical modeling of vehicle dynamics; (3) experimental 0.4 scale vehicle dynamics measurements and interpretation; (4) vehicle electro-mechanical control systems; (5) remote control systems; (6) collapsibility and deployment concepts and hardware; (7) design, construction and evaluation of a wheel with increased lateral stiffness, (8) system design optimization; (9) design of an on-board computer; (10) design and construction of a laser range finder; (11) measurement of reflectivity of terrain surfaces; (12) obstacle perception by edge detection; (13) terrain modeling based on gradients; (14) laser scan systems; (15) path selection system simulation and evaluation; (16) gas chromatograph system concepts; (17) experimental chromatograph separation measurements and chromatograph model improvement and evaluation.

  13. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1972-01-01

    Investigation of problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis; terrain modeling and path selection; and chemical analysis of specimens. The following specific tasks have been under study: vehicle model design, mathematical modeling of a dynamic vehicle, experimental vehicle dynamics, obstacle negotiation, electromechanical controls, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer sybsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, chromatograph model evaluation and improvement.

  14. Entry, Descent and Landing Systems Analysis Study: Phase 2 Report on Exploration Feed-Forward Systems

    NASA Technical Reports Server (NTRS)

    Dwyer Ciancolo, Alicia M.; Davis, Jody L.; Engelund, Walter C.; Komar, D. R.; Queen, Eric M.; Samareh, Jamshid A.; Way, David W.; Zang, Thomas A.; Murch, Jeff G.; Krizan, Shawn A.; Olds, Aaron D.; Powell, Richard W.; Shidner, Jeremy D.; Kinney, Daivd J.; McGuire, M. Kathleen; Arnold, James O.; Covington, M. Alan; Sostaric, Ronald R.; Zumwalt, Carlie H.; Llama, Eduardo G.

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 t. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  15. NPS alternate techsat satellite, design project for AE-4871

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This project was completed as part of AE-4871, Advanced Spacecraft Design. The intent of the course is to provide experience in the design of all the major components in a spacecraft system. Team members were given responsibility for the design of one of the six primary subsystems: power, structures, propulsion, attitude control, telemetry, tracking and control (TT&C), and thermal control. In addition, a single member worked on configuration control, launch vehicle integration, and a spacecraft test plan. Given an eleven week time constraint, a preliminary design of each subsystem was completed. Where possible, possible component selections were also made. Assistance for this project came principally from the Naval Research Laboratory's Spacecraft Technology Branch. Specific information on components was solicited from representatives in industry. The design project centers on a general purpose satellite bus that is currently being sought by the Strategic Defense Initiative.

  16. Exploration Planetary Surface Structural Systems: Design Requirements and Compliance

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.

    2011-01-01

    The Lunar Surface Systems Project developed system concepts that would be necessary to establish and maintain a permanent human presence on the Lunar surface. A variety of specific system implementations were generated as a part of the scenarios, some level of system definition was completed, and masses estimated for each system. Because the architecture studies generally spawned a large number of system concepts and the studies were executed in a short amount of time, the resulting system definitions had very low design fidelity. This paper describes the development sequence required to field a particular structural system: 1) Define Requirements, 2) Develop the Design and 3) Demonstrate Compliance of the Design to all Requirements. This paper also outlines and describes in detail the information and data that are required to establish structural design requirements and outlines the information that would comprise a planetary surface system Structures Requirements document.

  17. New vision solar system exploration missions study: Analysis of the use of biomodal space nuclear power systems to support outer solar system exploration missions. Final report

    SciTech Connect

    1995-12-08

    This report presents the results of an analysis of the capability of nuclear bimodal systems to perform outer solar system exploration missions. Missions of interest include orbiter mission s to Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. An initial technology baseline consisting of a NEBA 10 kWe, 1000 N thrust, 850 s, 1500 kg bimodal system was selected, and its performance examined against a data base for trajectories to outer solar system planetary destinations to select optimal direct and gravity assisted trajectories for study. A conceptual design for a common bimodal spacecraft capable of performing missions to all the planetary destinations was developed and made the basis of end to end mission designs for orbiter missions to Jupiter, Saturn, and Neptune. Concepts for microspacecraft capable of probing Jupiter`s atmosphere and exploring Titan were also developed. All mission designs considered use the Atlas 2AS for launch. It is shown that the bimodal nuclear power and propulsion system offers many attractive option for planetary missions, including both conventional planetary missions in which all instruments are carried by a single primary orbiting spacecraft, and unconventional missions in which the primary spacecraft acts as a carrier, relay, and mother ship for a fleet of micro spacecraft deployed at the planetary destination.

  18. NEXT Ion Propulsion System Configurations and Performance for Saturn System Exploration

    NASA Technical Reports Server (NTRS)

    Benson, Scott W.; Riehl, John P.; Oleson, Steven R.

    2007-01-01

    The successes of the Cassini/Huygens mission have heightened interest to return to the Saturn system with focused robotic missions. The desire for a sustained presence at Titan, through a dedicated orbiter and in-situ vehicle, either a lander or aerobot, has resulted in definition of a Titan Explorer flagship mission as a high priority in the Solar System Exploration Roadmap. The discovery of active water vapor plumes erupting from the tiger stripes on the moon Enceladus has drawn the attention of the space science community. The NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system is well suited to future missions to the Saturn system. NEXT is used within the inner solar system, in combination with a Venus or Earth gravity assist, to establish a fast transfer to the Saturn system. The NEXT system elements are accommodated in a separable Solar Electric Propulsion (SEP) module, or are integrated into the main spacecraft bus, depending on the mission architecture and performance requirements. This paper defines a range of NEXT system configurations, from two to four thrusters, and the Saturn system performance capability provided. Delivered mass is assessed parametrically over total trip time to Saturn. Launch vehicle options, gravity assist options, and input power level are addressed to determine performance sensitivities. A simple two-thruster NEXT system, launched on an Atlas 551, can deliver a spacecraft mass of over 2400 kg on a transfer to Saturn. Similarly, a four-thruster system, launched on a Delta 4050 Heavy, delivers more than 4000 kg spacecraft mass. A SEP module conceptual design, for a two thruster string, 17 kW solar array, configuration is characterized.

  19. A Grammar Sketch of the Kaki Ae Language.

    ERIC Educational Resources Information Center

    Clifton, John M.

    Kaki Ae is a non-Austronesian language spoken by about 300 people on the south coast of Papua New Guinea, at best distantly related to any other language in that area. A brief grammar sketch of the language is presented, including discussion of the phonology, sentences, phrases, words, and morpheme categories. Kaki Ae phonemics include 11

  20. Notes from ERIC/AE: More than a Name Change.

    ERIC Educational Resources Information Center

    Rudner, Lawrence M.

    1993-01-01

    Activities of the new ERIC Clearinghouse on Assessment and Evaluation (ERIC/AE) are described, and planned activities and services are reviewed. ERIC/AE gathers information pertaining to assessment, evaluation, and learning theory; and it makes that information available to a number of audiences through print and electronic media. (SLD)

  1. Attitude Control System for the Extreme Ultraviolet Explorer Satellite

    NASA Technical Reports Server (NTRS)

    Wong, E. C.

    1984-01-01

    The requirements, design, and expected performance of the Attitude Control Subsystem for the spin-stabilized Extreme Ultraviolet Explorer Satellite are presented. In the sky-mapping phase, closed-loop magnetic control keeps the spin axis pointed toward the sun. In the spectroscopy phase, the attitude control loop is closed via the ground. The satellite's attitude and spin rate are determined using periodically downlinked star data. An attitude control algorithm generates commands to be uplinked to the satellite for spin axis precession and spin rate control. Computer simulations of the satellite dynamic response, pointing error, and stability during spin axis precession are presented, and parameters that affect the pointing performance are evaluated.

  2. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    PubMed Central

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-01-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit. PMID:26175912

  3. Small space reactor power systems for unmanned solar system exploration missions

    SciTech Connect

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.

  4. Small space reactor power systems for unmanned solar system exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.

  5. Exploration System Mission Directorate and Constellation Program Support for Analogue Missions

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Voels, Stephen A.; Gerty, Christopher E.

    2008-01-01

    Vision: To create a cross-cutting Earth-based program to minimize cost and risk while maximizing the productivity of planetary exploration missions, by supporting precursor system development and carrying out system integration, testing, training, and public engagement as an integral part of the Vision for Space Exploration.

  6. Meeting the Challenges of Exploration Systems: Health Management Technologies for Aerospace Systems With Emphasis on Propulsion

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Sowers, T. Shane; Maul, William A.

    2005-01-01

    The constraints of future Exploration Missions will require unique Integrated System Health Management (ISHM) capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays all require an ISHM system that can span distinct yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation, and support the Exploration Mission from beginning to end. NASA Glenn Research Center has developed and applied health management system technologies to aerospace propulsion systems for almost two decades. Lessons learned from past activities help define the approach to proper ISHM development: sensor selection- identifies sensor sets required for accurate health assessment; data qualification and validation-ensures the integrity of measurement data from sensor to data system; fault detection and isolation-uses measurements in a component/subsystem context to detect faults and identify their point of origin; information fusion and diagnostic decision criteria-aligns data from similar and disparate sources in time and use that data to perform higher-level system diagnosis; and verification and validation-uses data, real or simulated, to provide variable exposure to the diagnostic system for faults that may only manifest themselves in actual implementation, as well as faults that are detectable via hardware testing. This presentation describes a framework for developing health management systems and highlights the health management research activities performed by the Controls and Dynamics Branch at the NASA Glenn Research Center. It illustrates how those activities contribute to the development of solutions for Integrated System Health Management.

  7. Modelling exploration of non-stationary hydrological system

    NASA Astrophysics Data System (ADS)

    Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei

    2015-04-01

    Traditional hydrological modelling assumes that the catchment does not change with time (i.e., stationary conditions) which means the model calibrated for the historical period is valid for the future period. However, in reality, due to change of climate and catchment conditions this stationarity assumption may not be valid in the future. It is a challenge to make the hydrological model adaptive to the future climate and catchment conditions that are not observable at the present time. In this study a lumped conceptual rainfall-runoff model called IHACRES was applied to a catchment in southwest England. Long observation data from 1961 to 2008 were used and seasonal calibration (in this study only summer period is further explored because it is more sensitive to climate and land cover change than the other three seasons) has been done since there are significant seasonal rainfall patterns. We expect that the model performance can be improved by calibrating the model based on individual seasons. The data is split into calibration and validation periods with the intention of using the validation period to represent the future unobserved situations. The success of the non-stationary model will depend not only on good performance during the calibration period but also the validation period. Initially, the calibration is based on changing the model parameters with time. Methodology is proposed to adapt the parameters using the step forward and backward selection schemes. However, in the validation both the forward and backward multiple parameter changing models failed. One problem is that the regression with time is not reliable since the trend may not be in a monotonic linear relationship with time. The second issue is that changing multiple parameters makes the selection process very complex which is time consuming and not effective in the validation period. As a result, two new concepts are explored. First, only one parameter is selected for adjustment while the other parameters are set as constant. Secondly, regression is made against climate condition instead of against time. It has been found that such a new approach is very effective and this non-stationary model worked very well both in the calibration and validation period. Although the catchment is specific in southwest England and the data are for only the summer period, the methodology proposed in this study is general and applicable to other catchments. We hope this study will stimulate the hydrological community to explore a variety of sites so that valuable experiences and knowledge could be gained to improve our understanding of such a complex modelling issue in climate change impact assessment.

  8. Life Support System Technologies for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.

    2007-01-01

    The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge.

  9. Mated Flight Control Issues for Space Exploration Systems

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Markley, F. Landis; Whorton, Mark S.

    2006-01-01

    Several unique issues related to mated flight control have been broadly identified. These issues include redundancies in subsystems, controllability, command and control authority distribution, information flow across elements, and changes and variability in system characteristics due to variable mated configurations during operations. Architectural options for mated flight control are discussed in the context of evolving space systems.

  10. A Sustainable, Reliable Mission-Systems Architecture that Supports a System of Systems Approach to Space Exploration

    NASA Technical Reports Server (NTRS)

    Watson, Steve; Orr, Jim; O'Neil, Graham

    2004-01-01

    A mission-systems architecture based on a highly modular "systems of systems" infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is absolutely essential for an affordable and sustainable space exploration program. This architecture requires (a) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimum sustaining engineering. This paper proposes such an architecture. Lessons learned from the space shuttle program are applied to help define and refine the model.

  11. Emergency Oxygen System Evaluation for Exploration PLSS Applications

    NASA Technical Reports Server (NTRS)

    Heather, Paul; Vonau, Walt, Jr.; Conger, Bruce

    2006-01-01

    The Portable Life Support System (PLSS) emergency oxygen system is being reexamined for the next generation of suits. These suits will be used for transit to Low Earth Orbit, the Moon and to Mars as well as on the surface of the Moon and Mars. Currently, the plan is that there will be two different sets of suits, but there is a strong desire for commonality between them for construction purposes. The main purpose of this paper is to evaluate what the emergency PLSS requirements are and how they might best be implemented. Options under consideration are enlarging the tanks on the PLSS, finding an alternate method of storage/delivery, or providing additional O2 from an external source. The system that shows the most promise is the cryogenic oxygen system with a composite dewar which uses a buddy system to split the necessary oxygen between two astronauts.

  12. Acoustic emission (AE) health monitoring of diaphragm type couplings using neural network analysis

    NASA Astrophysics Data System (ADS)

    Godinez-Azcuaga, Valery F.; Shu, Fong; Finlayson, Richard D.; O'Donnell, Bruce

    2005-05-01

    This paper presents the latest results obtained from Acoustic Emission (AE) monitoring and detection of cracks and/or damage in diaphragm couplings, which are used in some aircraft and engine drive systems. Early detection of mechanical failure in aircraft drive train components is a key safety and economical issue with both military and civil sectors of aviation. One of these components is the diaphragm-type coupling, which has been evaluated as the ideal drive coupling for many application requirements such as high speed, high torque, and non-lubrication. Its flexible axial and angular displacement capabilities have made it indispensable for aircraft drive systems. However, diaphragm-type couplings may develop cracks during their operation. The ability to monitor, detect, identify, and isolate coupling cracks on an operational aircraft system is required in order to provide sufficient advance warning to preclude catastrophic failure. It is known that metallic structures generate characteristic Acoustic Emission (AE) during crack growth/propagation cycles. This phenomenon makes AE very attractive among various monitoring techniques for fault detection in diaphragm-type couplings. However, commercially available systems capable of automatic discrimination between signals from crack growth and normal mechanical noise are not readily available. Positive classification of signals requires experienced personnel and post-test data analysis, which tend to be a time-consuming, laborious, and expensive process. With further development of automated classifiers, AE can become a fully autonomous fault detection technique requiring no human intervention after implementation. AE has the potential to be fully integrated with automated query and response mechanisms for system/process monitoring and control.

  13. Small Portable PEM Fuel Cell Systems for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2005-01-01

    Oxygen-Hydrogen PEM-based fuel cell systems are being examined as a portable power source alternative in addition to advanced battery technology. Fuel cell power systems have been used by the Gemini, Apollo, and Space Shuttle programs. These systems have not been portable, but have been integral parts of their spacecraft, and have used reactants from a separate cryogenic supply. These systems typically have been higher in power. They also have had significant ancillary equipment sections that perform the pumping of reactants and coolant through the fuel cell stack and the separation of the product water from the unused reactant streams. The design of small portable fuel cell systems will be a significant departure from these previous designs. These smaller designs will have very limited ancillary equipment, relying on passive techniques for reactant and thermal management, and the reactant storage will be an integral part of the fuel cell system. An analysis of the mass and volume for small portable fuel cell systems was done to evaluate and quantify areas of technological improvement. A review of current fuel cell technology as well as reactant storage and management technology was completed to validate the analysis and to identify technology challenges

  14. Logistics Reduction Technologies for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

    2014-01-01

    Human exploration missions under study are limited by the launch mass capacity of existing and planned launch vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Although mass is typically the focus of exploration missions, due to its strong impact on launch vehicle and habitable volume for the crew, logistics volume also needs to be considered. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing six logistics technologies guided by a systems engineering cradle-to-grave approach to enable after-use crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. Reduction of mass has a corresponding and significant impact to logistical volume. The reduction of logistical volume can reduce the overall pressurized vehicle mass directly, or indirectly benefit the mission by allowing for an increase in habitable volume during the mission. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as mission durations increase. Early studies have shown that the use of advanced logistics technologies can save approximately 20 m(sup 3) of volume during transit alone for a six-person Mars conjunction class mission.

  15. Surface Systems R&D in NASA's Planetary Exploration Program

    NASA Technical Reports Server (NTRS)

    Weisbin, C.; Rodriguez, G.

    2000-01-01

    This paper reports on activities being supported by the Surface Systems Thrust of the NASA Cross Enterprise Technology Development Program, a research program whithin the NASA office of Space Science.

  16. Exploration Systems Health Management Facilities and Testbed Workshop

    NASA Technical Reports Server (NTRS)

    Wilson, Scott; Waterman, Robert; McCleskey, Carey

    2004-01-01

    Presentation Agenda : (1) Technology Maturation Pipeline (The Plan) (2) Cryogenic testbed (and other KSC Labs) (2a) Component / Subsystem technologies (3) Advanced Technology Development Center (ATDC) (3a) System / Vehic1e technologies (4) EL V Flight Experiments (Flight Testbeds).

  17. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry.

    PubMed

    Li, Jianwei; Nowak, Piotr; Otto, Sijbren

    2013-06-26

    Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines. PMID:23731408

  18. Solar System Exploration -- What Comes Next? - Duration: 31 seconds.

    NASA Video Gallery

    Do you think we already know everything about our solar system? Think again. We've barely scratched the surface of what there is to learn. Join NASA as it sends missions to the far ends of the sola...

  19. Exploring Phylogeographic Congruence in a Continental Island System

    PubMed Central

    Goldberg, Julia; Trewick, Steven A.

    2011-01-01

    A prediction in phylogeographic studies is that patterns of lineage diversity and timing will be similar within the same landscape under the assumption that these lineages have responded to past environmental changes in comparable ways. Eight invertebrate taxa from four different orders were included in this study of mainland New Zealand and Chatham Islands lineages to explore outcomes of island colonization. These comprised two orthopteran genera, one an endemic forest-dwelling genus of cave weta (Rhaphidophoridae, Talitropsis) and the other a grasshopper (Acrididae, Phaulacridum) that inhabits open grassland; four genera of Coleoptera including carabid beetles (Mecodema), stag beetles (Geodorcus), weevils (Hadramphus) and clickbeetles (Amychus); the widespread earwig genus Anisolabis (Dermaptera) that is common on beaches in New Zealand and the Chatham Islands, and an endemic and widespread cockroach genus Celatoblatta (Blattodea). Mitochondrial DNA data were used to reconstruct phylogeographic hypotheses to compare among these taxa. Strikingly, despite a maximum age of the Chathams of ?4 million years there is no concordance among these taxa, in the extent of genetic divergence and partitioning between Chatham and Mainland populations. Some Chatham lineages are represented by insular endemics and others by haplotypes shared with mainland populations. These diverse patterns suggest that combinations of intrinsic (taxon ecology) and extrinsic (extinction and dispersal) factors can result in apparently very different biogeographic outcomes. PMID:26467734

  20. Systems and Technologies for Space Exploration: the regional project STEPS

    NASA Astrophysics Data System (ADS)

    Boggiatto, D.; Moncalvo, D.

    The Aerospace technology network of Piemonte represents 25% of the italian capacity and handles a comprehensive spectrum of products (aircraft, propulsion, satellites, space station modules, avionics. components, services...). The cooperation between the Comitato Distretto Aerospaziale Piemonte and the European Regional Development Fund 2007-2013 has enabled Regione Piemonte to launch three regional Projects capable to enhance the synergy and competitiveness of the network, among which: STEPS - Sistemi e Tecnologie per l'EsPlorazione Spaziale, a joint development of technologies for robotic and human Space Exploration by 3 large Industries, 27 SMEs, 3 Universities and one public Research Centre. STEPS develops virtual and hardware demonstrators for a range of technologies to do with a Lander's descent and soft landing, and a Rover's surface mobility, of both robotic and manned equipment on Moon and Mars. It also foresees the development of Teleoperations labs and Virtual Reality environments and physical simulations of Moon and Mars surface conditions and ground. Mid-way along STEPS planned development, initial results in several technology domains are available and are presented in this paper.

  1. Light Activated Serotonin for Exploring Its Action in Biological Systems

    PubMed Central

    Rea, Adam C.; Vandenberg, Laura N.; Ball, Rebecca E.; Snouffer, Ashley A.; Hudson, Alicia G.; Zhu, Yue; McLain, Duncan E.; Johnston, Lindsey L.; Lauderdale, James D.; Levin, Michael; Dore, Timothy M.

    2013-01-01

    Summary Serotonin (5-HT) is a neuromodulator involved in regulating mood, appetite, memory, learning, pain, and establishment of left-right (LR) asymmetry in embryonic development. To explore the role of 5-HT in a variety of physiological contexts, we have created two forms of “caged” 5-HT, BHQ-O-5HT and BHQ-N-5HT. When exposed to 365- or 740-nm light, BHQ-O-5HT releases 5-HT through 1- or 2-photon excitation, respectively. BHQ-O-5HT mediated changes in neural activity in cultured primary sensory neurons from mouse and the trigeminal ganglion and optic tectum of intact zebrafish larvae in the form of high amplitude spiking in response to light. In Xenopus laevis embryos, 5-HT released from BHQ-O-5HT upon exposure to light increased the occurrence of LR patterning defects. Maximal rates of LR defects were observed when 5-HT was released at stage 5 compared to stage 8. These experiments show the potential for BHQ-caged serotonins in studying 5-HT-regulated physiological processes. PMID:24333002

  2. The roles of humans and robots in exploring the solar system.

    PubMed

    Mendell, W W

    2004-07-01

    Historically, advocates of solar system exploration have disagreed over whether program goals could be entirely satisfied by robotic missions. Scientists tend to argue that robotic exploration is most cost-effective. However, the human space program has a great deal of support in the general public, thereby enabling the scientific element of exploration to be larger than it might be as a stand-alone activity. A comprehensive strategy of exploration needs a strong robotic component complementing and supporting human missions. Robots are needed for precursor missions, for crew support on planetary surfaces, and for probing dangerous environments. Robotic field assistants can provide mobility, access to scientific sites, data acquisition, visualization of the environment, precision operations, sample acquisition and analysis, and expertise to human explorers. As long as space exploration depends on public funds, space exploration must include an appropriate mix of human and robotic activity. PMID:15791731

  3. Cradle-to-Grave Logistic Technologies for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L.; Ewert, Michael K.; Shull, Sarah

    2013-01-01

    Human exploration missions under study are very limited by the launch mass capacity of exiting and planned vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Consequently, crew item logistical mass is typically competing with vehicle systems for mass allocation. NASA is Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing four logistics technologies guided by a systems engineering cradle-to-grave approach to enable used crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion supply gases. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as the mission duration increases. This paper provides a description, benefits, and challenges of the four technologies under development and a status of progress at the mid ]point of the three year AES project.

  4. Cause of the exceptionally high AE average for 2003

    NASA Astrophysics Data System (ADS)

    Prestes, A.

    2012-04-01

    In this work we focus on the year of 2003 when the AE index was extremely high (AE=341nT, with peak intensity more than 2200nT), this value is almost 100 nT higher when compared with others years of the cycle 23. Interplanetary magnetic field (IMF) and plasma data are compared with geomagnetic AE and Dst indices to determine the causes of exceptionally high AE average value. Analyzing the solar wind parameters we found that the annual average speed value was extremely high, approximately 542 km/s (peak value ~1074 km/s). These values were due to recurrent high-speed solar streams from large coronal holes, which stretch to the solar equator, and low-latitude coronal holes, which exist for many solar rotations. AE was found to increase with increasing solar wind speed and decrease when solar wind speed decrease. The cause of the high AE activity during 2003 is the presence of the high-speed corotating streams that contain large-amplitude Alfvn waves throughout the streams, which resulted in a large number of HILDCAAs events. When plasma and field of solar wind impinge on Earth's magnetosphere, the southward field turnings associated with the wave fluctuations cause magnetic reconnection and consequential high levels of AE activity and very long recovery phases on Dst, sometimes lasting until the next stream arrives.

  5. Characterization of Aes nuclear foci in colorectal cancer cells.

    PubMed

    Itatani, Yoshiro; Sonoshita, Masahiro; Kakizaki, Fumihiko; Okawa, Katsuya; Stifani, Stefano; Itoh, Hideaki; Sakai, Yoshiharu; Taketo, M Mark

    2016-01-01

    Amino-terminal enhancer of split (Aes) is a member of Groucho/Transducin-like enhancer (TLE) family. Aes is a recently found metastasis suppressor of colorectal cancer (CRC) that inhibits Notch signalling, and forms nuclear foci together with TLE1. Although some Notch-associated proteins are known to form subnuclear bodies, little is known regarding the dynamics or functions of these structures. Here, we show that Aes nuclear foci in CRC observed under an electron microscope are in a rather amorphous structure, lacking surrounding membrane. Investigation of their behaviour during the cell cycle by time-lapse cinematography showed that Aes nuclear foci dissolve during mitosis and reassemble after completion of cytokinesis. We have also found that heat shock cognate 70 (HSC70) is an essential component of Aes foci. Pharmacological inhibition of the HSC70 ATPase activity with VER155008 reduces Aes focus formation. These results provide insight into the understanding of Aes-mediated inhibition of Notch signalling. PMID:26229111

  6. Crew Systems for Asteroid Exploration: Concepts for Lightweight & Low Volume EVA Systems

    NASA Technical Reports Server (NTRS)

    Mueller, Rob; Calle, Carlos; Mantovani, James

    2013-01-01

    This RFI response is targeting Area 5. Crew Systems for Asteroid Exploration: concepts for lightweight and low volume robotic and extra-vehicular activity (EVA) systems, such as space suits, tools, translation aids, stowage containers, and other equipment. The NASA KSC Surface Systems Office, Granular Mechanics and Regolith Operations (GMRO) Lab and the Electrostatics & Surface Physics Lab (ESPL) are dedicated to developing technologies for operating in regolith environments on target body surfaces. We have identified two technologies in our current portfolio that are highly relevant and useful for crews that will visit a re-directed asteroid in Cis-Lunar Space. Both technologies are at a high TRL of 5/6 and could be rapidly implemented in time for an ARM mission in this decade.

  7. Exploring with PAM: Prospecting ANTS Missions for Solar System Surveys

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Rilee, M. L.; Curtis, S. A.

    2003-01-01

    ANTS (Autonomous Nano-Technology Swarm), a large (1000 member) swarm of nano to picoclass (10 to 1 kg) totally autonomous spacecraft, are being developed as a NASA advanced mission concept. ANTS, based on a hierarchical insect social order, use an evolvable, self-similar, hierarchical neural system in which individual spacecraft represent the highest level nodes. ANTS uses swarm intelligence attained through collective, cooperative interactions of the nodes at all levels of the system. At the highest levels this can take the form of cooperative, collective behavior among the individual spacecraft in a very large constellation. The ANTS neural architecture is designed for totally autonomous operation of complex systems including spacecraft constellations. The ANTS (Autonomous Nano Technology Swarm) concept has a number of possible applications. A version of ANTS designed for surveying and determining the resource potential of the asteroid belt, called PAM (Prospecting ANTS Mission), is examined here.

  8. Exploring coherent transport through ?-stacked systems for molecular electronic devices.

    PubMed

    Li, Qian; Solomon, Gemma C

    2014-01-01

    Understanding electron transport across ?-stacked systems can help to elucidate the role of intermolecular tunneling in molecular junctions and potentially with the design of high-efficiency molecular devices. Here we show how conjugation length and substituent groups influence the electron transport and thermoelectric response in the ?-stacked structures by investigating five representative stacked molecular junctions. We found that a ?-stacked system of two substituted anthracenes exhibits good thermopower and a high power factor, suggesting that increased conjugation can enhance the thermoelectric response. The fully eclipsed structure of quinhydrone exhibits a high power factor at the minimum energy structure and could thus be a better candidate in a thermoelectric device compared with the other ?-stacked systems considered. PMID:25283989

  9. Avionics systems on a chip for space exploration

    NASA Astrophysics Data System (ADS)

    Alkalai, Leon; Kolawa, Elizabeth

    1999-01-01

    The advanced miniaturization of all the on-board spacecraft functions into a highly integrated, modular, and reliable architecture is a major enabling technology for future deep-space and Earth orbiting science missions. Avionics miniaturization using advanced deep sub-micron semiconductor digital, analog, as well as Micro Electro Mechanical Systems (MEMS) technologies will revolutionize the way we build future spacecraft systems. So called micro and nano satellites as well as other micro-systems are possible using these advanced technologies. In this paper, we present an overview of work in progress at the newly established JPL Center for Integrated Space Microsystems (CISM) in the area of Avionics Systems On a Chip Program. This long-term research and development program has been established as part of NASA's Advanced Deep Space Systems Program (a.k.a. X2000), which also has a near-term project-oriented element, as well as an even longer term research component called Revolutionary Computing Technologies. This paper will outline the vision, goals and scope of the SOAC program, as well as its target mission insertion opportunities. We also describe a technology roadmap from 1998 to 2006 leading to Systems On A Chip technology elements. Also described are the SOAC technology challenges and research components. The first SOAC prototype has been designed and submitted for fabrication at the MIT/LL 0.25 micron Silicon On Insulator (SOI) foundry in July 1998. It contains a telecommunications unit, power management unit, on-chip computer, non-volatile as well as volatile storage, all on a single chip. The chip will be tested at JPL in the second quarter of 1999.

  10. Wanderers in space. Exploration and discovery in the solar system.

    NASA Astrophysics Data System (ADS)

    Lang, K. R.; Whitney, C. A.

    This book presents the results of a voyage of discovery in the solar system recording more than two decades of extraordinary accomplishments. It includes numerous photos from spacecraft as well as a few works of modern art. Contents: 1. Worlds in motion. 2. The Moon: stepping stone to the planets. 3. Mercury: a battered world. 4. Venus: the veiled planet. 5. The restless Earth. 6. Mars: the red desert. 7. Asteroids, meteors and meteorites. 8. Jupiter: a giant primitive world. 9. Saturn: lord of the rings. 10. Frozen worlds: Uranus, Neptune and Pluto. 11. Comets: icy wanderers. 12. Birth of the solar system.

  11. Exploration of the Solar System by Airborne Astronomy

    NASA Technical Reports Server (NTRS)

    Larson, H. P.

    1984-01-01

    The contributions of airborne astronomy to the knowledge of our solar system are reviewed, beginning in 1967 when planetary observations became a vigorous part of NASA's airborne astronomy initiatives using aircraft outfitted with 30 cm diameter telescopes for infrared observations at altitudes between 12 and 15 km. These early facilities and their successor, the Kuiper airborne observatory (KAO), profoundly influenced many areas of planetary science by providing optimized platforms for the conduct of certain types of remote sensing experiments that were incompatible with both ground-based and spacecraft environments. Specific topics reviewed include energy balance in the outer planets, the composition and structure of planetary atmospheres, and planetary ring systems.

  12. Optical communications systems and technology for deep-space exploration

    NASA Technical Reports Server (NTRS)

    Lesh, James R.

    1989-01-01

    An account is given of architectural and implementational strategies for the creation of planetary and other deep-space optical communications networks, with a view to the developmental requirements of both planetary spacecraft subsystems and an earth-vicinity reception system. Attention is given to prospective technology-development challenges. An open-loop spatial acquisition process is defined, in conjunction with a terrestrial, large-aperture/low-cost 'photon bucket' optical reception telescopic system having an integral, axially-aligned tube-bundle sunshield. An efficient diode-pumped Nd:YAG laser is envisioned as the transmitter.

  13. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Gisser, D. G.; Frederick, D. K.; Yerazunis, S. W.

    1977-01-01

    A number of problems related to unmanned exploration of planets or other extraterrestrial bodies with Mars as a case in point were investigated. The design and evaluation of a prototype rover concept with emphasis on mobility, maneuverability, stability, control and propulsion is described along with the development of terrain sensor concepts and associated software for the autonomous control of any planetary rover. Results are applicable not only to the design of a mission rover but the vehicle is used as a test bed for the rigorous evaluation of alternative autonomous control systems.

  14. Beyond Earth's boundaries: Human exploration of the Solar System in the 21st Century

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is an annual report describing work accomplished in developing the knowledge base that will permit informed recommendations and decisions concerning national space policy and the goal of human expansion into the solar system. The following topics are presented: (1) pathways to human exploration; (2) human exploration case studies; (3) case study results and assessment; (4) exploration program implementation strategy; (5) approach to international cooperation; (6) recommendations; and (7) future horizons.

  15. Exploring the Solar System with a Human Orrery

    ERIC Educational Resources Information Center

    Newbury, Peter

    2010-01-01

    One of the fundamental learning goals of introductory astronomy is for the students to gain some perspective on the scale and structure of the solar system. Many astronomy teachers have laid out the planets along a long strip of paper or across a school grounds or campus. Other activities that investigate the motion of the planets are often

  16. The Moon's Role in Human Exploration of the Solar System

    NASA Astrophysics Data System (ADS)

    Plescia, J. B.; Schmitt, H. H.

    2015-10-01

    Cislunar space and the surface provide the chance to conduct space science and allows us to test systems and operations prior to deep space missions, to extract resources, and to demonstrate U.S. national interest and serve as a source of inspiration.

  17. Exploration into technical procedures for vertical integration. [information systems

    NASA Technical Reports Server (NTRS)

    Michel, R. J.; Maw, K. D.

    1979-01-01

    Issues in the design and use of a digital geographic information system incorporating landuse, zoning, hazard, LANDSAT, and other data are discussed. An eleven layer database was generated. Issues in spatial resolution, registration, grid versus polygonal structures, and comparison of photointerpreted landuse to LANDSAT land cover are examined.

  18. Exploring the Solar System? Let the Math Teachers Help!

    ERIC Educational Resources Information Center

    Charles, Karen; Canales, J. D.; Smith, Angela; Zimmerman, Natalie

    2012-01-01

    Scale measurement and ratio and proportion are topics that fall clearly in the middle-grades mathematics curriculum in Texas. So does the solar system. In their experience, the authors have found that students have trouble manipulating, much less comprehending, very large numbers and very small numbers. These concepts can be brought into students'

  19. A Phenomenological Exploration of Faculty Experiences Using Lecture Capture Systems

    ERIC Educational Resources Information Center

    Vande Voort, Pamela S.

    2013-01-01

    The purpose of this qualitative, phenomenological study was to describe the perceived experiences of faculty who use lecture capture systems in face-to-face class meetings at small and medium-sized, four-year, highly residential, undergraduate colleges and universities with enrollments between 1,000 and 9,999 students. Through audio-recorded

  20. Exploring Differential Attrition Rates among System of Care Evaluation Participants

    ERIC Educational Resources Information Center

    Rogers, Kelly N.; Fernandez, Maria; Thurber, Lori; Smitley, Andy

    2004-01-01

    The purpose of the present study is to investigate differential attrition rates in terms of both demographic characteristics and initial levels of child functioning of participants in North Carolina's system of care evaluation. Participants included 303 families (78 dropped out of the study, a 26% attrition rate). Families dropped out of the

  1. Exploring the Solar System with a Human Orrery

    ERIC Educational Resources Information Center

    Newbury, Peter

    2010-01-01

    One of the fundamental learning goals of introductory astronomy is for the students to gain some perspective on the scale and structure of the solar system. Many astronomy teachers have laid out the planets along a long strip of paper or across a school grounds or campus. Other activities that investigate the motion of the planets are often…

  2. Exploring the Solar System? Let the Math Teachers Help!

    ERIC Educational Resources Information Center

    Charles, Karen; Canales, J. D.; Smith, Angela; Zimmerman, Natalie

    2012-01-01

    Scale measurement and ratio and proportion are topics that fall clearly in the middle-grades mathematics curriculum in Texas. So does the solar system. In their experience, the authors have found that students have trouble manipulating, much less comprehending, very large numbers and very small numbers. These concepts can be brought into students'…

  3. Organizing for empowerment: an interview with AES's Roger Sant and Dennis Bakke. Interview by Suzy Wetlaufer.

    PubMed

    Sant, R; Bakke, D

    1999-01-01

    The topic of empowerment is receiving a lot of attention, but how many employees are truly empowered? At the global electricity giant AES Corporation, the answer is all 40,000 of them. In this interview, chairman Roger Sant and CEO Dennis Bakke reflect on their trials and triumphs in creating an exceptional company and explain how their employee-run company works. When they founded AES in 1981, Sant and Bakke set out to create a company where people could have engaging experiences on a daily basis--a company that embodied the principles of fairness, integrity, social responsibility, and fun. Putting those principles into action has created something unique--an ecosystem of real empowerment. What does that system look like? Rather than having a traditional hierarchical chain of command, AES is organized around small teams that are responsible for operations and maintenance. Moreover, AES has eliminated functional departments; there's no corporate marketing division or human resources department. For the system to work, every person must become a well-rounded generalist--a mini-CEO. That, in turn, redefines the jobs of the people at headquarters. Instead of setting strategy and making the "the big decisions," Sant and Bakke act as advisers, guardians of the principles, accountability officers, and chief encouragers. Can other companies successfully adopt the mechanics of such a system? Not unless they first adopt the shared principles that have guided AES since its inception. "Empowerment without values isn't empowerment," says Sant. "It's just technique," adds Bakke. PMID:10345387

  4. Active thermal control systems for lunar and Martian exploration

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Petete, Patricia A.; Dzenitis, John

    1990-01-01

    Several ATCS options including heat pumps, radiator shading devices, and single-phase flow loops were considered. The ATCS chosen for both lunar and Martian habitats consists of a heat pump integral with a nontoxic fluid acquisition and transport loop, and vertically oriented modular reflux-boiler radiators. The heat pump operates only during the lunar day. The lunar and Martian transfer vehicles have an internal single-phase water-acquisition loop and an external two-phase ammonia rejection system with rotating inflatable radiators. The lunar and Martian excursion vehicles incorporate internal single-phase water acquisition, which is connected via heat exchangers to external body-mounted single-phase radiators. A water evaporation system is used for the transfer vehicles during periods of high heating.

  5. Space exploration and the history of solar-system volatiles

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.

    1976-01-01

    The thermochemical history of volatile substances in all solar-system planets, satellites, and planetoids is discussed extensively. The volatiles are viewed as an interface between the abiotic and biotic worlds and as a key to the history of bodies of the solar system. A flowsheet of processes and states is exhibited. Differences in bulk volatiles distribution between the planetary bodies and between the interior, surface, and atmosphere of each body are considered, as well as sinks for volatiles in degassing. The volatiles-rich Jovian and Saturnian satellites, the effect of large-planet magnetosphere sweeps on nearby satellites, volatiles of asteroids and comets, and the crucial importance of seismic, gravity, and libration data are treated. A research program encompassing analysis of the elemental and isotopic composition of rare gas in atmospheres, assay of volatiles-containing phases in regoliths, and examination of present or past atmospheric escape/accretion processes is recommended.

  6. Mariner Mark II and the Exploration of the Solar System.

    PubMed

    Neugebauer, M

    1983-02-01

    Mariner Mark II is a concept for the next generatioon of deep-space missions. The project would provide limited, focused sets of Voyager- and Galileo-quality planetary observations at a fraction of the cost of the Voyager and Galileo projects. This article discusses Mariner Mark II's cost goals, scientific objectives, and mission requirements. Strategies for limiting costs include the use of a reconfigurable spacecraft, a multimission ground-support system, and selected new technologies. PMID:17742805

  7. Visualization and exploration for recommender systems in enterprise organization

    NASA Astrophysics Data System (ADS)

    Karni, Z.; Shapira, L.

    2013-03-01

    Recommender systems seek to predict the interest a user would find in an item, person or social element they had not yet considered, based upon the properties of the item, the user's past experience and similar users. However, recommended items are often presented to the user with no context and no ability to influence the results. We present a novel visualization technique for recommender systems in which, a user can see the items recommended for him, and understand why they were recommended. Focusing on a user, we render a planar visualization listing a set of recommended items. The items are organized such that similar items reside nearby on the screen, centered around realtime generated categories. We use a combination of iconography, text and tag clouds, with maximal use of screen real estate, and keep items from overlapping to produce our results. We apply our visualization to expert relevance maps in the enterprise and a book recommendation system for consumers. The latter is based on Shelfari, a social network for reading and books.

  8. Exploring the Outer Solar System with the ESSENCE Supernova Survey

    SciTech Connect

    Becker, A.C.; Arraki, K.; Kaib, N.A.; Wood-Vasey, W.M.; Aguilera, C.; Blackman, J.W.; Blondin, S.; Challis, P.; Clocchiatti, A.; Covarrubias, R.; Damke, G.; Davis, T.M.; Filippenko, A.V.; Foley, R.J.; Garg, A.; Garnavich, P.M.; Hicken, M.; Jha, S.; Kirshner, R.P.; Krisciunas, K.; Leibundgut, B.; /Munich, Tech. U. /UC, Berkeley /NOAO, Tucson /Washington U., Seattle, Astron. Dept. /Fermilab /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /Chile U., Santiago /Ohio State U. /Cerro-Tololo InterAmerican Obs. /Harvard U. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Australian Natl. U., Canberra /Australian Natl. U., Canberra /Cerro-Tololo InterAmerican Obs. /Munich, Tech. U. /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /Cerro-Tololo InterAmerican Obs. /Texas A-M /Cerro-Tololo InterAmerican Obs.

    2011-11-10

    We report the discovery and orbital determination of 14 trans-Neptunian objects (TNOs) from the ESSENCE Supernova Survey difference imaging data set. Two additional objects discovered in a similar search of the SDSS-II Supernova Survey database were recovered in this effort. ESSENCE repeatedly observed fields far from the solar system ecliptic (-21{sup o} < {beta} < -5{sup o}), reaching limiting magnitudes per observation of I {approx} 23.1 and R {approx} 23.7. We examine several of the newly detected objects in detail, including 2003 UC{sub 414}, which orbits entirely between Uranus and Neptune and lies very close to a dynamical region that would make it stable for the lifetime of the solar system. 2003 SS{sub 422} and 2007 TA{sub 418} have high eccentricities and large perihelia, making them candidate members of an outer class of TNOs. We also report a new member of the 'extended' or 'detached' scattered disk, 2004 VN{sub 112}, and verify the stability of its orbit using numerical simulations. This object would have been visible to ESSENCE for only {approx}2% of its orbit, suggesting a vast number of similar objects across the sky. We emphasize that off-ecliptic surveys are optimal for uncovering the diversity of such objects, which in turn will constrain the history of gravitational influences that shaped our early solar system.

  9. Application of a SNTP-Based Propulsion/Power System to Solar System Exploration Missions

    NASA Astrophysics Data System (ADS)

    Venetoklis, Peter S.; Nelson, Caroline V.; Gustafson, Eric R.

    1994-07-01

    A ``bi-modal'' nuclear propulsion and power system based on the United States Air Force's (USAF's)* Space Nuclear Thermal Propulsion (SNTP) technology is applied to a set of high energy Solar system exploration missions. Performance comparisons are made to a baseline mission set developed by the Jet Propulsion Laboratory utilizing a nuclear electric propulsion system based on the SP-100 space power system. Orbiters and probes of Uranus, Neptune, and Pluto, a Grand Tour of the Galilean moons of Jupiter, a Comet Nucleus Sample Return, and a Multiple Mainbelt Asteroid Rendezvous mission are analyzed. The first five missions utilizing SP- 100 required a Shuttle-C or equivalent heavy lift launcher. With the bi-modal PBR system, the payload goals are deliverable in the same transit times, but on the smaller, existing Titan IV launcher. Furthermore, all optional payloads originally available only at increased transit time are accommodated. Available mass margins for these missions are 20%-85% of the power/propulsion system mass, providing significant robustness. The same missions were analyzed on a Titan III launcher in order to pursue further cost reductions. Substantial payload masses (1000 kg or more) were found to be available in all cases with reasonable transit times, coinciding well with the current ``lighter, faster, cheaper'' NASA philosophy.

  10. A Comparison of Electric Propulsion Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Oleson, Steve

    2003-01-01

    Earth-Mars trajectories for multiple solar-powered spacecraft configurations were generated using Hall and ion propulsion systems utilizing the Direct Trajectory Optimization Method. Payload and power trades versus trip time were examined. Performance was compared for purely interplanetary flight and interplanetary flight with estimated spiral in to Mars orbit. Evaluating current ion and Hall thruster technologies, similar payload masses were delivered by each at equivalent trip times, but with the Hall thruster operating at a power level 10 kilowatts, on average, less than the ion thruster. The power difference for equivalent payload delivered should result in a significant cost savings.

  11. PLAN-IT - Scheduling assistant for solar system exploration

    NASA Technical Reports Server (NTRS)

    Dias, William C.; Henricks, Julia A.; Wong, Jennifer C.

    1987-01-01

    A frame-based expert scheduling system shell, PLAN-IT, is developed for spacecraft scheduling in the Request Integration Phase, using the Comet Rendezvous Asteroid Flyby (CRAF) mission as a development base. Basic, structured, and expert scheduling techniques are reviewed. Data elements such as activity representation and resource conflict representation are discussed. Resource constraints include minimum and maximum separation times between activities, percentage of time pointed at specific targets, and separation time between targeted intervals of a given activity. The different scheduling technique categories and the rationale for their selection are also considered.

  12. Human Exploration Systems and Mobility Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Culbert, Chris; Taylor, Jeff

    2005-01-01

    Contents include the following: Capability Roadmap Team. Capability Description and Capability Breakdown Structure. Benefits of the Human Systems and Mobility Capability. Roadmap Process and Approach. Drivers and Assumptions for the whole team. Current State-of-the-Art, Assumptions and Requirements will be covered in the appropriate sections. Capability Presentations by Leads under Roadmap (Repeated for each capability under roadmap). Capability Description, Benefits, Current State-of-the-Art. Capability Requirements and Assumptions. Roadmap for Capability. Capability Readiness Level. Technology Readiness Level. Figures of Merit. Summary of Top Level Capability. Significant Technical Challenges. Summary and Forward Work.

  13. PLAN-IT - Scheduling assistant for solar system exploration

    SciTech Connect

    Dias, W. C.; Henricks, J. A.; Wong, J. C.

    1987-01-01

    A frame-based expert scheduling system shell, PLAN-IT, is developed for spacecraft scheduling in the Request Integration Phase, using the Comet Rendezvous Asteroid Flyby (CRAF) mission as a development base. Basic, structured, and expert scheduling techniques are reviewed. Data elements such as activity representation and resource conflict representation are discussed. Resource constraints include minimum and maximum separation times between activities, percentage of time pointed at specific targets, and separation time between targeted intervals of a given activity. The different scheduling technique categories and the rationale for their selection are also considered. 13 references.

  14. Photophysical exploration of fluorescent nanotags

    NASA Astrophysics Data System (ADS)

    Liu, Shengpeng

    Fluorescence labeling technique has found many important applications such as medical diagnostics, immunoassays and direct visualization of biological molecules. The main focus of this thesis is to use various techniques to study a number of novel florescence labels named nanotag, with the goal of constructing a fluorescence label that is photostable on both single molecular level and the ensemble level; that is compact in size so that it will not affect the activity of the targeted molecule; and that acts as antenna with strong light-harvesting ability. In the fluorescence spectroscopy, Forster resonance energy transfer (FRET) is a result of the dipole-dipole interaction between a donor fluorophore and an acceptor fluorophore. FRET a useful technique to shift the excitation wavelength to a longer wavelength to minimize the background. In the thesis, the efficiencies of the FRET of a variety of fluorescence labels were explored using different FRET donor-acceptor (D-A) pairs and different D-A ratios aimed to build a superior system where high brightness can be readily achieved and where FRET efficiency has less restriction on the D-A spectral overlap. Also, we are interested in setting up several models to quantitatively simulate the FRET calculation in various designs of nanotags consisting of an array of dyes (multichromophoric array) and in evaluating the suitability of those FRET models. Additionally, this thesis quantitatively evaluates the light harvesting ability of nanotags by examining the antenna effects (AE) defined as the intensity of the nanotag acceptors excited at the donor peak divided by the intensity of the nanotag acceptors upon direct excitation at acceptor absorption peak. Furthermore, we established a model that simulates the AE efficiency in the nanotags. This AE model shows an outstanding agreement with our experimental AE results. Particularly, Chapter 1 introduces the main theories and concepts used in the thesis and the motivations of our experiments. Chapter 2 of the thesis provides the readers with the instrumentation set up and the experimental design. Chapter 3 explores the fluorescence quenching of the DNA-bound dyes using different sized gold nanoparticles as the quencher. Chapter 4 discusses the photophysics of a novel fluorescence label non-covalently loaded with dyes. Chapter 5 discusses the photophysics of the fluorescence labels with covalently bound the dyes.

  15. Bioinspired engineering of exploration systems: a horizon sensor/attitude reference system based on the dragonfly Ocelli for Mars exploration applications

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Zornetzer, S.; Hine, B.; Chahl, J.; Stange, G.

    2002-01-01

    The intent of Bio-inspired Engineering of Exploration Systems (BEES) is to distill the principles found in successful, nature-tested mechanisms of specific crucial functions that are hard to accomplish by conventional methods, but accomplished rather deftly in nature by biological oganisms.

  16. Exploring Institutional Research Ethics Systems: A Case Study From Uganda

    PubMed Central

    Hyder, Adnan A.; Ali, Joseph; Hallez, Kristina; White, Tara; Sewankambo, Nelson K.; Kass, Nancy E.

    2015-01-01

    Background The increasing globalization of research drives a need for greater research ethics capacity in low resource countries. Several programs have attempted to expand research ethics capacity by training individuals, but few have focused on broader research ethics systems and institutions. This study describes and applies an institutional research ethics model to assess the institutional research ethics capacity of Makerere University College of Heath Sciences (MakCHS) in 2011. Methods Internal and external stakeholders conducted the assessment of MakCHS using the multidimensional Octagon framework. Five methods were used to collect data on current ethical processes and institutional relationships. Results MakCHS scored in the mid range on all Octagon domains, with some variation between external and internal assessments. The external Octagon scores suggest that MakCHS’s areas of strengths are in identity, structure, relevance, target groups, and working environment; needs are greater in the areas of production, competence, and systems of finance and administration. Discrepancies in external and internal assessment can serve as a useful platform to shape ongoing discussions and strategic efforts. Conclusions The assessment identified strengths, opportunities, and challenges for institutional research ethics capacity at MakCHS. We believe this systematic approach was helpful in evaluating research ethics needs and provides a benchmark for institutions to measure progress over time. PMID:26594648

  17. Exploration of the Saturnian System with Cassini Radio Science

    NASA Technical Reports Server (NTRS)

    Kliore, Arvydas J.

    1999-01-01

    The ongoing Galileo mission has provided many new insights into the Jovian system. Among them are new discoveries from the Radio Science investigations , including multiple measurements of the Jovian ionosphere, the ionospheres and plasma environments of Io, Europa, Ganymede, and Callisto, and the internal structure of the Galilean satellites. The Cassini spacecraft, which will be placed in orbit about Saturn in 2004, will conduct Radio Science investigations of many aspects of the Saturnian system with a radio instrument of unprecedented stability and versatility. It will use radio links at three wavelengths : S-band(13 cm), X-band (3.5 cm), and Ka-band (1 cm) to probe the atmospheres and ionospheres of Saturn and Titan and Saturn's rings by means of radio occultations, and to measure the masses and gravity fields of Saturn, Titan, and selected icy satellites by precision tracking. In addition, the stability of the radio instrument will be utilized to conduct a search for gravitational waves during solar oppositions, and to precisely measure general relativistic effects during solar conjunctions during the interplanetary cruise prior to arrival at Saturn.

  18. Probing Potential Energy Surface Exploration Strategies for Complex Systems.

    PubMed

    N'Tsouaglo, Gawonou Kokou; Béland, Laurent Karim; Joly, Jean-François; Brommer, Peter; Mousseau, Normand; Pochet, Pascal

    2015-04-14

    The efficiency of minimum-energy configuration searching algorithms is closely linked to the energy landscape structure of complex systems, yet these algorithms often include a number of steps of which the effect is not always clear. Decoupling these steps and their impacts can allow us to better understand both their role and the nature of complex energy landscape. Here, we consider a family of minimum-energy algorithms based, directly or indirectly, on the well-known Bell-Evans-Polanyi (BEP) principle. Comparing trajectories generated with BEP-based algorithms to kinetically correct off-lattice kinetic Monte Carlo schemes allow us to confirm that the BEP principle does not hold for complex systems since forward and reverse energy barriers are completely uncorrelated. As would be expected, following the lowest available energy barrier leads to rapid trapping. This is why BEP-based methods require also a direct handling of visited basins or barriers. Comparing the efficiency of these methods with a thermodynamical handling of low-energy barriers, we show that most of the efficiency of the BEP-like methods lie first and foremost in the basin management rather than in the BEP-like step. PMID:26574398

  19. Continuous AE crack monitoring of a dissimilar metal weldment at Limerick Unit 1

    SciTech Connect

    Hutton, P.H.; Friesel, M.A.; Dawson, J.F.

    1993-12-01

    Acoustic emission (AE) technology for continuous surveillance of a reactor component(s) to detect crack initiation and/or crack growth has been developed at Pacific Northwest Laboratory (PNL). The technology was validated off-reactor in several major tests, but it had not been validated by monitoring crack growth on an operating reactor system. A flaw indication was identified during normal inservice inspection of piping at Philadelphia Electric Company (PECO) Limerick Unit 1 reactor during the 1989 refueling outage. Evaluation of the flaw indication showed that it could remain in place during the subsequent fuel cycle without compromising safety. The existence of this flaw indication offered a long sought opportunity to validate AE surveillance to detect and evaluate crack growth during reactor operation. AE instrumentation was installed by PNL and PECO to monitor the flaw indication during two complete fuel cycles. This report discusses the results obtained from the AE monitoring over the period May 1989 to March 1992 (two fuel cycles).

  20. Evolution of source characteristics of AE events during frictional sliding

    NASA Astrophysics Data System (ADS)

    Yabe, Y.

    2008-06-01

    The evolution of source characteristics of acoustic emission (AE) events and the surface topography of the fault surface during frictional sliding were investigated with the aim of improving current understanding of the microscopic process of friction. Both the AE source dimensions and the grain-scale topographies were well conserved against abrasion during the sliding, but the magnitude of stress drop was significantly reduced. The fractal-domain topographies, the wavelength of which is shorter than the fractal limit wavelength (? c), were significantly worn during the sliding. These results suggest that the grain-scale topography determined the AE source dimension, while the fractal-domain asperities controlled the magnitude of the stress drop. Since elastic wave radiation is one of the major energy consumption processes, the grain-scale and the fractal-domain topographies may play different roles, not only in the AE source process but also in the friction of rocks.

  1. Consumer views on A&E and inpatient care.

    PubMed

    Tingle, John

    John Tingle discusses the Care Quality Commission national survey results for hospital inpatient care along with results from the Patients Association and Royal College of Emergency Medicine patient survey report on A&E care. PMID:26110858

  2. The Mars Exploration Rover (MER) Transverse Impulse Rocket System (TIRS)

    NASA Technical Reports Server (NTRS)

    SanMartin, Alejandro Miguel; Bailey, Erik

    2005-01-01

    In a very short period of time the MER project successfully developed and tested a system, TIRS/DIMES, to improve the probability of success in the presence of large Martian winds. The successful development of TIRS/DIMES played a big role in the landing site selection process by enabling the landing of Spirit on Gusev crater, a site of very high scientific interest but with known high wind conditions. The performance of TIRS by Spirit at Gusev Crater was excellent. The velocity prediction error was small and Big TIRS was fired reducing the impact horizontal velocity from approximately 23 meters per second to approximately 11 meters per second, well within the airbag capabilities. The performance of TIRS by Opportunity at Meridiani was good. The velocity prediction error was rather large (approximately 6 meters per second, a less than 2 sigma value, but TIRS did not fire which was the correct action.

  3. Exploring dynamics of unstable many-body systems

    SciTech Connect

    Volya, Alexander; Zelevinsky, Vladimir

    2014-10-15

    In this work we acquaint reader with the Continuum Shell Model (CSM), which is a proper theoretical tool for the description of physics of unstable systems. We describe the effective non-Hermitian Hamiltonian of the CSM and concentrate on specific aspects of dynamics using realistic examples. The continuum effects are discussed in the case of weakly bound heavy oxygen isotopes, where inclusion of continuum coupling is necessary to improve the traditional nuclear shell model techniques. Physics of overlapping resonances is illustrated using recent experimental information on {sup 8}B nucleus. In the limit of strong continuum coupling the many-body states restructure relative to continuum leading to a few very broad super-radiant states, while at the same time other states become narrow and nearly decoupled from decay. The recent observations of very broad alpha clustering states in {sup 18}O is one of the most transparent manifestations of super-radiance.

  4. Unmanned solar systems exploration - An arena for international cooperation

    NASA Technical Reports Server (NTRS)

    Herman, D. H.; Pacault, R.

    1974-01-01

    Mission profiles for a Mars Surface Sample Return (MSSR) mission are considered. A profile using separate launches for a lander/ascent module and an orbiter/return system could use present technology and is appropriate for international cooperation. The achievement of clean interfaces between major building blocks and ease of controlling back contamination are advantages offered by the concept. A spatially distributed surface sample could be obtained by using multiple landers delivering samples to a common orbiter. The Pioneer Venus program, originally planned as a cooperative NASA-ESRO project, resulted in development of a standardized spacecraft bus yielding benefits at minimized cost. The first joint US-European planetary mission now planned is the launch of a Pioneer class orbiter to Jupiter in 1980. Feasibility studies are being conducted.

  5. Exploring Manycore Multinode Systems for Irregular Applications with FPGA Prototyping

    SciTech Connect

    Ceriani, Marco; Palermo, Gianluca; Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    2013-04-29

    We present a prototype of a multi-core architecture implemented on FPGA, designed to enable efficient execution of irregular applications on distributed shared memory machines, while maintaining high performance on regular workloads. The architecture is composed of off-the-shelf soft-core cores, local interconnection and memory interface, integrated with custom components that optimize it for irregular applications. It relies on three key elements: a global address space, multithreading, and fine-grained synchronization. Global addresses are scrambled to reduce the formation of network hot-spots, while the latency of the transactions is covered by integrating an hardware scheduler within the custom load/store buffers to take advantage from the availability of multiple executions threads, increasing the efficiency in a transparent way to the application. We evaluated a dual node system irregular kernels showing scalability in the number of cores and threads.

  6. Exploring the Outer Neptune Resonances: Constraints on Solar System Evolution

    NASA Astrophysics Data System (ADS)

    Pike, Rosemary E.; Kavelaars, JJ; Shankman, Cory J.; Petit, Jean-Marc; Brett, Gladman; Volk, Kat; Alexandersen, Mike

    2015-11-01

    The long-term evolution of objects in the outer n:1 resonances with Neptune provide clues to the evolutionary history of the Solar System. Based on 4 objects with semi-major axes near the 5:1 resonance, we estimate a substantial and previously unrecognized population of objects, perhaps more significant than the population in the 3:2 (Plutino) resonance. These external resonances are largely unexplored in both observations and dynamical simulations. However, understanding the characteristics and trapping history for objects in these populations is critical for constraining the dynamical history of the solar system. The 4 objects detected in the Canada-France Ecliptic Plane Survey (CFEPS) were classified using dynamical integrations. Three are resonant, and the fourth appears to be a resonance diffusion object, part of a population which exited the resonance through chaotic diffusion. The 3 resonant objects are taken to be representative of the resonant population, so by using these detections and the CFEPS characterization (pointings and detection limits) we calculate a population estimate for this resonance at ~1900(+3300 -1400) objects with Hg<8 [Pike et al. 2015]. This is at least as large as the Plutinos (3:2 resonance) at 90% confidence. The small number of detected objects results in such a large population estimate due to the numerous biases against detecting objects with semimajor axes at ~88AU. The dynamical behavior of the known objects, suggests that the trapping mechanism for the 5:1 resonance is resonance sticking from the scattering objects. Based on our results from the 5:1 resonance, we have begun a project to examine the long term evolution of the other n:1 resonances to determine the importance of resonance diffusion and transfer between libration islands among the scattering-captured members of those populations.

  7. Logistics Reduction Technologies for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

    2014-01-01

    Human exploration missions under study are very limited by the launch mass capacity of existing and planned vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Consequently, crew item logistical mass is typically competing with vehicle systems for mass allocation. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing five logistics technologies guided by a systems engineering cradle-to-grave approach to enable used crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as the mission duration increases. This paper provides a description and the challenges of the five technologies under development and the estimated overall mission benefits of each technology.

  8. Lightweight, High Performance, Low Cost Propulsion Systems for Mars Exploration Missions to Maximize Science Payload

    NASA Astrophysics Data System (ADS)

    Trinh, H. P.

    2012-06-01

    Utilization of new cold hypergolic propellants and leverage Missile Defense Agency technology for propulsion systems on Mars explorations will provide an increase of science payload and have significant payoffs and benefits for NASA missions.

  9. Exploring exoplanetary systems beyond 1AU with WFIRST

    NASA Astrophysics Data System (ADS)

    Penny, Matthew T.; Gaudi, B. Scott

    2014-01-01

    The Wide Field InfraRed Survey Telescope (WFIRST) was the top ranked large space mission of the New Worlds, New Horizons Decadal Survey, and is currently under active study by NASA. Its primary instrument will be a large-format high-resolution near-infrared imager and slitless spectrometer. A primary goal of WFIRST will be to perform a high-cadence microlensing survey of the Galactic bulge to search for low-mass exoplanets beyond the ice line. We highlight some of the expected results of the WFIRST exoplanet survey. For example, the survey will probe the abundance of Earth-mass planets from less than 1 AU outwards, including free-floating planets. In its peak sensitivity range of ~2-5 AU, WFIRST will be sensitive to planets with masses lower than Mercury, and even down to the mass of Ganymede. Overall, WFIRST is expected to detect several thousand bound planets, in addition to several thousand free-floating planets. WFIRST will complete the exoplanet census begun by Kepler, enabling an unprecedented understanding of planetary systems and their formation.

  10. Exploring Science Applications for Unmanned Aircraft Systems Aboard UNOLS Ships

    NASA Astrophysics Data System (ADS)

    Bailey, R.; Lachenmeier, T.; Hatfield, M. C.

    2014-12-01

    The University of Alaska Fairbanks has been expanding the use of small Unmanned Aircraft Systems (UAS) for science support from a variety of ships for several years. The ease and safety of flying from research vessels offers the science community lower cost access to overhead surveys of marine mammals without impact on sensitive populations, monitoring of AUV operations and collection of transmitted data, extensive surveys of sea ice during formation, melt, and sea temperatures through multiple seasons. As FAA expands access to the Arctic airspace over the Chukchi, Beaufort, and Bering Seas, the opportunities to employ UAS in science applications will become easier to exploit. This presentation describes the changes coming through new FAA rules, through the Alaska FAA Test Site, the Pan-Pacific UAS Test Range Complex which includes Oregon and Hawaii, and even Iceland. Airspace access advances associated with recent operations including the NASA-sponsored MIZOPEX, whale detection, and forming sea ice work in October will be presented, as well as a glider UAS connected to very high altitude balloons collecting atmospheric data. Development of safety procedures for use of UAS on UNOLS ships will be discussed.

  11. Computer system evolution requirements for autonomous checkout of exploration vehicles

    NASA Technical Reports Server (NTRS)

    Davis, Tom; Sklar, Mike

    1991-01-01

    This study, now in its third year, has had the overall objective and challenge of determining the needed hooks and scars in the initial Space Station Freedom (SSF) system to assure that on-orbit assembly and refurbishment of lunar and Mars spacecraft can be accomplished with the maximum use of automation. In this study automation is all encompassing and includes physical tasks such as parts mating, tool operation, and human visual inspection, as well as non-physical tasks such as monitoring and diagnosis, planning and scheduling, and autonomous visual inspection. Potential tasks for automation include both extravehicular activity (EVA) and intravehicular activity (IVA) events. A number of specific techniques and tools have been developed to determine the ideal tasks to be automated, and the resulting timelines, changes in labor requirements and resources required. The Mars/Phobos exploratory mission developed in FY89, and the Lunar Assembly/Refurbishment mission developed in FY90 and depicted in the 90 Day Study as Option 5, have been analyzed in detailed in recent years. The complete methodology and results are presented in FY89 and FY90 final reports.

  12. Role of NBCe1 and AE2 in secretory ameloblasts.

    PubMed

    Paine, M L; Snead, M L; Wang, H J; Abuladze, N; Pushkin, A; Liu, W; Kao, L Y; Wall, S M; Kim, Y-H; Kurtz, I

    2008-04-01

    The H(+)/base transport processes that control the pH of the microenvironment adjacent to ameloblasts are not currently well-understood. Mice null for the AE2 anion exchanger have abnormal enamel. In addition, persons with mutations in the electrogenic sodium bicarbonate co-transporter NBCe1 and mice lacking NBCe1 have enamel abnormalities. These observations suggest that AE2 and NBCe1 play important roles in amelogenesis. In the present study, we aimed to understand the roles of AE2 and NBCe1 in ameloblasts. Analysis of the data showed that NBCe1 is expressed at the basolateral membrane of secretory ameloblasts, whereas AE2 is expressed at the apical membrane. Transcripts for AE2a and NBCe1-B were detected in RNA isolated from cultured ameloblast-like LS8 cells. Our data are the first evidence that AE2 and NBCe1 are expressed in ameloblasts in vivo in a polarized fashion, thereby providing a mechanism for ameloblast transcellular bicarbonate secretion in the process of enamel formation and maturation. PMID:18362326

  13. Small Explorer Data System MIL-STD-1773 fiber optic bus

    NASA Astrophysics Data System (ADS)

    Flanegan, Mark; Label, Ken

    1992-06-01

    The MIL-STD-1773 Fiber Optic Data Bus as implemented in the GSFC Small Explorer Data System (SEDS) for the Small Explorer Program is described. It provides an overview of the SEDS MIL-STD-1773 bus components system design considerations, reliability figures, acceptance and qualification testing requirements, radiation requirements and tests, error handling considerations, and component heritage. The first mission using the bus will be launched in June of 1992.

  14. Small Explorer Data System MIL-STD-1773 fiber optic bus

    NASA Technical Reports Server (NTRS)

    Flanegan, Mark; Label, Ken

    1992-01-01

    The MIL-STD-1773 Fiber Optic Data Bus as implemented in the GSFC Small Explorer Data System (SEDS) for the Small Explorer Program is described. It provides an overview of the SEDS MIL-STD-1773 bus components system design considerations, reliability figures, acceptance and qualification testing requirements, radiation requirements and tests, error handling considerations, and component heritage. The first mission using the bus will be launched in June of 1992.

  15. Exploring information systems outsourcing in U.S. hospital-based health care delivery systems.

    PubMed

    Diana, Mark L

    2009-12-01

    The purpose of this study is to explore the factors associated with outsourcing of information systems (IS) in hospital-based health care delivery systems, and to determine if there is a difference in IS outsourcing activity based on the strategic value of the outsourced functions. IS sourcing behavior is conceptualized as a case of vertical integration. A synthesis of strategic management theory (SMT) and transaction cost economics (TCE) serves as the theoretical framework. The sample consists of 1,365 hospital-based health care delivery systems that own 3,452 hospitals operating in 2004. The findings indicate that neither TCE nor SMT predicted outsourcing better than the other did. The findings also suggest that health care delivery system managers may not be considering significant factors when making sourcing decisions, including the relative strategic value of the functions they are outsourcing. It is consistent with previous literature to suggest that the high cost of IS may be the main factor driving the outsourcing decision. PMID:20058531

  16. Radioisotope Power Systems for In-situ Exploration of Titan and Venus

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.

    2006-01-01

    This viewgraph presentation reviews the timeline for the robotic in situ investigation of Titan and Venus, and the use of radioisotope power systems in this exploration. The atmospheric and surface conditions of both sites are reviewed. The presentation also examines the conceptual design of the Venus Mobile Explorer and the Titan orbiter and in situ explorer. After this the presentation reviews the radioisotope power systems for each of the vehicles, with some explanation of the different requirements based on the vastly different environments that they would be investigating

  17. Analysis of Advanced Modular Power Systems (AMPS) for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard; Soeder, James F.; Beach, Ray

    2014-01-01

    The Advanced Modular Power Systems (AMPS) project is developing a modular approach to spacecraft power systems for exploration beyond Earth orbit. AMPS is intended to meet the need of reducing the cost of design development, test and integration and also reducing the operational logistics cost of supporting exploration missions. AMPS seeks to establish modular power building blocks with standardized electrical, mechanical, thermal and data interfaces that can be applied across multiple exploration vehicles. The presentation discusses the results of a cost analysis that compares the cost of the modular approach against a traditional non-modular approach.

  18. Solar system exploration from the Moon: Synoptic and comparative study of bodies in our Planetary system

    NASA Technical Reports Server (NTRS)

    Bruston, P.; Mumma, M. J.

    1994-01-01

    An observational approach to Planetary Sciences and exploration from Earth applies to a quite limited number of targets, but most of these are spatially complex, and exhibit variability and evolution on a number of temporal scales which lie within the scope of possible observations. Advancing our understanding of the underlying physics requires the study of interactions between the various elements of such systems, and also requires study of the comparative response of both a given object to various conditions and of comparable objects to similar conditions. These studies are best conducted in 'campaigns', i.e. comprehensive programs combining simultaneous coherent observations of every interacting piece of the puzzle. The requirements include both imaging and spectroscopy over a wide spectral range, from UV to IR. While temporal simultaneity of operation in various modes is a key feature, these observations are also conducted over extended periods of time. The moon is a prime site offering long unbroken observation times and high positional stability, observations at small angular separation from the sun, comparative studies of planet Earth, and valuable technical advantages. A lunar observatory should become a central piece of any coherent set of planetary missions, supplying in-situ explorations with the synoptic and comparative data necessary for proper advance planning, correlative observations during the active exploratory phase, and follow-up studies of the target body or of related objects.

  19. Explorations of Novel Energy Conversion and Storage Systems

    NASA Astrophysics Data System (ADS)

    Duffin, Andrew Mark

    At present, the majority of the world's energy demand is met by the consumption of exhaustible fuel supplies. Consequently, it is urgent to research and develop viable alternatives. In this dissertation, I present research that addresses fundamental questions concerning how water interacts with surfaces and solutes, with the goal of identifying novel systems for energy production and storage. Electrokinetic currents are created when moving fluid entrains charge from the diffuse portion of an electric double layer and carries that charge downstream. The potential difference that develops on either end of the channel is known as the streaming potential. Chapter 2 of this dissertation focuses on electrokinetic energy production and conversion efficiency of liquid microjets. Section 1 of Chapter 2 presents proof-of-principle research demonstrating that molecular hydrogen is generated from electrokinetic currents in liquid water microjets. Hydrogen is generated when hydrated protons are preferentially carried downstream and recombine with electrons at a grounded target electrode. Both the current and hydrogen production scale nearly quadratically with flow rate, as predicted by equations derived from simple double layer theory and fluid mechanics. The efficiency is currently very low (ca 10-6) and is limited by the low electrokinetic current (nA). Designs to improve this efficiency are considered. Rather than chemical conversion efficiency, Section 2 of Chapter 2 investigates the electrical conversion efficiency of liquid water microjets. Typical electrokinetic energy conversion schemes measure current or voltage via electrodes in the fluid reservoirs on either side of a channel. With this design, the streaming potential drives a current against the flow of the fluid and, consequently, limits the conversion efficiency. In contrast, liquid microjets break up into droplets before reaching the downstream electrode and this eliminates the possibility for back conduction. As a result, liquid microjets yield conversion efficiencies exceeding 10%, much larger than channel-dependent measurements (3%). It is the large potentials obtainable with electrokinetic currents (tens of kilovolts) that drive up the electrical conversion efficiency. Unfortunately, low currents with high voltages are inconvenient for application. Section 3 of Chapter 2 describes efforts to utilize the high voltage of electrokinetic currents by coupling light into the process. More specifically, the streaming potential is used to modify the space charge layer in a semiconductor and, consequently, the light harvesting characteristics of that semiconductor. To this end, microchannel jets fabricated out of glass and silicon were built to allow light to impinge on the current generating surface. Although plagued with inconsistent results, streaming currents were found to increase upon illumination and some channels even gave measurable responses to ambient room lights. Chapter 3 of this dissertation addresses the details of hydration of boron-oxides and sodium borohydride as studied by near edge x-ray absorption fine structure spectroscopy (NEXAFS) and associated theory. Boron-oxides and molecular hydrogen are products of borohydride hydrolysis which has been intensely studied for hydrogen storage purposes. In spite of their hydroxide moieties, boron-oxides turn out to not be strongly hydrated by water. The experimental spectra, as well as attending calculations, show no evidence for electronic coupling that would indicate strong hydrogen bonding between the boron-oxides and water. On the other hand, the NEXAFS spectrum of sodium borohydride is significantly altered by water. The experiment and calculations show strong evidence for short dihydrogen bonds between water hydrogens and borohydride hydrogens. Molecular dynamics simulations indicate that borohydride is hydrated at the tetrahedral corners and edge.

  20. Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)

    1998-01-01

    Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)

  1. The interferometric view of Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Kraus, Stefan

    2015-06-01

    In this contribution I review how optical interferometry has contributed to shaping our understanding of the class of Herbig Ae/Be stars and of their associated circumstellar disks. I discuss the evidence for an optically-thin cavity in the inner few astronomical units (au) and a "puffed-up rim" near the dust sublimation radius and how these observations helped to establish the current generation of irradiated disk models. Multi-wavelength interferometric observations also revealed systems with clear signatures of grain growth and dynamically-cleared disk gaps, tracing important stages of disk evolution and of ongoing planet formation. I discuss the new opportunities provided by spectro-interferometry, which enables detailed studies on the gas distribution and velocity field on sub-au scales, resulting in constrains on the accretion properties of the system and the disk excitation structure. Finally, I outline some of the open questions and loose ends in current interferometric studies, and how these might point towards new disk physics.

  2. Rate Dependence of AE Activity during Frictional Sliding

    NASA Astrophysics Data System (ADS)

    Yabe, Y.

    2001-12-01

    In previous studies, acoustic emission (AE) events have been observed during frictional sliding on pre-cut faults in laboratories. AE sources were located on the pre-cut fault and their composite focal-mechanism solution was consistent with that expected theoretically for the macroscopic sliding. These suggest that micro-mechanics of frictional sliding can be known from analyses of AE events. In the present study, a direct-shear experiment was performed to examine a rate dependence of AE activity during the steady-state frictional sliding on a pre-cut fault in a granite sample. The fault surfaces were prepared with #60 abrasive. Cumulative displacement of 65 mm was imposed in a series of experimental runs. The rock sample was unloaded between runs to reset its position. Gauge particles generated by wear of fault surfaces were not removed. AE events were observed by PZT transducers pasted near the center of fault trace on the free surfaces of the rock sample. Amplitude and occurrence time of each peak in the envelopes of AE waveforms were recorded as those of an AE event. The number of AE events per unit displacement, N during the steady-state sliding decreases with sliding. The rate dependence of the N-value, (? N/? ln V)/N, where V is the sliding rate, evolves from negative to positive. The m-value in Ishimoto-Iida's relation increases at the initial displacements where the (a-b)-value in a constitutive law of friction takes a positive value. A negative correlation between the value of ? m/? ln V and the (a-b)-value is observed. The rate dependence of the total seismic energy per unit displacement, (? E/? ln V)/E, where E is the total seismic energy, was calculated from the observed AE activity. If a ratio of the total seismic energy to the frictional energy-loss is independent of the sliding rate, it is expected that the total seismic energy would exhibit the same rate-dependence as friction. The estimated value of (? E/? ln V)/E shows a positive correlation to the (a-b)-value, being qualitatively consistent with the expectation. The value of (? E/? ln V)/E is, however, much larger than the (a-b)-value. This may be because the AEs should be sensitive to a local property of friction, while the (a-b)-value is defined for the macroscopic friction.

  3. GSFC Information Systems Technology Developments Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Hughes, Peter; Dennehy, Cornelius; Mosier, Gary; Smith, Dan; Rykowski, Lisa

    2004-01-01

    The Vision for Space Exploration will guide NASA's future human and robotic space activities. The broad range of human and robotic missions now being planned will require the development of new system-level capabilities enabled by emerging new technologies. Goddard Space Flight Center is actively supporting the Vision for Space Exploration in a number of program management, engineering and technology areas. This paper provides a brief background on the Vision for Space Exploration and a general overview of potential key Goddard contributions. In particular, this paper focuses on describing relevant GSFC information systems capabilities in architecture development; interoperable command, control and communications; and other applied information systems technology/research activities that are applicable to support the Vision for Space Exploration goals. Current GSFC development efforts and task activities are presented together with future plans.

  4. 2010 NASA Exploration Systems Mission Directorate: Lunabotics Mining Competition Systems Engineering Paper

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A fast growing approach in determining the best design concept for a problem is to hold a competition in which the rules are based on requirements similar to the actual problem. By going public with such competitions, sponsoring entities receive some of the most innovative engineering solutions in a fraction of the time and cost it would have taken to develop such concepts internally. Space exploration is a large benefactor of such design competitions as seen by the results of X-Prize Foundation and NASA lunar excavation competitions [1]. The results of NASA's past lunar excavator challenges has led to the need for an effective means of collecting lunar regolith in the absence of human beings. The 2010 Exploration Systems Mission Directorate (ESMD) Lunar Excavation Challenge was created "to engage and retain students in science, technology, engineering, and mathematics, or STEM, in a competitive environment that may result in innovative ideas and solutions, which could be applied to actual lunar excavation for NASA." [2]. The ESMD Challenge calls for "teams to use telerobotics or autonomous operations to excavate at least 10kg of lunar regolith simulant in a 15 minute time limit" [2]. The Systems Engineering approach was used in accordance with Auburn University's mechanical engineering senior design course (MECH 4240-50) to develop a telerobotic lunar excavator, seen in Fig. 1, that fulfilled requirements imposed by the NASA ESMD Competition Rules. The goal of the senior design project was to have a validated lunar excavator that would be used in the NASA ESMD lunar excavation challenge.

  5. Crew systems: integrating human and technical subsystems for the exploration of space

    NASA Technical Reports Server (NTRS)

    Connors, M. M.; Harrison, A. A.; Summit, J.

    1994-01-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  6. Crew systems: integrating human and technical subsystems for the exploration of space.

    PubMed

    Connors, M M; Harrison, A A; Summit, J

    1994-07-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology. PMID:8060292

  7. Electric Propulsion Concepts Enabled by High Power Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Gilland, James; Fiehler, Douglas; Lyons, Valerie

    2005-01-01

    This paper describes the latest development in electric propulsion systems being planned for the new Space Exploration initiative. Missions to the Moon and Mars will require these new thrusters to deliver the large quantities of supplies that would be needed to support permanent bases on other worlds. The new thrusters are also being used for unmanned exploration missions that will go to the far reaches of the solar system. This paper is intended to give the reader some insight into several electric propulsion concepts their operating principles and capabilities, as well as an overview of some mission applications that would benefit from these propulsion systems, and their accompanying advanced power systems.

  8. Space transportation systems, launch systems, and propulsion for the Space Exploration Initiative: Results from Project Outreach

    NASA Technical Reports Server (NTRS)

    Garber, T.; Hiland, J.; Orletsky, D.; Augenstein, B.; Miller, M.

    1991-01-01

    A number of transportation and propulsion options for Mars exploration missions are analyzed. As part of Project Outreach, RAND received and evaluated 350 submissions in the launch vehicle, space transportation, and propulsion areas. After screening submissions, aggregating those that proposed identical or nearly identical concepts, and eliminating from further consideration those that violated known physical princples, we had reduced the total number of viable submissions to 213. In order to avoid comparing such disparate things as launch vehicles and electric propulsion systems, six broad technical areas were selected to categorize the submissions: space transportation systems; earth-to-orbit (ETO) launch systems; chemical propulsion; nuclear propulsion; low-thrust propulsion; and other. To provide an appropriate background for analyzing the submissions, an extensive survey was made of the various technologies relevant to the six broad areas listed above. We discuss these technologies with the intent of providing the reader with an indication of the current state of the art, as well as the advances that might be expected within the next 10 to 20 years.

  9. Architecting the Communication and Navigation Networks for NASA's Space Exploration Systems

    NASA Technical Reports Server (NTRS)

    Bhassin, Kul B.; Putt, Chuck; Hayden, Jeffrey; Tseng, Shirley; Biswas, Abi; Kennedy, Brian; Jennings, Esther H.; Miller, Ron A.; Hudiburg, John; Miller, Dave; Jeffries, Alan; Sartwell, Tom

    2007-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of the missions is to grow, through a series of launches, a system of systems communication, navigation, and timing infrastructure at minimum cost while providing a network-centric infrastructure that maximizes the exploration capabilities and science return. There is a strong need to use architecting processes in the mission pre-formulation stage to describe the systems, interfaces, and interoperability needed to implement multiple space communication systems that are deployed over time, yet support interoperability with each deployment phase and with 20 years of legacy systems. In this paper we present a process for defining the architecture of the communications, navigation, and networks needed to support future space explorers with the best adaptable and evolable network-centric space exploration infrastructure. The process steps presented are: 1) Architecture decomposition, 2) Defining mission systems and their interfaces, 3) Developing the communication, navigation, networking architecture, and 4) Integrating systems, operational and technical views and viewpoints. We demonstrate the process through the architecture development of the communication network for upcoming NASA space exploration missions.

  10. Phase-Space Density Analysis of the AE-8 Traped Electron and the AP-8 Trapped Proton Model Environments

    SciTech Connect

    Thomas E. Cayton

    2005-08-01

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  11. Phase-Space Density Analyses of the AE-8 Trapped Electron and the AP-8 Trapped Proton Model Environments

    SciTech Connect

    T.E. Cayton

    2005-08-12

    The AE-8 trapped electron and the AP-8 trapped proton models are used to examine the L-shell variation of phase-space densities for sets of transverse (or 1st) invariants, {mu}, and geometrical invariants, K (related to the first two adiabatic invariants). The motivation for this study is twofold: first, to discover the functional dependence of the phase-space density upon the invariants; and, second, to explore the global structure of the radiation belts within this context. Variation due to particle rest mass is considered as well. The overall goal of this work is to provide a framework for analyzing energetic particle data collected by instruments on Global Positioning System (GPS) spacecraft that fly through the most intense region of the radiation belt. For all considered values of {mu} and K, and for 3.5 R{sub E} < L < 6.5 R{sub E}, the AE-8 electron phase-space density increases with increasing L; this trend--the expected one for a population diffusing inward from an external source--continues to L = 7.5 R{sub E} for both small and large values of K but reverses slightly for intermediate values of K. The AP-8 proton phase-space density exhibits {mu}-dependent local minima around L = 5 R{sub E}. Both AE-8 and AP-8 exhibit critical or cutoff values for the invariants beyond which the flux and therefore the phase-space density vanish. For both electrons and protons, these cutoff values vary systematically with magnetic moment and L-shell and are smaller than those estimated for the atmospheric loss cone. For large magnetic moments, for both electrons and protons, the K-dependence of the phase-space density is exponential, with maxima at the magnetic equator (K = 0) and vanishing beyond a cutoff value, K{sub c}. Such features suggest that momentum-dependent trapping boundaries, perhaps drift-type loss cones, serve as boundary conditions for trapped electrons as well as trapped protons.

  12. AES based secure low energy adaptive clustering hierarchy for WSNs

    NASA Astrophysics Data System (ADS)

    Kishore, K. R.; Sarma, N. V. S. N.

    2013-01-01

    Wireless sensor networks (WSNs) provide a low cost solution in diversified application areas. The wireless sensor nodes are inexpensive tiny devices with limited storage, computational capability and power. They are being deployed in large scale in both military and civilian applications. Security of the data is one of the key concerns where large numbers of nodes are deployed. Here, an energy-efficient secure routing protocol, secure-LEACH (Low Energy Adaptive Clustering Hierarchy) for WSNs based on the Advanced Encryption Standard (AES) is being proposed. This crypto system is a session based one and a new session key is assigned for each new session. The network (WSN) is divided into number of groups or clusters and a cluster head (CH) is selected among the member nodes of each cluster. The measured data from the nodes is aggregated by the respective CH's and then each CH relays this data to another CH towards the gateway node in the WSN which in turn sends the same to the Base station (BS). In order to maintain confidentiality of data while being transmitted, it is necessary to encrypt the data before sending at every hop, from a node to the CH and from the CH to another CH or to the gateway node.

  13. Moving Towards a Common Ground and Flight Data Systems Architecture for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Rader. Steve; Kearney, Mike; McVittie, Thom; Smith, Dan

    2006-01-01

    The National Aeronautics and Space Administration has embarked on an ambitious effort to return man to the moon and then on to Mars. The Exploration Vision requires development of major new space and ground assets and poses challenges well beyond those faced by many of NASA's recent programs. New crewed vehicles must be developed. Compatible supply vehicles, surface mobility modules and robotic exploration capabilities will supplement the manned exploration vehicle. New launch systems will be developed as well as a new ground communications and control infrastructure. The development must take place in a cost-constrained environment and must advance along an aggressive schedule. Common solutions and system interoperability and will be critical to the successful development of the Exploration data systems for this wide variety of flight and ground elements. To this end, NASA has assembled a team of engineers from across the agency to identify the key challenges for Exploration data systems and to establish the most beneficial strategic approach to be followed. Key challenges and the planned NASA approach for flight and ground systems will be discussed in the paper. The described approaches will capitalize on new technologies, and will result in cross-program interoperability between spacecraft and ground systems, from multiple suppliers and agencies.

  14. A SOPC-BASED Evaluation of AES for 2.4 GHz Wireless Network

    NASA Astrophysics Data System (ADS)

    Ken, Cai; Xiaoying, Liang

    In modern systems, data security is needed more than ever before and many cryptographic algorithms are utilized for security services. Wireless Sensor Networks (WSN) is an example of such technologies. In this paper an innovative SOPC-based approach for the security services evaluation in WSN is proposed that addresses the issues of scalability, flexible performance, and silicon efficiency for the hardware acceleration of encryption system. The design includes a Nios II processor together with custom designed modules for the Advanced Encryption Standard (AES) which has become the default choice for various security services in numerous applications. The objective of this mechanism is to present an efficient hardware realization of AES using very high speed integrated circuit hardware description language (Verilog HDL) and expand the usability for various applications. As compared to traditional customize processor design, the mechanism provides a very broad range of cost/performance points.

  15. The Role of Lunar Development in Human Exploration of the Solar System

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    1999-01-01

    Human exploration of the solar system can be said to have begun with the Apollo landings on the Moon. The Apollo Project was publicly funded with the narrow technical objective of landing human beings on the Moon. The transportation and life support systems were specialized technical designs, developed in a project management environment tailored to that objective. Most scenarios for future human exploration assume a similar long-term commitment of public funds to a narrowly focused project managed by a large, monolithic organization. Advocates of human exploration of space have not yet been successful in generating the political momentum required to initiate such a project to go to the Moon or to Mars. Alternative scenarios of exploration may relax some or all of the parameters of organizational complexity, great expense, narrow technical focus, required public funding, and control by a single organization. Development of the Moon using private investment is quite possibly a necessary condition for alternative scenarios to succeed.

  16. OEXP exploration studies technical report. Volume 3: Special reports, studies, and indepth systems assessments

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.; Bland, Dan

    1988-01-01

    The Office of Exploration (OEXP) at NASA has been tasked with defining and recommending alternatives for an early 1990's national decision on a focused program of manned exploration of the Solar System. The Mission analysis and System Engineering (MASE) group, which is managed by the Exploration Studies Office at the Johnson Space Center, is responsible for coordinating the technical studies necessary for accomplishing such a task. This technical report, produced by the MASE, describes the process used to conduct exploration studies and discusses the mission developed in a case study approach. The four case studies developed in FY88 include: (1) a manned expedition to PHOBOS; (2) a manned expedition to MARS; (3) a lunar surface observatory; and a lunar outpost to early Mars evolution. The final outcome of this effort is a set of programmatic and technical conclusions and recommendations for the following year's work.

  17. A scaling relationship between AE and natural earthquakes

    NASA Astrophysics Data System (ADS)

    Yoshimitsu, N.; Kawakata, H.; Takahashi, N.

    2013-12-01

    Micro fracture which occurs during rock fracture experiments are called acoustic emission (AE), and it help us to understand detailed processes of fault growth. However, it was unclear whether AE can be considered as a small earthquake or not. Usually, the seismic moment and the corner frequency are used for characterizing source property. It has been reported that the seismic moment is inversely proportional to the cube of corner frequency for natural earthquakes (with magnitude higher than ~ -4). In this study, we examine continuity of this relationship toward smaller magnitude of AE (around magnitude -8), estimating the source parameters of AE. Previously, it was impossible to record AE waveforms by broadband transducers under tri-axial conditions due to lack of pressure seal mechanism. Here we achieved protection of broadband transducers to use them under high pressure environments. This achievement enabled us to do spectral analysis of AE. At the same time, we also achieved multi-channel continuous recording with a high sampling rate, so as not to miss some events smaller than threshold or hide some events behind the mask times by triggered recording. We prepared a cylindrical Westerly granite sample, 50 mm in diameter and 100 mm in height. Sealed nine broadband transducers (sensitive range; 100 kHz - 2000 kHz) were attached on the sample surface. High sampling recording as 20 MS/s per channel was continued, during tri-axial loading (confining pressure: 10 MPa) which was continued to be controlled even after the peak strength. More than 6000 hypocenters were estimated from all pick data during the experiment. We clustered events around the peak strength, so that their differences of hypocenter locations were shorter than 2 mm and their cross correlation values for more than four channels were higher than 0.8. Then, we analyzed two of the largest clusters. After calibrating transducer response, we obtained displacement spectra for S waves, and estimated their seismic moments and the corner frequencies by grid search. The magnitude of AE events were estimated between -8 to -7. As a result, the relationship between the seismic moment and the corner frequency of AE also satisfied the same scaling relationship as shown for natural earthquakes. This indicates that AE in rock samples can be regarded as micro size earthquake. This finding shows the possibility to understand the developing processes of natural earthquake from laboratory experiments.

  18. Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.

  19. Developing Crew Health Care and Habitability Systems for the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Laurini, Kathy; Sawin, Charles F.

    2006-01-01

    This paper will discuss the specific mission architectures associated with the NASA Exploration Vision and review the challenges and drivers associated with developing crew health care and habitability systems to manage human system risks. Crew health care systems must be provided to manage crew health within acceptable limits, as well as respond to medical contingencies that may occur during exploration missions. Habitability systems must enable crew performance for the tasks necessary to support the missions. During the summer of 2005, NASA defined its exploration architecture including blueprints for missions to the moon and to Mars. These mission architectures require research and technology development to focus on the operational risks associated with each mission, as well as the risks to long term astronaut health. This paper will review the highest priority risks associated with the various missions and discuss NASA s strategies and plans for performing the research and technology development necessary to manage the risks to acceptable levels.

  20. Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)

    2002-01-01

    Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.

  1. Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities

    NASA Technical Reports Server (NTRS)

    Lowes, Leslie; Lindstrom, Marilyn; Stockman, Stephanie; Scalice, Daniela; Allen, Jaclyn; Tobola, Kay; Klug, Sheri; Harmon, Art

    2004-01-01

    NASA's Solar System Exploration Program is entering an unprecedented period of exploration and discovery. Its goal is to understand the origin and evolution of the solar system and life within it. SSE missions are operating or in development to study the far reaches of our solar system and beyond. These missions proceed in sequence for each body from reconnaissance flybys through orbiters and landers or rovers to sample returns. SSE research programs develop new instruments, analyze mission data or returned samples, and provide experimental or theoretical models to aid in interpretation.

  2. 77 FR 15098 - AES Hawaii, Inc.; Notice of Petition for Temporary Waiver

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... Energy Regulatory Commission AES Hawaii, Inc.; Notice of Petition for Temporary Waiver Take notice that... (Commission) Rules of Practice and Procedure, 18 CFR 292.205(c), AES Hawaii, Inc. (AES Hawaii) filed a Request... on the island of Oauh, Hawaii. AES Hawaii makes such a request because of a forced boiler outage...

  3. Doing more with less - The new way of exploring the solar system

    NASA Technical Reports Server (NTRS)

    Ridenoure, Rex

    1992-01-01

    Exploration of the solar system is considered in the light of existing economic factors and scientific priorities, and a general blueprint for an exploration strategy is set forth. Attention is given to mission costs, typical schedules, and the scientific findings of typical projects which create the need for collaboration and diversification in mission development. The combined technologies and cooperative efforts of several small organizations can lead to missions with short schedules and low costs.

  4. Acoustic emissions (AE) during failure of granular media

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Or, Dani

    2014-05-01

    The release of shallow landslides and other geological mass movements is the result of progressive failure accumulation. Mechanical failure in disordered geologic materials occurs in intermittent breakage episodes marking the disintegration or rearrangement of load-bearing elements. Abrupt strain energy release in such breakage episodes is associated with generation of elastic waves measurable as high-frequency (kHz range) acoustic emissions (AE). The close association of AE with progressive failure events hold a promise for using such noninvasive methods to assess the mechanical state of granular Earth materials or for the development early warning methods for shallow landslides. We present numerical simulations that incorporate damage accumulation and associated stress redistribution using a fiber-bundle model. The stress released from element failure (fibers) is redistributed to the surrounding elements and eventually triggers larger failure avalanches. AE signals generated from such events and eventually hitting a virtual sensor are modeled using visco-elastic wave propagation laws. The model captures the characteristic saw-tooth shape of the observed stress-strain curves obtained from strain-controlled experiments with glass beads, including large intermittent stress release events that stem from cascading failure avalanches. The model also reproduces characteristics of AE signatures and yield a good agreement between simulation results and experimental data. Linking mechanical and AE information in the proposed modeling framework offer a solid basis for interpretation of measured field data.

  5. The Intermittently Embedded Herbig Ae/Be Stars ISO and Ground-Based IR Observations

    NASA Astrophysics Data System (ADS)

    Grady, C. A.; Prez, M. R.; Bjorkman, K. S.; Sitko, M. L.; Th, P. S.; de Winter, D.; Grinin, V. P.; Russell, R. W.; Lynch, D. K.; Hanner, M. S.

    We discuss silicate emission profiles observed with the ISO SWS and ground-based IR observations in a population of intermittently embedded Herbig Ae/Be stars which are viewed edge-on to their polarimetrically identified dust and gas disks. The ISO SWS observations confirm the lack of a simple correlation between system age and the profile shape. Comparison with laboratory silicates suggests that much of the observed variation is due to different annealing histories of the grains.

  6. Topaz-type thermionic nuclear power system application for deep space exploration

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel V.; Galkin, Anatoly Ya.; Gryaznov, Georgy M.; Zhabotinsky, Evgeny E.; Zaritzky, Gennady A.

    1995-01-01

    In this study combination of thermionic space nuclear power systems (SNPS) and electrojet propulsion system (EJPS) forming power and propulsion complex is considered for missions with the goals of deep space exploration. SNPS and EJPS are described, their power and mass parameters are presented and the possibilities of this combination are analyzed.

  7. Engineering America's Future in Space: Systems Engineering Innovations for Sustainable Exploration

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Caruso, Pamela W.; Jones, Carl P.

    2008-01-01

    This viewgraph presentation reviews systems engineering innovations for Ares I and Ares V launch vehicles. The contents include: 1) NASA's Exploratoin Roadmap; 2) Launch Vehicle Comparisons; 3) Designing the Ares I and Ares V in House; 4) Exploring the Moon; and 5) Systems Engineering Adds Value Throughout the Project Lifecycle.

  8. A possibility of element specific detection in HPLC by means of MIP-AES coupled with hydraulic high pressure nebulization.

    PubMed

    Heltai, G; Jzsa, T; Percsich, K

    1996-06-01

    An interface for coupling hydraulic high pressure nebulization (HHPN) with microwave induced plasma (MIP) atomic emission spectrometry (AES) is described. An appropriate spray chamber and aerosol desolvation system has been constructed for matching the HHPN generated aerosol flow with the loading capacity of toroidal argon and cylindrical helium MIP sources. The system has been optimized for aqueous solutions. Nanogram amounts of metals and nonmetals could be detected by the HHPN-MIP-AES technique developed. The HHPN devices are directly compatible with HPLC solvent flow, therefore they can be directly coupled with HPLC separations in aqueous media. PMID:15045330

  9. Atmosphere Explorer set for launch

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Atmosphere Explorer-D (Explorer-54) is described which will explore in detail an area of the earth's outer atmosphere where important energy transfer, atomic and molecular processes, and chemical reactions occur that are critical to the heat balance of the atmosphere. Data are presented on the mission facts, launch vehicle operations, AE-D/Delta flight events, spacecraft description, scientific instruments, tracking, and data acquisition.

  10. Reuniting the Solar System: Integrated Education and Public Outreach Projects for Solar System Exploration Missions and Programs

    NASA Technical Reports Server (NTRS)

    Lowes, Leslie; Lindstrom, Marilyn; Stockman, Stephanie; Scalice, Daniela; Klug, Sheri

    2003-01-01

    The Solar System Exploration Education Forum has worked for five years to foster Education and Public Outreach (E/PO) cooperation among missions and programs in order to leverage resources and better meet the needs of educators and the public. These efforts are coming together in a number of programs and products and in '2004 - The Year of the Solar System.' NASA's practice of having independent E/PO programs for each mission and its public affairs emphasis on uniqueness has led to a public perception of a fragmented solar system exploration program. By working to integrate solar system E/PO, the breadth and depth of the solar system exploration program is revealed. When emphasis is put on what missions have in common, as well as their differences, each mission is seen in the context of the whole program.

  11. Environmental Controls and Life Support System (ECLSS) Design for a Space Exploration Vehicle (SEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Sankaran, Subra

    2010-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  12. Environmental Controls and Life Support System Design for a Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda C.; Rodriguez, Branelle; Vonau, Walt, Jr.; Borrego, Melissa

    2012-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  13. Characterization of radioactive contamination inside pipes with the Pipe Explorer{trademark} system. Final report

    SciTech Connect

    Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

    1997-09-30

    The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE`s need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer{trademark} system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer{trademark} development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer{trademark} system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer{trademark} and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer{trademark} system in Section 6.

  14. NHEXAS PHASE I REGION 5 STUDY--STANDARD OPERATING PROCEDURE FOR METTLER AE163 AND AE240 ELECTRONIC BALANCE (NHX/SOP-160-008)

    EPA Science Inventory

    This procedure describes the process of calibrating the Mettler AE 163 and AE 240 electronic, dual range analytical balances each having an enclosed weighing pan. Weight ranges for the AE 163 are 0-30 g (0.01 mg readability) and 0-160 g (0.1 mg readability). Weight ranges for the...

  15. AE analysis in developing the Hot Fractured Rock geothermal power in Australia

    NASA Astrophysics Data System (ADS)

    Aoyagi, Y.; Kaieda, H.; Asanuma, H.; Wyborn, D.

    2004-12-01

    The hot fractured rock (HFR) geothermal power is being developed in Cooper Basin, South Australia since 2002. HFR geothermal power is one of natural energy acquiring systems, in which water is pumped into hot, crystalline rock via an injection well, becomes superheated as it flows through open joints in the hot rock reservoir, and is returned through production wells. At the surface, the useful heat is extracted by conventional processes, and the same water is re-circulated to mine more heat. Such hot granites are buried beneath 3.7 km of insulating sedimentary rocks at the site. The temperature of the granites reaches 250_E#381; or more. The first injection well Habanero#1 was drilled 720m into the granite, and a reservoir was made by the hydraulic fracturing in the vicinity of the well bottom (4421m in depth) in 2003. During the hydraulic fracturing many acoustic emissions (AE) were generated. We observed the AE activity using seismic network deployed in 8 wells around Habanero#1 to evaluate the reservoir. Total of 12000 or more AE were observed during the fracturing period from November to December, 2003. Although the AE hypocenters were located in the south side of the well at the initial stage, they finally distributed N-S to NE-SW direction at about 3km in diameter. The magnitude of the AE ranges M-2 to M1 for most events, but several felt earthquakes as maximum size of M3.7 were also generated. The hypocenters of the larger 12 events (> M2.5) were located by the seismic network of Geoscience Australia. The mechanism solution of these large events is basically E-W compression type, and it almost agrees to the regional stress estimated by borehole breakout in wells in the area. The AE generation property will help to understand earthquake dynamics and mechanics since it is controlled by hydraulic pressure. We will mainly discuss the relation between the generated regional energy and the mechanism solution of the events.

  16. Decision-making in A&E by expert nurses.

    PubMed

    Marsden, J

    The A&E service at Manchester Royal Eye Hospital uses triage as a method of prioritising patients to ensure that those whose needs are urgent receive immediate attention. The service has been extended to include formalised telephone triage. This study investigates the way in which telephone triage decisions are made by nurse practitioners in A&E. Although the sample is small, interviews with nurse practitioners reinforce previous theories about expert knowledge and decision-making. The practitioners use a process of hypothesis testing and a systematic and complex framework for decision-making. PMID:9832875

  17. Explorations of electric current system in solar active regions. I - Empirical inferences of the current flows

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.; Liu, X. P.

    1987-01-01

    Techniques to identify sources of electric current systems and their channels of flow in solar active regions are explored. Measured photospheric vector magnetic fields together with high-resolution white-light and H-alpha filtergrams provide the data base to derive the current systems in the photosphere and chromosphere. As an example, the techniques are then applied to infer current systems in AR 2372 in early April 1980.

  18. Rule-based graph theory to enable exploration of the space system architecture design space

    NASA Astrophysics Data System (ADS)

    Arney, Dale Curtis

    The primary goal of this research is to improve upon system architecture modeling in order to enable the exploration of design space options. A system architecture is the description of the functional and physical allocation of elements and the relationships, interactions, and interfaces between those elements necessary to satisfy a set of constraints and requirements. The functional allocation defines the functions that each system (element) performs, and the physical allocation defines the systems required to meet those functions. Trading the functionality between systems leads to the architecture-level design space that is available to the system architect. The research presents a methodology that enables the modeling of complex space system architectures using a mathematical framework. To accomplish the goal of improved architecture modeling, the framework meets five goals: technical credibility, adaptability, flexibility, intuitiveness, and exhaustiveness. The framework is technically credible, in that it produces an accurate and complete representation of the system architecture under consideration. The framework is adaptable, in that it provides the ability to create user-specified locations, steady states, and functions. The framework is flexible, in that it allows the user to model system architectures to multiple destinations without changing the underlying framework. The framework is intuitive for user input while still creating a comprehensive mathematical representation that maintains the necessary information to completely model complex system architectures. Finally, the framework is exhaustive, in that it provides the ability to explore the entire system architecture design space. After an extensive search of the literature, graph theory presents a valuable mechanism for representing the flow of information or vehicles within a simple mathematical framework. Graph theory has been used in developing mathematical models of many transportation and network flow problems in the past, where nodes represent physical locations and edges represent the means by which information or vehicles travel between those locations. In space system architecting, expressing the physical locations (low-Earth orbit, low-lunar orbit, etc.) and steady states (interplanetary trajectory) as nodes and the different means of moving between the nodes (propulsive maneuvers, etc.) as edges formulates a mathematical representation of this design space. The selection of a given system architecture using graph theory entails defining the paths that the systems take through the space system architecture graph. A path through the graph is defined as a list of edges that are traversed, which in turn defines functions performed by the system. A structure to compactly represent this information is a matrix, called the system map, in which the column indices are associated with the systems that exist and row indices are associated with the edges, or functions, to which each system has access. Several contributions have been added to the state of the art in space system architecture analysis. The framework adds the capability to rapidly explore the design space without the need to limit trade options or the need for user interaction during the exploration process. The unique mathematical representation of a system architecture, through the use of the adjacency, incidence, and system map matrices, enables automated design space exploration using stochastic optimization processes. The innovative rule-based graph traversal algorithm ensures functional feasibility of each system architecture that is analyzed, and the automatic generation of the system hierarchy eliminates the need for the user to manually determine the relationships between systems during or before the design space exploration process. Finally, the rapid evaluation of system architectures for various mission types enables analysis of the system architecture design space for multiple destinations within an evolutionary exploration program. (Abstract shortened by UMI.).

  19. Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    Human exploration of near-Earth objects (NEOs) beginning circa 2025 - 2030 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

  20. Attitude control system conceptual design for the X-ray timing explorer

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.; Femiano, Michael D.; Mosier, Gary E.

    1992-01-01

    The X-ray Timing Explorer (XTE) satellite is the next in a long series of Explorer-class missions developed by NASA. It will study the structure and dynamics of compact X-ray sources, neutron stars, white dwarfs, and other stellar objects with X-ray energy emissions. The demanding pointing requirement of XTE are driving the attitude control system design. This design is further complicated by large moving instruments which impart significant momentum on the spacecraft. The attitude control system concept to meet the XTE science objectives is discussed.

  1. Opportunities within NASA's Exploration Systems Mission Directorate for Engineering Students and Faculty

    NASA Technical Reports Server (NTRS)

    Garner, Lesley

    2008-01-01

    In 2006, NASA's Exploration Systems Mission Directorate (ESMD) launched two new Educational Projects: (1) The ESMID Space Grant Student Project ; and (2) The ESM1D Space Grant Faculty Project. The Student Project consists of three student opportunities: exploration-related internships at NASA Centers or with space-related industry, senior design projects, and system engineering paper competitions. The ESMID Space Grant Faculty Project consists of two faculty opportunities: (1) a summer faculty fellowship; and (2) funding to develop a senior design course.

  2. Finite element modelling of ultrasound, with reference to transducers and AE waves.

    PubMed

    Hill, R; Forsyth, S A; Macey, P

    2004-04-01

    Finite element (FE) modelling has a role to play in simulating elastic wave propagation associated with structural vibrations, acoustic phenomena and ultrasound problems. In this work we have used the PAFEC software [PAFEC finite element software PACSYS, Strelley Hall, Nottingham, NG8 6PE, UK]. With the advent of increased computer power and greater availability of software these simulations have become more readily available and will provide improved insight into wave propagation problems. Simulations have been undertaken of transient wave propagation in steel plates with an attached simple resonant transducer. This simulates acoustic emission (AE) propagation in plate like structures relevant to many industrial applications. Simulations for short propagation distances suggest the resonant transducer voltage signal carries information on the plate-waves propagating in the structure, overlaid with the piezoelectric resonance and some information might be extracted from the transducer signal. Looking at the wave propagation information alone, a great deal of variability is seen in the displacement profile for different source types, orientations and locations. Although users have expressed a need for calibration of the AE detection process, this idea remains problematic since the complete generation and detection system has the features of a chaotic system. Using FE modelling a method of "point calibration" might be available, for some specific AE applications such as crack growth along known paths. PMID:15047294

  3. ICP-AES determination of minor- and major elements in apples after microwave assisted digestion.

    PubMed

    Juranovi? Cindri?, Iva; Krizman, Ivona; Zeiner, Michaela; Kampi?, tefica; Meduni?, Gordana; Stingeder, Gerhard

    2012-12-15

    The aim of this paper was to determine the content of minor and major elements in apples by inductively coupled plasma atomic emission spectrometry (ICP-AES). Prior to ICP-AES measurement, dried apples were digested in a microwave assisted digestion system. The differences in the measured element concentrations after application of open and closed microwave system as sample preparation procedures are discussed. In whole apples, flesh and peel Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were analysed after optimisation and validating the analytical method using ICP-AES. The accuracy of the method determined by spiking experiments was very good (recoveries 88-115%) and the limits of detection of elements of interest were from 0.01 up to 14.7 ?g g(-1). The reference ranges determined in all apple samples are 39-47 mg g(-1) for K, 9-14 mg g(-1) for Na, 3-7 mg g(-1) for Mg, 3-7 ?g g(-1) for Zn, 0.7-2.8 ?g g(-1) for Sr. The range of Mn in peel 4-6 ?g g(-1) is higher compared to whole apple from 0.7 to 1.7 ?g g(-1). Cd is found only in peel, in the concentration range of 0.4-1.1 ?g g(-1). PMID:22980857

  4. Biomorphic Explorers

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1999-01-01

    This paper presents, in viewgraph form, the first NASA/JPL workshop on Biomorphic Explorers for future missions. The topics include: 1) Biomorphic Explorers: Classification (Based on Mobility and Ambient Environment); 2) Biomorphic Flight Systems: Vision; 3) Biomorphic Explorer: Conceptual Design; 4) Biomorphic Gliders; 5) Summary and Roadmap; 6) Coordinated/Cooperative Exploration Scenario; and 7) Applications. This paper also presents illustrations of the various biomorphic explorers.

  5. Gaining system design knowledge by systematic design space exploration with graph based design languages

    NASA Astrophysics Data System (ADS)

    Schmidt, Jens; Rudolph, Stephan

    2014-10-01

    The conceptual design phase in the design of complex systems such as satellite propulsion systems heavily relies on an exploration of the feasible design space. This exploration requires both: topological changes in the potential system architecture and consistent parametrical changes in the dimensioning of the existing system components. Since advanced engineering design techniques nowadays advocate a model-based systems engineering (MBSE) approach, graph-based design languages which embed a superset of MBSE-features are consequently used in this work to systematically explore the feasible design space. Design languages allow the design knowledge to be represented, modeled and executed using model-based transformations and combine this among other features with constraint processing techniques. The execution of the design language shown for the satellite propulsion systems in this work yields topologically varied designs (i.e. the selection of a monergol, a diergol or a coldgas system) with consistent parameters. Based on an a posteriori performance analysis of the automatically generated system designs, novel system knowledge (most notably in form of so-called "topology change points") can be gained and extracted from the original point cloud of numerical results.

  6. Into the thermosphere: The atmosphere explorers

    NASA Technical Reports Server (NTRS)

    Burgess, Eric; Torr, Douglass

    1987-01-01

    The need to study the lower thermosphere with the new instrument, data handling, and spacecraft technology available in the 1960s led to the formulation and establishment of the Atmospheric Explorer program. This book provides an overview of this program with particular emphasis on the AE3, AE4, and AE5 satellites, which represent early examples of problem-dedicated missions. Both the satellites and their instrumentation on the one hand and the experimental and scientific considerations in studying the thermosphere on the other are discussed.

  7. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    SciTech Connect

    Allison, Lee; Richard, Stephen; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive, holistic set of data critical to geothermal energy development. As of May 2012 , we have nearly 37,000 records registered in the system catalog, and 550,075 data resources online, along with hundreds of Web services to deliver integrated data to the desktop for free downloading or online use. The data exchange mechanism is built on the U.S. Geoscience Information Network (USGIN, http://usgin.org and http://lab.usgin.org) protocols and standards developed as a partnership of the Association of American State Geologists (AASG) and U.S. Geological Survey (USGS). Keywords Data

  8. High-temperature nuclear closed Brayton cycle power conversion system for the space exploration initiative

    SciTech Connect

    Brandes, D.J. )

    1991-01-05

    The Space Exploration Initiative (SEI) has stated goals of colonizing the moon and conducting manned exploration of the planet Mars. Unlike previous ventures into space, both manned and unmanned, large quantities of electrical power will be required to provide the energy for lunar base sustenance and for highly efficient propulsion systems for the long trip to mars and return. Further, the requirement for electrical power of several megawatts will necessitate the use of nuclear reactor driven power conversion systems. This paper discusses a particle bed reactor closed Brayton cycle space power system that uses advanced materials technology to achieve a high-temperature, low-specific-weight modular system capable of providing the requisite electrical power for both a lunar base and a Mars flight vehicle propulsion system.

  9. Design, development and testing of the x-ray timing explorer High Gain Antenna System

    NASA Technical Reports Server (NTRS)

    Lecha, Javier; Woods, Claudia; Phan, Minh

    1995-01-01

    The High Gain Antenna System (HGAS), consisting of two High Gain Antenna Deployment Systems (HGADS) and two Antenna Pointing Systems (APS), is used to position two High Gain Antennas (HGA) on the X-Ray Timing Explorer (XTE). A similar APS will be used on the upcoming Tropical Rainfall Measuring Mission (TRMM). Both XTE and TRMM are NASA in-house satellites. The salient features of the system include the two-axis gimbal and control electronics of the APS and the spring deployment and latch/release mechanisms of the HGADS. This paper describes some of the challenges faced in the design and testing of this system and their resolutions.

  10. An Automomous Optical Navigation and Control System for Interplanetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Riedel, J. E.; Bhaskaran, S.; Synnott, S. P.; Bollman, W. E.; Null, G. W.

    1996-01-01

    The first fully autonomous deep-space navigation system ever implemented is planned to guide the New Millenium Deep Space-1 mission to an asteroid and comet beginning in mid-1998. This system is based to a large extent on Optical Navigation (OPNAV) technology developed for the NASA/JPL interplanetary exploration probes Voyager and Galileo. This paper describes the structure and algorithmic content of the Autonomous OPNAV system. The system has several major autonomous functions: picture planning, image analysis, orbit determination, manuever design and general interaction with other onboard autonomous systems.

  11. A Practical Guide for Exploring Opportunities of Repurposing Drugs for CNS Diseases in Systems Biology.

    PubMed

    Mei, Hongkang; Feng, Gang; Zhu, Jason; Lin, Simon; Qiu, Yang; Wang, Yue; Xia, Tian

    2016-01-01

    Systems biology has shown its potential in facilitating pathway-focused therapy development for central nervous system (CNS) diseases. An integrated network can be utilized to explore the multiple disease mechanisms and to discover repositioning opportunities. This review covers current therapeutic gaps for CNS diseases and the role of systems biology in pharmaceutical industry. We conclude with a Multiple Level Network Modeling (MLNM) example to illustrate the great potential of systems biology for CNS diseases. The system focuses on the benefit and practical applications in pathway centric therapy and drug repositioning. PMID:26235090

  12. Operation and performance of the mars exploration rover imaging system on the martian surface

    USGS Publications Warehouse

    Maki, J.N.; Litwin, T.; Schwochert, M.; Herkenhoff, K.

    2005-01-01

    The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. The acquisition of hundreds of panoramas and tens of thousands of stereo pairs has enabled the rovers to explore Mars at a level of detail unprecedented in the history of space exploration. In addition to providing scientific value, the images also play a key role in the daily tactical operation of the rovers. The mobile nature of the MER surface mission requires extensive use of the imaging system for traverse planning, rover localization, remote sensing instrument targeting, and robotic arm placement. Each of these activity types requires a different set of data compression rates, surface coverage, and image acquisition strategies. An overview of the surface imaging activities is provided, along with a summary of the image data acquired to date. ?? 2005 IEEE.

  13. Critical evaluation of the AE indices

    SciTech Connect

    Kroehl, H.W.

    1989-01-01

    The computation of the total eastward and westward auroral electrojets from numerical modeling techniques for three different intervals during disturbed conditions provides a unique opportunity to evaluate the accuracy of the standard Auroral Electrojet indices AU(12) and AL(12). The effect on the indices of replacing the local magnetic coordinate system with a global system, of increasing the latitudinal coverage by increasing the number of stations from 12 to 57, and of integrating the current density to obtain the total current is considered as new indices are correlated with the standard ones. We conclude that AL(12) is a reasonable measure of the westward electrojet current in a statistical sense, that Au(12) is not as good a measure of the eastward current, and that values of AU(12) and AL(12) during quiet conditions, i.e., less than 50 nT, must be treated separately from disturbed conditions. It should also be noted that a rotation of the perturbation vectors into a global coordinate system improves the indices more than an increase in the number of stations. Reprints. (rrh)

  14. Revolutionary Design for Astronaut Exploration — Beyond the Bio-Suit System

    NASA Astrophysics Data System (ADS)

    Newman, Dava J.; Canina, Marita; Trotti, Guillermo L.

    2007-01-01

    The Bio-Suit System is designed to revolutionize human space exploration by providing enhanced astronaut extravehicular activity (EVA) locomotion and performance based on the concepts of a `second skin' capability. The novel Bio-Suit concept provides an overall exploration system realized through symbiotic relationships between a suite of advanced technologies, creative design, human modeling and analysis, and new mission operations techniques. By working at the intersection of engineering, design, life sciences and operations, new emergent capabilities and interrelationships result for applications to space missions, medical rehabilitation, and extreme sports activities. In many respects, the Bio-Suit System mimics Nature (biomimetics). For example, the second skin is capable of augmenting our biological skin by providing mechanical counter-pressure. We have designed and tested prototypes that prove mechanical counter-pressure feasibility. The `epidermis' of our second skin suit is patterned from 3D laser scans that incorporate human skin strain field maps for maximum mobility and natural movements, while requiring minimum energy expenditure for exploration tasks. We provide a technology roadmap for future design, pressure production and technology investments for the Bio-Suit System. Woven into the second skin are active materials to enhance human performance as well as to provide necessary performance metrics (i.e., energy expenditure). Wearable technologies will be embedded throughout the Bio-Suit System to place the explorer in an information-rich environment enabling real-time mission planning, prediction, and visualization. The Bio-Suit System concept augments human capabilities by coupling human and robotic abilities into a hybrid of the two, to the point where the explorer is hardly aware of the boundary between innate human performance and robotic activities.

  15. Exploration Platform in the Earth-Moon Libration System Based on ISS

    NASA Technical Reports Server (NTRS)

    Raftery, Michael; Derechin, Alexander

    2012-01-01

    International Space Station (ISS) industry partners have been working for the past two years on concepts using ISS development methods and residual assets to support a broad range of exploration missions. These concepts have matured along with planning details for NASA's Space Launch System (SLS) and Multi-Purpose Crew Vehicle (MPCV) to allow serious consideration for a platform located in the Earth-Moon Libration (EML) system. This platform would provide a flexible basis for future exploration missions and would significantly reduce costs because it will enable re-use of expensive spacecraft and reduce the total number of launches needed to accomplish these missions. ISS provides a robust set of methods which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. We will show how ISS can be used to reduce risk and improve operational flexibility for missions beyond low earth orbit through the development of a new Exploration Platform based in the EML system. The benefits of using the EML system as a gateway will be presented along with additional details of a lunar exploration mission concept. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. We will show how technology developed for ISS can be evolved and adapted to the new exploration challenge. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Finally, we will describe how the EML Platform could be built and deployed and how International access for crew and cargo could be provided.

  16. A SUBMILLIMETER MAPPING SURVEY OF HERBIG AeBe STARS

    SciTech Connect

    Sandell, Goeran; Hamidouche, Murad

    2011-01-20

    We have acquired submillimeter observations of 33 fields containing 37 Herbig Ae/Be (HAEBE) stars or potential HAEBE stars, including SCUBA maps of all but two of these stars. Nine target stars show extended dust emission. The other 18 are unresolved, suggesting that the dust envelopes or disks around these stars are less than a few arcseconds in angular size. In several cases, we find that the strongest submillimeter emission originates from younger, heavily embedded sources rather than from the HAEBE star, which means that previous models must be viewed with caution. These new data, in combination with far-infrared flux measurements available in the literature, yield spectral energy distributions (SEDs) from far-infrared to millimeter wavelengths for all the observed objects. Isothermal fits to these SEDs demonstrate excellent fits, in most cases, to the flux densities longward of 100 {mu}m. We find that a smaller proportion of B-type stars than A- and F-type stars are surrounded by circumstellar disks, suggesting that disks around B stars dissipate on shorter timescales than those around later spectral types. Our models also reveal that the mass of the circumstellar material and the value of {beta} are correlated, with low masses corresponding to low values of {beta}. Since low values of {beta} imply large grain sizes, our results suggest that a large fraction of the mass in low-{beta} sources is locked up in very large grains. Several of the isolated HAEBE stars have disks with very flat submillimeter SEDs. These disks may be on the verge of forming planetary systems.

  17. Exploring Students' Understanding of Ordinary Differential Equations Using Computer Algebraic System (CAS)

    ERIC Educational Resources Information Center

    Maat, Siti Mistima; Zakaria, Effandi

    2011-01-01

    Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…

  18. Meaningful Understanding and Systems Thinking in Organic Chemistry: Validating Measurement and Exploring Relationships

    ERIC Educational Resources Information Center

    Vachliotis, Theodoros; Salta, Katerina; Tzougraki, Chryssa

    2014-01-01

    The purpose of this study was dual: First, to develop and validate assessment schemes for assessing 11th grade students' meaningful understanding of organic chemistry concepts, as well as their systems thinking skills in the domain. Second, to explore the relationship between the two constructs of interest based on students' performance

  19. Human support issues and systems for the space exploration initiative: Results from Project Outreach

    NASA Technical Reports Server (NTRS)

    Aroesty, J.; Zimmerman, R.; Logan, J.

    1991-01-01

    The analyses and evaluations of the Human Support panel are discussed. The Human Support panel is one of eight panels created by RAND to screen and analyze submissions to the Space Exploration Initiative (SEI) Outreach Program. Submissions to the Human Support panel were in the following areas: radiation protection; microgravity; life support systems; medical care; and human factors (behavior and performance).

  20. Open Innovation, Triple Helix and Regional Innovation Systems: Exploring CATAPULT Centres in the UK

    ERIC Educational Resources Information Center

    Kerry, Christopher; Danson, Michael

    2016-01-01

    Through the lens of UK CATAPULT Centres this conceptual paper presents an examination of the links between open innovation, the Triple Helix model and regional innovation systems. Highlighting the importance of boundary-spanning intermediaries, the combined role of these concepts is explored in detail. A conceptual model is then proposed which

  1. Classroom Response Systems: Using Task Technology Fit to Explore Impact Potential

    ERIC Educational Resources Information Center

    Jones, Kenneth D., II.

    2010-01-01

    The primary purpose of this study is to determine how students are impacted by the use of Classroom Response System (CRS) technology. This research explores the nature of the outcomes experienced by students and their perceptions on the leading pedagogy and practices for using CRS technology in the classroom. The research is both quantitative and…

  2. Unlocking the Black Box: Exploring the Link between High-Performance Work Systems and Performance

    ERIC Educational Resources Information Center

    Messersmith, Jake G.; Patel, Pankaj C.; Lepak, David P.

    2011-01-01

    With a growing body of literature linking systems of high-performance work practices to organizational performance outcomes, recent research has pushed for examinations of the underlying mechanisms that enable this connection. In this study, based on a large sample of Welsh public-sector employees, we explored the role of several individual-level

  3. Unlocking the Black Box: Exploring the Link between High-Performance Work Systems and Performance

    ERIC Educational Resources Information Center

    Messersmith, Jake G.; Patel, Pankaj C.; Lepak, David P.

    2011-01-01

    With a growing body of literature linking systems of high-performance work practices to organizational performance outcomes, recent research has pushed for examinations of the underlying mechanisms that enable this connection. In this study, based on a large sample of Welsh public-sector employees, we explored the role of several individual-level…

  4. Hopper/Entomopter Tandem System for Surface and Subsurface Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Gemmer, T. R.; Aggarwal, S.; Bakunov, A. S.; Jordan, T. N.

    2012-06-01

    A mid-range hopping rover working in tandem with a flying entomopter scout is proposed for exploration of Martian lava tubes. The system can enter and exit multiple lava tubes to characterize their suitability as environments able to support life.

  5. Open Innovation, Triple Helix and Regional Innovation Systems: Exploring CATAPULT Centres in the UK

    ERIC Educational Resources Information Center

    Kerry, Christopher; Danson, Michael

    2016-01-01

    Through the lens of UK CATAPULT Centres this conceptual paper presents an examination of the links between open innovation, the Triple Helix model and regional innovation systems. Highlighting the importance of boundary-spanning intermediaries, the combined role of these concepts is explored in detail. A conceptual model is then proposed which…

  6. Multiple Embedded Inequalities and Cultural Diversity in Educational Systems: A Theoretical and Empirical Exploration

    ERIC Educational Resources Information Center

    Verhoeven, Marie

    2011-01-01

    This article explores the social construction of cultural diversity in education, with a view to social justice. It examines how educational systems organize ethno-cultural difference and how this process contributes to inequalities. Theoretical resources are drawn from social philosophy as well as from recent developments in social organisation

  7. Bioinspired engineering of exploration systems for NASA and DoD: from bees to BEES

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Zornetzer, S.; Hine, B.; Chahl, J.; Werblin, F.; Srinivasan, M. V.; Young, L.

    2003-01-01

    The intent of Bio-inspired Engineering of Exploration Systems (BEES) is to distill the principles found in successful, nature-tested mechanisms of specific crucial functions that are hard to accomplish by conventional methods, but accomplished rather deftly in nature by biological organisms.

  8. Classroom Response Systems: Using Task Technology Fit to Explore Impact Potential

    ERIC Educational Resources Information Center

    Jones, Kenneth D., II.

    2010-01-01

    The primary purpose of this study is to determine how students are impacted by the use of Classroom Response System (CRS) technology. This research explores the nature of the outcomes experienced by students and their perceptions on the leading pedagogy and practices for using CRS technology in the classroom. The research is both quantitative and

  9. Artificial Gravity as a Multi-System Countermeasure for Exploration Class Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Dawson, David L. (Technical Monitor)

    2000-01-01

    NASA's vision for space exploration includes missions of unprecedented distance and duration. However, during 30 years of human space flight experience, including numerous long-duration missions, research has not produced any single countermeasure or combination of countermeasures that is completely effective. Current countermeasures do not fully protect crews in low-Earth orbit, and certainly will not be appropriate for crews journeying to Mars and back over a three-year period. The urgency for exploration-class countermeasures is compounded by continued technical and scientific successes that make exploration class missions increasingly attractive. The critical and possibly fatal problems of bone loss, cardiovascular deconditioning, muscle weakening, neurovestibular disturbance, space anemia, and immune compromise may be alleviated by the appropriate application of artificial gravity (AG). However, despite a manifest need for new countermeasure approaches, concepts for applying AG as a countermeasure have not developed apace. To explore the utility of AG as a multi-system countermeasure during long-duration, exploration-class space flight, eighty-three members of the international space life science and space flight community met earlier this year. They concluded unanimously that the potential of AG as a multi-system countermeasure is indeed worth pursuing, and that the requisite AG research needs to be supported more systematically by NASA. This presentation will review the issues discussed and recommendations made.

  10. Towards leakage resiliency: memristor-based AES design for differential power attack mitigation

    NASA Astrophysics Data System (ADS)

    Khedkar, Ganesh; Donahue, Colin; Kudithipudi, Dhireesha

    2014-05-01

    Side-channel attacks (SCAs), specifically differential power attacks (DPA), target hardware vulnerabilities of cryptosystems. Next generation computing systems, integrated with emerging technologies such as RRAM, offer unique opportunities to mitigate DPAs with their inherent device characteristics. We propose two different approaches to mitigate DPA attacks using memristive hardware. The first approach, obfuscates the power profile using dual RRAM modules. The power profile stays almost uniform for any given data access. This is achieved by realizing a memory and its complementary module in RRAM hardware. Balancing logic, which ensures the parallel access, is implemented in CMOS. The power consumed with the dual-RRAM balancing is an order lower than the corresponding pure CMOS implementation. The second exploratory approach, uses a novel neuromemristive architecture to compute an AES transformation and mitigate DPAs. Both the proposed approaches were tested on a 128-bit AES algorithm. A customized simulation framework, integrating CAD tools, is developed to mount the DPA attacks. In both the designs, the attack mounted on the baseline architectures (CMOS only) was successful and full key was recovered. However, DPA attacks mounted on the dual RRAM modules and neuromemristive hardware modules of an AES cryptoprocessor yielded no successful keys, demonstrating their resiliency to DPA attacks.

  11. A multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER)

    SciTech Connect

    Klarer, P.

    1994-03-01

    The design of a multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER) is described. The control system design attempts to ameliorate some of the problems noted by some researchers when implementing subsumption or behavioral control systems, particularly with regard to multiple processor systems and real-time operations. The architecture is designed to allow both synchronous and asynchronous operations between various behavior modules by taking advantage of intertask communications channels, and by implementing each behavior module and each interconnection node as a stand-alone task. The potential advantages of this approach over those previously described in the field are discussed. An implementation of the architecture is planned for a prototype Robotic All Terrain Lunar Exploration Rover (RATLER) currently under development, and is briefly described.

  12. Low-dimensional chaos in magnetospheric activity from AE time series

    NASA Technical Reports Server (NTRS)

    Vassiliadis, D. V.; Sharma, A. S.; Eastman, T. E.; Papadopoulos, K.

    1990-01-01

    The magnetospheric response to the solar-wind input, as represented by the time-series measurements of the auroral electrojet (AE) index, has been examined using phase-space reconstruction techniques. The system was found to behave as a low-dimensional chaotic system with a fractal dimension of 3.6 and has Kolmogorov entropy less than 0.2/min. These indicate that the dynamics of the system can be adequately described by four independent variables, and that the corresponding intrinsic time scale is of the order of 5 min. The relevance of the results to magnetospheric modeling is discussed.

  13. A Titan Explorer Mission Utilizing Solar Electric Propulsion and Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Coverstone, Vicki

    2003-01-01

    Mission and Systems analyses were performed for a Titan Explorer Mission scenario utilizing medium class launch vehicles, solar electric propulsion system (SEPS) for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their affect on the payload delivery capability to Titan. The effect of varying the launch vehicle, solar array power, associated number of SEPS thrusters, chemical propellant combinations, tank liner thickness, and tank composite overwrap stress factor was investigated. This paper provides a parametric survey of the aforementioned set of system factors, delineating their affect on Titan payload delivery, as well as discussing aspects of planetary capture methodology.

  14. 19 CFR 192.13 - Revocation of participants' AES post-departure (Option 4) filing privileges; appeal procedures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) EXPORT CONTROL Filing of Export Information Through the Automated Export System (AES) 192.13 Revocation of... involving any Customs law or any export law administered by another government agency; (3) The...

  15. 19 CFR 192.12 - Criteria for denial of applications requesting AES post-departure (Option 4) filing status...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Regulations (15 CFR 30.7(d)); (2) The applicant has a history of non-compliance with export regulations (e.g...) EXPORT CONTROL Filing of Export Information Through the Automated Export System (AES) 192.12 Criteria.... (a) Approval process. Applications for the option of filing export commodity...

  16. Scotty, I Need More Power - The Fission System Gateway to Abundant Power for Exploration

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.

    2011-01-01

    In planning and in crisis, electrical power has been a key consideration when humans venture into space. Since the 1950's, nuclear fission (splitting of atoms) power has been a logical alternative in both fact and fiction, due to its ability to provide abundant power with high energy density, reliability, and immunity to severe environments. Bringing space fission power to a state of readiness for exploration has depended on clearing the hurdle of technology readiness demonstration. Due to the happy coincidence of heritage from prior space fission development efforts such as the Prometheus program, foresight from NASA's Exploration Mission Systems Directorate in the mid-2000's, and relative budget stability through the late 2000's, National Aeronautics and Space Administration (NASA) and Department of Energy (DOE), with their industry partners, are poised to push through to this objective. Hardware for a 12 kWe non-nuclear Fission Power System Technology Demonstration Unit is being fabricated now on a schedule that will enable a low-cost demonstration of technology readiness in the mid-2010s, with testing beginning as early as 2012. With space fission power system technology demonstrated, exploration mission planners will have the flexibility to respond to a broad variety of missions and will be able to provide abundant power so that future explorers will, in planning or crisis, have the power they need when they most need it.

  17. AeSPoe HARD ROCK LABORATORY

    SciTech Connect

    Svemar, C; Pettersson, S.; Hedman, T.

    2003-02-27

    Aespoe Hard Rock Laboratory (AEHRL) has been constructed in virgin bedrock as part of the development of a deep geological repository for spent nuclear fuel in Sweden, the role being to provide input to the performance assessment, to test engineered barrier systems and to develop and refine full scale methods and machines for construction and operation of the real repository. The AEHRL extends down to 460 m depth with access via both ramp and shaft. Work in the laboratory has been separated into 4 different stage goals: (1) Verification of site investigation methods. (2) Development of detailed investigation methodology. (3) Testing of models for description of the barrier function of the host rock. (4) Demonstration of technology for and function of important parts of the repository system Stage goals 1 and 2 were in focus during the period 1986-95 and are now completed. Stage goal 1 concerns investigations carried out from ground surface and stage goal 2 investigations carried out underground, in this case during excavation of the ramp. The present work is focused on the two operative stage goals 3 and 4. The activities on barrier function of the host rock comprises primarily in-situ tests with tracer migration in natural fractures and migration of actinides in small samples of rock or bentonite inside a chemical laboratory probe installed in a borehole. The data collected from the tests are used for model development and verification. The demonstration of technology includes studies of engineered barriers and comprises tests of copper stability, bentonite buffer, backfill, plugging and practical development of the main disposal sequences. Up today five full scale deposition holes with buffer and canister, and one full-scale test of backfill and plugging have been installed. The prototype for the deposition machine is in operation. The work is conducted in an international environment and altogether eight organizations from seven countries besides Sweden take part in the AEHRL program. The paper concludes the results from the stage goals 1 and 2, and presents the projects conducted within the stage goals 3 and 4 as well as conclusions drawn from available results.

  18. Avionics Architectures for Exploration: Building a Better Approach for (Human) Spaceflight Avionics

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in space flight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. Results from the AAE project's FY13 efforts are discussed, along with the status of FY14 efforts and future plans.

  19. Impact of solar system exploration on theories of chemical evolution and the origin of life

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L.

    1983-01-01

    The impact of solar system exploration on theories regarding chemical evolution and the origin of life is examined in detail. Major findings from missions to Mercury, Venus, the moon, Mars, Jupiter, Saturn, and Titan are reviewed and implications for prebiotic chemistry are discussed. Among the major conclusions are: prebiotic chemistry is widespread throughout the solar system and universe; chemical evolution and the origin of life are intimately associated with the origin and evolution of the solar system; the rate, direction, and extent of prebiotic chemistry is highly dependent upon planetary characteristics; and continued exploration will increase understanding of how life originated on earth and allow better estimates of the likelihood of similar processes occurring elsewhere.

  20. Potential uranium supply system based upon computer simulation of sequential exploration and decisions under risk

    SciTech Connect

    Ortiz-Vertiz, S.R.

    1991-01-01

    A Monte Carlo simulation system was used to estimate potential supply of roll-type deposits. The system takes a given uranium-endowment probability distribution and aims at two major and interrelated objectives: (1) to design a system that estimates potential supply even when prices are much higher than previous or current prices; and (2) to account fully for the cost of discovering and mining the individual mineral deposits contained in given endowment. Achievement of these objectives constitutes the major contribution of this study. To accomplish them, the system considers: cost of risk, return on investment, cost of failures during the search process, discovery depletion, and effect of physical characteristics of the deposits on exploration and mining costs. It also considers that when economic conditions, such as product price, are outside historical experience, existing behavioral rules - exploration drilling density, stopping rules, minimum attractive deposit size and grade, and mining parameters - are irrelevant. The system architecture is general and can be used with an exploration model prepared specifically for other minerals.