Science.gov

Sample records for exploring scientific datasets

  1. The new Planetary Science Archive: A tool for exploration and discovery of scientific datasets from ESA's planetary missions.

    NASA Astrophysics Data System (ADS)

    Heather, David; Besse, Sebastien; Barbarisi, Isa; Arviset, Christophe; de Marchi, Guido; Barthelemy, Maud; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; Macfarlane, Alan; Martinez, Santa; Rios, Carlos

    2016-04-01

    Introduction: The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces (e.g. FTP browser, Map based, Advanced search, and Machine interface): http://archives.esac.esa.int/psa All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. Updating the PSA: The PSA is currently implementing a number of significant changes, both to its web-based interface to the scientific community, and to its database structure. The new PSA will be up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's upcoming ExoMars and BepiColombo missions. The newly designed PSA homepage will provide direct access to scientific datasets via a text search for targets or missions. This will significantly reduce the complexity for users to find their data and will promote one-click access to the datasets. Additionally, the homepage will provide direct access to advanced views and searches of the datasets. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). Queries to the PSA database will be possible either via the homepage (for simple searches of missions or targets), or through a filter menu for more tailored queries. The filter menu will offer multiple options to search for a particular dataset or product, and will manage queries for both in-situ and remote sensing instruments. Parameters such as start-time, phase angle, and heliocentric distance will be emphasized. A further

  2. The new Planetary Science Archive: A tool for exploration and discovery of scientific datasets from ESA's planetary missions

    NASA Astrophysics Data System (ADS)

    Heather, David

    2016-07-01

    Introduction: The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces (e.g. FTP browser, Map based, Advanced search, and Machine interface): http://archives.esac.esa.int/psa All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. Updating the PSA: The PSA is currently implementing a number of significant changes, both to its web-based interface to the scientific community, and to its database structure. The new PSA will be up-to-date with versions 3 and 4 of the PDS standards, as PDS4 will be used for ESA's upcoming ExoMars and BepiColombo missions. The newly designed PSA homepage will provide direct access to scientific datasets via a text search for targets or missions. This will significantly reduce the complexity for users to find their data and will promote one-click access to the datasets. Additionally, the homepage will provide direct access to advanced views and searches of the datasets. Users will have direct access to documentation, information and tools that are relevant to the scientific use of the dataset, including ancillary datasets, Software Interface Specification (SIS) documents, and any tools/help that the PSA team can provide. A login mechanism will provide additional functionalities to the users to aid / ease their searches (e.g. saving queries, managing default views). Queries to the PSA database will be possible either via the homepage (for simple searches of missions or targets), or through a filter menu for more tailored queries. The filter menu will offer multiple options to search for a particular dataset or product, and will manage queries for both in-situ and remote sensing instruments. Parameters such as start-time, phase angle, and heliocentric distance will be emphasized. A further

  3. Dataset of Scientific Inquiry Learning Environment

    ERIC Educational Resources Information Center

    Ting, Choo-Yee; Ho, Chiung Ching

    2015-01-01

    This paper presents the dataset collected from student interactions with INQPRO, a computer-based scientific inquiry learning environment. The dataset contains records of 100 students and is divided into two portions. The first portion comprises (1) "raw log data", capturing the student's name, interfaces visited, the interface…

  4. Scientific Resource EXplorer

    NASA Astrophysics Data System (ADS)

    Xing, Z.; Wormuth, A.; Smith, A.; Arca, J.; Lu, Y.; Sayfi, E.

    2014-12-01

    Inquisitive minds in our society are never satisfied with curatedimages released by a typical public affairs office. They always want tolook deeper and play directly on original data. However, most scientificdata products are notoriously hard to use. They are immensely large,highly distributed and diverse in format. In this presentation,we will demonstrate Resource EXplorer (REX), a novel webtop applicationthat allows anyone to conveniently explore and visualize rich scientificdata repositories, using only a standard web browser. This tool leverageson the power of Webification Science (w10n-sci), a powerful enabling technologythat simplifies the use of scientific data on the web platform.W10n-sci is now being deployed at an increasing number of NASA data centers,some of which are the largest digital treasure troves in our nation.With REX, these wonderful scientific resources are open for teachers andstudents to learn and play.

  5. Proceedings: Fourth Workshop on Mining Scientific Datasets

    SciTech Connect

    Kamath, C

    2001-07-24

    Commercial applications of data mining in areas such as e-commerce, market-basket analysis, text-mining, and web-mining have taken on a central focus in the JCDD community. However, there is a significant amount of innovative data mining work taking place in the context of scientific and engineering applications that is not well represented in the mainstream KDD conferences. For example, scientific data mining techniques are being developed and applied to diverse fields such as remote sensing, physics, chemistry, biology, astronomy, structural mechanics, computational fluid dynamics etc. In these areas, data mining frequently complements and enhances existing analysis methods based on statistics, exploratory data analysis, and domain-specific approaches. On the surface, it may appear that data from one scientific field, say genomics, is very different from another field, such as physics. However, despite their diversity, there is much that is common across the mining of scientific and engineering data. For example, techniques used to identify objects in images are very similar, regardless of whether the images came from a remote sensing application, a physics experiment, an astronomy observation, or a medical study. Further, with data mining being applied to new types of data, such as mesh data from scientific simulations, there is the opportunity to apply and extend data mining to new scientific domains. This one-day workshop brings together data miners analyzing science data and scientists from diverse fields to share their experiences, learn how techniques developed in one field can be applied in another, and better understand some of the newer techniques being developed in the KDD community. This is the fourth workshop on the topic of Mining Scientific Data sets; for information on earlier workshops, see http://www.ahpcrc.org/conferences/. This workshop continues the tradition of addressing challenging problems in a field where the diversity of applications is

  6. Asteroids in the EXPLORE II Dataset

    NASA Astrophysics Data System (ADS)

    Schmoll, S.; Mallen-Ornelas, G.; Holman, M.

    2005-12-01

    The inner asteroid belt holds information about the solar system's history and future. The currently accepted theory of planet formation is that smaller rocky bodies collided and formed the planets of the inner solar system, and asteroids are relics of this past. Furthermore, near Earth objects that could potentially collide with us usually originate in the main belt. Determining the size distribution of the main-belt asteroids is key to unlocking the processes of planet formation and possible problems with near Earth objects. Here the EXtra Solar PLanet Occultation(EXPLORE) II data taken with the CFH12K mosaic CCD prime focus camera on the CFHT 3.6-m telescope are used to find the size distribution of main belt asteroids. The EXPLORE Project is an extrasolar planet detection survey that focuses on one patch of the sky per observing run. The resultant data have more observations per asteroid than any preceding deep asteroid search. Here a pipeline is presented to find the asteroids in this dataset, along with the other four EXPLORE datasets. This is done by processing the data with an image subtraction package called ISIS (Alard et al. 1997) and custom masking using IRAF. Asteroids are found using SExtractor (Bertin et al. 1996) and a set of custom C programs that detects moving objects in a series of images. Then light curves are created for each asteroid found. Sizes can be estimated based on the absolute magnitudes of the asteroids. We present absolute magnitudes and preliminary size distribution for the >52 asteroids found thus far. This Research was made possible by the NSF and SAO REU Program.

  7. Using bitmap index for interactive exploration of large datasets

    SciTech Connect

    Wu, Kesheng; Koegler, Wendy; Chen, Jacqueline; Shoshani, Arie

    2003-04-24

    Many scientific applications generate large spatio-temporal datasets. A common way of exploring these datasets is to identify and track regions of interest. Usually these regions are defined as contiguous sets of points whose attributes satisfy some user defined conditions, e.g. high temperature regions in a combustion simulation. At each time step, the regions of interest may be identified by first searching for all points that satisfy the conditions and then grouping the points into connected regions. To speed up this process, the searching step may use a tree based indexing scheme, such as a kd-tree or an octree. However, these indices are efficient only if the searches are limited to one or a small number of selected attributes. Scientific datasets often contain hundreds of attributes and scientists frequently study these attributes incomplex combinations, e.g. finding regions of high temperature yet low shear rate and pressure. Bitmap indexing is an efficient method for searching on multiple criteria simultaneously. We apply a bitmap compression scheme to reduce the size of the indices. In addition, we show that the compressed bitmaps can be used efficiently to perform the region growing and the region tracking operations. Analyses show that our approach scales well and our tests on two datasets from simulation of the auto ignition process show impressive performance.

  8. REX: response exploration for neuroimaging datasets.

    PubMed

    Duff, Eugene P; Cunnington, Ross; Egan, Gary F

    2007-01-01

    Neuroimaging technologies produce large and complex datasets. The challenge of comprehensively analysing the recorded dynamics remains an important field of research. The whole-brain linear modelling of hypothesised response dynamics and experimental effects must utilise simple basis sets, which may not detect unexpected or complex signal effects. These unmodelled effects can influence statistical mapping results, and provide important additional clues to the underlying neural dynamics. They can be detected via exploration of the raw signal, however this can be difficult. Specialised visualisation tools are required to manage the huge number of voxels, events and scans. Many effects can be occluded by noise in individual voxel time-series. This paper describes a visualisation framework developed for the assessment of entire neuroimaging datasets. While currently available tools tend to be tied to a specific model of experimental effects, this framework includes a novel metadata schema that enables the rapid selection and processing of responses based on easily-adjusted classifications of scans, brain regions, and events. Flexible event-related averaging and process pipelining capabilities enable users to investigate the effects of preprocessing algorithms and to visualise power spectra and other transformations of the data. The framework has been implemented as a MATLAB package, REX (Response Exploration), which has been utilised within our lab and is now publicly available for download. Its interface enables the real-time control of data selection and processing, for very rapid visualisation. The concepts outlined in this paper have general applicability, and could provide significant further functionality to neuroimaging databasing and process pipeline environments. PMID:17985253

  9. Interactive exploration of implicit and explicit relations in faceted datasets.

    PubMed

    Zhao, Jian; Collins, Christopher; Chevalier, Fanny; Balakrishnan, Ravin

    2013-12-01

    Many datasets, such as scientific literature collections, contain multiple heterogeneous facets which derive implicit relations, as well as explicit relational references between data items. The exploration of this data is challenging not only because of large data scales but also the complexity of resource structures and semantics. In this paper, we present PivotSlice, an interactive visualization technique which provides efficient faceted browsing as well as flexible capabilities to discover data relationships. With the metaphor of direct manipulation, PivotSlice allows the user to visually and logically construct a series of dynamic queries over the data, based on a multi-focus and multi-scale tabular view that subdivides the entire dataset into several meaningful parts with customized semantics. PivotSlice further facilitates the visual exploration and sensemaking process through features including live search and integration of online data, graphical interaction histories and smoothly animated visual state transitions. We evaluated PivotSlice through a qualitative lab study with university researchers and report the findings from our observations and interviews. We also demonstrate the effectiveness of PivotSlice using a scenario of exploring a repository of information visualization literature. PMID:24051774

  10. Advanced Aerobots for Scientific Exploration

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Raymond, Carol A.; Matthews, Janet B.; Nicaise, Fabien; Jones, Jack A.

    2010-01-01

    The Picosat and Uninhabited Aerial Vehicle Systems Engineering (PAUSE) project is developing balloon-borne instrumentation systems as aerobots for scientific exploration of remote planets and for diverse terrestrial purposes that can include scientific exploration, mapping, and military surveillance. The underlying concept of balloon-borne gondolas housing outer-space-qualified scientific instruments and associated data-processing and radio-communication equipment is not new. Instead, the novelty lies in numerous design details that, taken together, make a PAUSE aerobot smaller, less expensive, and less massive, relative to prior aerobots developed for similar purposes: Whereas the gondola (including the instrumentation system housed in it) of a typical prior aerobot has a mass of hundreds of kilograms, the mass of the gondola (with instrumentation system) of a PAUSE aerobot is a few kilograms.

  11. Automatic run-time provenance capture for scientific dataset generation

    NASA Astrophysics Data System (ADS)

    Frew, J.; Slaughter, P.

    2008-12-01

    Provenance---the directed graph of a dataset's processing history---is difficult to capture effectively. Human- generated provenance, as narrative metadata, is labor-intensive and thus often incorrect, incomplete, or simply not recorded. Workflow systems capture some provenance implicitly in workflow specifications, but these systems are not ubiquitous or standardized, and a workflow specification may not capture all of the factors involved in a dataset's production. System audit trails capture potentially all processing activities, but not the relationships between them. We describe a system that transparently (i.e., without any modification to science codes) and automatically (i.e. without any human intervention) captures the low-level interactions (files read/written, parameters accessed, etc.) between scientific processes, and then synthesizes these relationships into a provenance graph. This system---the Earth System Science Server (ES3)---is sufficiently general that it can accommodate any combination of stand-alone programs, interpreted codes (e.g. IDL), and command- language scripts. Provenance in ES3 can be published in well-defined XML formats (including formats suitable for graphical visualization), and queried to determine the ancestors or descendants of any specific data file or process invocation. We demonstrate how ES3 can be used to capture the provenance of a large operational ocean color dataset.

  12. Determining similarity of scientific entities in annotation datasets.

    PubMed

    Palma, Guillermo; Vidal, Maria-Esther; Haag, Eric; Raschid, Louiqa; Thor, Andreas

    2015-01-01

    Linked Open Data initiatives have made available a diversity of scientific collections where scientists have annotated entities in the datasets with controlled vocabulary terms from ontologies. Annotations encode scientific knowledge, which is captured in annotation datasets. Determining relatedness between annotated entities becomes a building block for pattern mining, e.g. identifying drug-drug relationships may depend on the similarity of the targets that interact with each drug. A diversity of similarity measures has been proposed in the literature to compute relatedness between a pair of entities. Each measure exploits some knowledge including the name, function, relationships with other entities, taxonomic neighborhood and semantic knowledge. We propose a novel general-purpose annotation similarity measure called 'AnnSim' that measures the relatedness between two entities based on the similarity of their annotations. We model AnnSim as a 1-1 maximum weight bipartite match and exploit properties of existing solvers to provide an efficient solution. We empirically study the performance of AnnSim on real-world datasets of drugs and disease associations from clinical trials and relationships between drugs and (genomic) targets. Using baselines that include a variety of measures, we identify where AnnSim can provide a deeper understanding of the semantics underlying the relatedness of a pair of entities or where it could lead to predicting new links or identifying potential novel patterns. Although AnnSim does not exploit knowledge or properties of a particular domain, its performance compares well with a variety of state-of-the-art domain-specific measures. Database URL: http://www.yeastgenome.org/ PMID:25725057

  13. Determining similarity of scientific entities in annotation datasets

    PubMed Central

    Palma, Guillermo; Vidal, Maria-Esther; Haag, Eric; Raschid, Louiqa; Thor, Andreas

    2015-01-01

    Linked Open Data initiatives have made available a diversity of scientific collections where scientists have annotated entities in the datasets with controlled vocabulary terms from ontologies. Annotations encode scientific knowledge, which is captured in annotation datasets. Determining relatedness between annotated entities becomes a building block for pattern mining, e.g. identifying drug–drug relationships may depend on the similarity of the targets that interact with each drug. A diversity of similarity measures has been proposed in the literature to compute relatedness between a pair of entities. Each measure exploits some knowledge including the name, function, relationships with other entities, taxonomic neighborhood and semantic knowledge. We propose a novel general-purpose annotation similarity measure called ‘AnnSim’ that measures the relatedness between two entities based on the similarity of their annotations. We model AnnSim as a 1–1 maximum weight bipartite match and exploit properties of existing solvers to provide an efficient solution. We empirically study the performance of AnnSim on real-world datasets of drugs and disease associations from clinical trials and relationships between drugs and (genomic) targets. Using baselines that include a variety of measures, we identify where AnnSim can provide a deeper understanding of the semantics underlying the relatedness of a pair of entities or where it could lead to predicting new links or identifying potential novel patterns. Although AnnSim does not exploit knowledge or properties of a particular domain, its performance compares well with a variety of state-of-the-art domain-specific measures. Database URL: http://www.yeastgenome.org/ PMID:25725057

  14. The Role of Datasets on Scientific Influence within Conflict Research

    PubMed Central

    Van Holt, Tracy; Johnson, Jeffery C.; Moates, Shiloh; Carley, Kathleen M.

    2016-01-01

    We inductively tested if a coherent field of inquiry in human conflict research emerged in an analysis of published research involving “conflict” in the Web of Science (WoS) over a 66-year period (1945–2011). We created a citation network that linked the 62,504 WoS records and their cited literature. We performed a critical path analysis (CPA), a specialized social network analysis on this citation network (~1.5 million works), to highlight the main contributions in conflict research and to test if research on conflict has in fact evolved to represent a coherent field of inquiry. Out of this vast dataset, 49 academic works were highlighted by the CPA suggesting a coherent field of inquiry; which means that researchers in the field acknowledge seminal contributions and share a common knowledge base. Other conflict concepts that were also analyzed—such as interpersonal conflict or conflict among pharmaceuticals, for example, did not form their own CP. A single path formed, meaning that there was a cohesive set of ideas that built upon previous research. This is in contrast to a main path analysis of conflict from 1957–1971 where ideas didn’t persist in that multiple paths existed and died or emerged reflecting lack of scientific coherence (Carley, Hummon, and Harty, 1993). The critical path consisted of a number of key features: 1) Concepts that built throughout include the notion that resource availability drives conflict, which emerged in the 1960s-1990s and continued on until 2011. More recent intrastate studies that focused on inequalities emerged from interstate studies on the democracy of peace earlier on the path. 2) Recent research on the path focused on forecasting conflict, which depends on well-developed metrics and theories to model. 3) We used keyword analysis to independently show how the CP was topically linked (i.e., through democracy, modeling, resources, and geography). Publically available conflict datasets developed early on helped

  15. The Role of Datasets on Scientific Influence within Conflict Research.

    PubMed

    Van Holt, Tracy; Johnson, Jeffery C; Moates, Shiloh; Carley, Kathleen M

    2016-01-01

    We inductively tested if a coherent field of inquiry in human conflict research emerged in an analysis of published research involving "conflict" in the Web of Science (WoS) over a 66-year period (1945-2011). We created a citation network that linked the 62,504 WoS records and their cited literature. We performed a critical path analysis (CPA), a specialized social network analysis on this citation network (~1.5 million works), to highlight the main contributions in conflict research and to test if research on conflict has in fact evolved to represent a coherent field of inquiry. Out of this vast dataset, 49 academic works were highlighted by the CPA suggesting a coherent field of inquiry; which means that researchers in the field acknowledge seminal contributions and share a common knowledge base. Other conflict concepts that were also analyzed-such as interpersonal conflict or conflict among pharmaceuticals, for example, did not form their own CP. A single path formed, meaning that there was a cohesive set of ideas that built upon previous research. This is in contrast to a main path analysis of conflict from 1957-1971 where ideas didn't persist in that multiple paths existed and died or emerged reflecting lack of scientific coherence (Carley, Hummon, and Harty, 1993). The critical path consisted of a number of key features: 1) Concepts that built throughout include the notion that resource availability drives conflict, which emerged in the 1960s-1990s and continued on until 2011. More recent intrastate studies that focused on inequalities emerged from interstate studies on the democracy of peace earlier on the path. 2) Recent research on the path focused on forecasting conflict, which depends on well-developed metrics and theories to model. 3) We used keyword analysis to independently show how the CP was topically linked (i.e., through democracy, modeling, resources, and geography). Publically available conflict datasets developed early on helped shape the

  16. Scientific Datasets: Discovery and Aggregation for Semantic Interpretation.

    NASA Astrophysics Data System (ADS)

    Lopez, L. A.; Scott, S.; Khalsa, S. J. S.; Duerr, R.

    2015-12-01

    One of the biggest challenges that interdisciplinary researchers face is finding suitable datasets in order to advance their science; this problem remains consistent across multiple disciplines. A surprising number of scientists, when asked what tool they use for data discovery, reply "Google", which is an acceptable solution in some cases but not even Google can find -or cares to compile- all the data that's relevant for science and particularly geo sciences. If a dataset is not discoverable through a well known search provider it will remain dark data to the scientific world.For the past year, BCube, an EarthCube Building Block project, has been developing, testing and deploying a technology stack capable of data discovery at web-scale using the ultimate dataset: The Internet. This stack has 2 principal components, a web-scale crawling infrastructure and a semantic aggregator. The web-crawler is a modified version of Apache Nutch (the originator of Hadoop and other big data technologies) that has been improved and tailored for data and data service discovery. The second component is semantic aggregation, carried out by a python-based workflow that extracts valuable metadata and stores it in the form of triples through the use semantic technologies.While implementing the BCube stack we have run into several challenges such as a) scaling the project to cover big portions of the Internet at a reasonable cost, b) making sense of very diverse and non-homogeneous data, and lastly, c) extracting facts about these datasets using semantic technologies in order to make them usable for the geosciences community. Despite all these challenges we have proven that we can discover and characterize data that otherwise would have remained in the dark corners of the Internet. Having all this data indexed and 'triplelized' will enable scientists to access a trove of information relevant to their work in a more natural way. An important characteristic of the BCube stack is that all

  17. ESTATE: Strategy for Exploring Labeled Spatial Datasets Using Association Analysis

    NASA Astrophysics Data System (ADS)

    Stepinski, Tomasz F.; Salazar, Josue; Ding, Wei; White, Denis

    We propose an association analysis-based strategy for exploration of multi-attribute spatial datasets possessing naturally arising classification. Proposed strategy, ESTATE (Exploring Spatial daTa Association patTErns), inverts such classification by interpreting different classes found in the dataset in terms of sets of discriminative patterns of its attributes. It consists of several core steps including discriminative data mining, similarity between transactional patterns, and visualization. An algorithm for calculating similarity measure between patterns is the major original contribution that facilitates summarization of discovered information and makes the entire framework practical for real life applications. Detailed description of the ESTATE framework is followed by its application to the domain of ecology using a dataset that fuses the information on geographical distribution of biodiversity of bird species across the contiguous United States with distributions of 32 environmental variables across the same area.

  18. Clementine: Anticipated scientific datasets from the Moon and Geographos

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1993-01-01

    The Clementine spacecraft mission is designed to test the performance of new lightweight and low-power detectors developed at the Lawrence Livermore National Laboratory (LLNL) for the Strategic Defense Initiative Office (SDIO). A secondary objective of the mission is to acquire useful scientific data, principally of the Moon and the near-Earth asteroid Geographos. The spacecraft will be in an elliptical polar orbit about the Moon for about 2 months beginning in February of 1994 and it will fly by Geographos on August 31. Clementine will carry seven detectors each weighing less than about 1 kg: two Star Trackers wide-angle uv/vis wide-angle Short Wavelength IR (SWIR) Long-Wavelength IR (LWIR) and LIDAR (Laser Image Detection And Ranging) narrow-angle imaging and ranging. Additional presentations about the mission detectors and related science issues are in this volume. If fully successful Clementine will return about 3 million lunar images, a dataset with nearly as many bits of data (uncompressed) as the first cycle of Magellan and more than 5000 images of Geographos. The complete and efficient analysis of such large data sets requires systematic processing efforts. Described below are concepts for two such efforts for the Clementine mission: global multispectral imaging of the Moon and videos of the Geographos flyby. Other anticipated datasets for which systematic processing might be desirable include multispectral observations of Earth; LIDAR altimetry of the Moon with high-resolution imaging along each ground track; high-resolution LIDAR color along each lunar ground track which could be used to identify potential titanium-rich deposits at scales of a few meters; and thermal IR imaging along each lunar ground track (including nighttime observations near the poles).

  19. Gathering and Exploring Scientific Knowledge in Pharmacovigilance

    PubMed Central

    Lopes, Pedro; Nunes, Tiago; Campos, David; Furlong, Laura Ines; Bauer-Mehren, Anna; Sanz, Ferran; Carrascosa, Maria Carmen; Mestres, Jordi; Kors, Jan; Singh, Bharat; van Mulligen, Erik; Van der Lei, Johan; Diallo, Gayo; Avillach, Paul; Ahlberg, Ernst; Boyer, Scott; Diaz, Carlos; Oliveira, José Luís

    2013-01-01

    Pharmacovigilance plays a key role in the healthcare domain through the assessment, monitoring and discovery of interactions amongst drugs and their effects in the human organism. However, technological advances in this field have been slowing down over the last decade due to miscellaneous legal, ethical and methodological constraints. Pharmaceutical companies started to realize that collaborative and integrative approaches boost current drug research and development processes. Hence, new strategies are required to connect researchers, datasets, biomedical knowledge and analysis algorithms, allowing them to fully exploit the true value behind state-of-the-art pharmacovigilance efforts. This manuscript introduces a new platform directed towards pharmacovigilance knowledge providers. This system, based on a service-oriented architecture, adopts a plugin-based approach to solve fundamental pharmacovigilance software challenges. With the wealth of collected clinical and pharmaceutical data, it is now possible to connect knowledge providers’ analysis and exploration algorithms with real data. As a result, new strategies allow a faster identification of high-risk interactions between marketed drugs and adverse events, and enable the automated uncovering of scientific evidence behind them. With this architecture, the pharmacovigilance field has a new platform to coordinate large-scale drug evaluation efforts in a unique ecosystem, publicly available at http://bioinformatics.ua.pt/euadr/. PMID:24349421

  20. Gathering and exploring scientific knowledge in pharmacovigilance.

    PubMed

    Lopes, Pedro; Nunes, Tiago; Campos, David; Furlong, Laura Ines; Bauer-Mehren, Anna; Sanz, Ferran; Carrascosa, Maria Carmen; Mestres, Jordi; Kors, Jan; Singh, Bharat; van Mulligen, Erik; Van der Lei, Johan; Diallo, Gayo; Avillach, Paul; Ahlberg, Ernst; Boyer, Scott; Diaz, Carlos; Oliveira, José Luís

    2013-01-01

    Pharmacovigilance plays a key role in the healthcare domain through the assessment, monitoring and discovery of interactions amongst drugs and their effects in the human organism. However, technological advances in this field have been slowing down over the last decade due to miscellaneous legal, ethical and methodological constraints. Pharmaceutical companies started to realize that collaborative and integrative approaches boost current drug research and development processes. Hence, new strategies are required to connect researchers, datasets, biomedical knowledge and analysis algorithms, allowing them to fully exploit the true value behind state-of-the-art pharmacovigilance efforts. This manuscript introduces a new platform directed towards pharmacovigilance knowledge providers. This system, based on a service-oriented architecture, adopts a plugin-based approach to solve fundamental pharmacovigilance software challenges. With the wealth of collected clinical and pharmaceutical data, it is now possible to connect knowledge providers' analysis and exploration algorithms with real data. As a result, new strategies allow a faster identification of high-risk interactions between marketed drugs and adverse events, and enable the automated uncovering of scientific evidence behind them. With this architecture, the pharmacovigilance field has a new platform to coordinate large-scale drug evaluation efforts in a unique ecosystem, publicly available at http://bioinformatics.ua.pt/euadr/. PMID:24349421

  1. The Scientific Exploration of Venus

    NASA Astrophysics Data System (ADS)

    Taylor, Fredric W.

    2014-12-01

    Part I. Views of Venus, from the Beginning to the Present Day: 1. The dawn of Venus exploration; 2. Mariner and Venera; 3. Pioneer Venus and Vega: orbiters, balloons and multi-probes; 4. Images of the surface; 5. The forgotten world; 6. Earth-based astronomy delivers a breakthrough; 7. Can't stop now; 8. Europe and Japan join in: Venus Express and Akatsuki; Part II. The Motivation to Continue the Quest: 9. Origin and evolution: the solid planet; 10. Atmosphere and ocean; 11. A volcanic world; 12. The mysterious clouds; 13. Superwinds and polar vortices; 14. The climate on Venus, past, present and future; 15. Could there be life on Venus?; Part III. Plans and Visions for the Future: 16. Solar system exploration; 17. Coming soon to a planet near you: planned Venus missions; 18. Towards the horizon: advanced technology; 19. Beyond the horizon: human expeditions; Epilogue; Appendix A. Chronology of space missions to Venus; Appendix B. Data about Venus.

  2. Smallsats, Cubesats and Scientific Exploration

    NASA Astrophysics Data System (ADS)

    Stofan, E. R.

    2015-12-01

    Smallsats (including Cubesats) have taken off in the aerospace research community - moving beyond simple tools for undergraduate and graduate students and into the mainstream of science research. Cubesats started the "smallsat" trend back in the late 1990's early 2000's, with the first Cubesats launching in 2003. NASA anticipates a number of future benefits from small satellite missions, including lower costs, more rapid development, higher risk tolerance, and lower barriers to entry for universities and small businesses. The Agency's Space Technology Mission Directorate is currently addressing technology gaps in small satellite platforms, while the Science Mission Directorate pursues miniaturization of science instruments. Launch opportunities are managed through the Cubesat Launch Initiative, and the Agency manages these projects as sub-orbital payloads with little program overhead. In this session we bring together scientists and technologists to discuss the current state of the smallsat field. We explore ideas for new investments, new instruments, or new applications that NASA should be investing in to expand the utility of smallsats. We discuss the status of a NASA-directed NRC study on the utility of small satellites. Looking to the future, what does NASA need to invest in now, to enable high impact ("decadal survey" level) science with smallsats? How do we push the envelope? We anticipate smallsats will contribute significantly to a more robust exploration and science program for NASA and the country.

  3. Scientific Balloons for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Cutts, James; Yavrouian, Andre; Nott, Julian; Baines, Kevin; Limaye, Sanjay; Wilson, Colin; Kerzhanovich, Viktor; Voss, Paul; Hall, Jeffery

    Almost 30 years ago, two balloons were successfully deployed into the atmosphere of Venus as an element of the VeGa - Venus Halley mission conducted by the Soviet Union. As interest in further Venus exploration grows among the established planetary exploration agencies - in Europe, Japan, Russia and the United States, use of balloons is emerging as an essential part of that investigative program. Venus balloons have been proposed in NASA’s Discovery program and ESA’s cosmic vision program and are a key element in NASA’s strategic plan for Venus exploration. At JPL, the focus for the last decade has been on the development of a 7m diameter superpressure pressure(twice that of VeGa) capable of carrying a 100 kg payload (14 times that of VeGA balloons), operating for more than 30 days (15 times the 2 day flight duration of the VeGa balloons) and transmitting up to 20 Mbit of data (300 times that of VeGa balloons). This new generation of balloons must tolerate day night transitions on Venus as well as extended exposure to the sulfuric acid environment. These constant altitude balloons operating at an altitude of about 55 km on Venus where temperatures are benign can also deploy sondes to sound the atmosphere beneath the probe and deliver deep sondes equipped to survive and operate down to the surface. The technology for these balloons is now maturing rapidly and we are now looking forward to the prospects for altitude control balloons that can cycle repeatedly through the Venus cloud region. One concept, which has been used for tropospheric profiling in Antarctica, is the pumped-helium balloon, with heritage to the anchor balloon, and would be best adapted for flight above the 55 km level. Phase change balloons, which use the atmosphere as a heat engine, can be used to investigate the lower cloud region down to 30 km. Progress in components for high temperature operation may also enable investigation of the deep atmosphere of Venus with metal-based balloons.

  4. EpiExplorer: live exploration and global analysis of large epigenomic datasets.

    PubMed

    Halachev, Konstantin; Bast, Hannah; Albrecht, Felipe; Lengauer, Thomas; Bock, Christoph

    2012-01-01

    Epigenome mapping consortia are generating resources of tremendous value for studying epigenetic regulation. To maximize their utility and impact, new tools are needed that facilitate interactive analysis of epigenome datasets. Here we describe EpiExplorer, a web tool for exploring genome and epigenome data on a genomic scale. We demonstrate EpiExplorer's utility by describing a hypothesis-generating analysis of DNA hydroxymethylation in relation to public reference maps of the human epigenome. All EpiExplorer analyses are performed dynamically within seconds, using an efficient and versatile text indexing scheme that we introduce to bioinformatics. EpiExplorer is available at http://epiexplorer.mpi-inf.mpg.de. PMID:23034089

  5. EpiExplorer: live exploration and global analysis of large epigenomic datasets

    PubMed Central

    2012-01-01

    Epigenome mapping consortia are generating resources of tremendous value for studying epigenetic regulation. To maximize their utility and impact, new tools are needed that facilitate interactive analysis of epigenome datasets. Here we describe EpiExplorer, a web tool for exploring genome and epigenome data on a genomic scale. We demonstrate EpiExplorer's utility by describing a hypothesis-generating analysis of DNA hydroxymethylation in relation to public reference maps of the human epigenome. All EpiExplorer analyses are performed dynamically within seconds, using an efficient and versatile text indexing scheme that we introduce to bioinformatics. EpiExplorer is available at http://epiexplorer.mpi-inf.mpg.de. PMID:23034089

  6. Unified Access Architecture for Large-Scale Scientific Datasets

    NASA Astrophysics Data System (ADS)

    Karna, Risav

    2014-05-01

    Data-intensive sciences have to deploy diverse large scale database technologies for data analytics as scientists have now been dealing with much larger volume than ever before. While array databases have bridged many gaps between the needs of data-intensive research fields and DBMS technologies (Zhang 2011), invocation of other big data tools accompanying these databases is still manual and separate the database management's interface. We identify this as an architectural challenge that will increasingly complicate the user's work flow owing to the growing number of useful but isolated and niche database tools. Such use of data analysis tools in effect leaves the burden on the user's end to synchronize the results from other data manipulation analysis tools with the database management system. To this end, we propose a unified access interface for using big data tools within large scale scientific array database using the database queries themselves to embed foreign routines belonging to the big data tools. Such an invocation of foreign data manipulation routines inside a query into a database can be made possible through a user-defined function (UDF). UDFs that allow such levels of freedom as to call modules from another language and interface back and forth between the query body and the side-loaded functions would be needed for this purpose. For the purpose of this research we attempt coupling of four widely used tools Hadoop (hadoop1), Matlab (matlab1), R (r1) and ScaLAPACK (scalapack1) with UDF feature of rasdaman (Baumann 98), an array-based data manager, for investigating this concept. The native array data model used by an array-based data manager provides compact data storage and high performance operations on ordered data such as spatial data, temporal data, and matrix-based data for linear algebra operations (scidbusr1). Performances issues arising due to coupling of tools with different paradigms, niche functionalities, separate processes and output

  7. Let's Find out! Preschoolers as Scientific Explorers

    ERIC Educational Resources Information Center

    Brenneman, Kimberly

    2009-01-01

    Scientific Explorers both tall and small, ask questions about objects, living things, and events that interest or puzzle them. They seek answers by examining the world in specific ways that allow them to understand more about it. Young children are often described as natural scientists. They earn this description because they engage in many of the…

  8. Salt Crystals: Exploring the Scientific Method.

    ERIC Educational Resources Information Center

    McBride, John; Villanueva, Roy

    1997-01-01

    Describes an activity in which students apply the scientific method as they explore each step of crystal growing. Students select variables, record daily observations, and participate in discussions about the differences in crystal formation. Crystal recipe and procedures are provided. (DDR)

  9. Knowledge Discovery Workflows in the Exploration of Complex Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    D'Abrusco, Raffaele; Fabbiano, Giuseppina; Laurino, Omar; Massaro, Francesco

    2015-03-01

    The massive amount of data produced by the recent multi-wavelength large-area surveys has spurred the growth of unprecedentedly massive and complex astronomical datasets that are proving the traditional data analysis techniques more and more inadequate. Knowledge discovery techniques, while relatively new to astronomy, have been successfully applied in several other quantitative disciplines for the determination of patterns in extremely complex datasets. The concerted use of different unsupervised and supervised machine learning techniques, in particular, can be a powerful approach to answer specific questions involving high-dimensional datasets and degenerate observables. In this paper I will present CLaSPS, a data-driven methodology for the discovery of patterns in high-dimensional astronomical datasets based on the combination of clustering techniques and pattern recognition algorithms. I shall also describe the result of the application of CLaSPS to a sample of a peculiar class of AGNs, the blazars.

  10. Apollo scientific exploration of the moon

    NASA Technical Reports Server (NTRS)

    Compton, W. D.

    1987-01-01

    The fundamental dichotomy of space exploration, unmanned versus manned projects, is discussed from an historical perspective. The integration of science into Apollo operations is examined with attention given to landing sites, extending the missions, and crew selection. A Science Working Group composed of scientists and Manned Spacecraft Center flight planners was formed in an attempt to produce the most scientific information possible within those operational limits that were considered absolutely inviolable.

  11. Manned flight and planetary scientific exploration.

    NASA Astrophysics Data System (ADS)

    Muller, Christian; Moreau, Didier

    2014-05-01

    Human explorers had a fundamental role in the success of the APOLLO moon programme, they were at the same time the indispensable pilots, scientific operators and on the last missions lead scientists. Since, man did not either return to the moon or land on Mars but manned operation centres on the earth are now conducting extensive telescience on both celestial bodies. Manned flights to moon, Mars and asteroids are however still on the agenda and even if the main drive of these projects is outside science, it is to the planetary scientists to both prepare the data bases necessary for these flights and to ensure that the scientific advantage of conducting research in real time and in situ is exploited to the maximum. The current manned flight programme in Europe concentrates on the use of the International Space Station, the scientific activities can be roughly divided between the pressurized payloads and the external payloads. Technology developments occur also in parallel and prepare new exploration techniques. The current planning leads to exploitation up to 2020 but the space agencies study further extensions, the date of 2028 having already been considered. The relation of these programmes to future manned planetary exploration will be described both from the science and development point of view. The complementary role of astronauts and ground operation centres will be described on the basis of the current experience of operation centres managing the International Space Station. Finally, the NASA ORION project of exploration in the solar system will be described with emphasis on its current European participations. The science opportunities presented by independent ventures as Inspiration Mars or Mars One will be presented.

  12. Exploring HPCS Languages in Scientific Computing

    SciTech Connect

    Barrett, Richard F; Alam, Sadaf R; de Almeida, Valmor F; Bernholdt, David E; Elwasif, Wael R; Kuehn, Jeffery A; Poole, Stephen W; Shet, Aniruddha G

    2008-01-01

    As computers scale up dramatically to tens and hundreds of thousands of cores, develop deeper computational and memory hierarchies, and increased heterogeneity, developers of scientific software are increasingly challenged to express complex parallel simulations effectively and efficiently. In this paper, we explore the three languages developed under the DARPA High-Productivity Computing Systems (HPCS) program to help address these concerns: Chapel, Fortress, and X10. These languages provide a variety of features not found in currently popular HPC programming environments and make it easier to express powerful computational constructs, leading to new ways of thinking about parallel programming. Though the languages and their implementations are not yet mature enough for a comprehensive evaluation, we discuss some of the important features, and provide examples of how they can be used in scientific computing. We believe that these characteristics will be important to the future of high-performance scientific computing, whether the ultimate language of choice is one of the HPCS languages or something else.

  13. Scientific field training for human planetary exploration

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  14. Scientific rationale for Saturn's in situ exploration

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Fletcher, L. N.; Lebreton, J.-P.; Wurz, P.; Cavalié, T.; Coustenis, A.; Courtin, R.; Gautier, D.; Helled, R.; Irwin, P. G. J.; Morse, A. D.; Nettelmann, N.; Marty, B.; Rousselot, P.; Venot, O.; Atkinson, D. H.; Waite, J. H.; Reh, K. R.; Simon, A. A.; Atreya, S.; André, N.; Blanc, M.; Daglis, I. A.; Fischer, G.; Geppert, W. D.; Guillot, T.; Hedman, M. M.; Hueso, R.; Lellouch, E.; Lunine, J. I.; Murray, C. D.; O`Donoghue, J.; Rengel, M.; Sánchez-Lavega, A.; Schmider, F.-X.; Spiga, A.; Spilker, T.; Petit, J.-M.; Tiscareno, M. S.; Ali-Dib, M.; Altwegg, K.; Bolton, S. J.; Bouquet, A.; Briois, C.; Fouchet, T.; Guerlet, S.; Kostiuk, T.; Lebleu, D.; Moreno, R.; Orton, G. S.; Poncy, J.

    2014-12-01

    Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases' abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn's upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn's bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn's stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend

  15. Techniques for Exploring Cluster Compressed Geospatial-Temporal Satellite Datasets

    NASA Astrophysics Data System (ADS)

    Ashley, John M.

    NASA satellite data products are part of the recent big data explosion. An example of this are the individual physically referenced and processed footprints of data from the AIRS satellite (L2 Data Product), Each 2.3 MB data file covers a 6 minute period. Daily data volumes are 0.552GB/day and the collection of data products now spans over a decade. This research addressed NASA's L3Q Data Products. NASA has developed the L3Q Entropy Constrained Vector Quantization (ECVQ) cluster compressed dataset to provide a compact representation of the detailed data that retains much of the original multi-variate, altitudinally indexed information content summarized to a 5° x 5° Earth grid cell over a period of one month. The monthly summary files are- roughly 5.5MB in size, so the compression factor is about 3000 to 1. These multivariate L3Q monthly summaries differ from the NASA's L3 products which contain univariate statistics (means and standard deviations) for 1 x 1 degree earth grid cells. In this research, I developed techniques to support hierarchical cluster analysis over multiple months of L3Q (ECVQ) cluster compressed multivariate data. I then developed new visualizations for the sets of multi-variate altitudinally indexed physical data vectors resulting from hierarchical clustering of the earth grid cells and their associated compression vectors. These techniques and visualizations allowed new, computationally feasible analysis and interaction with these datasets. The methods are potentially relevant to other ECVQ compressed multivariate data sets. Specifically, I examined techniques to approximate the full distance matrix that is traditionally used in hierarchical clustering. I addressed the computational challenge of producing the distance matrix in a reasonable time by reducing the problem via an adapted method of cluster exemplars. These techniques enable practical hierarchical clustering of multiple months of data (granules), without losing the granule level

  16. Ice-Penetrating Robot for Scientific Exploration

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Carsey, Frank; French, Lloyd

    2007-01-01

    The cryo-hydro integrated robotic penetrator system (CHIRPS) is a partially developed instrumentation system that includes a probe designed to deeply penetrate the European ice sheet in a search for signs of life. The CHIRPS could also be used on Earth for similar exploration of the polar ice caps especially at Lake Vostok in Antarctica. The CHIRPS probe advances downward by a combination of simple melting of ice (typically for upper, non-compacted layers of an ice sheet) or by a combination of melting of ice and pumping of meltwater (typically, for deeper, compacted layers). The heat and electric power for melting, pumping, and operating all of the onboard instrumentation and electronic circuitry are supplied by radioisotope power sources (RPSs) and thermoelectric converters energized by the RPSs. The instrumentation and electronic circuitry includes miniature guidance and control sensors and an advanced autonomous control system that has fault-management capabilities. The CHIRPS probe is about 1 m long and 15 cm in diameter. The RPSs generate a total thermal power of 1.8 kW. Initially, as this power melts the surrounding ice, a meltwater jacket about 1 mm thick forms around the probe. The center of gravity of the probe is well forward (down), so that the probe is vertically stabilized like a pendulum. Heat is circulated to the nose by means of miniature pumps and heat pipes. The probe melts ice to advance in a step-wise manner: Heat is applied to the nose to open up a melt void, then heat is applied to the side to allow the probe to slip down into the melt void. The melt void behind the probe is allowed to re-freeze. Four quadrant heaters on the nose and another four quadrant heaters on the rear (upper) surface of the probe are individually controllable for steering: Turning on two adjacent nose heaters on the nose and two adjacent heaters on the opposite side at the rear causes melt voids to form on opposing sides, such that the probe descends at an angle from

  17. SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These

  18. Sciologer: Visualizing and Exploring Scientific Communities

    ERIC Educational Resources Information Center

    Bales, Michael Eliot

    2009-01-01

    Despite the recognized need to increase interdisciplinary collaboration, there are few information resources available to provide researchers with an overview of scientific communities--topics under investigation by various groups, and patterns of collaboration among groups. The tools that are available are designed for expert social network…

  19. NOAA Ocean Exploration 2003: A Scientific Overview

    NASA Astrophysics Data System (ADS)

    Hammond, S. R.

    2003-12-01

    A little over three years ago, a panel of leading ocean scientists, explorers, and educators developed a national strategy for ocean exploration. Their report, "Discovering Earth's Final Frontier: A U.S. Strategy for Ocean Exploration," opened the door to a new way of thinking about ocean exploration and inspired the National Oceanic and Atmospheric Administration (NOAA) to embark on a mission to expand knowledge and appreciation of the ocean. This year, in collaboration with over 100 partners including university, international, federal, state and tribal science agencies, private research and outreach organizations, civic groups, aquariums and museums, NOAA engaged in major multidisciplinary expeditions and multiple projects around the world aimed at mapping the ocean in new ways, understanding ocean interactions, developing sensors and tools, and reaching out in new ways to stakeholders to communicate findings. Expeditions and projects undertaken this year continued to build on inaugural work in 2001 and 2002 and continue to set a precedent for high quality discovery-based ocean research and exploration. This presentation will focus on expedition highlights and future program directions.

  20. Exploring Careers. Scientific and Technical Occupations.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    "Exploring Careers" is a career education resource program, published in fifteen separate booklets, for junior high school-age students. It provides information about the world of work and offers its readers a way of learning about themselves and relating that information to career choices. The publications aim to build career awareness by means…

  1. Reconstruction and exploration of virtual middle-ear models derived from micro-CT datasets

    PubMed Central

    Lee, Dong H.; Chan, Sonny; Salisbury, Curt; Kim, Namkeun; Salisbury, Kenneth; Puria, Sunil; Blevins, Nikolas H.

    2014-01-01

    Background Middle-ear anatomy is integrally linked to both its normal function and its response to disease processes. Micro-CT imaging provides an opportunity to capture high-resolution anatomical data in a relatively quick and non-destructive manner. However, to optimally extract functionally relevant details, an intuitive means of reconstructing and interacting with these data is needed. Materials and methods A micro-CT scanner was used to obtain high-resolution scans of freshly explanted human temporal bones. An advanced volume renderer was adapted to enable real-time reconstruction, display, and manipulation of these volumetric datasets. A custom-designed user interface provided for semi-automated threshold segmentation. A 6-degrees-of-freedom navigation device was designed and fabricated to enable exploration of the 3D space in a manner intuitive to those comfortable with the use of a surgical microscope. Standard haptic devices were also incorporated to assist in navigation and exploration. Results Our visualization workstation could be adapted to allow for the effective exploration of middle-ear micro-CT datasets. Functionally significant anatomical details could be recognized and objective data could be extracted. Conclusions We have developed an intuitive, rapid, and effective means of exploring otological micro-CT datasets. This system may provide a foundation for additional work based on middle-ear anatomical data. PMID:20100558

  2. Space Exploration as a Human Enterprise: The Scientific Interest

    ERIC Educational Resources Information Center

    Sagan, Carl

    1973-01-01

    Presents examples which illustrate the importance of space exploration in diverse aspects of scientific knowledge. Indicates that human beings are today not wise enough to anticipate the practical benefits of planetary studies. (CC)

  3. Scientific objectives of human exploration of Mars

    USGS Publications Warehouse

    Carr, M.H.

    1996-01-01

    While human exploration of Mars is unlikely to be undertaken for science reasons alone, science will be the main beneficiary. A wide range of science problems can be addressed at Mars. The planet formed in a different part of the solar system from the Earth and retains clues concerning compositional and environmental conditions in that part of the solar system when the planets formed. Mars has had a long and complex history that has involved almost as wide a range of processes as occurred on Earth. Elucidation of this history will require a comprehensive program of field mapping, geophysical sounding, in situ analyses, and return of samples to Earth that are representative of the planet's diversity. The origin and evolution of the Mars' atmosphere are very different from the Earth's, Mars having experienced major secular and cyclical changes in climate. Clues as to precisely how the atmosphere has evolved are embedded in its present chemistry, possibly in surface sinks of former atmosphere-forming volatiles, and in the various products of interaction between the atmosphere and surface. The present atmosphere also provides a means of testing general circulation models applicable to all planets. Although life is unlikely to be still extant on Mars, life may have started early in the planet's history. A major goal of any future exploration will, therefore, be to search for evidence of indigenous life.

  4. Future scientific exploration of Taurus-Littrow

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey

    1992-01-01

    The Apollo 17 site was surveyed with great skill and the collected samples have been studied thoroughly (but not completely) in the 20 years since. Ironically, the success of the field and sample studies makes the site an excellent candidate for a return mission. Rather than solving all the problems, the Apollo 17 mission provided a set of sophisticated questions that can be answered only by returning to the site and exploring further. This paper addresses the major unsolved problems in lunar science and points out the units at the Apollo 17 site that are most suitable for addressing each problem. It then discusses how crucial data can be obtained by robotic rovers and human field work. I conclude that, in general, the most important information can be obtained only by human exploration. The paper ends with some guesses about what we could have learned at the Apollo 17 site from a fairly sophisticated rover capable of in situ analyses, instead of sending people.

  5. Scientific preparations for lunar exploration with the European Lunar Lander

    NASA Astrophysics Data System (ADS)

    Carpenter, J. D.; Fisackerly, R.; De Rosa, D.; Houdou, B.

    2012-12-01

    Recent Lunar missions and new scientific results in multiple disciplines have shown that working and operating in the complex lunar environment and exploiting the Moon as a platform for scientific research and further exploration poses major challenges. Underlying these challenges are fundamental scientific unknowns regarding the Moon's surface, its environment, the effects of this environment and the availability of potential resources. The European Lunar Lander is a mission proposed by the European Space Agency to prepare for future exploration. The mission provides an opportunity to address some of these key unknowns and provide information of importance for future exploration activities. Areas of particular interest for investigation on the Lunar Lander include the integrated plasma, dust, charge and radiation environment and its effects, the properties of lunar dust and its physical effects on systems and physiological effects on humans, the availability, distribution and potential application of in situ resources for future exploration. A model payload has then been derived, taking these objectives to account and considering potential payloads proposed through a request for information, and the mission's boundary conditions. While exploration preparation has driven the definition there is a significant synergy with investigations associated with fundamental scientific questions. This paper discusses the scientific objectives for the ESA Lunar Lander Mission, which emphasise human exploration preparatory science and introduces the model scientific payload considered as part of the on-going mission studies, in advance of a formal instrument selection.

  6. Future Visions for Scientific Human Exploration

    NASA Technical Reports Server (NTRS)

    Garvin, James

    2005-01-01

    Today, humans explore deep-space locations such as Mars, asteroids, and beyond, vicariously here on Earth, with noteworthy success. However, to achieve the revolutionary breakthroughs that have punctuated the history of science since the dawn of the Space Age has always required humans as "the discoverers," as Daniel Boorstin contends in this book of the same name. During Apollo 17, human explorers on the lunar surface discovered the "genesis rock," orange glass, and humans in space revamped the optically crippled Hubble Space Telescope to enable some of the greatest astronomical discoveries of all time. Science-driven human exploration is about developing the opportunities for such events, perhaps associated with challenging problems such as whether we can identify life beyond Earth within the universe. At issue, however, is how to safely insert humans and the spaceflight systems required to allow humans to operate as they do best in the hostile environment of deep space. The first issue is minimizing the problems associated with human adaptation to the most challenging aspects of deep space space radiation and microgravity (or non-Earth gravity). One solution path is to develop technologies that allow for minimization of the exposure time of people to deep space, as was accomplished in Apollo. For a mission to the planet Mars, this might entail new technological solutions for in-space propulsion that would make possible time-minimized transfers to and from Mars. The problem of rapid, reliable in-space transportation is challenged by the celestial mechanics of moving in space and the so-called "rocket equation." To travel to Mars from Earth in less than the time fuel-minimizing trajectories allow (i.e., Hohmann transfers) requires an exponential increase in the amount of fuel. Thus, month-long transits would require a mass of fuel as large as the dry mass of the ISS, assuming the existence of continuous acceleration engines. This raises the largest technological

  7. ConTour: Data-Driven Exploration of Multi-Relational Datasets for Drug Discovery

    PubMed Central

    Partl, Christian; Lex, Alexander; Streit, Marc; Strobelt, Hendrik; Wassermann, Anne-Mai; Pfister, Hanspeter; Schmalstieg, Dieter

    2016-01-01

    Large scale data analysis is nowadays a crucial part of drug discovery. Biologists and chemists need to quickly explore and evaluate potentially effective yet safe compounds based on many datasets that are in relationship with each other. However, there is a lack of tools that support them in these processes. To remedy this, we developed ConTour, an interactive visual analytics technique that enables the exploration of these complex, multi-relational datasets. At its core ConTour lists all items of each dataset in a column. Relationships between the columns are revealed through interaction: selecting one or multiple items in one column highlights and re-sorts the items in other columns. Filters based on relationships enable drilling down into the large data space. To identify interesting items in the first place, ConTour employs advanced sorting strategies, including strategies based on connectivity strength and uniqueness, as well as sorting based on item attributes. ConTour also introduces interactive nesting of columns, a powerful method to show the related items of a child column for each item in the parent column. Within the columns, ConTour shows rich attribute data about the items as well as information about the connection strengths to other datasets. Finally, ConTour provides a number of detail views, which can show items from multiple datasets and their associated data at the same time. We demonstrate the utility of our system in case studies conducted with a team of chemical biologists, who investigate the effects of chemical compounds on cells and need to understand the underlying mechanisms. PMID:26356902

  8. The Nature and Assessment of Scientific Explorations in the Classroom.

    ERIC Educational Resources Information Center

    Swain, J. R. L.

    1991-01-01

    The development of scientific explorations in schools and a framework for their assessment within the context of Britain's Graded Assessment in Science Project (GASP) scheme is described. The criteria for assessing the planning, implementing, concluding, and evaluating of explorations are provided. (KR)

  9. Evaluating Techniques for Interactive Exploration and Visualization of Large Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Boch, T.; Pineau, F.-X.; Blegean, J.

    2015-09-01

    As large surveys of hundreds millions of objects are common, helping users locating their data subset of interest through interactive exploration and visualization is becoming a challenge of major concern. In this paper, we present two prototypes we developed to tackle this issue. Using Datavore and D3, we developed a pure-Javascript SPLOM (scatter plot matrix) visualizer taking a VOTable as an input. Linked views allow one to distinguish correlations between displayed attributes. This approach works well until 50k-100k objects, but does not scale beyond because of browsers limitations. For larger datasets, we adapted the Nanocubes datastructure initially created by AT&T Research for interactive visualization of spatial-temporal datasets. Our version, developed in Java, allows fast interactive visualization of a catalogue with hundred million rows for a few attributes. HiPS (Hierarchical Progressive Surveys) heatmaps are dynamically generated according to selected criteria and displayed in Aladin Lite. Eventually, we will discuss the benefits and limitations of these approaches, explore possible improvements and describe how these techniques might be integrated in existing CDS services.

  10. Internet Activities Using Scientific Data. A Self-Guided Exploration.

    ERIC Educational Resources Information Center

    Froseth, Stan; Poppe, Barbara

    This guide is intended for the secondary school teacher (especially math or science) or the student who wants to access and learn about scientific data on the Internet. It is organized as a self-guided exploration. Nine exercises enable the user to access and analyze on-line information from the National Oceanic and Atmospheric Administration…

  11. Language, Space, Time: Anthropological Tools and Scientific Exploration on Mars

    NASA Technical Reports Server (NTRS)

    Wales, Roxana

    2005-01-01

    This viewgraph presentation reviews the importance of social science disciplines in the scientific exploration of Mars. The importance of language, workspace, and time differences are reviewed. It would appear that the social scientist perspective in developing a completely new workspace, keeping track of new vocabulary and the different time zones (i.e., terrestrial and Martian) was useful.

  12. Adventures in supercomputing: Scientific exploration in an era of change

    SciTech Connect

    Gentry, E.; Helland, B.; Summers, B.

    1997-11-01

    Students deserve the opportunity to explore the world of science surrounding them. Therefore it is important that scientific exploration and investigation be a part of each student`s educational career. The Department of Energy`s Adventures in Superconducting (AiS) takes students beyond mere scientific literacy to a rich embodiment of scientific exploration. AiS provides today`s science and math students with a greater opportunity to investigate science problems, propose solutions, explore different methods of solving the problem, organize their work into a technical paper, and present their results. Students learn at different rates in different ways. Science classes with students having varying learning styles and levels of achievement have always been a challenge for teachers. The AiS {open_quotes}hands-on, minds-on{close_quotes} project-based method of teaching science meets the challenge of this diversity heads on! AiS uses the development of student chosen projects as the means of achieving a lifelong enthusiasm for scientific proficiency. One goal of AiS is to emulate the research that takes place in the everyday environment of scientists. Students work in teams and often collaborate with students nationwide. With the help of mentors from the academic and scientific community, students pose a problem in science, investigate possible solutions, design a mathematical and computational model for the problem, exercise the model to achieve results, and evaluate the implications of the results. The students then have the opportunity to present the project to their peers, teachers, and scientists. Using this inquiry-based technique, students learn more than science skills, they learn to reason and think -- going well beyond the National Science Education Standard. The teacher becomes a resource person actively working together with the students in their quest for scientific knowledge.

  13. The Remote NetCDF Invocation (RNI) middleware platform. Making Scientific Datasets Available for Ubiquitous Computing.

    NASA Astrophysics Data System (ADS)

    Zednik, S. T.; Garcia, J. H.; Fox, P.; West, P.

    2007-12-01

    Large holding of NetCDF data, such as in the Earth System Grid (ESG) or the Community Spectro-Polarimetric Analysis Center (CSAC) are vast repositories of data, making it if not impossible, but impractical for users to download and replicate the complete database. Furthermore, each individual dataset is a combination of hundreds of individual NetCDF files. Therefore requesting such dataset for analysis is an expensive transaction for individuals seeking ubiquitous computing. Since the current state of networks can provide for access to individual pieces of the dataset with enough reliability and speed, we seek a solution that will avoid the bulk download of the dataset required a priori, and will instead request needed portions of the dataset just-in-time. In order to achieve this, we modify the NetCDF C library to execute Remote NetCDF Invocation (RNI), that is, to operate on remote dataset, over HTTPS and gsiFTP protocols, individual NetCDF Application Programming Interface (API) calls as if they were local. This mechanism resembles the well known Remote Procedure Call (RPC) yet it radically differs on the binding between local and remote operations. Our design is based on the extensibility mechanism provided by the popular OPeNDAP Back-End Server (BES) middleware platform with Globus GridFTP and Apache modules acting as the proxy transport mechanism (binding) between the local and remote transactions. This paper describes the architecture as well as how we address the technical challenges for the complete system.

  14. enRoute: dynamic path extraction from biological pathway maps for exploring heterogeneous experimental datasets

    PubMed Central

    2013-01-01

    Jointly analyzing biological pathway maps and experimental data is critical for understanding how biological processes work in different conditions and why different samples exhibit certain characteristics. This joint analysis, however, poses a significant challenge for visualization. Current techniques are either well suited to visualize large amounts of pathway node attributes, or to represent the topology of the pathway well, but do not accomplish both at the same time. To address this we introduce enRoute, a technique that enables analysts to specify a path of interest in a pathway, extract this path into a separate, linked view, and show detailed experimental data associated with the nodes of this extracted path right next to it. This juxtaposition of the extracted path and the experimental data allows analysts to simultaneously investigate large amounts of potentially heterogeneous data, thereby solving the problem of joint analysis of topology and node attributes. As this approach does not modify the layout of pathway maps, it is compatible with arbitrary graph layouts, including those of hand-crafted, image-based pathway maps. We demonstrate the technique in context of pathways from the KEGG and the Wikipathways databases. We apply experimental data from two public databases, the Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA) that both contain a wide variety of genomic datasets for a large number of samples. In addition, we make use of a smaller dataset of hepatocellular carcinoma and common xenograft models. To verify the utility of enRoute, domain experts conducted two case studies where they explore data from the CCLE and the hepatocellular carcinoma datasets in the context of relevant pathways. PMID:24564375

  15. Exploration of Antarctic Subglacial Aquatic Environments: Environmental and Scientific Stewardship

    NASA Astrophysics Data System (ADS)

    White, J. W.; Hobbie, J. E.; Baker, A.; Clarke, G.; Doran, P. T.; Karl, D.; Methe, B.; Miller, H.; Mukasa, S. B.; Race, M.; Vincent, W.; Walton, D.; Uhle, M.

    2007-12-01

    Antarctica is renowned for its extreme cold; yet surprisingly, there is liquid water at the base of the Antarctic ice sheet several kilometers beneath the surface. The exploration of these subglacial aquatic environments is in its initial stages, and many fundamental questions about these environments can only be answered by entering and sampling the water. Accordingly, the management of subglacial aquatic environments requires responsible environmental stewardship while allowing field research. As of early 2007, no one has yet drilled into a lake but entry within the next one or two years is likely. Thus, the challenge is to determine the best way of drilling into, extensively sampling, and monitoring these environments. While general guidelines for research in Antarctica are provided in the Antarctic Treaty, currently no clear protocols or standards for minimizing contamination have been established. At the request of the National Science Foundation (NSF), the National Research Council convened a committee to develop a set of environmental and scientific protection standards needed to responsibly explore the subglacial lake environments in Antarctica. Specifically, the committee was asked to define levels of cleanliness for equipment or devices entering subglacial aquatic environments, develop a sound scientific basis for contamination standards, and recommend the next steps needed to define an overall exploration strategy. This talk will present the findings of that committee. The committee included U.S. and international scientists, and gathered information from the global scientific community. Although a U.S. scientific advisory body produced this study, the committee hopes that its multinational makeup will be recognized and that the recommendations in this report will serve as a basis for broad international discussion about environmental stewardship for the exploration of subglacial aquatic environments.

  16. Mars scientific exploration roving vehicles and drilling equipment

    NASA Astrophysics Data System (ADS)

    Saitou, Kenji; Kojima, Masaki; Kinkori, Shuuzou; Suzuki, Manji; Kawashima, Nobuki; Nakatani, Ichirou

    1991-07-01

    Running gears for the Mars scientific exploration roving vehicles and the drilling equipment for the vehicles used to conduct underground exploration are studied. Review results on moving, driving, and running system for the vehicle are presented. For the driving system, comparison between conventional wheel system and crawler system are shown in a comprehensive table, and measures for failures are suggested. As for the development of the drilling equipment, the following items are presented: (1) methods of underground exploration; (2) methods of drilling (core boring and auger boring); (3) specifications for and the results of trial production of the experimental boring machine; (4) results of experimental boring machine operation on a simulated Mars surface; and (5) excavating capability of the experimental boring machine.

  17. Exploring Cloud Computing for Large-scale Scientific Applications

    SciTech Connect

    Lin, Guang; Han, Binh; Yin, Jian; Gorton, Ian

    2013-06-27

    This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address these challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.

  18. An interactive, multi-touch videowall for scientific data exploration

    NASA Astrophysics Data System (ADS)

    Blower, Jon; Griffiths, Guy; van Meersbergen, Maarten; Lusher, Scott; Styles, Jon

    2014-05-01

    The use of videowalls for scientific data exploration is rising as hardware becomes cheaper and the availability of software and multimedia content grows. Most videowalls are used primarily for outreach and communication purposes, but there is increasing interest in using large display screens to support exploratory visualization as an integral part of scientific research. In this PICO presentation we will present a brief overview of a new videowall system at the University of Reading, which is designed specifically to support interactive, exploratory visualization activities in climate science and Earth Observation. The videowall consists of eight 42-inch full-HD screens (in 4x2 formation), giving a total resolution of about 16 megapixels. The display is managed by a videowall controller, which can direct video to the screen from up to four external laptops, a purpose-built graphics workstation, or any combination thereof. A multi-touch overlay provides the capability for the user to interact directly with the data. There are many ways to use the videowall, and a key technical challenge is to make the most of the touch capabilities - touch has the potential to greatly reduce the learning curve in interactive data exploration, but most software is not yet designed for this purpose. In the PICO we will present an overview of some ways in which the wall can be employed in science, seeking feedback and discussion from the community. The system was inspired by an existing and highly-successful system (known as the "Collaboratorium") at the Netherlands e-Science Center (NLeSC). We will demonstrate how we have adapted NLeSC's visualization software to our system for touch-enabled multi-screen climate data exploration.

  19. Computing Spatial Distance Histograms for Large Scientific Datasets On-the-Fly

    PubMed Central

    Kumar, Anand; Grupcev, Vladimir; Yuan, Yongke; Huang, Jin; Shen, Gang

    2014-01-01

    This paper focuses on an important query in scientific simulation data analysis: the Spatial Distance Histogram (SDH). The computation time of an SDH query using brute force method is quadratic. Often, such queries are executed continuously over certain time periods, increasing the computation time. We propose highly efficient approximate algorithm to compute SDH over consecutive time periods with provable error bounds. The key idea of our algorithm is to derive statistical distribution of distances from the spatial and temporal characteristics of particles. Upon organizing the data into a Quad-tree based structure, the spatiotemporal characteristics of particles in each node of the tree are acquired to determine the particles’ spatial distribution as well as their temporal locality in consecutive time periods. We report our efforts in implementing and optimizing the above algorithm in Graphics Processing Units (GPUs) as means to further improve the efficiency. The accuracy and efficiency of the proposed algorithm is backed by mathematical analysis and results of extensive experiments using data generated from real simulation studies. PMID:25264418

  20. Automatic Flushing Toilets: An Entertaining Platform for Exploring Scientific Thinking

    NASA Astrophysics Data System (ADS)

    Blais, Brian S.

    2011-03-01

    It is often challenging, especially at the beginning of a course, to find good examples where students can actively explore and grapple with the methods of science. We want them to learn the connection between observation, theory, prediction, evidence, and falsification, but to really accomplish this we need platforms for which the students are able to design and implement experiments, and we need to be able to see the results of those experiments relatively quickly. There are some nice ideas using games and simple demonstrations and labs.2,3 I have found an example that is both entertaining for the students and rich enough in behavior to be an ideal platform for introducing scientific thinking: the automatic flushing toilet (Fig. 1).

  1. Initial explorations of ARM processors for scientific computing

    NASA Astrophysics Data System (ADS)

    Abdurachmanov, David; Elmer, Peter; Eulisse, Giulio; Muzaffar, Shahzad

    2014-06-01

    Power efficiency is becoming an ever more important metric for both high performance and high throughput computing. Over the course of next decade it is expected that flops/watt will be a major driver for the evolution of computer architecture. Servers with large numbers of ARM processors, already ubiquitous in mobile computing, are a promising alternative to traditional x86-64 computing. We present the results of our initial investigations into the use of ARM processors for scientific computing applications. In particular we report the results from our work with a current generation ARMv7 development board to explore ARM-specific issues regarding the software development environment, operating system, performance benchmarks and issues for porting High Energy Physics software.

  2. Case-History Explorations of Scientifically Significant Earth-System Events

    NASA Astrophysics Data System (ADS)

    Hall, M. K.; Walker, C. S.; Mayhew, M. A.

    2007-12-01

    We are developing case histories of recent and ancient natural disasters to provide students a means of learning fundamental earth system science and applying their new understanding to mitigating disasters in the future. We distinguish case histories from case studies in that they investigate real problems that are likely to recur, as opposed to hypothetical but realistic problem scenarios. Students explore the scientific and societal conditions that caused or fueled a disaster; investigate whether the outcome might have been different under different conditions; explore how the disaster has shaped our scientific and societal understanding of such events; and propose appropriate responses and preparation measures for future events. Each case history allows for multiple directions of investigation by individuals or teams. The case histories incorporate actual datasets used by scientists to analyze the event, in addition to analysis tools such as GIS, Excel, and Google Earth. These classroom resources are appropriate for undergraduate earth system majors from first year to third year. We have completed and are field testing case histories for the 1994 M6.7 Northridge earthquake and the Super Tornado Outbreak of 1974, as well as other notable tornado outbreaks. Additionally, we are developing case histories for the 1700 Cascadia mega-tsunami and the 2005 Hurricane Katrina. Research studies of each of these events have resulted in significant changes to our understanding of the earth processes that caused them, and have spawned renewed interest in hazard mitigation. Each case history also incorporates the human element, presented from both a scientific and eyewitness perspective. Field testing includes evaluation of scientific accuracy, usability and pedagogical effectiveness, as described in the DLESE peer-review-system criteria (www.dlese-project.org/review_criteria.html) by field testers and external technical experts.

  3. Access and scientific exploitation of planetary plasma datasets with the CDPP/AMDA web-based tool

    NASA Astrophysics Data System (ADS)

    Andre, Nicolas

    2012-07-01

    The field of planetary sciences has greatly expanded in recent years with space missions orbiting around most of the planets of our Solar System. The growing amount and wealth of data available make it difficult for scientists to exploit data coming from many sources that can initially be heterogeneous in their organization, description and format. It is an important objective of the Europlanet-RI (supported by EU within FP7) to add value to space missions by significantly contributing to the effective scientific exploitation of collected data; to enable space researchers to take full advantage of the potential value of data sets. To this end and to enhance the science return from space missions, innovative tools have to be developed and offered to the community. AMDA (Automated Multi-Dataset Analysis, http://cdpp-amda.cesr.fr/) is a web-based facility developed at CDPP Toulouse in France (http://cdpp.cesr.fr) for on line analysis of space physics data (heliosphere, magnetospheres, planetary environments) coming from either its local database or distant ones. AMDA has been recently integrated as a service to the scientific community for the Plasma Physics thematic node of the Europlanet-RI IDIS (Integrated and Distributed Information Service, http://www.europlanet-idis.fi/) activities, in close cooperation with IWF Graz (http://europlanet-plasmanode.oeaw.ac.at/index.php?id=9). We will report the status of our current technical and scientific efforts to integrate in the local database of AMDA various planetary plasma datasets (at Mercury, Venus, Mars, Earth and Moon, Jupiter, Saturn) from heterogeneous sources, including NASA/Planetary Data System (http://ppi.pds.nasa.gov/). We will also present our prototype Virtual Observatory activities to connect the AMDA tool to the IVOA Aladin astrophysical tool to enable pluridisciplinary studies of giant planet auroral emissions. This presentation will be done on behalf of the CDPP Team and Europlanet-RI IDIS plasma node

  4. Dame:. a Web Oriented Infrastructure for Scientific Data Mining and Exploration

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Brescia, M.; Longo, G.; Garofalo, M.; Nocella, A.

    2012-12-01

    Nowadays, many scientific areas share the same broad requirements of being able to deal with massive and distributed datasets while, when possible, being integrated with services and applications. In order to solve the growing gap between the incremental generation of data and our understanding of it, it is required to know how to access, retrieve, analyze, mine and integrate data from disparate sources. One of the fundamental aspects of any new generation of data mining software tool or package which really wants to become a service for the community is the possibility to use it within complex workflows which each user can fine tune in order to match the specific demands of his scientific goal. These workflows need often to access different resources (data, providers, computing facilities and packages) and require a strict interoperability on (at least) the client side. The project DAME (DAta Mining & Exploration) arises from these requirements by providing a distributed WEB-based data mining infrastructure specialized on Massive Data Sets exploration with Soft Computing and machine learning methods. It results as a multi-disciplinary platform-independent tool perfectly compliant with modern KDD (Knowledge Discovery in Databases) requirements and Information & Communication Technology trends.

  5. Supporting exploration and collaboration in scientific workflow systems

    NASA Astrophysics Data System (ADS)

    Marini, L.; Kooper, R.; Bajcsy, P.; Myers, J.

    2007-12-01

    As the amount of observation data captured everyday increases, running scientific workflows will soon become a fundamental step of scientific inquiry. Current scientific workflow systems offer ways to link together data, software and computational resources, but often accomplish this by requiring a deep understanding of the system with a steep learning curve. Thus, there is a need to lower user adoption barriers for workflow systems and improve the plug-and-play functionality of these systems. We created a system that allows the user to easily create and share workflows, data and algorithms. Our goal of lowering user adoption barriers is to support discoveries and to provide means for conducting research more efficiently. Current paradigms for workflow creation focus on the visual programming using a graph based metaphor. This can be a powerful metaphor in the hands of expert users, but can become daunting when graphs become large, the steps in the graph include engineering level steps such as loading and visualizing data, and the users are not very familiar with all the possible tools available. We present a different method of workflow creation that co- exists with the standard graph based editors. The method builds on exploratory interface using a macro- recording style, and focuses on the data being analyzed during the step by step creation of the workflow. Instead of storing data in system specific data structures, the use of more flexible open standards that are platform independent would create systems that are easier to extend and that provide a simple interface for external applications to query and analyze the data and metadata produced. We have explored and implemented a system that stores workflows and related metadata using the Resource Description Framework (RDF) metadata model and that is build on top of the Tupelo data and metadata archiving system. The scientific workflow system connects to shared content repositories, where users can easily share

  6. Earth Exploration Toolbook Workshops: Helping Teachers and Students Analyze Web-based Scientific Data

    NASA Astrophysics Data System (ADS)

    McAuliffe, C.; Ledley, T.; Dahlman, L.; Haddad, N.

    2007-12-01

    One of the challenges faced by Earth science teachers, particularly in K-12 settings, is that of connecting scientific research to classroom experiences. Helping teachers and students analyze Web-based scientific data is one way to bring scientific research to the classroom. The Earth Exploration Toolbook (EET) was developed as an online resource to accomplish precisely that. The EET consists of chapters containing step-by-step instructions for accessing Web-based scientific data and for using a software analysis tool to explore issues or concepts in science, technology, and mathematics. For example, in one EET chapter, users download Earthquake data from the USGS and bring it into a geographic information system (GIS), analyzing factors affecting the distribution of earthquakes. The goal of the EET Workshops project is to provide professional development that enables teachers to incorporate Web-based scientific data and analysis tools in ways that meet their curricular needs. In the EET Workshops project, Earth science teachers participate in a pair of workshops that are conducted in a combined teleconference and Web-conference format. In the first workshop, the EET Data Analysis Workshop, participants are introduced to the National Science Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). They also walk through an Earth Exploration Toolbook (EET) chapter and discuss ways to use Earth science datasets and tools with their students. In a follow-up second workshop, the EET Implementation Workshop, teachers share how they used these materials in the classroom by describing the projects and activities that they carried out with students. The EET Workshops project offers unique and effective professional development. Participants work at their own Internet-connected computers, and dial into a toll-free group teleconference for step-by-step facilitation and interaction. They also receive support via Elluminate, a Web

  7. The Visual Geophysical Exploration Environment: A Multi-dimensional Scientific Visualization

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Domenico, B.; Murray, D.; Marlino, M. R.

    2003-12-01

    The Visual Geophysical Exploration Environment (VGEE) is an online learning environment designed to help undergraduate students understand fundamental Earth system science concepts. The guiding principle of the VGEE is the importance of hands-on interaction with scientific visualization and data. The VGEE consists of four elements: 1) an online, inquiry-based curriculum for guiding student exploration; 2) a suite of El Nino-related data sets adapted for student use; 3) a learner-centered interface to a scientific visualization tool; and 4) a set of concept models (interactive tools that help students understand fundamental scientific concepts). There are two key innovations featured in this interactive poster session. One is the integration of concept models and the visualization tool. Concept models are simple, interactive, Java-based illustrations of fundamental physical principles. We developed eight concept models and integrated them into the visualization tool to enable students to probe data. The ability to probe data using a concept model addresses the common problem of transfer: the difficulty students have in applying theoretical knowledge to everyday phenomenon. The other innovation is a visualization environment and data that are discoverable in digital libraries, and installed, configured, and used for investigations over the web. By collaborating with the Integrated Data Viewer developers, we were able to embed a web-launchable visualization tool and access to distributed data sets into the online curricula. The Thematic Real-time Environmental Data Distributed Services (THREDDS) project is working to provide catalogs of datasets that can be used in new VGEE curricula under development. By cataloging this curricula in the Digital Library for Earth System Education (DLESE), learners and educators can discover the data and visualization tool within a framework that guides their use.

  8. Scientific exploration of near-Earth objects via the Orion Crew Exploration Vehicle

    NASA Astrophysics Data System (ADS)

    Abell, P. A.; Korsmeyer, D. J.; Landis, R. R.; Jones, T. D.; Adamo, D. R.; Morrison, D. D.; Lemke, L. G.; Gonzales, A. A.; Gershman, R.; Sweetser, T. H.; Johnson, L. L.; Lu, E.

    2009-01-01

    A study in late 2006 was sponsored by the Advanced Projects Office within NASA’s Constellation Program to examine the feasibility of sending the Orion Crew Exploration Vehicle (CEV) to a near-Earth object (NEO). The ideal mission profile would involve two or three astronauts on a 90 to 180 day flight, which would include a 7 to 14 day stay for proximity operations at the target NEO. This mission would be the first human expedition to an interplanetary body beyond the Earth- Moon system and would prove useful for testing technologies required for human missions to Mars and other solar system destinations. Piloted missions to NEOs using the CEV would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. The main scientific advantage of sending piloted missions to NEOs would be the flexibility of the crew to perform tasks and to adapt to situations in real time. A crewed vehicle would be able to test several different sample collection techniques and target specific areas of interest via extra-vehicular activities (EVAs) more efficiently than robotic spacecraft. Such capabilities greatly enhance the scientific return from these missions to NEOs, destinations vital to understanding the evolution and thermal histories of primitive bodies during the formation of the early solar system. Data collected from these missions would help constrain the suite of materials possibly delivered to the early Earth, and would identify potential source regions from which NEOs originate. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense.

  9. Small Explorer for Advanced Missions - cubesat for scientific mission

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Ivchenko, Nickolay

    2015-04-01

    A class of nanosatellites is defined by the cubesat standard, primarily setting the interface to the launcher, which allows standardizing cubesat preparation and launch, thus making the projects more affordable. The majority of cubesats have been launched are demonstration or educational missions. For scientific and other advanced missions to fully realize the potential offered by the low cost nanosatellites, there are challenges related to limitations of the existing cubesat platforms and to the availability of small yet sufficiently sensitive sensors. The new project SEAM (Small Explorer for Advanced Missions) was selected for realization in frames of FP-7 European program to develop a set of improved critical subsystems and to construct a prototype nanosatellite in the 3U cubesat envelope for electromagnetic measurements in low Earth orbit. The SEAM consortium will develop and demonstrate in flight for the first time the concept of an electromagnetically clean nanosatellite with precision attitude determination, flexible autonomous data acquisition system, high-bandwidth telemetry and an integrated solution for ground control and data handling. As the first demonstration, the satellite is planned to perform the Space Weather (SW) mission using novel miniature electric and magnetic sensors, able to provide science-grade measurements. To enable sensitive magnetic measurements onboard, the sensors must be deployed on booms to bring them away from the spacecraft body. Also other thorough yet efficient procedures will be developed to provide electromagnetic cleanliness (EMC) of the spacecraft. This work is supported by EC Framework 7 funded project 607197.

  10. Crew Roles and Interactions in Scientific Space Exploration

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-01-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human spaceflight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future spaceflight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future spaceflights.

  11. Crew roles and interactions in scientific space exploration

    NASA Astrophysics Data System (ADS)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-10-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.

  12. A Physics MOSAIC: Scientific Skills and Explorations for Students

    NASA Astrophysics Data System (ADS)

    May, S.; Clements, C.; Erickson, P. J.; Rogers, A.

    2010-12-01

    MOSAIC unit begins with a series of activities and lessons designed to take advantage of the large data sets MOSAIC is collecting all the time to teach students about measurement, uncertainty, and data analysis. The curriculum develops an intuitive approach to thinking about numbers in science, focusing on both implicit and explicit expressions of uncertainty. Our teaching unit concludes with a final research project to provide students with the opportunity to pursue an area of interest within mesospheric ozone. This project is conceived in such a way that it can be as self-directed as a teacher or student needs. Given current concern for the state of our atmosphere and ozone, MOSAIC provides a unique opportunity for student engagement in an area of scientific research that has not been extensively explored. MOSAIC data can be compared with online resources for other atmospheric, astronomical, or geophysical data, and have been analyzed for the effects of such variables as seasonal and solar flux variations, lunar phases, shuttle and rocket launches, and sudden stratospheric warming events.

  13. Exploration of Korean Students' Scientific Imagination Using the Scientific Imagination Inventory

    ERIC Educational Resources Information Center

    Mun, Jiyeong; Mun, Kongju; Kim, Sung-Won

    2015-01-01

    This article reports on the study of the components of scientific imagination and describes the scales used to measure scientific imagination in Korean elementary and secondary students. In this study, we developed an inventory, which we call the Scientific Imagination Inventory (SII), in order to examine aspects of scientific imagination. We…

  14. Exploration of Korean Students' Scientific Imagination Using the Scientific Imagination Inventory

    NASA Astrophysics Data System (ADS)

    Mun, Jiyeong; Mun, Kongju; Kim, Sung-Won

    2015-09-01

    This article reports on the study of the components of scientific imagination and describes the scales used to measure scientific imagination in Korean elementary and secondary students. In this study, we developed an inventory, which we call the Scientific Imagination Inventory (SII), in order to examine aspects of scientific imagination. We identified three conceptual components of scientific imagination, which were composed of (1) scientific sensitivity, (2) scientific creativity, and (3) scientific productivity. We administered SII to 662 students (4th-8th grades) and confirmed validity and reliability using exploratory factor analysis and Cronbach α coefficient. The characteristics of Korean elementary and secondary students' overall scientific imagination and difference across gender and grade level are discussed in the results section.

  15. Hands-on and Online: Scientific Explorations through Distance Learning

    ERIC Educational Resources Information Center

    Mawn, Mary V.; Carrico, Pauline; Charuk, Ken; Stote, Kim S.; Lawrence, Betty

    2011-01-01

    Laboratory experiments are often considered the defining characteristic of science courses. Such activities provide students with real-world contexts for applying scientific concepts, while also allowing them to develop scientific ways of thinking and promoting an interest in science. In recent years, an increasing number of campuses have moved…

  16. Exploring genome-wide datasets of MHC class II antigen presentation.

    PubMed

    Wijdeven, Ruud H; Bakker, Jeroen M; Paul, Petra; Neefjes, Jacques

    2013-09-01

    MHC class II molecules (MHCII) are critical for presenting antigens to CD4(+) T-cells. They control ignition of CD4(+) T cells and are as such involved in most auto-immune diseases. To define proteins and pathways controlling MHCII antigen presentation and expression, we performed a genome-wide flow cytometry based RNAi screen. Hits were subsequently classified by two screens that monitored the intracellular distribution and transcription of MHCII. This multi-dimensional approach allowed subclassification of hits into functional groups as a first step to defining new pathways controlling MHCII antigen presentation. The datasets from this screen are used as a template for several follow-up studies. This overview focuses on how data from genome-wide screens can be used for target-lead finding, data mining, systems biology and systematic cell biology. PMID:23137594

  17. A Dataset of Metaphors from the Italian Literature: Exploring Psycholinguistic Variables and the Role of Context

    PubMed Central

    Bambini, Valentina; Resta, Donatella; Grimaldi, Mirko

    2014-01-01

    Defining the specific role of the factors that affect metaphor processing is a fundamental step for fully understanding figurative language comprehension, either in discourse and conversation or in reading poems and novels. This study extends the currently available materials on everyday metaphorical expressions by providing the first dataset of metaphors extracted from literary texts and scored for the major psycholinguistic variables, considering also the effect of context. A set of 115 Italian literary metaphors presented in isolation (Experiment 1) and a subset of 65 literary metaphors embedded in their original texts (Experiment 2) were rated on several dimensions (word and phrase frequency, readability, cloze probability, familiarity, concreteness, difficulty and meaningfulness). Overall, literary metaphors scored around medium-low values on all dimensions in both experiments. Collected data were subjected to correlation analysis, which showed the presence of a strong cluster of variables—mainly familiarity, difficulty, and meaningfulness—when literary metaphor were presented in isolation. A weaker cluster was observed when literary metaphors were presented in the original contexts, with familiarity no longer correlating with meaningfulness. Context manipulation influenced familiarity, concreteness and difficulty ratings, which were lower in context than out of context, while meaningfulness increased. Throughout the different dimensions, the literary context seems to promote a global interpretative activity that enhances the open-endedness of the metaphor as a semantic structure constantly open to all possible interpretations intended by the author and driven by the text. This dataset will be useful for the design of future experimental studies both on literary metaphor and on the role of context in figurative meaning, combining ecological validity and aesthetic aspects of language. PMID:25244522

  18. A dataset of metaphors from the italian literature: exploring psycholinguistic variables and the role of context.

    PubMed

    Bambini, Valentina; Resta, Donatella; Grimaldi, Mirko

    2014-01-01

    Defining the specific role of the factors that affect metaphor processing is a fundamental step for fully understanding figurative language comprehension, either in discourse and conversation or in reading poems and novels. This study extends the currently available materials on everyday metaphorical expressions by providing the first dataset of metaphors extracted from literary texts and scored for the major psycholinguistic variables, considering also the effect of context. A set of 115 Italian literary metaphors presented in isolation (Experiment 1) and a subset of 65 literary metaphors embedded in their original texts (Experiment 2) were rated on several dimensions (word and phrase frequency, readability, cloze probability, familiarity, concreteness, difficulty and meaningfulness). Overall, literary metaphors scored around medium-low values on all dimensions in both experiments. Collected data were subjected to correlation analysis, which showed the presence of a strong cluster of variables-mainly familiarity, difficulty, and meaningfulness-when literary metaphor were presented in isolation. A weaker cluster was observed when literary metaphors were presented in the original contexts, with familiarity no longer correlating with meaningfulness. Context manipulation influenced familiarity, concreteness and difficulty ratings, which were lower in context than out of context, while meaningfulness increased. Throughout the different dimensions, the literary context seems to promote a global interpretative activity that enhances the open-endedness of the metaphor as a semantic structure constantly open to all possible interpretations intended by the author and driven by the text. This dataset will be useful for the design of future experimental studies both on literary metaphor and on the role of context in figurative meaning, combining ecological validity and aesthetic aspects of language. PMID:25244522

  19. Exploring frontiers of the deep biosphere through scientific ocean drilling

    NASA Astrophysics Data System (ADS)

    Inagaki, F.; D'Hondt, S.; Hinrichs, K. U.

    2015-12-01

    Since the first deep biosphere-dedicated Ocean Drilling Program (ODP) Leg 201 using the US drill ship JOIDES Resolution in 2002, scientific ocean drilling has offered unique opportunities to expand our knowledge of the nature and extent of the deep biosphere. The latest estimate of the global subseafloor microbial biomass is ~1029cells, accounting for 4 Gt of carbon and ~1% of the Earth's total living biomass. The subseafloor microbial communities are evolutionarily diverse and their metabolic rates are extraordinarily slow. Nevertheless, accumulating activity most likely plays a significant role in elemental cycles over geological time. In 2010, during Integrated Ocean Drilling Program (IODP) Expedition 329, the JOIDES Resolutionexplored the deep biosphere in the open-ocean South Pacific Gyre—the largest oligotrophic province on our planet. During Expedition 329, relatively high concentrations of dissolved oxygen and significantly low biomass of microbial populations were observed in the entire sediment column, indicating that (i) there is no limit to life in open-ocean sediment and (ii) a significant amount of oxygen reaches through the sediment to the upper oceanic crust. This "deep aerobic biosphere" inhabits the sediment throughout up to ~37 percent of the world's oceans. The remaining ~63 percent of the oceans is comprised of higher productivity areas that contain the "deep anaerobic biosphere". In 2012, during IODP Expedition 337, the Japanese drill ship Chikyu explored coal-bearing sediments down to 2,466 meters below the seafloor off the Shimokita Peninsula, Japan. Geochemical and microbiological analyses consistently showed the occurrence of methane-producing communities associated with the coal beds. Cell concentrations in deep sediments were notably lower than those expected from the global regression line, implying that the bottom of the deep biosphere is approached in these beds. Taxonomic composition of the deep coal-bearing communities profoundly

  20. Exploring scientific creativity of eleventh-grade students in Taiwan

    NASA Astrophysics Data System (ADS)

    Liang, Jia-Chi

    2002-04-01

    Although most researchers focus on scientists' creativity, students' scientific creativity should be considered, especially for high school and college students. It is generally assumed that most professional creators in science emerge from amateur creators. Therefore, the purpose of this study is to investigate the relationship between students' scientific creativity and selected variables including creativity, problem finding, formulating hypotheses, science achievement, the nature of science, and attitudes toward science for finding significant predictors of eleventh grade students' scientific creativity. A total of 130 male eleventh-grade students in three biology classes participated in this study. The main instruments included the Test of Divergent Thinking (TDT) for creativity measurement, the Creativity Rating Scale (CRS) and the Creative Activities and Accomplishments Check Lists (CAACL ) for measurement of scientific creativity, the Nature of Scientific Knowledge Scale (NSKS) for measurement of the nature of science, and the Science Attitude Inventory II (SAI II) for measurement of attitudes toward science. In addition, two instruments on measuring students' abilities of problem finding and abilities of formulating hypotheses were developed by the researcher in this study. Data analysis involved descriptive statistics, Pearson product-moment correlations, and stepwise multiple regressions. The major findings suggested the following: (1) students' scientific creativity significantly correlated with some of selected variables such as attitudes toward science, problem finding, formulating hypotheses, the nature of science, resistance to closure, originality, and elaboration; (2) four significant predictors including attitudes toward science, problem finding, resistance to closure, and originality accounted for 48% of the variance of students' scientific creativity; (3) there were big differences between students with a higher and a lower degree of scientific

  1. EEGVIS: A MATLAB Toolbox for Browsing, Exploring, and Viewing Large Datasets

    PubMed Central

    Robbins, Kay A.

    2012-01-01

    Recent advances in data monitoring and sensor technology have accelerated the acquisition of very large data sets. Streaming data sets from instrumentation such as multi-channel EEG recording usually must undergo substantial pre-processing and artifact removal. Even when using automated procedures, most scientists engage in laborious manual examination and processing to assure high quality data and to indentify interesting or problematic data segments. Researchers also do not have a convenient method of method of visually assessing the effects of applying any stage in a processing pipeline. EEGVIS is a MATLAB toolbox that allows users to quickly explore multi-channel EEG and other large array-based data sets using multi-scale drill-down techniques. Customizable summary views reveal potentially interesting sections of data, which users can explore further by clicking to examine using detailed viewing components. The viewer and a companion browser are built on our MoBBED framework, which has a library of modular viewing components that can be mixed and matched to best reveal structure. Users can easily create new viewers for their specific data without any programming during the exploration process. These viewers automatically support pan, zoom, resizing of individual components, and cursor exploration. The toolbox can be used directly in MATLAB at any stage in a processing pipeline, as a plug-in for EEGLAB, or as a standalone precompiled application without MATLAB running. EEGVIS and its supporting packages are freely available under the GNU general public license at http://visual.cs.utsa.edu/eegvis. PMID:22654753

  2. The USA National Phenology Network's National Phenology Database: a multi-taxa, continental-scale dataset for scientific inquiry

    NASA Astrophysics Data System (ADS)

    Weltzin, J. F.

    2012-12-01

    The USA National Phenology Network (USA-NPN; www.usanpn.org) serves science and society by promoting a broad understanding of plant and animal phenology and the relationships among phenological patterns and all aspects of environmental change. The National Phenology Database, maintained by the USA-NPN, is experiencing steady growth in the number of data records it houses. As of August 2012, participants in the USA-NPN national-scale, multi-taxa phenology observation program Nature's Notebook had contributed over 1.3 million observation records (encompassing four and three years of observations for plants and for animals, respectively). Data are freely available www.usanpn.org/results/data, and include FGDC-compliant metadata, data-use and data-attribution policies, vetted and documented methodologies and protocols, and version control. Quality assurance and quality control, and metadata data associated with field observations (e.g., effort and method reporting, site and organism condition) are also documented. Data are also available for exploration, visualization and preliminary analysis at www.usanpn.org/results/visualizations. Participants in Nature's Notebook, who include both professional and volunteer scientists, follow vetted protocols that employ phenological "status" monitoring rather than "event" monitoring: when sampling, observers indicate the status of each phenophase (e.g., "breaking leaf buds" or "active individuals"). This approach has a number of advantages over event monitoring (including estimation of error, estimation of effort, "negative" or "absence" data, capture of multiple events and phenophase duration) and is especially well-suited for integrated multi-taxa monitoring. Further, protocols and a user interface to facilitate the description of development or abundance data (e.g., tree canopy development, animal abundance) create a robust ecological dataset. We demonstrate several types of questions that can be addressed with this observing

  3. Hot Salsa: A Laboratory Exercise Exploring the Scientific Method.

    ERIC Educational Resources Information Center

    Levri, Edward P.; Levri, Maureen A.

    2003-01-01

    Presents a laboratory exercise on spicy food and body temperature that introduces the scientific method to introductory biology students. Suggests that when students perform their own experiments which they have developed, it helps with their understanding of and confidence in doing science. (Author/SOE)

  4. NASA's Mars Exploration Program: Scientific Strategy 1996 2020

    NASA Astrophysics Data System (ADS)

    Garvin, J. B.; McCleese, D. J.

    2003-07-01

    This paper describes a roadmap to the next ~20 years of Mars exploration from the NASA viewpoint. The design of the newly restructured strategy is attentive to risks and a major attempt to instill resiliency in the program.

  5. Interactive exploration of integrated biological datasets using context-sensitive workflows

    PubMed Central

    Horn, Fabian; Rittweger, Martin; Taubert, Jan; Lysenko, Artem; Rawlings, Christopher; Guthke, Reinhard

    2013-01-01

    Network inference utilizes experimental high-throughput data for the reconstruction of molecular interaction networks where new relationships between the network entities can be predicted. Despite the increasing amount of experimental data, the parameters of each modeling technique cannot be optimized based on the experimental data alone, but needs to be qualitatively assessed if the components of the resulting network describe the experimental setting. Candidate list prioritization and validation builds upon data integration and data visualization. The application of tools supporting this procedure is limited to the exploration of smaller information networks because the display and interpretation of large amounts of information is challenging regarding the computational effort and the users' experience. The Ondex software framework was extended with customizable context-sensitive menus which allow additional integration and data analysis options for a selected set of candidates during interactive data exploration. We provide new functionalities for on-the-fly data integration using InterProScan, PubMed Central literature search, and sequence-based homology search. We applied the Ondex system to the integration of publicly available data for Aspergillus nidulans and analyzed transcriptome data. We demonstrate the advantages of our approach by proposing new hypotheses for the functional annotation of specific genes of differentially expressed fungal gene clusters. Our extension of the Ondex framework makes it possible to overcome the separation between data integration and interactive analysis. More specifically, computationally demanding calculations can be performed on selected sub-networks without losing any information from the whole network. Furthermore, our extensions allow for direct access to online biological databases which helps to keep the integrated information up-to-date. PMID:24600467

  6. An Imaging Laser Altimeter for Lunar Scientific Exploration

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new approach to laser altimetry is offered by the development of micro-lasers and pixilated detectors that enable very high resolution measurement of topography and relatively wide swath observations. An imaging altimeter with a 8x8 array detector working at a probability of less than a single photon/shot could map the Moon or similar sized body in approximately 2 years and provide 5 meter horizontal resolution topography and a 10 centimeter vertical accuracy. In addition, it would provide surface roughness and surface slopes on similar length scales of 5 meters and be able to address a range of problems for which topography or lunar shape is important at the decimeter level. This includes the topography of the polar regions, where ice is thought to have been identified, and also the cratering history of the Moon which could be assessed with a dataset of uniform quality and high resolution.

  7. Interactive Exploration, Analysis, and Visualization of Complex Phenome-Genome Datasets with ASPIREdb.

    PubMed

    Tan, Powell Patrick Cheng; Rogic, Sanja; Zoubarev, Anton; McDonald, Cameron; Lui, Frances; Charathsandran, Gayathiri; Jacobson, Matthew; Belmadani, Manuel; Leong, Justin; Van Rossum, Thea; Portales-Casamar, Elodie; Qiao, Ying; Calli, Kristina; Liu, Xudong; Hudson, Melissa; Rajcan-Separovic, Evica; Lewis, Me Suzanne; Pavlidis, Paul

    2016-08-01

    Identifying variants causal for complex genetic disorders is challenging. With the advent of whole-exome and whole-genome sequencing, computational tools are needed to explore and analyze the list of variants for further validation. Correlating genetic variants with subject phenotype is crucial for the interpretation of the disease-causing mutations. Often such work is done by teams of researchers who need to share information and coordinate activities. To this end, we have developed a powerful, easy to use Web application, ASPIREdb, which allows researchers to search, organize, analyze, and visualize variants and phenotypes associated with a set of human subjects. Investigators can annotate variants using publicly available reference databases and build powerful queries to identify subjects or variants of interest. Functional information and phenotypic associations of these genes are made accessible as well. Burden analysis and additional reporting tools allow investigation of variant properties and phenotype characteristics. Projects can be shared, allowing researchers to work collaboratively to build queries and annotate the data. We demonstrate ASPIREdb's functionality using publicly available data sets, showing how the software can be used to accomplish goals that might otherwise require specialized bioinformatics expertise. ASPIREdb is available at http://aspiredb.chibi.ubc.ca. PMID:27158917

  8. MilxXplore: a web-based system to explore large imaging datasets

    PubMed Central

    Bourgeat, P; Dore, V; Villemagne, V L; Rowe, C C; Salvado, O; Fripp, J

    2013-01-01

    Objective As large-scale medical imaging studies are becoming more common, there is an increasing reliance on automated software to extract quantitative information from these images. As the size of the cohorts keeps increasing with large studies, there is a also a need for tools that allow results from automated image processing and analysis to be presented in a way that enables fast and efficient quality checking, tagging and reporting on cases in which automatic processing failed or was problematic. Materials and methods MilxXplore is an open source visualization platform, which provides an interface to navigate and explore imaging data in a web browser, giving the end user the opportunity to perform quality control and reporting in a user friendly, collaborative and efficient way. Discussion Compared to existing software solutions that often provide an overview of the results at the subject's level, MilxXplore pools the results of individual subjects and time points together, allowing easy and efficient navigation and browsing through the different acquisitions of a subject over time, and comparing the results against the rest of the population. Conclusions MilxXplore is fast, flexible and allows remote quality checks of processed imaging data, facilitating data sharing and collaboration across multiple locations, and can be easily integrated into a cloud computing pipeline. With the growing trend of open data and open science, such a tool will become increasingly important to share and publish results of imaging analysis. PMID:23775173

  9. Mars scientific investigations as a precursor for human exploration.

    PubMed

    Ahlf, P; Cantwell, E; Ostrach, L; Pline, A

    2000-01-01

    In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities. PMID:11708369

  10. Scientific Assessment of NASA's Solar System Exploration Roadmap

    NASA Technical Reports Server (NTRS)

    1996-01-01

    At its June 24-28, 1996, meeting, the Space Studies Board's Committee on Planetary and Lunar Exploration (COMPLEX), chaired by Ronald Greeley of Arizona State University, conducted an assessment of NASA's Mission to the Solar System Roadmap report. This assessment was made at the specific request of Dr. Jurgen Rahe, NASA's science program director for solar system exploration. The assessment includes consideration of the process by which the Roadmap was developed, comparison of the goals and objectives of the Roadmap with published National Research Council (NRC) recommendations, and suggestions for improving the Roadmap.

  11. Automatic Flushing Toilets: An Entertaining Platform for Exploring Scientific Thinking

    ERIC Educational Resources Information Center

    Blais, Brian S.

    2011-01-01

    It is often challenging, especially at the beginning of a course, to find good examples where students can actively explore and grapple with the methods of science. We want them to learn the connection between observation, theory, prediction, evidence, and falsification, but to really accomplish this we need platforms for which the students are…

  12. Mars scientific investigations as a precursor for human exploration

    NASA Technical Reports Server (NTRS)

    Ahlf, P.; Cantwell, E.; Ostrach, L.; Pline, A.

    2000-01-01

    In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities. c 2000 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  13. A Resource-Rich, Scientifically Compelling Exploration Zone for Human Missions at Deuteronilus Mensae, Mars

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    2015-10-01

    The Deuteronilus Mensae region of Mars is promising as a potential landing site for human exploration because it contains vast, readily accessible deposits of water ice in a setting of key scientific importance.

  14. Scientific objectives of the Solar Mesosphere Explorer mission

    NASA Technical Reports Server (NTRS)

    Thomas, G. E.; Barth, C. A.; Hansen, E. R.; Hord, C. W.; Lawrence, G. M.; Mount, G. H.; Rottman, G. J.; Rusch, D. W.; Stewart, A. I.; Thomas, R. J.

    1980-01-01

    The paper describes the NASA Solar Mesosphere Explorer mission which will study mesospheric ozone and the processes which form and destroy it, measure the ozone density and its altitude distribution from 30 to 80 km, monitor incoming solar UV radiation, and provide a rigorous test of the photochemical equilibrium theory of the mesospheric oxygen-hydrogen system. Five instruments will be carried on the polar-orbiting spacecraft: UV ozone, IR airglow, and visible NO2 programmable Ebert-Fastie spectrometers, a four-channel IR radiometer, and a solar UV spectrometer. Atmospheric measurements will be made of the mesospheric and stratospheric ozone density distribution, water vapor density distribution, temperature profile, ozone photolysis rate, and NO2 density distribution. In addition, the solar UV monitor will measure both the 0.2-0.31 micron spectral region and the Lyman-alpha (0.1216 micron) contribution to the solar irradiance.

  15. Ares V: Application to Solar System Scientific Exploration

    NASA Technical Reports Server (NTRS)

    Elliott, John; Spilker, Thomas; Reh, Kim; Smith, David; Woodcock, Gordon

    2008-01-01

    The development of the Ares V launch vehicle will provide levels of performance unseen since the days of Apollo. This capability, like the Saturn V before it, is being developed primarily for crewed lunar missions. However, the tremendous jump in performance offered by the Ares V launch system has tremendous potential for the furtherance of robotic solar system exploration missions as well. Preliminary performance assessments indicate that Ares V could deliver 5 times the payload to Mars as compared to the most capable US expendable launch vehicle available today. Beyond Mars, the outer planets offer a number of high-priority investigations with compelling science. Presently, missions to these destinations are only achievable using indirect flights with gravity assist trajectories and, in many cases, suffer from long flight times. An Ares V with an upper stage could capture these missions using direct flights with shorter interplanetary transfer times that would enable extensive in situ investigations and possibly the return of samples to Earth. This paper lays out an estimate of Ares V performance for moderate and high C3 missions, and goes on to discuss a range of revolutionary mission concepts that could be enabled by this significant in-crease in launch capability.

  16. Handwritten mathematical symbols dataset

    PubMed Central

    Chajri, Yassine; Bouikhalene, Belaid

    2016-01-01

    Due to the technological advances in recent years, paper scientific documents are used less and less. Thus, the trend in the scientific community to use digital documents has increased considerably. Among these documents, there are scientific documents and more specifically mathematics documents. In this context, we present our own dataset of handwritten mathematical symbols composed of 10,379 images. This dataset gathers Arabic characters, Latin characters, Arabic numerals, Latin numerals, arithmetic operators, set-symbols, comparison symbols, delimiters, etc. PMID:27006975

  17. Handwritten mathematical symbols dataset.

    PubMed

    Chajri, Yassine; Bouikhalene, Belaid

    2016-06-01

    Due to the technological advances in recent years, paper scientific documents are used less and less. Thus, the trend in the scientific community to use digital documents has increased considerably. Among these documents, there are scientific documents and more specifically mathematics documents. In this context, we present our own dataset of handwritten mathematical symbols composed of 10,379 images. This dataset gathers Arabic characters, Latin characters, Arabic numerals, Latin numerals, arithmetic operators, set-symbols, comparison symbols, delimiters, etc. PMID:27006975

  18. Towards AN Integrated Scientific and Social Case for Human Space Exploration

    NASA Astrophysics Data System (ADS)

    Crawford, I. A.

    2004-06-01

    I will argue that an ambitious programme of human space exploration, involving a return to the Moon, and eventually human missions to Mars, will add greatly to human knowledge. Gathering such knowledge is the primary aim of science, but science’s compartmentalisation into isolated academic disciplines tends to obscure the overall strength of the scientific case. Any consideration of the scientific arguments for human space exploration must therefore take a holistic view, and integrate the potential benefits over the entire spectrum of human knowledge. Moreover, science is only one thread in a much larger overall case for human space exploration. Other threads include economic, industrial, educational, geopolitical and cultural benefits. Any responsibly formulated public space policy must weigh all of these factors before deciding whether or not an investment in human space activities is scientifically and socially desirable.

  19. Exploring the Changes in Students' Understanding of the Scientific Method Using Word Associations

    NASA Astrophysics Data System (ADS)

    Gulacar, Ozcan; Sinan, Olcay; Bowman, Charles R.; Yildirim, Yetkin

    2015-10-01

    A study is presented that explores how students' knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them experiment, science fair, and hypothesis, is used to probe the students' knowledge structures. Students from grades four, five, and eight, as well as first-year college students were tested to reveal their knowledge structures relating to the scientific method. Younger students were found to have a naïve view of the science process with little understanding of how science relates to the real world. However, students' conceptions about the scientific process appear to be malleable, with science fairs a potentially strong influencer. The strength of associations between words is observed to change from grade to grade, with younger students placing science fair near the center of their knowledge structure regarding the scientific method, whereas older students conceptualize the scientific method around experiment.

  20. Access and scientific exploitation of planetary plasma datasets with the CDPP/AMDA web-based facility in relation to the Europlanet-RI IDIS plasma node activities

    NASA Astrophysics Data System (ADS)

    André, N.; Cecconi, B.; Renard, B.; Budnik, E.; Genot, V.; Jacquey, C.; Hitier, R.; Bourrel, N.; Gangloff, M.; Pallier, E.; Bouchemit, M.; Besson, B.; Topf, F.; Baumjohann, W.; Khodachenko, M.; Rucker, H.; Zhang, T.

    2012-09-01

    The field of planetary sciences has greatly expanded in recent years with space missions orbiting around most of the planets of our Solar System. The growing amount and wealth of data available make it difficult for scientists to exploit data coming from many sources that can initially be heterogeneous in their organization, description and format. It is an important objective of the Europlanet-RI and IMPEx projects (supported by EU within FP7) to add value to space missions by significantly contributing to the effective scientific exploitation of collected data; to enable space researchers to take full advantage of the potential value of data sets. To this end and to enhance the science return from space missions, innovative tools have to be developed and offered to the community. AMDA (Automated Multi-Dataset Analysis, http://cdpp-amda.cesr.fr/) is a web-based facility developed at CDPP Toulouse in France (http://cdpp.cesr.fr) for on line analysis of space physics data (heliosphere, magnetospheres, planetary environments) coming from either its local database or distant ones. AMDA has been recently integrated as a service to the scientific community for the Plasma Physics thematic node of the Europlanet-RI IDIS (Integrated and Distributed Information Service, http://www.europlanet-idis.fi/) activities, in close cooperation with IWF Graz (http://europlanetplasmanode. oeaw.ac.at/index.php?id=9). We will report the status of our current technical and scientific efforts to integrate in the local database of AMDA various planetary plasma datasets (at Mercury, Venus, Mars, Earth and moon, Jupiter, Saturn) from heterogeneous sources, including NASA/Planetary Data System (http://ppi.pds.nasa.gov/). We will also present our prototype Virtual Observatory activities to connect the AMDA tool to the IVOA Aladin astrophysical tool to enable pluridisciplinary studies of giant planet auroral emissions.

  1. Access and scientific exploitation of planetary plasma datasets with the CDPP/AMDA web-based facility in relation to the Europlanet-RI IDIS plasma node activities

    NASA Astrophysics Data System (ADS)

    Renard, B.; Budnik, E.; André, N.; Genot, V. N.; Jacquey, C.; Cecconi, B.; Fedorov, A.; Hitier, R.; Bourrel, N.; Gangloff, M.; Pallier, E.; Bouchemit, M.; Besson, B.; Topf, F.; Baumjohann, W.; Khodachenko, M. L.; Rucker, H. O.; Zhang, T.

    2011-12-01

    The field of planetary sciences has greatly expanded in recent years with space missions orbiting around most of the planets of our Solar System. The growing amount and wealth of data available make it difficult for scientists to exploit data coming from many sources that can initially be heterogeneous in their organization, description and format. It is an important objective of the Europlanet-RI and IMPEx projects (supported by EU within FP7) to add value to space missions by significantly contributing to the effective scientific exploitation of collected data; to enable space researchers to take full advantage of the potential value of data sets. To this end and to enhance the science return from space missions, innovative tools have to be developed and offered to the community. AMDA (Automated Multi-Dataset Analysis, http://cdpp-amda.cesr.fr/) is a web-based facility developed at CDPP Toulouse in France (http://cdpp.cesr.fr) for on line analysis of space physics data (heliosphere, magnetospheres, planetary environments) coming from either its local database or distant ones. AMDA has been recently integrated as a service to the scientific community for the Plasma Physics thematic node of the Europlanet-RI IDIS (Integrated and Distributed Information Service, http://www.europlanet-idis.fi/) activities, in close cooperation with IWF Graz (http://europlanet-plasmanode.oeaw.ac.at/index.php?id=9). We will report the status of our current technical and scientific efforts to integrate in the local database of AMDA various planetary plasma datasets (at Mercury, Venus, Mars, Earth and moon, Jupiter, Saturn) from heterogeneous sources, including NASA/Planetary Data System (http://ppi.pds.nasa.gov/).

  2. Scientific Exploration of Near-Earth Objects via the Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Korsmeyer, D. J.; Landis, R. R.; Lu, E.; Adamo (D.); Jones (T.); Lemke, L.; Gonzales, A.; Gershman, B.; Morrison, D.; Sweetser, T.; Johnson, L.

    2007-01-01

    The concept of a crewed mission to a Near-Earth Object (NEO) has been analyzed in depth in 1989 as part of the Space Exploration Initiative. Since that time two other studies have investigated the possibility of sending similar missions to NEOs. A more recent study has been sponsored by the Advanced Programs Office within NASA's Constellation Program. This study team has representatives from across NASA and is currently examining the feasibility of sending a Crew Exploration Vehicle (CEV) to a near-Earth object (NEO). The ideal mission profile would involve a crew of 2 or 3 astronauts on a 90 to 120 day flight, which would include a 7 to 14 day stay for proximity operations at the target NEO. One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure for the Vision for Space Exploration (VSE) and Exploration Systems Architecture Study (ESAS) in the run up to the lunar sorties at the end of the next decade (approx.2020). Sending a human expedition to a NEO, within the context of the VSE and ESAS, demonstrates the broad utility of the Constellation Program s Orion (CEV) crew capsule and Ares (CLV) launch systems. This mission would be the first human expedition to an interplanetary body outside of the cislunar system. Also, it will help NASA regain crucial operational experience conducting human exploration missions outside of low Earth orbit, which humanity has not attempted in nearly 40 years.

  3. Exploring English Language Learners (ELL) Experiences with Scientific Language and Inquiry within a Real Life Context

    ERIC Educational Resources Information Center

    Algee, Lisa M.

    2012-01-01

    English Language Learners (ELL) are often at a distinct disadvantage from receiving authentic science learning opportunites. This study explored English Language Learners (ELL) learning experiences with scientific language and inquiry within a real life context. This research was theoretically informed by sociocultural theory and literature on…

  4. Exploring the Changes in Students' Understanding of the Scientific Method Using Word Associations

    ERIC Educational Resources Information Center

    Gulacar, Ozcan; Sinan, Olcay; Bowman, Charles R.; Yildirim, Yetkin

    2015-01-01

    A study is presented that explores how students' knowledge structures, as related to the scientific method, compare at different student ages. A word association test comprised of ten total stimulus words, among them "experiment," "science fair," and "hypothesis," is used to probe the students' knowledge structures.…

  5. The Academy's Zeitgeist--Standards of Scientific Investigation: Exploring the Impact of Scholarly Work

    ERIC Educational Resources Information Center

    Mullen, Carol A.; Fauske, Janice

    2006-01-01

    The academy's zeitgeist--standards of scientic investigation--has recently come to the fore in the national arena as the dominant moral and intellectual framework for educational research. In this article, we explore the re-emergence of standards of scientific investigation as a significant shaping force in education and the scholarly culture,…

  6. The Texture of Educational Inquiry: An Exploration of George Herbert Mead's Concept of the Scientific.

    ERIC Educational Resources Information Center

    Franzosa, Susan Douglas

    1984-01-01

    Explores the implications of Mead's philosophic social psychology for current disputes concerning the nature of the scientific in educational studies. Mead's contextualization of the knower and the known are found to be compatible with a contemporary critique of positivist paradigms and a critical reconceptualization of educational inquiry.…

  7. Scientific exploration of lunar surface using a rover in Japanese future lunar mission

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Kubota, T.; Okada, T.; Saiki, K.; Kuroda, Y.; Kunii, Y.; Shibamura, E.; Akiyama, N.; Ohtake, M.; Ichikawa, M.; Higa, M.; Hirata, N.; Sugihara, T.; Haruyama, J.; Otake, H.; Yoshioka, N.; Terazono, J.; Yamada, M.; Yamaguchi, Y.; Kodama, S.; Rover Group in Japan

    A new lunar mission (SELENE-B) including a lander is now in consideration in Japan. The mission will follow up SELENE (SELenological and ENgineering Explorer, a global remote sensing mission of the moon in 2004). Scientific investigation plans using a rover are proposed: exploration of a crater central peak to discover subsurface materials and exploration of the polar region to discover the trapped ice. We have already developed a 5-wheel engineering-model rover, Micro5, which has a long manipulator with a camera on top. The rover can climb over 15cm steps and rocks by a new suspension system PEGASUS.

  8. Scientific Exploration of Near-Earth Objects via the Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Korsmeyer, D. J.; Landis, R. R.; Lu, E.; Adamo, D.; Jones, T.; Lemke, L.; Gonzales, A.; Gershman, B.; Morrison, D.; Sweetser, T.; Johnson, L.

    2007-01-01

    The concept of a crewed mission to a near-Earth object (NEO) has been previously analyzed several times in the past. A more in depth feasibility study has been sponsored by the Advanced Projects Office within NASA's Constellation Program to examine the ability of a Crew Exploration Vehicle (CEV) to support a mission to a NEO. The national mission profile would involve a crew of 2 or 3 astronauts on a 90 to 120 day mission, which would include a 7 to 14 day stay for proximity operations at the target NEO.

  9. The Need for Analogue Missions in Scientific Human and Robotic Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Snook, K. J.; Mendell, W. W.

    2004-01-01

    With the increasing challenges of planetary missions, and especially with the prospect of human exploration of the moon and Mars, the need for earth-based mission simulations has never been greater. The current focus on science as a major driver for planetary exploration introduces new constraints in mission design, planning, operations, and technology development. Analogue missions can be designed to address critical new integration issues arising from the new science-driven exploration paradigm. This next step builds on existing field studies and technology development at analogue sites, providing engineering, programmatic, and scientific lessons-learned in relatively low-cost and low-risk environments. One of the most important outstanding questions in planetary exploration is how to optimize the human and robotic interaction to achieve maximum science return with minimum cost and risk. To answer this question, researchers are faced with the task of defining scientific return and devising ways of measuring the benefit of scientific planetary exploration to humanity. Earth-based and spacebased analogue missions are uniquely suited to answer this question. Moreover, they represent the only means for integrating science operations, mission operations, crew training, technology development, psychology and human factors, and all other mission elements prior to final mission design and launch. Eventually, success in future planetary exploration will depend on our ability to prepare adequately for missions, requiring improved quality and quantity of analogue activities. This effort demands more than simply developing new technologies needed for future missions and increasing our scientific understanding of our destinations. It requires a systematic approach to the identification and evaluation of the categories of analogue activities. This paper presents one possible approach to the classification and design of analogue missions based on their degree of fidelity in ten

  10. Scientific Goals and Objectives for the Human Exploration of Mars: 1. Biology and Atmosphere/Climate

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Garvin, J. B.; Anbar, A. D.; Beaty, D. W.; Bell, M. S.; Clancy, R. T.; Cockell, C. S.; Connerney, J. E.; Doran, P. T.; Delory, G.; Dickson, J. T.; Elphic, R. C.; Eppler, D. B.; Fernandez-Remolar, D. C.; Head, J. W.; Helper, M.; Gruener, J. E.; Heldmann, J.; Hipkin, V.; Lane, M. D.; Levy, J.; Moersch, J.; Ori, G. G.; Peach, L.; Poulet, F.

    2008-01-01

    To prepare for the exploration of Mars by humans, as outlined in the new national vision for Space Exploration (VSE), the Mars Exploration Program Analysis Group (MEPAG), chartered by NASA's Mars Exploration Program (MEP), formed a Human Exploration of Mars Science Analysis Group (HEM-SAG), in March 2007. HEM-SAG was chartered to develop the scientific goals and objectives for the human exploration of Mars based on the Mars Scientific Goals, Objectives, Investigations, and Priorities.1 The HEM-SAG is one of several humans to Mars scientific, engineering and mission architecture studies chartered in 2007 to support NASA s plans for the human exploration of Mars. The HEM-SAG is composed of about 30 Mars scientists representing the disciplines of Mars biology, climate/atmosphere, geology and geophysics from the U.S., Canada, England, France, Italy and Spain. MEPAG selected Drs. James B. Garvin (NASA Goddard Space Flight Center) and Joel S. Levine (NASA Langley Research Center) to serve as HEMSAG co-chairs. The HEM-SAG team conducted 20 telecons and convened three face-to-face meetings from March through October 2007. The management of MEP and MEPAG were briefed on the HEM-SAG interim findings in May. The HEM-SAG final report was presented on-line to the full MEPAG membership and was presented at the MEPAG meeting on February 20-21, 2008. This presentation will outline the HEM-SAG biology and climate/atmosphere goals and objectives. A companion paper will outline the HEM-SAG geology and geophysics goals and objectives.

  11. Exploring multiliteracies, student voice, and scientific practices in two elementary classrooms

    NASA Astrophysics Data System (ADS)

    Allison, Elizabeth Rowland

    This study explored the voices of children in a changing world with evolving needs and new opportunities. The workplaces of rapidly moving capitalist societies value creativity, collaboration, and critical thinking skills which are of growing importance and manifesting themselves in modern K-12 science classroom cultures (Gee, 2000; New London Group, 2000). This study explored issues of multiliteracies and student voice set within the context of teaching and learning in 4th and 5th grade science classrooms. The purpose of the study was to ascertain what and how multiliteracies and scientific practices (NGSS Lead States, 2013c) are implemented, explore how multiliteracies influence students' voices, and investigate teacher and student perceptions of multiliteracies, student voice, and scientific practices. Grounded in a constructivist framework, a multiple case study was employed in two elementary classrooms. Through observations, student focus groups and interviews, and teacher interviews, a detailed narrative was created to describe a range of multiliteracies, student voice, and scientific practices that occurred with the science classroom context. Using grounded theory analysis, data were coded and analyzed to reveal emergent themes. Data analysis revealed that these two classrooms were enriched with multiliteracies that serve metaphorically as breeding grounds for student voice. In the modern classroom, defined as a space where information is instantly accessible through the Internet, multiliteracies can be developed through inquiry-based, collaborative, and technology-rich experiences. Scientific literacy, cultivated through student communication and collaboration, is arguably a multiliteracy that has not been considered in the literature, and should be, as an integral component of overall individual literacy in the 21st century. Findings revealed four themes. Three themes suggest that teachers address several modes of multiliteracies in science, but identify

  12. The ISECG Science White Paper - A Scientific Perspective on the Global Exploration Roadmap

    NASA Astrophysics Data System (ADS)

    Bussey, David B.; Worms, Jean-Claude; Spiero, Francois; Schlutz, Juergen; Ehrenfreund, Pascale

    2016-07-01

    Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As an element of this continued road mapping effort, the ISECG agencies are therefore soliciting input and coordinated discussion with the scientific community to better articulate and promote the scientific opportunities of the proposed mission themes. An improved understanding of the scientific drivers and the requirements to address priority science questions associated with the exploration destinations (Moon, Near Earth Asteroids, Mars and its moons) as well as the preparatory activities in cis-lunar space is beneficial to optimize the partnership of robotic assets and human presence beyond low Earth orbit. The interaction has resulted in the development of a Science White Paper to: • Identify and highlight the scientific opportunities in early exploration missions as the GER reference architecture matures, • Communicate overarching science themes and their relevance in the GER destinations, • Ensure international science communities' perspectives inform the future evolution of mission concepts considered in the GER The paper aims to capture the opportunities offered by the missions in the GER for a broad range of scientific disciplines. These include planetary and space sciences, astrobiology, life sciences, physical sciences, astronomy and Earth science. The paper is structured around grand science themes that draw together and connect research in the various disciplines, and it will focus on

  13. PARLO: PArallel Run-Time Layout Optimization for Scientific Data Explorations with Heterogeneous Access Pattern

    SciTech Connect

    Gong, Zhenhuan; Boyuka, David; Zou, X; Liu, Gary; Podhorszki, Norbert; Klasky, Scott A; Ma, Xiaosong; Samatova, Nagiza F

    2013-01-01

    Download Citation Email Print Request Permissions Save to Project The size and scope of cutting-edge scientific simulations are growing much faster than the I/O and storage capabilities of their run-time environments. The growing gap is exacerbated by exploratory, data-intensive analytics, such as querying simulation data with multivariate, spatio-temporal constraints, which induces heterogeneous access patterns that stress the performance of the underlying storage system. Previous work addresses data layout and indexing techniques to improve query performance for a single access pattern, which is not sufficient for complex analytics jobs. We present PARLO a parallel run-time layout optimization framework, to achieve multi-level data layout optimization for scientific applications at run-time before data is written to storage. The layout schemes optimize for heterogeneous access patterns with user-specified priorities. PARLO is integrated with ADIOS, a high-performance parallel I/O middleware for large-scale HPC applications, to achieve user-transparent, light-weight layout optimization for scientific datasets. It offers simple XML-based configuration for users to achieve flexible layout optimization without the need to modify or recompile application codes. Experiments show that PARLO improves performance by 2 to 26 times for queries with heterogeneous access patterns compared to state-of-the-art scientific database management systems. Compared to traditional post-processing approaches, its underlying run-time layout optimization achieves a 56% savings in processing time and a reduction in storage overhead of up to 50%. PARLO also exhibits a low run-time resource requirement, while also limiting the performance impact on running applications to a reasonable level.

  14. A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 Small Station.

    PubMed

    Linkin, V; Harri, A M; Lipatov, A; Belostotskaja, K; Derbunovich, B; Ekonomov, A; Khloustova, L; Kremnev, R; Makarov, V; Martinov, B; Nenarokov, D; Prostov, M; Pustovalov, A; Shustko, G; Jarvinen, I; Kivilinna, H; Korpela, S; Kumpulainen, K; Lehto, A; Pellinen, R; Pirjola, R; Riihela, P; Salminen, A; Schmidt, W; McKay, C P

    1998-01-01

    A mission to Mars including two Small Stations, two Penetrators and an Orbiter was launched at Baikonur, Kazakhstan, on 16 November 1996. This was called the Mars-96 mission. The Small Stations were expected to land in September 1997 (Ls approximately 178 degrees), nominally to Amazonis-Arcadia region on locations (33 N, 169.4 W) and (37.6 N, 161.9 W). The fourth stage of the Mars-96 launcher malfunctioned and hence the mission was lost. However, the state of the art concept of the Small Station can be applied to future Martian lander missions. Also, from the manufacturing and performance point of view, the Mars-96 Small Station could be built as such at low cost, and be fairly easily accommodated on almost any forthcoming Martian mission. This is primarily due to the very simple interface between the Small Station and the spacecraft. The Small Station is a sophisticated piece of equipment. With the total available power of approximately 400 mW the Station successfully supports an ambitious scientific program. The Station accommodates a panoramic camera, an alpha-proton-x-ray spectrometer, a seismometer, a magnetometer, an oxidant instrument, equipment for meteorological observations, and sensors for atmospheric measurement during the descent phase, including images taken by a descent phase camera. The total mass of the Small Station with payload on the Martian surface, including the airbags, is only 32 kg. Lander observations on the surface of Mars combined with data from Orbiter instruments will shed light on the contemporary Mars and its evolution. As in the Mars-96 mission, specific science goals could be exploration of the interior and surface of Mars, investigation of the structure and dynamics of the atmosphere, the role of water and other materials containing volatiles and in situ studies of the atmospheric boundary layer processes. To achieve the scientific goals of the mission the lander should carry a versatile set of instruments. The Small Station

  15. Back to the Moon: The scientific rationale for resuming lunar surface exploration

    NASA Astrophysics Data System (ADS)

    Crawford, I. A.; Anand, M.; Cockell, C. S.; Falcke, H.; Green, D. A.; Jaumann, R.; Wieczorek, M. A.

    2012-12-01

    The lunar geological record has much to tell us about the earliest history of the Solar System, the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and the near-Earth cosmic environment throughout Solar System history. In addition, the lunar surface offers outstanding opportunities for research in astronomy, astrobiology, fundamental physics, life sciences and human physiology and medicine. This paper provides an interdisciplinary review of outstanding lunar science objectives in all of these different areas. It is concluded that addressing them satisfactorily will require an end to the 40-year hiatus of lunar surface exploration, and the placing of new scientific instruments on, and the return of additional samples from, the surface of the Moon. Some of these objectives can be achieved robotically (e.g., through targeted sample return, the deployment of geophysical networks, and the placing of antennas on the lunar surface to form radio telescopes). However, in the longer term, most of these scientific objectives would benefit significantly from renewed human operations on the lunar surface. For these reasons it is highly desirable that current plans for renewed robotic surface exploration of the Moon are developed in the context of a future human lunar exploration programme, such as that proposed by the recently formulated Global Exploration Roadmap.

  16. The Earth Exploration Toolbook: Making Diverse Earth Science Datasets Available and Usable by Space and Earth Science Researchers and Decision Makers

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.; Dahlman, L.

    2004-12-01

    As research programs have become more interdisciplinary in nature it has become necessary for scientists to include data in their analysis that would traditionally fall outside their discipline of expertise. In the same way decision makers, who must deal with questions of an interdisciplinary nature, need to work with data from a wide range of disciplines, many of which are beyond their expertise. The question is how can these datasets and the software needed to access and analyze them become more easily available and usable by interdisciplinary research scientists and decision makers. The Earth Exploration Toolbook (EET, serc.carleton.edu/eet) was developed for the educational community; however, it has much broader applications. The EET chapters provide step-by-step instructions for using specific Earth science datasets and software tools, walking users through interesting examples that explore issues or concepts in Earth system science. These chapters can provide research scientists and decision makers with enough experience using particular datasets and data analysis tools outside of their area of expertise that they can then use the datasets and/or tools to address questions suggested by their research or societal needs. The EET team also facilitates the effective use of EET chapters through our 2-hour telecon-online workshops. During each workshop participants are walked through a specific chapter by and EET team member. After the workshop participants are in a better position to use the data and tool effectively. In this presentation we will demonstrate how the EET chapters can be useful to researchers and decision makers, and solicit input as to how to make this tool even more useful to these communities.

  17. Segmentation of Unstructured Datasets

    NASA Technical Reports Server (NTRS)

    Bhat, Smitha

    1996-01-01

    Datasets generated by computer simulations and experiments in Computational Fluid Dynamics tend to be extremely large and complex. It is difficult to visualize these datasets using standard techniques like Volume Rendering and Ray Casting. Object Segmentation provides a technique to extract and quantify regions of interest within these massive datasets. This thesis explores basic algorithms to extract coherent amorphous regions from two-dimensional and three-dimensional scalar unstructured grids. The techniques are applied to datasets from Computational Fluid Dynamics and from Finite Element Analysis.

  18. Mission to the Moon: Europe's priorities for the scientific exploration and utilisation of the Moon

    NASA Astrophysics Data System (ADS)

    Battrick, Bruce; Barron, C.

    1992-06-01

    A study to determine Europe's potential role in the future exploration and utilization of the Moon is presented. To establish the scientific justifications the Lunar Study Steering Group (LSSG) was established reflecting all scientific disciplines benefitting from a lunar base (Moon studies, astronomy, fusion, life sciences, etc.). Scientific issues were divided into three main areas: science of the Moon, including all investigations concerning the Moon as a planetary body; science from the Moon, using the Moon as a platform and therefore including observatories in the broadest sense; science on the Moon, including not only questions relating to human activities in space, but also the development of artificial ecosystems beyond the Earth. Science of the Moon focuses on geographical, geochemical and geological observations of the Earth-Moon system. Science from the Moon takes advantage of the stable lunar ground, its atmosphere free sky and, on the far side, its radio quiet environment. The Moon provides an attractive platform for the observation and study of the Universe. Two techniques that can make unique cause of the lunar platform are ultraviolet to submillimeter interferometric imaging, and very low frequency astronomy. One of the goals of life sciences studies (Science on the Moon) is obviously to provide the prerequisite information for establishing a manned lunar base. This includes studies of human physiology under reduced gravity, radiation protection and life support systems, and feasibility studies based on existing hardware. The overall recommendations are essentially to set up specific study teams for those fields judged to be the most promising for Europe, with the aim of providing more detailed scientific and technological specifications. It is also suggested that the scope of the overall study activities be expanded in order to derive mission scenarios for a viable ESA lunar exploration program and to consider economic, legal and policy matters

  19. A TT&C Performance Simulator for Space Exploration and Scientific Satellites - Architecture and Applications

    NASA Astrophysics Data System (ADS)

    Donà, G.; Faletra, M.

    2015-09-01

    This paper presents the TT&C performance simulator toolkit developed internally at Thales Alenia Space Italia (TAS-I) to support the design of TT&C subsystems for space exploration and scientific satellites. The simulator has a modular architecture and has been designed using a model-based approach using standard engineering tools such as MATLAB/SIMULINK and mission analysis tools (e.g. STK). The simulator is easily reconfigurable to fit different types of satellites, different mission requirements and different scenarios parameters. This paper provides a brief description of the simulator architecture together with two examples of applications used to demonstrate some of the simulator’s capabilities.

  20. Proteus - An experimenter's view. [of spacecraft carrying exchangable Explorer scientific experiments

    NASA Technical Reports Server (NTRS)

    Hibbard, W. D.

    1984-01-01

    The scientific experiments package to be carried by the Proteus system takes the form of an Instrument Load carried into orbit by a Space Shuttle, and there mated to a Proteus spacecraft with the Shuttle's Remote Manipulator System. The Proteus system extends to ground support equipment, development tools, and communications, as well as the orbiting satellites. It is expected that Proteus will be able to triple the number of Explorer missions while staying within the current budgetary allocation for such missions. The Proteus spacecraft encompasses a system interface assembly plug, a data handling module, remote interface units, and a power distribution module.

  1. Exploring English Language Learners (ELL) experiences with scientific language and inquiry within a real life context

    NASA Astrophysics Data System (ADS)

    Algee, Lisa M.

    English Language Learners (ELL) are often at a distinct disadvantage from receiving authentic science learning opportunites. This study explored English Language Learners (ELL) learning experiences with scientific language and inquiry within a real life context. This research was theoretically informed by sociocultural theory and literature on student learning and science teaching for ELL. A qualitative, case study was used to explore students' learning experiences. Data from multiple sources was collected: student interviews, science letters, an assessment in another context, field-notes, student presentations, inquiry assessment, instructional group conversations, parent interviews, parent letters, parent homework, teacher-researcher evaluation, teacher-researcher reflective journal, and student ratings of learning activities. These data sources informed the following research questions: (1) Does participation in an out-of-school contextualized inquiry science project increase ELL use of scientific language? (2) Does participation in an out-of-school contextualized inquiry science project increase ELL understanding of scientific inquiry and their motivation to learn? (3) What are parents' funds of knowledge about the local ecology and does this inform students' experiences in the science project? All data sources concerning students were analyzed for similar patterns and trends and triangulation was sought through the use of these data sources. The remaining data sources concerning the teacher-researcher were used to inform and assess whether the pedagogical and research practices were in alignment with the proposed theoretical framework. Data sources concerning parental participation accessed funds of knowledge, which informed the curriculum in order to create continuity and connections between home and school. To ensure accuracy in the researchers' interpretations of student and parent responses during interviews, member checking was employed. The findings

  2. In Situ Resource Utilization Technologies for Enhancing and Expanding Mars Scientific and Exploration Missions

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Finn, J. E.

    2000-01-01

    The primary objectives of the Mars exploration program are to collect data for planetary science in a quest to answer questions related to Origins, to search for evidence of extinct and extant life, and to expand the human presence in the solar system. The public and political engagement that is critical for support of a Mars exploration program is based on all of these objectives. In order to retain and to build public and political support, it is important for NASA to have an integrated Mars exploration plan, not separate robotic and human plans that exist in parallel or in sequence. The resolutions stemming from the current architectural review and prioritization of payloads may be pivotal in determining whether NASA will have such a unified plan and retain public support. There are several potential scientific and technological links between the robotic-only missions that have been flown and planned to date, and the combined robotic and human missions that will come in the future. Taking advantage of and leveraging those links are central to the idea of a unified Mars exploration plan. One such link is in situ resource utilization (ISRU) as an enabling technology to provide consumables such as fuels, oxygen, sweep and utility gases from the Mars atmosphere.

  3. In Situ Resource Utilization Technologies for Enhancing and Expanding Mars Scientific and Exploration Missions

    NASA Astrophysics Data System (ADS)

    Sridhar, K. R.; Finn, J. E.

    2000-07-01

    The primary objectives of the Mars exploration program are to collect data for planetary science in a quest to answer questions related to Origins, to search for evidence of extinct and extant life, and to expand the human presence in the solar system. The public and political engagement that is critical for support of a Mars exploration program is based on all of these objectives. In order to retain and to build public and political support, it is important for NASA to have an integrated Mars exploration plan, not separate robotic and human plans that exist in parallel or in sequence. The resolutions stemming from the current architectural review and prioritization of payloads may be pivotal in determining whether NASA will have such a unified plan and retain public support. There are several potential scientific and technological links between the robotic-only missions that have been flown and planned to date, and the combined robotic and human missions that will come in the future. Taking advantage of and leveraging those links are central to the idea of a unified Mars exploration plan. One such link is in situ resource utilization (ISRU) as an enabling technology to provide consumables such as fuels, oxygen, sweep and utility gases from the Mars atmosphere.

  4. iSBatch: a batch-processing platform for data analysis and exploration of live-cell single-molecule microscopy images and other hierarchical datasets.

    PubMed

    Caldas, Victor E A; Punter, Christiaan M; Ghodke, Harshad; Robinson, Andrew; van Oijen, Antoine M

    2015-10-01

    Recent technical advances have made it possible to visualize single molecules inside live cells. Microscopes with single-molecule sensitivity enable the imaging of low-abundance proteins, allowing for a quantitative characterization of molecular properties. Such data sets contain information on a wide spectrum of important molecular properties, with different aspects highlighted in different imaging strategies. The time-lapsed acquisition of images provides information on protein dynamics over long time scales, giving insight into expression dynamics and localization properties. Rapid burst imaging reveals properties of individual molecules in real-time, informing on their diffusion characteristics, binding dynamics and stoichiometries within complexes. This richness of information, however, adds significant complexity to analysis protocols. In general, large datasets of images must be collected and processed in order to produce statistically robust results and identify rare events. More importantly, as live-cell single-molecule measurements remain on the cutting edge of imaging, few protocols for analysis have been established and thus analysis strategies often need to be explored for each individual scenario. Existing analysis packages are geared towards either single-cell imaging data or in vitro single-molecule data and typically operate with highly specific algorithms developed for particular situations. Our tool, iSBatch, instead allows users to exploit the inherent flexibility of the popular open-source package ImageJ, providing a hierarchical framework in which existing plugins or custom macros may be executed over entire datasets or portions thereof. This strategy affords users freedom to explore new analysis protocols within large imaging datasets, while maintaining hierarchical relationships between experiments, samples, fields of view, cells, and individual molecules. PMID:26198886

  5. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    DOE PAGESBeta

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba

    2015-01-01

    The advance of the scientific discovery process is accomplished by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally,more » it is important for scientists to be able to share their workflows with collaborators. Moreover we have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC), the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In our paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.« less

  6. Digital terrain model reconstruction and preliminary scientific exploration planning of the Chang'E 3

    NASA Astrophysics Data System (ADS)

    Liu, J.; Ren, X.; Mu, L.; Wang, F.; Wang, W.; Zhang, X.; Li, C.

    2014-04-01

    At 13:11 (GMT) December 14, 2013 Chang'e 3 (CE-3) successfully landed at 19.51° W, 44.12° N northwestern Mare Imbrium on the Moon, making it China's first planetary mission to land on a celestial body other than Earth. CE-3 explore comprises a lander and a rover. It carries eight scientific instruments onboard, including the descent camera on the lander, and the panoramic camera on the rover. These cameras imaged the topographic features around the landing site. This paper mainly presents the digital terrain model reconstruction techniques for the panoramic camera. Image pairs obtained during the first lunar day are used to reconstructed 3D Digital Terrain Models of 0.02 m resolution near observation points E and S3. The maps have been extensively used to support Yutu operations and strategic planning of the mission. The preliminary scientific exploration planning of the Yutu rover for the second lunar day has been made.

  7. Lunar scout missions: Galileo encounter results and application to scientific problems and exploration requirements

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Belton, M.; Greeley, R.; Pieters, C.; Mcewen, A.; Neukum, G.; Mccord, T.

    1993-01-01

    The Lunar Scout Missions (payload: x-ray fluorescence spectrometer, high-resolution stereocamera, neutron spectrometer, gamma-ray spectrometer, imaging spectrometer, gravity experiment) will provide a global data set for the chemistry, mineralogy, geology, topography, and gravity of the Moon. These data will in turn provide an important baseline for the further scientific exploration of the Moon by all-purpose landers and micro-rovers, and sample return missions from sites shown to be of primary interest from the global orbital data. These data would clearly provide the basis for intelligent selection of sites for the establishment of lunar base sites for long-term scientific and resource exploration and engineering studies. The two recent Galileo encounters with the Moon (December, 1990 and December, 1992) illustrate how modern technology can be applied to significant lunar problems. We emphasize the regional results of the Galileo SSI to show the promise of geologic unit definition and characterization as an example of what can be done with the global coverage to be obtained by the Lunar Scout Missions.

  8. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    NASA Astrophysics Data System (ADS)

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba

    2015-12-01

    The scientific discovery process can be advanced by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally, it is important for scientists to be able to share their workflows with collaborators. We have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC); the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In this paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.

  9. Exploring Two Approaches for an End-to-End Scientific Analysis Workflow

    SciTech Connect

    Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba

    2015-01-01

    The advance of the scientific discovery process is accomplished by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally, it is important for scientists to be able to share their workflows with collaborators. Moreover we have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC), the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In our paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.

  10. Lidar and the mobile Scene Modeler (mSM) as scientific tools for planetary exploration

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Barfoot, Timothy D.; Ghafoor, Nadeem; Izawa, Matt; Banerjee, Neil; Jasiobedzki, Piotr; Tripp, Jeff; Richards, Robert; Auclair, Simon; Sapers, Haley; Thomson, Laura; Flemming, Roberta

    2010-03-01

    With the continued success of the Mars Exploration Rovers and the return of humans to the Moon within the next decade, a considerable amount of research is being done on the technologies required to provide surface mobility and the tools required to provide scientific capability. Here, we explore the utility of lidar and the mobile Scene Modeler (mSM) - which is based on a stereo camera system - as scientific tools. Both of these technologies have been, or are being considered for, technological applications such as autonomous satellite rendezvous and rover navigation. We carried out a series of field tests at the 23 km diameter, 39 Ma, Haughton impact structure located on Devon Island in the Canadian Arctic. Several sites of geological interest were investigated, including polygonal terrain, gullies and channels, slump/collapse features, impact melt breccia hills, and a site of impact-associated hydrothermal mineralization. These field tests show that lidar and mSM provide a superior visual record of the terrain, from the regional (km) to outcrop (m to cm) scale and in 3-D, as compared to standard digital photography. Thus, a key strength of these technologies is in situ reconnaissance and documentation. Lidar scans also provide a wealth of geometric and structural information about a site, accomplishing the equivalent of weeks to months of manual surveying and with much greater accuracy than traditional tools, making this extremely useful for planetary exploration missions. An unexpected result of these field tests is the potential for lidar and mSM to provide qualitative, and potentially quantitative, composition information about a site. Given the high probability of lidar and mSM being used on future lunar missions, we suggest that it would be beneficial to further investigate the potential for these technologies to be used as science tools.

  11. Virtual Exploration and Comparison of Linear Mastoid Drilling Trajectories with True-Color Volume Rendering and the Visible Ear Dataset

    PubMed Central

    KAHRS, Lueder A.; LABADIE, Robert F.

    2015-01-01

    This paper provides instructions for a virtual exploration and self-study of surgical approaches within the temporal bone. Linear drilling trajectories in the sense of keyhole accesses are compared with free true-color rendering techniques to introduce and evaluate new otologic approaches. On the basis of free cyro-histology image data from a temporal bone six different drill canals are presented. Such a virtual method has the potential to be a first step of investigation of new surgical approaches before moving to cadaver testing. PMID:23400159

  12. Exploring teachers' informal formative assessment practices and students' understanding in the context of scientific inquiry

    NASA Astrophysics Data System (ADS)

    Araceli Ruiz-Primo, Maria; Furtak, Erin Marie

    2007-01-01

    This study explores teachers' informal formative assessment practices in three middle school science classrooms. We present a model for examining these practices based on three components of formative assessment (eliciting, recognizing, and using information) and the three domains linked to scientific inquiry (epistemic frameworks, conceptual structures, and social processes). We describe the informal assessment practices as ESRU cycles - the teacher Elicits a question; the Student responds; the teacher Recognizes the student's response; and then Uses the information collected to support student learning. By tracking the strategies teachers used in terms of ESRU cycles, we were able to capture differences in assessment practices across the three teachers during the implementation of four investigations of a physical science unit on buoyancy. Furthermore, based on information collected in a three-question embedded assessment administered to assess students' learning, we linked students' level of performance to the teachers' informal assessment practices. We found that the teacher who more frequently used complete ESRU cycles had students with higher performance on the embedded assessment as compared with the other two teachers. We conclude that the ESRU model is a useful way of capturing differences in teachers' informal assessment practices. Furthermore, the study suggests that effective informal formative assessment practices may be associated with student learning in scientific inquiry classrooms.

  13. Combining ECS Exploration and Scientific Interest: The Case of the Demarara Plateau Offshore French Guiana (Invited)

    NASA Astrophysics Data System (ADS)

    Roest, W. R.; Loncke, L.; Loubrieu, B.

    2013-12-01

    The French national program for the extension of the continental shelf, EXTRAPLAC, started in 2002 with funding from the French Government. It is let by Ifremer, with as principle partners the SHOM (Hydrographic and Oceanographic Service of the Navy), IPEV (French Polar Institute) and IFP Energies Nouvelles. Its aim is to make submissions for extended continental shelf beyond 200 nm to the Commission on the Limits of the Continental Shelf under the UN Convention on the Law of the Sea. Nine submissions, of which 3 are joint with neighboring states, have been made thus far, concerning areas off metropolitan France and its overseas territories. In total, over 360 days of ship time was needed to explore these vast and dispersed areas, in the Atlantic, Pacific and Indian Oceans. The data collected include multibeam bathymetry, seismic reflection and some rock sampling. In this presentation we will describe how the EXTRAPLAC cruise offshore French Guiana (GUYAPLAC, R/V L'Atalante, 2003) let to new scientific results for this transform type margin, in particular in the area of the Demerara Plateau. These include the discovery of gigantic submarine land slides in the subsurface, and associated fluid escape features on the seafloor. A scientific collaboration between the EXTRAPLAC team and academia let to a follow-up cruise proposal to further explore this unique continental margin: The IGUANES cruise, let by the University of Perpignan, took place in April/May 2013, using a higher resolution multibeam echosounder, high resolution seismic reflection and sediment cores. In particular we were able to confirm and better map significant submarine landslide scarps, aligned pockmark fields and sediment waves that likely associated with strong bottom currents and/or the submarine landslides. We will also briefly describe some of the highlight results of other ECS related cruises to show how the EXTRAPLAC program has resulted in new knowledge in remote frontier areas that had very

  14. An Interactive Virtual 3D Tool for Scientific Exploration of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Traxler, Christoph; Hesina, Gerd; Gupta, Sanjeev; Paar, Gerhard

    2014-05-01

    In this paper we present an interactive 3D visualization tool for scientific analysis and planning of planetary missions. At the moment scientists have to look at individual camera images separately. There is no tool to combine them in three dimensions and look at them seamlessly as a geologist would do (by walking backwards and forwards resulting in different scales). For this reason a virtual 3D reconstruction of the terrain that can be interactively explored is necessary. Such a reconstruction has to consider multiple scales ranging from orbital image data to close-up surface image data from rover cameras. The 3D viewer allows seamless zooming between these various scales, giving scientists the possibility to relate small surface features (e.g. rock outcrops) to larger geological contexts. For a reliable geologic assessment a realistic surface rendering is important. Therefore the material properties of the rock surfaces will be considered for real-time rendering. This is achieved by an appropriate Bidirectional Reflectance Distribution Function (BRDF) estimated from the image data. The BRDF is implemented to run on the Graphical Processing Unit (GPU) to enable realistic real-time rendering, which allows a naturalistic perception for scientific analysis. Another important aspect for realism is the consideration of natural lighting conditions, which means skylight to illuminate the reconstructed scene. In our case we provide skylights from Mars and Earth, which allows switching between these two modes of illumination. This gives geologists the opportunity to perceive rock outcrops from Mars as they would appear on Earth facilitating scientific assessment. Besides viewing the virtual reconstruction on multiple scales, scientists can also perform various measurements, i.e. geo-coordinates of a selected point or distance between two surface points. Rover or other models can be placed into the scene and snapped onto certain location of the terrain. These are

  15. Using the mystery box as a means to explore the scientific method in an undergraduate lecture setting

    NASA Astrophysics Data System (ADS)

    Cook, H. M.; Cook, G. W.

    2015-12-01

    The mystery box is a well-known and well-loved teaching tool designed to encourage students to engage in making observations in order to draw conclusions. We have adapted this exercise, normally used in laboratory settings, for use in a lecture setting in introductory earth science classes. We have tied it to the scientific method such that students are engaging in mystery-box- based inquiry while exploring the steps of the scientific method. It is used in conjunction with a PowerPoint presentation that illustrates and discusses the steps and process integral to the scientific method, which is fundamental to science. Students are encouraged to explore the formal and informal use of the scientific method throughout their educational careers and in their daily lives. Furthermore, students are challenged to analyze the necessity of the scientific method as means for conducting scientific inquiry and exploring the results of such inquiry. A follow-up assignment to the activity asks students to evaluate the efficacy of the activity and associated PowerPoint and discussion. Students consistently report having enjoyed and learned from the process.

  16. Building the Next Generation of Scientific Explorers through Active Engagement with STEM Experts and International Space Station Resources

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Vanderbloemen, L.; Higgins, M.; Stefanov, W. L.; Rampe, E.

    2015-01-01

    Connecting students and teachers in classrooms with science, technology, engineering, and mathematics (STEM) experts provides an invaluable opportunity for all. These experts can share the benefits and utilization of resources from the International Space Station (ISS) while sharing and "translating" exciting science being conducted by professional scientists. Active engagement with these STEM experts involves students in the journey of science and exploration in an enthralling and understandable manner. This active engagement, connecting classrooms with scientific experts, helps inspire and build the next generation of scientific explorers in academia, private industry, and government.

  17. Exploring group dynamics for integrating scientific and experiential knowledge in Community Advisory Boards for HIV research

    PubMed Central

    Pinto, Rogério M.; Spector, Anya Y.; Valera, Pamela A.

    2011-01-01

    To demonstrate how Community Advisory Boards (CABs) can best integrate community perspectives with scientific knowledge and involve community in disseminating HIV knowledge, this paper provides a case study exploring the structure and dynamic process of a “Community Collaborative Board” (CCB). We use the term CCB to emphasize collaboration over advisement. The CCB membership, structure and dynamics are informed by theory and research. The CCB is affiliated with Columbia University School of Social Work and its original membership included 30 members. CCB was built using six systematized steps meant to engage members in procedural and substantive research roles. Steps: (1) Engaging membership, (2) Developing relationships, (3) Exchanging information, (4) Negotiation and decision-making, (5) Retaining membership, and (6) Studying dynamic process. This model requires that all meetings be audio-taped to capture CCB dynamics. Using transcribed meeting data, we have identified group dynamics that help the CCB accomplish its objectives: 1) dialectic process helps exchange of information; 2) mutual support helps members work together despite social and professional differences; and 3) problem solving helps members achieve consensus. These dynamics also help members attain knowledge about HIV treatment and prevention and disseminate HIV-related knowledge. CABs can be purposeful in their use of group dynamics, narrow the knowledge gap between researchers and community partners, prepare members for procedural and substantive research roles, and retain community partners. PMID:21390878

  18. Exploring group dynamics for integrating scientific and experiential knowledge in Community Advisory Boards for HIV research.

    PubMed

    Pinto, Rogério M; Spector, Anya Y; Valera, Pamela A

    2011-08-01

    To demonstrate how Community Advisory Boards (CABs) can best integrate community perspectives with scientific knowledge and involve community in disseminating HIV knowledge, this paper provides a case study exploring the structure and dynamic process of a "Community Collaborative Board" (CCB). We use the term CCB to emphasize collaboration over advisement. The CCB membership, structure, and dynamics are informed by theory and research. The CCB is affiliated with Columbia University School of Social Work and its original membership included 30 members. CCB was built using six systematized steps meant to engage members in procedural and substantive research roles: (1) engaging membership; (2) developing relationships; (3) exchanging information; (4) negotiation and decision-making; (5) retaining membership; and (6) studying dynamic process. This model requires that all meetings be audio-taped to capture CCB dynamics. Using transcribed meeting data, we have identified group dynamics that help the CCB accomplish its objectives: (1) dialectic process helps exchange of information; (2) mutual support helps members work together despite social and professional differences; and (3) problem solving helps members achieve consensus. These dynamics also help members attain knowledge about HIV treatment and prevention and disseminate HIV-related knowledge. CABs can be purposeful in their use of group dynamics, narrow the knowledge gap between researchers and community partners, prepare members for procedural and substantive research roles, and retain community partners. PMID:21390878

  19. Does Anyone Really Know Anything? An Exploration of Constructivist Meaning and Identity in the Tension between Scientific and Religious Knowledge

    ERIC Educational Resources Information Center

    Starr, Lisa J.

    2010-01-01

    In this paper I discuss the tension created by religion and science in one student's understanding of knowledge and truth by exploring two questions: "How do individuals accommodate their religious beliefs with their understanding of science?" and "How does religious knowledge interact with scientific knowledge to construct meaning?" A…

  20. A Network Mission: Completing the Scientific Foundation for the Exploration of Mars

    NASA Technical Reports Server (NTRS)

    W. B. Banerdt

    2000-01-01

    Despite recent setbacks and vacillations in the Mars Surveyor Program, in many respects the exploration of Mars has historically followed a relatively logical path. Early fly-bys provided brief glimpses of the planet and paved the way for the initial orbital reconnaissance of Mariner 9. The Viking orbiters completed the initial survey, while the Viking landers provided our first close-up look at the surface. Essentially, Mars Pathfinder served a similar role, giving a brief look at another place on the surface. And finally, Mars Global Surveyor (and the up-coming orbital mission in 2001) are taking the next step in providing in-depth, global observations of many of the fundamental characteristics of the planet, as well as selected high-resolution views of the surface. With this last step we are well on our way to acquiring the global scientific context that is necessary both for understanding Mars in general, its origin and evolution, and for use as a basis to plan and execute the next level of focused investigations. However, even with the successful completion of these missions this context will be incomplete. Whereas we now know a great deal about the surface of Mars in a global sense, we know very little about its interior, even at depths of only a meter or so. Also, as most of this information has been acquire by remote sensing, we still lack much of the bridging knowledge between the global view and the processes and character of the surface environments themselves. Thus, in many ways we lack sufficient fundamental understanding to intelligently cast the critical investigations into important questions of the origins and evolution of Mars in general, and in particular, life. The next step in building our understanding of Mars has been identified by several previous groups who were charged with creating a strategy for Mars exploration (e.g., COMPLEX, MarSWG, Planetary Roadmap Team). This is a so-called "network" mission, which places a large number of science

  1. Cell-Phone Use and Cancer: A Case Study Exploring the Scientific Method

    ERIC Educational Resources Information Center

    Colon Parrilla, Wilma V.

    2007-01-01

    Designed for an introductory nonmajors biology course, this case study presents students with a series of short news stories describing a scientific study of cell-phone use and its health effects. Students read the news stories and then the scientific paper they are based on, comparing the information presented by the news media to the information…

  2. Exploring the Assessment of and Relationship between Elementary Students' Scientific Creativity and Science Inquiry

    ERIC Educational Resources Information Center

    Yang, Kuay-Keng; Lin, Shu-Fen; Hong, Zuway-R; Lin, Huann-shyang

    2016-01-01

    The purposes of this study were to (a) develop and validate instruments to assess elementary students' scientific creativity and science inquiry, (b) investigate the relationship between the two competencies, and (c) compare the two competencies among different grade level students. The scientific creativity test was composed of 7 open-ended items…

  3. Exploring "The World around Us" in a Community of Scientific Enquiry

    ERIC Educational Resources Information Center

    Dunlop, Lynda; Compton, Kirsty; Clarke, Linda; McKelvey-Martin, Valerie

    2013-01-01

    The primary Communities of Scientific Enquiry project is one element of the outreach work in Science in Society in Biomedical Sciences in partnership with the School of Education at the University of Ulster. The project aims to develop scientific understanding and skills at key stage 2 and is a response to several contemporary issues in primary…

  4. Exploring Turkish Upper Primary Level Science Textbooks' Coverage of Scientific Literacy Themes

    ERIC Educational Resources Information Center

    Çakici, Yilmaz

    2012-01-01

    Problem Statement: Since the 1970s, scientific literacy has been a major goal of national educational systems throughout the world, and thus reform movements in science education call for all students to be scientifically literate. Despite some good curricular changes and developments across the globe, much remains to be achieved. Given that…

  5. Exploring teachers' learning: A teacher's experiences integrating scientific modeling in the science classroom

    NASA Astrophysics Data System (ADS)

    Gonzalez Maza, Mirta Elizabeth

    This study, a narrative inquiry into the teaching of models and modeling in an elementary science classroom, explores a teacher's growth in pedagogical content knowledge (PCK) as she implemented a novel curriculum adapted from the MoDeLS (Modeling Designs for the Learning of Science) project. The purpose of the study was to explore, from the teacher's point of view, the pedagogical and conceptual changes she underwent while implementing a model-based approach in her classroom. The study summarizes the teacher's experiences, her decisions about teaching, her understanding of how her choices and practices influenced her content knowledge (CK), her PCK, and her motivations for changing her teaching. During the three years of the project I collected data from four science units (Astronomy, Animal Science, Electricity, and Light). Each of the units were observed and videotaped and Ms. Delaney (pseudonym), the classroom teacher, audio-recorded her practices every day. I observed and analyzed classroom videotapes in order to explore how Ms. Delaney's modeling practices unfolded and changed in her classroom and how her PCK on modeling developed. I analyzed professional development activities and informal interviews conducted during and after the units. Subsequently I interviewed Ms. Delaney about these issues using open-ended questions and video clips of her classroom practices. Three aspects of models and modeling expressed in the MoDeLS project were taken into account as I developed categories of analysis: a) models have purpose; b) models have limitations; and c) models change. These categories and the codes proposed were revised and refined while analyzing the data. The findings from the interview analyses and the classroom practices showed that Ms. Delaney developed new CK around models and modeling throughout the three years she was involved in the project. She adapted some of the proposed strategies from the MoDeLS project and adopted them in her curriculum in ways

  6. Asthma in the community: Designing instruction to help students explore scientific dilemmas that impact their lives

    NASA Astrophysics Data System (ADS)

    Tate, Erika Dawn

    School science instruction that connects to students' diverse home, cultural, or linguistic experiences can encourage lifelong participation in the scientific dilemmas that impact students' lives. This dissertation seeks effective ways to support high school students as they learn complex science topics and use their knowledge to transform their personal and community environments. Applying the knowledge integration perspective, I collaborated with education, science, and community partners to design a technology enhanced science module, Improving Your Community's Asthma Problem. This exemplar community science curriculum afforded students the opportunity to (a) investigate a local community health issue, (b) interact with relevant evidence related to physiology, clinical management, and environmental risks, and (c) construct an integrated understanding of the asthma problem in their community. To identify effective instructional scaffolds that engage students in the knowledge integration process and prepare them to participate in community science, I conducted 2 years of research that included 5 schools, 10 teachers, and over 500 students. This dissertation reports on four studies that analyzed student responses on pre-, post-, and embedded assessments. Researching across four design stages, the iterative design study investigated how to best embed the visualizations of the physiological processes breathing, asthma attack, and the allergic immune response in an inquiry activity and informed evidence-based revisions to the module. The evaluation study investigated the impact of this revised Asthma module across multiple classrooms and differences in students' prior knowledge. Combining evidence of student learning from the iterative and evaluation studies with classroom observations and teacher interviews, the longitudinal study explored the impact of teacher practices on student learning in years 1 and 2. In the final chapter, I studied how the Asthma module and

  7. The MOMENT Magnetic-Mapping Mission: A Nanosatellite for the Scientific Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Eagleson, S.; Mauthe, S.; Sarda, K.; Spencer, H.; Zee, R. E.; Arkani-Hammed, J.

    2008-08-01

    MOMENT (Magnetic Observations of Mars Enabled by Nanosatellite Technology) is a nanosatellite that will obtain high-resolution maps of remnant magnetic fields present in the southern highlands of Mars. A European-developed magnetometer accurate to bet- ter than 0.5 nT and employed in a highly elliptical orbit with a relatively low, 100 km night-side, periapsis will provide much greater spatial resolution and delineation of local magnetic anomalies than is available from the initial surveys performed by Mars Global Surveyor (MGS). During the aerobraking phase of the MGS mission, low-altitude measurements were corrupted by solar wind because they were acquired under sunlit conditions where solar winds interacted with the crustal magnetic fields. During the mapping phase of the mission, spatial resolution was limited to about 400 km. Both of these issues will be overcome by MOMENT's low-altitude, night-side, observing strategy. The resulting magnetic-field maps, for the key areas of interest, will allow detailed studies of regional tectonics and the history of the planet's now- inactive core dynamo. MOMENT's design is based on the Space Flight Laboratory's Generic Nanosatellite Bus (GNB), which is also being developed for the BRITE space-astronomy and CanX-4&5 formation- flight missions. Nominally a 30 x 30 x 30 cm cube on the order of 10 kg mass, MOMENT uses as much GNB technology as possible to provide a rapid and cost-effective mission. The implementation of the mission requires payload space on a larger carrier spacecraft and the use of existing and future Martian communication relays for the transfer of information to and from Earth, necessitating a high level of international co-operation. MOMENT is otherwise fully independent and autonomous, even during scientific operations. This paper describes the conceptual (Canadian Space Agency funded) MOMENT mission and presents a strong case for the use of nanosatellite technology as a relatively simple and cost

  8. Early Science Education: Exploring Familiar Contexts To Improve the Understanding of Some Basic Scientific Concepts.

    ERIC Educational Resources Information Center

    Martins, Isabel P.; Veiga, Luisa

    2001-01-01

    Argues that science education is a fundamental tool for global education and that it must be introduced in early years as a first step to a scientific culture for all. Describes testing validity of a didactic strategy for developing the learning of concepts, which was based upon an experimental work approach using everyday life contexts. (Author)

  9. Asthma in the Community: Designing Instruction to Help Students Explore Scientific Dilemmas that Impact Their Lives

    ERIC Educational Resources Information Center

    Tate, Erika Dawn

    2009-01-01

    School science instruction that connects to students' diverse home, cultural, or linguistic experiences can encourage lifelong participation in the scientific dilemmas that impact students' lives. This dissertation seeks effective ways to support high school students as they learn complex science topics and use their knowledge to transform their…

  10. Computer Series, 52: Scientific Exploration with a Microcomputer: Simulations for Nonscientists.

    ERIC Educational Resources Information Center

    Whisnant, David M.

    1984-01-01

    Describes two simulations, written for Apple II microcomputers, focusing on scientific methodology. The first is based on the tendency of colloidal iron in high concentrations to stick to fish gills and cause breathing difficulties. The second, modeled after the dioxin controversy, examines a hypothetical chemical thought to cause cancer. (JN)

  11. Making Meaning of Scientific Practices: Exploring the Pathways and Variations of Classrooms Engaging in Science Practices

    ERIC Educational Resources Information Center

    Ko, Mon-Lin Monica

    2013-01-01

    A focus of reforms in standards, learning environments, teacher preparation programs and professional development is to support teachers' and students' engagement with scientific practices such as argumentation, modeling and generating explanations for real-world phenomena (NRC, 2011). Engaging in these practices in authentic ways…

  12. Exploring Student Identity in an Intercultural Web-Assisted Scientific Inquiry Project

    ERIC Educational Resources Information Center

    Liu, Yingjie; Hannafin, Robert D.

    2010-01-01

    This qualitative study based on Gee's (2001) identity theory examined and compared how American and Chinese middle school students develop identities towards science, culture and technology in an intercultural web-assisted scientific inquiry project. Through analysis of online discussions, videoconferences, interviews, surveys and fieldnotes, we…

  13. Exploring Elongation-Inclination Relationships in Datasets from Plutons and Remagnetized Sediments: Examples from the North Cascades and the Blue Mountains

    NASA Astrophysics Data System (ADS)

    Housen, B. A.

    2014-12-01

    Tectonic applications of paleomagnetism rely upon establishment of paleohorizontal at the time of magnetization. Paleohorizontal can be established in sedimentary rocks and volcanics, but is poorly constrained in plutonic rocks and areas that have experienced regional remagnetizations. This study will explore another latitudinal-dependent property of the geomagnetic field- elongation of elliptical distributions of directional data- to evaluate whether the combination of elongation and inclination can be used to constrain effects of tilt or other paleohorizontal uncertainties in paleomagnetic datasets. This work is inspired by the application of the E-I relationship proposed by Tauxe and Kent (2004) to evaluate effects of inclination error in sedimentary rocks. The first example is from the Blue Mountains of eastern OR. Remagnetized Permian-Jurassic sedimentary rocks (Hillhouse et al, 1982, Harbert et al, 1995, Housen, 2007, Kalk, 2008) have magnetizations that match those of Late Jurassic-Early Cretaceous plutons (Wilson and Cox, 1980, Housen, 2007). Directions from 64 sites of these rocks yields a mean of D = 33°, I = 64°, k= 26, α95 = 3.7°. The E-I method can be used to determine the effects of calculated paleohorizontal errors by finding an optimal paleohorizontal error that results in the best agreement between E and I for a set of data. For the Blue Mountains rocks, the optimal E-I relationship yields a corrected inclination of I = 65° (+7°/-4°), and estimated paleolatitude of 47°N (42° to 57°). The second example is from the Cretaceous Mt Stuart batholith in the North Cascades of central WA- these 95-88 Ma plutonic rocks have well defined magnetizations (Housen et al, 2003). Directions from 89 samples have a mean of D = 350°, I=44°, k=50, α95 = 2.1°. The E-I relationship suggests a corrected mean inclination of I=46° (+12°/-3°), and estimated paleolatitude of 27°N (25° to 39°). For the Blue Mountains, this comparison indicates that the

  14. The Earth Exploration Toolbook and DLESE Data Services Workshops: Facilitating the Use of Geoscience Data to Convey Scientific Concepts to Students

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.; Dahlman, L.; McAuliffe, C.; Domenico, B.; Taber, M. R.

    2005-12-01

    Although Earth science data and tools are officially freely available to the public, specific data are generally difficult to find, and are often provided in formats that are difficult to use. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) and DLESE (Digital Library for Earth Systems Education) Data Services (http://www.dlese.org/cms/dataservices/) projects are working to facilitate the use of these data and analysis tools by teachers and students, and can serve as mechanisms, facilitated by eGY, for extending the reach of data resulting from the various I*Y scientific efforts. The EET gives educators and students an easy way to learn how to use Earth science data and data analysis tools for learning. Modules (called chapters) in the EET provide step-by-step instructions for accessing and analyzing Earth science datasets within the context of compelling case studies. Each chapter also provides pedagogical information to help the teacher use the data with their students. To introduce datasets and analysis tools to teachers, and to encourage them to use them with their students, the EET team provides telecon-online teacher professional development workshops. During these workshops teachers are guided through the use of a specific EET chapter. When a workshop is complete, participants have the software and data they have worked with installed and available on their own computers. We have run 17 of these workshops reaching over 230 teachers. New EET chapters can be developed through the use of an EET chapter template. The template provides a mechanism by which those outside the project can make their datasets and data analysis tools more accessible to teachers and students, and assures that new chapters are consistent with the EET format and that users have access to the support they need. The development of new EET chapters is facilitated through the DLESE Data Services Workshops. During these workshops data providers, tool developers, scientists

  15. Dynamics Explorer 2: Continued FPI and NACS instrument data analysis and associated scientific activity at the University of Michigan

    NASA Technical Reports Server (NTRS)

    Burns, Alan; Killeen, T. L.

    1993-01-01

    The grant entitled 'Dynamics Explorer 2 - continued FPI and NACS instrument data analysis and associated scientific activity at the University of Michigan' is a continuation of a grant that began with instrument development for the Dynamics Explorer 2 (DE 2) satellite. Over the years, many publications and presentations at scientific meetings have occurred under the aegis of this grant. This present report details the progress that has been made in the final three years of the grant. In these last 4 years of the grant 26 papers have been published or are in press and about 10 more are in preparation or have been submitted. A large number of presentations have been made in the same time span: 36 are listed in Appendix 2. Evidence of the high educational utility of this research is indicated by the list of Ph. D. and M. S. theses that have been completed in the last 3 years that have involved work connected with NAG5-465. The structure of this report is as follows: a brief synopsis of the aims of the grant NAG5-465 is given in the next section; then there is a summary of the scientific accomplishments that have occurred over the grant period; last, we make some brief concluding remarks. Reprints of articles that have recently appeared in refereed journals are appended to the end of this document.

  16. Exploring prospective secondary science teachers' understandings of scientific inquiry and Mendelian genetics concepts using computer simulation

    NASA Astrophysics Data System (ADS)

    Cakir, Mustafa

    The primary objective of this case study was to examine prospective secondary science teachers' developing understanding of scientific inquiry and Mendelian genetics. A computer simulation of basic Mendelian inheritance processes (Catlab) was used in combination with small-group discussions and other instructional scaffolds to enhance prospective science teachers' understandings. The theoretical background for this research is derived from a social constructivist perspective. Structuring scientific inquiry as investigation to develop explanations presents meaningful context for the enhancement of inquiry abilities and understanding of the science content. The context of the study was a teaching and learning course focused on inquiry and technology. Twelve prospective science teachers participated in this study. Multiple data sources included pre- and post-module questionnaires of participants' view of scientific inquiry, pre-posttests of understandings of Mendelian concepts, inquiry project reports, class presentations, process videotapes of participants interacting with the simulation, and semi-structured interviews. Seven selected prospective science teachers participated in in-depth interviews. Findings suggest that while studying important concepts in science, carefully designed inquiry experiences can help prospective science teachers to develop an understanding about the types of questions scientists in that field ask, the methodological and epistemological issues that constrain their pursuit of answers to those questions, and the ways in which they construct and share their explanations. Key findings included prospective teachers' initial limited abilities to create evidence-based arguments, their hesitancy to include inquiry in their future teaching, and the impact of collaboration on thinking. Prior to this experience the prospective teachers held uninformed views of scientific inquiry. After the module, participants demonstrated extended expertise in

  17. The NASA Scientific and Technical Information Program: Exploring challenges, creating opportunities

    NASA Technical Reports Server (NTRS)

    Sepic, Ronald P.

    1993-01-01

    The NASA Scientific and Technical Information (STI) Program offers researchers access to the world's largest collection of aerospace information. An overview of Program activities, products and services, and new directions is presented. The R&D information cycle is outlined and specific examples of the NASA STI Program in practice are given. Domestic and international operations and technology transfer activities are reviewed and an agenda for the STI Program NASA-wide is presented. Finally, the incorporation of Total Quality Management and evaluation metrics into the STI Program is discussed.

  18. Using a Modeling Approach To Explore Scientific Epistemology with High School Biology Students. Research Report.

    ERIC Educational Resources Information Center

    Cartier, Jennifer

    This paper describes a study of high school students' participation in the construction and revision of explanatory models as they attempted to account for a variety of inheritance phenomena observed in computer-generated "fruit flies". Throughout the course students were encouraged to explore epistemological issues related to the assessment and…

  19. The Nature of What Teachers Know: Exploring Teacher Knowledge through Novel Scientific Metaphors

    ERIC Educational Resources Information Center

    Martin, Jill Voorhies

    2009-01-01

    This essay explores the nature of what teachers know by examining trends in teacher knowledge research, specifically the use of conventional metaphors to describe teacher knowledge. Contending that conventional metaphors fail to acknowledge the complex and multidimensional nature of teacher knowledge, the author argues that novel metaphors should…

  20. Exploring the Use of a Cartoon as a Learner Scaffold in the Planning of Scientific Investigations

    ERIC Educational Resources Information Center

    Ramnarain, Umesh

    2012-01-01

    Despite curriculum imperatives, in South Africa and worldwide, for learners to have more autonomy in investigations, they remain largely teacher controlled with learners having only limited opportunities in planning. This design-based study explored how a cartoon can be employed in a Grade 9 Natural Sciences class in prompting learners to plan…

  1. Exploring the first scientific observations of lunar eclipses made in Siam

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Orchiston, Darunee Lingling; George, Martin; Soonthornthum, Boonrucksar

    2016-04-01

    The first great ruler to encourage the adoption of Western culture and technology throughout Siam (present-day Thailand) was King Narai, who also had a passion for astronomy. He showed this by encouraging French and other Jesuit missionaries, some with astronomical interests and training, to settle in Siam from the early 1660s. One of these was Father Antoine Thomas, and he was the first European known to have carried out scientific astronomical observations from Siam when he determined the latitude of Ayutthaya in 1681 and the following year observed the total lunar eclipse of 22 February. A later lunar eclipse also has an important place in the history of Thai astronomy. In 1685 a delegation of French missionary-astronomers settled in Ayutthaya, and on 10-11 December 1685 they joined King Narai and his court astrologers and observed a lunar eclipse from the King's 'country retreat' near Lop Buri. This event so impressed the King that he approved the erection of a large modern well-equipped astronomical observatory at Lop Buri. Construction of Wat San Paulo Observatory - as it was known - began in 1686 and was completed in 1687. In this paper we examine these two lunar eclipses and their association with the development of scientific astronomy in Siam.

  2. MiniGhost : a miniapp for exploring boundary exchange strategies using stencil computations in scientific parallel computing.

    SciTech Connect

    Barrett, Richard Frederick; Heroux, Michael Allen; Vaughan, Courtenay Thomas

    2012-04-01

    A broad range of scientific computation involves the use of difference stencils. In a parallel computing environment, this computation is typically implemented by decomposing the spacial domain, inducing a 'halo exchange' of process-owned boundary data. This approach adheres to the Bulk Synchronous Parallel (BSP) model. Because commonly available architectures provide strong inter-node bandwidth relative to latency costs, many codes 'bulk up' these messages by aggregating data into a message as a means of reducing the number of messages. A renewed focus on non-traditional architectures and architecture features provides new opportunities for exploring alternatives to this programming approach. In this report we describe miniGhost, a 'miniapp' designed for exploration of the capabilities of current as well as emerging and future architectures within the context of these sorts of applications. MiniGhost joins the suite of miniapps developed as part of the Mantevo project.

  3. International space station accomplishments update: Scientific discovery, advancing future exploration, and benefits brought home to earth

    NASA Astrophysics Data System (ADS)

    Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Buckley, Nicole; Johnson-Green, Perry; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka; Sorokin, Igor V.; Zell, Martin; Istasse, Eric; Sabbagh, Jean; Pignataro, Salvatore

    2014-10-01

    Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of “ocular syndrome” affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new “cold flame” phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28

  4. International Space Station Accomplishments Update: Scientific Discovery, Advancing Future Exploration, and Benefits Brought Home to Earth

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka; Sorokin, Igor V.; Zell, Martin; Istasse, Eric; Sabbagh, Jean; Pignataro, Salvatore

    2013-01-01

    Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of "ocular syndrome" affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic, and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new "cold flame" phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28 million

  5. Key Recent Scientific Results from the Opportunity Rover's Exploration of Cape Tribulation, Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Squyres, S. W.; Gellert, R.; Herkenhoff, K. E.; Mittlefehldt, D. W.; Crumpler, L. S.; McLennan, S. M.; Farrand, W. H.; Jolliff, B. L.; Morris, R. V.

    2015-12-01

    The Opportunity Rover is in its 11th year of exploration, currently exploring the Cape Tribulation rim segment of the ~22 km wide Noachian Endeavour Crater and its tilted and fractured outcrops. A key target for Opportunity's measurements has been the Spirit of Saint Louis crater (SoSL), which is ~25 m wide, oval in plan view, shallow, flat-floored, and has a slightly raised rim. SoSL crater is surrounded by an apron of bright, polygonally-shaped outcrops and is superimposed on a gentle swale in Cape Tribulation. Rocks in a thin reddish zone on the rim are enriched in hematite, Si, and Ge, and depleted in Fe, relative to surrounding rocks. Apron rocks include an outcrop also enriched in Si and Ge, and slightly depleted in Fe. In general rocks in the crater and apron have elevated S levels relative to Shoemaker formation breccias, tracking values observed in the Cook Haven (gentle swale superimposed on Murray Ridge and site of Opportunity's 5th winter site) and the Hueytown fracture (running perpendicular to Cape Tribulation) outcrops. SoSL crater lies just to the west of Marathon Valley, a key target for exploration by Opportunity because five separate CRISM observations indicate the presence of Fe/Mg smectites on the upper valley floor. Opportunity data show that low relief, relatively bright, wind-scoured outcrops dominate the valley floor where not covered by scree and soil shed from surrounding walls. Initial reconnaissance shows that the outcrops are breccias with compositions similar to the typical SoSL crater apron and floor rocks, although only the very upper portion of the valley has been explored as of August 2015. Pervasive but modest aqueous alteration of Endeavour's rim is implied by the combination of CRISM and Opportunity data, providing insight into early aqueous processes dominated in this location by relatively low water to rock ratios, and at least in part associated with enhanced fluid flow along fractures.

  6. Exploring access to scientific literature using content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Deserno, Thomas M.; Antani, Sameer; Long, Rodney

    2007-03-01

    The number of articles published in the scientific medical literature is continuously increasing, and Web access to the journals is becoming common. Databases such as SPIE Digital Library, IEEE Xplore, indices such as PubMed, and search engines such as Google provide the user with sophisticated full-text search capabilities. However, information in images and graphs within these articles is entirely disregarded. In this paper, we quantify the potential impact of using content-based image retrieval (CBIR) to access this non-text data. Based on the Journal Citations Report (JCR), the journal Radiology was selected for this study. In 2005, 734 articles were published electronically in this journal. This included 2,587 figures, which yields a rate of 3.52 figures per article. Furthermore, 56.4% of these figures are composed of several individual panels, i.e. the figure combines different images and/or graphs. According to the Image Cross-Language Evaluation Forum (ImageCLEF), the error rate of automatic identification of medical images is about 15%. Therefore, it is expected that, by applying ImageCLEF-like techniques, already 95.5% of articles could be retrieved by means of CBIR. The challenge for CBIR in scientific literature, however, is the use of local texture properties to analyze individual image panels in composite illustrations. Using local features for content-based image representation, 8.81 images per article are available, and the predicted correctness rate may increase to 98.3%. From this study, we conclude that CBIR may have a high impact in medical literature research and suggest that additional research in this area is warranted.

  7. Key Recent Scientific Results from the Opportunity Rover's Exploration of Endeavour Crater, Mars

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Squyres, S. W.; Gellert, R.; Herkenhoff, K.; Mittlefehldt, D.; Crumpler, L.; McLennan, S.; Farrand, W. H.; Joliff, B. L.; Morris, R. V.

    2015-01-01

    The Opportunity Rover is currently in its 11th year of operations, exploring the rim of the approximately 22 km wide Noachian-age Endeavour Crater. Opportunity spent its 5th winter season in Cook Haven, a gentle swale along Murray Ridge. Two small rocks serendipitously overturned by rover wheel motions show evidence for aqueous precipitation of sulfates, and interaction with a strong oxidant (e.g., O2) to form a thin, high valence state Mn oxide coating. After the winter, Opportunity headed south to Cape Tribulation and explored Shoemaker formation impact breccias, finding numerous Ca-sulfate veins cutting across outcrops. A key target for Opportunity's measurements has been the Spirit of Saint Louis crater (SoSL), which is approximately 25 m wide, oval in plan view, shallow, flat-floored, and has a slightly raised rim. SoSL crater is surrounded by an apron of bright, polygonally-shaped outcrops and is superimposed on a gentle swale in Cape Tribulation. Rocks in a thin reddish zone on the rim are enriched in hematite, Si, and Ge, and depleted in Fe, relative to surrounding rocks. Apron rocks include an outcrop also enriched in Si and Ge, and slightly depleted in Fe. In general rocks in the crater and apron have elevated S relative to Shoemaker formation breccias, tracking values observed in the Cook Haven and the Hueytown (fracture running perpendicular to Cape Tribulation) outcrops. SoSL crater lies just to the west of Marathon Valley, a key target for exploration by Opportunity because five separate CRISM observations indicate the presence of Fe/Mg smectites on the upper valley floor. Opportunity data show that low relief, relatively bright polygonal outcrops dominate the valley floor where not covered by scree and soil shed from surrounding walls. Initial reconnaissance shows that the outcrops are breccias with compositions similar to the typical SoSL crater apron and floor rocks, although only the very upper portion of the valley has been explored as of August

  8. Limited By Cost: The Case Against Humans In The Scientific Exploration Of Space

    NASA Astrophysics Data System (ADS)

    Coates, Andrew J.

    2001-11-01

    Human space flight represents a heady mix of bravery and drama which can be inspirational to nations and to humankind but at huge economic cost. Due to the current high launch costs only a handful of people have ventured beyond low Earth orbit and walked on the Moon, propelled by aspirations related more to the Cold War than to science. Problems with reusable launch vehicle development mean that severe launch cost limitations will exist for some time. Meanwhile, cheaper robotic probes have visited all the planets except Pluto, flown by comets, landed on Mars, Venus and an asteroid, have probed Jupiter's atmosphere and studied the Universe beyond our own solar system with telescopes. Using these data we are determining mankind's place in the Universe. Public interest in the historic Eros landing eclipsed a simultaneous space walk at the fledgling International Space Station and the Mars Pathfinder landing generated hundreds of millions of website hits in a few days. Given the fact that hundreds of Mars missions could be flown for the still-escalating cost of the International Space Station, the unsuitability of human bodies for deep space exploration, and the advances in 3-d and virtual reality techniques, we discuss whether human exploration needs a place in a realistic, useful and inspirational space programme.

  9. Scientific Investigations To Prepare For The Potential Human Exploration Of Mars

    NASA Astrophysics Data System (ADS)

    Hays, Lindsay; Beaty, David; Whitley, Ryan

    2016-07-01

    In order for human missions to the martian system to be successful and safe, we need a certain minimum set of knowledge. Comparison of what we need to know with what we already know defines what we refer to as "Strategic Knowledge Gaps (SKGs)". The SKG list needs to be the driving force behind the robotic precursor program. The Mars SKG list was first constructed by the Precursor Strategy Analysis Group (P-SAG) in 2012. It consisted of 17 SKGs that could be addressed by about 60 gap-filling activities (GFA). These GFAs were split into three groups based on where and how they could be carried out: requires a Mars flight/mission, addressed on Earth, or technology demonstration. Those GFAs that require a Mars mission were incorporated into the revision of the 2012 Goals Document of the Mars Exploration Program Analysis Group (MEPAG) as "investigations" under Goal IV: Prepare for Human Exploration. In 2015, MEPAG updated the Goals Document, and comparison of the 2012 and 2015 versions shows that significant and encouraging overall progress has been made on a number of the investigations. We note three specific kinds of changes: 1) Complete retirement of several investigations, 2) Decreased investigation priority based on partial progress, and 3) Addition of a few new investigations. Some of these changes are detailed below: Retired: • Simultaneous spectra of solar energetic particles in space and ion the surface • Spectra of galactic cosmic rays on the surface • Trace gas abundances • Determine traction/cohesion in martian regolith • Determine vertical variation in regolith • High spatial resolution maps of mineral composition and abundance • High spatial resolution maps of subsurface ice depth and concentration Decreased Priority: • Making long-term measurements of winds and wind directions (improvements in EDL technologies have decreased the importance of this measurement) • Profile the near-surface winds (improvements in EDL technologies have

  10. Application of scientific core drilling to geothermal exploration: Platanares, Honduras and Tecuamburro Volcano, Guatemala, Central America

    SciTech Connect

    Goff, S.J.; Goff, F.E.; Heiken, G.H.; Duffield, W.A.; Janik, C.J.

    1994-04-01

    Our efforts in Honduras and Guatemala were part of the Central America Energy Resource Project (CAERP) funded by the United States Agency for International Development (AID). Exploration core drilling operations at the Platanares, Honduras and Tecuamburro Volcano, Guatemala sites were part of a geothermal assessment for the national utility companies of these countries to locate and evaluate their geothermal resources for electrical power generation. In Honduras, country-wide assessment of all thermal areas determined that Platanares was the site with the greatest geothermal potential. In late 1986 to middle 1987, three slim core holes were drilled at Platanares to a maximum depth of 680 m and a maximum temperature of 165{degree}C. The objectives were to obtain information on the geothermal gradient, hydrothermal alterations, fracturing, and possible inflows of hydrothermal fluids. Two holes produced copious amounts of water under artesian conditions and a total of 8 MW(t) of energy. Geothermal investigations in Guatemala focused on the Tecuamburro Volcano geothermal site. The results of surface geological, volcanological, hydrogeochemical, and geophysical studies at Tecuamburro Volcano indicated a substantial shallow heat source. In early 1990 we drilled one core hole, TCB-1, to 808 m depth. The measured bottom hole temperature was 238{degree}C. Although the borehole did not flow, in-situ samples indicate the hole is completed in a vapor-zone above a probable 300{degree}C geothermal reservoir.

  11. Earth Camp: Exploring Earth Change through the Use of Satellite Images and Scientific Practices

    NASA Astrophysics Data System (ADS)

    Baldridge, A.; Buxner, S.; Crown, D. A.; Colodner, D.; Orchard, A.; King, B.; Schwartz, K.; Prescott, A.; Prietto, J.; Titcomb, A.

    2014-07-01

    Earth Camp is a NASA-funded program that gives students and teachers opportunities to explore local, regional, and global earth change through a combination of hands-on investigations and the use of satellite images. Each summer, 20 middle school and 20 high school students participate in a two-week leadership program investigating contemporary issues (e.g., changes in river sheds, water quality, and land use management) through hands-on investigations, analyzing remote sensing data, and working with experts. Each year, 20 teachers participate in a year-long professional development program that includes monthly workshops, field investigations on Mt. Lemmon in Tucson, Arizona, and a week-long summer design workshop. Teachers conduct investigations of authentic questions using satellite images and create posters to present results of their study of earth change. In addition, teachers design lesson plans to expand their students' ability to investigate earth change with 21st Century tools. Lessons can be used as classroom exercises or for after-school club programs. Independent evaluation has been an integral part of program development and delivery for all three audiences, enabling the program staff and participants to reflect on and continually improve their practice and learning over the three-year period.

  12. Opportunities and Challenges in Scientific Exploration of Both Titan and Enceladus by a Single Mission

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Strange, N. J.

    2008-12-01

    In 2007 NASA's Science Mission Directorate (SMD), in efforts to start an outer solar system flagship mission in the near future, commissioned studies of mission concepts for four high-priority outer solar system destinations: Europa, the Jovian system, Titan, and Enceladus. Follow-on studies begun in 2008, jointly conducted with ESA and incorporating the selection of the LaPlace and TandEM Cosmic Vision study proposals, combine the Europa and Jupiter system mission concepts into a single mission, and the Titan and Enceladus mission concepts, along with related Saturn system science, into a single mission. The 2007 studies of Titan and Enceladus missions allowed each mission concept to focus on a single destination. The 2008 study must address both Titan and Enceladus exploration with a single mission. This raises significant challenges to mission designers but also presents opportunities. Challenges stem from Titan's and Enceladus' very different locations within Saturn's gravity well, and from the different natures of the two satellites. With current or even envisioned propulsion systems, delta-V requirements prohibit a spacecraft that inserts into orbit at one from subsequently escaping and inserting into orbit at the other. Missions that perform interlaced flybys of the two bodies are limited to relatively high flyby speeds. "Pumping down" flyby speeds at one of them terminates, at least temporarily, flybys of the other, and for Enceladus requires significant time and delta-V. But despite their obvious differences, such as Titan's thick and Enceladus' almost non-existent atmospheres, a science payload designed for Titan can perform excellent science at Enceladus as well. It might be possible to have a single mission target separate orbiters to the two destinations, but this architecture would likely require a launch vehicle significantly larger than is required for a mission that orbits only one body. This paper will discuss these challenges and opportunities.

  13. Exploring the Philosophical Underpinnings of Research: Relating Ontology and Epistemology to the Methodology and Methods of the Scientific, Interpretive, and Critical Research Paradigms

    ERIC Educational Resources Information Center

    Scotland, James

    2012-01-01

    This paper explores the philosophical underpinnings of three major educational research paradigms: scientific, interpretive, and critical. The aim was to outline and explore the interrelationships between each paradigm's ontology, epistemology, methodology and methods. This paper reveals and then discusses some of the underlying assumptions of…

  14. Scalable Machine Learning for Massive Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Gray, A.

    2014-04-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors. This is likely of particular interest to the radio astronomy community given, for example, that survey projects contain groups dedicated to this topic. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex

  15. Scalable Machine Learning for Massive Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Astronomy Data Centre, Canadian

    2014-01-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors, and the local outlier factor. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.

  16. Exploring the Impacts of Cognitive and Metacognitive Prompting on Students' Scientific Inquiry Practices Within an E-Learning Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Xin; Hsu, Ying-Shao; Wang, Chia-Yu; Ho, Yu-Ting

    2015-02-01

    This study explores the effects of metacognitive and cognitive prompting on the scientific inquiry practices of students with various levels of initial metacognition. Two junior high school classes participated in this study. One class, the experimental group (n = 26), which received an inquiry-based curriculum with a combination of cognitive and metacognitive prompts, was compared to the other class, the comparison group (n = 25), which received only cognitive prompts in the same curriculum. Data sources included a test of inquiry practices, a questionnaire of metacognition, and worksheets. The results showed that the mixed cognitive and metacognitive prompts had significant impacts on the students' inquiry practices, especially their planning and analyzing abilities. Furthermore, the mixed prompts appeared to have a differential effect on those students with lower level metacognition, who showed significant improvement in their inquiry abilities. A combination of cognitive and metacognitive prompts during an inquiry cycle was found to promote students' inquiry practices.

  17. Unifying the integration, analysis and interpretation of multi-omic datasets: exploration of the disease networks of Obstructive Nephropathy in children.

    PubMed

    Moulos, Panagiotis; Valavanis, Ioannis; Klein, Julie; Maglogiannis, Ilias; Schanstra, Joost; Chatziioannou, Aristotelis

    2011-01-01

    The wealth of data amassed by the utilization of various high-throughput techniques, in various layers of molecular dissection, stresses the critical role of the unification of the computational methodologies applied in biological data handling, storage, analysis and visualization. In this article, a generic workflow is showcased in a multi-omic dataset that is used to study Obstructive Nephropathy (ON) in children, integrating microarray data from several biological layers (transcriptomic, post-transcriptomic, proteomic). The workflow exploits raw measurements and through several analytical stages (preprocessing, statistical and functional), which entail various parsing steps, reaches the visualization stage of the heterogeneous, broader, molecular interacting network derived. This network, where the interconnected entities are exploiting the knowledge stored in public repositories, represents a systems level interpretation of the pathological state probed. PMID:22255147

  18. Final Scientific / Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California

    SciTech Connect

    Layman Energy Associates, Inc.

    2006-08-15

    With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and interpretation of remote sensing imagery such as aerial and satellite photographs; acquisition, quality control and interpretation of gravity data; and acquisition, quality control and interpretation of resistivity data using state of the art magnetotelluric (MT) methods. The results of this exploratory program have allowed LEA to develop a structural and hydrologic interpretation of the Truckhaven geothermal resource which can be used to guide subsequent exploratory drilling and resource development. Of primary significance, is the identification of an 8 kilometer-long, WNW-trending zone of low resistivity associated with geothermal activity in nearby wells. The long axis of this low resistivity zone is inferred to mark a zone of faulting which likely provides the primary control on the distribution of geothermal resources in the Truckhaven area. Abundant cross-faults cutting the main WNW-trending zone in its western half may indicate elevated fracture permeability in this region, possibly associated with thermal upwelling and higher resource temperatures. Regional groundwater flow is inferred to push thermal fluids from west to east along the trend of the main low resistivity zone, with resource temperatures likely declining from west to east away from the inferred upwelling zone. Resistivity mapping and well data have also shown that within the WNW-trending low resistivity zone, the thickness of the Plio-Pleistocene sedimentary section above granite basement ranges from 1,900–2,600 meters. Well data indicates the lower part of this

  19. Exploring teachers' beliefs and knowledge about scientific inquiry and the nature of science: A collaborative action research project

    NASA Astrophysics Data System (ADS)

    Fazio, Xavier Eric

    Science curriculum reform goals espouse the need to foster and support the development of scientific literacy in students. Two critical goals of scientific literacy are students' engagement in, and developing more realistic conceptions about scientific inquiry (SI) and the nature of science (NOS). In order to promote the learning of these curriculum emphases, teachers themselves must possess beliefs and knowledge supportive of them. Collaborative action research is a viable form of curriculum and teacher development that can be used to support teachers in developing the requisite beliefs and knowledge that can promote these scientific literacy goals. This research study used a collective case study methodology to describe and interpret the views and actions of four teachers participating in a collaborative action research project. I explored the teachers' SI and NOS views throughout the project as they investigated ideas and theories, critically examined their current curricular practice, and implemented and reflected on these modified curricular practices. By the end of the research study, all participants had uniquely augmented their understanding of SI and NOS. The participants were better able to provide explanatory depth to some SI and NOS ideas; however, specific belief revision with respect to SI and NOS ideas was nominal. Furthermore, their idealized action research plans were not implemented to the extent that they were planned. Explanations for these findings include: impact of significant past educational experiences, prior understanding of SI and NOS, depth of content and pedagogical content knowledge of the discipline, and institutional and instructional constraints. Nonetheless, through participation in the collaborative action research process, the teachers developed professionally, personally, and socially. They identified many positive outcomes from participating in a collaborative action research project; however, they espoused constraints to

  20. Exploring Science in the Studio: NSF-Funded Initiatives to Increase Scientific Literacy in Undergraduate Art and Design Students

    NASA Astrophysics Data System (ADS)

    Metzger, C. A.

    2015-12-01

    The project Exploring Science in the Studio at California College of the Arts (CCA), one of the oldest and most influential art and design schools in the country, pursues ways to enable undergraduate students to become scientifically literate problem-solvers in a variety of careers and to give content and context to their creative practices. The two main branches of this National Science Foundation-funded project are a series of courses called Science in the Studio (SitS) and the design of the Mobile Units for Science Exploration (MUSE) system, which allow instructors to bring science equipment directly into the studios. Ongoing since 2010, each fall semester a series of interdisciplinary SitS courses are offered in the college's principal areas of study (architecture, design, fine arts, humanities and sciences, and diversity studies) thematically linked by Earth and environmental science topics such as water, waste, and sustainability. Each course receives funding to embed guest scientists from other colleges and universities, industry, or agriculture directly into the studio courses. These scientists worked in tandem with the studio faculty and gave lectures, led field trips, conducted studio visits, and advised the students' creative endeavors, culminating in an annual SitS exhibition of student work. The MUSE system, of fillable carts and a storage and display unit, was designed by undergraduate students in a Furniture studio who explored, experimented, and researched various ways science materials and equipment are stored, collected, and displayed, for use in the current and future science and studio curricula at CCA. Sustainable practices and "smart design" underpinned all of the work completed in the studio. The materials selected for the new Science Collection at CCA include environmental monitoring equipment and test kits, a weather station, a stream table, a rock and fossil collection, and a vertebrate skull collection. The SitS courses and MUSE system

  1. Phylogenomic analysis of EST datasets.

    PubMed

    Peregrín-Alvarez, José M; Parkinson, John

    2009-01-01

    To date the genomes of over 600 organisms have been generated of which 100 are from eukaryotes. Together with partial genome data for an additional 700 eukaryotic organisms, these exceptional sequence resources offer new opportunities to explore phylogenetic relationships and species diversity. The identification of highly diverse sequences specific to an EST-based sequence dataset offers insights into the extent of genetic novelty within that dataset. Sequences that are only shared with other related species from the same taxon might represent genes associated with taxon-specific innovations. On the other hand, sequences that are highly conserved across many other species offer valuable resources for performing more in-depth phylogenetic analyses. In the following chapter, we guide the reader through the process of examining their sequence datasets in the context of phylogenetic relationships. Performed across large-scale datasets, such analyses are termed Phylogenomics. Two complementary approaches are described, both based on the use of BLAST similarity metrics. The first uses an established Java tool - SimiTri - to visualize sequence similarity relationships between the EST dataset and three user-defined datasets. The second focuses on the use of phylogenetic profiles to identify groups of taxonomically related sequences. PMID:19277568

  2. Exploring what stabilizes teachers' attention and responsiveness to the substance of students' scientific thinking in the classroom

    NASA Astrophysics Data System (ADS)

    Richards, Jennifer

    Teachers' attention and responsiveness to the substance of students' disciplinary thinking is critical for promoting students' disciplinary engagement and learning, yet such attention is rare and fleeting in American classrooms. In this dissertation, I aim to learn more from teachers who do attend and respond to students' scientific ideas while teaching. I explore the classroom practices of three focal teachers in a professional development program who consistently place students' ideas at the core of their instruction with an eye toward the following research question: What might stabilize teachers' attention and responsiveness to the substance of students' scientific thinking during sustained classroom episodes? Examining three episodes from each teacher, I identify aspects within these episodes that are salient to the teachers and plausibly interrelated with their attention and responsiveness to student thinking. My primary data chapters include analyses of specific pairs of episodes that speak to my broader research question as well as other relevant topics in the literature on attending and responding to student thinking. The first data chapter makes the case that professional development efforts aimed at supporting responsiveness to student thinking primarily help teachers within planned discussions or progressions, but struggle to help teachers adapt their ongoing instruction in response to unexpected directions from students. I examine two episodes in which the discussions that emerged were not preplanned but rather emergent from students' contributions, with an eye toward what initiated and sustained teachers' responsiveness. The second data chapter contributes to discussions on what constitutes favorable change in attending and responding to the substance of student thinking, emphasizing the importance of disciplinary-specific considerations. Finally, I draw on the entire data set in noting specific commonalities within and across teachers, suggesting two

  3. Exploring Spatial Patterns of Pan-European Hydrological Signatures and their Links With Catchment Characteristics by Taking Advantage of Large Open Datasets.

    NASA Astrophysics Data System (ADS)

    Kuentz, A.; Arheimer, B.; Hirpa, Y. H.; Wagener, T.

    2014-12-01

    The increasing availability of open hydrological and physiographic data over large spatial domains opens the door for a more thorough investigation of dominant flow generating mechanisms across scales using a large number of catchments. This study aims at exploring and understanding the physical controls on spatial patterns of pan-European flow signatures. This understanding will ultimately enhance our ability to predict hydrological variables in ungauged catchments. In this study, similarities in signatures are explored and compared to similarities in catchment characteristics to distinguish coherence in spatial patterns. In total, some 50 characteristics variables (physical, human alteration and climate) have been computed for more than 1500 stream gauges across Europe. For the same gauges, 15 selected signatures have been calculated for different time-periods (5, 10, 15, 20, 25 and 30 years) of continuous daily flow measurements. Relationships between characteristics and signatures are subsequently explored through correlation analyses to find the best explanatory variables for each signature and to build regression models for predictions in ungauged basins. Significant relationships are observed between some signatures and predictors like land-use area percentages (agriculture, open areas), topography and climatic indices. Two types of classification (based on catchment characteristics or flow signatures) are applied and the obtained patterns are compared. Regression models are built for each class and compared to the general models built without classification. Attention is drawn to human alteration when looking at outliers or differences between modeled and observed patterns. Finally, the regression models are applied for 35 000 watersheds, mostly ungauged, across Europe (on average 250 km2) to create a map of flow regimes across the European continent. Dominant flow generating processes are analyzed for each class to understand the spatial pattern.

  4. Exploration

    USGS Publications Warehouse

    Wilburn, D.R.; Porter, K.E.

    1999-01-01

    This summary of international nonfuel mineral exploration activities for 1998 draws on available data from literature, industry and US Geological Survey (USGS) specialists. Data on exploration budgets by region and commodity are reported, significant mineral discoveries and exploration target areas are identified and government programs affecting the mineral exploration industry are discussed. Inferences and observations on mineral industry direction are drawn from these data and discussions.

  5. Statistical Reference Datasets

    National Institute of Standards and Technology Data Gateway

    Statistical Reference Datasets (Web, free access)   The Statistical Reference Datasets is also supported by the Standard Reference Data Program. The purpose of this project is to improve the accuracy of statistical software by providing reference datasets with certified computational results that enable the objective evaluation of statistical software.

  6. Exploring recent and projected climate change in a steep monsoonal catchment in the middle Himalaya through innovative synthesis of local observations, gridded datasets and community engagement

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Pritchard, Davis; Tiwari, Prakash; Fowler, Hayley; Kumaun, Bhagwati

    2016-04-01

    Under the auspices of an "Innovation Partnerships" programme research exchange grant jointly funded by the India Department of Science and Technology and the British Council, Kumaun University and Newcastle University have been collaboratively exploring the recorded historical and projected future climate change implications for a case study catchment, the Ramgad river, in the Kumaon Lesser Himalaya (Uttarakhand state, India). This work weaves together diverse research strands with the aim of producing a coherent thorough characterisation of the impacts of recent/on-going and likely climate evolution on local communities. Participatory research activities in multiple villages in the case study catchment have yielded a consistent narrative of changes posed by the increasingly erratic monsoonal rainfall as well as upward displacement and replacement crops in their historical elevation ranges due to temperature change. Multi-decadal climate records from both local observations and global meteorological records reveal a more complex picture with strong seasonal asymmetry of changes in both temperature and precipitation: a) trend analysis shows mild weakening of the early phase (May, July) but strengthen in the later stages (August, September); b) temperature trends show much stronger warming in late winter and early spring (February to April) than the rest of the year with additional asymmetry in both sign and magnitude of change between individual components (Tmax, Tmin) of the diurnal temperature cycle. On-going research seeks to associate this asymmetry with causal mechanisms (cloud radiative effect, atmospheric circulation). Analysis of historical records will provide the basis for validation and assessment of individual regional climate model projections from the CORDEX South Asia domain ensemble. For the terraced agricultural communities of the Kumaon Himalaya, the most directly consequential effects of climate variability and change are impacts on crop yields

  7. Where Do the Sand-Dust Storms Come From?: Conversations with Specialists from the Exploring Sand-Dust Storms Scientific Expedition Team

    ERIC Educational Resources Information Center

    Shixin, Liu

    2004-01-01

    This article relates the different views from specialists of the scientific expedition team for the exploration of the origin of sand-dust storms. They observed and examined on-site the ecological environment of places of origin for sand-dust storms, and tried to find out causes of sand-dust storm and what harm it can cause in the hope of…

  8. Exploring the Potential of Using Stories about Diverse Scientists and Reflective Activities to Enrich Primary Students' Images of Scientists and Scientific Work

    ERIC Educational Resources Information Center

    Sharkawy, Azza

    2012-01-01

    The purpose of this qualitative study was to explore the potential of using stories about diverse scientists to broaden primary students' images of scientists and scientific work. Stories featuring scientists from diverse socio-cultural backgrounds (i.e., physical ability, gender, ethnicity) were presented to 11 grade one students over a 15-week…

  9. Exploring the Impacts of Cognitive and Metacognitive Prompting on Students' Scientific Inquiry Practices within an E-Learning Environment

    ERIC Educational Resources Information Center

    Zhang, Wen-Xin; Hsu, Ying-Shao; Wang, Chia-Yu; Ho, Yu-Ting

    2015-01-01

    This study explores the effects of metacognitive and cognitive prompting on the scientific inquiry practices of students with various levels of initial metacognition. Two junior high school classes participated in this study. One class, the experimental group (n?=?26), which received an inquiry-based curriculum with a combination of cognitive and…

  10. Scientific Misconduct.

    ERIC Educational Resources Information Center

    Goodstein, David

    2002-01-01

    Explores scientific fraud, asserting that while few scientists actually falsify results, the field has become so competitive that many are misbehaving in other ways; an example would be unreasonable criticism by anonymous peer reviewers. (EV)

  11. Dataset Lifecycle Policy

    NASA Technical Reports Server (NTRS)

    Armstrong, Edward; Tauer, Eric

    2013-01-01

    The presentation focused on describing a new dataset lifecycle policy that the NASA Physical Oceanography DAAC (PO.DAAC) has implemented for its new and current datasets to foster improved stewardship and consistency across its archive. The overarching goal is to implement this dataset lifecycle policy for all new GHRSST GDS2 datasets and bridge the mission statements from the GHRSST Project Office and PO.DAAC to provide the best quality SST data in a cost-effective, efficient manner, preserving its integrity so that it will be available and usable to a wide audience.

  12. Preparing Precipitation Data Access, Value-added Services and Scientific Exploration Tools for the Integrated Multi-satellitE Retrievals for GPM (IMERG)

    NASA Astrophysics Data System (ADS)

    Ostrenga, D.; Liu, Z.; Kempler, S. J.; Vollmer, B.; Teng, W. L.

    2013-12-01

    The Precipitation Data and Information Services Center (PDISC) (http://disc.gsfc.nasa.gov/precipitation or google: NASA PDISC), located at the NASA Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC), is home of the Tropical Rainfall Measuring Mission (TRMM) data archive. For over 15 years, the GES DISC has served not only TRMM, but also other space-based, airborne-based, field campaign and ground-based precipitation data products to the precipitation community and other disciplinary communities as well. The TRMM Multi-Satellite Precipitation Analysis (TMPA) products are the most popular products in the TRMM product family in terms of data download and access through Mirador, the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) and other services. The next generation of TMPA, the Integrated Multi-satellitE Retrievals for GPM (IMERG) to be released in 2014 after the launch of GPM, will be significantly improved in terms of spatial and temporal resolutions. To better serve the user community, we are preparing data services and samples are listed below. To enable scientific exploration of Earth science data products without going through complicated and often time consuming processes, such as data downloading, data processing, etc., the GES DISC has developed Giovanni in consultation with members of the user community, requesting quick search, subset, analysis and display capabilities for their specific data of interest. For example, the TRMM Online Visualization and Analysis System (TOVAS, http://disc2.nascom.nasa.gov/Giovanni/tovas/) has proven extremely popular, especially as additional datasets have been added upon request. Giovanni will continue to evolve to accommodate GPM data and the multi-sensor data inter-comparisons that will be sure to follow. Additional PDISC tool and service capabilities being adapted for GPM data include: An on-line PDISC Portal (includes user guide, etc

  13. Scientific results and lessons learned from an integrated crewed Mars exploration simulation at the Rio Tinto Mars analogue site

    NASA Astrophysics Data System (ADS)

    Orgel, Csilla; Kereszturi, Ákos; Váczi, Tamás; Groemer, Gernot; Sattler, Birgit

    2014-02-01

    Between 15 and 25 April 2011 in the framework of the PolAres programme of the Austrian Space Forum, a five-day field test of the Aouda.X spacesuit simulator was conducted at the Rio Tinto Mars-analogue site in southern Spain. The field crew was supported by a full-scale Mission Control Center (MCC) in Innsbruck, Austria. The field telemetry data were relayed to the MCC, enabling a Remote Science Support (RSS) team to study field data in near-real-time and adjust the flight planning in a flexible manner. We report on the experiences in the field of robotics, geophysics (Ground Penetrating Radar) and geology as well as life sciences in a simulated spaceflight operational environment. Extravehicular Activity (EVA) maps had been prepared using Google Earth and aerial images. The Rio Tinto mining area offers an excellent location for Mars analogue simulations. It is recognised as a terrestrial Mars analogue site because of the presence of jarosite and related sulphates, which have been identified by the NASA Mars Exploration Rover "Opportunity" in the El Capitan region of Meridiani Planum on Mars. The acidic, high ferric-sulphate content water of Rio Tinto is also considered as a possible analogue in astrobiology regarding the analysis of ferric sulphate related biochemical pathways and produced biomarkers. During our Mars simulation, 18 different types of soil and rock samples were collected by the spacesuit tester. The Raman results confirm the presence of minerals expected, such as jarosite, different Fe oxides and oxi-hydroxides, pyrite and complex Mg and Ca sulphates. Eight science experiments were conducted in the field. In this contribution first we list the important findings during the management and realisation of tests, and also a first summary of the scientific results. Based on these experiences suggestions for future analogue work are also summarised. We finish with recommendations for future field missions, including the preparation of the experiments

  14. Fixing Dataset Search

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris

    2014-01-01

    Three current search engines are queried for ozone data at the GES DISC. The results range from sub-optimal to counter-intuitive. We propose a method to fix dataset search by implementing a robust relevancy ranking scheme. The relevancy ranking scheme is based on several heuristics culled from more than 20 years of helping users select datasets.

  15. Students' Meaning-Making of Socio-Scientific Issues in Computer Mediated Settings: Exploring Learning through Interaction Trajectories

    ERIC Educational Resources Information Center

    Furberg, Anniken; Ludvigsen, Sten

    2008-01-01

    This article reports on a study concerning secondary school students' meaning-making of socio-scientific issues in Information and Communication Technology-mediated settings. Our theoretical argument has as its point of departure the analytical distinction between "doing science" and "doing school," as two different forms of classroom activity. In…

  16. Student-Centered Use of Case Studies Incorporating Oral and Writing Skills to Explore Scientific Ethical Misconduct

    ERIC Educational Resources Information Center

    Montes, Ingrid; Padilla, Adriana; Maldonado, Atenaida; Negretti, Solymar

    2009-01-01

    For many years, ethical misconduct has been long endured and difficult to address in the scientific community. To educate students about ethical misconduct in science, case studies were used in an ethics discussion board for a class group project. The objectives aimed to (i) familiarize students with the term "ethical misconduct", particularly in…

  17. Elementary School Students' Emotions When Exploring an Authentic Socio-Scientific Issue through the Use of Models

    ERIC Educational Resources Information Center

    Nicolaou, Chr. Th.; Evagorou, M.; Lymbouridou, Chr.

    2015-01-01

    Despite the belief that emotions are important in the learning process, research in the area of emotions and learning, especially in science, is scant. Modelling and SSI argumentation have shared with respect to the emphasis in recent science standards reports as core scientific practices that need to be part of science teaching and learning. Even…

  18. Exploring the potential of using stories about diverse scientists and reflective activities to enrich primary students' images of scientists and scientific work

    NASA Astrophysics Data System (ADS)

    Sharkawy, Azza

    2012-06-01

    The purpose of this qualitative study was to explore the potential of using stories about diverse scientists to broaden primary students' images of scientists and scientific work. Stories featuring scientists from diverse socio-cultural backgrounds (i.e., physical ability, gender, ethnicity) were presented to 11 grade one students over a 15 -week period. My analysis of pre-and post audio-taped interview transcripts, draw-a-scientist-tests (Chambers 1983), participant observations and student work suggest that the stories about scientists and follow-up reflective activities provided resources for students that helped them: (a) acquire images of scientists from less dominant socio-cultural backgrounds; (b) enrich their views of scientific work from predominantly hands-on/activity-oriented views to ones that includes cognitive and positive affective dimensions. One of the limitations of using stories as a tool to extend students' thinking about science is highlighted in a case study of a student who expresses resistance to some of the counter-stereotypic images presented in the stories. I also present two additional case studies that illustrate how shifts in student' views of the nature of scientific work can change their interest in future participation in scientific work.

  19. NATIONAL ELEVATION DATASET

    EPA Science Inventory

    The USGS National Elevation Dataset (NED) has been developed by merging the highest-resolution, best-quality elevation data available across the United States into a seamless raster format. NED is the result of the maturation of the USGS effort to provide 1:24,000-scale Digital ...

  20. NATIONAL ELEVATION DATASET HILLSHADE

    EPA Science Inventory

    The USGS National Elevation Dataset (NED) has been developed bymerging the highest-resolution, best-quality elevation data available across the United States into a seamless raster format. NED is the result of the maturation of the USGS effort to provide 1:24,000-scale Digital E...

  1. NATIONAL HYDROGRAPHY DATASET

    EPA Science Inventory

    The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that comprise the nations surface water drainage system. It is based initially on the content of the U.S. Geological Survey 1:100,000-scal...

  2. NATIONAL HYDROGRAPHY DATASET

    EPA Science Inventory

    Resource Purpose:The National Hydrography Dataset (NHD) is a comprehensive set of digital spatial data that contains information about surface water features such as lakes, ponds, streams, rivers, springs and wells. Within the NHD, surface water features are combined to fo...

  3. The garden as a laboratory: the role of domestic gardens as places of scientific exploration in the long 18th century

    PubMed Central

    HICKMAN, CLARE

    2014-01-01

    Eighteenth-century gardens have traditionally been viewed as spaces designed for leisure, and as representations of political status, power and taste. In contrast, this paper will explore the concept that gardens in this period could be seen as dynamic spaces where scientific experiment and medical practice could occur. Two examples have been explored in the pilot study which has led to this paper — the designed landscapes associated with John Hunter’s Earl’s Court residence, in London, and the garden at Edward Jenner’s house in Berkeley, Gloucestershire. Garden history methodologies have been implemented in order to consider the extent to which these domestic gardens can be viewed as experimental spaces. PMID:26052165

  4. Changes in orthodontic treatment modalities in the past 20 years: exploring the link between technology and scientific evidence.

    PubMed

    Bradley, T Gerard

    2013-01-01

    STATEMENT OF THE ISSUE: Is there a link between the many perceived advances in orthodontic techniques/therapy and science in the past 20 years? The purpose of this paper is to take five topics and match the perceptions with the scientific evidence. The variety of appliances and the swings in treatment philosophy have been dramatic, including the swing from extraction to non-extraction therapy, the introduction of space-age wires, appliances that grow mandibles, the introduction and extraordinary growth of Invisalign, and reduced friction brackets to reduce treatment time, all with claims by manufacturers of better results than ever before. The focus is on faster treatment, reduced visits/appointments and superior results. Most of these 'advancements' represent what has been the 'juggernaut of technology'. Five questions are posed, and an evidence-based approach is used to critically examine the literature in these selected topics. PMID:23729055

  5. [The coast of Northeast Brazil as a Darwinian scientific object: the explorations of John Casper Branner, 1899-1911].

    PubMed

    de Oliveira, Almir Leal

    2014-01-01

    John Casper Branner, a US geologist, had a long history of research in Brazil. The article analyzes his exploration of the geology of the coast of Northeast Brazil during the Branner-Agassiz (1899) and Stanford (1911) expeditions. In the findings from both voyages, Branner characterized the geomorphology of sedimentary basins, sandstone reefs, and coral reefs from a Darwinian evolutionary perspective, blending natural history's model of field research with the practices of modern biology and dynamic geology. He based his interpretation of the evolution of the geological formation on physical and chemical factors. Zoological studies identified the place of evolutionary variation and adaptations of isolated marine species as an auxiliary factor in natural selection. PMID:25338034

  6. Data Integration for Heterogenous Datasets

    PubMed Central

    2014-01-01

    Abstract More and more, the needs of data analysts are requiring the use of data outside the control of their own organizations. The increasing amount of data available on the Web, the new technologies for linking data across datasets, and the increasing need to integrate structured and unstructured data are all driving this trend. In this article, we provide a technical overview of the emerging “broad data” area, in which the variety of heterogeneous data being used, rather than the scale of the data being analyzed, is the limiting factor in data analysis efforts. The article explores some of the emerging themes in data discovery, data integration, linked data, and the combination of structured and unstructured data. PMID:25553272

  7. The 3D widgets for exploratory scientific visualization

    NASA Technical Reports Server (NTRS)

    Herndon, Kenneth P.; Meyer, Tom

    1995-01-01

    Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.

  8. The Path from Large Earth Science Datasets to Information

    NASA Astrophysics Data System (ADS)

    Vicente, G. A.

    2013-12-01

    The NASA Goddard Earth Sciences Data (GES) and Information Services Center (DISC) is one of the major Science Mission Directorate (SMD) for archiving and distribution of Earth Science remote sensing data, products and services. This virtual portal provides convenient access to Atmospheric Composition and Dynamics, Hydrology, Precipitation, Ozone, and model derived datasets (generated by GSFC's Global Modeling and Assimilation Office), the North American Land Data Assimilation System (NLDAS) and the Global Land Data Assimilation System (GLDAS) data products (both generated by GSFC's Hydrological Sciences Branch). This presentation demonstrates various tools and computational technologies developed in the GES DISC to manage the huge volume of data and products acquired from various missions and programs over the years. It explores approaches to archive, document, distribute, access and analyze Earth Science data and information as well as addresses the technical and scientific issues, governance and user support problem faced by scientists in need of multi-disciplinary datasets. It also discusses data and product metrics, user distribution profiles and lessons learned through interactions with the science communities around the world. Finally it demonstrates some of the most used data and product visualization and analyses tools developed and maintained by the GES DISC.

  9. Publicly Releasing a Large Simulation Dataset with NDS Labs

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan

    2016-03-01

    Optimally, all publicly funded research should be accompanied by the tools, code, and data necessary to fully reproduce the analysis performed in journal articles describing the research. This ideal can be difficult to attain, particularly when dealing with large (>10 TB) simulation datasets. In this lightning talk, we describe the process of publicly releasing a large simulation dataset to accompany the submission of a journal article. The simulation was performed using Enzo, an open source, community-developed N-body/hydrodynamics code and was analyzed using a wide range of community- developed tools in the scientific Python ecosystem. Although the simulation was performed and analyzed using an ecosystem of sustainably developed tools, we enable sustainable science using our data by making it publicly available. Combining the data release with the NDS Labs infrastructure allows a substantial amount of added value, including web-based access to analysis and visualization using the yt analysis package through an IPython notebook interface. In addition, we are able to accompany the paper submission to the arXiv preprint server with links to the raw simulation data as well as interactive real-time data visualizations that readers can explore on their own or share with colleagues during journal club discussions. It is our hope that the value added by these services will substantially increase the impact and readership of the paper.

  10. Genomics dataset of unidentified disclosed isolates.

    PubMed

    Rekadwad, Bhagwan N

    2016-09-01

    Analysis of DNA sequences is necessary for higher hierarchical classification of the organisms. It gives clues about the characteristics of organisms and their taxonomic position. This dataset is chosen to find complexities in the unidentified DNA in the disclosed patents. A total of 17 unidentified DNA sequences were thoroughly analyzed. The quick response codes were generated. AT/GC content of the DNA sequences analysis was carried out. The QR is helpful for quick identification of isolates. AT/GC content is helpful for studying their stability at different temperatures. Additionally, a dataset on cleavage code and enzyme code studied under the restriction digestion study, which helpful for performing studies using short DNA sequences was reported. The dataset disclosed here is the new revelatory data for exploration of unique DNA sequences for evaluation, identification, comparison and analysis. PMID:27408929

  11. Public Availability to ECS Collected Datasets

    NASA Astrophysics Data System (ADS)

    Henderson, J. F.; Warnken, R.; McLean, S. J.; Lim, E.; Varner, J. D.

    2013-12-01

    Coastal nations have spent considerable resources exploring the limits of their extended continental shelf (ECS) beyond 200 nm. Although these studies are funded to fulfill requirements of the UN Convention on the Law of the Sea, the investments are producing new data sets in frontier areas of Earth's oceans that will be used to understand, explore, and manage the seafloor and sub-seafloor for decades to come. Although many of these datasets are considered proprietary until a nation's potential ECS has become 'final and binding' an increasing amount of data are being released and utilized by the public. Data sets include multibeam, seismic reflection/refraction, bottom sampling, and geophysical data. The U.S. ECS Project, a multi-agency collaboration whose mission is to establish the full extent of the continental shelf of the United States consistent with international law, relies heavily on data and accurate, standard metadata. The United States has made it a priority to make available to the public all data collected with ECS-funding as quickly as possible. The National Oceanic and Atmospheric Administration's (NOAA) National Geophysical Data Center (NGDC) supports this objective by partnering with academia and other federal government mapping agencies to archive, inventory, and deliver marine mapping data in a coordinated, consistent manner. This includes ensuring quality, standard metadata and developing and maintaining data delivery capabilities built on modern digital data archives. Other countries, such as Ireland, have submitted their ECS data for public availability and many others have made pledges to participate in the future. The data services provided by NGDC support the U.S. ECS effort as well as many developing nation's ECS effort through the U.N. Environmental Program. Modern discovery, visualization, and delivery of scientific data and derived products that span national and international sources of data ensure the greatest re-use of data and

  12. U.S. Geological Survey Scientific Activities in the Exploration of Antarctica: Introduction to Antarctica (Including USGS Field Personnel: 1946-59)

    USGS Publications Warehouse

    Tony K. Meunier Edited by Williams, Richard S., Jr.; Ferrigno, Jane G.

    2007-01-01

    3) significant changes that have occurred in Antarctic exploration and research since World War II will be discussed at the end of this report. Subsequent Open-File Reports will provide a year-by-year documentation of USGS scientific activities and accomplishments in Antarctica beginning with the post-IGY, 1959-60 research team. One Open-File Report is planned to be written for each field-based season. For an example of the series format, see Open-File Reports 2006-1113 (Meunier, 2007a) and 2006-1114 (Meunier, 2007b). This report is a companion document to Open-File Report 2006-1116 (Meunier, 2007c). The USGS mapping and science programs in Antarctica are among the longest continuously funded projects in the United States Antarctic Program (USAP). The 2005-06 field season is the 56th consecutive U.S. expedition in which USGS scientists have been participants, starting in 1946. USGS and the National Science Foundation (NSF) cooperation began with the establishment by NSF of the U.S. Antarctic (Research) Program [USA(R)P] in 1958-59 under Operation Deep Freeze IV (DF IV) and was given the responsibility for the principal coordination and management of all U.S. scientific activities in Antarctica in Deep Freeze 60 (DF 60) (1959-60). Financial support from NSF, mostly in the form of Memorandum of Understandings (MOUs) and Cooperative Agreements, extends back to this period and can be attributed to the need for accurate geologic, geophysical, and topographic base maps of specific field areas or regions where NSF-funded science projects were planned. The epoch of Antarctic exploration during the IGY was driven by science and, in a spirit of peaceful cooperation, the international scientific community wanted to limit military activities on the continent to logistical support (Meunier, 1979 [2007], p. 38). The USGS, a Federal civilian science agency in the Department of the Interior, has, since its founding in 1879, carried out numerous field-based national (and some

  13. Exploring scientifically proven herbal aphrodisiacs

    PubMed Central

    Kotta, Sabna; Ansari, Shahid H.; Ali, Javed

    2013-01-01

    Procreation was an important moral and religious issue and aphrodisiacs were sought to ensure both male and female potency. Sexual dysfunction is an inability to achieve a normal sexual intercourse, including premature ejaculation, retrograded, retarded or inhibited ejaculation, erectile dysfunction, arousal difficulties (reduced libido), compulsive sexual behavior, orgasmic disorder, and failure of detumescence. The introduction of the first pharmacologically approved remedy for impotence, Viagra (sildenafil) in 1990s caused a wave of public attention, propelled in part by heavy advertising. The search for such substances dates back millennia. An aphrodisiac is an agent (food or drug) that arouses sexual desire. The hunt for natural supplement from medicinal plants is being intensified mainly because of its fewer side effects. In this review, we have mentioned the pharmacologically tested (either in man or animal or in both) aphrodisiac plants, which have claimed for its uses. PMID:23922450

  14. Magic Termites: Exploring Scientific Inquiry

    ERIC Educational Resources Information Center

    Callis, Kristine; Henkel, Melissa; Lund, Rachael

    2010-01-01

    The objective of the termite experiment is to walk students through the process of designing and conducting an experiment while allowing them to use inquiry-based methods to infer why, in this lab, termites follow the line of blue Bic or Paper Mate brand ballpoint pens. This experiment also reinforces the concept of observation versus inference…

  15. Artificial neural networks for small dataset analysis.

    PubMed

    Pasini, Antonello

    2015-05-01

    Artificial neural networks (ANNs) are usually considered as tools which can help to analyze cause-effect relationships in complex systems within a big-data framework. On the other hand, health sciences undergo complexity more than any other scientific discipline, and in this field large datasets are seldom available. In this situation, I show how a particular neural network tool, which is able to handle small datasets of experimental or observational data, can help in identifying the main causal factors leading to changes in some variable which summarizes the behaviour of a complex system, for instance the onset of a disease. A detailed description of the neural network tool is given and its application to a specific case study is shown. Recommendations for a correct use of this tool are also supplied. PMID:26101654

  16. Artificial neural networks for small dataset analysis

    PubMed Central

    2015-01-01

    Artificial neural networks (ANNs) are usually considered as tools which can help to analyze cause-effect relationships in complex systems within a big-data framework. On the other hand, health sciences undergo complexity more than any other scientific discipline, and in this field large datasets are seldom available. In this situation, I show how a particular neural network tool, which is able to handle small datasets of experimental or observational data, can help in identifying the main causal factors leading to changes in some variable which summarizes the behaviour of a complex system, for instance the onset of a disease. A detailed description of the neural network tool is given and its application to a specific case study is shown. Recommendations for a correct use of this tool are also supplied. PMID:26101654

  17. Using a Constructed-Response Instrument to Explore the Effects of Item Position and Item Features on the Assessment of Students' Written Scientific Explanations

    NASA Astrophysics Data System (ADS)

    Federer, Meghan Rector; Nehm, Ross H.; Opfer, John E.; Pearl, Dennis

    2015-08-01

    A large body of work has been devoted to reducing assessment biases that distort inferences about students' science understanding, particularly in multiple-choice instruments (MCI). Constructed-response instruments (CRI), however, have invited much less scrutiny, perhaps because of their reputation for avoiding many of the documented biases of MCIs. In this study we explored whether known biases of MCIs—specifically item sequencing and surface feature effects—were also apparent in a CRI designed to assess students' understanding of evolutionary change using written explanation (Assessment of COntextual Reasoning about Natural Selection [ACORNS]). We used three versions of the ACORNS CRI to investigate different aspects of assessment structure and their corresponding effect on inferences about student understanding. Our results identified several sources of (and solutions to) assessment bias in this practice-focused CRI. First, along the instrument item sequence, items with similar surface features produced greater sequencing effects than sequences of items with dissimilar surface features. Second, a counterbalanced design (i.e., Latin Square) mitigated this bias at the population level of analysis. Third, ACORNS response scores were highly correlated with student verbosity, despite verbosity being an intrinsically trivial aspect of explanation quality. Our results suggest that as assessments in science education shift toward the measurement of scientific practices (e.g., explanation), it is critical that biases inherent in these types of assessments be investigated empirically.

  18. Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades

    PubMed Central

    Orchard, Garrick; Jayawant, Ajinkya; Cohen, Gregory K.; Thakor, Nitish

    2015-01-01

    Creating datasets for Neuromorphic Vision is a challenging task. A lack of available recordings from Neuromorphic Vision sensors means that data must typically be recorded specifically for dataset creation rather than collecting and labeling existing data. The task is further complicated by a desire to simultaneously provide traditional frame-based recordings to allow for direct comparison with traditional Computer Vision algorithms. Here we propose a method for converting existing Computer Vision static image datasets into Neuromorphic Vision datasets using an actuated pan-tilt camera platform. Moving the sensor rather than the scene or image is a more biologically realistic approach to sensing and eliminates timing artifacts introduced by monitor updates when simulating motion on a computer monitor. We present conversion of two popular image datasets (MNIST and Caltech101) which have played important roles in the development of Computer Vision, and we provide performance metrics on these datasets using spike-based recognition algorithms. This work contributes datasets for future use in the field, as well as results from spike-based algorithms against which future works can compare. Furthermore, by converting datasets already popular in Computer Vision, we enable more direct comparison with frame-based approaches. PMID:26635513

  19. Lunar Missions and Datasets

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2009-01-01

    There are two slide presentations contained in this document. The first reviews the lunar missions from Surveyor, Galileo, Clementine, the Lunar Prospector, to upcoming lunar missions, Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation & Sensing Satellite (LCROSS), Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS), Gravity Recovery and Interior Laboratory (GRAIL), Lunar Atmosphere, Dust and Environment Explorer (LADEE), ILN and a possible Robotic sample return mission. The information that the missions about the moon is reviewed. The second set of slides reviews the lunar meteorites, and the importance of lunar meteorites to adding to our understanding of the moon.

  20. Providing Geographic Datasets as Linked Data in Sdi

    NASA Astrophysics Data System (ADS)

    Hietanen, E.; Lehto, L.; Latvala, P.

    2016-06-01

    In this study, a prototype service to provide data from Web Feature Service (WFS) as linked data is implemented. At first, persistent and unique Uniform Resource Identifiers (URI) are created to all spatial objects in the dataset. The objects are available from those URIs in Resource Description Framework (RDF) data format. Next, a Web Ontology Language (OWL) ontology is created to describe the dataset information content using the Open Geospatial Consortium's (OGC) GeoSPARQL vocabulary. The existing data model is modified in order to take into account the linked data principles. The implemented service produces an HTTP response dynamically. The data for the response is first fetched from existing WFS. Then the Geographic Markup Language (GML) format output of the WFS is transformed on-the-fly to the RDF format. Content Negotiation is used to serve the data in different RDF serialization formats. This solution facilitates the use of a dataset in different applications without replicating the whole dataset. In addition, individual spatial objects in the dataset can be referred with URIs. Furthermore, the needed information content of the objects can be easily extracted from the RDF serializations available from those URIs. A solution for linking data objects to the dataset URI is also introduced by using the Vocabulary of Interlinked Datasets (VoID). The dataset is divided to the subsets and each subset is given its persistent and unique URI. This enables the whole dataset to be explored with a web browser and all individual objects to be indexed by search engines.

  1. Historical Space Weather Datasets within NOAA

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Mabie, J. J.; Horan, K.; Clark, C.

    2013-12-01

    The National Geophysical Data Center (NGDC) is primarily responsible for scientific data stewardship of operational space weather data from NOAA's fleet of environmental satellites in geostationary and polar, low-earth orbits. In addition to this and as the former World Data Center for Solar Terrestrial Physics from 1957 to 2011 NGDC acquired a large variety of solar and space environmental data in differing formats including paper records and on film. Management of this heterogeneous collection of environmental data is a continued responsibility of NGDC as a participant in the new World Data System. Through the former NOAA Climate Data Modernization Program many of these records were converted to digital format and are readily available online. However, reduced funding and staff have put a strain on NGDC's ability to effectively steward these historical datasets, some of which are unique and, in particular cases, were the basis of fundamental scientific breakthroughs in our understanding of the near-earth space environment. In this talk, I will provide an overview of the historical space weather datasets which are currently managed by NGDC and discuss strategies for preserving these data during these fiscally stressing times.

  2. Genomic Datasets for Cancer Research

    Cancer.gov

    A variety of datasets from genome-wide association studies of cancer and other genotype-phenotype studies, including sequencing and molecular diagnostic assays, are available to approved investigators through the Extramural National Cancer Institute Data Access Committee.

  3. Development of a Comprehensive Plan for Scientific Research, Exploration, and Design: Creation of an Undergroung Radioactive Waste Isloation Facility at the Nizhnekansky Rock Massif

    SciTech Connect

    Jardine, L J

    2005-06-15

    ISTC Partner Project No.2377, ''Development of a General Research and Survey Plan to Create an Underground RW Isolation Facility in Nizhnekansky Massif'', funded a group of key Russian experts in geologic disposal, primarily at Federal State Unitary Enterprise All-Russian Design and Research Institute of Engineering Production (VNIPIPT) and Mining Chemical Combine Krasnoyarsk-26 (MCC K-26) (Reference 1). The activities under the ISTC Partner Project were targeted to the creation of an underground research laboratory which was to justify the acceptability of the geologic conditions for ultimate isolation of high-level waste in Russia. In parallel to this project work was also under way with Minatom's financial support to characterize alternative sections of the Nizhnekansky granitoid rock massif near the MCC K-26 site to justify the possibility of creating an underground facility for long-term or ultimate isolation of radioactive waste (RW) and spent nuclear fuel (SNF). (Reference 2) The result was a synergistic, integrated set of activities several years that advanced the geologic repository site characterization and development of a proposed underground research laboratory better than could have been expected with only the limited funds from ISTC Partner Project No.2377 funded by the U.S. DOE-RW. There were four objectives of this ISTC Partner Project 2377 geologic disposal work: (1) Generalize and analyze all research work done previously at the Nizhnekansky granitoid massif by various organizations; (2) Prepare and issue a declaration of intent (DOI) for proceeding with an underground research laboratory in a granite massif near the MCC K-26 site. (The DOI is similar to a Record of Decision in U.S. terminology). (3) Proceeding from the data obtained as a result of scientific research and exploration and design activities, prepare a justification of investment (JOI) for an underground research laboratory in as much detail as the available site characterization

  4. Efficient genotype compression and analysis of large genetic variation datasets

    PubMed Central

    Layer, Ryan M.; Kindlon, Neil; Karczewski, Konrad J.; Quinlan, Aaron R.

    2015-01-01

    Genotype Query Tools (GQT) is a new indexing strategy that expedites analyses of genome variation datasets in VCF format based on sample genotypes, phenotypes and relationships. GQT’s compressed genotype index minimizes decompression for analysis, and performance relative to existing methods improves with cohort size. We show substantial (up to 443 fold) performance gains over existing methods and demonstrate GQT’s utility for exploring massive datasets involving thousands to millions of genomes. PMID:26550772

  5. Bulk Data Movement for Climate Dataset: Efficient Data Transfer Management with Dynamic Transfer Adjustment

    SciTech Connect

    Sim, Alexander; Balman, Mehmet; Williams, Dean N.; Shoshani, Arie; Natarajan, Vijaya

    2010-07-16

    Many scientific applications and experiments, such as high energy and nuclear physics, astrophysics, climate observation and modeling, combustion, nano-scale material sciences, and computational biology, generate extreme volumes of data with a large number of files. These data sources are distributed among national and international data repositories, and are shared by large numbers of geographically distributed scientists. A large portion of data is frequently accessed, and a large volume of data is moved from one place to another for analysis and storage. One challenging issue in such efforts is the limited network capacity for moving large datasets to explore and manage. The Bulk Data Mover (BDM), a data transfer management tool in the Earth System Grid (ESG) community, has been managing the massive dataset transfers efficiently with the pre-configured transfer properties in the environment where the network bandwidth is limited. Dynamic transfer adjustment was studied to enhance the BDM to handle significant end-to-end performance changes in the dynamic network environment as well as to control the data transfers for the desired transfer performance. We describe the results from the BDM transfer management for the climate datasets. We also describe the transfer estimation model and results from the dynamic transfer adjustment.

  6. Detecting bimodality in astronomical datasets

    NASA Technical Reports Server (NTRS)

    Ashman, Keith A.; Bird, Christina M.; Zepf, Stephen E.

    1994-01-01

    We discuss statistical techniques for detecting and quantifying bimodality in astronomical datasets. We concentrate on the KMM algorithm, which estimates the statistical significance of bimodality in such datasets and objectively partitions data into subpopulations. By simulating bimodal distributions with a range of properties we investigate the sensitivity of KMM to datasets with varying characteristics. Our results facilitate the planning of optimal observing strategies for systems where bimodality is suspected. Mixture-modeling algorithms similar to the KMM algorithm have been used in previous studies to partition the stellar population of the Milky Way into subsystems. We illustrate the broad applicability of KMM by analyzing published data on globular cluster metallicity distributions, velocity distributions of galaxies in clusters, and burst durations of gamma-ray sources. FORTRAN code for the KMM algorithm and directions for its use are available from the authors upon request.

  7. ADAM: automated data management for research datasets

    PubMed Central

    Woodbridge, Mark; Tomlinson, Christopher D.; Butcher, Sarah A.

    2013-01-01

    Existing repositories for experimental datasets typically capture snapshots of data acquired using a single experimental technique and often require manual population and continual curation. We present a storage system for heterogeneous research data that performs dynamic automated indexing to provide powerful search, discovery and collaboration features without the restrictions of a structured repository. ADAM is able to index many commonly used file formats generated by laboratory assays and therefore offers specific advantages to the experimental biology community. However, it is not domain specific and can promote sharing and re-use of working data across scientific disciplines. Availability and implementation: ADAM is implemented using Java and supported on Linux. It is open source under the GNU General Public License v3.0. Installation instructions, binary code, a demo system and virtual machine image and are available at http://www.imperial.ac.uk/bioinfsupport/resources/software/adam. Contact: m.woodbridge@imperial.ac.uk PMID:23109181

  8. Hydrologic information server for benchmark precipitation dataset

    NASA Astrophysics Data System (ADS)

    McEnery, John A.; McKee, Paul W.; Shelton, Gregory P.; Ramsey, Ryan W.

    2013-01-01

    This paper will present the methodology and overall system development by which a benchmark dataset of precipitation information has been made available. Rainfall is the primary driver of the hydrologic cycle. High quality precipitation data is vital for hydrologic models, hydrometeorologic studies and climate analysis,and hydrologic time series observations are important to many water resources applications. Over the past two decades, with the advent of NEXRAD radar, science to measure and record rainfall has improved dramatically. However, much existing data has not been readily available for public access or transferable among the agricultural, engineering and scientific communities. This project takes advantage of the existing CUAHSI Hydrologic Information System ODM model and tools to bridge the gap between data storage and data access, providing an accepted standard interface for internet access to the largest time-series dataset of NEXRAD precipitation data ever assembled. This research effort has produced an operational data system to ingest, transform, load and then serve one of most important hydrologic variable sets.

  9. An evaluation of the global 1-km AVHRR land dataset

    USGS Publications Warehouse

    Teillet, P.M.; El Saleous, N.; Hansen, M.C.; Eidenshink, Jeffery C.; Justice, C.O.; Townshend, J.R.G.

    2000-01-01

    This paper summarizes the steps taken in the generation of the global 1-km AVHRR land dataset, and it documents an evaluation of the data product with respect to the original specifications and its usefulness in research and applications to date. The evaluation addresses data characterization, processing, compositing and handling issues. Examples of the main scientific outputs are presented and options for improved processing are outlined and prioritized. The dataset has made a significant contribution, and a strong recommendation is made for its reprocessing and continuation to produce a long-term record for global change research.

  10. Exploring Verbal, Visual and Schematic Learners' Static and Dynamic Mental Images of Scientific Species and Processes in Relation to Their Spatial Ability

    ERIC Educational Resources Information Center

    Al-Balushi, Sulaiman M.; Coll, Richard Kevin

    2013-01-01

    The current study compared different learners' static and dynamic mental images of unseen scientific species and processes in relation to their spatial ability. Learners were classified into verbal, visual and schematic. Dynamic images were classified into: appearing/disappearing, linear-movement, and rotation. Two types of scientific…

  11. Exploring the Structural Relationships between High School Students' Scientific Epistemological Views and Their Utilization of Information Commitments toward Online Science Information

    ERIC Educational Resources Information Center

    Lin, Chia-Ching; Tsai, Chin-Chung

    2008-01-01

    The main purpose of this study was to examine the structural relationships between scientific epistemological views (SEVs) and information commitments (ICs) of high school students in Taiwan. Data were collected from 486 Taiwanese high school students via two self-reporting instruments: one was the SEV questionnaire, including five scales for…

  12. Exploring High School Students' Use of Theory and Evidence in an Everyday Context: The Role of Scientific Thinking in Environmental Science Decision-Making. Research Report

    ERIC Educational Resources Information Center

    Yang, Fang-Ying

    2004-01-01

    This study examined 10th-grade students' use of theory and evidence in evaluating a socio-scientific issue: the use of underground water, after students had received a Science, Technology and Society-oriented instruction. Forty-five male and 45 female students from two intact, single-sex, classes participated in this study. A flow-map method was…

  13. Exploring High School Students' Use of Theory and Evidence in an Everyday Context: The Role of Scientific Thinking in Environmental Science Decision-Making

    ERIC Educational Resources Information Center

    Yang, Fang-Ying

    2004-01-01

    This study examined 10th-grade students' use of theory and evidence in evaluating a socio-scientific issue: the use of underground water, after students had received a Science, Technology and Society-oriented instruction. Forty-five male and 45 female students from two intact, single-sex, classes participated in this study. A flow-map method was…

  14. Design of FastQuery: How to Generalize Indexing and Querying System for Scientific Data

    SciTech Connect

    Wu, Jerry; Wu, Kesheng

    2011-04-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies such as FastBit are critical for facilitating interactive exploration of large datasets. These technologies rely on adding auxiliary information to existing datasets to accelerate query processing. To use these indices, we need to match the relational data model used by the indexing systems with the array data model used by most scientific data, and to provide an efficient input and output layer for reading and writing the indices. In this work, we present a flexible design that can be easily applied to most scientific data formats. We demonstrate this flexibility by applying it to two of the most commonly used scientific data formats, HDF5 and NetCDF. We present two case studies using simulation data from the particle accelerator and climate simulation communities. To demonstrate the effectiveness of the new design, we also present a detailed performance study using both synthetic and real scientific workloads.

  15. Querying Large Biological Network Datasets

    ERIC Educational Resources Information Center

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  16. Using Exoplanet Models to Explore NGSS and the Nature of Science and as a Tool for Understanding the Scientific Results from NIRCam/JWST

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; McCarthy, Donald W.; Higgins, Michelle L.; Lebofsky, Nancy R.

    2014-11-01

    Our Solar System is no longer unique. To date, about 1,800 planets are known to orbit over 1,100 other stars and nearly 50% are in multiple-planet systems. Planetary systems seem [to be] fairly common and astronomers are now finding Earth-sized planets in the Goldilocks Zone, suggesting there may be other habitable planets. To this end, characterizing the atmospheric chemistries of such planets is a major science goal of the NIRCam instrument on the James Webb Space Telescope.For NIRCam's E/PO program with the Girl Scouts of the USA, we have produced scale models and associated activities to compare the size, scale, and dynamics of the Solar System with several exoplanet systems. Our models illustrate the techniques used to investigate these systems: radial velocity, transits, direct observations, and gravitational microlensing. By comparing and contrasting these models, we place our Solar System in a more cosmic context and enable discussion of current questions within the scientific community: How do planetary systems form and evolve? Is our present definition of a planet a good definition in the context of other planetary systems? Are there other planets/moons that might harbor life as we know it?These models are appropriate for use in classrooms and conform to the Next Generation Science Standards (NGSS) through the Disciplinary Core Idea: Earth's Place in the Universe and Crosscutting Concepts—Patterns Scale, Portion, and Quantity; and Systems and System Models. NGSS also states that the Nature of Science (NOS) should be an “essential part” of science education. NOS topics include, for example, understanding that scientific investigations use a variety of methods, that scientific knowledge is based on empirical evidence, that scientific explanations are open to revision in light of new evidence, and an understanding the nature of scientific models.

  17. Can we really make a difference? Exploring pre-service teachers' experience with socio-scientific issues aiming for democratic participation in science

    NASA Astrophysics Data System (ADS)

    Cook, Kristin Leigh

    Responding to calls for an empirical glimpse into a socioscientific issues (SSI)-based curriculum that aims to promote democratic participation, enhance students' connections to science, and empower students for the betterment of society (Dos Santos, 2008; Sadler, Barab, & Scott, 2007; Tal & Kedmi, 2006; Fusco & Barton, 2001; Hodson, 2003), this critical case study of 24 pre-service teachers (PSTs) enrolled in a scientific inquiry course offers curricular suggestions to empower learners to connect with the dynamic and socially-mediated process of science. In effect, incorporating nature of science-focused and place-based inquiry into a collaboration between PSTs and scientists were essential elements in enhancing students' connections to and feelings of inclusion in SSI. Propelled beyond a deficit model of public participation in science, the PSTs did indeed experience a public debate model and in some cases a knowledge production model in their collaborative efforts with scientists (Callon, 1999; Pouliot, 2009). While all of the PSTs engaged in rich discussion of their perspectives with scientists to enhance the investigation of their inquiry, some experienced a redistribution of the roles of participation in the production of scientific knowledge that was integrated into the scientists' decision-making processes. The materialization of these models depended on the structures of the student-scientists collaboration and the ways in which these malleable structures were flexed and negotiated. In effect, this study contributes to the literature on the potentials of SSI by providing an example of an educational approach that engages learners in a community practice as active participants in decision-making processes regarding socio-scientific issues, as well as focuses on empowering learners to be involved in the generation of scientific knowledge that contributes to their community.

  18. Development of a SPARK Training Dataset

    SciTech Connect

    Sayre, Amanda M.; Olson, Jarrod R.

    2015-03-01

    In its first five years, the National Nuclear Security Administration’s (NNSA) Next Generation Safeguards Initiative (NGSI) sponsored more than 400 undergraduate, graduate, and post-doctoral students in internships and research positions (Wyse 2012). In the past seven years, the NGSI program has, and continues to produce a large body of scientific, technical, and policy work in targeted core safeguards capabilities and human capital development activities. Not only does the NGSI program carry out activities across multiple disciplines, but also across all U.S. Department of Energy (DOE)/NNSA locations in the United States. However, products are not readily shared among disciplines and across locations, nor are they archived in a comprehensive library. Rather, knowledge of NGSI-produced literature is localized to the researchers, clients, and internal laboratory/facility publication systems such as the Electronic Records and Information Capture Architecture (ERICA) at the Pacific Northwest National Laboratory (PNNL). There is also no incorporated way of analyzing existing NGSI literature to determine whether the larger NGSI program is achieving its core safeguards capabilities and activities. A complete library of NGSI literature could prove beneficial to a cohesive, sustainable, and more economical NGSI program. The Safeguards Platform for Automated Retrieval of Knowledge (SPARK) has been developed to be a knowledge storage, retrieval, and analysis capability to capture safeguards knowledge to exist beyond the lifespan of NGSI. During the development process, it was necessary to build a SPARK training dataset (a corpus of documents) for initial entry into the system and for demonstration purposes. We manipulated these data to gain new information about the breadth of NGSI publications, and they evaluated the science-policy interface at PNNL as a practical demonstration of SPARK’s intended analysis capability. The analysis demonstration sought to answer the

  19. Source Detection with Interferometric Datasets

    NASA Astrophysics Data System (ADS)

    Trott, Cathryn M.; Wayth, Randall B.; Macquart, Jean-Pierre R.; Tingay, Steven J.

    2012-04-01

    The detection of sources in interferometric radio data typically relies on extracting information from images, formed by Fourier transform of the underlying visibility dataset, and CLEANed of contaminating sidelobes through iterative deconvolution. Variable and transient radio sources span a large range of variability timescales, and their study has the potential to enhance our knowledge of the dynamic universe. Their detection and classification involve large data rates and non-stationary PSFs, commensal observing programs and ambitious science goals, and will demand a paradigm shift in the deployment of next-generation instruments. Optimal source detection and classification in real time requires efficient and automated algorithms. On short time-scales variability can be probed with an optimal matched filter detector applied directly to the visibility dataset. This paper shows the design of such a detector, and some preliminary detection performance results.

  20. Using Real Datasets for Interdisciplinary Business/Economics Projects

    ERIC Educational Resources Information Center

    Goel, Rajni; Straight, Ronald L.

    2005-01-01

    The workplace's global and dynamic nature allows and requires improved approaches for providing business and economics education. In this article, the authors explore ways of enhancing students' understanding of course material by using nontraditional, real-world datasets of particular interest to them. Teaching at a historically Black university,…

  1. Scientific Encounters of the Mysterious Sea. Reading Activities That Explore the Mysterious Creatures of the Deep Blue Sea. Grades 4-7.

    ERIC Educational Resources Information Center

    Embry, Lynn

    This activity book presents reading activities for grades 4-7 exploring the mysterious creatures of the deep sea. The creatures include: angel sharks; argonauts; barberfish; comb jelly; croakers; electric rays; flying fish; giganturid; lantern fish; narwhals; northern basket starfish; ocean sunfish; Portuguese man-of-war; sea cucumbers; sea…

  2. Advanced Subsetter Capabilities for Atmospheric Science Datasets

    NASA Astrophysics Data System (ADS)

    Baskin, W. E.; Perez, J.

    2012-12-01

    Within the last three years, the NASA Atmospheric Sciences Data Center (ASDC) has developed and deployed production provider-specific search and subset web applications for the CALIPSO, CERES, and TES missions. ASDC is now collaborating with the MOPITT science team to provide tailored subsetting for their level 2 satellite datasets leveraging the architecture of the recently deployed subsetting systems. This presentation explores the challenges encountered by the ASDC's development team and discusses solutions implemented for the following advanced subsetter capabilities: - On-the-fly conversion of subsetted HDF data granules to NetCDF - Generation of CF-Compliant subset results for non-gridded data (level2 swaths) - Parameter-specific filtering - Multi-dimensional spatial subsetting - Complex temporal subsetting (temporal filtering)

  3. Securely measuring the overlap between private datasets with cryptosets.

    PubMed

    Swamidass, S Joshua; Matlock, Matthew; Rozenblit, Leon

    2015-01-01

    Many scientific questions are best approached by sharing data--collected by different groups or across large collaborative networks--into a combined analysis. Unfortunately, some of the most interesting and powerful datasets--like health records, genetic data, and drug discovery data--cannot be freely shared because they contain sensitive information. In many situations, knowing if private datasets overlap determines if it is worthwhile to navigate the institutional, ethical, and legal barriers that govern access to sensitive, private data. We report the first method of publicly measuring the overlap between private datasets that is secure under a malicious model without relying on private protocols or message passing. This method uses a publicly shareable summary of a dataset's contents, its cryptoset, to estimate its overlap with other datasets. Cryptosets approach "information-theoretic" security, the strongest type of security possible in cryptography, which is not even crackable with infinite computing power. We empirically and theoretically assess both the accuracy of these estimates and the security of the approach, demonstrating that cryptosets are informative, with a stable accuracy, and secure. PMID:25714898

  4. Scientific Misconduct.

    PubMed

    Gross, Charles

    2016-01-01

    Scientific misconduct has been defined as fabrication, falsification, and plagiarism. Scientific misconduct has occurred throughout the history of science. The US government began to take systematic interest in such misconduct in the 1980s. Since then, a number of studies have examined how frequently individual scientists have observed scientific misconduct or were involved in it. Although the studies vary considerably in their methodology and in the nature and size of their samples, in most studies at least 10% of the scientists sampled reported having observed scientific misconduct. In addition to studies of the incidence of scientific misconduct, this review considers the recent increase in paper retractions, the role of social media in scientific ethics, several instructional examples of egregious scientific misconduct, and potential methods to reduce research misconduct. PMID:26273897

  5. Exploring high school students' use of theory and evidence in an everyday context: the role of scientific thinking in environmental science decision-making

    NASA Astrophysics Data System (ADS)

    Yang, Fang-Ying

    2004-11-01

    This study examined 10th-grade students' use of theory and evidence in evaluating a socio-scientific issue: the use of underground water, after students had received a Science, Technology and Society-oriented instruction. Forty-five male and 45 female students from two intact, single-sex, classes participated in this study. A flow-map method was used to assess the participants' conceptual knowledge. The reasoning mode was assessed using a questionnaire with open-ended questions. Results showed that, although some weak to moderate associations were found between conceptual organization in memory and reasoning modes, the students' ability to incorporate theory and evidence was in general inadequate. It was also found that students' reasoning modes were consistent with their epistemological perspectives. Moreover, male and female students appear to have different reasoning approaches.

  6. Provenance Challenges for Earth Science Dataset Publication

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2011-01-01

    Modern science is increasingly dependent on computational analysis of very large data sets. Organizing, referencing, publishing those data has become a complex problem. Published research that depends on such data often fails to cite the data in sufficient detail to allow an independent scientist to reproduce the original experiments and analyses. This paper explores some of the challenges related to data identification, equivalence and reproducibility in the domain of data intensive scientific processing. It will use the example of Earth Science satellite data, but the challenges also apply to other domains.

  7. The CMS dataset bookkeeping service

    SciTech Connect

    Afaq, Anzar,; Dolgert, Andrew; Guo, Yuyi; Jones, Chris; Kosyakov, Sergey; Kuznetsov, Valentin; Lueking, Lee; Riley, Dan; Sekhri, Vijay; /Fermilab

    2007-10-01

    The CMS Dataset Bookkeeping Service (DBS) has been developed to catalog all CMS event data from Monte Carlo and Detector sources. It provides the ability to identify MC or trigger source, track data provenance, construct datasets for analysis, and discover interesting data. CMS requires processing and analysis activities at various service levels and the DBS system provides support for localized processing or private analysis, as well as global access for CMS users at large. Catalog entries can be moved among the various service levels with a simple set of migration tools, thus forming a loose federation of databases. DBS is available to CMS users via a Python API, Command Line, and a Discovery web page interfaces. The system is built as a multi-tier web application with Java servlets running under Tomcat, with connections via JDBC to Oracle or MySQL database backends. Clients connect to the service through HTTP or HTTPS with authentication provided by GRID certificates and authorization through VOMS. DBS is an integral part of the overall CMS Data Management and Workflow Management systems.

  8. Watershed Boundary Dataset for Mississippi

    USGS Publications Warehouse

    Wilson, K. Van, Jr.; Clair, Michael G., II; Turnipseed, D. Phil; Rebich, Richard A.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Mississippi Department of Environmental Quality, U.S. Department of Agriculture-Natural Resources Conservation Service, Mississippi Department of Transportation, U.S. Department of Agriculture-Forest Service, and the Mississippi Automated Resource Information System developed a 1:24,000-scale Watershed Boundary Dataset for Mississippi including watershed and subwatershed boundaries, codes, names, and areas. The Watershed Boundary Dataset for Mississippi provides a standard geographical framework for water-resources and selected land-resources planning. The original 8-digit subbasins (Hydrologic Unit Codes) were further subdivided into 10-digit watersheds (62.5 to 391 square miles (mi2)) and 12-digit subwatersheds (15.6 to 62.5 mi2) - the exceptions being the Delta part of Mississippi and the Mississippi River inside levees, which were subdivided into 10-digit watersheds only. Also, large water bodies in the Mississippi Sound along the coast were not delineated as small as a typical 12-digit subwatershed. All of the data - including watershed and subwatershed boundaries, subdivision codes and names, and drainage-area data - are stored in a Geographic Information System database, which are available at: http://ms.water.usgs.gov/. This map shows information on drainage and hydrography in the form of U.S. Geological Survey hydrologic unit boundaries for water-resource 2-digit regions, 4-digit subregions, 6-digit basins (formerly called accounting units), 8-digit subbasins (formerly called cataloging units), 10-digit watershed, and 12-digit subwatersheds in Mississippi. A description of the project study area, methods used in the development of watershed and subwatershed boundaries for Mississippi, and results are presented in Wilson and others (2008). The data presented in this map and by Wilson and others (2008) supersede the data presented for Mississippi by Seaber and others (1987) and U.S. Geological Survey (1977).

  9. Internationally coordinated glacier monitoring: strategy and datasets

    NASA Astrophysics Data System (ADS)

    Hoelzle, Martin; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Haeberli, Wilfried; Kääb, Andreas; Kargel, Jeff; Nussbaumer, Samuel; Paul, Frank; Raup, Bruce; Zemp, Michael

    2014-05-01

    Internationally coordinated monitoring of long-term glacier changes provide key indicator data about global climate change and began in the year 1894 as an internationally coordinated effort to establish standardized observations. Today, world-wide monitoring of glaciers and ice caps is embedded within the Global Climate Observing System (GCOS) in support of the United Nations Framework Convention on Climate Change (UNFCCC) as an important Essential Climate Variable (ECV). The Global Terrestrial Network for Glaciers (GTN-G) was established in 1999 with the task of coordinating measurements and to ensure the continuous development and adaptation of the international strategies to the long-term needs of users in science and policy. The basic monitoring principles must be relevant, feasible, comprehensive and understandable to a wider scientific community as well as to policy makers and the general public. Data access has to be free and unrestricted, the quality of the standardized and calibrated data must be high and a combination of detailed process studies at selected field sites with global coverage by satellite remote sensing is envisaged. Recently a GTN-G Steering Committee was established to guide and advise the operational bodies responsible for the international glacier monitoring, which are the World Glacier Monitoring Service (WGMS), the US National Snow and Ice Data Center (NSIDC), and the Global Land Ice Measurements from Space (GLIMS) initiative. Several online databases containing a wealth of diverse data types having different levels of detail and global coverage provide fast access to continuously updated information on glacier fluctuation and inventory data. For world-wide inventories, data are now available through (a) the World Glacier Inventory containing tabular information of about 130,000 glaciers covering an area of around 240,000 km2, (b) the GLIMS-database containing digital outlines of around 118,000 glaciers with different time stamps and

  10. Scientific Fraud.

    ERIC Educational Resources Information Center

    Goodstein, David

    1991-01-01

    A discussion of fraud in the presentation of results of scientific research cites cases looks at variations in the degree of misrepresentation, kinds and intents of fraud, attention given by public agencies (National Institutes of Health, National Science Foundation, Public Health Service), and differences between scientific and civil fraud. (MSE)

  11. Mario Bunge's Scientific Realism

    NASA Astrophysics Data System (ADS)

    Cordero, Alberto

    2012-10-01

    This paper presents and comments on Mario Bunge's scientific realism. After a brief introduction in Sects. 1 and 2 outlines Bunge's conception of realism. Focusing on the case of quantum mechanics, Sect. 3 explores how his approach plays out for problematic theories. Section 4 comments on Bunge's project against the background of the current debate on realism in contemporary analytic philosophy.

  12. Mario Bunge's Scientific Realism

    ERIC Educational Resources Information Center

    Cordero, Alberto

    2012-01-01

    This paper presents and comments on Mario Bunge's scientific realism. After a brief introduction in Sects. 1 and 2 outlines Bunge's conception of realism. Focusing on the case of quantum mechanics, Sect. 3 explores how his approach plays out for problematic theories. Section 4 comments on Bunge's project against the background of the current…

  13. Case study of polar scintillation modeling using DE (Dynamics Explorer) 2 irregularity measurements at 800 km. Scientific report No. 2, 5 October 1987-30 September 1988

    SciTech Connect

    Basu, S.; Basu, S.; Weber, E.J.; Coley, W.R.

    1988-08-01

    Although a satellite-borne irregularity sensor obviously cannot measure scintillations, the question of what contribution such a sensor can make to model or predict scintillations is addressed. To pursue the problem, the Dynamics Explorer 2 (DE 2) ionospheric electron density irregularity data obtained at approximately 800-km altitude in the winter polar cap during sunspot maximum conditions were utilized. During this period an all-sky imaging photometer located at Thule, Greenland, within the polar cap, detected the presence of convecting ionization patches, and polar beacon satellite measurements detected several discrete, intense scintillation structures associated with these patches (E. J. Weber et al., 1984). The electron-density deviation (delta N) obtained by combining irregularity amplitudes (delta N/N)rms processed over 8-s intervals and the in-situ density (N) data acquired by the DE 2 satellite also showed the presence of spatially discrete structures. These irregularity structures, both in N and delta N, had spatial extents of approx. 1000 km in the N-S direction. The density associated with these structures, even at 800 km, showed a twofold to threefold to increase in comparison to the background, and irregularity amplitudes (delta N/N)rms as large as 20% were observed at the edges of the patches.

  14. What can we learn from the toughest animals of the Earth? Water bears (tardigrades) as multicellular model organisms in order to perform scientific preparations for lunar exploration

    NASA Astrophysics Data System (ADS)

    Guidetti, Roberto; Rizzo, Angela Maria; Altiero, Tiziana; Rebecchi, Lorena

    2012-12-01

    Space missions of long duration required a series of preliminary experiments on living organisms, validated by a substantial phase of ground simulation experiments, in the field of micro- and inter-mediate gravities, radiobiology, and, for planetary explorations, related to risks deriving from regolith and dust exposure. In this review, we present the tardigrades, whose characteristics that recommend them as an emerging model for space biology. They are microscopic animals but are characterized by a complex structural organization similar to that of larger animals; they can be cultured in lab in small facilities, having small size; they are able to produce clonal lineages by means of parthenogenesis; they can completely suspend their metabolism when entering in dormant states (anhydrobiosis induced by dehydration and cryobiosis induced by freezing); desiccated anhydrobiotic tardigrades are able to withstand chemical and physical extremes, but a large tolerance is showed also by active animals; they can be stored in dry state for many years without loss of viability. Tardigrades have already been exposed to space stressors on Low Earth Orbit several times. The relevance of ground-based and space studies on tardigrades rests on the presumption that results could suggest strategies to protect organisms, also humans, when exposed to the space and lunar environments.

  15. Explore with Us

    NASA Technical Reports Server (NTRS)

    Morales, Lester

    2012-01-01

    The fundamental goal of this vision is to advance U.S. scientific, security and economic interest through a robust space exploration program. Implement a sustained and affordable human and robotic program to explore the solar system and beyond. Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations. Develop the innovative technologies, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration. Promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests.

  16. A Dataset for Breast Cancer Histopathological Image Classification.

    PubMed

    Spanhol, Fabio A; Oliveira, Luiz S; Petitjean, Caroline; Heutte, Laurent

    2016-07-01

    Today, medical image analysis papers require solid experiments to prove the usefulness of proposed methods. However, experiments are often performed on data selected by the researchers, which may come from different institutions, scanners, and populations. Different evaluation measures may be used, making it difficult to compare the methods. In this paper, we introduce a dataset of 7909 breast cancer histopathology images acquired on 82 patients, which is now publicly available from http://web.inf.ufpr.br/vri/breast-cancer-database. The dataset includes both benign and malignant images. The task associated with this dataset is the automated classification of these images in two classes, which would be a valuable computer-aided diagnosis tool for the clinician. In order to assess the difficulty of this task, we show some preliminary results obtained with state-of-the-art image classification systems. The accuracy ranges from 80% to 85%, showing room for improvement is left. By providing this dataset and a standardized evaluation protocol to the scientific community, we hope to gather researchers in both the medical and the machine learning field to advance toward this clinical application. PMID:26540668

  17. Using Progressive Resolution to Visualize large Satellite Image dataset

    NASA Astrophysics Data System (ADS)

    ho, yuan; ramanmurthy, mohan

    2014-05-01

    Unidata's Integrated Data Viewer (IDV) is a Java-based software application that provides new and innovative ways of displaying satellite imagery, gridded data, and surface, upper air, and radar data within a unified interface. Progressive Resolution (PR) is a advanced feature newly developed in the IDV. When loading a large satellite dataset with PR turned on, the IDV calculates the resolution of the view window, sets the magnification factors dynamically, and loads a sufficient amount of the data to generate an image at the correct resolution. A rubber band box (RBB) interface allows the user to zoom in/out or change the projection, forcing the IDV to recalculate the magnification factors and get higher/lower resolution data. This new feature improves the IDV memory usage significantly. In the preliminary test, loading 100 time steps of GOES-East 1 km 0.65 visible image data (100 X 10904 X 6928) with PR, both memory and CPU usage are comparable to generating a single time-step display at full resolution (10904 X 6928), and the quality of the resulting image is not compromised. The PR feature is currently available for both satellite imagery and gridded datasets, and will be expanded to other datasets. In this presentation we will present examples of PR usage with large satellite datasets for academic investigations and scientific discovery.

  18. Exploring interoperability: The advancements and challenges of improving data discovery, access, and visualization of scientific data through the NOAA Earth Information System (NEIS). (Invited)

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Lynge, J.; Hackathorn, E.; MacDermaid, C.; Pierce, R.; Smith, J.

    2013-12-01

    Interoperability is a complex subject and often leads to different definitions in different environments. An interoperable framework of web services can improve the user experience by providing an interface for interaction with data regardless of it's format or physical location. This in itself improves accessibility to data, fosters data exploration and use, and provides a framework for new tools and applications. With an interoperable system you have: -- Data ready for action. Services model facilitates agile response to events. Services can be combined or reused quickly, upgraded or modified independently. -- Any data available through an interoperable framework can be operated on or combined with other data. Integrating standardized formats and access. -- New and existing systems have access to wide variety of data. Any new data added is easily incorporated with minimal changes required. The possibilities are limitless. The NOAA Earth Information System (NEIS) at the Earth System Research Laboratory (ESRL) is continuing research into an interoperable framework of layered services designed to facilitate the discovery, access, integration, visualization, and understanding of all NOAA (past, present, and future) data. An underlying philosophy of NEIS is to take advantage of existing off-the-shelf technologies and standards to minimize development of custom code allowing everyone to take advantage of the framework to meet these goals above. This framework, while built by NOAA are not limited to NOAA data or applications. Any other data available through similar services or applications that understand these standards can work interchangeably. Two major challenges are under active research at ESRL are data discoverability and fast access to big data. This presentation will provide an update on development of NEIS, including these challenges, the findings, and recommendations on what is needed for an interoperable system, as well as ongoing research activities

  19. Scientific Globish versus scientific English.

    PubMed

    Tychinin, Dmitry N; Kamnev, Alexander A

    2013-10-01

    The proposed adoption of 'scientific Globish' as a simplified language standard for scholarly communication may appeal to authors who have difficulty with English proficiency. However, Globish might not justify the hopes being pinned on it and might open the door to further deterioration of the quality of English-language scientific writing. PMID:23928006

  20. The health care and life sciences community profile for dataset descriptions.

    PubMed

    Dumontier, Michel; Gray, Alasdair J G; Marshall, M Scott; Alexiev, Vladimir; Ansell, Peter; Bader, Gary; Baran, Joachim; Bolleman, Jerven T; Callahan, Alison; Cruz-Toledo, José; Gaudet, Pascale; Gombocz, Erich A; Gonzalez-Beltran, Alejandra N; Groth, Paul; Haendel, Melissa; Ito, Maori; Jupp, Simon; Juty, Nick; Katayama, Toshiaki; Kobayashi, Norio; Krishnaswami, Kalpana; Laibe, Camille; Le Novère, Nicolas; Lin, Simon; Malone, James; Miller, Michael; Mungall, Christopher J; Rietveld, Laurens; Wimalaratne, Sarala M; Yamaguchi, Atsuko

    2016-01-01

    Access to consistent, high-quality metadata is critical to finding, understanding, and reusing scientific data. However, while there are many relevant vocabularies for the annotation of a dataset, none sufficiently captures all the necessary metadata. This prevents uniform indexing and querying of dataset repositories. Towards providing a practical guide for producing a high quality description of biomedical datasets, the W3C Semantic Web for Health Care and the Life Sciences Interest Group (HCLSIG) identified Resource Description Framework (RDF) vocabularies that could be used to specify common metadata elements and their value sets. The resulting guideline covers elements of description, identification, attribution, versioning, provenance, and content summarization. This guideline reuses existing vocabularies, and is intended to meet key functional requirements including indexing, discovery, exchange, query, and retrieval of datasets, thereby enabling the publication of FAIR data. The resulting metadata profile is generic and could be used by other domains with an interest in providing machine readable descriptions of versioned datasets. PMID:27602295

  1. The health care and life sciences community profile for dataset descriptions

    PubMed Central

    Alexiev, Vladimir; Ansell, Peter; Bader, Gary; Baran, Joachim; Bolleman, Jerven T.; Callahan, Alison; Cruz-Toledo, José; Gaudet, Pascale; Gombocz, Erich A.; Gonzalez-Beltran, Alejandra N.; Groth, Paul; Haendel, Melissa; Ito, Maori; Jupp, Simon; Juty, Nick; Katayama, Toshiaki; Kobayashi, Norio; Krishnaswami, Kalpana; Laibe, Camille; Le Novère, Nicolas; Lin, Simon; Malone, James; Miller, Michael; Mungall, Christopher J.; Rietveld, Laurens; Wimalaratne, Sarala M.; Yamaguchi, Atsuko

    2016-01-01

    Access to consistent, high-quality metadata is critical to finding, understanding, and reusing scientific data. However, while there are many relevant vocabularies for the annotation of a dataset, none sufficiently captures all the necessary metadata. This prevents uniform indexing and querying of dataset repositories. Towards providing a practical guide for producing a high quality description of biomedical datasets, the W3C Semantic Web for Health Care and the Life Sciences Interest Group (HCLSIG) identified Resource Description Framework (RDF) vocabularies that could be used to specify common metadata elements and their value sets. The resulting guideline covers elements of description, identification, attribution, versioning, provenance, and content summarization. This guideline reuses existing vocabularies, and is intended to meet key functional requirements including indexing, discovery, exchange, query, and retrieval of datasets, thereby enabling the publication of FAIR data. The resulting metadata profile is generic and could be used by other domains with an interest in providing machine readable descriptions of versioned datasets. PMID:27602295

  2. Recording Scientific Knowledge

    SciTech Connect

    Bowker, Geof

    2006-01-09

    The way we record knowledge, and the web of technical, formal, and social practices that surrounds it, inevitably affects the knowledge that we record. The ways we hold knowledge about the past - in handwritten manuscripts, in printed books, in file folders, in databases - shape the kind of stories we tell about that past. In this talk, I look at how over the past two hundred years, information technology has affected the nature and production of scientific knowledge. Further, I explore ways in which the emergent new cyberinfrastructure is changing our relationship to scientific practice.

  3. Multivariate Data EXplorer (MDX)

    SciTech Connect

    Steed, Chad Allen

    2012-08-01

    The MDX toolkit facilitates exploratory data analysis and visualization of multivariate datasets. MDX provides and interactive graphical user interface to load, explore, and modify multivariate datasets stored in tabular forms. MDX uses an extended version of the parallel coordinates plot and scatterplots to represent the data. The user can perform rapid visual queries using mouse gestures in the visualization panels to select rows or columns of interest. The visualization panel provides coordinated multiple views whereby selections made in one plot are propagated to the other plots. Users can also export selected data or reconfigure the visualization panel to explore relationships between columns and rows in the data.

  4. Scientific millenarianism

    SciTech Connect

    Weinberg, A.M.

    1997-12-01

    Today, for the first time, scientific concerns are seriously being addressed that span future times--hundreds, even thousands, or more years in the future. One is witnessing what the author calls scientific millenarianism. Are such concerns for the distant future exercises in futility, or are they real issues that, to the everlasting gratitude of future generations, this generation has identified, warned about and even suggested how to cope with in the distant future? Can the four potential catastrophes--bolide impact, CO{sub 2} warming, radioactive wastes and thermonuclear war--be avoided by technical fixes, institutional responses, religion, or by doing nothing? These are the questions addressed in this paper.

  5. Making Sense of Scientific Biographies: Scientific Achievement, Nature of Science, and Storylines in College Students' Essays

    ERIC Educational Resources Information Center

    Hwang, Seyoung

    2015-01-01

    In this article, the educative value of scientific biographies will be explored, especially for non-science major college students. During the "Scientist's life and thought" course, 66 college students read nine scientific biographies including five biologists, covering the canonical scientific achievements in Western scientific history.…

  6. Galaxy Evolution Spectroscopic Explorer: Scientific Rationale

    NASA Technical Reports Server (NTRS)

    Heap, Sara; Ninkov, Zoran; Robberto, Massimo; Hull, Tony; Purves, Lloyd

    2016-01-01

    GESE is a mission concept consisting of a 1.5-m space telescope and UV multi-object slit spectrograph designed to help understand galaxy evolution in a critical era in the history of the universe, where the rate of star-formation stopped increasing and started to decline. To isolate and identify the various processes driving the evolution of these galaxies, GESE will obtain rest-frame far-UV spectra of 100,000 galaxies at redshifts, z approximately 1-2. To obtain such a large number of spectra, multiplexing over a wide field is an absolute necessity. A slit device such as a digital micro-mirror device (DMD) or a micro-shutter array (MSA) enables spectroscopy of a hundred or more sources in a single exposure while eliminating overlapping spectra of other sources and blocking unwanted background like zodiacal light. We find that a 1.5-m space telescope with a MSA slit device combined with a custom orbit enabling long, uninterrupted exposures (approximately 10 hr) are optimal for this spectroscopic survey. GESE will not be operating alone in this endeavor. Together with x-ray telescopes and optical/near-IR telescopes like Subaru/Prime Focus Spectrograph, GESE will detect "feedback" from young massive stars and massive black holes (AGN's), and other drivers of galaxy evolution.

  7. Toddlers' Scientific Explorations: Encounters with Insects

    ERIC Educational Resources Information Center

    Shaffer, Lauren Foster; Hall, Ellen; Lynch, Mary

    2009-01-01

    This article features Boulder Journey School, located in Boulder, Colorado, a full-day, year-round school that welcomes over 200 young children, ages 6 weeks to 6 years, and their families. The school community is committed to a culture based on children as curious and competent individuals capable of coconstructing knowledge. In Boulder Journey…

  8. Virtual Observatories: A Peer-to-Peer Semantic Approach for Efficient Sharing of Scientific Data

    NASA Astrophysics Data System (ADS)

    Saxena, A.; Papitashvili, V.

    2003-12-01

    A recent initative on the electronic Geophysical Year (eGY) calls for the establishment of a series of virtual geophysical observatories now being ``deployed'' in cyberspace. The eGY concept creates the means for a free and transparent data access to remote, worldwide distributed databases through the Internet and World Wide Web. However, current forms of sharing scientific data are either highly centralized or require intensive personal communication. Centralized distribution schemes need continuing maintenance and support that somewhat counteracts the rationale of a free access to such data repositories. Here we argue for the development of a peer-to-peer semantic approach focused towards efficient sharing of scientific data via the Internet. Our proposed data distribution model aims to simplify the process of data acquisition and storage by tapping the vast potential of end user machines. At the same time, the data integrity and publisher accountability should be an integral design goal of any platform that aims to provide distributed, yet reliable, means of sharing such high-implication data amongst a rapidly increasing and widespread scientific community. Current design philosophies of the file-sharing networks model the data files as ``once injected, never modified'' objects, which are shared through a set of pre-specified interfaces. On the contrary, scientific data sets are often multidimensional and the same object can be published through multiple dynamically changing interfaces. Furthermore, from time to time the user-specific analyses of these data often generate additional summaries and even new datasets. Publishing these derived datasets may introduce more complexity and challenges, but the appropriate authentication and signing of the ``original'' and ``modified'' datasets can resolve the problem. We explore the possibility of the semantic-oriented information modeling of the scientific data objects for enhancing real-time, machine-to-machine search

  9. Scientific Documentation.

    ERIC Educational Resources Information Center

    Pieper, Gail W.

    1980-01-01

    Describes how scientific documentation is taught in three 50-minute sessions in a technical writing course. Tells how session one distinguishes between in-text notes, footnotes, and reference entries; session two discusses the author-year system of citing references; and session three is concerned with the author-number system of reference…

  10. Scientific Inquiry

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2004

    2004-01-01

    Scientific inquiry reflects how scientists come to understand the natural world, and it is at the heart of how students learn. From a very early age, children interact with their environment, ask questions, and seek ways to answer those questions. Understanding science content is significantly enhanced when ideas are anchored to inquiry…

  11. [Scientific presentation].

    PubMed

    Kraft, Giuliano

    2002-01-01

    To give a correct and effective scientific presentation, is an arduous task that asks for close examination of basic techniques of communication. This article proposes indications and suggestions to help public speakers to be communicators, to use visual aids and it explains how to capture the audience attention. PMID:12599721

  12. Improving the performance of predictive process modeling for large datasets

    PubMed Central

    Finley, Andrew O.; Sang, Huiyan; Banerjee, Sudipto; Gelfand, Alan E.

    2009-01-01

    Advances in Geographical Information Systems (GIS) and Global Positioning Systems (GPS) enable accurate geocoding of locations where scientific data are collected. This has encouraged collection of large spatial datasets in many fields and has generated considerable interest in statistical modeling for location-referenced spatial data. The setting where the number of locations yielding observations is too large to fit the desired hierarchical spatial random effects models using Markov chain Monte Carlo methods is considered. This problem is exacerbated in spatial-temporal and multivariate settings where many observations occur at each location. The recently proposed predictive process, motivated by kriging ideas, aims to maintain the richness of desired hierarchical spatial modeling specifications in the presence of large datasets. A shortcoming of the original formulation of the predictive process is that it induces a positive bias in the non-spatial error term of the models. A modified predictive process is proposed to address this problem. The predictive process approach is knot-based leading to questions regarding knot design. An algorithm is designed to achieve approximately optimal spatial placement of knots. Detailed illustrations of the modified predictive process using multivariate spatial regression with both a simulated and a real dataset are offered. PMID:20016667

  13. Securely Measuring the Overlap between Private Datasets with Cryptosets

    PubMed Central

    Swamidass, S. Joshua; Matlock, Matthew; Rozenblit, Leon

    2015-01-01

    Many scientific questions are best approached by sharing data—collected by different groups or across large collaborative networks—into a combined analysis. Unfortunately, some of the most interesting and powerful datasets—like health records, genetic data, and drug discovery data—cannot be freely shared because they contain sensitive information. In many situations, knowing if private datasets overlap determines if it is worthwhile to navigate the institutional, ethical, and legal barriers that govern access to sensitive, private data. We report the first method of publicly measuring the overlap between private datasets that is secure under a malicious model without relying on private protocols or message passing. This method uses a publicly shareable summary of a dataset’s contents, its cryptoset, to estimate its overlap with other datasets. Cryptosets approach “information-theoretic” security, the strongest type of security possible in cryptography, which is not even crackable with infinite computing power. We empirically and theoretically assess both the accuracy of these estimates and the security of the approach, demonstrating that cryptosets are informative, with a stable accuracy, and secure. PMID:25714898

  14. New datasets and services for studying magnetospheric plasma processes

    NASA Astrophysics Data System (ADS)

    Laakso, H.; Perry, C.; Taylor, M.; Escoubet, C. P.

    2009-04-01

    The four-satellite Cluster mission investigates the small-scale structures and physical processes related to interaction between the solar wind and the magnetospheric plasma. The mission has collected observations since 2001 and has been approved to operate until 2012. The Cluster Active Archive (CAA) (URL: http://caa.estec.esa.int) will contain the entire set of Cluster high-resolution data and other allied products in a standard format and with a complete set of metadata in machine readable format. Currently there are more than 200 datasets from each spacecraft. The total amount of data files in compressed format is expected to exceed 50 TB. Later this year, the system will also provide access to the observations of the two Double Star spacecraft. The data archive is publicly accessible and suitable for science use and publication by the world-wide scientific community. The CAA became operational in February 2006 and now there are more than 700 registered users. The CAA provides user-friendly services for searching and accessing these data and ancillary products as well as for visualizing some of the scientific parameters. The CAA is continuously being upgraded in terms of datasets and services. This presentation makes first a quick overview of the CAA and concentrates then on the recent updates of the overall system and its services.

  15. 77 FR 15052 - Dataset Workshop-U.S. Billion Dollar Disasters Dataset (1980-2011): Assessing Dataset Strengths...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... Disasters (1980-2011) dataset and associated methods used to develop the data set. An important goal of the... data set addresses; What steps should be taken to enhance the robustness of the billion-dollar...

  16. A multimodal MRI dataset of professional chess players

    PubMed Central

    Li, Kaiming; Jiang, Jing; Qiu, Lihua; Yang, Xun; Huang, Xiaoqi; Lui, Su; Gong, Qiyong

    2015-01-01

    Chess is a good model to study high-level human brain functions such as spatial cognition, memory, planning, learning and problem solving. Recent studies have demonstrated that non-invasive MRI techniques are valuable for researchers to investigate the underlying neural mechanism of playing chess. For professional chess players (e.g., chess grand masters and masters or GM/Ms), what are the structural and functional alterations due to long-term professional practice, and how these alterations relate to behavior, are largely veiled. Here, we report a multimodal MRI dataset from 29 professional Chinese chess players (most of whom are GM/Ms), and 29 age matched novices. We hope that this dataset will provide researchers with new materials to further explore high-level human brain functions. PMID:26346238

  17. Atlas-guided cluster analysis of large tractography datasets.

    PubMed

    Ros, Christian; Güllmar, Daniel; Stenzel, Martin; Mentzel, Hans-Joachim; Reichenbach, Jürgen Rainer

    2013-01-01

    Diffusion Tensor Imaging (DTI) and fiber tractography are important tools to map the cerebral white matter microstructure in vivo and to model the underlying axonal pathways in the brain with three-dimensional fiber tracts. As the fast and consistent extraction of anatomically correct fiber bundles for multiple datasets is still challenging, we present a novel atlas-guided clustering framework for exploratory data analysis of large tractography datasets. The framework uses an hierarchical cluster analysis approach that exploits the inherent redundancy in large datasets to time-efficiently group fiber tracts. Structural information of a white matter atlas can be incorporated into the clustering to achieve an anatomically correct and reproducible grouping of fiber tracts. This approach facilitates not only the identification of the bundles corresponding to the classes of the atlas; it also enables the extraction of bundles that are not present in the atlas. The new technique was applied to cluster datasets of 46 healthy subjects. Prospects of automatic and anatomically correct as well as reproducible clustering are explored. Reconstructed clusters were well separated and showed good correspondence to anatomical bundles. Using the atlas-guided cluster approach, we observed consistent results across subjects with high reproducibility. In order to investigate the outlier elimination performance of the clustering algorithm, scenarios with varying amounts of noise were simulated and clustered with three different outlier elimination strategies. By exploiting the multithreading capabilities of modern multiprocessor systems in combination with novel algorithms, our toolkit clusters large datasets in a couple of minutes. Experiments were conducted to investigate the achievable speedup and to demonstrate the high performance of the clustering framework in a multiprocessing environment. PMID:24386292

  18. Atlas-Guided Cluster Analysis of Large Tractography Datasets

    PubMed Central

    Ros, Christian; Güllmar, Daniel; Stenzel, Martin; Mentzel, Hans-Joachim; Reichenbach, Jürgen Rainer

    2013-01-01

    Diffusion Tensor Imaging (DTI) and fiber tractography are important tools to map the cerebral white matter microstructure in vivo and to model the underlying axonal pathways in the brain with three-dimensional fiber tracts. As the fast and consistent extraction of anatomically correct fiber bundles for multiple datasets is still challenging, we present a novel atlas-guided clustering framework for exploratory data analysis of large tractography datasets. The framework uses an hierarchical cluster analysis approach that exploits the inherent redundancy in large datasets to time-efficiently group fiber tracts. Structural information of a white matter atlas can be incorporated into the clustering to achieve an anatomically correct and reproducible grouping of fiber tracts. This approach facilitates not only the identification of the bundles corresponding to the classes of the atlas; it also enables the extraction of bundles that are not present in the atlas. The new technique was applied to cluster datasets of 46 healthy subjects. Prospects of automatic and anatomically correct as well as reproducible clustering are explored. Reconstructed clusters were well separated and showed good correspondence to anatomical bundles. Using the atlas-guided cluster approach, we observed consistent results across subjects with high reproducibility. In order to investigate the outlier elimination performance of the clustering algorithm, scenarios with varying amounts of noise were simulated and clustered with three different outlier elimination strategies. By exploiting the multithreading capabilities of modern multiprocessor systems in combination with novel algorithms, our toolkit clusters large datasets in a couple of minutes. Experiments were conducted to investigate the achievable speedup and to demonstrate the high performance of the clustering framework in a multiprocessing environment. PMID:24386292

  19. Synthetic neuronal datasets for benchmarking directed functional connectivity metrics

    PubMed Central

    Andrade, Alexandre

    2015-01-01

    Background. Datasets consisting of synthetic neural data generated with quantifiable and controlled parameters are a valuable asset in the process of testing and validating directed functional connectivity metrics. Considering the recent debate in the neuroimaging community concerning the use of these metrics for fMRI data, synthetic datasets that emulate the BOLD signal dynamics have played a central role by supporting claims that argue in favor or against certain choices. Generative models often used in studies that simulate neuronal activity, with the aim of gaining insight into specific brain regions and functions, have different requirements from the generative models for benchmarking datasets. Even though the latter must be realistic, there is a tradeoff between realism and computational demand that needs to be contemplated and simulations that efficiently mimic the real behavior of single neurons or neuronal populations are preferred, instead of more cumbersome and marginally precise ones. Methods. This work explores how simple generative models are able to produce neuronal datasets, for benchmarking purposes, that reflect the simulated effective connectivity and, how these can be used to obtain synthetic recordings of EEG and fMRI BOLD signals. The generative models covered here are AR processes, neural mass models consisting of linear and nonlinear stochastic differential equations and populations with thousands of spiking units. Forward models for EEG consist in the simple three-shell head model while the fMRI BOLD signal is modeled with the Balloon-Windkessel model or by convolution with a hemodynamic response function. Results. The simulated datasets are tested for causality with the original spectral formulation for Granger causality. Modeled effective connectivity can be detected in the generated data for varying connection strengths and interaction delays. Discussion. All generative models produce synthetic neuronal data with detectable causal

  20. Scientific Claims versus Scientific Knowledge.

    ERIC Educational Resources Information Center

    Ramsey, John

    1991-01-01

    Provides activities that help students to understand the importance of the scientific method. The activities include the science of fusion and cold fusion; a group activity that analyzes and interprets the events surrounding cold fusion; and an application research project concerning a current science issue. (ZWH)

  1. Scientific Misconduct

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    2002-12-01

    These cases provide a good basis for discussions of scientific ethics, particularly with respect to the responsibilities of colleagues in collaborative projects. With increasing numbers of students working in cooperative or collaborative groups, there may be opportunities for more than just discussion—similar issues of responsibility apply to the members of such groups. Further, this is an area where, “no clear, widely accepted standards of behavior exist” (1). Thus there is an opportunity to point out to students that scientific ethics, like science itself, is incomplete and needs constant attention to issues that result from new paradigms such as collaborative research. Finally, each of us can resolve to pay more attention to the contributions we and our colleagues make to collaborative projects, applying to our own work no less critical an eye than we would cast on the work of those we don’t know at all.

  2. Simulation of Smart Home Activity Datasets

    PubMed Central

    Synnott, Jonathan; Nugent, Chris; Jeffers, Paul

    2015-01-01

    A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation. PMID:26087371

  3. Simulation of Smart Home Activity Datasets.

    PubMed

    Synnott, Jonathan; Nugent, Chris; Jeffers, Paul

    2015-01-01

    A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation. PMID:26087371

  4. A call for virtual experiments: accelerating the scientific process.

    PubMed

    Cooper, Jonathan; Vik, Jon Olav; Waltemath, Dagmar

    2015-01-01

    Experimentation is fundamental to the scientific method, whether for exploration, description or explanation. We argue that promoting the reuse of virtual experiments (the in silico analogues of wet-lab or field experiments) would vastly improve the usefulness and relevance of computational models, encouraging critical scrutiny of models and serving as a common language between modellers and experimentalists. We review the benefits of reusable virtual experiments: in specifying, assaying, and comparing the behavioural repertoires of models; as prerequisites for reproducible research; to guide model reuse and composition; and for quality assurance in the translational application of models. A key step towards achieving this is that models and experimental protocols should be represented separately, but annotated so as to facilitate the linking of models to experiments and data. Lastly, we outline how the rigorous, streamlined confrontation between experimental datasets and candidate models would enable a "continuous integration" of biological knowledge, transforming our approach to systems biology. PMID:25433232

  5. Selecting optimal partitioning schemes for phylogenomic datasets

    PubMed Central

    2014-01-01

    Background Partitioning involves estimating independent models of molecular evolution for different subsets of sites in a sequence alignment, and has been shown to improve phylogenetic inference. Current methods for estimating best-fit partitioning schemes, however, are only computationally feasible with datasets of fewer than 100 loci. This is a problem because datasets with thousands of loci are increasingly common in phylogenetics. Methods We develop two novel methods for estimating best-fit partitioning schemes on large phylogenomic datasets: strict and relaxed hierarchical clustering. These methods use information from the underlying data to cluster together similar subsets of sites in an alignment, and build on clustering approaches that have been proposed elsewhere. Results We compare the performance of our methods to each other, and to existing methods for selecting partitioning schemes. We demonstrate that while strict hierarchical clustering has the best computational efficiency on very large datasets, relaxed hierarchical clustering provides scalable efficiency and returns dramatically better partitioning schemes as assessed by common criteria such as AICc and BIC scores. Conclusions These two methods provide the best current approaches to inferring partitioning schemes for very large datasets. We provide free open-source implementations of the methods in the PartitionFinder software. We hope that the use of these methods will help to improve the inferences made from large phylogenomic datasets. PMID:24742000

  6. The Interplay between Scientific Overlap and Cooperation and the Resulting Gain in Co-Authorship Interactions

    PubMed Central

    Mayrose, Itay; Freilich, Shiri

    2015-01-01

    Considering the importance of scientific interactions, understanding the principles that govern fruitful scientific research is crucial to policy makers and scientists alike. The outcome of an interaction is to a large extent dependent on the balancing of contradicting motivations accompanying the establishment of collaborations. Here, we assembled a dataset of nearly 20,000 publications authored by researchers affiliated with ten top universities. Based on this data collection, we estimated the extent of different interaction types between pairwise combinations of researchers. We explored the interplay between the overlap in scientific interests and the tendency to collaborate, and associated these estimates with measures of scientific quality and social accessibility aiming at studying the typical resulting gain of different interaction patterns. Our results show that scientists tend to collaborate more often with colleagues with whom they share moderate to high levels of mutual interests and knowledge while cooperative tendency declines at higher levels of research-interest overlap, suggesting fierce competition, and at the lower levels, suggesting communication gaps. Whereas the relative number of alliances dramatically differs across a gradient of research overlap, the scientific impact of the resulting articles remains similar. When considering social accessibility, we find that though collaborations between remote researchers are relatively rare, their quality is significantly higher than studies produced by close-circle scientists. Since current collaboration patterns do not necessarily overlap with gaining optimal scientific quality, these findings should encourage scientists to reconsider current collaboration strategies. PMID:26372643

  7. The Interplay between Scientific Overlap and Cooperation and the Resulting Gain in Co-Authorship Interactions.

    PubMed

    Mayrose, Itay; Freilich, Shiri

    2015-01-01

    Considering the importance of scientific interactions, understanding the principles that govern fruitful scientific research is crucial to policy makers and scientists alike. The outcome of an interaction is to a large extent dependent on the balancing of contradicting motivations accompanying the establishment of collaborations. Here, we assembled a dataset of nearly 20,000 publications authored by researchers affiliated with ten top universities. Based on this data collection, we estimated the extent of different interaction types between pairwise combinations of researchers. We explored the interplay between the overlap in scientific interests and the tendency to collaborate, and associated these estimates with measures of scientific quality and social accessibility aiming at studying the typical resulting gain of different interaction patterns. Our results show that scientists tend to collaborate more often with colleagues with whom they share moderate to high levels of mutual interests and knowledge while cooperative tendency declines at higher levels of research-interest overlap, suggesting fierce competition, and at the lower levels, suggesting communication gaps. Whereas the relative number of alliances dramatically differs across a gradient of research overlap, the scientific impact of the resulting articles remains similar. When considering social accessibility, we find that though collaborations between remote researchers are relatively rare, their quality is significantly higher than studies produced by close-circle scientists. Since current collaboration patterns do not necessarily overlap with gaining optimal scientific quality, these findings should encourage scientists to reconsider current collaboration strategies. PMID:26372643

  8. The GRENE-TEA Model Intercomparison Project (GTMIP) stage 1 forcing dataset

    NASA Astrophysics Data System (ADS)

    Sueyoshi, T.; Saito, K.; Miyazaki, S.; Mori, J.; Ise, T.; Arakida, H.; Suzuki, R.; Sato, A.; Iijima, Y.; Yabuki, H.; Ikawa, H.; Ohta, T.; Kotani, A.; Hajima, T.; Sato, H.; Yamazaki, T.; Sugimoto, A.

    2015-08-01

    Here, the authors describe the construction of a forcing dataset for Land Surface Models (including both physical and biogeochemical models; LSMs) with eight meteorological variables for the 35 year period from 1979 to 2013. The dataset is intended for use in a model intercomparison (MIP) study, called GTMIP, which is a part of the Japanese-funded Arctic Climate Change research project. In order to prepare a set of site-fitted forcing data for LSMs with realistic yet continuous entries (i.e. without missing data), four observational sites across the pan-Arctic region (Fairbanks, Tiksi, Yakutsk, and Kevo) were selected to construct a blended dataset using both global reanalysis and observational data. Marked improvements were found in the diurnal cycles of surface air temperature and humidity, wind speed, and precipitation. The datasets and participation in GTMIP are open to the scientific community (https://ads.nipr.ac.jp/gtmip/gtmip.html).

  9. Ontology for Transforming Geo-Spatial Data for Discovery and Integration of Scientific Data

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.

    2013-12-01

    Discovery and access to geo-spatial scientific data across heterogeneous repositories and multi-discipline datasets can present challenges for scientist. We propose to build a workflow for transforming geo-spatial datasets into semantic environment by using relationships to describe the resource using OWL Web Ontology, RDF, and a proposed geo-spatial vocabulary. We will present methods for transforming traditional scientific dataset, use of a semantic repository, and querying using SPARQL to integrate and access datasets. This unique repository will enable discovery of scientific data by geospatial bound or other criteria.

  10. Web-based 2-d Visualization with Large Datasets

    NASA Astrophysics Data System (ADS)

    Goldina, T.; Roby, W.; Wu, X.; Ly, L.

    2015-09-01

    Modern astronomical surveys produce large catalogs. Modern archives are web-based. As the science becomes more and more data driven, the pressure on visualization tools to support large datasets increases. While tables can render one page at a time, image overlays showing the returned catalog entries or XY plots showing the relationship between table columns must cover all of the rows to be meaningful. The large data set could easily overwhelm the browsers capabilities. Therefore the amount of data to be transported or rendered must be reduced. IRSA's catalog visualization is based on Firefly package, developed in IPAC (Roby 2013). Firefly is used by multiple web-based tools and archives, maintained by IRSA: Catalog Search, Spitzer, WISE, Plank, etc. Its distinctive feature is the tri-view: table, image overlay, and XY plot. All three highly interactive components are integrated together. The tri-view presentation allows an astronomer to dissect a dataset in various ways and to detect underlying structure and anomalies in the data, which makes it a handy tool for data exploration. Many challenges are encountered when only a subset of data is used in place of the full data set. Preserving coherence and maintaining the ability to select and filter data become issues. This talk addresses how we have solved problems in large dataset visualization.

  11. Comparing multiple 3D magnetotelluric inversions of the same dataset

    NASA Astrophysics Data System (ADS)

    Walter, C.; Jones, A. G.

    2013-12-01

    The Taupo Volcanic Zone (TVZ) hosts the majority of the geothermal systems in New Zealand and is a valuable source for power generation and tourism. It is important for the sustainable exploitation of this area to fully understand the processes and structures in the TVZ. As part of the 'Hotter and Deeper' project of the Foundation for Research, Science and Technology (FRST), a dataset of 200 broadband magnetotelluric (MT) stations has been collected in the TVZ of New Zealand in 2009 and 2010. Combined with a smaller dataset from Reporoa, a total of 230 stations are available for 3D inversion to image the deeper structures of the TVZ. For the study presented in this paper, multiple 3D inversions of this dataset using different control parameters have been undertaken to study the influence of the choice of parameters on the inversion result. The parameters that have been varied include; the type of responses used in the inversion, the use of topography and bathymetry, and varying vertical grid spacings. All inversions commenced with a uniform half-space so that there was no preconceived structures to begin with. The results show that the main structures in the model are robust in that they are independent of the choice of parameters and become introduced in every inversion. The only differences are in the shape and exact location of the structures, which vary between the models. Furthermore, different ways to get a measure for the differences between models have been explored.

  12. Comparison of Shallow Survey 2012 Multibeam Datasets

    NASA Astrophysics Data System (ADS)

    Ramirez, T. M.

    2012-12-01

    The purpose of the Shallow Survey common dataset is a comparison of the different technologies utilized for data acquisition in the shallow survey marine environment. The common dataset consists of a series of surveys conducted over a common area of seabed using a variety of systems. It provides equipment manufacturers the opportunity to showcase their latest systems while giving hydrographic researchers and scientists a chance to test their latest algorithms on the dataset so that rigorous comparisons can be made. Five companies collected data for the Common Dataset in the Wellington Harbor area in New Zealand between May 2010 and May 2011; including Kongsberg, Reson, R2Sonic, GeoAcoustics, and Applied Acoustics. The Wellington harbor and surrounding coastal area was selected since it has a number of well-defined features, including the HMNZS South Seas and HMNZS Wellington wrecks, an armored seawall constructed of Tetrapods and Akmons, aquifers, wharves and marinas. The seabed inside the harbor basin is largely fine-grained sediment, with gravel and reefs around the coast. The area outside the harbor on the southern coast is an active environment, with moving sand and exposed reefs. A marine reserve is also in this area. For consistency between datasets, the coastal research vessel R/V Ikatere and crew were used for all surveys conducted for the common dataset. Using Triton's Perspective processing software multibeam datasets collected for the Shallow Survey were processed for detail analysis. Datasets from each sonar manufacturer were processed using the CUBE algorithm developed by the Center for Coastal and Ocean Mapping/Joint Hydrographic Center (CCOM/JHC). Each dataset was gridded at 0.5 and 1.0 meter resolutions for cross comparison and compliance with International Hydrographic Organization (IHO) requirements. Detailed comparisons were made of equipment specifications (transmit frequency, number of beams, beam width), data density, total uncertainty, and

  13. Interoperability of Multiple Datasets with JMARS

    NASA Astrophysics Data System (ADS)

    Smith, M. E.; Christensen, P. R.; Noss, D.; Anwar, S.; Dickenshied, S.

    2012-12-01

    Planetary Science includes all celestial bodies including Earth. However, when investigating Geographic Information System (GIS) applications, Earth and planetary bodies have the tendency to be separated. One reason is because we have been learning and investigating Earth's properties much longer than we have been studying the other planetary bodies, therefore, the archive of GCS and projections is much larger. The first latitude and longitude system of Earth was invented between 276 BC and 194 BC by Eratosthenes who was also the first to calculate the circumference of the Earth. As time went on, scientists continued to re-measure the Earth on both local and global scales which has created a large collection of projections and geographic coordinate systems (GCS) to choose from. The variety of options can create a time consuming task to determine which GCS or projection gets applied to each dataset and how to convert to the correct GCS or projection. Another issue is presented when determining if the dataset should be applied to a geocentric sphere or a geodetic spheroid. Both of which are measured and determine latitude values differently. This can lead to inconsistent results and frustration for the user. This is not the case with other planetary bodies. Although the existence of other planets have been known since the early Babylon times, the accuracy of the planets rotation, size and geologic properties weren't known for several hundreds of years later. Therefore, the options for projections or GCS's are much smaller than the options one has for Earth's data. Even then, the projection and GCS options for other celestial bodies are informal. So it can be hard for the user to determine which projection or GCS to apply to the other planets. JMARS (Java Mission Analysis for Remote Sensing) is an open source suite that was developed by Arizona State University's Mars Space Flight Facility. The beauty of JMARS is that the tool transforms all datasets behind the scenes

  14. Mars exploration planning

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.; Buoni, Corinne; Niehoff, John

    1993-01-01

    Mars exploration planning is discussed which is based on three scientific objectives: to understand Mars' geologic and geophysical evolution; to understand the present state and past evolution of Martian climate, and to determine the state of present biological activity and past life. The plan assumes a 25-year planning horizon, from 1995-2020, and includes both broad-scale and local exploration capabilities.

  15. BMDExpress Data Viewer - a visualization tool to analyze BMDExpress datasets.

    PubMed

    Kuo, Byron; Francina Webster, A; Thomas, Russell S; Yauk, Carole L

    2016-08-01

    Regulatory agencies increasingly apply benchmark dose (BMD) modeling to determine points of departure for risk assessment. BMDExpress applies BMD modeling to transcriptomic datasets to identify transcriptional BMDs. However, graphing and analytical capabilities within BMDExpress are limited, and the analysis of output files is challenging. We developed a web-based application, BMDExpress Data Viewer (http://apps.sciome.com:8082/BMDX_Viewer/), for visualizing and graphing BMDExpress output files. The application consists of "Summary Visualization" and "Dataset Exploratory" tools. Through analysis of transcriptomic datasets of the toxicants furan and 4,4'-methylenebis(N,N-dimethyl)benzenamine, we demonstrate that the "Summary Visualization Tools" can be used to examine distributions of gene and pathway BMD values, and to derive a potential point of departure value based on summary statistics. By applying filters on enrichment P-values and minimum number of significant genes, the "Functional Enrichment Analysis" tool enables the user to select biological processes or pathways that are selectively perturbed by chemical exposure and identify the related BMD. The "Multiple Dataset Comparison" tool enables comparison of gene and pathway BMD values across multiple experiments (e.g., across timepoints or tissues). The "BMDL-BMD Range Plotter" tool facilitates the observation of BMD trends across biological processes or pathways. Through our case studies, we demonstrate that BMDExpress Data Viewer is a useful tool to visualize, explore and analyze BMDExpress output files. Visualizing the data in this manner enables rapid assessment of data quality, model fit, doses of peak activity, most sensitive pathway perturbations and other metrics that will be useful in applying toxicogenomics in risk assessment. © 2015 Her Majesty the Queen in Right of Canada. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. PMID:26671443

  16. Development of a video tampering dataset for forensic investigation.

    PubMed

    Ismael Al-Sanjary, Omar; Ahmed, Ahmed Abdullah; Sulong, Ghazali

    2016-09-01

    Forgery is an act of modifying a document, product, image or video, among other media. Video tampering detection research requires an inclusive database of video modification. This paper aims to discuss a comprehensive proposal to create a dataset composed of modified videos for forensic investigation, in order to standardize existing techniques for detecting video tampering. The primary purpose of developing and designing this new video library is for usage in video forensics, which can be consciously associated with reliable verification using dynamic and static camera recognition. To the best of the author's knowledge, there exists no similar library among the research community. Videos were sourced from YouTube and by exploring social networking sites extensively by observing posted videos and rating their feedback. The video tampering dataset (VTD) comprises a total of 33 videos, divided among three categories in video tampering: (1) copy-move, (2) splicing, and (3) swapping-frames. Compared to existing datasets, this is a higher number of tampered videos, and with longer durations. The duration of every video is 16s, with a 1280×720 resolution, and a frame rate of 30 frames per second. Moreover, all videos possess the same formatting quality (720p(HD).avi). Both temporal and spatial video features were considered carefully during selection of the videos, and there exists complete information related to the doctored regions in every modified video in the VTD dataset. This database has been made publically available for research on splicing, Swapping frames, and copy-move tampering, and, as such, various video tampering detection issues with ground truth. The database has been utilised by many international researchers and groups of researchers. PMID:27574113

  17. Exploring Relationships in Big Data

    NASA Astrophysics Data System (ADS)

    Mahabal, A.; Djorgovski, S. G.; Crichton, D. J.; Cinquini, L.; Kelly, S.; Colbert, M. A.; Kincaid, H.

    2015-12-01

    Big Data are characterized by several different 'V's. Volume, Veracity, Volatility, Value and so on. For many datasets inflated Volumes through redundant features often make the data more noisy and difficult to extract Value out of. This is especially true if one is comparing/combining different datasets, and the metadata are diverse. We have been exploring ways to exploit such datasets through a variety of statistical machinery, and visualization. We show how we have applied it to time-series from large astronomical sky-surveys. This was done in the Virtual Observatory framework. More recently we have been doing similar work for a completely different domain viz. biology/cancer. The methodology reuse involves application to diverse datasets gathered through the various centers associated with the Early Detection Research Network (EDRN) for cancer, an initiative of the National Cancer Institute (NCI). Application to Geo datasets is a natural extension.

  18. Quality Visualization of Microarray Datasets Using Circos

    PubMed Central

    Koch, Martin; Wiese, Michael

    2012-01-01

    Quality control and normalization is considered the most important step in the analysis of microarray data. At present there are various methods available for quality assessments of microarray datasets. However there seems to be no standard visualization routine, which also depicts individual microarray quality. Here we present a convenient method for visualizing the results of standard quality control tests using Circos plots. In these plots various quality measurements are drawn in a circular fashion, thus allowing for visualization of the quality and all outliers of each distinct array within a microarray dataset. The proposed method is intended for use with the Affymetrix Human Genome platform (i.e., GPL 96, GPL570 and GPL571). Circos quality measurement plots are a convenient way for the initial quality estimate of Affymetrix datasets that are stored in publicly available databases.

  19. Data Mining for Imbalanced Datasets: An Overview

    NASA Astrophysics Data System (ADS)

    Chawla, Nitesh V.

    A dataset is imbalanced if the classification categories are not approximately equally represented. Recent years brought increased interest in applying machine learning techniques to difficult "real-world" problems, many of which are characterized by imbalanced data. Additionally the distribution of the testing data may differ from that of the training data, and the true misclassification costs may be unknown at learning time. Predictive accuracy, a popular choice for evaluating performance of a classifier, might not be appropriate when the data is imbalanced and/or the costs of different errors vary markedly. In this Chapter, we discuss some of the sampling techniques used for balancing the datasets, and the performance measures more appropriate for mining imbalanced datasets.

  20. Visualization of Multi-dimensional MISR Datasets Using Self-Organizing Map

    NASA Astrophysics Data System (ADS)

    Li, P.; Jacob, J.; Braverman, A.; Block, G.

    2003-12-01

    addition, SOM_VIS allows users to interactively select an input vector, relate it to its corresponding SOM vector or location in color space, and plot it in 36 dimensions along with its corresponding SOM vector and Euclidean distances between the two. In this presentation, we report results of our exploration of selected MISR datasets using SOM_VIS. Early experience shows that SOM_VIS is not only able to extract features common to channels, but also can identify subtle differences among channels or signals only visible in a few channels. We also present some quantitative performance measures comparing the SOM algorithm to other traditional clustering algorithms. [1] A. Todd & M. Kirby, "Data Visualization via Structured Voronoi Cell Refinement", SIAM Workshop on Mining Scientific Datasets, p.45-52, April 2001

  1. 'El Capitan's' Scientific Gems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic of images taken by the panoramic camera onboard the Mars Exploration Rover Opportunity shows the rock region dubbed 'El Capitan,' which lies within the larger outcrop near the rover's landing site. 'El Capitan' is being studied in great detail using the scientific instruments on the rover's arm; images from the panoramic camera help scientists choose the locations for this compositional work. The millimeter-scale detail of the lamination covering these rocks can be seen. The face of the rock to the right of the mosaic may be a future target for grinding with the rover's rock abrasion tool.

  2. Exploitation of a large COSMO-SkyMed interferometric dataset

    NASA Astrophysics Data System (ADS)

    Nutricato, Raffaele; Nitti, Davide O.; Bovenga, Fabio; Refice, Alberto; Chiaradia, Maria T.

    2014-10-01

    In this work we explored a dataset made by more than 100 images acquired by COSMO-SkyMed (CSK) constellation over the Port-au-Prince (Haiti) metropolitan and surrounding areas that were severely hit by the January 12th, 2010 earthquake. The images were acquired along ascending pass by all the four sensors of the constellation with a mean rate of 1 acquisition/week. This consistent CSK dataset was fully exploited by using the Persistent Scatterer Interferometry algorithm SPINUA with the aim of: i) providing a displacement map of the area; ii) assessing the use of CSK and PSI for ground elevation measurements; iii) exploring the CSK satellite orbital tube in terms of both precision and size. In particular, significant subsidence phenomena were detected affecting river deltas and coastal areas of the Port-au-Prince and Carrefour region, as well as very slow slope movements and local ground instabilities. Ground elevation was also measured on PS targets with resolution of 3m. The density of these measurable targets depends on the ground coverage, and reaches values higher than 4000 PS/km2 over urban areas, while it drops over vegetated areas or along slopes affected by layover and shadow. Heights values were compared with LIDAR data at 1m of resolution collected soon after the 2010 earthquake. Furthermore, by using geocoding procedures and the precise LIDAR data as reference, the orbital errors affecting CSK records were investigated. The results are in line with other recent studies.

  3. Scientific Software

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Interactive Data Language (IDL), developed by Research Systems, Inc., is a tool for scientists to investigate their data without having to write a custom program for each study. IDL is based on the Mariners Mars spectral Editor (MMED) developed for studies from NASA's Mars spacecraft flights. The company has also developed Environment for Visualizing Images (ENVI), an image processing system for easily analyzing remotely sensed data written in IDL. The Visible Human CD, another Research Systems product, is the first complete digital reference of photographic images for exploring human anatomy.

  4. Lakatos' Scientific Research Programmes as a Framework for Analysing Informal Argumentation about Socio-Scientific Issues

    ERIC Educational Resources Information Center

    Chang, Shu-Nu; Chiu, Mei-Hung

    2008-01-01

    The purpose of this study is to explore how Lakatos' scientific research programmes might serve as a theoretical framework for representing and evaluating informal argumentation about socio-scientific issues. Seventy undergraduate science and non-science majors were asked to make written arguments about four socio-scientific issues. Our analysis…

  5. Future weather dataset for fourteen UK sites.

    PubMed

    Liu, Chunde

    2016-09-01

    This Future weather dataset is used for assessing the risk of overheating and thermal discomfort or heat stress in the free running buildings. The weather files are in the format of .epw which can be used in the building simulation packages such as EnergyPlus, DesignBuilder, IES, etc. PMID:27570809

  6. Bacterial clinical infectious diseases ontology (BCIDO) dataset.

    PubMed

    Gordon, Claire L; Weng, Chunhua

    2016-09-01

    This article describes the Bacterial Infectious Diseases Ontology (BCIDO) dataset related to research published in http:dx.doi.org/ 10.1016/j.jbi.2015.07.014 [1], and contains the Protégé OWL files required to run BCIDO in the Protégé environment. BCIDO contains 1719 classes and 39 object properties. PMID:27508237

  7. Thesaurus Dataset of Educational Technology in Chinese

    ERIC Educational Resources Information Center

    Wu, Linjing; Liu, Qingtang; Zhao, Gang; Huang, Huan; Huang, Tao

    2015-01-01

    The thesaurus dataset of educational technology is a knowledge description of educational technology in Chinese. The aims of this thesaurus were to collect the subject terms in the domain of educational technology, facilitate the standardization of terminology and promote the communication between Chinese researchers and scholars from various…

  8. Interpolation of diffusion weighted imaging datasets.

    PubMed

    Dyrby, Tim B; Lundell, Henrik; Burke, Mark W; Reislev, Nina L; Paulson, Olaf B; Ptito, Maurice; Siebner, Hartwig R

    2014-12-01

    Diffusion weighted imaging (DWI) is used to study white-matter fibre organisation, orientation and structural connectivity by means of fibre reconstruction algorithms and tractography. For clinical settings, limited scan time compromises the possibilities to achieve high image resolution for finer anatomical details and signal-to-noise-ratio for reliable fibre reconstruction. We assessed the potential benefits of interpolating DWI datasets to a higher image resolution before fibre reconstruction using a diffusion tensor model. Simulations of straight and curved crossing tracts smaller than or equal to the voxel size showed that conventional higher-order interpolation methods improved the geometrical representation of white-matter tracts with reduced partial-volume-effect (PVE), except at tract boundaries. Simulations and interpolation of ex-vivo monkey brain DWI datasets revealed that conventional interpolation methods fail to disentangle fine anatomical details if PVE is too pronounced in the original data. As for validation we used ex-vivo DWI datasets acquired at various image resolutions as well as Nissl-stained sections. Increasing the image resolution by a factor of eight yielded finer geometrical resolution and more anatomical details in complex regions such as tract boundaries and cortical layers, which are normally only visualized at higher image resolutions. Similar results were found with typical clinical human DWI dataset. However, a possible bias in quantitative values imposed by the interpolation method used should be considered. The results indicate that conventional interpolation methods can be successfully applied to DWI datasets for mining anatomical details that are normally seen only at higher resolutions, which will aid in tractography and microstructural mapping of tissue compartments. PMID:25219332

  9. Efficiently Finding Individuals from Video Dataset

    NASA Astrophysics Data System (ADS)

    Hao, Pengyi; Kamata, Sei-Ichiro

    We are interested in retrieving video shots or videos containing particular people from a video dataset. Owing to the large variations in pose, illumination conditions, occlusions, hairstyles and facial expressions, face tracks have recently been researched in the fields of face recognition, face retrieval and name labeling from videos. However, when the number of face tracks is very large, conventional methods, which match all or some pairs of faces in face tracks, will not be effective. Therefore, in this paper, an efficient method for finding a given person from a video dataset is presented. In our study, in according to performing research on face tracks in a single video, we also consider how to organize all the faces in videos in a dataset and how to improve the search quality in the query process. Different videos may include the same person; thus, the management of individuals in different videos will be useful for their retrieval. The proposed method includes the following three points. (i) Face tracks of the same person appearing for a period in each video are first connected on the basis of scene information with a time constriction, then all the people in one video are organized by a proposed hierarchical clustering method. (ii) After obtaining the organizational structure of all the people in one video, the people are organized into an upper layer by affinity propagation. (iii) Finally, in the process of querying, a remeasuring method based on the index structure of videos is performed to improve the retrieval accuracy. We also build a video dataset that contains six types of videos: films, TV shows, educational videos, interviews, press conferences and domestic activities. The formation of face tracks in the six types of videos is first researched, then experiments are performed on this video dataset containing more than 1 million faces and 218,786 face tracks. The results show that the proposed approach has high search quality and a short search time.

  10. Satellite Merged Microwave Radiometer Datasets for Climate Studies

    NASA Astrophysics Data System (ADS)

    Smith, D. K.; Mears, C. A.; Hilburn, K. A.; Ricciardulli, L.

    2013-12-01

    With more than two decades of continuous accurate monitoring over the global oceans, microwave satellite observations provide a very valuable data record for climate research and climate models validation. Observations of columnar water vapor, rain rates, cloud liquid water, and surface winds from microwave radiometers are retrieved twice daily since 1987 from a number of sensors: SSM/I F08 through F15, SSMIS F16 and F17, AMSR-E, TMI and WindSat. Sea surface temperature measurements through clouds are available since 1998. These datasets have been carefully intercalibrated at the brightness temperature level. The recently released V7 ocean products have been produced with a consistent methodology common to all sensors. Given the enormous amount of data, using these observations for climate research and model evaluation is time-consuming and proper quality control is non-trivial. At Remote Sensing Systems we are focusing on creating merged monthly gridded data records suitable for climate research for all these ocean products. The methodology to construct these merged datasets has been carefully developed after exploring different methods of combining the data from different sensors. Important aspects of the methodology include: selection of input data, requirement of minimal data values per grid cell, use of extended area rain flagging, use of extended area ice flagging, averaging method applied, and application of derived merging parameters. The resulting merged datasets are monthly timeseries of global gridded data over the ocean, with a 1-deg resolution. The timeseries starts in January 1988, and they are stored in a single NetCDF file which is updated every month. Included in the file are: monthly average timeseries, monthly climatology, monthly anomaly timeseries, trend map, and time-latitude array. Water vapor is the first of these merged datasets, and has been released in early 2013. Merged ocean surface winds and precipitation rates are currently under

  11. Agile data management for curation of genomes to watershed datasets

    NASA Astrophysics Data System (ADS)

    Varadharajan, C.; Agarwal, D.; Faybishenko, B.; Versteeg, R.

    2015-12-01

    A software platform is being developed for data management and assimilation [DMA] as part of the U.S. Department of Energy's Genomes to Watershed Sustainable Systems Science Focus Area 2.0. The DMA components and capabilities are driven by the project science priorities and the development is based on agile development techniques. The goal of the DMA software platform is to enable users to integrate and synthesize diverse and disparate field, laboratory, and simulation datasets, including geological, geochemical, geophysical, microbiological, hydrological, and meteorological data across a range of spatial and temporal scales. The DMA objectives are (a) developing an integrated interface to the datasets, (b) storing field monitoring data, laboratory analytical results of water and sediments samples collected into a database, (c) providing automated QA/QC analysis of data and (d) working with data providers to modify high-priority field and laboratory data collection and reporting procedures as needed. The first three objectives are driven by user needs, while the last objective is driven by data management needs. The project needs and priorities are reassessed regularly with the users. After each user session we identify development priorities to match the identified user priorities. For instance, data QA/QC and collection activities have focused on the data and products needed for on-going scientific analyses (e.g. water level and geochemistry). We have also developed, tested and released a broker and portal that integrates diverse datasets from two different databases used for curation of project data. The development of the user interface was based on a user-centered design process involving several user interviews and constant interaction with data providers. The initial version focuses on the most requested feature - i.e. finding the data needed for analyses through an intuitive interface. Once the data is found, the user can immediately plot and download data

  12. Quantifying uncertainty in observational rainfall datasets

    NASA Astrophysics Data System (ADS)

    Lennard, Chris; Dosio, Alessandro; Nikulin, Grigory; Pinto, Izidine; Seid, Hussen

    2015-04-01

    The CO-ordinated Regional Downscaling Experiment (CORDEX) has to date seen the publication of at least ten journal papers that examine the African domain during 2012 and 2013. Five of these papers consider Africa generally (Nikulin et al. 2012, Kim et al. 2013, Hernandes-Dias et al. 2013, Laprise et al. 2013, Panitz et al. 2013) and five have regional foci: Tramblay et al. (2013) on Northern Africa, Mariotti et al. (2014) and Gbobaniyi el al. (2013) on West Africa, Endris et al. (2013) on East Africa and Kalagnoumou et al. (2013) on southern Africa. There also are a further three papers that the authors know about under review. These papers all use an observed rainfall and/or temperature data to evaluate/validate the regional model output and often proceed to assess projected changes in these variables due to climate change in the context of these observations. The most popular reference rainfall data used are the CRU, GPCP, GPCC, TRMM and UDEL datasets. However, as Kalagnoumou et al. (2013) point out there are many other rainfall datasets available for consideration, for example, CMORPH, FEWS, TAMSAT & RIANNAA, TAMORA and the WATCH & WATCH-DEI data. They, with others (Nikulin et al. 2012, Sylla et al. 2012) show that the observed datasets can have a very wide spread at a particular space-time coordinate. As more ground, space and reanalysis-based rainfall products become available, all which use different methods to produce precipitation data, the selection of reference data is becoming an important factor in model evaluation. A number of factors can contribute to a uncertainty in terms of the reliability and validity of the datasets such as radiance conversion algorithims, the quantity and quality of available station data, interpolation techniques and blending methods used to combine satellite and guage based products. However, to date no comprehensive study has been performed to evaluate the uncertainty in these observational datasets. We assess 18 gridded

  13. Multivariate Data EXplorer (MDX)

    Energy Science and Technology Software Center (ESTSC)

    2012-08-01

    The MDX toolkit facilitates exploratory data analysis and visualization of multivariate datasets. MDX provides and interactive graphical user interface to load, explore, and modify multivariate datasets stored in tabular forms. MDX uses an extended version of the parallel coordinates plot and scatterplots to represent the data. The user can perform rapid visual queries using mouse gestures in the visualization panels to select rows or columns of interest. The visualization panel provides coordinated multiple views wherebymore » selections made in one plot are propagated to the other plots. Users can also export selected data or reconfigure the visualization panel to explore relationships between columns and rows in the data.« less

  14. Provenance of Earth Science Datasets - How Deep Should One Go?

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H.; Manipon, G. J. M.; Aulenbach, S.; Duggan, B.; Goldstein, J.; Hua, H.; Tan, D.; Tilmes, C.; Wilson, B. D.; Wolfe, R.; Zednik, S.

    2015-12-01

    For credibility of scientific research, transparency and reproducibility are essential. This fundamental tenet has been emphasized for centuries, and has been receiving increased attention in recent years. The Office of Management and Budget (2002) addressed reproducibility and other aspects of quality and utility of information from federal agencies. Specific guidelines from NASA (2002) are derived from the above. According to these guidelines, "NASA requires a higher standard of quality for information that is considered influential. Influential scientific, financial, or statistical information is defined as NASA information that, when disseminated, will have or does have clear and substantial impact on important public policies or important private sector decisions." For information to be compliant, "the information must be transparent and reproducible to the greatest possible extent." We present how the principles of transparency and reproducibility have been applied to NASA data supporting the Third National Climate Assessment (NCA3). The depth of trace needed of provenance of data used to derive conclusions in NCA3 depends on how the data were used (e.g., qualitatively or quantitatively). Given that the information is diligently maintained in the agency archives, it is possible to trace from a figure in the publication through the datasets, specific files, algorithm versions, instruments used for data collection, and satellites, as well as the individuals and organizations involved in each step. Such trace back permits transparency and reproducibility.

  15. Efficiently Exploring Multilevel Data with Recursive Partitioning

    ERIC Educational Resources Information Center

    Martin, Daniel P.; von Oertzen, Timo; Rimm-Kaufman, Sara E.

    2015-01-01

    There is an increasing number of datasets with many participants, variables, or both, in education and other fields that often deal with large, multilevel data structures. Once initial confirmatory hypotheses are exhausted, it can be difficult to determine how best to explore the dataset to discover hidden relationships that could help to inform…

  16. Global Precipitation Measurement: Methods, Datasets and Applications

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco; Turk, Francis J.; Petersen, Walt; Hou, Arthur Y.; Garcia-Ortega, Eduardo; Machado, Luiz, A. T.; Angelis, Carlos F.; Salio, Paola; Kidd, Chris; Huffman, George J.; De Castro, Manuel

    2011-01-01

    This paper reviews the many aspects of precipitation measurement that are relevant to providing an accurate global assessment of this important environmental parameter. Methods discussed include ground data, satellite estimates and numerical models. First, the methods for measuring, estimating, and modeling precipitation are discussed. Then, the most relevant datasets gathering precipitation information from those three sources are presented. The third part of the paper illustrates a number of the many applications of those measurements and databases. The aim of the paper is to organize the many links and feedbacks between precipitation measurement, estimation and modeling, indicating the uncertainties and limitations of each technique in order to identify areas requiring further attention, and to show the limits within which datasets can be used.

  17. Multiscale peak alignment for chromatographic datasets.

    PubMed

    Zhang, Zhi-Min; Liang, Yi-Zeng; Lu, Hong-Mei; Tan, Bin-Bin; Xu, Xiao-Na; Ferro, Miguel

    2012-02-01

    Chromatography has been extensively applied in many fields, such as metabolomics and quality control of herbal medicines. Preprocessing, especially peak alignment, is a time-consuming task prior to the extraction of useful information from the datasets by chemometrics and statistics. To accurately and rapidly align shift peaks among one-dimensional chromatograms, multiscale peak alignment (MSPA) is presented in this research. Peaks of each chromatogram were detected based on continuous wavelet transform (CWT) and aligned against a reference chromatogram from large to small scale gradually, and the aligning procedure is accelerated by fast Fourier transform cross correlation. The presented method was compared with two widely used alignment methods on chromatographic dataset, which demonstrates that MSPA can preserve the shapes of peaks and has an excellent speed during alignment. Furthermore, MSPA method is robust and not sensitive to noise and baseline. MSPA was implemented and is available at http://code.google.com/p/mspa. PMID:22222564

  18. Dataset of milk whey proteins of three indigenous Greek sheep breeds.

    PubMed

    Anagnostopoulos, Athanasios K; Katsafadou, Angeliki I; Pierros, Vasileios; Kontopodis, Evangelos; Fthenakis, George C; Arsenos, George; Karkabounas, Spyridon Ch; Tzora, Athina; Skoufos, Ioannis; Tsangaris, George Th

    2016-09-01

    The importance and unique biological traits, as well as the growing financial value, of milk from small Greek ruminants is continuously attracting interest from both the scientific community and industry. In this regard the construction of a reference dataset of the milk of the Greek sheep breeds is of great interest. In order to obtain such a dataset we employed cutting-edge proteomics methodologies to investigate and characterize, the proteome of milk from the three indigenous Greek sheep breeds Mpoutsko, Karagouniko and Chios. In total, more than 1300 protein groups were identified in milk whey from these breeds, reporting for the first time the most detailed proteome dataset of this precious biological material. The present results are further discussed in the research paper "Milk of Greek sheep and goat breeds; characterization by means of proteomics" (Anagnostopoulos et al. 2016) [1]. PMID:27508236

  19. Spatially-based quality control for daily precipitation datasets

    NASA Astrophysics Data System (ADS)

    Serrano-Notivoli, Roberto; de Luis, Martín; Beguería, Santiago; Ángel Saz, Miguel

    2016-04-01

    There are many reasons why wrong data can appear in original precipitation datasets but their common characteristic is that all of them do not correspond to the natural variability of the climate variable. For this reason, is necessary a comprehensive analysis of the data of each station in each day, to be certain that the final dataset will be consistent and reliable. Most of quality control techniques applied over daily precipitation are based on the comparison of each observed value with the rest of values in same series or in reference series built from its nearest stations. These methods are inherited from monthly precipitation studies, but in daily scale the variability is bigger and the methods have to be different. A common character shared by all of these approaches is that they made reconstructions based on the best-correlated reference series, which could be a biased decision because, for example, a extreme precipitation occurred in one day in more than one station could be flagged as erroneous. We propose a method based on the specific conditions of the day and location to determine the reliability of each observation. This method keeps the local variance of the variable and the time-structure independence. To do that, individually for each daily value, we first compute the probability of precipitation occurrence through a multivariate logistic regression using the 10 nearest observations in a binomial mode (0=dry; 1=wet), this produces a binomial prediction (PB) between 0 and 1. Then, we compute a prediction of precipitation magnitude (PM) with the raw data of the same 10 nearest observations. Through these predictions we explore the original data in each day and location by five criteria: 1) Suspect data; 2) Suspect zero; 3) Suspect outlier; 4) Suspect wet and 5) Suspect dry. Tests over different datasets addressed that flagged data depend mainly on the number of available data and the homogeneous distribution of them.

  20. Projecting global datasets to achieve equal areas

    USGS Publications Warehouse

    Usery, E.L.; Finn, M.P.; Cox, J.D.; Beard, T.; Ruhl, S.; Bearden, M.

    2003-01-01

    Scientists routinely accomplish global modeling in the raster domain, but recent research has indicated that the transformation of large areas through map projection equations leads to errors. This research attempts to gauge the extent of map projection and resampling effects on the tabulation of categorical areas by comparing the results of three datasets for seven common projections. The datasets, Global Land Cover, Holdridge Life Zones, and Global Vegetation, were compiled at resolutions of 30 arc-second, 1/2 degree, and 1 degree, respectively. These datasets were projected globally from spherical coordinates to plane representations. Results indicate significant problems in the implementation of global projection transformations in commercial software, as well as differences in areal accuracy across projections. The level of raster resolution directly affects the accuracy of areal tabulations, with higher resolution yielding higher accuracy. If the raster resolution is high enough for individual pixels to approximate points, the areal error tends to zero. The 30-arc-second cells appear to approximate this condition.

  1. First observations using SPICE hyperspectral dataset

    NASA Astrophysics Data System (ADS)

    Rosario, Dalton; Romano, Joao; Borel, Christoph

    2014-06-01

    Our first observations using the longwave infrared (LWIR) hyperspectral data subset of the Spectral and Polarimetric Imagery Collection Experiment (SPICE) database are summarized in this paper, focusing on the inherent challenges associated with using this sensing modality for the purpose of object pattern recognition. Emphases are also put on data quality, qualitative validation of expected atmospheric spectral features, and qualitative comparison against another dataset of the same site using a different LWIR hyperspectral sensor. SPICE is a collaborative effort between the Army Research Laboratory, U.S. Army Armament RDEC, and more recently the Air Force Institute of Technology. It focuses on the collection and exploitation of longwave and midwave infrared (LWIR and MWIR) hyperspectral and polarimetric imagery. We concluded from this work that the quality of SPICE hyperspectral LWIR data is categorically comparable to other datasets recorded by a different sensor of similar specs; and adequate for algorithm research, given the scope of SPICE. The scope was to conduct a long-term infrared data collection of the same site with targets, using both sensing modalities, under various weather and non-ideal conditions. Then use the vast dataset and associated ground truth information to assess performance of the state of the art algorithms, while determining performance degradation sources. The expectation is that results from these assessments will spur new algorithmic ideas with the potential to augment pattern recognition performance in remote sensing applications. Over time, we are confident the SPICE database will prove to be an asset to the wide open remote sensing community.

  2. Data assimilation and model evaluation experiment datasets

    NASA Technical Reports Server (NTRS)

    Lai, Chung-Cheng A.; Qian, Wen; Glenn, Scott M.

    1994-01-01

    The Institute for Naval Oceanography, in cooperation with Naval Research Laboratories and universities, executed the Data Assimilation and Model Evaluation Experiment (DAMEE) for the Gulf Stream region during fiscal years 1991-1993. Enormous effort has gone into the preparation of several high-quality and consistent datasets for model initialization and verification. This paper describes the preparation process, the temporal and spatial scopes, the contents, the structure, etc., of these datasets. The goal of DAMEE and the need of data for the four phases of experiment are briefly stated. The preparation of DAMEE datasets consisted of a series of processes: (1) collection of observational data; (2) analysis and interpretation; (3) interpolation using the Optimum Thermal Interpolation System package; (4) quality control and re-analysis; and (5) data archiving and software documentation. The data products from these processes included a time series of 3D fields of temperature and salinity, 2D fields of surface dynamic height and mixed-layer depth, analysis of the Gulf Stream and rings system, and bathythermograph profiles. To date, these are the most detailed and high-quality data for mesoscale ocean modeling, data assimilation, and forecasting research. Feedback from ocean modeling groups who tested this data was incorporated into its refinement. Suggestions for DAMEE data usages include (1) ocean modeling and data assimilation studies, (2) diagnosis and theoretical studies, and (3) comparisons with locally detailed observations.

  3. Geospatial Visualization of Scientific Data Through Keyhole Markup Language

    NASA Astrophysics Data System (ADS)

    Wernecke, J.; Bailey, J. E.

    2008-12-01

    The development of virtual globes has provided a fun and innovative tool for exploring the surface of the Earth. However, it has been the paralleling maturation of Keyhole Markup Language (KML) that has created a new medium and perspective through which to visualize scientific datasets. Originally created by Keyhole Inc., and then acquired by Google in 2004, in 2007 KML was given over to the Open Geospatial Consortium (OGC). It became an OGC international standard on 14 April 2008, and has subsequently been adopted by all major geobrowser developers (e.g., Google, Microsoft, ESRI, NASA) and many smaller ones (e.g., Earthbrowser). By making KML a standard at a relatively young stage in its evolution, developers of the language are seeking to avoid the issues that plagued the early World Wide Web and development of Hypertext Markup Language (HTML). The popularity and utility of Google Earth, in particular, has been enhanced by KML features such as the Smithsonian volcano layer and the dynamic weather layers. Through KML, users can view real-time earthquake locations (USGS), view animations of polar sea-ice coverage (NSIDC), or read about the daily activities of chimpanzees (Jane Goodall Institute). Perhaps even more powerful is the fact that any users can create, edit, and share their own KML, with no or relatively little knowledge of manipulating computer code. We present an overview of the best current scientific uses of KML and a guide to how scientists can learn to use KML themselves.

  4. Collaboration tools and techniques for large model datasets

    USGS Publications Warehouse

    Signell, R.P.; Carniel, S.; Chiggiato, J.; Janekovic, I.; Pullen, J.; Sherwood, C.R.

    2008-01-01

    In MREA and many other marine applications, it is common to have multiple models running with different grids, run by different institutions. Techniques and tools are described for low-bandwidth delivery of data from large multidimensional datasets, such as those from meteorological and oceanographic models, directly into generic analysis and visualization tools. Output is stored using the NetCDF CF Metadata Conventions, and then delivered to collaborators over the web via OPeNDAP. OPeNDAP datasets served by different institutions are then organized via THREDDS catalogs. Tools and procedures are then used which enable scientists to explore data on the original model grids using tools they are familiar with. It is also low-bandwidth, enabling users to extract just the data they require, an important feature for access from ship or remote areas. The entire implementation is simple enough to be handled by modelers working with their webmasters - no advanced programming support is necessary. ?? 2007 Elsevier B.V. All rights reserved.

  5. Multiresolution comparison of precipitation datasets for large-scale models

    NASA Astrophysics Data System (ADS)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  6. Scientific Inquiry: A Model for Online Searching.

    ERIC Educational Resources Information Center

    Harter, Stephen P.

    1984-01-01

    Explores scientific inquiry as philosophical and behavioral model for online search specialist and information retrieval process. Nature of scientific research is described and online analogs to research concepts of variable, hypothesis formulation and testing, operational definition, validity, reliability, assumption, and cyclical nature of…

  7. Accuracy assessment of the U.S. Geological Survey National Elevation Dataset, and comparison with other large-area elevation datasets: SRTM and ASTER

    USGS Publications Warehouse

    Gesch, Dean B.; Oimoen, Michael J.; Evans, Gayla A.

    2014-01-01

    The National Elevation Dataset (NED) is the primary elevation data product produced and distributed by the U.S. Geological Survey. The NED provides seamless raster elevation data of the conterminous United States, Alaska, Hawaii, U.S. island territories, Mexico, and Canada. The NED is derived from diverse source datasets that are processed to a specification with consistent resolutions, coordinate system, elevation units, and horizontal and vertical datums. The NED serves as the elevation layer of The National Map, and it provides basic elevation information for earth science studies and mapping applications in the United States and most of North America. An important part of supporting scientific and operational use of the NED is provision of thorough dataset documentation including data quality and accuracy metrics. The focus of this report is on the vertical accuracy of the NED and on comparison of the NED with other similar large-area elevation datasets, namely data from the Shuttle Radar Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER).

  8. CROSS DRIVE: A Collaborative and Distributed Virtual Environment for Exploitation of Atmospherical and Geological Datasets of Mars

    NASA Astrophysics Data System (ADS)

    Cencetti, Michele

    2016-07-01

    European space exploration missions have produced huge data sets of potentially immense value for research as well as for planning and operating future missions. For instance, Mars Exploration programs comprise a series of missions with launches ranging from the past to beyond present, which are anticipated to produce exceptional volumes of data which provide prospects for research breakthroughs and advancing further activities in space. These collected data include a variety of information, such as imagery, topography, atmospheric, geochemical datasets and more, which has resulted in and still demands, databases, versatile visualisation tools and data reduction methods. Such rate of valuable data acquisition requires the scientists, researchers and computer scientists to coordinate their storage, processing and relevant tools to enable efficient data analysis. However, the current position is that expert teams from various disciplines, the databases and tools are fragmented, leaving little scope for unlocking its value through collaborative activities. The benefits of collaborative virtual environments have been implemented in various industrial fields allowing real-time multi-user collaborative work among people from different disciplines. Exploiting the benefits of advanced immersive virtual environments (IVE) has been recognized as an important interaction paradigm to facilitate future space exploration. The current work is mainly aimed towards the presentation of the preliminary results coming from the CROSS DRIVE project. This research received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 607177 and is mainly aimed towards the implementation of a distributed virtual workspace for collaborative scientific discovery, mission planning and operations. The purpose of the CROSS DRIVE project is to lay foundations of collaborative European workspaces for space science. It will demonstrate the feasibility and

  9. Recovering complete and draft population genomes from metagenome datasets

    DOE PAGESBeta

    Sangwan, Naseer; Xia, Fangfang; Gilbert, Jack A.

    2016-03-08

    Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem ofmore » chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution.« less

  10. The Effective Use of Scientific and Technical Information in Industrial and Non-Profit Settings: Explorations through Experimental Interventions in On-Going R & D Activities. Progress Report No. 2.

    ERIC Educational Resources Information Center

    Shapero, Albert

    This is a second report of a study of the use of scientific and technical information in industrial and nonprofit settings. It focuses on mapping the information-communication behavior of the engineering division of the Southwest Research Institute. Data include questionnaires, library records, travel records, telephone records, and contractual…

  11. Chemical datuments as scientific enablers.

    PubMed

    Rzepa, Henry S

    2013-01-01

    This article is an attempt to construct a chemical datument as a means of presenting insights into chemical phenomena in a scientific journal. An exploration of the interactions present in a small fragment of duplex Z-DNA and the nature of the catalytic centre of a carbon-dioxide/alkene epoxide alternating co-polymerisation is presented in this datument, with examples of the use of three software tools, one based on Java, the other two using Javascript and HTML5 technologies. The implications for the evolution of scientific journals are discussed. PMID:23343381

  12. Chemical datuments as scientific enablers

    PubMed Central

    2013-01-01

    This article is an attempt to construct a chemical datument as a means of presenting insights into chemical phenomena in a scientific journal. An exploration of the interactions present in a small fragment of duplex Z-DNA and the nature of the catalytic centre of a carbon-dioxide/alkene epoxide alternating co-polymerisation is presented in this datument, with examples of the use of three software tools, one based on Java, the other two using Javascript and HTML5 technologies. The implications for the evolution of scientific journals are discussed. PMID:23343381

  13. Revisiting the concept of a symmetric index of agreement for continuous datasets.

    PubMed

    Duveiller, Gregory; Fasbender, Dominique; Meroni, Michele

    2016-01-01

    Quantifying how close two datasets are to each other is a common and necessary undertaking in scientific research. The Pearson product-moment correlation coefficient r is a widely used measure of the degree of linear dependence between two data series, but it gives no indication of how similar the values of these series are in magnitude. Although a number of indexes have been proposed to compare a dataset with a reference, only few are available to compare two datasets of equivalent (or unknown) reliability. After a brief review and numerical tests of the metrics designed to accomplish this task, this paper shows how an index proposed by Mielke can, with a minor modification, satisfy a series of desired properties, namely to be adimensional, bounded, symmetric, easy to compute and directly interpretable with respect to r. We thus show that this index can be considered as a natural extension to r that downregulates the value of r according to the bias between analysed datasets. The paper also proposes an effective way to disentangle the systematic and the unsystematic contribution to this agreement based on eigen decompositions. The use and value of the index is also illustrated on synthetic and real datasets. PMID:26762810

  14. Revisiting the concept of a symmetric index of agreement for continuous datasets

    NASA Astrophysics Data System (ADS)

    Duveiller, Gregory; Fasbender, Dominique; Meroni, Michele

    2016-01-01

    Quantifying how close two datasets are to each other is a common and necessary undertaking in scientific research. The Pearson product-moment correlation coefficient r is a widely used measure of the degree of linear dependence between two data series, but it gives no indication of how similar the values of these series are in magnitude. Although a number of indexes have been proposed to compare a dataset with a reference, only few are available to compare two datasets of equivalent (or unknown) reliability. After a brief review and numerical tests of the metrics designed to accomplish this task, this paper shows how an index proposed by Mielke can, with a minor modification, satisfy a series of desired properties, namely to be adimensional, bounded, symmetric, easy to compute and directly interpretable with respect to r. We thus show that this index can be considered as a natural extension to r that downregulates the value of r according to the bias between analysed datasets. The paper also proposes an effective way to disentangle the systematic and the unsystematic contribution to this agreement based on eigen decompositions. The use and value of the index is also illustrated on synthetic and real datasets.

  15. Revisiting the concept of a symmetric index of agreement for continuous datasets

    PubMed Central

    Duveiller, Gregory; Fasbender, Dominique; Meroni, Michele

    2016-01-01

    Quantifying how close two datasets are to each other is a common and necessary undertaking in scientific research. The Pearson product-moment correlation coefficient r is a widely used measure of the degree of linear dependence between two data series, but it gives no indication of how similar the values of these series are in magnitude. Although a number of indexes have been proposed to compare a dataset with a reference, only few are available to compare two datasets of equivalent (or unknown) reliability. After a brief review and numerical tests of the metrics designed to accomplish this task, this paper shows how an index proposed by Mielke can, with a minor modification, satisfy a series of desired properties, namely to be adimensional, bounded, symmetric, easy to compute and directly interpretable with respect to r. We thus show that this index can be considered as a natural extension to r that downregulates the value of r according to the bias between analysed datasets. The paper also proposes an effective way to disentangle the systematic and the unsystematic contribution to this agreement based on eigen decompositions. The use and value of the index is also illustrated on synthetic and real datasets. PMID:26762810

  16. Automated Search for Lunar Lava Tubes in the Clementine Dataset

    NASA Astrophysics Data System (ADS)

    Taylor, Allen G.; Gibbs, A.

    1998-01-01

    A significant problem in computer science, which has become increasingly acute recently, is the automatic extraction and cataloging of desired features from large sets of complex images. Solution of this problem could potentially have broad applicability. As a prototype of this kind of problem, our group has chosen to attempt the automatic retrieval of lava tubes from the Clementine dataset. Lunar lava tubes have long been recognized as desirable locations for the placement of manned lunar bases. Advantages include that (1) little construction is needed; (2) building materials need not be lifted out of Earth's gravity well; (3) the tubes provide natural environmental control; and (4) the tubes provide natural protection from cosmic rays, meteorites, micrometeorites, and impact crater ejecta. Coombs and Hawke identified about 100 probable lava tubes associated with sinuous rilles in the Lunar Orbiter and Apollo photos, primarily in the nearside maria. The lava tubes that are visible to Earth-based telescopes might be too large to provide good candidates for lunar bases. Such lava tubes of large diameter need a great depth of overlying rock to keep from collapsing. Any intact large tubes would lie inconveniently far underground. Most useful would be lava tubes that are too small to be discerned from Earth. The Clementine spacecraft, which mapped the entire surface of the Moon to an unprecedented level of detail in 1994, gives us a view of these smaller lava tubes. Over 1.9 million images in the visible, near infrared, and mid-infrared portions of the spectrum were captured. Our task is to find and catalog the small lava tubes in the Clementine dataset. Of particular interest are small sinuous rifles that contain interruptions, which represent uncollapsed portions of a tube that has partially collapsed. Once cataloged, the candidate base locations can be examined more closely for suitability. Considerations would be proximity to resources, sites of scientific interest

  17. Scientific Word Processors Proliferate.

    ERIC Educational Resources Information Center

    Analytical Chemistry, 1985

    1985-01-01

    Briefly describes most of the currently available scientific word processing software packages. Unless noted, these products (including Molecular Presentation Graphics, ProofWriter, Spellbinder Scientific, Volkswriter Scientific, and WordMARC) run on the IBM PC family of microcomputers. (JN)

  18. Utilizing the Antarctic Master Directory to find orphan datasets

    NASA Astrophysics Data System (ADS)

    Bonczkowski, J.; Carbotte, S. M.; Arko, R. A.; Grebas, S. K.

    2011-12-01

    While most Antarctic data are housed at an established disciplinary-specific data repository, there are data types for which no suitable repository exists. In some cases, these "orphan" data, without an appropriate national archive, are served from local servers by the principal investigators who produced the data. There are many pitfalls with data served privately, including the frequent lack of adequate documentation to ensure the data can be understood by others for re-use and the impermanence of personal web sites. For example, if an investigator leaves an institution and the data moves, the link published is no longer accessible. To ensure continued availability of data, submission to long-term national data repositories is needed. As stated in the National Science Foundation Office of Polar Programs (NSF/OPP) Guidelines and Award Conditions for Scientific Data, investigators are obligated to submit their data for curation and long-term preservation; this includes the registration of a dataset description into the Antarctic Master Directory (AMD), http://gcmd.nasa.gov/Data/portals/amd/. The AMD is a Web-based, searchable directory of thousands of dataset descriptions, known as DIF records, submitted by scientists from over 20 countries. It serves as a node of the International Directory Network/Global Change Master Directory (IDN/GCMD). The US Antarctic Program Data Coordination Center (USAP-DCC), http://www.usap-data.org/, funded through NSF/OPP, was established in 2007 to help streamline the process of data submission and DIF record creation. When data does not quite fit within any existing disciplinary repository, it can be registered within the USAP-DCC as the fallback data repository. Within the scope of the USAP-DCC we undertook the challenge of discovering and "rescuing" orphan datasets currently registered within the AMD. In order to find which DIF records led to data served privately, all records relating to US data within the AMD were parsed. After

  19. Dishonesty in scientific research.

    PubMed

    Mazar, Nina; Ariely, Dan

    2015-11-01

    Fraudulent business practices, such as those leading to the Enron scandal and the conviction of Bernard Madoff, evoke a strong sense of public outrage. But fraudulent or dishonest actions are not exclusive to the realm of big corporations or to evil individuals without consciences. Dishonest actions are all too prevalent in everyone's daily lives, because people are constantly encountering situations in which they can gain advantages by cutting corners. Whether it's adding a few dollars in value to the stolen items reported on an insurance claim form or dropping outlier data points from a figure to make a paper sound more interesting, dishonesty is part of the human condition. Here, we explore how people rationalize dishonesty, the implications for scientific research, and what can be done to foster a culture of research integrity. PMID:26524587

  20. Smed454 dataset: unravelling the transcriptome of Schmidtea mediterranea

    PubMed Central

    2010-01-01

    Background Freshwater planarians are an attractive model for regeneration and stem cell research and have become a promising tool in the field of regenerative medicine. With the availability of a sequenced planarian genome, the recent application of modern genetic and high-throughput tools has resulted in revitalized interest in these animals, long known for their amazing regenerative capabilities, which enable them to regrow even a new head after decapitation. However, a detailed description of the planarian transcriptome is essential for future investigation into regenerative processes using planarians as a model system. Results In order to complement and improve existing gene annotations, we used a 454 pyrosequencing approach to analyze the transcriptome of the planarian species Schmidtea mediterranea Altogether, 598,435 454-sequencing reads, with an average length of 327 bp, were assembled together with the ~10,000 sequences of the S. mediterranea UniGene set using different similarity cutoffs. The assembly was then mapped onto the current genome data. Remarkably, our Smed454 dataset contains more than 3 million novel transcribed nucleotides sequenced for the first time. A descriptive analysis of planarian splice sites was conducted on those Smed454 contigs that mapped univocally to the current genome assembly. Sequence analysis allowed us to identify genes encoding putative proteins with defined structural properties, such as transmembrane domains. Moreover, we annotated the Smed454 dataset using Gene Ontology, and identified putative homologues of several gene families that may play a key role during regeneration, such as neurotransmitter and hormone receptors, homeobox-containing genes, and genes related to eye function. Conclusions We report the first planarian transcript dataset, Smed454, as an open resource tool that can be accessed via a web interface. Smed454 contains significant novel sequence information about most expressed genes of S. mediterranea

  1. Scientific ballooning opportunities

    NASA Astrophysics Data System (ADS)

    Peacock, D.

    The National Science Foundation and the National Aeronautics and Space Administration are exploring the, possibilities of a joint balloon program in Antarctica. Over the years there have been many successful small balloons launched from Antarctica for research on topics such as meteorology, atmospheric chemistry, magnetospheric physics, and astrophysics. Recently, a large balloon (and payload) was successfully launched from McMurdo.In response to this growing interest, NSF hosted a 1-day workshop on Scientific Ballooning in Antarctica on March 27. This was well received, as evidenced by the attendance of some 40-50 scientists. At a follow-up meeting on June 14, 1988, attended by P. Wilkness, Division Director, Polar Programs, NSF, and S. Shawhan, Division Director, Space Physics, NASA, it was decided to solicit community input in the form of brief letters (one or two pages). Therefore if you have aspirations for balloon activities in Antarctica within the next few years, please send a brief description of your plans, including scientific objectives, time frame, launch site(s), logistical requirements, budget estimates (excluding logistics), and special needs, if any. Send this material to J . Lynch, Program Manager, Polar Atmospheric Sciences, Division of Polar Programs, National Science Foundation, 1800 G St., N.W., Washington, DC 20550. Send a copy to S. Shawhan, Director, Space Physics Division, NASA Headquarters, Washington, DC 20546.

  2. Answering the right question - integration of InSAR with other datasets

    NASA Astrophysics Data System (ADS)

    Holley, Rachel; McCormack, Harry; Burren, Richard

    2014-05-01

    The capabilities of satellite Interferometric Synthetic Aperture Radar (InSAR) are well known, and utilized across a wide range of academic and commercial applications. However there is a tendency, particularly in commercial applications, for users to ask 'What can we study with InSAR?'. When establishing a new technique this approach is important, but InSAR has been possible for 20 years now and, even accounting for new and innovative algorithms, this ground has been thoroughly explored. Too many studies conclude 'We show the ground is moving here, by this much', and mention the wider context as an afterthought. The focus needs to shift towards first asking the right questions - in fields as diverse as hazard awareness, resource optimization, financial considerations and pure scientific enquiry - and then working out how to achieve the best possible answers. Depending on the question, InSAR (and ground deformation more generally) may provide a large or small contribution to the overall solution, and there are usually benefits to integrating a number of techniques to capitalize on the complementary capabilities and provide the most useful measurements. However, there is still a gap between measurements and answers, and unlocking the value of the data relies heavily on appropriate visualization, integrated analysis, communication between technique and application experts, and appropriate use of modelling. We present a number of application examples, and demonstrate how their usefulness can be transformed by moving from a focus on data to answers - integrating complementary geodetic, geophysical and geological datasets and geophysical modeling with appropriate visualization, to enable comprehensive solution-focused interpretation. It will also discuss how forthcoming developments are likely to further advance realisation of the full potential satellite InSAR holds.

  3. NASA: Innovate, Explore, Discover, Inspire

    NASA Video Gallery

    The President's Fiscal Year 2014 budget ensures the United States will remain the world's leader in space exploration and scientific discovery for years to come, while making critical advances in a...

  4. Evaluation of anomalies in GLDAS-1996 dataset.

    PubMed

    Zhou, Xinyao; Zhang, Yongqiang; Yang, Yonghui; Yang, Yanmin; Han, Shumin

    2013-01-01

    Global Land Data Assimilation System (GLDAS) data are widely used for land-surface flux simulations. Therefore, the simulation accuracy using GLDAS dataset is largely contingent upon the accuracy of the GLDAS dataset. It is found that GLDAS land-surface model simulated runoff exhibits strong anomalies for 1996. These anomalies are investigated by evaluating four GLDAS meteorological forcing data (precipitation, air temperature, downward shortwave radiation and downward longwave radiation) in six large basins across the world (Danube, Mississippi, Yangtze, Congo, Amazon and Murray-Darling basins). Precipitation data from the Global Precipitation Climatology Centre (GPCC) are also compared with GLDAS forcing precipitation data. Large errors and lack of monthly variability in GLDAS-1996 precipitation data are the main sources for the anomalies in the simulated runoff. The impact of the precipitation data on simulated runoff for 1996 is investigated with the Community Atmosphere Biosphere Land Exchange (CABLE) land-surface model in the Yangtze basin, for which area high-quality local precipitation data are obtained from the China Meteorological Administration (CMA). The CABLE model is driven by GLDAS daily precipitation data and CMA daily precipitation, respectively. The simulated daily and monthly runoffs obtained from CMA data are noticeably better than those obtained from GLDAS data, suggesting that GLDAS-1996 precipitation data are not so reliable for land-surface flux simulations. PMID:23579825

  5. Lifting Object Detection Datasets into 3D.

    PubMed

    Carreira, Joao; Vicente, Sara; Agapito, Lourdes; Batista, Jorge

    2016-07-01

    While data has certainly taken the center stage in computer vision in recent years, it can still be difficult to obtain in certain scenarios. In particular, acquiring ground truth 3D shapes of objects pictured in 2D images remains a challenging feat and this has hampered progress in recognition-based object reconstruction from a single image. Here we propose to bypass previous solutions such as 3D scanning or manual design, that scale poorly, and instead populate object category detection datasets semi-automatically with dense, per-object 3D reconstructions, bootstrapped from:(i) class labels, (ii) ground truth figure-ground segmentations and (iii) a small set of keypoint annotations. Our proposed algorithm first estimates camera viewpoint using rigid structure-from-motion and then reconstructs object shapes by optimizing over visual hull proposals guided by loose within-class shape similarity assumptions. The visual hull sampling process attempts to intersect an object's projection cone with the cones of minimal subsets of other similar objects among those pictured from certain vantage points. We show that our method is able to produce convincing per-object 3D reconstructions and to accurately estimate cameras viewpoints on one of the most challenging existing object-category detection datasets, PASCAL VOC. We hope that our results will re-stimulate interest on joint object recognition and 3D reconstruction from a single image. PMID:27295458

  6. Massive Dataset Analysis for Geoscience Data (Invited)

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.

    2013-12-01

    Many large datasets in the geosciences manifest a fundamental problem in massive data set analysis: to understand and quantify local, fine-scale structure in a global context. One approach is to reduce data in a way that preserves spatial, temporal, and inter-scale structures via discrete probability distribution estimates associated with cells of space-time grids at different resolutions. It is then possible to study relationships between cells at different scales. This talk describes the theory and implementation of such a data reduction method developed for NASA satellite missions. Data are stratified on a monthly, five-degree, latitude-longitude space-time grid to form subsets. Each subset is reduced using a clustering algorithm for which the loss function includes an information-theoretic penalty term to help choose the number of clusters and the assignment of observations to them. The clusters' centroids and populations define a set of discrete probability distributions, which become the fundamental units for data analysis. Since the cluster representatives are centroids of original data points, the distributions can be aggregated in time and space, allowing us build statistical models that relate phenomena across scales. These ideas are illustrated with datasets produced through the application of this algorithm for the Multi-angle Imaging SpectroRadiometer (MISR) instrument.

  7. Land cover trends dataset, 1973-2000

    USGS Publications Warehouse

    Soulard, Christopher E.; Acevedo, William; Auch, Roger F.; Sohl, Terry L.; Drummond, Mark A.; Sleeter, Benjamin M.; Sorenson, Daniel G.; Kambly, Steven; Wilson, Tamara S.; Taylor, Janis L.; Sayler, Kristi L.; Stier, Michael P.; Barnes, Christopher A.; Methven, Steven C.; Loveland, Thomas R.; Headley, Rachel; Brooks, Mark S.

    2014-01-01

    The U.S. Geological Survey Land Cover Trends Project is releasing a 1973–2000 time-series land-use/land-cover dataset for the conterminous United States. The dataset contains 5 dates of land-use/land-cover data for 2,688 sample blocks randomly selected within 84 ecological regions. The nominal dates of the land-use/land-cover maps are 1973, 1980, 1986, 1992, and 2000. The land-use/land-cover maps were classified manually from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery using a modified Anderson Level I classification scheme. The resulting land-use/land-cover data has a 60-meter resolution and the projection is set to Albers Equal-Area Conic, North American Datum of 1983. The files are labeled using a standard file naming convention that contains the number of the ecoregion, sample block, and Landsat year. The downloadable files are organized by ecoregion, and are available in the ERDAS IMAGINETM (.img) raster file format.

  8. Integrated remotely sensed datasets for disaster management

    NASA Astrophysics Data System (ADS)

    McCarthy, Timothy; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart

    2008-10-01

    Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North America's NTSC and European SECAM and PAL television systems that are then recorded using various video formats. This technology has recently being employed as a front-line, remote sensing technology for damage assessment post-disaster. This paper traces the development of spatial video as a remote sensing tool from the early 1980s to the present day. The background to a new spatial-video research initiative based at National University of Ireland, Maynooth, (NUIM) is described. New improvements are proposed and include; low-cost encoders, easy to use software decoders, timing issues and interoperability. These developments will enable specialists and non-specialists collect, process and integrate these datasets within minimal support. This integrated approach will enable decision makers to access relevant remotely sensed datasets quickly and so, carry out rapid damage assessment during and post-disaster.

  9. Toyz: A framework for scientific analysis of large datasets and astronomical images

    NASA Astrophysics Data System (ADS)

    Moolekamp, F.; Mamajek, E.

    2015-11-01

    As the size of images and data products derived from astronomical data continues to increase, new tools are needed to visualize and interact with that data in a meaningful way. Motivated by our own astronomical images taken with the Dark Energy Camera (DECam) we present Toyz, an open source Python package for viewing and analyzing images and data stored on a remote server or cluster. Users connect to the Toyz web application via a web browser, making it ​a convenient tool for students to visualize and interact with astronomical data without having to install any software on their local machines. In addition it provides researchers with an easy-to-use tool that allows them to browse the files on a server and quickly view very large images (>2 Gb) taken with DECam and other cameras with a large FOV and create their own visualization tools that can be added on as extensions to the default Toyz framework.

  10. Toyz: A framework for scientific analysis of large datasets and astronomical images

    NASA Astrophysics Data System (ADS)

    Moolekamp, F.; Mamajek, E.

    2015-11-01

    As the size of images and data products derived from astronomical data continues to increase, new tools are needed to visualize and interact with that data in a meaningful way. Motivated by our own astronomical images taken with the Dark Energy Camera (DECam) we present Toyz, an open source Python package for viewing and analyzing images and data stored on a remote server or cluster. Users connect to the Toyz web application via a web browser, making it ​a convenient tool for students to visualize and interact with astronomical data without having to install any software on their local machines. In addition it provides researchers with an easy-to-use tool that allows them to browse the files on a server and quickly view very large images (>2 Gb) taken with DECam and other cameras with a large FOV and create their own visualization tools that can be added on as extensions to the default Toyz framework.

  11. Explorers of the Universe

    NASA Technical Reports Server (NTRS)

    Alvarez, Marino C.; Busby, Michael R.; Sotoohi, Goli; Rodriguez, William J.; Hennig, Lee Ann; Berenty, Jerry; King, Terry; Grener, Doreen; Kruzan, John

    1998-01-01

    The Explorers of the Universe is a multifaceted scientific/literacy project that involves teachers and their students with problem oriented situations using authentic materials. This paper presents examples of self-directed cases researched by high school students and the met acognitive tools they use in the planning, carrying out, and finalizing their reports.

  12. Introduction to Exploring Machines

    ERIC Educational Resources Information Center

    Early Childhood Today, 2006

    2006-01-01

    Young children are fascinated by how things "work." They are at a stage of development where they want to experiment with the many ways to use an object or take things apart and put them back together. In the process of exploring tools and machines, children use the scientific method and problem-solving skills. They observe how things work, wonder…

  13. Exploring Venus: the Venus Exploration Analysis Group (VEXAG)

    NASA Astrophysics Data System (ADS)

    Ocampo, A.; Atreya, S.; Thompson, T.; Luhmann, J.; Mackwell, S.; Baines, K.; Cutts, J.; Robinson, J.; Saunders, S.

    In July 2005 NASA s Planetary Division established the Venus Exploration Analysis Group VEXAG http www lpi usra edu vexag in order to engage the scientific community at large in identifying scientific priorities and strategies for the exploration of Venus VEXAG is a community-based forum open to all interested in the exploration of Venus VEXAG was designed to provide scientific input and technology development plans for planning and prioritizing the study of Venus over the next several decades including a Venus surface sample return VEXAG regularly evaluates NASA s Venus exploration goals scientific objectives investigations and critical measurement requirements including the recommendations in the National Research Council Decadal Survey and NASA s Solar System Exploration Strategic Roadmap VEXAG will take into consideration the latest scientific results from ESA s Venus Express mission and the MESSENGER flybys as well as the results anticipated from JAXA s Venus Climate Orbiter together with science community inputs from venues such as the February 13-16 2006 AGU Chapman Conference to identify the scientific priorities and strategies for future NASA Venus exploration VEXAG is composed of two co-chairs Sushil Atreya University of Michigan Ann Arbor and Janet Luhmann University of California Berkeley VEXAG has formed three focus groups in the areas of 1 Planetary Formation and Evolution Surface and Interior Volcanism Geodynamics etc Focus Group Lead Steve Mackwell LPI 2 Atmospheric Evolution Dynamics Meteorology

  14. Far Travelers: The Exploring Machines.

    ERIC Educational Resources Information Center

    Nicks, Oran W.

    The National Aeronautics and Space Administration (NASA) program of lunar and planetary exploration produced a flood of scientific information about the moon, planets and the environment of interplanetary space. This book is an account of the people, machines, and the events of this scientific enterprise. It is a story of organizations,…

  15. Lunar Daylight Exploration

    NASA Technical Reports Server (NTRS)

    Griffin, Brand Norman

    2010-01-01

    With 1 rover, 2 astronauts and 3 days, the Apollo 17 Mission covered over 30 km, setup 10 scientific experiments and returned 110 kg of samples. This is a lot of science in a short time and the inspiration for a barebones, return-to-the-Moon strategy called Daylight Exploration. The Daylight Exploration approach poses an answer to the question, What could the Apollo crew have done with more time and today s robotics? In contrast to more ambitious and expensive strategies that create outposts then rely on pressurized rovers to drive to the science sites, Daylight Exploration is a low-overhead approach conceived to land near the scientific site, conduct Apollo-like exploration then leave before the sun goes down. A key motivation behind Daylight Exploration is cost reduction, but it does not come at the expense of scientific exploration. As a goal, Daylight Exploration provides access to the top 10 science sites by using the best capabilities of human and robotic exploration. Most science sites are within an equatorial band of 26 degrees latitude and on the Moon, at the equator, the day is 14 Earth days long; even more important, the lunar night is 14 days long. Human missions are constrained to 12 days because the energy storage systems required to operate during the lunar night adds mass, complexity and cost. In addition, short missions are beneficial because they require fewer consumables, do not require an airlock, reduce radiation exposure, minimize the dwell-time for the ascent and orbiting propulsion systems and allow a low-mass, campout accommodations. Key to Daylight Exploration is the use of piloted rovers used as tele-operated science platforms. Rovers are launched before or with the crew, and continue to operate between crew visits analyzing and collecting samples during the lunar daylight

  16. Exploring Ensemble Visualization

    PubMed Central

    Phadke, Madhura N.; Pinto, Lifford; Alabi, Femi; Harter, Jonathan; Taylor, Russell M.; Wu, Xunlei; Petersen, Hannah; Bass, Steffen A.; Healey, Christopher G.

    2012-01-01

    An ensemble is a collection of related datasets. Each dataset, or member, of an ensemble is normally large, multidimensional, and spatio-temporal. Ensembles are used extensively by scientists and mathematicians, for example, by executing a simulation repeatedly with slightly different input parameters and saving the results in an ensemble to see how parameter choices affect the simulation. To draw inferences from an ensemble, scientists need to compare data both within and between ensemble members. We propose two techniques to support ensemble exploration and comparison: a pairwise sequential animation method that visualizes locally neighboring members simultaneously, and a screen door tinting method that visualizes subsets of members using screen space subdivision. We demonstrate the capabilities of both techniques, first using synthetic data, then with simulation data of heavy ion collisions in high-energy physics. Results show that both techniques are capable of supporting meaningful comparisons of ensemble data. PMID:22347540

  17. Multi-Resolution Modeling of Large Scale Scientific Simulation Data

    SciTech Connect

    Baldwin, C; Abdulla, G; Critchlow, T

    2002-02-25

    Data produced by large scale scientific simulations, experiments, and observations can easily reach tera-bytes in size. The ability to examine data-sets of this magnitude, even in moderate detail, is problematic at best. Generally this scientific data consists of multivariate field quantities with complex inter-variable correlations and spatial-temporal structure. To provide scientists and engineers with the ability to explore and analyze such data sets we are using a twofold approach. First, we model the data with the objective of creating a compressed yet manageable representation. Second, with that compressed representation, we provide the user with the ability to query the resulting approximation to obtain approximate yet sufficient answers; a process called adhoc querying. This paper is concerned with a wavelet modeling technique that seeks to capture the important physical characteristics of the target scientific data. Our approach is driven by the compression, which is necessary for viable throughput, along with the end user requirements from the discovery process. Our work contrasts existing research which applies wavelets to range querying, change detection, and clustering problems by working directly with a decomposition of the data. The difference in this procedures is due primarily to the nature of the data and the requirements of the scientists and engineers. Our approach directly uses the wavelet coefficients of the data to compress as well as query. We will provide some background on the problem, describe how the wavelet decomposition is used to facilitate data compression and how queries are posed on the resulting compressed model. Results of this process will be shown for several problems of interest and we will end with some observations and conclusions about this research.

  18. Activity detection in scientific visualization.

    PubMed

    Ozer, Sedat; Silver, Deborah; Bemis, Karen; Martin, Pino

    2014-03-01

    For large-scale simulations, the data sets are so massive that it is sometimes not feasible to view the data with basic visualization methods, let alone explore all time steps in detail. Automated tools are necessary for knowledge discovery, i.e., to help sift through the data and isolate specific time steps that can then be further explored. Scientists study patterns and interactions and want to know when and where interesting things happen. Activity detection, the detection of specific interactions of objects which span a limited duration of time, has been an active research area in the computer vision community. In this paper, we introduce activity detection to scientific simulations and show how it can be utilized in scientific visualization. We show how activity detection allows a scientist to model an activity and can then validate their hypothesis on the underlying processes. Three case studies are presented. PMID:24434219

  19. Statistics of large detrital geochronology datasets

    NASA Astrophysics Data System (ADS)

    Saylor, J. E.; Sundell, K. E., II

    2014-12-01

    Implementation of quantitative metrics for inter-sample comparison of detrital geochronological data sets has lagged the increase in data set size, and ability to identify sub-populations and quantify their relative proportions. Visual comparison or application of some statistical approaches, particularly the Kolmogorov-Smirnov (KS) test, that initially appeared to provide a simple way of comparing detrital data sets, may be inadequate to quantify their similarity. We evaluate several proposed metrics by applying them to four large synthetic datasets drawn randomly from a parent dataset, as well as a recently published large empirical dataset consisting of four separate (n = ~1000 each) analyses of the same rock sample. Visual inspection of the cumulative probability density functions (CDF) and relative probability density functions (PDF) confirms an increasingly close correlation between data sets as the number of analyses increases. However, as data set size increases the KS test yields lower mean p-values implying greater confidence that the samples were not drawn from the same parent population and high standard deviations despite minor decreases in the mean difference between sample CDFs. We attribute this to the increasing sensitivity of the KS test when applied to larger data sets, which in turn limits its use for quantitative inter-sample comparison in detrital geochronology. Proposed alternative metrics, including Similarity, Likeness (complement to Mismatch), and the coefficient of determination (R2) of a cross-plot of PDF quantiles, point to an increasingly close correlation between data sets with increasing size, although they are the most sensitive at different ranges of data set sizes. The Similarity test is most sensitive to variation in data sets with n < 100 and is relatively insensitive to further convergence between larger data sets. The Likeness test reaches 90% of its asymptotic maximum at data set sizes of n = 200. The PDF cross-plot R2 value

  20. Plate tectonics: Scientific revolution or scientific program?

    NASA Astrophysics Data System (ADS)

    Mareschal, Jean-Claude

    In The Structure of Scientific Revolutions, Thomas S. Kuhn suggested that science progresses discontinuously: As a scientific theory becomes obsolete, a period of crisis results, at the end of which the old theory is overthrown and replaced by a new, sounder, more complete theory [Kuhn, 1962]. After the scientific community has accepted the new [paradigm,] it undertakes only routine research until a new crisis occurs, usually as a result of an anomalous experiment that accidentally happens to be critical.

  1. Dataset-Driven Research to Support Learning and Knowledge Analytics

    ERIC Educational Resources Information Center

    Verbert, Katrien; Manouselis, Nikos; Drachsler, Hendrik; Duval, Erik

    2012-01-01

    In various research areas, the availability of open datasets is considered as key for research and application purposes. These datasets are used as benchmarks to develop new algorithms and to compare them to other algorithms in given settings. Finding such available datasets for experimentation can be a challenging task in technology enhanced…

  2. SAGE Research Methods Datasets: A Data Analysis Educational Tool.

    PubMed

    Vardell, Emily

    2016-01-01

    SAGE Research Methods Datasets (SRMD) is an educational tool designed to offer users the opportunity to obtain hands-on experience with data analysis. Users can search for and browse authentic datasets by method, discipline, and data type. Each of the datasets are supplemented with educational material on the research method and clear guidelines for how to approach data analysis. PMID:27391182

  3. The Roles of Evidence in Scientific Argument

    NASA Astrophysics Data System (ADS)

    Atkins, Leslie J.

    2008-10-01

    Over the past decades, education researchers have shifted their understanding of science from "a rhetoric of conclusions"—that is, a fixed canon of content—to a social process of knowledge construction. While much of the research has investigated individual learners as they engage with scientific ideas, experiments, and methods, increasingly researchers are turning to the social processes of science as it is constructed in a community, with particular interest in scientific argumentation. This emphasis on argument recasts the role of evidence and data in scientific classrooms: rather than being used to demonstrate the scientific canon or even to guide students to construct correct scientific principles, it is the grounds on which claims—generated by students in the process of argumentation—are warranted. In this paper, I explore a transcript of scientific discourse, exploring the rules by which participants in the discourse endorse or reject scientific claims. I appeal for a more nuanced understanding of evidence as one of many criteria by which scientific claims are evaluated, and that evidence, at times, is incommensurable with other, possibly more scientific, criteria for evaluating claims. This view of argumentation, and the peculiar discourse games associated with argumentation, is particularly relevant for understanding difficulties that diverse student populations may face.

  4. National hydrography dataset--linear referencing

    USGS Publications Warehouse

    Simley, Jeffrey; Doumbouya, Ariel

    2012-01-01

    Geospatial data normally have a certain set of standard attributes, such as an identification number, the type of feature, and name of the feature. These standard attributes are typically embedded into the default attribute table, which is directly linked to the geospatial features. However, it is impractical to embed too much information because it can create a complex, inflexible, and hard to maintain geospatial dataset. Many scientists prefer to create a modular, or relational, data design where the information about the features is stored and maintained separately, then linked to the geospatial data. For example, information about the water chemistry of a lake can be maintained in a separate file and linked to the lake. A Geographic Information System (GIS) can then relate the water chemistry to the lake and analyze it as one piece of information. For example, the GIS can select all lakes more than 50 acres, with turbidity greater than 1.5 milligrams per liter.

  5. VAST Contest Dataset Use in Education

    SciTech Connect

    Whiting, Mark A.; North, Chris; Endert, Alexander; Scholtz, Jean; Haack, Jereme N.; Varley, Caroline F.; Thomas, James J.

    2009-12-13

    The IEEE Visual Analytics Science and Technology (VAST) Symposium has held a contest each year since its inception in 2006. These events are designed to provide visual analytics researchers and developers with analytic challenges similar to those encountered by professional information analysts. The VAST contest has had an extended life outside of the symposium, however, as materials are being used in universities and other educational settings, either to help teachers of visual analytics-related classes or for student projects. We describe how we develop VAST contest datasets that results in products that can be used in different settings and review some specific examples of the adoption of the VAST contest materials in the classroom. The examples are drawn from graduate and undergraduate courses at Virginia Tech and from the Visual Analytics "Summer Camp" run by the National Visualization and Analytics Center in 2008. We finish with a brief discussion on evaluation metrics for education

  6. AMADA-Analysis of multidimensional astronomical datasets

    NASA Astrophysics Data System (ADS)

    de Souza, R. S.; Ciardi, B.

    2015-09-01

    We present AMADA, an interactive web application to analyze multidimensional datasets. The user uploads a simple ASCII file and AMADA performs a number of exploratory analysis together with contemporary visualizations diagnostics. The package performs a hierarchical clustering in the parameter space, and the user can choose among linear, monotonic or non-linear correlation analysis. AMADA provides a number of clustering visualization diagnostics such as heatmaps, dendrograms, chord diagrams, and graphs. In addition, AMADA has the option to run a standard or robust principal components analysis, displaying the results as polar bar plots. The code is written in R and the web interface was created using the SHINY framework. AMADA source-code is freely available at https://goo.gl/KeSPue, and the shiny-app at http://goo.gl/UTnU7I.

  7. A Bayesian reanalaysis of the quasar dataset

    NASA Astrophysics Data System (ADS)

    Cameron, E.; Pettitt, A. N.

    We investigate recent claims of spatial variation in the fine structure constant on cosmic distance scales based on estimates of its extra-galactic-to-on-Earth ratio recovered from ``many multiplet'' fitting of quasar absorption spectra. To overcome the limitations of previous analyses requiring the assumption of a strictly unbiased and Normal distribution for the ``unexplained errors'' of this quasar dataset we employ a Bayesian model selection strategy with prior-sensitivity analysis. A particular strength of the hypothesis testing methodology advocated herein is that it can handle both parametric and semi-parametric models self-consistently through a combination of recursive marginal likelihood estimation and importance sample reweighting. We conclude from the presently-available data that the observed trends are more likely to arise from biases of opposing sign in the two telescopes used to undertake these measurements than from a genuine large-scale trend in this fundamental ``constant''.

  8. LIMS Version 6 Level 3 Dataset

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis E.; Lingenfelser, Gretchen

    2010-01-01

    This report describes the Limb Infrared Monitor of the Stratosphere (LIMS) Version 6 (V6) Level 3 data products and the assumptions used for their generation. A sequential estimation algorithm was used to obtain daily, zonal Fourier coefficients of the several parameters of the LIMS dataset for 216 days of 1978-79. The coefficients are available at up to 28 pressure levels and at every two degrees of latitude from 64 S to 84 N and at the synoptic time of 12 UT. Example plots were prepared and archived from the data at 10 hPa of January 1, 1979, to illustrate the overall coherence of the features obtained with the LIMS-retrieved parameters.

  9. Attribute Utility Motivated k-anonymization of datasets to support the heterogeneous needs of biomedical researchers.

    PubMed

    Ye, Huimin; Chen, Elizabeth S

    2011-01-01

    In order to support the increasing need to share electronic health data for research purposes, various methods have been proposed for privacy preservation including k-anonymity. Many k-anonymity models provide the same level of anoymization regardless of practical need, which may decrease the utility of the dataset for a particular research study. In this study, we explore extensions to the k-anonymity algorithm that aim to satisfy the heterogeneous needs of different researchers while preserving privacy as well as utility of the dataset. The proposed algorithm, Attribute Utility Motivated k-anonymization (AUM), involves analyzing the characteristics of attributes and utilizing them to minimize information loss during the anonymization process. Through comparison with two existing algorithms, Mondrian and Incognito, preliminary results indicate that AUM may preserve more information from original datasets thus providing higher quality results with lower distortion. PMID:22195223

  10. Creating a global sub-daily precipitation dataset

    NASA Astrophysics Data System (ADS)

    Lewis, Elizabeth; Blenkinsop, Stephen; Fowler, Hayley

    2016-04-01

    Extremes of precipitation can cause flooding and droughts which can lead to substantial damages to infrastructure and ecosystems and can result in loss of life. It is still uncertain how hydrological extremes will change with global warming as we do not fully understand the processes that cause extreme precipitation under current climate variability. The INTENSE project is using a novel and fully-integrated data-modelling approach to provide a step-change in our understanding of the nature and drivers of global precipitation extremes and change on societally relevant timescales, leading to improved high-resolution climate model representation of extreme rainfall processes. The INTENSE project is in conjunction with the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges Project (GEWEX) Science questions. The first step towards achieving this is to construct a new global sub-daily precipitation dataset. Data collection is ongoing and already covers North America, Europe, Asia and Australasia. Comprehensive, open source quality control software is being developed to set a new standard for verifying sub-daily precipitation data and a set of global hydroclimatic indices will be produced based upon stakeholder recommendations. This will provide a unique global data resource on sub-daily precipitation whose derived indices, e.g. monthly/annual maxima, will be freely available to the wider scientific community.

  11. The Centennial Trends Greater Horn of Africa precipitation dataset

    PubMed Central

    Funk, Chris; Nicholson, Sharon E.; Landsfeld, Martin; Klotter, Douglas; Peterson, Pete; Harrison, Laura

    2015-01-01

    East Africa is a drought prone, food and water insecure region with a highly variable climate. This complexity makes rainfall estimation challenging, and this challenge is compounded by low rain gauge densities and inhomogeneous monitoring networks. The dearth of observations is particularly problematic over the past decade, since the number of records in globally accessible archives has fallen precipitously. This lack of data coincides with an increasing scientific and humanitarian need to place recent seasonal and multi-annual East African precipitation extremes in a deep historic context. To serve this need, scientists from the UC Santa Barbara Climate Hazards Group and Florida State University have pooled their station archives and expertise to produce a high quality gridded ‘Centennial Trends’ precipitation dataset. Additional observations have been acquired from the national meteorological agencies and augmented with data provided by other universities. Extensive quality control of the data was carried out and seasonal anomalies interpolated using kriging. This paper documents the CenTrends methodology and data. PMID:26451250

  12. The Centennial Trends Greater Horn of Africa precipitation dataset.

    PubMed

    Funk, Chris; Nicholson, Sharon E; Landsfeld, Martin; Klotter, Douglas; Peterson, Pete; Harrison, Laura

    2015-01-01

    East Africa is a drought prone, food and water insecure region with a highly variable climate. This complexity makes rainfall estimation challenging, and this challenge is compounded by low rain gauge densities and inhomogeneous monitoring networks. The dearth of observations is particularly problematic over the past decade, since the number of records in globally accessible archives has fallen precipitously. This lack of data coincides with an increasing scientific and humanitarian need to place recent seasonal and multi-annual East African precipitation extremes in a deep historic context. To serve this need, scientists from the UC Santa Barbara Climate Hazards Group and Florida State University have pooled their station archives and expertise to produce a high quality gridded 'Centennial Trends' precipitation dataset. Additional observations have been acquired from the national meteorological agencies and augmented with data provided by other universities. Extensive quality control of the data was carried out and seasonal anomalies interpolated using kriging. This paper documents the CenTrends methodology and data. PMID:26451250

  13. Privacy-preserving GWAS analysis on federated genomic datasets

    PubMed Central

    2015-01-01

    Background The biomedical community benefits from the increasing availability of genomic data to support meaningful scientific research, e.g., Genome-Wide Association Studies (GWAS). However, high quality GWAS usually requires a large amount of samples, which can grow beyond the capability of a single institution. Federated genomic data analysis holds the promise of enabling cross-institution collaboration for effective GWAS, but it raises concerns about patient privacy and medical information confidentiality (as data are being exchanged across institutional boundaries), which becomes an inhibiting factor for the practical use. Methods We present a privacy-preserving GWAS framework on federated genomic datasets. Our method is to layer the GWAS computations on top of secure multi-party computation (MPC) systems. This approach allows two parties in a distributed system to mutually perform secure GWAS computations, but without exposing their private data outside. Results We demonstrate our technique by implementing a framework for minor allele frequency counting and χ2 statistics calculation, one of typical computations used in GWAS. For efficient prototyping, we use a state-of-the-art MPC framework, i.e., Portable Circuit Format (PCF) [1]. Our experimental results show promise in realizing both efficient and secure cross-institution GWAS computations. PMID:26733045

  14. Dissecting the Space-Time Structure of Tree-Ring Datasets Using the Partial Triadic Analysis

    PubMed Central

    Rossi, Jean-Pierre; Nardin, Maxime; Godefroid, Martin; Ruiz-Diaz, Manuela; Sergent, Anne-Sophie; Martinez-Meier, Alejandro; Pâques, Luc; Rozenberg, Philippe

    2014-01-01

    Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets. PMID:25247299

  15. Strategy for outer planets exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    NASA's Planetary Programs Office formed a number of scientific working groups to study in depth the potential scientific return from the various candidate missions to the outer solar system. The results of these working group studies were brought together in a series of symposia to evaluate the potential outer planet missions and to discuss strategies for exploration of the outer solar system that were consistent with fiscal constraints and with anticipated spacecraft and launch vehicle capabilities. A logical, scientifically sound, and cost effective approach to exploration of the outer solar system is presented.

  16. Resolving evolutionary relationships in lichen-forming fungi using diverse phylogenomic datasets and analytical approaches

    PubMed Central

    Leavitt, Steven D.; Grewe, Felix; Widhelm, Todd; Muggia, Lucia; Wray, Brian; Lumbsch, H. Thorsten

    2016-01-01

    Evolutionary histories are now being inferred from unprecedented, genome-scale datasets for a broad range of organismal groups. While phylogenomic data has helped in resolving a number of difficult, long-standing questions, constructing appropriate datasets from genomes is not straightforward, particularly in non-model groups. Here we explore the utility of phylogenomic data to infer robust phylogenies for a lineage of closely related lichen-forming fungal species. We assembled multiple, distinct nuclear phylogenomic datasets, ranging from ca. 25 Kb to 16.8 Mb and inferred topologies using both concatenated gene tree approaches and species tree methods based on the multispecies coalescent model. In spite of evidence for rampant incongruence among individual loci, these genome-scale datasets provide a consistent, well-supported phylogenetic hypothesis using both concatenation and multispecies coalescent approaches (ASTRAL-II and SVDquartets). However, the popular full hierarchical coalescent approach implemented in *BEAST provided inconsistent inferences, both in terms of nodal support and topology, with smaller subsets of the phylogenomic data. While comparable, well-supported topologies can be accurately inferred with only a small fraction of the overall genome, consistent results across a variety of datasets and methodological approaches provide reassurance that phylogenomic data can effectively be used to provide robust phylogenies for closely related lichen-forming fungal lineages. PMID:26915968

  17. Resolving evolutionary relationships in lichen-forming fungi using diverse phylogenomic datasets and analytical approaches.

    PubMed

    Leavitt, Steven D; Grewe, Felix; Widhelm, Todd; Muggia, Lucia; Wray, Brian; Lumbsch, H Thorsten

    2016-01-01

    Evolutionary histories are now being inferred from unprecedented, genome-scale datasets for a broad range of organismal groups. While phylogenomic data has helped in resolving a number of difficult, long-standing questions, constructing appropriate datasets from genomes is not straightforward, particularly in non-model groups. Here we explore the utility of phylogenomic data to infer robust phylogenies for a lineage of closely related lichen-forming fungal species. We assembled multiple, distinct nuclear phylogenomic datasets, ranging from ca. 25 Kb to 16.8 Mb and inferred topologies using both concatenated gene tree approaches and species tree methods based on the multispecies coalescent model. In spite of evidence for rampant incongruence among individual loci, these genome-scale datasets provide a consistent, well-supported phylogenetic hypothesis using both concatenation and multispecies coalescent approaches (ASTRAL-II and SVDquartets). However, the popular full hierarchical coalescent approach implemented in *BEAST provided inconsistent inferences, both in terms of nodal support and topology, with smaller subsets of the phylogenomic data. While comparable, well-supported topologies can be accurately inferred with only a small fraction of the overall genome, consistent results across a variety of datasets and methodological approaches provide reassurance that phylogenomic data can effectively be used to provide robust phylogenies for closely related lichen-forming fungal lineages. PMID:26915968

  18. Seasonal evaluation of evapotranspiration fluxes from MODIS satellite and mesoscale model downscaled global reanalysis datasets

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K.; Han, Dawei; Islam, Tanvir; Petropoulos, George P.; Gupta, Manika; Dai, Qiang

    2016-04-01

    Reference evapotranspiration (ETo) is an important variable in hydrological modeling, which is not always available, especially for ungauged catchments. Satellite data, such as those available from the MODerate Resolution Imaging Spectroradiometer (MODIS), and global datasets via the European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis (ERA) interim and National Centers for Environmental Prediction (NCEP) reanalysis are important sources of information for ETo. This study explored the seasonal performances of MODIS (MOD16) and Weather Research and Forecasting (WRF) model downscaled global reanalysis datasets, such as ERA interim and NCEP-derived ETo, against ground-based datasets. Overall, on the basis of the statistical metrics computed, ETo derived from ERA interim and MODIS were more accurate in comparison to the estimates from NCEP for all the seasons. The pooled datasets also revealed a similar performance to the seasonal assessment with higher agreement for the ERA interim (r = 0.96, RMSE = 2.76 mm/8 days; bias = 0.24 mm/8 days), followed by MODIS (r = 0.95, RMSE = 7.66 mm/8 days; bias = -7.17 mm/8 days) and NCEP (r = 0.76, RMSE = 11.81 mm/8 days; bias = -10.20 mm/8 days). The only limitation with downscaling ERA interim reanalysis datasets using WRF is that it is time-consuming in contrast to the readily available MODIS operational product for use in mesoscale studies and practical applications.

  19. The Evolution of Information Management in Oceanographic Exploration

    NASA Astrophysics Data System (ADS)

    Reser, B.; Mesick, S.; Lobecker, E.

    2012-12-01

    Emerging technologies in data collection, processing, and telecommunication have made data management a vital and ever evolving component of scientific research and exploration. Automation and streamlining of these technologies have enabled a paradigm shift in the approach to ocean research aboard the NOAA Ship Okeanos Explorer. Telepresence technologies allow the real time collaboration of at sea technicians and scientists with shore side scientists as well as near real time access to the datasets being collected. This approach has allowed for a large team of shore side experts in various fields to drive at-sea collection and exploration efforts, enabling the analysis and evaluation of as high quality data as possible. Automated and standardized data management efforts that have been integrated into this model allow for the rapid and efficient collection, processing, and archival of the information in national public archives. As new sampling and survey technologies are developed they have been, and will continue to be, adapted into the existing end-to-end information management model. Most recently this was accomplished in a collaborative effort between NOAA, NSF, WHOI, Duke, URI, and the USGS in a cruise along the Blake Ridge and Cape Fear Diapirs. This cruise successfully integrated shipboard data collection with the Sentry AUV in the search for, and exploration of, cold seep communities along the US Atlantic Margin.

  20. A digital archiving system and distributed server-side processing of large datasets

    NASA Astrophysics Data System (ADS)

    Jomier, Julien; Aylward, Stephen R.; Marion, Charles; Lee, Joowhi; Styner, Martin

    2009-02-01

    In this paper, we present MIDAS, a web-based digital archiving system that processes large collections of data. Medical imaging research often involves interdisciplinary teams, each performing a separate task, from acquiring datasets to analyzing the processing results. Moreover, the number and size of the datasets continue to increase every year due to recent advancements in acquisition technology. As a result, many research laboratories centralize their data and rely on distributed computing power. We created a web-based digital archiving repository based on openstandards. The MIDAS repository is specifically tuned for medical and scientific datasets and provides a flexible data management facility, a search engine, and an online image viewer. MIDAS enables users to run a set of extensible image processing algorithms from the web to the selected datasets and to add new algorithms to the MIDAS system, facilitating the dissemination of users' work to different research partners. The MIDAS system is currently running in several research laboratories and has demonstrated its ability to streamline the full image processing workflow from data acquisition to image analysis and reports.

  1. Mars exploration: follow the water

    NASA Technical Reports Server (NTRS)

    Park, Young Ho

    2004-01-01

    Over the centuries, the red planet Mars has been a subject of imagination as well as intense scientific interest. As the overwhelming success of two Mars Exploration Rovers unfolds before us, this article provides an overview of and rationale for NASA's Mars exploration program.

  2. Science in Writing: Learning Scientific Argument in Principle and Practice

    ERIC Educational Resources Information Center

    Cope, Bill; Kalantzis, Mary; Abd-El-Khalick, Fouad; Bagley, Elizabeth

    2013-01-01

    This article explores the processes of writing in science and in particular the "complex performance" of writing a scientific argument. The article explores in general terms the nature of scientific argumentation in which the author-scientist makes claims, provides evidence to support these claims, and develops chains of scientific…

  3. AMADA: Analysis of Multidimensional Astronomical DAtasets

    NASA Astrophysics Data System (ADS)

    de Souza, Rafael S.; Ciardi, Benedetta

    2015-03-01

    AMADA allows an iterative exploration and information retrieval of high-dimensional data sets. This is done by performing a hierarchical clustering analysis for different choices of correlation matrices and by doing a principal components analysis in the original data. Additionally, AMADA provides a set of modern visualization data-mining diagnostics. The user can switch between them using the different tabs.

  4. Middle Atmosphere Transport Properties of Assimilated Datasets

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Rood, Richard

    1999-01-01

    One of the most compelling reasons for performing data assimilation in the middle atmosphere is to obtain global, balanced datasets for studies of trace gas transport and chemistry. This is a major motivation behind the Goddard Earth observation System-Data Assimilation System (GEOS-DAS). Previous studies have shown that while this and other data assimilation systems can generally obtain good estimates of the extratropical rotational velocity field, the divergent part of the dynamical field is deficient; this impacts the "residual circulation" and leads to spurious trace gas transport on seasonal and interannual timescales. These problems are impacted by the quality and the method of use of the observational data and by deficiencies in the atmospheric general circulation model. Whichever the cause at any place and time, the "solution" is to introduce non-physical forcing terms into the system (the so-called incremental analysis updates); these can directly (thermal) or indirectly (mechanical) affect the residual circulation. This paper will illustrate how the divergent circulation is affected by deficiencies in both observations and models. Theoretical considerations will be illustrated with examples from the GEOS-DAS and from simplified numerical experiments. These are designed to isolate known problems, such as the inability of models to sustain a quasi-biennial oscillation and sparse observational constraints on tropical dynamics, or radiative inconsistencies in the presence of volcanic aerosols.

  5. Intercalibration of Mars Global Surveyor Datasets

    NASA Technical Reports Server (NTRS)

    Houben, Howard; Bergstrom, R. W.; Hollingsworth, J.; Smith, M.; Martin, T.; Hinson, D.; DeVincenizi, D. (Technical Monitor)

    2002-01-01

    The calibration and validation of satellite soundings of atmospheric variables is always a difficult prospect, but this difficulty is greatly magnified when the measurements are made at a different planet, whose meteorology is poorly known and poorly constrained, and for which there are virtually no prospects of obtaining ground truth. The Mars Global Surveyor which has been circling Mars in its mapping orbit since early 1999 includes a variety of instruments capable of making atmospheric observations: the Thermal Emission Spectrometer (TES) which takes more than 100,000 nadir-view infrared spectra per day (although these observations are confined to the 2am - 2pm time of the sun-fixed orbit); much less frequent TES limb scans (still only at 2am and 2pm); the Mars Horizon Sensor Assembly measures side-looking broadband 15 micrometer radiation; Radio Science occultations at favorable seasons give high resolution temperature profiles; the Mars orbiter Camera and Mars Orbiter Laser Altimeter have made water, dust, and carbon dioxide cloud detections. These observations are now being supplemented by high-resolution 15 micron measurements by THEMIS on Mars Odyssey. Thus, all of these observations are made at different times and places. Data assimilation techniques are being used to fuse this vast array of observations into a single dataset that best represents our understanding of the Martian atmosphere, its current meteorological state, and the relevant instrumental properties.

  6. Middle Atmospheric Transport Properties of Assimilated Datasets

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Rood, Richard

    1999-01-01

    One of the most compelling reasons for performing data assimilation in the middle atmosphere is to obtain global, balanced datasets for studies of trace gas transport and chemistry. This is a major motivation behind the Goddard Earth observation System-Data Assimilation System (GEOS-DAS). Previous studies have shown that while this and other data assimilation systems can generally obtain good estimates of the extratropical rotational velocity field, the divergent part of the dynamical field is deficient; this impacts the "residual circulation" and leads to spurious trace gas transport on seasonal and interannual timescales. These problems are impacted by the quality and the method of use of the observational data and by deficiencies in the atmospheric general circulation model. Whichever the cause at any place and time, the "solution" is to introduce non-physical forcing terms into the system (the so-called incremental analysis updates); these can directly (thermal) or indirectly (mechanical) affect the residual circulation. This paper will illustrate how the divergent circulation is affected by deficiencies in both observations and models. Theoretical considerations will be illustrated with examples from the GEOS-DAS and from simplified numerical experiments. These are designed to isolate known problems, such as the inability of models to sustain a quasi-biennial oscillation and sparse observational constraints on tropical dynamics, or radiative inconsistencies in the presence of volcanic aerosols.

  7. Reconstructing thawing quintessence with multiple datasets

    NASA Astrophysics Data System (ADS)

    Lima, Nelson A.; Liddle, Andrew R.; Sahlén, Martin; Parkinson, David

    2016-03-01

    In this work we model the quintessence potential in a Taylor series expansion, up to second order, around the present-day value of the scalar field. The field is evolved in a thawing regime assuming zero initial velocity. We use the latest data from the Planck satellite, baryonic acoustic oscillations observations from the Sloan Digital Sky Survey, and supernova luminosity distance information from Union2.1 to constrain our models parameters, and also include perturbation growth data from the WiggleZ, BOSS, and 6dF surveys. The supernova data provide the strongest individual constraint on the potential parameters. We show that the growth data performance is competitive with the other datasets in constraining the dark energy parameters we introduce. We also conclude that the combined constraints we obtain for our model parameters, when compared to previous works of nearly a decade ago, have shown only modest improvement, even with new growth of structure data added to previously existent types of data.

  8. Feature expressions: creating and manipulating sequence datasets.

    PubMed

    Fristensky, B

    1993-12-25

    Annotation of features, such as introns, exons and protein coding regions in GenBank/EMBL/DDBJ entries is now standardized through use of the Features Table (FT) language. The essence of the FT language is described by the relation 'expression-->sequence', meaning that each FT expression evaluates to a sequence. For example, the expression M74750:1..50 evaluates to the first 50 bases of the sequence with accession number M74750. Because FT is intrinsic to the database definition, it can serve as a software- and platform-independent lingua franca for sequence manipulation. The XYLEM package makes it possible to create and manipulate sequence datasets using FT expressions. FEATURES is a program that resolves FT expressions into their corresponding sequences. Annotated features can be retrieved either by feature key or by expression. Even unannotated portions of a sequence can be retrieved by user-generated FT expressions. Applications of the FT language include retrieval of subsequences from large sequence entries, generation of chromosome models or artificial DNA constructs, and representation of restriction maps or mutants. PMID:8290362

  9. Utilizing Multiple Datasets for Snow Cover Mapping

    NASA Technical Reports Server (NTRS)

    Tait, Andrew B.; Hall, Dorothy K.; Foster, James L.; Armstrong, Richard L.

    1999-01-01

    Snow-cover maps generated from surface data are based on direct measurements, however they are prone to interpolation errors where climate stations are sparsely distributed. Snow cover is clearly discernable using satellite-attained optical data because of the high albedo of snow, yet the surface is often obscured by cloud cover. Passive microwave (PM) data is unaffected by clouds, however, the snow-cover signature is significantly affected by melting snow and the microwaves may be transparent to thin snow (less than 3cm). Both optical and microwave sensors have problems discerning snow beneath forest canopies. This paper describes a method that combines ground and satellite data to produce a Multiple-Dataset Snow-Cover Product (MDSCP). Comparisons with current snow-cover products show that the MDSCP draws together the advantages of each of its component products while minimizing their potential errors. Improved estimates of the snow-covered area are derived through the addition of two snow-cover classes ("thin or patchy" and "high elevation" snow cover) and from the analysis of the climate station data within each class. The compatibility of this method for use with Moderate Resolution Imaging Spectroradiometer (MODIS) data, which will be available in 2000, is also discussed. With the assimilation of these data, the resolution of the MDSCP would be improved both spatially and temporally and the analysis would become completely automated.

  10. Visualization of cosmological particle-based datasets.

    PubMed

    Navratil, Paul; Johnson, Jarrett; Bromm, Volker

    2007-01-01

    We describe our visualization process for a particle-based simulation of the formation of the first stars and their impact on cosmic history. The dataset consists of several hundred time-steps of point simulation data, with each time-step containing approximately two million point particles. For each time-step, we interpolate the point data onto a regular grid using a method taken from the radiance estimate of photon mapping. We import the resulting regular grid representation into ParaView, with which we extract isosurfaces across multiple variables. Our images provide insights into the evolution of the early universe, tracing the cosmic transition from an initially homogeneous state to one of increasing complexity. Specifically, our visualizations capture the build-up of regions of ionized gas around the first stars, their evolution, and their complex interactions with the surrounding matter. These observations will guide the upcoming James Webb Space Telescope, the key astronomy mission of the next decade. PMID:17968129

  11. Classification of antimicrobial peptides with imbalanced datasets

    NASA Astrophysics Data System (ADS)

    Camacho, Francy L.; Torres, Rodrigo; Ramos Pollán, Raúl

    2015-12-01

    In the last years, pattern recognition has been applied to several fields for solving multiple problems in science and technology as for example in protein prediction. This methodology can be useful for prediction of activity of biological molecules, e.g. for determination of antimicrobial activity of synthetic and natural peptides. In this work, we evaluate the performance of different physico-chemical properties of peptides (descriptors groups) in the presence of imbalanced data sets, when facing the task of detecting whether a peptide has antimicrobial activity. We evaluate undersampling and class weighting techniques to deal with the class imbalance with different classification methods and descriptor groups. Our classification model showed an estimated precision of 96% showing that descriptors used to codify the amino acid sequences contain enough information to correlate the peptides sequences with their antimicrobial activity by means of learning machines. Moreover, we show how certain descriptor groups (pseudoaminoacid composition type I) work better with imbalanced datasets while others (dipeptide composition) work better with balanced ones.

  12. Systematic Processing of Clementine Data for Scientific Analyses

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1993-01-01

    If fully successful, the Clementine mission will return about 3,000,000 lunar images and more than 5000 images of Geographos. Effective scientific analyses of such large datasets require systematic processing efforts. Concepts for two such efforts are described: glogal multispectral imaging of the moon; and videos of Geographos.

  13. Ontology-Driven Discovery of Scientific Computational Entities

    ERIC Educational Resources Information Center

    Brazier, Pearl W.

    2010-01-01

    Many geoscientists use modern computational resources, such as software applications, Web services, scientific workflows and datasets that are readily available on the Internet, to support their research and many common tasks. These resources are often shared via human contact and sometimes stored in data portals; however, they are not necessarily…

  14. Publishing datasets with eSciDoc and panMetaDocs

    NASA Astrophysics Data System (ADS)

    Ulbricht, D.; Klump, J.; Bertelmann, R.

    2012-04-01

    Currently serveral research institutions worldwide undertake considerable efforts to have their scientific datasets published and to syndicate them to data portals as extensively described objects identified by a persistent identifier. This is done to foster the reuse of data, to make scientific work more transparent, and to create a citable entity that can be referenced unambigously in written publications. GFZ Potsdam established a publishing workflow for file based research datasets. Key software components are an eSciDoc infrastructure [1] and multiple instances of the data curation tool panMetaDocs [2]. The eSciDoc repository holds data objects and their associated metadata in container objects, called eSciDoc items. A key metadata element in this context is the publication status of the referenced data set. PanMetaDocs, which is based on PanMetaWorks [3], is a PHP based web application that allows to describe data with any XML-based metadata schema. The metadata fields can be filled with static or dynamic content to reduce the number of fields that require manual entries to a minimum and make use of contextual information in a project setting. Access rights can be applied to set visibility of datasets to other project members and allow collaboration on and notifying about datasets (RSS) and interaction with the internal messaging system, that was inherited from panMetaWorks. When a dataset is to be published, panMetaDocs allows to change the publication status of the eSciDoc item from status "private" to "submitted" and prepare the dataset for verification by an external reviewer. After quality checks, the item publication status can be changed to "published". This makes the data and metadata available through the internet worldwide. PanMetaDocs is developed as an eSciDoc application. It is an easy to use graphical user interface to eSciDoc items, their data and metadata. It is also an application supporting a DOI publication agent during the process of

  15. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset | Office of Cancer Genomics

    Cancer.gov

    Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset.

  16. Trends in Scientific Publishing at Springer

    NASA Astrophysics Data System (ADS)

    Eichhorn, Guenther

    Scientific publishing has undergone tremendous changes in the last decade, and it is still evolving rapidly. This article describes some of the issues that are facing scientific publishers, and shows some examples of what one of the commercial publishers, Springer, has done and is working on, in order to stay abreast of these changes and to embrace the new technologies that become available. Springer has moved rapidly into the digital age and has by now digitized almost all its journal content and a significant part of its book content. We have developed new capabilities that make use of the new technologies available and are in the process of further utilizing these new possibilities. Web products like AuthorMapper, SpringerProtocols, and Social Networking sites explore some of these new capabilities. We will continue to explore enhancements of our scientific publishing efforts to provide new possibilities for communicating scientific research.

  17. Biomorphic Explorers

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1999-01-01

    This paper presents, in viewgraph form, the first NASA/JPL workshop on Biomorphic Explorers for future missions. The topics include: 1) Biomorphic Explorers: Classification (Based on Mobility and Ambient Environment); 2) Biomorphic Flight Systems: Vision; 3) Biomorphic Explorer: Conceptual Design; 4) Biomorphic Gliders; 5) Summary and Roadmap; 6) Coordinated/Cooperative Exploration Scenario; and 7) Applications. This paper also presents illustrations of the various biomorphic explorers.

  18. WWW: The Scientific Method

    ERIC Educational Resources Information Center

    Blystone, Robert V.; Blodgett, Kevin

    2006-01-01

    The scientific method is the principal methodology by which biological knowledge is gained and disseminated. As fundamental as the scientific method may be, its historical development is poorly understood, its definition is variable, and its deployment is uneven. Scientific progress may occur without the strictures imposed by the formal…

  19. 3 CFR - Scientific Integrity

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Scientific Integrity Presidential Documents Other Presidential Documents Memorandum of March 9, 2009 Scientific Integrity Memorandum for the Heads of Executive Departments and Agencies Science and the scientific process must inform and guide decisions of my Administration on a wide range of...

  20. Scientific Literacy: Whose Responsibility?

    ERIC Educational Resources Information Center

    Evans, Thomas P.

    1970-01-01

    Identifies various components of scientific literacy and characteristics of scientifically literate people. Discusses factors inhibiting scientific literacy. Suggested remedies: federal support for special programs, redesign of teacher education programs and science content courses at all levels, and setting up means of interpreting science to the…

  1. Redefining the "Scientific Method".

    ERIC Educational Resources Information Center

    Spiece, Kelly R.; Colosi, Joseph

    2000-01-01

    Surveys 15 introductory biology textbooks for their presentation of the scientific method. Teaching the scientific method involves more than simplified steps and subjectivity--human politics, cultural influences, and chance are all a part of science. Presents an activity for students to experience the scientific method. (Contains 34 references.)…

  2. A test-retest dataset for assessing long-term reliability of brain morphology and resting-state brain activity

    PubMed Central

    Huang, Lijie; Huang, Taicheng; Zhen, Zonglei; Liu, Jia

    2016-01-01

    We present a test-retest dataset for evaluation of long-term reliability of measures from structural and resting-state functional magnetic resonance imaging (sMRI and rfMRI) scans. The repeated scan dataset was collected from 61 healthy adults in two sessions using highly similar imaging parameters at an interval of 103–189 days. However, as the imaging parameters were not completely identical, the reliability estimated from this dataset shall reflect the lower bounds of the true reliability of sMRI/rfMRI measures. Furthermore, in conjunction with other test-retest datasets, our dataset may help explore the impact of different imaging parameters on reliability of sMRI/rfMRI measures, which is especially critical for assessing datasets collected from multiple centers. In addition, intelligence quotient (IQ) was measured for each participant using Raven’s Advanced Progressive Matrices. The data can thus be used for purposes other than assessing reliability of sMRI/rfMRI alone. For example, data from each single session could be used to associate structural and functional measures of the brain with the IQ metrics to explore brain-IQ association. PMID:26978040

  3. A test-retest dataset for assessing long-term reliability of brain morphology and resting-state brain activity.

    PubMed

    Huang, Lijie; Huang, Taicheng; Zhen, Zonglei; Liu, Jia

    2016-01-01

    We present a test-retest dataset for evaluation of long-term reliability of measures from structural and resting-state functional magnetic resonance imaging (sMRI and rfMRI) scans. The repeated scan dataset was collected from 61 healthy adults in two sessions using highly similar imaging parameters at an interval of 103-189 days. However, as the imaging parameters were not completely identical, the reliability estimated from this dataset shall reflect the lower bounds of the true reliability of sMRI/rfMRI measures. Furthermore, in conjunction with other test-retest datasets, our dataset may help explore the impact of different imaging parameters on reliability of sMRI/rfMRI measures, which is especially critical for assessing datasets collected from multiple centers. In addition, intelligence quotient (IQ) was measured for each participant using Raven's Advanced Progressive Matrices. The data can thus be used for purposes other than assessing reliability of sMRI/rfMRI alone. For example, data from each single session could be used to associate structural and functional measures of the brain with the IQ metrics to explore brain-IQ association. PMID:26978040

  4. Atmosphere Explorer set for launch

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Atmosphere Explorer-D (Explorer-54) is described which will explore in detail an area of the earth's outer atmosphere where important energy transfer, atomic and molecular processes, and chemical reactions occur that are critical to the heat balance of the atmosphere. Data are presented on the mission facts, launch vehicle operations, AE-D/Delta flight events, spacecraft description, scientific instruments, tracking, and data acquisition.

  5. Feature isolation and quantification of evolving datasets

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Identifying and isolating features is an important part of visualization and a crucial step for the analysis and understanding of large time-dependent data sets (either from observation or simulation). In this proposal, we address these concerns, namely the investigation and implementation of basic 2D and 3D feature based methods to enhance current visualization techniques and provide the building blocks for automatic feature recognition, tracking, and correlation. These methods incorporate ideas from scientific visualization, computer vision, image processing, and mathematical morphology. Our focus is in the area of fluid dynamics, and we show the applicability of these methods to the quantification and tracking of three-dimensional vortex and turbulence bursts.

  6. Delensing CMB polarization with external datasets

    SciTech Connect

    Smith, Kendrick M.; Hanson, Duncan; LoVerde, Marilena; Hirata, Christopher M.; Zahn, Oliver E-mail: duncan.hanson@jpl.nasa.gov E-mail: chirata@tapir.caltech.edu

    2012-06-01

    One of the primary scientific targets of current and future CMB polarization experiments is the search for a stochastic background of gravity waves in the early universe. As instrumental sensitivity improves, the limiting factor will eventually be B-mode power generated by gravitational lensing, which can be removed through use of so-called ''delensing'' algorithms. We forecast prospects for delensing using lensing maps which are obtained externally to CMB polarization: either from large-scale structure observations, or from high-resolution maps of CMB temperature. We conclude that the forecasts in either case are not encouraging, and that significantly delensing large-scale CMB polarization requires high-resolution polarization maps with sufficient sensitivity to measure the lensing B-mode. We also present a simple formalism for including delensing in CMB forecasts which is computationally fast and agrees well with Monte Carlos.

  7. A reference GNSS tropospheric dataset over Europe.

    NASA Astrophysics Data System (ADS)

    Pacione, Rosa; Di Tomaso, Simona

    2016-04-01

    The present availability of 18 years of GNSS data belonging to the European Permanent Network (EPN, http://www.epncb.oma.be/) is a valuable database for the development of a climate data record of GNSS tropospheric products over Europe. This dataset has high potential for monitoring trend and variability in atmospheric water vapour, improving the knowledge of climatic trends of atmospheric water vapour and being useful for global and regional NWP reanalyses as well as climate model simulations. In the framework of the EPN-Repro2, a second reprocessing campaign of the EPN, five Analysis Centres have homogenously reprocessed the EPN network for the 1996-2013. Three Analysis Centres are providing homogenously reprocessed solutions for the entire network, which are analyzed by the three different software packages: Bernese, GAMIT and GIPSY-OASIS. Smaller subnetworks based on Bernese 5.2 are also provided. A huge effort is made for providing solutions that are the basis for deriving new coordinates, velocities and troposphere parameters, Zenith Tropospheric Delays and Horizontal Gradients, for the entire EPN. These individual contributions are combined in order to provide the official EPN reprocessed products. A preliminary tropospheric combined solution for the period 1996-2013 has been carried out. It is based on all the available homogenously reprocessed solutions and it offers the possibility to assess each of them prior to the ongoing final combination. We will present the results of the EPN Repro2 tropospheric combined products and how the climate community will benefit from them. Aknowledgment.The EPN Repro2 working group is acknowledged for providing the EPN solutions used in this work. E-GEOS activity is carried out in the framework of ASI contract 2015-050-R.0.

  8. Integrating diverse datasets improves developmental enhancer prediction.

    PubMed

    Erwin, Genevieve D; Oksenberg, Nir; Truty, Rebecca M; Kostka, Dennis; Murphy, Karl K; Ahituv, Nadav; Pollard, Katherine S; Capra, John A

    2014-06-01

    Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser. We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are easier to identify than enhancers active in several other embryonic tissues, likely due to their uniquely high GC content. We applied EnhancerFinder to the entire human genome and predicted 84,301 developmental enhancers and their tissue specificity. These predictions provide specific functional annotations for large amounts of human non-coding DNA, and are significantly enriched near genes with annotated roles in their predicted tissues and lead SNPs from genome-wide association studies. We demonstrate the utility of EnhancerFinder predictions through in vivo validation of novel embryonic gene regulatory enhancers from three developmental transcription factor loci. Our genome-wide developmental enhancer predictions are freely available as a UCSC Genome Browser track, which we hope will enable

  9. Integrating Diverse Datasets Improves Developmental Enhancer Prediction

    PubMed Central

    Erwin, Genevieve D.; Oksenberg, Nir; Truty, Rebecca M.; Kostka, Dennis; Murphy, Karl K.; Ahituv, Nadav; Pollard, Katherine S.; Capra, John A.

    2014-01-01

    Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser. We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are easier to identify than enhancers active in several other embryonic tissues, likely due to their uniquely high GC content. We applied EnhancerFinder to the entire human genome and predicted 84,301 developmental enhancers and their tissue specificity. These predictions provide specific functional annotations for large amounts of human non-coding DNA, and are significantly enriched near genes with annotated roles in their predicted tissues and lead SNPs from genome-wide association studies. We demonstrate the utility of EnhancerFinder predictions through in vivo validation of novel embryonic gene regulatory enhancers from three developmental transcription factor loci. Our genome-wide developmental enhancer predictions are freely available as a UCSC Genome Browser track, which we hope will enable

  10. Scientific Assistant Virtual Laboratory (SAVL)

    NASA Astrophysics Data System (ADS)

    Alaghband, Gita; Fardi, Hamid; Gnabasik, David

    2007-03-01

    The Scientific Assistant Virtual Laboratory (SAVL) is a scientific discovery environment, an interactive simulated virtual laboratory, for learning physics and mathematics. The purpose of this computer-assisted intervention is to improve middle and high school student interest, insight and scores in physics and mathematics. SAVL develops scientific and mathematical imagination in a visual, symbolic, and experimental simulation environment. It directly addresses the issues of scientific and technological competency by providing critical thinking training through integrated modules. This on-going research provides a virtual laboratory environment in which the student directs the building of the experiment rather than observing a packaged simulation. SAVL: * Engages the persistent interest of young minds in physics and math by visually linking simulation objects and events with mathematical relations. * Teaches integrated concepts by the hands-on exploration and focused visualization of classic physics experiments within software. * Systematically and uniformly assesses and scores students by their ability to answer their own questions within the context of a Master Question Network. We will demonstrate how the Master Question Network uses polymorphic interfaces and C# lambda expressions to manage simulation objects.

  11. Figuring out a scientific understanding

    NASA Astrophysics Data System (ADS)

    Sutton, Clive

    1993-12-01

    This article attempts to place analogy and metaphor within the wider context of all figurative language, and to trace the relationship between that kind of expression and the supposedly literal and direct accounts of nature that scientists have built up.I explore the functions of figures of speech in the development of new scientific ideas, and trace how they fade or die as each area of scientific knowledge matures. What we then take to be the literal words of scientific description are in effect the remnants of old figures of speech that have grown so familiar that their earlier metaphorical quality is easily overlooked. The conventional separation of figurative and literal cannot be sustained, and a new understanding of their relationship is needed.The practical implications of this analysis are to do with how we can reactivate the dormant metaphors in ordinary scientific language, so that learners may hear again the human voice of scientists who developed the ways of talking we now take for granted. To reactivate the system of thought behind any established way of talking, we must be able to get the learners to understand that language works as a medium of interpretation and persuasion, and not simply a system of descriptive labeling. These two views of language are compared and contrasted.

  12. Application of Huang-Hilbert Transforms to Geophysical Datasets

    NASA Technical Reports Server (NTRS)

    Duffy, Dean G.

    2003-01-01

    The Huang-Hilbert transform is a promising new method for analyzing nonstationary and nonlinear datasets. In this talk I will apply this technique to several important geophysical datasets. To understand the strengths and weaknesses of this method, multi- year, hourly datasets of the sea level heights and solar radiation will be analyzed. Then we will apply this transform to the analysis of gravity waves observed in a mesoscale observational net.

  13. Five year global dataset: NMC operational analyses (1978 to 1982)

    NASA Technical Reports Server (NTRS)

    Straus, David; Ardizzone, Joseph

    1987-01-01

    This document describes procedures used in assembling a five year dataset (1978 to 1982) using NMC Operational Analysis data. These procedures entailed replacing missing and unacceptable data in order to arrive at a complete dataset that is continuous in time. In addition, a subjective assessment on the integrity of all data (both preliminary and final) is presented. Documentation on tapes comprising the Five Year Global Dataset is also included.

  14. Framework for Interactive Parallel Dataset Analysis on the Grid

    SciTech Connect

    Alexander, David A.; Ananthan, Balamurali; Johnson, Tony; Serbo, Victor; /SLAC

    2007-01-10

    We present a framework for use at a typical Grid site to facilitate custom interactive parallel dataset analysis targeting terabyte-scale datasets of the type typically produced by large multi-institutional science experiments. We summarize the needs for interactive analysis and show a prototype solution that satisfies those needs. The solution consists of desktop client tool and a set of Web Services that allow scientists to sign onto a Grid site, compose analysis script code to carry out physics analysis on datasets, distribute the code and datasets to worker nodes, collect the results back to the client, and to construct professional-quality visualizations of the results.

  15. Development to Release of CTBT Knowledge Base Datasets

    SciTech Connect

    Moore, S.G.; Shepherd, E.R.

    1998-10-20

    For the CTBT Knowledge Base to be useful as a tool for improving U.S. monitoring capabilities, the contents of the Knowledge Base must be subjected to a well-defined set of procedures to ensure integrity and relevance of the con- stituent datasets. This paper proposes a possible set of procedures for datasets that are delivered to Sandia National Laboratories (SNL) for inclusion in the Knowledge Base. The proposed procedures include defining preliminary acceptance criteria, performing verification and validation activities, and subjecting the datasets to approvrd by domain experts. Preliminary acceptance criteria include receipt of the data, its metadata, and a proposal for its usability for U.S. National Data Center operations. Verification activi- ties establish the correctness and completeness of the data, while validation activities establish the relevance of the data to its proposed use. Results from these activities are presented to domain experts, such as analysts and peers for final approval of the datasets for release to the Knowledge Base. Formats and functionality will vary across datasets, so the procedures proposed herein define an overall plan for establishing integrity and relevance of the dataset. Specific procedures for verification, validation, and approval will be defined for each dataset, or for each type of dataset, as appropriate. Potential dataset sources including Los Alamos National Laboratories and Lawrence Livermore National Laborato- ries have contributed significantly to the development of thk process.

  16. Investigating gait recognition in the short-wave infrared (SWIR) spectrum: dataset and challenges

    NASA Astrophysics Data System (ADS)

    DeCann, Brian; Ross, Arun; Dawson, Jeremy

    2013-05-01

    In the biometrics community, challenge datasets are often released to determine the robustness of state-of-the- art algorithms to conditions that can confound recognition accuracy. In the context of automated human gait recognition, evaluation has predominantly been conducted on video data acquired in the active visible spectral band, although recent literature has explored recognition in the passive thermal band. The advent of sophisticated sensors has piqued interest in performing gait recognition in other spectral bands such as short-wave infrared (SWIR), due to their use in military-based tactical applications and the possibility of operating in nighttime environments. Further, in many operational scenarios, the environmental variables are not controlled, thereby posing several challenges to traditional recognition schemes. In this work, we discuss the possibility of performing gait recognition in the SWIR spectrum by first assembling a dataset, referred to as the WVU Outdoor SWIR Gait (WOSG) Dataset, and then evaluate the performance of three gait recognition algorithms on the dataset. The dataset consists of 155 subjects and represents gait information acquired under multiple walking paths in an uncontrolled, outdoor environment. Detailed experimental analysis suggests the benefits of distributing this new challenging dataset to the broader research community. In particular, the following observations were made: (a) the importance of SWIR imagery in acquiring data covertly for surveillance applications; (b) the difficulty in extracting human silhouettes in low-contrast SWIR imagery; (c) the impact of silhouette quality on overall recognition accuracy; (d) the possibility of matching gait sequences pertaining to different walking trajectories; and (e) the need for developing sophisticated gait recognition algorithms to handle data acquired in unconstrained environments.

  17. Lunar altimetric datasets: Global comparisons with the Lunar Orbiter Laser Altimeter elevation model

    NASA Astrophysics Data System (ADS)

    Neumann, G. A.; Duxbury, T. C.; Lemoine, F. G.; Mazarico, E.; Oberst, J.; Robinson, M. S.; Smith, D. E.; Torrence, M. H.; Zuber, M. T.

    2010-12-01

    Starting with the Apollo program, increasingly precise orbital and Earth-based measurements of the topography of the Moon have been performed with radar and laser altimeters. Orbital measurements are the most accurate, being relative to the center of mass, while Earth-based radar must generally be adjusted to match controls. Recent data from high-resolution laser altimeters reveal substantial errors in earlier datasets. We present the results of over 2.4 billion measurements (as of Sept. 1, 2010) from the Lunar Orbiter Laser Altimeter (LOLA), with near-global coverage, 10-cm vertical precision, and meter-level radial accuracy, to which datasets from the Arecibo and Goldstone radar, the photogrammetric Unified Lunar Control Network 2005, and from the Clementine (DOD), LALT (JAXA), LAM (CSA) and LLRI (ISA) laser altimeters may be compared. The geodetic network being generated by LOLA will be applied to images and stereophotogrammetric solutions being generated by the Lunar Reconnaissance Orbiter to create a reference dataset suitable for exploration and science. The LOLA data, either as 5-point multibeam swaths or as digital elevation models, may also be used to assess the orbital, attitude, and timing accuracy of other mapping instruments. Examples will be shown using the densely-sampled, polar 20-m digital elevation models being provided to the Exploration Systems Mission Directorate and Planetary Data System of NASA as part of the LRO Project. With other altimetric datasets and mapping camera solutions filling in the gaps between LOLA swaths, a consistent, accurate, and international altimetric dataset will emerge.

  18. Solar system exploration

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Ramlose, Terri (Editor)

    1989-01-01

    The goal of planetary exploration is to understand the nature and development of the planets, as illustrated by pictures from the first two decades of spacecraft missions and by the imaginations of space artists. Planets, comets, asteroids, and moons are studied to discover the reasons for their similarities and differences and to find clues that contain information about the primordial process of planet origins. The scientific goals established by the National Academy of Sciences as the foundation of NASA's Solar System Exploration Program are covered: to determine the nature of the planetary system, to understand its origin and evolution, the development of life on Earth, and the principles that shape present day Earth.

  19. HGV2012: Leveraging Next-Generation Technology and Large Datasets to Advance Disease Research

    PubMed Central

    Gonzaludo, Nina; Zheng, Hong-Xiang; Wang, Jiucun; Chanock, Stephen J.; Jin, Li; Scherer, Stephen; Wijmenga, Cisca; Kwok, Pui-Yan; Brookes, Anthony J.

    2013-01-01

    The 13th International Meeting on Human Genome Variation and Complex Genome Analysis (HGV2012: Shanghai, China, 6th 8th September 2012) was a stimulating workshop where researchers from academia and industry explored the latest progress, challenges, and opportunities in genome variation research. Key themes included advancements in next-generation sequencing (NGS) technology, investigation of common and rare diseases, employing NGS in the clinic, utilizing large datasets that leverage biobanks and population-specific cohorts, and exploration of genomic features. PMID:23315969

  20. Promoting Science Learning and Scientific Identification through Contemporary Scientific Investigations

    NASA Astrophysics Data System (ADS)

    Van Horne, Katie

    This dissertation investigates the implementation issues and the educational opportunities associated with "taking the practice turn" in science education. This pedagogical shift focuses instructional experiences on engaging students in the epistemic practices of science both to learn the core ideas of the disciplines, as well as to gain an understanding of and personal connection to the scientific enterprise. In Chapter 2, I examine the teacher-researcher co-design collaboration that supported the classroom implementation of a year-long, project-based biology curriculum that was under development. This study explores the dilemmas that arose when teachers implemented a new intervention and how the dilemmas arose and were managed throughout the collaboration of researchers and teachers and between the teachers. In the design-based research of Chapter 3, I demonstrate how students' engagement in epistemic practices in contemporary science investigations supported their conceptual development about genetics. The analysis shows how this involved a complex interaction between the scientific, school and community practices in students' lives and how through varied participation in the practices students come to write about and recognize how contemporary investigations can give them leverage for science-based action outside of the school setting. Finally, Chapter 4 explores the characteristics of learning environments for supporting the development of scientific practice-linked identities. Specific features of the learning environment---access to the intellectual work of the domain, authentic roles and accountability, space to make meaningful contributions in relation to personal interests, and practice-linked identity resources that arose from interactions in the learning setting---supported learners in stabilizing practice-linked science identities through their engagement in contemporary scientific practices. This set of studies shows that providing students with the

  1. Web-based visualization of very large scientific astronomy imagery

    NASA Astrophysics Data System (ADS)

    Bertin, E.; Pillay, R.; Marmo, C.

    2015-04-01

    Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.

  2. Virtual Environments in Scientific Visualization

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Lisinski, T. A. (Technical Monitor)

    1994-01-01

    Virtual environment technology is a new way of approaching the interface between computers and humans. Emphasizing display and user control that conforms to the user's natural ways of perceiving and thinking about space, virtual environment technologies enhance the ability to perceive and interact with computer generated graphic information. This enhancement potentially has a major effect on the field of scientific visualization. Current examples of this technology include the Virtual Windtunnel being developed at NASA Ames Research Center. Other major institutions such as the National Center for Supercomputing Applications and SRI International are also exploring this technology. This talk will be describe several implementations of virtual environments for use in scientific visualization. Examples include the visualization of unsteady fluid flows (the virtual windtunnel), the visualization of geodesics in curved spacetime, surface manipulation, and examples developed at various laboratories.

  3. [The scientific entertainer in primary health care].

    PubMed

    Ortega-Calvo, Manuel; Santos, José Manuel; Lapetra, José

    2012-09-01

    The scientific method is capable of being applied in primary care. In this article we defend the role of the "scientific entertainer "as strategic and necessary in achieving this goal. The task has to include playful and light-hearted content. We explore some words in English that may help us to understand the concept of "scientific entertainer" from a semantic point of view (showman, master of ceremonies, entrepreneur, go-between) also in Spanish language (counsellor, mediator, methodologist) and finally in Latin and Greek (tripalium, negotium, chronos, kairos). We define the clinical, manager or research health-worker who is skilled in primary care as a "primarylogist". PMID:22018794

  4. Dataset of milk whey proteins of two indigenous greek goat breeds.

    PubMed

    Anagnostopoulos, Athanasios K; Katsafadou, Angeliki I; Pierros, Vasileios; Kontopodis, Evangelos; Fthenakis, George C; Arsenos, George; Karkabounas, Spyridon Ch; Tzora, Athina; Skoufos, Ioannis; Tsangaris, George Th

    2016-09-01

    Due to its rarity and unique biological traits, as well as its growing financial value, milk of dairy Greek small ruminants is continuously attracting interest from both the scientific community and industry. For the construction of the present dataset, cutting-edge proteomics methodologies were employed, in order to investigate and characterize, for the first time, the milk whey proteome from the two indigenous Greek goat breeds, Capra prisca and Skopelos. In total 822 protein groups were identified in milk whey of the two breeds, The present data are further discussed in the research article "Milk of Greek sheep and goat breeds; characterization by means of proteomics" [1]. PMID:27508219

  5. Scientific dishonesty and good scientific practice.

    PubMed

    Andersen, D; Axelsen, N H; Riis, P

    1993-04-01

    Scientific dishonesty has been the subject of much public interest in recent years. Although the problem has had a low profile in Denmark, there is no reason to believe that it is non-existent. Several preconditions known to be important prevail here as well as in other countries, such as pressure to publish and severe competition for research grants and senior academic positions. The Danish Medical Research Council (DMRC) decided to respond to this problem by preparing a report on scientific dishonesty with suggestions to the research institutions on rules for good scientific practice and procedures for investigation of suspected dishonesty. To this end, an investigatory system was suggested. The system should consist of two regional committees and one national committee. They should be headed by high court judges and experienced health sciences researchers as members. The committees will investigate cases reported to them and conclude on whether dishonesty has been established and on whether the scientific work should be retracted. Sanctions shall remain the task of the institutions. Preventive measures comprise open access to and a long storage period for scientific data. PMID:8495601

  6. Development of a global historic monthly mean precipitation dataset

    NASA Astrophysics Data System (ADS)

    Yang, Su; Xu, Wenhui; Xu, Yan; Li, Qingxiang

    2016-04-01

    Global historic precipitation dataset is the base for climate and water cycle research. There have been several global historic land surface precipitation datasets developed by international data centers such as the US National Climatic Data Center (NCDC), European Climate Assessment & Dataset project team, Met Office, etc., but so far there are no such datasets developed by any research institute in China. In addition, each dataset has its own focus of study region, and the existing global precipitation datasets only contain sparse observational stations over China, which may result in uncertainties in East Asian precipitation studies. In order to take into account comprehensive historic information, users might need to employ two or more datasets. However, the non-uniform data formats, data units, station IDs, and so on add extra difficulties for users to exploit these datasets. For this reason, a complete historic precipitation dataset that takes advantages of various datasets has been developed and produced in the National Meteorological Information Center of China. Precipitation observations from 12 sources are aggregated, and the data formats, data units, and station IDs are unified. Duplicated stations with the same ID are identified, with duplicated observations removed. Consistency test, correlation coefficient test, significance t-test at the 95% confidence level, and significance F-test at the 95% confidence level are conducted first to ensure the data reliability. Only those datasets that satisfy all the above four criteria are integrated to produce the China Meteorological Administration global precipitation (CGP) historic precipitation dataset version 1.0. It contains observations at 31 thousand stations with 1.87 × 107 data records, among which 4152 time series of precipitation are longer than 100 yr. This dataset plays a critical role in climate research due to its advantages in large data volume and high density of station network, compared to

  7. Accuracy assessment of gridded precipitation datasets in the Himalayas

    NASA Astrophysics Data System (ADS)

    Khan, A.

    2015-12-01

    Accurate precipitation data are vital for hydro-climatic modelling and water resources assessments. Based on mass balance calculations and Turc-Budyko analysis, this study investigates the accuracy of twelve widely used precipitation gridded datasets for sub-basins in the Upper Indus Basin (UIB) in the Himalayas-Karakoram-Hindukush (HKH) region. These datasets are: 1) Global Precipitation Climatology Project (GPCP), 2) Climate Prediction Centre (CPC) Merged Analysis of Precipitation (CMAP), 3) NCEP / NCAR, 4) Global Precipitation Climatology Centre (GPCC), 5) Climatic Research Unit (CRU), 6) Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), 7) Tropical Rainfall Measuring Mission (TRMM), 8) European Reanalysis (ERA) interim data, 9) PRINCETON, 10) European Reanalysis-40 (ERA-40), 11) Willmott and Matsuura, and 12) WATCH Forcing Data based on ERA interim (WFDEI). Precipitation accuracy and consistency was assessed by physical mass balance involving sum of annual measured flow, estimated actual evapotranspiration (average of 4 datasets), estimated glacier mass balance melt contribution (average of 4 datasets), and ground water recharge (average of 3 datasets), during 1999-2010. Mass balance assessment was complemented by Turc-Budyko non-dimensional analysis, where annual precipitation, measured flow and potential evapotranspiration (average of 5 datasets) data were used for the same period. Both analyses suggest that all tested precipitation datasets significantly underestimate precipitation in the Karakoram sub-basins. For the Hindukush and Himalayan sub-basins most datasets underestimate precipitation, except ERA-interim and ERA-40. The analysis indicates that for this large region with complicated terrain features and stark spatial precipitation gradients the reanalysis datasets have better consistency with flow measurements than datasets derived from records of only sparsely distributed climatic

  8. Exploration Geophysics

    ERIC Educational Resources Information Center

    Savit, Carl H.

    1978-01-01

    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  9. Participatory Exploration

    NASA Video Gallery

    Kathy Nado delivers a presentation on Participatory Exploration on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of this workshop was to present NASA'...

  10. International Ultraviolet Explorer Observatory operations

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This volume contains the final report for the International Ultraviolet Explorer IUE Observatory Operations contract. The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to translate competitively selected observing programs into IUE observations, to reduce these observations into meaningful scientific data, and then to present these data to the Guest Observer in a form amenable to the pursuit of scientific research. The IUE Observatory is the key to this objective since it is the central control and support facility for all science operations functions within the IUE Project. In carrying out the operation of this facility, a number of complex functions were provided beginning with telescope scheduling and operation, proceeding to data processing, and ending with data distribution and scientific data analysis. In support of these critical-path functions, a number of other significant activities were also provided, including scientific instrument calibration, systems analysis, and software support. Routine activities have been summarized briefly whenever possible.

  11. Partition dataset according to amino acid type improves the prediction of deleterious non-synonymous SNPs

    SciTech Connect

    Yang, Jing; Li, Yuan-Yuan; Li, Yi-Xue; Ye, Zhi-Qiang

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Proper dataset partition can improve the prediction of deleterious nsSNPs. Black-Right-Pointing-Pointer Partition according to original residue type at nsSNP is a good criterion. Black-Right-Pointing-Pointer Similar strategy is supposed promising in other machine learning problems. -- Abstract: Many non-synonymous SNPs (nsSNPs) are associated with diseases, and numerous machine learning methods have been applied to train classifiers for sorting disease-associated nsSNPs from neutral ones. The continuously accumulated nsSNP data allows us to further explore better prediction approaches. In this work, we partitioned the training data into 20 subsets according to either original or substituted amino acid type at the nsSNP site. Using support vector machine (SVM), training classification models on each subset resulted in an overall accuracy of 76.3% or 74.9% depending on the two different partition criteria, while training on the whole dataset obtained an accuracy of only 72.6%. Moreover, the dataset was also randomly divided into 20 subsets, but the corresponding accuracy was only 73.2%. Our results demonstrated that partitioning the whole training dataset into subsets properly, i.e., according to the residue type at the nsSNP site, will improve the performance of the trained classifiers significantly, which should be valuable in developing better tools for predicting the disease-association of nsSNPs.

  12. The largest human cognitive performance dataset reveals insights into the effects of lifestyle factors and aging

    PubMed Central

    Sternberg, Daniel A.; Ballard, Kacey; Hardy, Joseph L.; Katz, Benjamin; Doraiswamy, P. Murali; Scanlon, Michael

    2013-01-01

    Making new breakthroughs in understanding the processes underlying human cognition may depend on the availability of very large datasets that have not historically existed in psychology and neuroscience. Lumosity is a web-based cognitive training platform that has grown to include over 600 million cognitive training task results from over 35 million individuals, comprising the largest existing dataset of human cognitive performance. As part of the Human Cognition Project, Lumosity's collaborative research program to understand the human mind, Lumos Labs researchers and external research collaborators have begun to explore this dataset in order uncover novel insights about the correlates of cognitive performance. This paper presents two preliminary demonstrations of some of the kinds of questions that can be examined with the dataset. The first example focuses on replicating known findings relating lifestyle factors to baseline cognitive performance in a demographically diverse, healthy population at a much larger scale than has previously been available. The second example examines a question that would likely be very difficult to study in laboratory-based and existing online experimental research approaches at a large scale: specifically, how learning ability for different types of cognitive tasks changes with age. We hope that these examples will provoke the imagination of researchers who are interested in collaborating to answer fundamental questions about human cognitive performance. PMID:23801955

  13. The largest human cognitive performance dataset reveals insights into the effects of lifestyle factors and aging.

    PubMed

    Sternberg, Daniel A; Ballard, Kacey; Hardy, Joseph L; Katz, Benjamin; Doraiswamy, P Murali; Scanlon, Michael

    2013-01-01

    Making new breakthroughs in understanding the processes underlying human cognition may depend on the availability of very large datasets that have not historically existed in psychology and neuroscience. Lumosity is a web-based cognitive training platform that has grown to include over 600 million cognitive training task results from over 35 million individuals, comprising the largest existing dataset of human cognitive performance. As part of the Human Cognition Project, Lumosity's collaborative research program to understand the human mind, Lumos Labs researchers and external research collaborators have begun to explore this dataset in order uncover novel insights about the correlates of cognitive performance. This paper presents two preliminary demonstrations of some of the kinds of questions that can be examined with the dataset. The first example focuses on replicating known findings relating lifestyle factors to baseline cognitive performance in a demographically diverse, healthy population at a much larger scale than has previously been available. The second example examines a question that would likely be very difficult to study in laboratory-based and existing online experimental research approaches at a large scale: specifically, how learning ability for different types of cognitive tasks changes with age. We hope that these examples will provoke the imagination of researchers who are interested in collaborating to answer fundamental questions about human cognitive performance. PMID:23801955

  14. Scientific Report (2002-2004)

    SciTech Connect

    Bedros Afeyan

    2004-05-11

    OAK-B135 An overview of our work as well as two recent publications are contained in this scientific report. The work reported here revolves around the discovery of new coherent nonlinear kinetic waves in laser produced plasmas, we call KEEN waves (kinetic, electrostatic electron nonlinear waves), and optical mixing experiments on the Imega laser system at LLE with blue-green light for the exploration of ways to suppress parametric instabilities in long scale length, long pulsewidth laser-plasmas such as those which will be found on NIF or LMJ.

  15. Error characterisation of global active and passive microwave soil moisture datasets

    NASA Astrophysics Data System (ADS)

    Dorigo, W. A.; Scipal, K.; Parinussa, R. M.; Liu, Y. Y.; Wagner, W.; de Jeu, R. A. M.; Naeimi, V.

    2010-12-01

    Understanding the error structures of remotely sensed soil moisture observations is essential for correctly interpreting observed variations and trends in the data or assimilating them in hydrological or numerical weather prediction models. Nevertheless, a spatially coherent assessment of the quality of the various globally available datasets is often hampered by the limited availability over space and time of reliable in-situ measurements. As an alternative, this study explores the triple collocation error estimation technique for assessing the relative quality of several globally available soil moisture products from active (ASCAT) and passive (AMSR-E and SSM/I) microwave sensors. The triple collocation is a powerful statistical tool to estimate the root mean square error while simultaneously solving for systematic differences in the climatologies of a set of three linearly related data sources with independent error structures. Prerequisite for this technique is the availability of a sufficiently large number of timely corresponding observations. In addition to the active and passive satellite-based datasets, we used the ERA-Interim and GLDAS-NOAH reanalysis soil moisture datasets as a third, independent reference. The prime objective is to reveal trends in uncertainty related to different observation principles (passive versus active), the use of different frequencies (C-, X-, and Ku-band) for passive microwave observations, and the choice of the independent reference dataset (ERA-Interim versus GLDAS-NOAH). The results suggest that the triple collocation method provides realistic error estimates. Observed spatial trends agree well with the existing theory and studies on the performance of different observation principles and frequencies with respect to land cover and vegetation density. In addition, if all theoretical prerequisites are fulfilled (e.g. a sufficiently large number of common observations is available and errors of the different datasets are

  16. Interface between astrophysical datasets and distributed database management systems (DAVID)

    NASA Technical Reports Server (NTRS)

    Iyengar, S. S.

    1988-01-01

    This is a status report on the progress of the DAVID (Distributed Access View Integrated Database Management System) project being carried out at Louisiana State University, Baton Rouge, Louisiana. The objective is to implement an interface between Astrophysical datasets and DAVID. Discussed are design details and implementation specifics between DAVID and astrophysical datasets.

  17. Really big data: Processing and analysis of large datasets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern animal breeding datasets are large and getting larger, due in part to the recent availability of DNA data for many animals. Computational methods for efficiently storing and analyzing those data are under development. The amount of storage space required for such datasets is increasing rapidl...

  18. Querying Patterns in High-Dimensional Heterogenous Datasets

    ERIC Educational Resources Information Center

    Singh, Vishwakarma

    2012-01-01

    The recent technological advancements have led to the availability of a plethora of heterogenous datasets, e.g., images tagged with geo-location and descriptive keywords. An object in these datasets is described by a set of high-dimensional feature vectors. For example, a keyword-tagged image is represented by a color-histogram and a…

  19. Primary Datasets for Case Studies of River-Water Quality

    ERIC Educational Resources Information Center

    Goulder, Raymond

    2008-01-01

    Level 6 (final-year BSc) students undertook case studies on between-site and temporal variation in river-water quality. They used professionally-collected datasets supplied by the Environment Agency. The exercise gave students the experience of working with large, real-world datasets and led to their understanding how the quality of river water is…

  20. Finding Spatio-Temporal Patterns in Large Sensor Datasets

    ERIC Educational Resources Information Center

    McGuire, Michael Patrick

    2010-01-01

    Spatial or temporal data mining tasks are performed in the context of the relevant space, defined by a spatial neighborhood, and the relevant time period, defined by a specific time interval. Furthermore, when mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. This dissertation is…

  1. Exploring Science: The Cognition and Development of Discovery Processes.

    ERIC Educational Resources Information Center

    Klahr, David

    This book explores individual cognitive processes and the psychology of scientific discovery. Nine studies are presented that investigate childrens' and adults' attempts to make scientific discoveries from a theoretical perspective. Contents include: (1) "Investigating Scientific Thinking: Why and How"; (2) "Scientific Discovery as Problem…

  2. Priorities for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Glaze, L. S.; Beauchamp, P. M.; Chin, G.; Crisp, D.; Grimm, R. E.; Herrick, R. R.; Johnston, S.; Limaye, S. S.; Smrekar, S. E.; Ocampo, A.; Thompson, T. W.

    2013-12-01

    Venus remains one of the most enigmatic bodies in our Solar System. Important questions remain regarding the origin and evolution of the atmosphere, the history of the surface and interior, and how the surface and atmosphere interact. In a broader context, understanding Venus has implications for understanding the evolution of terrestrial planets in our Solar System as well as for interpreting the growing set of observations of extra-solar planets. The Venus Exploration Analysis Group (VEXAG), established in 2005, is chartered by NASA's Planetary Science Division and reports its findings to the NASA Advisory Council. Open to all interested scientists, VEXAG regularly evaluates Venus exploration goals, scientific objectives, investigations and critical measurement requirements, including especially recommendations in the NRC Decadal Survey and the Solar System Exploration Strategic Roadmap. At the last general meeting in November 2012, VEXAG resolved to update the scientific priorities and strategies for Venus exploration. To achieve this goal, three major tasks were defined for 2013, (1) update the document prioritizing Goals, Objectives and Investigations for Venus Exploration, (2) develop a Roadmap for Venus exploration that is consistent with VEXAG priorities as well as Planetary Decadal Survey priorities, and (3) develop a white paper on technologies for Venus missions. Proposed versions of all three documents were presented at the VEXAG general meeting in November 2013. Here, we present the findings and final versions of all three documents for community comment and feedback. A follow-on Workshop on Venus Exploration Targets is also being planned for the early summer of 2014. The workshop will provide a forum for the Venus science community to discuss approaches for addressing high priority investigations. Participants will be encouraged to present their ideas for specific targets on Venus (interior, surface and atmosphere) as well as to present specific data

  3. Planetary Exploration Panel PEX: Support for lunar exploration

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale

    2010-05-01

    The new era of space exploration will be international, human-centric, transdisciplinary and participatory. It will also provide an opportunity to inspire, motivate, and involve an ever increasing number of countries. The objective of the COSPAR Panel on Space Exploration (PEX) is to provide the best, independent, input to support the development of worldwide space exploration programs and to safeguard the scientific assets of solar system objects. The input will be drawn from expertise provided via the contacts maintained by COSPAR's various Associates within the international community and scientific entities. For lunar exploration, the International Lunar Exploration Working Group (ILEWG) and the Lunar Exploration Analysis Group (LEAG), as well as other committees, represent important foci for an even broader base of expertise. Seven NASA Lunar Science Institute nodes are actively supporting space exploration in the US. In addition, the International Space Exploration Coordination group ISECG was established to implement the Global Exploration Strategy GES, contained in a document that was elaborated by representatives of 14 space agencies. PEX provides synergies of existing documents and roadmaps of each of these bodies to support existing space exploration groups, foster transnational alliances and support joint research and education.

  4. Scientific integrity memorandum

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-03-01

    U.S. President Barack Obama signed a presidential memorandum on 9 March to help restore scientific integrity in government decision making. The memorandum directs the White House Office of Science and Technology Policy to develop a strategy within 120 days that ensures that "the selection of scientists and technology professionals for science and technology positions in the executive branch is based on those individuals' scientific and technological knowledge, credentials, and experience; agencies make available to the public the scientific or technological findings or conclusions considered or relied upon in policy decisions; agencies use scientific and technological information that has been subject to well-established scientific processes such as peer review; and agencies have appropriate rules and procedures to ensure the integrity of the scientific process within the agency, including whistleblower protection."

  5. A joint dataset of fair-weather atmospheric electricity

    NASA Astrophysics Data System (ADS)

    Tammet, H.

    2009-02-01

    A new open access dataset ATMEL2007A ( http://ael.physic.ut.ee/tammet/dd/) takes advantage of the diary-type data structure. The dataset comprises the measurements of atmospheric electric field, positive and negative conductivities, air ion concentrations and accompanying meteorological measurements at 13 stations, including 7 stations of the former World Data Centre network. The dataset incorporates more than half a million diurnal series of hourly averages and it can easily be expanded with additional data. The dataset is designed for importing into a personal computer, which makes possible the appending of private data and safely protecting it from public access. Available free software allows extracting data excerpts in the form of traditional data tables or spreadsheets. Examples show how the dataset can be used in the research of the correlations and trends in atmospheric electricity and air pollution.

  6. Managing Large Datasets for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    Chen, Gao

    2015-01-01

    Since the mid-1980s, airborne and ground measurements have been widely used to provide comprehensive characterization of atmospheric composition and processes. Field campaigns have generated a wealth of insitu data and have grown considerably over the years in terms of both the number of measured parameters and the data volume. This can largely be attributed to the rapid advances in instrument development and computing power. The users of field data may face a number of challenges spanning data access, understanding, and proper use in scientific analysis. This tutorial is designed to provide an introduction to using data sets, with a focus on airborne measurements, for atmospheric research. The first part of the tutorial provides an overview of airborne measurements and data discovery. This will be followed by a discussion on the understanding of airborne data files. An actual data file will be used to illustrate how data are reported, including the use of data flags to indicate missing data and limits of detection. Retrieving information from the file header will be discussed, which is essential to properly interpreting the data. Field measurements are typically reported as a function of sampling time, but different instruments often have different sampling intervals. To create a combined data set, the data merge process (interpolation of all data to a common time base) will be discussed in terms of the algorithm, data merge products available from airborne studies, and their application in research. Statistical treatment of missing data and data flagged for limit of detection will also be covered in this section. These basic data processing techniques are applicable to both airborne and ground-based observational data sets. Finally, the recently developed Toolsets for Airborne Data (TAD) will be introduced. TAD (tad.larc.nasa.gov) is an airborne data portal offering tools to create user defined merged data products with the capability to provide descriptive

  7. Designing Tools for Ocean Exploration. Galapagos Rifts Expedition--Grades 9-12. Overview: Ocean Exploration.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity teaches about the complexity of ocean exploration, the technological applications and capabilities required for ocean exploration, the importance of teamwork in scientific research projects, and developing abilities necessary to do scientific inquiry. The activity provides learning objectives, a list of needed materials, key…

  8. Artificial intelligence support for scientific model-building

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  9. Scientific Journalism in Armenia

    NASA Astrophysics Data System (ADS)

    Farmanyan, S. V.; Mickaelian, A. M.

    2015-07-01

    In the present study, the problems of scientific journalism and activities of Armenian science journalists are presented. Scientific journalism in the world, forms of its activities, Armenian Astronomical Society (ArAS) press-releases and their subjects, ArAS website "Mass Media News" section, annual and monthly calendars of astronomical events, and "Astghagitak" online journal are described. Most interesting astronomical subjects involved in scientific journalism, reasons for non-satisfactory science outreach and possible solutions are discussed.

  10. Characterizing scientific production and consumption in Physics

    PubMed Central

    Zhang, Qian; Perra, Nicola; Gonçalves, Bruno; Ciulla, Fabio; Vespignani, Alessandro

    2013-01-01

    We analyze the entire publication database of the American Physical Society generating longitudinal (50 years) citation networks geolocalized at the level of single urban areas. We define the knowledge diffusion proxy, and scientific production ranking algorithms to capture the spatio-temporal dynamics of Physics knowledge worldwide. By using the knowledge diffusion proxy we identify the key cities in the production and consumption of knowledge in Physics as a function of time. The results from the scientific production ranking algorithm allow us to characterize the top cities for scholarly research in Physics. Although we focus on a single dataset concerning a specific field, the methodology presented here opens the path to comparative studies of the dynamics of knowledge across disciplines and research areas. PMID:23571320

  11. The Citation Merit of Scientific Publications

    PubMed Central

    Crespo, Juan A.; Ortuño-Ortín, Ignacio; Ruiz-Castillo, Javier

    2012-01-01

    We propose a new method to assess the merit of any set of scientific papers in a given field based on the citations they receive. Given a field and a citation impact indicator, such as the mean citation or the -index, the merit of a given set of articles is identified with the probability that a randomly drawn set of articles from a given pool of articles in that field has a lower citation impact according to the indicator in question. The method allows for comparisons between sets of articles of different sizes and fields. Using a dataset acquired from Thomson Scientific that contains the articles published in the periodical literature in the period 1998–2007, we show that the novel approach yields rankings of research units different from those obtained by a direct application of the mean citation or the -index. PMID:23152867

  12. Characterizing scientific production and consumption in Physics

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Perra, Nicola; Gonçalves, Bruno; Ciulla, Fabio; Vespignani, Alessandro

    2013-04-01

    We analyze the entire publication database of the American Physical Society generating longitudinal (50 years) citation networks geolocalized at the level of single urban areas. We define the knowledge diffusion proxy, and scientific production ranking algorithms to capture the spatio-temporal dynamics of Physics knowledge worldwide. By using the knowledge diffusion proxy we identify the key cities in the production and consumption of knowledge in Physics as a function of time. The results from the scientific production ranking algorithm allow us to characterize the top cities for scholarly research in Physics. Although we focus on a single dataset concerning a specific field, the methodology presented here opens the path to comparative studies of the dynamics of knowledge across disciplines and research areas.

  13. Colorado Plateau rock strength, exhumation, and river knickzones - spatial datasets relating erodability to topographic metrics

    NASA Astrophysics Data System (ADS)

    Tressler, C.; Pederson, J. L.

    2009-12-01

    Bedrock resistance to erosion has a fundamental role in controlling topography and surface processes. This has been recognized since the birth of geomorphology, yet measurements and datasets quantifying rock strength are rare. This is despite it being an essential parameter in tectonic, fluvial, and hillslope process geomorphology, where erodability is commonly marginalized within the diffusivity constant, as well as the K coefficient in stream-power formulations and the channel-concavity and steepness indexes derived from it. The Colorado Plateau landscape, because of its semiarid climate and extensive exhumation, is strongly influenced by variations in bedrock. It is a prime setting to complete such a dataset of rock strength and analyze it in the context of erosion and topography because of both its historic scientific importance and the fact that all bedrock units are exposed for study. We are completing the measurement and mapping of the erodability of all major bedrock units at over 150 sites across the plateau through several approaches, including traditional Schmidt-hammer compressive strength, fracture spacing, and other characteristics associated with Selby rock-mass strength (RMS). These measures may specifically relate to erosion by mass-movement and fluvial plucking processes. Results highlight two problems with these basic data: they overestimate the strength of rock with massive bedding because of the heavy weighting of fracture spacing in Selby RMS, and they don’t include the extensive shale bedrock of the region. To address these issues, we are measuring sample tensile strength (Brazilian splitting test) to capture disintegration and fluvial abrasion erosion of massive units, and we are utilizing the stratigraphic proportion of shale within geologic units as a scaling factor in RMS. We are then exploring spatial relations of these strength measures to topography, exhumation, stream power, and steepness within the Colorado River drainage basin

  14. A Tropical Marine Microbial Natural Products Geobibliography as an Example of Desktop Exploration of Current Research Using Web Visualisation Tools

    PubMed Central

    Mukherjee, Joydeep; Llewellyn, Lyndon E; Evans-Illidge, Elizabeth A

    2008-01-01

    Microbial marine biodiscovery is a recent scientific endeavour developing at a time when information and other technologies are also undergoing great technical strides. Global visualisation of datasets is now becoming available to the world through powerful and readily available software such as Worldwind™, ArcGIS Explorer™ and Google Earth™. Overlaying custom information upon these tools is within the hands of every scientist and more and more scientific organisations are making data available that can also be integrated into these global visualisation tools. The integrated global view that these tools enable provides a powerful desktop exploration tool. Here we demonstrate the value of this approach to marine microbial biodiscovery by developing a geobibliography that incorporates citations on tropical and near-tropical marine microbial natural products research with Google Earth™ and additional ancillary global data sets. The tools and software used are all readily available and the reader is able to use and install the material described in this article. PMID:19172194

  15. Urban land cover thematic disaggregation, employing datasets from multiple sources and RandomForests modeling

    NASA Astrophysics Data System (ADS)

    Gounaridis, Dimitrios; Koukoulas, Sotirios

    2016-09-01

    Urban land cover mapping has lately attracted a vast amount of attention as it closely relates to a broad scope of scientific and management applications. Late methodological and technological advancements facilitate the development of datasets with improved accuracy. However, thematic resolution of urban land cover has received much less attention so far, a fact that hampers the produced datasets utility. This paper seeks to provide insights towards the improvement of thematic resolution of urban land cover classification. We integrate existing, readily available and with acceptable accuracies datasets from multiple sources, with remote sensing techniques. The study site is Greece and the urban land cover is classified nationwide into five classes, using the RandomForests algorithm. Results allowed us to quantify, for the first time with a good accuracy, the proportion that is occupied by each different urban land cover class. The total area covered by urban land cover is 2280 km2 (1.76% of total terrestrial area), the dominant class is discontinuous dense urban fabric (50.71% of urban land cover) and the least occurring class is discontinuous very low density urban fabric (2.06% of urban land cover).

  16. Measuring the effectiveness of scientific gatekeeping

    PubMed Central

    Siler, Kyle; Lee, Kirby; Bero, Lisa

    2015-01-01

    Peer review is the main institution responsible for the evaluation and gestation of scientific research. Although peer review is widely seen as vital to scientific evaluation, anecdotal evidence abounds of gatekeeping mistakes in leading journals, such as rejecting seminal contributions or accepting mediocre submissions. Systematic evidence regarding the effectiveness—or lack thereof—of scientific gatekeeping is scant, largely because access to rejected manuscripts from journals is rarely available. Using a dataset of 1,008 manuscripts submitted to three elite medical journals, we show differences in citation outcomes for articles that received different appraisals from editors and peer reviewers. Among rejected articles, desk-rejected manuscripts, deemed as unworthy of peer review by editors, received fewer citations than those sent for peer review. Among both rejected and accepted articles, manuscripts with lower scores from peer reviewers received relatively fewer citations when they were eventually published. However, hindsight reveals numerous questionable gatekeeping decisions. Of the 808 eventually published articles in our dataset, our three focal journals rejected many highly cited manuscripts, including the 14 most popular; roughly the top 2 percent. Of those 14 articles, 12 were desk-rejected. This finding raises concerns regarding whether peer review is ill-suited to recognize and gestate the most impactful ideas and research. Despite this finding, results show that in our case studies, on the whole, there was value added in peer review. Editors and peer reviewers generally—but not always—made good decisions regarding the identification and promotion of quality in scientific manuscripts. PMID:25535380

  17. Measuring the effectiveness of scientific gatekeeping.

    PubMed

    Siler, Kyle; Lee, Kirby; Bero, Lisa

    2015-01-13

    Peer review is the main institution responsible for the evaluation and gestation of scientific research. Although peer review is widely seen as vital to scientific evaluation, anecdotal evidence abounds of gatekeeping mistakes in leading journals, such as rejecting seminal contributions or accepting mediocre submissions. Systematic evidence regarding the effectiveness--or lack thereof--of scientific gatekeeping is scant, largely because access to rejected manuscripts from journals is rarely available. Using a dataset of 1,008 manuscripts submitted to three elite medical journals, we show differences in citation outcomes for articles that received different appraisals from editors and peer reviewers. Among rejected articles, desk-rejected manuscripts, deemed as unworthy of peer review by editors, received fewer citations than those sent for peer review. Among both rejected and accepted articles, manuscripts with lower scores from peer reviewers received relatively fewer citations when they were eventually published. However, hindsight reveals numerous questionable gatekeeping decisions. Of the 808 eventually published articles in our dataset, our three focal journals rejected many highly cited manuscripts, including the 14 most popular; roughly the top 2 percent. Of those 14 articles, 12 were desk-rejected. This finding raises concerns regarding whether peer review is ill--suited to recognize and gestate the most impactful ideas and research. Despite this finding, results show that in our case studies, on the whole, there was value added in peer review. Editors and peer reviewers generally--but not always-made good decisions regarding the identification and promotion of quality in scientific manuscripts. PMID:25535380

  18. Asteroid exploration and utilization

    NASA Technical Reports Server (NTRS)

    Radovich, Brian M.; Carlson, Alan E.; Date, Medha D.; Duarte, Manny G.; Erian, Neil F.; Gafka, George K.; Kappler, Peter H.; Patano, Scott J.; Perez, Martin; Ponce, Edgar

    1992-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources possessed by asteroids have enormous potential for aiding and enhancing human space exploration as well as life on Earth. Project STONER (Systematic Transfer of Near Earth Resources) is based on mining an asteroid and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plan for humans to utilize asteroid resources. Project STONER is divided into two parts: asteroid selection and explorer spacecraft design. The spacecraft design team is responsible for the selection and integration of the subsystems: GNC, communications, automation, propulsion, power, structures, thermal systems, scientific instruments, and mechanisms used on the surface to retrieve and store asteroid regolith. The sample return mission scenario consists of eight primary phases that are critical to the mission.

  19. Scientific and non-scientific challenges for Operational Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Marzocchi, W.

    2015-12-01

    Tracking the time evolution of seismic hazard in time windows shorter than the usual 50-years of long-term hazard models may offer additional opportunities to reduce the seismic risk. This is the target of operational earthquake forecasting (OEF). During the OEF development in Italy we identify several challenges that range from pure science to the more practical interface of science with society. From a scientific point of view, although earthquake clustering is the clearest empirical evidence about earthquake occurrence, and OEF clustering models are the most (successfully) tested hazard models in seismology, we note that some seismologists are still reluctant to accept their scientific reliability. After exploring the motivations of these scientific doubts, we also look into an issue that is often overlooked in this discussion, i.e., in any kind of hazard analysis, we do not use a model because it is the true one, but because it is the better than anything else we can think of. The non-scientific aspects are mostly related to the fact that OEF usually provides weekly probabilities of large eartquakes smaller than 1%. These probabilities are considered by some seismologists too small to be of interest or useful. However, in a recent collaboration with engineers we show that such earthquake probabilities may lead to intolerable individual risk of death. Interestingly, this debate calls for a better definition of the still fuzzy boundaries among the different expertise required for the whole risk mitigation process. The last and probably more pressing challenge is related to the communication to the public. In fact, a wrong message could be useless or even counterproductive. Here we show some progresses that we have made in this field working with communication experts in Italy.

  20. Identification of rogue datasets in serial crystallography1

    PubMed Central

    Assmann, Greta; Brehm, Wolfgang; Diederichs, Kay

    2016-01-01

    Advances in beamline optics, detectors and X-ray sources allow new techniques of crystallographic data collection. In serial crystallography, a large number of partial datasets from crystals of small volume are measured. Merging of datasets from different crystals in order to enhance data completeness and accuracy is only valid if the crystals are isomorphous, i.e. sufficiently similar in cell parameters, unit-cell contents and molecular structure. Identification and exclusion of non-isomorphous datasets is therefore indispensable and must be done by means of suitable indicators. To identify rogue datasets, the influence of each dataset on CC1/2 [Karplus & Diederichs (2012 ▸). Science, 336, 1030–1033], the correlation coefficient between pairs of intensities averaged in two randomly assigned subsets of observations, is evaluated. The presented method employs a precise calculation of CC1/2 that avoids the random assignment, and instead of using an overall CC1/2, an average over resolution shells is employed to obtain sensible results. The selection procedure was verified by measuring the correlation of observed (merged) intensities and intensities calculated from a model. It is found that inclusion and merging of non-isomorphous datasets may bias the refined model towards those datasets, and measures to reduce this effect are suggested. PMID:27275144

  1. Scientific Ability and Creativity

    ERIC Educational Resources Information Center

    Heller, Kurt A.

    2007-01-01

    Following an introductory definition of "scientific ability and creativity", product-oriented, personality and social psychological approaches to studying scientific ability are examined with reference to competence and performance. Studies in the psychometric versus cognitive psychological paradigms are dealt with in more detail. These two…

  2. Scientific rigor through videogames.

    PubMed

    Treuille, Adrien; Das, Rhiju

    2014-11-01

    Hypothesis-driven experimentation - the scientific method - can be subverted by fraud, irreproducibility, and lack of rigorous predictive tests. A robust solution to these problems may be the 'massive open laboratory' model, recently embodied in the internet-scale videogame EteRNA. Deploying similar platforms throughout biology could enforce the scientific method more broadly. PMID:25300714

  3. Age and Scientific Performance.

    ERIC Educational Resources Information Center

    Cole, Stephen

    1979-01-01

    The long-standing belief that age is negatively associated with scientific productivity and creativity is shown to be based upon incorrect analysis of data. Studies reported in this article suggest that the relationship between age and scientific performance is influenced by the operation of the reward system. (Author)

  4. Map_plot and bgg_plot: software for integration of geoscience datasets

    NASA Astrophysics Data System (ADS)

    Gaillot, Philippe; Punongbayan, Jane T.; Rea, Brice

    2004-02-01

    Since 1985, the Ocean Drilling Program (ODP) has been supporting multidisciplinary research in exploring the structure and history of Earth beneath the oceans. After more than 200 Legs, complementary datasets covering different geological environments, periods and space scales have been obtained and distributed world-wide using the ODP-Janus and Lamont Doherty Earth Observatory-Borehole Research Group (LDEO-BRG) database servers. In Earth Sciences, more than in any other science, the ensemble of these data is characterized by heterogeneous formats and graphical representation modes. In order to fully and quickly assess this information, a set of Unix/Linux and Generic Mapping Tool-based C programs has been designed to convert and integrate datasets acquired during the present ODP and the future Integrated ODP (IODP) Legs. Using ODP Leg 199 datasets, we show examples of the capabilities of the proposed programs. The program map_plot is used to easily display datasets onto 2-D maps. The program bgg_plot (borehole geology and geophysics plot) displays data with respect to depth and/or time. The latter program includes depth shifting, filtering and plotting of core summary information, continuous and discrete-sample core measurements (e.g. physical properties, geochemistry, etc.), in situ continuous logs, magneto- and bio-stratigraphies, specific sedimentological analyses (lithology, grain size, texture, porosity, etc.), as well as core and borehole wall images. Outputs from both programs are initially produced in PostScript format that can be easily converted to Portable Document Format (PDF) or standard image formats (GIF, JPEG, etc.) using widely distributed conversion programs. Based on command line operations and customization of parameter files, these programs can be included in other shell- or database-scripts, automating plotting procedures of data requests. As an open source software, these programs can be customized and interfaced to fulfill any specific

  5. FastQuery: A Parallel Indexing System for Scientific Data

    SciTech Connect

    Chou, Jerry; Wu, Kesheng; Prabhat,

    2011-07-29

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the- art index and query technologies such as FastBit can significantly improve accesses to these datasets by augmenting the user data with indexes and other secondary information. However, a challenge is that the indexes assume the relational data model but the scientific data generally follows the array data model. To match the two data models, we design a generic mapping mechanism and implement an efficient input and output interface for reading and writing the data and their corresponding indexes. To take advantage of the emerging many-core architectures, we also develop a parallel strategy for indexing using threading technology. This approach complements our on-going MPI-based parallelization efforts. We demonstrate the flexibility of our software by applying it to two of the most commonly used scientific data formats, HDF5 and NetCDF. We present two case studies using data from a particle accelerator model and a global climate model. We also conducted a detailed performance study using these scientific datasets. The results show that FastQuery speeds up the query time by a factor of 2.5x to 50x, and it reduces the indexing time by a factor of 16 on 24 cores.

  6. Multi-facetted Metadata - Describing datasets with different metadata schemas at the same time

    NASA Astrophysics Data System (ADS)

    Ulbricht, Damian; Klump, Jens; Bertelmann, Roland

    2013-04-01

    Inspired by the wish to re-use research data a lot of work is done to bring data systems of the earth sciences together. Discovery metadata is disseminated to data portals to allow building of customized indexes of catalogued dataset items. Data that were once acquired in the context of a scientific project are open for reappraisal and can now be used by scientists that were not part of the original research team. To make data re-use easier, measurement methods and measurement parameters must be documented in an application metadata schema and described in a written publication. Linking datasets to publications - as DataCite [1] does - requires again a specific metadata schema and every new use context of the measured data may require yet another metadata schema sharing only a subset of information with the meta information already present. To cope with the problem of metadata schema diversity in our common data repository at GFZ Potsdam we established a solution to store file-based research data and describe these with an arbitrary number of metadata schemas. Core component of the data repository is an eSciDoc infrastructure that provides versioned container objects, called eSciDoc [2] "items". The eSciDoc content model allows assigning files to "items" and adding any number of metadata records to these "items". The eSciDoc items can be submitted, revised, and finally published, which makes the data and metadata available through the internet worldwide. GFZ Potsdam uses eSciDoc to support its scientific publishing workflow, including mechanisms for data review in peer review processes by providing temporary web links for external reviewers that do not have credentials to access the data. Based on the eSciDoc API, panMetaDocs [3] provides a web portal for data management in research projects. PanMetaDocs, which is based on panMetaWorks [4], is a PHP based web application that allows to describe data with any XML-based schema. It uses the eSciDoc infrastructures

  7. Exploring Gigabyte Datasets in Real Time: Architectures, Interfaces and Time-Critical Design

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    Architectures and Interfaces: The implications of real-time interaction on software architecture design: decoupling of interaction/graphics and computation into asynchronous processes. The performance requirements of graphics and computation for interaction. Time management in such an architecture. Examples of how visualization algorithms must be modified for high performance. Brief survey of interaction techniques and design, including direct manipulation and manipulation via widgets. talk discusses how human factors considerations drove the design and implementation of the virtual wind tunnel. Time-Critical Design: A survey of time-critical techniques for both computation and rendering. Emphasis on the assignment of a time budget to both the overall visualization environment and to each individual visualization technique in the environment. The estimation of the benefit and cost of an individual technique. Examples of the modification of visualization algorithms to allow time-critical control.

  8. Exploring the new long-term (150 years) precipitation dataset in Azores archipelago

    NASA Astrophysics Data System (ADS)

    Hernández, Armand; Trigo, Ricardo M.; Kutiel, Haim; Valente, Maria A.; Sigró, Javier

    2015-04-01

    Within the scope of the two major international projects of long-term reanalysis for the 20th century coordinated by NOAA (Compo et al. 2011) and ECMWF (Hersbach et al. 2013) the IDL Institute from the University of Lisbon has digitized a large number of long-term stations records from Portugal and former Portuguese Colonies (Stickler et al. 2014). Recently we have finished the digitization of all precipitation values from Ponta Delgada (capital of the Azores archipelago) obtaining an uninterrupted precipitation monthly time series since 1864 and additionally an almost complete corresponding daily precipitation series, with the exception of some years (1864/1872; 1878/1879; 1888/1905; 1931; 1936 and 1938) for which only monthly values are available. Here, we present an annually, seasonally and daily resolution study of the rainfall regime in Ponta Delgada for the last 150 years and the North Atlantic Oscillation (NAO) influence over this precipitation regime. The distribution of precipitation presents an evident seasonal pattern, with a strong difference between the 'rainy season' (November/March) and the 'dry season' (June/August) with very little rainfall. April/May and September/October correspond to the transitional seasons. The mean annual rainfall in Ponta Delgada is approximately 910 mm and is accumulated (on average) in about 120 rainy days. The precipitation regime in Azores archipelago reveals large inter-annual and intra-annual variability and both have increased considerably in the last decades. The entire studied period (1865-2012) shows an increase in the rainfall conditions between a drier earlier period (1865-1938) and a wetter recent period (1939-2012). At daily resolution, we have used an approach based on different characteristics of rain spells (consecutive days with rainfall accumulation) that has been proved to be satisfactory for the analysis of the different parameters related to the rainfall regime (Kutiel and Trigo, 2014). This approach shows that the increase in precipitation is mainly due to more intense events which are reflected by higher rain spell yields (amount of precipitation) and rain spell intensity (amount of precipitation by day) values in the last decades. On the other hand, despite the fact that one of the most widely used NAO definitions includes sea level pressure from the Ponta Delgada station, its long-term impact on the Azores archipelago climate is not well established yet. Here, we assessed the NAO influence over the precipitation regime according to Spearman's rank correlation coefficients. Results show that the inter-annual variability of precipitation is largely modulated by the NAO mode. Correlation values of r=-0.90, r=-0.79 and r=-0.63 were obtained for years with positive (>1) or negative (

  9. Characteristics of "Controversial" Children: An Exploration of Teacher and Parent Social Behavior Rating Scale Datasets

    ERIC Educational Resources Information Center

    Hill, Diane K.; Merrell, Kenneth W.

    2004-01-01

    The term "controversial" has been used in the professional literature to describe children and adolescents who have the seemingly paradoxical quality of being both socially skilled and antisocial. Although there have been some widely influential studies regarding controversial children and youth, there has been relatively little research in this…

  10. Exploring Scale Effect Using Geographically Weighted Regression on Mass Dataset of Urban Robbery

    NASA Astrophysics Data System (ADS)

    Yavuz, Ö.; Tecim, V.

    2013-05-01

    Urban geographers have been studying to explain factors influencing crime on cases limited by their study areas. Researchers have a common opinion that explanatory variables modelling crime on those cases might be irrelevant for another one. None of the researchers tested significance of these variables with changing scales of the study area. Because their data did not allow them to study with different scales. This research examines the scale effect with various data from a wide range of data sources. Geographically Weighted Regression (GWR) method is used to explain that effect, after organizing data by Geographical Information System (GIS) technologies. Explanatory variables deduced for district scale are different from those for grid scale. Hence, the explanatory variables may change not only for different geographical areas but also for different scales of the same area.

  11. Lighting the Way through Scientific Discourse

    ERIC Educational Resources Information Center

    Yang, Li-hsuan

    2008-01-01

    This article describes a thought-provoking lesson that compares various arrangements of lamp-battery circuits to help students develop the motivation and competence to participate in scientific discourse for knowledge construction. Through experimentation and discourse, students explore concepts about voltage, current, resistance, and Ohm's law.…

  12. Promoting Scientific and Technological Literacy: Teaching Biodiesel.

    ERIC Educational Resources Information Center

    Eilks, Ingo

    2000-01-01

    Describes a unit on biodiesel from a socio-critical chemistry teaching approach aimed at improving student participation and decision making. Explores the use of biodiesel (chemically changed vegetable oils), especially in Europe. The unit proved to be successful as students participated enthusiastically and social and scientific goals were…

  13. Classroom Critters and the Scientific Method.

    ERIC Educational Resources Information Center

    Kneidel, Sally

    This resource book presents 37 behavioral experiments that can be performed with commonly-found classroom animals including hamsters, gerbils, mice, goldfish, guppies, anolis lizards, kittens, and puppies. Each experiment explores the five steps of the scientific method: (1) Question; (2) Hypothesis; (3) Methods; (4) Result; and (5) Conclusion.…

  14. Scientific Misconduct and the Plagiarism Cases.

    ERIC Educational Resources Information Center

    Parrish, Debra

    1995-01-01

    Discussion of scientific misconduct, particularly plagiarism, explores the legal issues and compares the processes by which the Office of Research Integrity and the National Science Foundation conduct investigations and evaluate misconduct allegations. Relationships between allegations of plagiarism, copyright infringement, and theft of…

  15. Encouraging Balanced Scientific Research through Formal Debate

    ERIC Educational Resources Information Center

    Yurgelun, Nancy

    2007-01-01

    The new Connecticut science standards include a "Science, Technology, and Society" (STS) standard for each grade level. This standard encourages students to explore how scientific knowledge affects the quality of their lives. By relating science concepts to real-world decision making, STS investigations give students a framework through which they…

  16. Image Attributes: A Study of Scientific Diagrams.

    ERIC Educational Resources Information Center

    Brunskill, Jeff; Jorgensen, Corinne

    2002-01-01

    Discusses advancements in imaging technology and increased user access to digital images, as well as efforts to develop adequate indexing and retrieval methods for image databases. Describes preliminary results of a study of undergraduates that explored the attributes naive subjects use to describe scientific diagrams. (Author/LRW)

  17. Chaos Theory, Philosophically Old, Scientifically New.

    ERIC Educational Resources Information Center

    Butz, Michael R.

    1995-01-01

    Chaos theory has recently become a central area of scientific interest in psychology. This article explores the psychological meaning and deeper philosophical issues and cultural roots surrounding various views of chaos and provides a multicultural perspective of origins and development of the idea of chaos and its relationship to chaos theory.…

  18. Applications in the Academic and Scientific Community.

    ERIC Educational Resources Information Center

    Perspectives in Computing, 1983

    1983-01-01

    The six articles in this journal reflect the role of computers in the academic and scientific communities, discussing the relationship between universities and industry, communication networks, light-scattering, data processing during seismic exploration, and computer applications in publishing and archaeological site management. It is available…

  19. Digital Rocks Portal: a sustainable platform for imaged dataset sharing, translation and automated analysis

    NASA Astrophysics Data System (ADS)

    Prodanovic, M.; Esteva, M.; Hanlon, M.; Nanda, G.; Agarwal, P.

    2015-12-01

    Recent advances in imaging have provided a wealth of 3D datasets that reveal pore space microstructure (nm to cm length scale) and allow investigation of nonlinear flow and mechanical phenomena from first principles using numerical approaches. This framework has popularly been called "digital rock physics". Researchers, however, have trouble storing and sharing the datasets both due to their size and the lack of standardized image types and associated metadata for volumetric datasets. This impedes scientific cross-validation of the numerical approaches that characterize large scale porous media properties, as well as development of multiscale approaches required for correct upscaling. A single research group typically specializes in an imaging modality and/or related modeling on a single length scale, and lack of data-sharing infrastructure makes it difficult to integrate different length scales. We developed a sustainable, open and easy-to-use repository called the Digital Rocks Portal, that (1) organizes images and related experimental measurements of different porous materials, (2) improves access to them for a wider community of geosciences or engineering researchers not necessarily trained in computer science or data analysis. Once widely accepter, the repository will jumpstart productivity and enable scientific inquiry and engineering decisions founded on a data-driven basis. This is the first repository of its kind. We show initial results on incorporating essential software tools and pipelines that make it easier for researchers to store and reuse data, and for educators to quickly visualize and illustrate concepts to a wide audience. For data sustainability and continuous access, the portal is implemented within the reliable, 24/7 maintained High Performance Computing Infrastructure supported by the Texas Advanced Computing Center (TACC) at the University of Texas at Austin. Long-term storage is provided through the University of Texas System Research

  20. NSB endorses Explorer

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    The National Science Board (NSB) recently voted to endorse a program of scientific ocean drilling that would replace the 14-yearold Glomar Challenger with the Glomar Explorer as the pillar of scientific drilling. This vote by the policymaking arm of the National Science Foundation (NSF) gives another boost to the proposed drilling plan. The plan also has the blessings of the Conference on Scientific Ocean Drilling (COSOD) and of the National Academy of Sciences' Committee on Ocean Drilling.NSF now will approach the Office of Science and Technology Policy (OSTP) and the Office of Management and Budget (OMB) to request that $9 million of NSF funds be transferred to the Advanced Ocean Drilling (AOD) program in fiscal 1983 for the next design stages for the Explorer (Eos, March 2, 1982, p. 179). With the support of NSB, COSOD, and the NAS committee, the request goes to OSTP and OMB with strong backing. If OSTP and OMB give the transfer the green light, Congress will review the request.

  1. Consensus gene regulatory networks: combining multiple microarray gene expression datasets

    NASA Astrophysics Data System (ADS)

    Peeling, Emma; Tucker, Allan

    2007-09-01

    In this paper we present a method for modelling gene regulatory networks by forming a consensus Bayesian network model from multiple microarray gene expression datasets. Our method is based on combining Bayesian network graph topologies and does not require any special pre-processing of the datasets, such as re-normalisation. We evaluate our method on a synthetic regulatory network and part of the yeast heat-shock response regulatory network using publicly available yeast microarray datasets. Results are promising; the consensus networks formed provide a broader view of the potential underlying network, obtaining an increased true positive rate over networks constructed from a single data source.

  2. Politics and the erosion of federal scientific capacity: restoring scientific integrity to public health science.

    PubMed

    Rest, Kathleen M; Halpern, Michael H

    2007-11-01

    Our nation's health and prosperity are based on a foundation of independent scientific discovery. Yet in recent years, political interference in federal government science has become widespread, threatening this legacy. We explore the ways science has been misused, the attempts to measure the pervasiveness of this problem, and the effects on our long-term capacity to meet today's most complex public health challenges. Good government and a functioning democracy require public policy decisions to be informed by independent science. The scientific and public health communities must speak out to defend taxpayer-funded science from political interference. Encouragingly, both the scientific community and Congress are exploring ways to restore scientific integrity to federal policymaking. PMID:17901422

  3. Projected sequential Gaussian processes: A C++ tool for interpolation of large datasets with heterogeneous noise

    NASA Astrophysics Data System (ADS)

    Barillec, Remi; Ingram, Ben; Cornford, Dan; Csató, Lehel

    2011-03-01

    Heterogeneous datasets arise naturally in most applications due to the use of a variety of sensors and measuring platforms. Such datasets can be heterogeneous in terms of the error characteristics and sensor models. Treating such data is most naturally accomplished using a Bayesian or model-based geostatistical approach; however, such methods generally scale rather badly with the size of dataset, and require computationally expensive Monte Carlo based inference. Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential Bayesian framework for inference in such projected processes is presented. The observations are considered one at a time which avoids the need for high dimensional integrals typically required in a Bayesian approach. A C++ library, gptk, which is part of the INTAMAP web service, is introduced which implements projected, sequential estimation and adds several novel features. In particular the library includes the ability to use a generic observation operator, or sensor model, to permit data fusion. It is also possible to cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the covariance parameters is explored, including the impact of the projected process approximation on likelihood profiles. We illustrate the projected sequential method in application to synthetic and real datasets. Limitations and extensions are discussed.

  4. A New Combinatorial Optimization Approach for Integrated Feature Selection Using Different Datasets: A Prostate Cancer Transcriptomic Study

    PubMed Central

    Puthiyedth, Nisha; Riveros, Carlos; Berretta, Regina; Moscato, Pablo

    2015-01-01

    Background The joint study of multiple datasets has become a common technique for increasing statistical power in detecting biomarkers obtained from smaller studies. The approach generally followed is based on the fact that as the total number of samples increases, we expect to have greater power to detect associations of interest. This methodology has been applied to genome-wide association and transcriptomic studies due to the availability of datasets in the public domain. While this approach is well established in biostatistics, the introduction of new combinatorial optimization models to address this issue has not been explored in depth. In this study, we introduce a new model for the integration of multiple datasets and we show its application in transcriptomics. Methods We propose a new combinatorial optimization problem that addresses the core issue of biomarker detection in integrated datasets. Optimal solutions for this model deliver a feature selection from a panel of prospective biomarkers. The model we propose is a generalised version of the (α,β)-k-Feature Set problem. We illustrate the performance of this new methodology via a challenging meta-analysis task involving six prostate cancer microarray datasets. The results are then compared to the popular RankProd meta-analysis tool and to what can be obtained by analysing the individual datasets by statistical and combinatorial methods alone. Results Application of the integrated method resulted in a more informative signature than the rank-based meta-analysis or individual dataset results, and overcomes problems arising from real world datasets. The set of genes identified is highly significant in the context of prostate cancer. The method used does not rely on homogenisation or transformation of values to a common scale, and at the same time is able to capture markers associated with subgroups of the disease. PMID:26106884

  5. Precipitation Datasets for the GPM Iowa Flood Studies (IFloodS) Field Experiment

    NASA Astrophysics Data System (ADS)

    Krajewski, Witold; Seo, Bong Chul; Goska, Radoslaw; Demir, Ibrahim; Elsaadani, Mohamed

    2013-04-01

    In the spring of 2013 NASA will launch a field experiment called Iowa Flood Studies (IFloodS) as a part of the Ground Validation (GV) program for the Global Precipitation Measurement (GPM) mission. The purpose of IFloodS is to enhance the understanding of flood-related precipitation processes in events worldwide. While a number of scientific instruments such as ground-based radars, rain gauges, and disdrometers will be deployed to monitor upcoming rainfall events in Iowa, various precipitation datasets from weather radars, satellites, and rain gauges have been collected over past several years (up to eleven years) and processed to support validation and flood-related rainfall-runoff modeling studies. These historical datasets include TMPA (TRMM Multi-satellite Precipitation Analysis), PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network), and CMORPH (Climate Prediction Center morphing method) products for satellite estimates; Stage IV, Hydro-NEXRAD, NMQ (National Mosaic and Multi-Sensor QPE), and IFC (Iowa Flood Center) products for radar estimates; ASOS (Automated Surface Observing System), NWS COOP (Cooperative Observer Program), and IFC research network for rain gauge data. These datasets have all different temporal and spatial resolutions as well as uncertainty characteristics, and this provides benefits for product validation using multi-scale data as well as hydrologic modeling where different models require different scale of rainfall inputs. The datasets are organized in a database and available via a web browser-based interface, allowing the users to specify time and space domain of interest. The database connects users' requests with data storage and information and also assists them in finding significant rainfall events with ease and speed by showing basic rainfall statistics for the domain defined by users.

  6. A Tenebrionid beetle's dataset (Coleoptera, Tenebrionidae) from Peninsula Valdés (Chubut, Argentina).

    PubMed

    Cheli, Germán H; Flores, Gustavo E; Román, Nicolás Martínez; Podestá, Darío; Mazzanti, Renato; Miyashiro, Lidia

    2013-12-18

    The Natural Protected Area Peninsula Valdés, located in Northeastern Patagonia, is one of the largest conservation units of arid lands in Argentina. Although this area has been in the UNESCO World Heritage List since 1999, it has been continually exposed to sheep grazing and cattle farming for more than a century which have had a negative impact on the local environment. Our aim is to describe the first dataset of tenebrionid beetle species living in Peninsula Valdés and their relationship to sheep grazing. The dataset contains 118 records on 11 species and 198 adult individuals collected. Beetles were collected using pitfall traps in the two major environmental units of Peninsula Valdés, taking into account grazing intensities over a three year time frame from 2005-2007. The Data quality was enhanced following the best practices suggested in the literature during the digitalization and geo-referencing processes. Moreover, identification of specimens and current accurate spelling of scientific names were reviewed. Finally, post-validation processes using DarwinTest software were applied. Specimens have been deposited at Entomological Collection of the Centro Nacional Patagónico (CENPAT-CONICET). The dataset is part of the database of this collection and has been published on the internet through GBIF Integrated Publishing Toolkit (IPT) (http://data.gbif.org/datasets/resource/14669/). Furthermore, it is the first dataset for tenebrionid beetles of arid Patagonia available in GBIF database, and it is the first one based on a previously designed and standardized sampling to assess the interaction between these beetles and grazing in the area. The main purposes of this dataset are to ensure accessibility to data associated with Tenebrionidae specimens from Peninsula Valdés (Chubut, Argentina), also to contribute to GBIF with primary data about Patagonian tenebrionids and finally, to promote the Entomological Collection of Centro Nacional Patagónico (CENPAT

  7. Scalable and portable visualization of large atomistic datasets

    NASA Astrophysics Data System (ADS)

    Sharma, Ashish; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2004-10-01

    A scalable and portable code named Atomsviewer has been developed to interactively visualize a large atomistic dataset consisting of up to a billion atoms. The code uses a hierarchical view frustum-culling algorithm based on the octree data structure to efficiently remove atoms outside of the user's field-of-view. Probabilistic and depth-based occlusion-culling algorithms then select atoms, which have a high probability of being visible. Finally a multiresolution algorithm is used to render the selected subset of visible atoms at varying levels of detail. Atomsviewer is written in C++ and OpenGL, and it has been tested on a number of architectures including Windows, Macintosh, and SGI. Atomsviewer has been used to visualize tens of millions of atoms on a standard desktop computer and, in its parallel version, up to a billion atoms. Program summaryTitle of program: Atomsviewer Catalogue identifier: ADUM Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUM Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: 2.4 GHz Pentium 4/Xeon processor, professional graphics card; Apple G4 (867 MHz)/G5, professional graphics card Operating systems under which the program has been tested: Windows 2000/XP, Mac OS 10.2/10.3, SGI IRIX 6.5 Programming languages used: C++, C and OpenGL Memory required to execute with typical data: 1 gigabyte of RAM High speed storage required: 60 gigabytes No. of lines in the distributed program including test data, etc.: 550 241 No. of bytes in the distributed program including test data, etc.: 6 258 245 Number of bits in a word: Arbitrary Number of processors used: 1 Has the code been vectorized or parallelized: No Distribution format: tar gzip file Nature of physical problem: Scientific visualization of atomic systems Method of solution: Rendering of atoms using computer graphic techniques, culling algorithms for data

  8. Mars Exploration Rover Surface Operations

    NASA Astrophysics Data System (ADS)

    Erickson, J. K.; Adler, M.; Crisp, J.; Mishkin, A.; Welch, R.

    2002-01-01

    The Mars Exploration Rover Project is an ambitious mission to land two highly capable rovers on Mars and concurrently explore the Martian surface for three months each. Launching in 2003, surface operations will commence on January 4, 2004 with the first landing, followed by the second landing on January 25. The prime mission for the second rover will end on April 27, 2004. The science objectives of exploring multiple locations within each of two widely separated and scientifically distinct landing sites will be accomplished along with the demonstration of key surface exploration technologies for future missions. This paper will provide an overview of the planned mission, and also focus on the different operations challenges inherent in operating these two very off road vehicles, and the solutions adopted to enable the best utilization of their capabilities for high science return and responsiveness to scientific discovery.

  9. Exploration Geochemistry.

    ERIC Educational Resources Information Center

    Closs, L. Graham

    1983-01-01

    Contributions in mineral-deposit model formulation, geochemical exploration in glaciated and arid environments, analytical and sampling problems, and bibliographic research were made in symposia held and proceedings volumes published during 1982. Highlights of these symposia and proceedings and comments on trends in exploration geochemistry are…

  10. Hadley cell dynamics in Japanese Reanalysis-55 dataset: evaluation using other reanalysis datasets and global radiosonde network observations

    NASA Astrophysics Data System (ADS)

    Mathew, Sneha Susan; Kumar, Karanam Kishore; Subrahmanyam, Kandula Venkata

    2016-02-01

    Hadley circulation (HC) is a planetary scale circulation spanning one-third of the globe from tropics to the sub-tropics. Recent changes in HC width and its temporal variability is a topic of paramount interest because of the climate implications it carry alongside. The present study attempts to bring out the subtropical climate change indications in the comparatively new Japanese Re-analysis (JRA55) dataset by means of the mean meridional stream function (MSF). The observed features of HC in JRA55 are found to be reproduced in NCEP, MERRA and ECMWF datasets, with notable differences in the magnitudes of MSF. The calculated annual cycle of HC edges, center and total width from this dataset closely resembles the annual cycle of the respective parameters derived from the rest of the datasets, with very less inter-annual variability. For the first time, MSF estimated using four reanalysis datasets (JRA55, NCEP, MERRA and ECMWF datasets) are verified with observations from integrated global radiosonde archive datasets, using the process of subsampling. The features so estimated show a high degree of similarity amongst each other as well as with observations. The monthly trend in the total width of the HC is quantified to show a maximum of expansion during the month of July, which is significant at the 95 % confidence interval for all datasets. The present paper also discusses the presence of a `minor circulation' feature in the northern hemisphere which is centered on 34°N during the June and July months, but not in all years. The significance of the present study lies in evaluating the relatively new JRA55 datasets with widely used reanalysis data sets and radiosonde observations and revelation of a minor circulation not discussed hitherto in the context of HC dynamics.

  11. Level 2 Ancillary Products and Datasets Algorithm Theoretical Basis

    NASA Technical Reports Server (NTRS)

    Diner, D.; Abdou, W.; Gordon, H.; Kahn, R.; Knyazikhin, Y.; Martonchik, J.; McDonald, D.; McMuldroch, S.; Myneni, R.; West, R.

    1999-01-01

    This Algorithm Theoretical Basis (ATB) document describes the algorithms used to generate the parameters of certain ancillary products and datasets used during Level 2 processing of Multi-angle Imaging SpectroRadiometer (MIST) data.

  12. Constructing Phylogenetic Networks Based on the Isomorphism of Datasets

    PubMed Central

    Zhang, Zhibin; Li, Yanjuan

    2016-01-01

    Constructing rooted phylogenetic networks from rooted phylogenetic trees has become an important problem in molecular evolution. So far, many methods have been presented in this area, in which most efficient methods are based on the incompatible graph, such as the CASS, the LNETWORK, and the BIMLR. This paper will research the commonness of the methods based on the incompatible graph, the relationship between incompatible graph and the phylogenetic network, and the topologies of incompatible graphs. We can find out all the simplest datasets for a topology G and construct a network for every dataset. For any one dataset 𝒞, we can compute a network from the network representing the simplest dataset which is isomorphic to 𝒞. This process will save more time for the algorithms when constructing networks. PMID:27547759

  13. BMDExpress Data Viewer: A Visualization Tool to Analyze BMDExpress Datasets

    EPA Science Inventory

    Regulatory agencies increasingly apply benchmark dose (BMD) modeling to determine points of departure in human risk assessments. BMDExpress applies BMD modeling to transcriptomics datasets and groups genes to biological processes and pathways for rapid assessment of doses at whic...

  14. Constructing Phylogenetic Networks Based on the Isomorphism of Datasets.

    PubMed

    Wang, Juan; Zhang, Zhibin; Li, Yanjuan

    2016-01-01

    Constructing rooted phylogenetic networks from rooted phylogenetic trees has become an important problem in molecular evolution. So far, many methods have been presented in this area, in which most efficient methods are based on the incompatible graph, such as the CASS, the LNETWORK, and the BIMLR. This paper will research the commonness of the methods based on the incompatible graph, the relationship between incompatible graph and the phylogenetic network, and the topologies of incompatible graphs. We can find out all the simplest datasets for a topology G and construct a network for every dataset. For any one dataset , we can compute a network from the network representing the simplest dataset which is isomorphic to . This process will save more time for the algorithms when constructing networks. PMID:27547759

  15. Identifying Martian Hydrothermal Sites: Geological Investigation Utilizing Multiple Datasets

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Baker, V. R.; Anderson, R. C.; Scott, D. H.; Rice, J. W., Jr.; Hare, T. M.

    2000-01-01

    Comprehensive geological investigations of martian landscapes that may have been modified by magmatic-driven hydrothermal activity, utilizing multiple datasets, will yield prime target sites for future hydrological, mineralogical, and biological investigations.

  16. Comparison of Eight Different Precipitation Datasets for South America

    NASA Astrophysics Data System (ADS)

    Pinto, L. C.; Costa, M. H.; Diniz, L. F.

    2007-05-01

    Long and continuous meteorological data series for large areas are hard to obtain, so several groups have developed climate datasets generated through the combination of models and observed and remote sensing data, including reanalysis products. This study compares eight different precipitation datasets for South America (NCEP/NCAR-2, ERA-40, CMAP, GPCP, CRU, CPTEC, TRMM, Legates and Willmott, Leemans and Cramer). For each dataset, we analyze the four moments of the data distribution (mean, variance, skewness, kurtosis), for latitudinal variation, for the major river basins and for the major vegetation types in the continent, allowing to identify the geographical variations in each dataset. We verified that significant differences exist among the precipitation products.

  17. A polymer dataset for accelerated property prediction and design

    PubMed Central

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi

    2016-01-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided. PMID:26927478

  18. ISRUC-Sleep: A comprehensive public dataset for sleep researchers.

    PubMed

    Khalighi, Sirvan; Sousa, Teresa; Santos, José Moutinho; Nunes, Urbano

    2016-02-01

    To facilitate the performance comparison of new methods for sleep patterns analysis, datasets with quality content, publicly-available, are very important and useful. We introduce an open-access comprehensive sleep dataset, called ISRUC-Sleep. The data were obtained from human adults, including healthy subjects, subjects with sleep disorders, and subjects under the effect of sleep medication. Each recording was randomly selected between PSG recordings that were acquired by the Sleep Medicine Centre of the Hospital of Coimbra University (CHUC). The dataset comprises three groups of data: (1) data concerning 100 subjects, with one recording session per subject; (2) data gathered from 8 subjects; two recording sessions were performed per subject, and (3) data collected from one recording session related to 10 healthy subjects. The polysomnography (PSG) recordings, associated with each subject, were visually scored by two human experts. Comparing the existing sleep-related public datasets, ISRUC-Sleep provides data of a reasonable number of subjects with different characteristics such as: data useful for studies involving changes in the PSG signals over time; and data of healthy subjects useful for studies involving comparison of healthy subjects with the patients, suffering from sleep disorders. This dataset was created aiming to complement existing datasets by providing easy-to-apply data collection with some characteristics not covered yet. ISRUC-Sleep can be useful for analysis of new contributions: (i) in biomedical signal processing; (ii) in development of ASSC methods; and (iii) on sleep physiology studies. To evaluate and compare new contributions, which use this dataset as a benchmark, results of applying a subject-independent automatic sleep stage classification (ASSC) method on ISRUC-Sleep dataset are presented. PMID:26589468

  19. Sampling Within k-Means Algorithm to Cluster Large Datasets

    SciTech Connect

    Bejarano, Jeremy; Bose, Koushiki; Brannan, Tyler; Thomas, Anita; Adragni, Kofi; Neerchal, Nagaraj; Ostrouchov, George

    2011-08-01

    Due to current data collection technology, our ability to gather data has surpassed our ability to analyze it. In particular, k-means, one of the simplest and fastest clustering algorithms, is ill-equipped to handle extremely large datasets on even the most powerful machines. Our new algorithm uses a sample from a dataset to decrease runtime by reducing the amount of data analyzed. We perform a simulation study to compare our sampling based k-means to the standard k-means algorithm by analyzing both the speed and accuracy of the two methods. Results show that our algorithm is significantly more efficient than the existing algorithm with comparable accuracy. Further work on this project might include a more comprehensive study both on more varied test datasets as well as on real weather datasets. This is especially important considering that this preliminary study was performed on rather tame datasets. Also, these datasets should analyze the performance of the algorithm on varied values of k. Lastly, this paper showed that the algorithm was accurate for relatively low sample sizes. We would like to analyze this further to see how accurate the algorithm is for even lower sample sizes. We could find the lowest sample sizes, by manipulating width and confidence level, for which the algorithm would be acceptably accurate. In order for our algorithm to be a success, it needs to meet two benchmarks: match the accuracy of the standard k-means algorithm and significantly reduce runtime. Both goals are accomplished for all six datasets analyzed. However, on datasets of three and four dimension, as the data becomes more difficult to cluster, both algorithms fail to obtain the correct classifications on some trials. Nevertheless, our algorithm consistently matches the performance of the standard algorithm while becoming remarkably more efficient with time. Therefore, we conclude that analysts can use our algorithm, expecting accurate results in considerably less time.

  20. Toward Computational Cumulative Biology by Combining Models of Biological Datasets

    PubMed Central

    Faisal, Ali; Peltonen, Jaakko; Georgii, Elisabeth; Rung, Johan; Kaski, Samuel

    2014-01-01

    A main challenge of data-driven sciences is how to make maximal use of the progressively expanding databases of experimental datasets in order to keep research cumulative. We introduce the idea of a modeling-based dataset retrieval engine designed for relating a researcher's experimental dataset to earlier work in the field. The search is (i) data-driven to enable new findings, going beyond the state of the art of keyword searches in annotations, (ii) modeling-driven, to include both biological knowledge and insights learned from data, and (iii) scalable, as it is accomplished without building one unified grand model of all data. Assuming each dataset has been modeled beforehand, by the researchers or automatically by database managers, we apply a rapidly computable and optimizable combination model to decompose a new dataset into contributions from earlier relevant models. By using the data-driven decomposition, we identify a network of interrelated datasets from a large annotated human gene expression atlas. While tissue type and disease were major driving forces for determining relevant datasets, the found relationships were richer, and the model-based search was more accurate than the keyword search; moreover, it recovered biologically meaningful relationships that are not straightforwardly visible from annotations—for instance, between cells in different developmental stages such as thymocytes and T-cells. Data-driven links and citations matched to a large extent; the data-driven links even uncovered corrections to the publication data, as two of the most linked datasets were not highly cited and turned out to have wrong publication entries in the database. PMID:25427176