Science.gov

Sample records for explosion containment vessel

  1. Containment of explosions in spherical vessels

    SciTech Connect

    Duffey, T.A.; Greene, J.M.; Baker, W.E.; Lewis, B.B.

    1992-12-31

    A correlation of the experimentally recorded dynamic response of a spherical containment vessel with theoretical finite element calculations is presented. Three experiments were performed on the 6-ft-diameter steel vessel using centrally located 12-lb. and 40-lb. high explosive charges. Pressure-time loading on the inner wall of the vessel was recorded for each test using pressure transducers. Resulting dynamic response of the vessel was recorded for each test using strain gages mounted at selected locations on the outer surface of the vessel. Response of the vessel was primarily elastic. A finite element model of the vessel was run using DYNA3D, a dynamic structural analysis code. Pressure loading for the finite element model was based on results from a one-dimensional reactive hydrodynamics code. Correlations between experiments and analysis were generally good for the tests for frequency and strain magnitude at most locations. Comparisons of experimental and calculated pressure-time histories were less satisfactory.

  2. Containment of explosions in spherical vessels

    SciTech Connect

    Duffey, T.A.; Greene, J.M. ); Baker, W.E. . Dept. of Mechanical Engineering); Lewis, B.B. )

    1992-01-01

    A correlation of the experimentally recorded dynamic response of a spherical containment vessel with theoretical finite element calculations is presented. Three experiments were performed on the 6-ft-diameter steel vessel using centrally located 12-lb. and 40-lb. high explosive charges. Pressure-time loading on the inner wall of the vessel was recorded for each test using pressure transducers. Resulting dynamic response of the vessel was recorded for each test using strain gages mounted at selected locations on the outer surface of the vessel. Response of the vessel was primarily elastic. A finite element model of the vessel was run using DYNA3D, a dynamic structural analysis code. Pressure loading for the finite element model was based on results from a one-dimensional reactive hydrodynamics code. Correlations between experiments and analysis were generally good for the tests for frequency and strain magnitude at most locations. Comparisons of experimental and calculated pressure-time histories were less satisfactory.

  3. Containment of explosions in spherical vessels

    NASA Astrophysics Data System (ADS)

    Duffey, T. A.; Greene, J. M.; Baker, W. E.; Lewis, B. B.

    A correlation of the experimentally recorded dynamic response of a spherical containment vessel with theoretical finite element calculations is presented. Three experiments were performed on the 6-ft-diameter steel vessel using centrally located 12-lb. and 40-lb. high explosive charges. Pressure-time loading on the inner wall of the vessel was recorded for each test using pressure transducers. Resulting dynamic response of the vessel was recorded for each test using strain gages mounted at selected locations on the outer surface of the vessel. Response of the vessel was primarily elastic. A finite element model of the vessel was run using DYNA3D, a dynamic structural analysis code. Pressure loading for the finite element model was based on results from a one-dimensional reactive hydrodynamics code. Correlations between experiments and analysis were generally good for the tests for frequency and strain magnitude at most locations. Comparisons of experimental and calculated pressure-time histories were less satisfactory.

  4. EDS V25 containment vessel explosive qualification test report.

    SciTech Connect

    Rudolphi, John Joseph

    2012-04-01

    The V25 containment vessel was procured by the Project Manager, Non-Stockpile Chemical Materiel (PMNSCM) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the first EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel based on the Code Case is nine (9) pounds TNT-equivalent for up to 637 detonations. This limit is an increase from the 4.8 pounds TNT-equivalency rating for previous vessels. This report describes the explosive qualification tests that were performed in the vessel as part of the process for qualifying the vessel for explosive use. The tests consisted of a 11.25 pound TNT equivalent bare charge detonation followed by a 9 pound TNT equivalent detonation.

  5. Probability of in-vessel steam explosion-induced containment failure for a KWU PWR

    SciTech Connect

    Esmaili, H.; Khatib-Rahbar, M.; Zuchuat, O.

    1996-12-31

    During postulated core meltdown accidents in light water reactors, there is a likelihood for an in-vessel steam explosion when the melt contacts the coolant in the lower plenum. The objective of the work described in this paper is to determine the conditional probability of in-vessel steam explosion-induced containment failure for a Kraftwerk Union (KWU) pressurized water reactor (PWR). The energetics of the explosion depends on the mass of the molten fuel that mixes with the coolant and participates in the explosion and on the conversion of fuel thermal energy into mechanical work. The work can result in the generation of dynamic pressures that affect the lower head (and possibly lead to its failure), and it can cause acceleration of a slug (fuel and coolant material) upward that can affect the upper internal structures and vessel head and ultimately cause the failure of the upper head. If the upper head missile has sufficient energy, it can reach the containment shell and penetrate it. The analysis, must therefore, take into account all possible dissipation mechanisms.

  6. Uncertainty quantification of a containment vessel dynamic response subjected to high-explosive detonation impulse loading

    SciTech Connect

    Rodriguez, E. A.; Pepin, J. E.; Thacker, B. H.; Riha, D. S.

    2002-01-01

    Los Alamos National Laboratory (LANL), in cooperation with Southwest Research Institute, has been developing capabilities to provide reliability-based structural evaluation techniques for performing weapon component and system reliability assessments. The development and applications of Probabilistic Structural Analysis Methods (PSAM) is an important ingredient in the overall weapon reliability assessments. Focus, herein, is placed on the uncertainty quantification associated with the structural response of a containment vessel for high-explosive (HE) experiments. The probabilistic dynamic response of the vessel is evaluated through the coupling of the probabilistic code NESSUS with the non-linear structural dynamics code, DYNA-3D. The probabilistic model includes variations in geometry and mechanical properties, such as Young's Modulus, yield strength, and material flow characteristics. Finally, the probability of exceeding a specified strain limit, which is related to vessel failure, is determined.

  7. 33 CFR 401.67 - Explosive vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Explosive vessels. 401.67 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Dangerous Cargo § 401.67 Explosive vessels. A vessel..., shall be deemed for the purpose of these Regulations to be an explosive vessel....

  8. 33 CFR 401.67 - Explosive vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Explosive vessels. 401.67 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Dangerous Cargo § 401.67 Explosive vessels. A vessel..., shall be deemed for the purpose of these Regulations to be an explosive vessel....

  9. 33 CFR 401.67 - Explosive vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Explosive vessels. 401.67 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Dangerous Cargo § 401.67 Explosive vessels. A vessel..., shall be deemed for the purpose of these Regulations to be an explosive vessel....

  10. 33 CFR 401.67 - Explosive vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Explosive vessels. 401.67 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Dangerous Cargo § 401.67 Explosive vessels. A vessel..., shall be deemed for the purpose of these Regulations to be an explosive vessel....

  11. 33 CFR 401.67 - Explosive vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Explosive vessels. 401.67 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Dangerous Cargo § 401.67 Explosive vessels. A vessel..., shall be deemed for the purpose of these Regulations to be an explosive vessel....

  12. Explosive parcel containment and blast mitigation container

    DOEpatents

    Sparks, Michael H. (Frederick County, MD)

    2001-06-12

    The present invention relates to a containment structure for containing and mitigating explosions. The containment structure is installed in the wall of the building and has interior and exterior doors for placing suspicious packages into the containment structure and retrieving them from the exterior of the building. The containment structure has a blast deflection chute and a blowout panel to direct over pressure from explosions away from the building, surrounding structures and people.

  13. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...for freight containers carrying Class 1 (explosive) materials. 176.192 Section 176...VESSEL Detailed Requirements for Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.192...

  14. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...for freight containers carrying Class 1 (explosive) materials. 176.192 Section 176...VESSEL Detailed Requirements for Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.192...

  15. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...for freight containers carrying Class 1 (explosive) materials. 176.192 Section 176...VESSEL Detailed Requirements for Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.192...

  16. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...for freight containers carrying Class 1 (explosive) materials. 176.192 Section 176...VESSEL Detailed Requirements for Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.192...

  17. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...for freight containers carrying Class 1 (explosive) materials. 176.192 Section 176...VESSEL Detailed Requirements for Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.192...

  18. Soft container for explosive nuts

    NASA Technical Reports Server (NTRS)

    Glenn, D. C.; Drummond, W. E.; Miller, G.

    1981-01-01

    Flexible fabric fits over variety of assembly shapes to contain debris produced by detonations or safety tests. Bag material is woven multifilament polyamide or aramid. Belt loops hold bag to clamp. Ring supports explosive nut structure and detonator wires, and after nut is mounted, bag and clamp are slipped over ring and fastened.

  19. Contained high explosive firing facility (CHEFF)

    SciTech Connect

    Stacy, H.L.; Seitz, W.L.; Wackerle, J.; Polcyn, M.; Esparza, E.

    1993-08-01

    A cylindrical vessel capable of totally containing the products and shrapnel resulting from the detonation of 10 kg of TNT (or equivalent) has been designed and built by Southwest Research Institute for and according to the requirements of the Detonation Systems Group (M-7) of Los Alamos National Laboratory. The vessel is 6.0-m long by 3.6-m diameter and is manufactured of 50-mm (elliptical end caps) and 38-mm (cylindrical walls) thick high-strength steel (HY-100). The cylindrical walls of the vessel are lined with 13-mm thick replaceable steel plates for shrapnel protection. The floor is made of steel-covered concrete. Ten large-aperture (254 mm) optical ports are available for instrumentation and four ports are provided for cabling and plumbing. Two qualifying detonation tests of 8.8 kg of C-4 explosive (equivalent to 10 kg TNT) have shown that the maximum strain produced is less than 78% of the elastic limit. The vessel is installed in a converted outdoor firing facility that has been modified to include an insulated and heated metal building to house the vessel and additional instrumentation. A computer-based system for data acquisition, firing control, and the monitoring of vessel response is described.

  20. Composite Vessels for Containment of Extreme Blast Loadings

    SciTech Connect

    Pastrnak, J; Henning, C; Grundler, W; Switzer, V; Hollaway, R; Morrison, J; Hagler, L; Kokko, E; Deteresa, S; Hathcoat, B; Dalder, E

    2004-07-15

    A worldwide trend for explosives testing has been to replace open-air detonations with containment vessels, especially when any hazardous materials are involved. As part of the National Nuclear Security Administration's (NNSA) effort to ensure the safety and reliability of the nation's nuclear stockpile, researchers at Lawrence Livermore National Laboratory have been developing a high performance filament wound composite firing vessel that is nearly radiographically transparent. It was intended to contain a limited number of detonations of metal cased explosive assemblies in radiographic facilities such as the Advanced Hydrodynamic Facility (AHF) being studied by Los Alamos National Laboratory. A 2-meter diameter pressure vessel was designed to contain up to 35 kg (80 lb) of TNT equivalent explosive without leakage. Over the past 5 years a total of three half-scale (1 meter diameter) vessels have been constructed, and two of them were tested to 150% load with 8.2 kg (18-pound) spheres of C4 explosive. The low density and high specific strength advantages used in this composite vessel design may have other additional applications such as transporting sensitive explosives that could otherwise be moved only in very small quantities. Also, it could be used for highly portable, explosive containment systems for law enforcement.

  1. Zirconium hydride containing explosive composition

    DOEpatents

    Walker, Franklin E. (18 Shadow Oak Rd., Danville, CA 94526); Wasley, Richard J. (4290 Colgate Way, Livermore, CA 94550)

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  2. 49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.170 Transport of Class 1 (explosive) materials in freight containers....

  3. 49 CFR 176.166 - Transport of Class 1 (explosive) materials on passenger vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... false Transport of Class 1 (explosive) materials on passenger vessels...Detailed Requirements for Class 1 (Explosive) Materials Passenger Vessels § 176.166 Transport of Class 1 (explosive) materials on passenger...

  4. 49 CFR 176.166 - Transport of Class 1 (explosive) materials on passenger vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... false Transport of Class 1 (explosive) materials on passenger vessels...Detailed Requirements for Class 1 (Explosive) Materials Passenger Vessels § 176.166 Transport of Class 1 (explosive) materials on passenger...

  5. 49 CFR 176.166 - Transport of Class 1 (explosive) materials on passenger vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... false Transport of Class 1 (explosive) materials on passenger vessels...Detailed Requirements for Class 1 (Explosive) Materials Passenger Vessels § 176.166 Transport of Class 1 (explosive) materials on passenger...

  6. 49 CFR 176.194 - Stowage of Class 1 (explosive) materials on magazine vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 false Stowage of Class 1 (explosive) materials on magazine vessels...Detailed Requirements for Class 1 (Explosive) Materials Magazine Vessels § 176.194 Stowage of Class 1 (explosive) materials on magazine...

  7. 49 CFR 176.194 - Stowage of Class 1 (explosive) materials on magazine vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 false Stowage of Class 1 (explosive) materials on magazine vessels...Detailed Requirements for Class 1 (Explosive) Materials Magazine Vessels § 176.194 Stowage of Class 1 (explosive) materials on magazine...

  8. 49 CFR 176.194 - Stowage of Class 1 (explosive) materials on magazine vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 false Stowage of Class 1 (explosive) materials on magazine vessels...Detailed Requirements for Class 1 (Explosive) Materials Magazine Vessels § 176.194 Stowage of Class 1 (explosive) materials on magazine...

  9. 49 CFR 176.166 - Transport of Class 1 (explosive) materials on passenger vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... false Transport of Class 1 (explosive) materials on passenger vessels...Detailed Requirements for Class 1 (Explosive) Materials Passenger Vessels § 176.166 Transport of Class 1 (explosive) materials on passenger...

  10. 49 CFR 176.166 - Transport of Class 1 (explosive) materials on passenger vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... false Transport of Class 1 (explosive) materials on passenger vessels...Detailed Requirements for Class 1 (Explosive) Materials Passenger Vessels § 176.166 Transport of Class 1 (explosive) materials on passenger...

  11. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, C.E.; Scott, D.G.

    1984-06-25

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  12. Contained nuclear explosion breeder reactor system

    SciTech Connect

    Marwick, E.F.

    1982-08-17

    A large free-falling mass with a hollow vertical hole therethrough is intercepted by a smaller sub-critical high velocity downward traveling mass and with a smaller sub-critical high velocity upward traveling mass. A resulting explosion is contained within a large chamber which contains much molten sodium spray which attenuates the effects of the explosion and absorbs the explosion's energy and debris. The heated molten sodium with debris provides useful thermal energy to a heat exchanger means and materials for new masses and for new assemblies that are manufactured from precipitate therefrom. The reactor system is a net consumer of plutonium and converts spent enriched uranium LWR fuels into enriched (mostly U233) uranium by the neutron irradiation of thorium.

  13. Local magnitudes of small contained explosions.

    SciTech Connect

    Chael, Eric Paul

    2009-12-01

    The relationship between explosive yield and seismic magnitude has been extensively studied for underground nuclear tests larger than about 1 kt. For monitoring smaller tests over local ranges (within 200 km), we need to know whether the available formulas can be extrapolated to much lower yields. Here, we review published information on amplitude decay with distance, and on the seismic magnitudes of industrial blasts and refraction explosions in the western U. S. Next we measure the magnitudes of some similar shots in the northeast. We find that local magnitudes ML of small, contained explosions are reasonably consistent with the magnitude-yield formulas developed for nuclear tests. These results are useful for estimating the detection performance of proposed local seismic networks.

  14. Residual Stress Measurements of Explosively Clad Cylindrical Pressure Vessels

    SciTech Connect

    Taylor, Douglas J; Watkins, Thomas R; Hubbard, Camden R; Hill, M. R.; Meith, W. A.

    2012-01-01

    Tantalum refractory liners were explosively clad into cylindrical pressure vessels, some of which had been previously autofrettaged. Using explosive cladding, the refractory liner formed a metallurgical bond with the steel of the pressure vessel at a cost of induced strain. Two techniques were employed to determine the residual stress state of the clad steel cylinders: neutron diffraction and mechanical slitting. Neutron diffraction is typically nondestructive; however, due to attenuation along the beam path, the cylinders had to be sectioned into rings that were nominally 25 mm thick. Slitting is a destructive method, requiring the sectioning of the cylindrical samples. Both techniques provided triaxial stress data and useful information on the effects of explosive cladding. The stress profiles in the hoop and radial directions were similar for an autofrettaged, nonclad vessel and a clad, nonautofrettaged vessel. The stress profiles in the axial direction appeared to be different. Further, the data suggested that residual stresses from the autofrettage and explosive cladding processes were not additive, in part due to evidence of reverse yielding. The residual stress data are presented, compared and discussed.

  15. Testing of a steel containment vessel model

    SciTech Connect

    Luk, V.K.; Hessheimer, M.F.; Matsumoto, T.; Komine, K.; Costello, J.F.

    1997-04-01

    A mixed-scale containment vessel model, with 1:10 in containment geometry and 1:4 in shell thickness, was fabricated to represent an improved, boiling water reactor (BWR) Mark II containment vessel. A contact structure, installed over the model and separated at a nominally uniform distance from it, provided a simplified representation of a reactor shield building in the actual plant. This paper describes the pretest preparations and the conduct of the high pressure test of the model performed on December 11-12, 1996. 4 refs., 2 figs.

  16. 49 CFR 176.166 - Transport of Class 1 (explosive) materials on passenger vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials on....166 Transport of Class 1 (explosive) materials on passenger vessels. (a) Only the following Class 1 (explosive) materials may be transported as cargo on passenger vessels: (1) Division 1.4...

  17. An experimental investigation of flame behavior during cylindrical vessel explosions

    SciTech Connect

    Starke, R.; Roth, P.

    1986-12-01

    The propagation of premixed flames centrally ignited at one of the end flanges of a closed cylindrical vessel and the flame-induced fluid flow have been investigated in the present study. Photographic records show that under specific geometrical conditions the flame exhibits a cone form with a backward directed top, called ''tulip'' -shaped. This appears after the flame has lost a main part of its area by side wall quenching. With a laser-Doppler anemometer the instantaneous flow velocity during the short explosion process was measured together with pressure records.

  18. An experimental investigation of flame behavior during cylindrical vessel explosions

    NASA Astrophysics Data System (ADS)

    Starke, R.; Roth, P.

    1986-12-01

    The propagation of premixed flames centrally ignited at one of the end flanges of a closed cylindrical vessel and the flame-induced flow have been investigated. Photographic records show that under specific geometrical conditions the flame exhibits a cone form with a backward directed top, called tulip-shaped. This appears after the flame has lost a main part of its area by side wall quenching. The instantaneous flow velocity during the short explosion process was measured, together with pressure records, with an LDV. An analogy to the experiments of Markstein (1964), is shown, and the explanations of several authors for the 'tulip' formation are given.

  19. 49 CFR 176.194 - Stowage of Class 1 (explosive) materials on magazine vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Stowage of Class 1 (explosive) materials on magazine vessels. 176.194...Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY...

  20. 49 CFR 176.194 - Stowage of Class 1 (explosive) materials on magazine vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Stowage of Class 1 (explosive) materials on magazine vessels. 176.194...Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY...

  1. BWR ex-vessel steam explosion analysis with MC3D code

    SciTech Connect

    Leskovar, M.

    2012-07-01

    A steam explosion may occur, during a severe reactor accident, when the molten core comes into contact with the coolant water. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. To resolve the open issues in steam explosion understanding and modeling, the OECD program SERENA phase 2 was launched at the end of year 2007, focusing on reactor applications. To verify the progress made in the understanding and modeling of fuel coolant interaction key phenomena for reactor applications a reactor exercise has been performed. In this paper the BWR ex-vessel steam explosion study, which was carried out with the MC3D code in conditions of the SERENA reactor exercise for the BWR case, is presented and discussed. The premixing simulations were performed with two different jet breakup modeling approaches and the explosion was triggered also at the expected most challenging time. For the most challenging case, at the cavity wall the highest calculated pressure was {approx}20 MPa and the highest pressure impulse was {approx}90 kPa.s. (authors)

  2. Explosive containment and propagation evaluations for commonly used handling and storage containers

    SciTech Connect

    LeBlanc, R.

    1994-01-01

    A series of explosive tests were performed to establish containment integrity data for commonly used handling and storage containers of energetic materials at Sandia National Laboratories, Albuquerque, N.M. The tests consisted of two phases: (1) each container was tested for explosive integrity and propagation, and (2) the data were used to evaluate a nominal donor-receptor test matrix for verifying the confinement integrity of a typical explosives service locker.

  3. Welding the AT-400A Containment Vessel

    SciTech Connect

    Brandon, E.

    1998-11-01

    Early in 1994, the Department of Energy assigned Sandia National Laboratories the responsibility for designing and providing the welding system for the girth weld for the AT-400A containment vessel. (The AT-400A container is employed for the shipment and long-term storage of the nuclear weapon pits being returned from the nation's nuclear arsenal.) Mason Hanger Corporation's Pantex Plant was chosen to be the production facility. The project was successfully completed by providing and implementing a turnkey welding system and qualified welding procedure at the Pantex Plant. The welding system was transferred to Pantex and a pilot lot of 20 AT-400A containers with W48 pits was welded in August 1997. This document is intended to bring together the AT-400A welding system and product (girth weld) requirements and the activities conducted to meet those requirements. This document alone is not a complete compilation of the welding development activities but is meant to be a summary to be used with the applicable references.

  4. Substantiation of Thermodynamic Criteria of Explosion Safety in Process of Severe Accidents in Pressure Vessel Reactors

    E-print Network

    V. I. Skalozubov; V. N. Vashchenko; S. S. Jarovoj; V. Yu. Kochnyeva

    2012-03-27

    The paper represents original development of thermodynamic criteria of occurrence conditions of steam-gas explosions in the process of severe accidents. The received results can be used for modelling of processes of severe accidents in pressure vessel reactors.

  5. 49 CFR 176.172 - Structural serviceability of freight containers and vehicles carrying Class 1 (explosive...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...containers and vehicles carrying Class 1 (explosive) materials on ships. 176.172 ...Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and...containers and vehicles carrying Class 1 (explosive) materials on ships. (a)...

  6. 49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 false Transport of Class 1 (explosive) materials in freight containers... Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and... § 176.170 Transport of Class 1 (explosive) materials in freight containers....

  7. 49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 false Transport of Class 1 (explosive) materials in freight containers... Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and... § 176.170 Transport of Class 1 (explosive) materials in freight containers....

  8. 49 CFR 176.172 - Structural serviceability of freight containers and vehicles carrying Class 1 (explosive...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...containers and vehicles carrying Class 1 (explosive) materials on ships. 176.172 ...Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and...containers and vehicles carrying Class 1 (explosive) materials on ships. (a)...

  9. 49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 false Transport of Class 1 (explosive) materials in freight containers... Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and... § 176.170 Transport of Class 1 (explosive) materials in freight containers....

  10. 49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 false Transport of Class 1 (explosive) materials in freight containers... Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and... § 176.170 Transport of Class 1 (explosive) materials in freight containers....

  11. 49 CFR 176.172 - Structural serviceability of freight containers and vehicles carrying Class 1 (explosive...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...containers and vehicles carrying Class 1 (explosive) materials on ships. 176.172 ...Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and...containers and vehicles carrying Class 1 (explosive) materials on ships. (a)...

  12. 49 CFR 176.170 - Transport of Class 1 (explosive) materials in freight containers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 false Transport of Class 1 (explosive) materials in freight containers... Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and... § 176.170 Transport of Class 1 (explosive) materials in freight containers....

  13. A design guide and specification for small explosive containment structures

    SciTech Connect

    Marchand, K.A.; Cox, P.A.; Polcyn, M.A.

    1994-12-01

    The design of structural containments for testing small explosive devices requires the designer to consider the various aspects of the explosive loading, i.e., shock and gas or quasistatic pressure. Additionally, if the explosive charge has the potential of producing damaging fragments, provisions must be made to arrest the fragments. This may require that the explosive be packed in a fragment attenuating material, which also will affect the loads predicted for containment response. Material also may be added just to attenuate shock, in the absence of fragments. Three charge weights are used in the design. The actual charge is used to determine a design fragment. Blast loads are determined for a {open_quotes}design charge{close_quotes}, defined as 125% of the operational charge in the explosive device. No yielding is permitted at the design charge weight. Blast loads are also determined for an over-charge, defined as 200% of the operational charge in the explosive device. Yielding, but no failure, is permitted at this over-charge. This guide emphasizes the calculation of loads and fragments for which the containment must be designed. The designer has the option of using simplified or complex design-analysis methods. Examples in the guide use readily available single degree-of-freedom (sdof) methods, plus static methods for equivalent dynamic loads. These are the common methods for blast resistant design. Some discussion of more complex methods is included. Generally, the designer who chooses more complex methods must be fully knowledgeable in their use and limitations. Finally, newly fabricated containments initially must be proof tested to 125% of the operational load and then inspected at regular intervals. This specification provides guidance for design, proof testing, and inspection of small explosive containment structures.

  14. 49 CFR 176.194 - Stowage of Class 1 (explosive) materials on magazine vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Stowage of Class 1 (explosive) materials on magazine vessels. 176.194 Section 176.194 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL...

  15. PERFORMANCE OF A CONTAINMENT VESSEL CLOSURE FOR RADIOACTIVE GAS CONTENTS

    SciTech Connect

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of the design and testing of the containment vessel closure for the Bulk Tritium Shipping Package (BTSP). This package is a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The containment vessel closure incorporates features specifically designed for the containment of tritium when subjected to the normal and hypothetical conditions required of Type B radioactive material shipping Packages. The paper discusses functional performance of the containment vessel closure of the BTSP prototype packages and separate testing that evaluated the performance of the metallic C-Rings used in a mock BTSP closure.

  16. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, J.G.

    1993-11-16

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  17. Float level switch for a nuclear power plant containment vessel

    DOEpatents

    Powell, James G. (Clifton Park, NY)

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  18. Non-lead environmentally safe projectiles and explosive container

    DOEpatents

    Lowden, R.A.; McCoig, T.M.; Dooley, J.B.; Smith, C.M.

    1999-06-15

    A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent. 10 figs.

  19. Non-lead, environmentally safe projectiles and explosives containers

    DOEpatents

    Lowden, Richard A. (Clinton, TN); McCoig, Thomas M. (Maryville, TN); Dooley, Joseph B. (Kingston, TN); Smith, Cyrus M. (Knoxville, TN)

    2001-01-16

    A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent.

  20. Non-lead environmentally safe projectiles and explosive container

    DOEpatents

    Lowden, Richard A. (Clinton, TN); McCoig, Thomas M. (Maryville, TN); Dooley, Joseph B. (Kingston, TN); Smith, Cyrus M. (Knoxville, TN)

    1999-06-15

    A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent.

  1. Experimental analysis and simulation of effective factors on explosive forming of spherical vessel using prefabricated four cones vessel structures

    NASA Astrophysics Data System (ADS)

    Mehrasa, Hossein; Liaghat, Gholamhossein; Javabvar, Dariush

    2012-12-01

    Construction of spherical vessel in various dimensions is known as one of the frequent problems for construction and production engineers, since conventional methods of shell construction require mold and press which leads to higher costs of production. Therefore, current work has tried to investigate a new method based on explosive forming without using molds. In this technique, final shape of the shell can be achieved by explosion inside a prefabricated structure called four cones. This structure is produced from combination and welding of four truncated cones two of which are paired in each side. Initial shape of the tank is then used to transform this structure into a more complete sphere using explosives at its center. This paper aims to study the amount of explosives needed for this process in terms of vessel's diameter and thickness. In this regard, simulation was run by LS-DYNA software and the resultant outputs were evaluated with those of experimental tests. The results shows that the required charge of forming varies exponentially with thickness.

  2. Slug impact loading on the vessel head during a postulated in-vessel steam explosion in pressurized water reactors -- Assessments and discussion of the investigation strategy

    SciTech Connect

    Krieg, R.; Malmberg, T.; Messemer, G.; Stach, T.; Stratmanns, E.

    1995-09-01

    The most severe consequence of a pressurized water reactor in-vessel steam explosion is a molten fuel slug impact against the head of the reactor pressure vessel that could cause a failure of this head and lead to missiles endangering the reactor containment. An investigation is described that attempts to determine the maximum slug impact that a vessel head is capable of withstanding without failing and, consequently, without impairing the containment safety-related function. Preliminary theoretical assessments are presented that suggest that the head might be able to withstand rather strong impacts and that the shape of the fuel slug will have only a moderate influence on the results, provided the upper internal structures are taken into account. A low sensitivity against the slug shape is an essential prerequisite for a reliable safety proof. However, investigations primarily based on computational models are not sufficient; therefore, an investigation concept is proposed that relies on model experiments in which the geometry is scaled down by factors of 10 and 20, respectively. Theoretical and experimental investigations for liquid-structure impact problems in different scales are discussed to assess the degree of similarity that can be obtained. Finally, model experiments are described in some detail simulating the molten fuel slug impact on the vessel head.

  3. Spall Fracture of Metallic Circular Plates, Vessel Endplates and Conical Frustums Driven by Direct Explosive Loads

    NASA Astrophysics Data System (ADS)

    Hiroe, T.; Fujiwara, K.; Hata, H.; Tsutsumi, D.

    2007-12-01

    Dynamic fracture experiments are conducted for circular plates, vessel endplates and conical frustums of A2017-7075 aluminum alloys and 304 stainless steel, using a testing apparatus developed applying wire-row explosion technique to initiation, where tensile stress waves are generated producing spall in the specimens by the direct incidence of plane detonation waves of the explosive PETN. A VISAR system is adopted to observe the free-surface velocity histories of the specimens. The signals for basic circular plate specimens indicate the characteristics of the failure for tested materials, effects of explosive thickness variations and the configuration of specimens. Hydro codes are satisfactorily applied to simulate the experimental signal data and observed damage phenomena of recovered specimens. Next, an explosive-filled cylindrical vessel with an endplate at the one end is initiated at the other end surface and expanded by axially propagating explosive detonation to fracture. Both the VISAR signals and numerical simulation indicate a pullback signal of spallation at the endplate. Finally conic frustums are also loaded by plane detonation, showing different type of spall failure due to the additional reflected waves from the slopping side surfaces.

  4. 49 CFR 176.172 - Structural serviceability of freight containers and vehicles carrying Class 1 (explosive...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Division 1.4 materials, a freight container may not be offered for the carriage of Class 1 (explosive... those in Division 1.4 (explosive) must be accompanied by a statement, which may appear on the...

  5. 49 CFR 176.172 - Structural serviceability of freight containers and vehicles carrying Class 1 (explosive...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Division 1.4 materials, a freight container may not be offered for the carriage of Class 1 (explosive... those in Division 1.4 (explosive) must be accompanied by a statement, which may appear on the...

  6. PRESSURIZATION OF CONTAINMENT VESSELS FROM PLUTONIUM OXIDE CONTENTS

    SciTech Connect

    Hensel, S.

    2012-03-27

    Transportation and storage of plutonium oxide is typically done using a convenience container to hold the oxide powder which is then placed inside a containment vessel. Intermediate containers which act as uncredited confinement barriers may also be used. The containment vessel is subject to an internal pressure due to several sources including; (1) plutonium oxide provides a heat source which raises the temperature of the gas space, (2) helium generation due to alpha decay of the plutonium, (3) hydrogen generation due to radiolysis of the water which has been adsorbed onto the plutonium oxide, and (4) degradation of plastic bags which may be used to bag out the convenience can from a glove box. The contributions of these sources are evaluated in a reasonably conservative manner.

  7. Assessment of whipping and springing on a large container vessel

    NASA Astrophysics Data System (ADS)

    Barhoumi, Mondher; Storhaug, Gaute

    2014-06-01

    Wave induced vibrations increase the fatigue and extreme loading, but this is normally neglected in design. The industry view on this is changing. Wave induced vibrations are often divided into springing and whipping, and their relative contribution to fatigue and extreme loading varies depending on ship design. When it comes to displacement vessels, the contribution from whipping on fatigue and extreme loading is particularly high for certain container vessels. A large modern design container vessel with high bow flare angle and high service speed has been considered. The container vessel was equipped with a hull monitoring system from a recognized supplier of HMON systems. The vessel has been operating between Asia and Europe for a few years and valuable data has been collected. Also model tests have been carried out of this vessel to investigate fatigue and extreme loading, but model tests are often limited to head seas. For the full scale measurements, the correlation between stress data and wind data has been investigated. The wave and vibration damage are shown versus heading and Beaufort strength to indicate general trends. The wind data has also been compared to North Atlantic design environment. Even though it has been shown that the encountered wind data has been much less severe than in North Atlantic, the extreme loading defined by IACS URS11 is significantly exceeded when whipping is included. If whipping may contribute to collapse, then proper seamanship may be useful in order to limit the extreme loading. The vibration damage is also observed to be high from head to beam seas, and even present in stern seas, but fatigue damage in general is low on this East Asia to Europe trade.

  8. Jaguar Procedures for Detonation Behavior of Explosives Containing Boron

    NASA Astrophysics Data System (ADS)

    Stiel, L. I.; Baker, E. L.; Capellos, C.

    2009-12-01

    The Jaguar product library was expanded to include boron and boron containing products by analysis of Available Hugoniot and static volumetric data to obtain constants of the Murnaghan relationships for the components. Experimental melting points were also utilized to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX—boron mixtures calculated with these relationships using Jaguar are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that the boron does not react near the detonation front or that boron mixtures exhibit eigenvalue detonation behavior (as shown by some aluminized explosives), with higher detonation velocities at the initial points. Analyses of calorimetric measurements for RDX—boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the detonation properties of the formulation.

  9. JAGUAR Procedures for Detonation Behavior of Silicon Containing Explosives

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest; Capellos, Christos; Poulos, William; Pincay, Jack

    2007-06-01

    Improved relationships for the thermodynamic properties of solid and liquid silicon and silicon oxide for use with JAGUAR thermo-chemical equation of state routines were developed in this study. Analyses of experimental melting temperature curves for silicon and silicon oxide indicated complex phase behavior and that improved coefficients were required for solid and liquid thermodynamic properties. Advanced optimization routines were utilized in conjunction with the experimental melting point data to establish volumetric coefficients for these substances. The new property libraries resulted in agreement with available experimental values, including Hugoniot data at elevated pressures. Detonation properties were calculated with JAGUAR using the revised property libraries for silicon containing explosives. Constants of the JWLB equation of state were established for varying extent of silicon reaction. Supporting thermal heat transfer analyses were conducted for varying silicon particle sizes to establish characteristic times for melting and silicon reaction.

  10. DHCVIM: A direct heating containment vessel interactions module

    SciTech Connect

    Ginsberg, T.; Tutu, N.K.

    1987-01-01

    Models for prediction of direct containment heating phenomena as implemented in the DHCVIM computer module are described. The models were designed to treat thermal, chemical and hydrodynamic processes in the three regions of the Sandia National Laboratory Surtsey DCH test facility: the melt generator, cavity and vessel. The fundamental balance equations, along with constitutive relations are described. A combination of Eulerian treatment for the gas phase and Lagrangian treatment for the droplet phase is used in the modeling. Comparisons of calculations and DCH-1 test results are presented. Reasonable agreement is demonstrated for the vessel pressure rise, melt generator pressure decay and particle size distribution.

  11. Sunken vessels and aircraft containing hazardous materials in Puget Sound

    SciTech Connect

    Barnard, K.M.; Gordon, D.G.

    1991-08-01

    In past years, numerous ships, barges, and aircraft potentially containing various kinds of hazardous cargo and large amounts of fuel and oil have sunk in Puget Sound and adjacent waters. Some of the cargo, fuel and oil, if present in sufficient quantities could pose a hazard to human health or the aquatic environment. Vessels of interest include commercial transport and military vessels over 50 tons gross weight (greater than 100 feet in length) that sank after 1915, and all commercial and military aircraft. Thirty-seven sources of information were investigated including state and federal government agencies, public port associations, maritime organizations, historical archives, and individuals. Using information from these sources, a list of 134 sunken vessels and aircraft were compiled.

  12. The effect of external heat transfer on thermal explosion in a spherical vessel with natural convection.

    PubMed

    Campbell, A N

    2015-07-14

    When any exothermic reaction proceeds in an unstirred vessel, natural convection may develop. This flow can significantly alter the heat transfer from the reacting fluid to the environment and hence alter the balance between heat generation and heat loss, which determines whether or not the system will explode. Previous studies of the effects of natural convection on thermal explosion have considered reactors where the temperature of the wall of the reactor is held constant. This implies that there is infinitely fast heat transfer between the wall of the vessel and the surrounding environment. In reality, there will be heat transfer resistances associated with conduction through the wall of the reactor and from the wall to the environment. The existence of these additional heat transfer resistances may alter the rate of heat transfer from the hot region of the reactor to the environment and hence the stability of the reaction. This work presents an initial numerical study of thermal explosion in a spherical reactor under the influence of natural convection and external heat transfer, which neglects the effects of consumption of reactant. Simulations were performed to examine the changing behaviour of the system as the intensity of convection and the importance of external heat transfer were varied. It was shown that the temporal development of the maximum temperature in the reactor was qualitatively similar as the Rayleigh and Biot numbers were varied. Importantly, the maximum temperature in a stable system was shown to vary with Biot number. This has important consequences for the definitions used for thermal explosion in systems with significant reactant consumption. Additionally, regions of parameter space where explosions occurred were identified. It was shown that reducing the Biot number increases the likelihood of explosion and reduces the stabilising effect of natural convection. Finally, the results of the simulations were shown to compare favourably with analytical predictions in the classical limits of Semenov and Frank-Kamenetskii. PMID:26059913

  13. Molten metal containment vessel with rare earth oxysulfide protective coating thereon and method of making same

    DOEpatents

    Krikorian, Oscar H. (Danville, CA); Curtis, Paul G. (Tracy, CA)

    1992-01-01

    An improved molten metal containment vessel is disclosed in which wetting of the vessel's inner wall surfaces by molten metal is inhibited by coating at least the inner surfaces of the containment vessel with one or more rare earth oxysulfide or rare earth sulfide compounds to inhibit wetting and or adherence by the molten metal to the surfaces of the containment vessel.

  14. Dynamic testing of MFTF containment-vessel structural system

    SciTech Connect

    Weaver, H.J.; McCallen, D.B.; Eli, M.W.

    1982-04-01

    Dynamic (modal) testing was performed on the Magnetic Fusion Test Facility (MFTF) containment vessel. The seismic design of this vessel was heavily dependent upon the value of structural damping used in the analysis. Typically for welded steel vessels, a value of 2 to 3% of critical is used. However, due to the large mass of the vessel and magnet supported inside, we felt that the interaction between the structure and its foundation would be enhanced. This would result in a larger value of damping because vibrational energy in the structure would be transferred through the foundation into the surrounding soil. The dynamic test performed on this structure (with the magnet in place) confirmed this later theory and resulted in damping values of approximately 4 to 5% for the whole body modes. This report presents a brief description of dynamic testing emphasizing the specific test procedure used on the MFTF-A system. It also presents an interpretation of the damping mechanisms observed (material and geometric) based upon the spatial characteristics of the modal parameters (mode shapes).

  15. JAGUAR Procedures for Detonation Behavior of Explosives Containing Boron

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest; Capellos, Christos

    2009-06-01

    The JAGUAR product library was expanded to include boron and boron containing products. Relationships of the Murnaghan form for molar volumes and derived properties were implemented in JAGUAR. Available Hugoniot and static volumertic data were analyzed to obtain constants of the Murnaghan relationship for solid boron, boron oxide, boron nitride, boron carbide, and boric acid. Experimental melting points were also utilized with optimization procedures to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX - boron mixtures calculated with these relationships using JAGUAR are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that boron mixtures may exhibit eigenvalue detonation behavior, as observed by aluminized combined effects explosives, with higher detonation velocities than would be achieved by a classical Chapman-Jouguet detonation. Analyses of calorimetric measurements for RDX - boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the energy output obtained from the detonation of the formulation.

  16. Destruction of high explosives and wastes containing high explosives using the Molten Salt Destruction Process

    SciTech Connect

    Upadhye, R.S.; Brummond, W.A.; Pruneda, C.O.

    1992-05-01

    The current method of disposal of large quantities of high explosives (HE), or other energetic materials, by open-pit burning, or detonation is becoming an environmentally unacceptable form of bulk destruction of these materials because of the products of incomplete combustion of HE. The Molten Salt Destruction (MSD) Process has been demonstrated for the destruction of HE and HE-containing wastes. MSD converts the organic constituents (including the HE) of the waste into non-hazardous substances such as carbon dioxide, nitrogen and water. In the case of HE-containing mixed wastes, any actinides in the waste are retained in the molten salt, thus converting the mixed wastes into low-level wastes. The destruction of HE is accomplished by introducing it, together with oxidant gases, into a crucible containing a molten salt, such as sodium carbonate, or a suitable mixture of the carbonates of sodium, potassium, lithium and calcium. The temperature of the molten salt can be between 400 to 900[degree]C. The combustible organic components of the waste react with oxygen to produce carbon dioxide, nitrogen and steam. The inorganic components, in the form of ash,'' are captured in the molten salt bed as a result of wetting and dissolution of the ash. Halogenated hydrocarbons in the waste generate acid gases such as hydrogen chloride during the pyrolysis and combustion processes occurring in the melt. These are scrubbed by the alkaline carbonates, producing steam and the from the process are sent through standard off-gas clean-up processing before being, released to the atmosphere. At the end of the process runs, the salt is separated into carbonates, non-carbonate salts, and ash. The carbonates are recycled to the process, the stable salts are disposal of appropriately.

  17. 32 CFR 174.16 - Real property containing explosive or chemical agent hazards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chemical agent hazards from past DoD military munitions-related or chemical warfare-related activities... 32 National Defense 1 2012-07-01 2012-07-01 false Real property containing explosive or chemical... REALIGNMENT Environmental Matters § 174.16 Real property containing explosive or chemical agent hazards....

  18. 32 CFR 174.16 - Real property containing explosive or chemical agent hazards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemical agent hazards from past DoD military munitions-related or chemical warfare-related activities... 32 National Defense 1 2013-07-01 2013-07-01 false Real property containing explosive or chemical... REALIGNMENT Environmental Matters § 174.16 Real property containing explosive or chemical agent hazards....

  19. 32 CFR 174.16 - Real property containing explosive or chemical agent hazards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemical agent hazards from past DoD military munitions-related or chemical warfare-related activities... 32 National Defense 1 2011-07-01 2011-07-01 false Real property containing explosive or chemical... REALIGNMENT Environmental Matters § 174.16 Real property containing explosive or chemical agent hazards....

  20. 32 CFR 174.16 - Real property containing explosive or chemical agent hazards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemical agent hazards from past DoD military munitions-related or chemical warfare-related activities... 32 National Defense 1 2010-07-01 2010-07-01 false Real property containing explosive or chemical... REALIGNMENT Environmental Matters § 174.16 Real property containing explosive or chemical agent hazards....

  1. Response of a water-filled spherical vessel to an internal explosion

    SciTech Connect

    Wilson, T.L.; Lewis, M.W.

    1997-10-01

    Many problems of interest to the defense community involve fluid-structure interaction (FSI). To model such problems in two-dimensions the authors developed the FSI2D code by coupling MFICE2D, a Los Alamos finite volume computation fluid dynamics (CFD) code, with PRONTO2D, a SANDIA finite element solid dynamics code. Details on this coupling approach and current implementations are discussed in Section 3. In this report the authors use FSI2D to model the response of Jumbino, a water-filled spherical steel vessel (63.4 cm i.d., 6.1 cm wall thickness), to an internal explosion caused by detonating 30 grams of C-4 at the center of the vessel. Predictions from a fully coupled model were compared to experimental results in the form of strain gauge traces. Agreement was reasonably good. Additionally, the calculation was run in an uncoupled mode to understand the importance of fluid-structure interaction in this problem. The uncoupled model results in an accumulation of nonphysical energy in the vessel.

  2. Steel Containment Vessel Model Test: Results and Evaluation

    SciTech Connect

    Costello, J.F.; Hashimote, T.; Hessheimer, M.F.; Luk, V.K.

    1999-03-01

    A high pressure test of the steel containment vessel (SCV) model was conducted on December 11-12, 1996 at Sandia National Laboratories, Albuquerque, NM, USA. The test model is a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of an improved Mark II boiling water reactor (BWR) containment. A concentric steel contact structure (CS), installed over the SCV model and separated at a nominally uniform distance from it, provided a simplified representation of a reactor shield building in the actual plant. The SCV model and contact structure were instrumented with strain gages and displacement transducers to record the deformation behavior of the SCV model during the high pressure test. This paper summarizes the conduct and the results of the high pressure test and discusses the posttest metallurgical evaluation results on specimens removed from the SCV model.

  3. Round Robin Analyses of the Steel Containment Vessel Model

    SciTech Connect

    Costello, J.F.; Hashimote, T.; Klamerus, E.W.; Luk, V.K.

    1999-03-01

    A high pressure test of the steel containment vessel (SCV) model was conducted on December 11-12, 1996 at Sandia National Laboratories, Albuquerque, NM, USA. The test model is a mixed-scaled model (1:10 in geometry and 1:4 in shell thickness) of an improved Mark II boiling water reactor (BWR) containment. Several organizations from the US, Europe, and Asia were invited to participate in a Round Robin analysis to perform independent pretest predictions and posttest evaluations of the behavior of the SCV model during the high pressure test. Both pretest and posttest analysis results from all Round Robin participants were compared to the high pressure test data. This paper summarizes the Round Robin analysis activities and discusses the lessons learned from the collective effort.

  4. Instrumentation of a prestressed concrete containment vessel model

    SciTech Connect

    Hessheimer, M.F.; Rightley, M.J.; Matsumoto, T.

    1995-09-01

    A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the U.S. Nuclear Regulatory Commission. At present, two tests are being planned: a test of a model of a steel containment vessel (SCV) that is representative of an improved, boiling water reactor (BWR) Mark II design; and a test of a model of a prestressed concrete containment vessel (PCCV). This paper discusses plans and the results of a preliminary investigation of the instrumentation of the PCCV model. The instrumentation suite for this model will consist of approximately 2000 channels of data to record displacements, strains in the reinforcing steel, prestressing tendons, concrete, steel liner and liner anchors, as well as pressure and temperature. The instrumentation is being designed to monitor the response of the model during prestressing operations, during Structural Integrity and Integrated Leak Rate testing, and during test to failure of the model. Particular emphasis has been placed on instrumentation of the prestressing system in order to understand the behavior of the prestressing strands at design and beyond design pressure levels. Current plans are to place load cells at both ends of one third of the tendons in addition to placing strain measurement devices along the length of selected tendons. Strain measurements will be made using conventional bonded foil resistance gages and a wire resistance gage, known as a {open_quotes}Tensmeg{close_quotes}{reg_sign} gage, specifically designed for use with seven-wire strand. The results of preliminary tests of both types of gages, in the laboratory and in a simulated model configuration, are reported and plans for instrumentation of the model are discussed.

  5. Method for the decontamination of soil containing solid organic explosives therein

    DOEpatents

    Radtke, Corey W. (Idaho Falls, ID); Roberto, Francisco F. (Idaho Falls, ID)

    2000-01-01

    An efficient method for decontaminating soil containing organic explosives ("TNT" and others) in the form of solid portions or chunks which are not ordinarily subject to effective bacterial degradation. The contaminated soil is treated by delivering an organic solvent to the soil which is capable of dissolving the explosives. This process makes the explosives more bioavailable to natural bacteria in the soil which can decompose the explosives. An organic nutrient composition is also preferably added to facilitate decomposition and yield a compost product. After dissolution, the explosives are allowed to remain in the soil until they are decomposed by the bacteria. Decomposition occurs directly in the soil which avoids the need to remove both the explosives and the solvents (which either evaporate or are decomposed by the bacteria). Decomposition is directly facilitated by the solvent pre-treatment process described above which enables rapid bacterial remediation of the soil.

  6. Detonation and Shock Reactivity Properties of Explosives Containing RDX and Reduced Sensitivity RDX

    NASA Astrophysics Data System (ADS)

    Sutherland, Gerrit

    2005-07-01

    The detonation and shock reactivity properties of two monomodal research explosives were measured to assess how these properties change when different quality RDX is used. One explosive contained class 1 (coarse) RDX and HTPB binder; the other explosive contained reduced sensitivity (high quality) class 1 RDX (I-RDX) and HTPB binder. Experiments preformed included wave curvature, rate stick and flyer plate experiments. Wave curvature and rate stick experiments indicate that the reaction zone length is shorter for the explosive containing RDX. Our results show that decrement and wave curvature results are bounded by the results of Moulard and coworkers^1,2 for similar explosives containing fine and very coarse RDX particles. We will also present work of ongoing shock reactivity experiments. In these experiments, a flyer impacts an explosive sample containing multiple embedded pressure gauges. Analyses of the pressure gauge records allow us to determine shock reactivity trends for each explosive. ^1Moulard, H., Kury, J.W., Delclos, A., Proceedings of Eighth Symposium (International) on Detonation, Albuquerque, NM, 1985, pg. 902-913. ^2 Moulard, H., Proceedings of the Ninth Symposium (International) on Detonation, Portland, Oregon, 1989, pg. 18-24.

  7. DYNAMIC NON LINEAR IMPACT ANALYSIS OF FUEL CASK CONTAINMENT VESSELS

    SciTech Connect

    Leduc, D

    2008-06-10

    Large fuel casks present challenges when evaluating their performance in the accident sequence specified in 10CFR 71. Testing is often limited because of cost, difficulty in preparing test units and the limited availability of facilities which can carry out such tests. In the past, many casks were evaluated without testing using simplified analytical methods. This paper details the use of dynamic non-linear analysis of large fuel casks using advanced computational techniques. Results from the dynamic analysis of two casks, the T-3 Spent Fuel Cask and the Hanford Un-irradiated Fuel Package are examined in detail. These analyses are used to fully evaluate containment vessel stresses and strains resulting from complex loads experienced by cask components during impacts. Importantly, these advanced analytical analyses are capable of examining stresses in key regions of the cask including the cask closure. This paper compares these advanced analytical results with the results of simplified cask analyses like those detailed in NUREG 3966.

  8. The design, fabrication, and testing of WETF high-quality, long-term-storage, secondary containment vessels

    SciTech Connect

    Kane J. Fisher

    2000-03-01

    Los Alamos National Laboratory's Weapons Engineering Tritium Facility (WETF) requires secondary containment vessels to store primary tritium containment vessels. The primary containment vessel provides the first boundary for tritium containment. The primary containment vessel is stored within a secondary containment vessel that provides the secondary boundary for tritium containment. WETF requires high-quality, long-term-storage, secondary tritium containment vessels that fit within a Mound-designed calorimeter. In order to qualify the WETF high-quality, long-term-storage, secondary containment vessels for use at WETF, steps have been taken to ensure the appropriate design, adequate testing, quality in fabrication, and acceptable documentation.

  9. Evaluation of bursting capacity of containment vessels for hydrogen gas deflagrations and detonations

    SciTech Connect

    Raske, D. T.

    2000-05-17

    This paper describes a procedure to assess the bursting capacity of containment vessels used to transport radioactive materials. These vessels can be susceptible to an internal deflagration or detonation due to the ignition of hydrogen gas evolved by radiolysis. The maximum pressure capacity of a containment vessel can be established by determining the maximum primary vessel stresses at the maximum normal operating pressure and linearly extrapolating this pressure to stresses equal to the tensile yield or ultimate strength of the vessel's structural material. This leads to a maximum pressure to yield or burst the vessel. Comparison of data obtained with this procedure with experimental data or calculations that estimate the maximum deflagration or detonation pressure can provide a reasonable estimate of the capability of the containment vessel to safely contain the gases.

  10. Stresses & Deformations in Vessel Containing Copper Magnet & Shielding Bob Weggel 5/2731/2011

    E-print Network

    McDonald, Kirk

    Stresses & Deformations in Vessel Containing Copper Magnet & Shielding Bob Weggel 5/2731/2011 Model: Vessel (bore tube, flanges & cylindrical shell) are of steel; specific gravity = 7.85; E = 200 Radius of Bore Tube that Flares Elliptically with Axial Distance #12; Fig. 2: Isometric view of vessel

  11. Experiments on explosive interactions between zirconium-containing melt and water (ZREX).

    SciTech Connect

    Cho, D. H.

    1998-04-10

    The results of two series of experiments on explosive interactions between zirconium-containing melt and water are described. The first series of experiments involved dropping 1-kg batches of zirconium-zirconium dioxide mixture melt into a column of water while the second series employed 1.2-kg batches of zirconium-stainless steel mixture melt. Explosions took place only in those tests which were externally triggered. While the extent of zirconium oxidation in the triggered experiments was quite large, the explosion energies estimated from the experimental measurements were found to be small compared to the combined thermal and chemical energy available.

  12. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive.

    PubMed

    Cao, Xingyan; Ren, Jingjie; Zhou, Yihui; Wang, Qiuju; Gao, Xuliang; Bi, Mingshu

    2015-03-21

    The suppression effect of ultrafine mists on methane/air explosions with methane concentrations of 6.5%, 8%, 9.5%, 11%, and 13.5% were experimentally studied in a closed visual vessel. Ultrafine water/NaCl solution mist as well as pure water mist was adopted and the droplet sizes of mists were measured by phase doppler particle analyzer (PDPA). A high speed camera was used to record the flame evolution processes. In contrast to pure water mist, the flame propagation speed, the maximum explosion overpressure (?P(max)), and the maximum pressure rising rate ((dP/dt)max) decreased significantly, with the "tulip" flame disappearing and the flame getting brighter. The results show that the suppressing effect on methane explosion by ultrafine water/NaCl solution mist is influenced by the mist amount and methane concentration. With the increase of the mist amount, the pressure, and the flame speed both descended significantly. And when the mist amount reached 74.08 g/m(3) and 37.04 g/m(3), the flames of 6.5% and 13.5% methane explosions can be absolutely suppressed, respectively. All of results indicate that addition of NaCl can improve the suppression effect of ultrafine pure water mist on the methane explosions, and the suppression effect is considered due to the combination effect of physical and chemical inhibitions. PMID:25528229

  13. Hydrolysis of plutonium: Corrosion kinetics in DMSO solutions containing simulated high explosive and water

    SciTech Connect

    Haschke, J.M.; Pruner, R.E. II

    1995-01-01

    A sequence of experiments is described that address the compatibility of plutonium metal with dimethyl sulfoxide solvent and with solutions containing simulated HMX explosive and simulated explosive plus water. In the absence of water, reaction is slow and forms a thin adherent product layer on clean metal surfaces. Corrosion of oxide-coated plutonium is observed after 15 to 20 days in a solution containing 0.18 mass % (0.11 M) water. After corrosion initiates, the rate accelerates rapidly and attains a value of 0.13 mg Pu/cm{sup 2} h with a surface that is approximately one percent active. Dependence of the Pu + H{sub 2}O reaction on water concentration is evaluated using the data from literature sources. Hazards associated with the use of wet dimethyl sulfoxide as a solvent for removing explosives during weapon dismantlement are identified and a simple method for their mitigation is outlined.

  14. The anatomy of a pipe bomb explosion: the effect of explosive filler, container material and ambient temperature on device fragmentation.

    PubMed

    Bors, Dana; Cummins, Josh; Goodpaster, John

    2014-01-01

    Understanding the mechanical properties of different piping material under various conditions is important to predicting the behavior of pipe bombs. In this study, the effect of temperature on pipe bomb containers (i.e., PVC, black steel and galvanized steel) containing low explosive fillers (i.e., Pyrodex and double-base smokeless powder (DBSP)) was investigated. Measurements of fragment velocity and mass were compared for similar devices exploded in the spring (low/high temperature was 8°C/21°C) and winter (low/high temperature range was -9°C/-3°C). The explosions were captured using high speed filmography and fragment velocities were plotted as particle vector velocity maps (PVVM). The time that elapsed between the initiation of the winter devices containing double-base smokeless powder (DBSP) and the failure of their pipe containers ranged from 5.4 to 8.1 ms. The maximum fragment velocities for these devices ranged from 332 to 567 m/s. The steel devices ruptured and exploded more quickly than the PVC device. The steel devices also generated fragments with higher top speeds. Distributions of fragment masses were plotted as histograms and fragment weight distribution maps (FWDM). As expected, steel devices generated fewer, larger fragments than did the PVC devices. Comparison to devices exploded in the spring revealed several pieces of evidence for temperature effects on pipe bombs. For example, the mean fragment velocities for the winter devices were at or above those observed in the spring. The maximum fragment velocity was also higher for the winter steel devices. Although there were no significant differences in mean relative fragment mass, the fragment weight distribution maps (FWDMs) for two winter devices had anomalous slopes, where lower energy filler caused more severe fragmentation than higher energy filler. PMID:24378308

  15. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. 176.192 Section 176.192 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE...

  16. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. 176.192 Section 176.192 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE...

  17. 32 CFR 174.16 - Real property containing explosive or chemical agent hazards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Real property containing explosive or chemical agent hazards. 174.16 Section 174.16 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE CLOSURES AND REALIGNMENT REVITALIZING BASE CLOSURE COMMUNITIES AND ADDRESSING IMPACTS OF REALIGNMENT Environmental Matters § 174.16...

  18. USING AN ADAPTER TO PERFORM THE CHALFANT-STYLE CONTAINMENT VESSEL PERIODIC MAINTENANCE LEAK RATE TEST

    SciTech Connect

    Loftin, B.; Abramczyk, G.; Trapp, D.

    2011-06-03

    Recently the Packaging Technology and Pressurized Systems (PT&PS) organization at the Savannah River National Laboratory was asked to develop an adapter for performing the leak-rate test of a Chalfant-style containment vessel. The PT&PS organization collaborated with designers at the Department of Energy's Pantex Plant to develop the adapter currently in use for performing the leak-rate testing on the containment vessels. This paper will give the history of leak-rate testing of the Chalfant-style containment vessels, discuss the design concept for the adapter, give an overview of the design, and will present results of the testing done using the adapter.

  19. Application of the ASME code in designing containment vessels for packages used to transport radioactive materials

    SciTech Connect

    Raske, D.T.; Wang, Z.

    1992-07-01

    The primary concern governing the design of shipping packages containing radioactive materials is public safety during transport. When these shipments are within the regulatory jurisdiction of the US Department of Energy, the recommended design criterion for the primary containment vessel is either Section III or Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code, depending on the activity of the contents. The objective of this paper is to discuss the design of a prototypic containment vessel representative of a packaging for the transport of high-level radioactive material.

  20. Polymer-lined filament-wound pressure vessels for nitrogen containment

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.; Chiao, T. T.; Jessop, E. S.

    1974-01-01

    A program has been started to develop fatigue-resistant polymeric liners for a filament-wound pressure vessel to contain nitrogen gas at room temperature. First, nitrogen permeation of butyl rubber sheet coated with Saran and Parylene C was studied in flat specimens. Then four 10-cm-diam cylindrical pressure vessels were prepared with chlorobutyl rubber liners coated with the same materials. These vessels were valved off after nitrogen gas pressurization to approximately 65% of their expected failure pressure. One vessel leaked. The other three vessels showed an average pressure loss of less than 1% per month. These pressure vessels have an average performance factor of about 370 kPa x cu m/kg based on composite mass.

  1. Polymer-lined filament-wound pressure vessels for nitrogen containment

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.; Chiao, T. T.; Jessop, E. S.

    1974-01-01

    A program has been started to develop fatigue-resistant polymeric liners for a filament-wound pressure vessel to contain nitrogen gas at room temperature. First, nitrogen permeation of butyl rubber sheet coated with Saran and Parylene C was studied in flat specimens. Then four 10-cm-diam cylindrical pressure vessels were prepared with chlorobutyl rubber liners coated with the same materials. These vessels were valved off after nitrogen gas pressurization to approximately 65% (approximately 11.7 MPa or 1700 psig) of their expected failure pressure. One vessel leaked. The other three vessels showed an average pressure loss of less than 1% per month. These pressure vessels have an average performance factor of approximately 370 kPa-cu m/kg (1,500,000 in.) based on composite mass.

  2. Seismic Source Characterization of Small-Scale Contained Explosions Utilizing Near-Source Empirical Data

    NASA Astrophysics Data System (ADS)

    MacPhail, M. D.; Stump, B. W.

    2014-12-01

    The Source Phenomenology Experiment (SPE) was a series of nine chemical explosions within a mine in Arizona. Its purpose was to collect seismic waveforms from these explosions for the purposes of resolving the equivalent elastic seismic source model. Ground motion data from the SPE are analyzed in this study to assess the uniqueness of the source representation of these contained explosions as well as the ability to resolve the trade-off between yield and depth when the geology or physical parameters of the source region may have a range of possible values. In this study, the p-wave velocities (Vp) are well constrained but the accompanying s-wave velocities (Vs) are less constrained. In order to assess the effects of source depth of burial (DOB) and Vs model on the seismic moment tensors, Green's functions (Gf) were computed for different DOB as well as different Vs models holding the Vpmodel constant. The Gf for the 16, near-source stations were calculated focusing on observations in the 150-680 m range. The compensated linear vector dipole and explosion components of the new Gf are compared to quantify the possible effects of DOB and Vs on the source representation. Gf with variable DOB and Vs are convolved with the Mueller-Murphy isotropic source function to produce synthetic seismograms at a range of azimuths in order to assess tradeoffs. Noise is added to the synthetics to investigate their impact on the full recovery of the seismic moment tensor. Inversions, with real and synthetic data, are conducted where covariance matrices and condition numbers are formulated to evaluate the effects of station distance and azimuthal coverage on seismic moment tensor recovery. These procedures guide additional analysis of the observational data to quantify the practical resolution of physical phenomenology accompanying these contained explosion sources.

  3. Shock Response of a Mock Explosive Containing Sugar and HTPB Binder

    NASA Astrophysics Data System (ADS)

    Sutherland, G. T.

    2004-07-01

    Three double shock experiments were performed on the mock explosive MXS-2 at initial pressures of 0.49, 0.79 and 1.06 GPa. In these experiments a PMMA flyer backed by 6061-T6 aluminum impacted a PMMA sample cell containing the MXS-2. MXS-2 is composed of fine sugar in a HTPB binder. CTH hydrocode simulations were used to find a linear Us-up relationship that adequately predicted first and second shock arrival times.

  4. Effects of explosively venting aerosol-sized particles through earth-containment systems on the cloud-stabilization height

    SciTech Connect

    Dyckes, G.W.

    1980-07-01

    A method of approximating the cloud stabilization height for aerosol-sized particles vented explosively through earth containment systems is presented. The calculated values for stabilization heights are in fair agreement with those obtained experimentally.

  5. Direct-heating containment vessel interaction code (DHCVIC) and prediction of SNL SURTSEY test DCH-1

    SciTech Connect

    Ginsberg, T.; Tutu, N.

    1986-01-01

    High-pressure melt ejection from pressurized water reactor (PWR) vessels has been identified as a severe core-accident scenario which could potentially lead to early containment failure. Melt ejection, followed by dispersal of the melt by high-velocity steam in the cavity beneath the PWR vessel could, according to this scenario, lead to rapid transfer of energy from the melt droplets to the containment atmosphere. This paper describes DHCVIC, an integrated model of the thermal, chemical, and hydrodynamic interactions which are postulated to take place during high-pressure melt ejection sequences. The model, which characterizes interactions occurring within the reactor cavity, as well as in the containment vessel (or building), is applied to prediction of the Sandia National Laboratory (SNL) SURTSEY Test DCH-1 and a (post-test) prediction of that test is made.

  6. Development of an Inspection System for the Reactor Vessel/Containment Vessel of the PRISM and SAFR Liquid Metal Reactors

    SciTech Connect

    1989-02-01

    The integrity of the reactor vessel is of utmost importance in both the PRISM and SAFR concepts. The reactor vessel operates at elevated temperatures and contains molten liquid sodium. To ensure safe operation of the reactor, a periodic, visual inspection of the walls of the containment vessel is required by ASME specifications. This inspection would be conducted during a time when the reactor is shut down for refueling or maintenance. Nuclear Systems Associates, Inc. (NSA) was issued a PRDA contract by the Department of Energy to design, develop, and test a Closed Circuit Television (CCTV) camera system. The purpose of the system is to inspect the welds and wall surface of the Reactor Vessel/Container Vessel for both the PRISM and SAFR type reactors. The system was designed to function at the reactor's normal shutdown temperature, and provide a clear indication of flaws in the wall's weld seams and any cracks that might develop. The project was performed in three phases. The first phase concentrated the efforts on producing a compact camera system with the required resolution, self -contained lighting, and remote control focus and viewing angle. The proposed camera was then tested in a vessel mock-up and found to perform to required specifications at room (cold) temperatures. Simulated flaws, cracks, and a sodium leak were observed with required clarity on both a commercial and blackened stainless steel surfaces. The camera was tested with a single clear glass dome, a single coated glass dome, and a dual-glass dome covering the camera lens and mirror. The second phase of the project was conducted in two parts. The first part involved testing the vessel mock-up at elevated temperatures to verify that the required temperatures can be obtained. The mock-up was constructed with imbedded heaters and both control and indicating thermocouples. Stable operating temperatures over 400°F were achieved. During the second part of this phase, the camera was inserted into the heated mock-up to verify proper operation at elevated temperatures. Several methods were employed to maintain a temperature within the camera assembly below the camera's maximum rating. In the final configuration, the in-annulus time of the camera substantially exceeded requirements. Picture resolution and clarity were not compromised. In the final phase, the camera was subjected to increasing temperatures within the mock-up until image degradation was observed. This occurred at a camera temperature significantly above the rated value. The camera was then returned to the manufacturer for a complete factory evaluation of any permanent damage. Their report indicated that no discernible damage had occurred. Suggestions are offered for further refinement of the techniques described in this report. One improvement is the use of digital image processing to readily detect cracks and flaws, and to objectively compare the current surface condition to that. of a previous inspection.

  7. Investigative studies into the recovery of DNA from improvised explosive device containers.

    PubMed

    Hoffmann, Shane G; Stallworth, Shawn E; Foran, David R

    2012-05-01

    Apprehending those who utilize improvised explosive devices (IEDs) is a national priority owing to their use both domestically and abroad. IEDs are often concealed in bags, boxes, or backpacks to prevent their detection. Given this, the goal of the research presented was to identify IED handlers through postblast DNA recovery from IED containers. Study participants were asked to use backpacks for 11 days, after which they served as containers for pipe bombs. Eleven postdeflagration backpack regions likely to be handled were swabbed and analyzed via mini-short tandem repeats (miniSTRs) and alleles were called blind. An experimental consensus method was examined in which profiles from all regions were considered, to help identify spurious drop-in/out. Results were correct for all loci, except one that remained ambiguous. The results show that recovering DNA from IED containers is a viable approach for aiding in the identification of those who may have been involved in an IED event. PMID:22150348

  8. The nylon scintillator containment vessels for the Borexino solar neutrino experiment

    NASA Astrophysics Data System (ADS)

    Cadonati, L.; Calaprice, F.; Galbiati, C.; Pocar, A.; Shutt, T.

    2014-06-01

    The neutrino event rate in the Borexino scintillator is very low ( 0.5 events per day per ton) and concentrated in an energy region well below the 2.6 MeV threshold of natural radioactivity. The intrinsic radioactive contaminants in the photomultipliers (PMTs), in the Stainless Steel Sphere, and in other detector components, play special requirements on the system required to contain the scintillator. The liquid scintillator must be shielded from the Stainless Steel Sphere and from the PMTs by a thick barrier of buffer fluid. The fluid barrier, in addition, needs to be segmented in order to contain migration of radon and daughters emanated by the Stainless Steel Sphere and by the PMTs. These requirements were met by designing and building two spherical vessel made of thin nylon film. The inner vessel contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by the second, outer nylon vessel. In addition, the two nylon vessels must satisfy stringent requirements for radioactivity and for mechanical, optical and chemical properties. This paper describes the requirements of the the nylon vessels for the Borexino experiment and offers a brief overview of the construction methods adopted to meet those requirements.

  9. Explosives tester

    DOEpatents

    Haas, Jeffrey S. (San Ramon, CA); Howard, Douglas E. (Livermore, CA); Eckels, Joel D. (Livermore, CA); Nunes, Peter J. (Danville, CA)

    2011-01-11

    An explosives tester that can be used anywhere as a screening tool by non-technical personnel to determine whether a surface contains explosives. First and second explosives detecting reagent holders and dispensers are provided. A heater is provided for receiving the first and second explosives detecting reagent holders and dispensers.

  10. Direct heating containment vessel interactions code (DHCVIC) and prediction of SNL ''SURTSEY'' test DCH-1

    SciTech Connect

    Ginsberg, T.; Tutu, N.

    1986-01-01

    High-pressure melt ejection from PWR vessels has been identified as a severe core accident scenario which could potentially lead to ''early'' containment failure. Melt ejection, followed by dispersal of the melt by high velocity steam in the cavity beneath the PWR vessel could, according to this scenario, lead to rapid transfer of energy from the melt droplets to the containment atmosphere. This paper describes DHCVIC, an integrated model of the thermal, chemical and hydrodynamic interactions which are postulated to take place during high-pressure melt ejection sequences. The model, which characterizes vessel (or building), is applied to prediction of the Sandia National Laboratory ''SURTSEY'' Test DCH-1 and a (post-test) prediction of that test is made.

  11. Device for Detection of Explosives, Nuclear and Other Hazardous Materials in Luggage and Cargo Containers

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey; Evsenin, Alexey; Gorshkov, Igor; Osetrov, Oleg; Vakhtin, Dmitry

    2009-12-01

    Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types—based on BGO, NaI and LaBr3 crystals is presented.

  12. Cross Section of Coils & Vessel Containing MagnetShielding Material Bob Weggel 6/1--6/6/2011

    E-print Network

    McDonald, Kirk

    Cross Section of Coils & Vessel Containing MagnetShielding Material Bob Weggel 6@0, 30cm@15m #12;Vessel (bore tube, flanges & cylindrical shell) are of steel; specific gravity = 7 section of resistive magnet, upstream three coils of superconducting magnet, and vessel of design "Lay2e7

  13. Vibration and shock test report for the H1616-1 container and the Savannah River Hydride Transport Vessel

    SciTech Connect

    York, A.R. II; Joseph, B.J.

    1992-11-01

    Sandia National Laboratories performed random vibration and shock tests on a tritium hydride transport vessel that was packaged in an H1616-1 container. The objective of the tests was to determine if the hydride transport vessel remains leaktight under vibration and shock normally incident to transport, which is a requirement that the hydride transport vessel must meet to be shipped in the H1616-1. Helium leak tests before and after the vibration and shock tests showed that the hydride transport vessel remained leaktight under the specified conditions. There were no detrimental effects on the containment vessel of the H1616-1.

  14. Numerical analysis of two dimensional natural convection heat transfer following a contained explosion

    NASA Astrophysics Data System (ADS)

    Manson, Steven James

    The Pantex facility near Amarillo, Texas, is the only U.S. site charged with the disassembly of nuclear weapons. Concerns over the safety of weapons handling procedures are now being revisited, due to the enhanced safety requirements of the peace time disassembly effort. This research is a detailed examination of one possible nuclear weapons-related accident. In this hypothetical accident, a chemical explosion equivalent to over 50 kilos of TNT destroys unassembled nuclear weapons components, and may potentially result in some amount of plutonium reaching the environment. Previous attempts to simulate this accident have centered around the one-dimensional node and branch approach of the MELCOR code. This approach may be adequate in calculating pressure driven flow through narrow rampways and leak sites, however, its one-dimensionality does not allow it to accurately calculate the multi-dimensional aspects of heat transfer. This research effort uses an axi-symmetric stream function---vorticity formulation of the Navier-Stokes equations to model a Pantex cell building following a successfully contained chemical explosion. This allows direct calculation of the heat transfer within the cell room during the transient. The tool that was developed to perform this analysis is called PET (Post-Explosion Transient), and it simulates natural convection thermal hydraulics taking into account temperature-related fluid density differences, variable fluid transport properties, and a non-linear equation of state. Results obtained using the PET code indicate that previous analyses by other researchers using the MELCOR code have been overly conservative in estimating the effects of cell room heat transfer. An increase in the calculated heat transfer coefficient of approximately 20% is indicated. This has been demonstrated to significantly decrease the projected consequences of the hypothetical accident.

  15. Literature review of the lifetime of DOE materials: Aging of plastic bonded explosives and the explosives and polymers contained therein

    SciTech Connect

    Burgess, C.E.; Woodyard, J.D.; Rainwater, K.A.; Lightfoot, J.M.; Richardson, B.R.

    1998-09-01

    There are concerns about the lifetime of the nation`s stockpile of high explosives (HEs) and their components. The DOE`s Core Surveillance and Enhanced Surveillance programs specifically target degradation of HE, binders, and plastic-bonded explosives (PBXs) for determination of component lifetimes and handling procedures. The principal goal of this project is to identify the decomposition mechanisms of HEs, plasticizers, and plastic polymer binders resulting from exposure to ionizing radiation, heat, and humidity. The primary HEs of concern are 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and 1,3,5,7-tetranitro-1,3,5,7-tetraazocyclooctane (HMX). Hexahydro-1,3,5-triazine (RDX) is closely related to these two compounds and is also included in the literature review. Both Kel-F 800 and Estane are polymers of interest. A stabilizer, Irganox 1010, and an energetic plasticizer that is a blend of acetaldehyde 2,2-dinitropropyl acetal, are also of interest, but the focus of this report will be on the explosives and polymers. This presents a literature review that provides background on the synthesis, degradation, and techniques to analyze TATB, HMX, RDX, Kel-F 800, Estane, and the PBXs of these compounds. As there are many factors that can influence degradation of materials, the degradation discussion will be divided into sections based on each factor and how it might affect the degradation mechanism. The factors reviewed that influence the degradation of these materials are exposure to heat, UV- and {gamma}-irradiation, and the chemistry of these compounds. The report presents a recently compiled accounting of the available literature. 80 refs., 7 figs.

  16. USING A CONTAINMENT VESSEL LIFTING APPARATUS FOR REMOTE OPERATIONS OF SHIPPING PACKAGES

    SciTech Connect

    Loftin, Bradley; Koenig, Richard

    2013-08-08

    The 9977 and the 9975 shipping packages are used in various nuclear facilities within the Department of Energy. These shipping packages are often loaded in designated areas with designs using overhead cranes or A-frames with lifting winches. However, there are cases where loading operations must be performed in remote locations where these facility infrastructures do not exist. For these locations, a lifting apparatus has been designed to lift the containment vessels partially out of the package for unloading operations to take place. Additionally, the apparatus allows for loading and closure of the containment vessel and subsequent pre-shipment testing. This paper will address the design of the apparatus and the challenges associated with the design, and it will describe the use of the apparatus.

  17. Analysis of the ANL Test Method for 6CVS Containment Vessels

    SciTech Connect

    Trapp, D.; Crow, G.

    2011-06-06

    In the fall of 2010, Argonne National Laboratory (ANL) contracted with vendors to design and build 6CVS containment vessels as part of their effort to ship Fuel Derived Mixed Fission Product material. The 6CVS design is based on the Savannah River National Laboratory's (SRNL) design for 9975 and 9977 six inch diameter containment vessels. The main difference between the designs is that the 6CVS credits the inner O-ring seal as the containment boundary while the SRNL design credits the outer O-ring seal. Since the leak test must be done with the inner O-ring in place, the containment vessel does not have a pathway for getting the helium into the vessel during the leak test. The leak testing contractor was not able to get acceptable leak rates with the specified O-ring, but they were able to pass the leak test with a slightly larger O-ring. ANL asked the SRNL to duplicate the leak test vendor's method to determine the cause of the high leak rates. The SRNL testing showed that the helium leak indications were caused by residual helium left within the 6CVS Closure Assembly by the leak test technique, and by helium permeation through the Viton O-ring seals. After SRNL completed their tests, the leak testing contractor was able to measure acceptable leak rates by using the slightly larger O-ring size, by purging helium from the lid threads, and by being very quick in getting the bell jar under a full vacuum. This paper describes the leak test vendor's test technique, and other techniques that could be have been used to successfully leak test the 6CVS's.

  18. A Proposed Method for the Determination of Leakage Rate for a Reactor Containment Vessel

    SciTech Connect

    Tries, Mark A.; Bobek, Leo M.

    2004-03-15

    A method is presented for the determination of the leakage rate for containment vessels of water-cooled reactors. The method is applicable to Type A tests for which the containment vessel is pressurized to some initial overpressure, and subsequent measurements of absolute air pressure and temperature are made to determine the leakage rate. The proposed method incorporates the desirable features of the recommended method for the determination of the leakage rate, namely, that the measured data all have equal statistical weight, the leakage rate is not estimated using finite differences, and the leakage rate is normalized to the initial air content in the containment vessel. The major assumptions of the proposed method are incompressible airflow and a constant absolute air temperature. The proposed method is based on a reasonably accurate description of absolute dry air pressure over time, for which parameters are obtained using a linear regression technique on the transformed pressure measurements. Under the given assumptions the transformed pressure measurements are linear, and therefore, the proposed method avoids the drawback that is encountered in the recommended method of applying a linear model to nonlinear data. The pressure function then is used to determine the leakage rate as a function of time and the integral leakage rate for the duration of the test. Also, the method is readily adaptable to scaling the integral leakage rate to different initial air pressures in the containment vessel. In addition, the assumption of an incompressible airflow is considered to be reasonable for initial Mach numbers less than or equal to 0.4.

  19. DESIGN OF A CONTAINMENT VESSEL CLOSURE FOR SHIPMENT OF TRITIUM GAS

    SciTech Connect

    Eberl, K; Paul Blanton, P

    2007-07-03

    This paper presents a design summary of the containment vessel closure for the Bulk Tritium Shipping Package (BTSP). This new package is a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The new design is based on changes in the regulatory requirements. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials that enhance the package's ability to withstand dynamic loading and thermal effects. This paper will specifically summarize the design philosophy and engineered features of the BTSP containment vessel closure. The closure design incorporates a concave closure lid, metallic C-Ring seals for containing tritium gas, a metal bellows valve and an elastomer O-Ring for leak testing. The efficient design minimizes the overall vessel height and protects the valve housing from damage during postulated drop and crush scenarios. Design features will be discussed.

  20. Experimental and numerical correlation of a scaled containment vessel subjected to an internal blast load

    SciTech Connect

    Romero, C.; Benner, J.C.; Berkbigler, L.W.

    1997-02-01

    Los Alamos National Laboratory is currently in the design phase of a large Containment System that will be used to contain hydrodynamic experiments. The system in question is being designed to elastically withstand a 50 kg internal high explosive (PBX-9501) detonation. A one-tenth scaled model of the containment system was fabricated and used to obtain experimental results of both pressure loading and strain response. The experimental data are compared with numerical predictions of pressure loading and strain response obtained from an Eulerian hydrodynamic code (MESA-2D) and an explicit, non-linear finite element code (LLNL DYNA3D). The two-dimensional pressure predictions from multiple hydrodynamic simulations are used as loading in the structural simulation. The predicted pressure histories and strain response compare well with experimental results at several locations.

  1. CONTAINMENT VESSEL TEMPERATURE FOR PU-238 HEAT SOURCE CONTAINER UNDER AMBIENT, FREE CONVECTION AND LOW EMISSIVITY COOLING CONDITIONS

    SciTech Connect

    Gupta, N.; Smith, A.

    2011-02-14

    The EP-61 primary containment vessel of the 5320 shipping package has been used for storage and transportation of Pu-238 plutonium oxide heat source material. For storage, the material in its convenience canister called EP-60 is placed in the EP-61 and sealed by two threaded caps with elastomer O-ring seals. When the package is shipped, the outer cap is seal welded to the body. While stored, the EP-61s are placed in a cooling water bath. In preparation for welding, several containers are removed from storage and staged to the welding booth. The significant heat generation of the contents, and resulting rapid rise in component temperature necessitates special handling practices. The test described here was performed to determine the temperature rise with time and peak temperature attained for an EP-61 with 203 watts of internal heat generation, upon its removal from the cooling water bath.

  2. DHCVIM: A direct heating containment vessel interactions module: Applications to Sandia National Laboratory Surtsey experiments

    SciTech Connect

    Ginsberg, T.; Tutu, N.K.

    1987-01-01

    Direct containment heating is the mechanism of severe nuclear reactor accident containment loading which results from transfer of thermal and chemical energy from high temperature, finely divided, molten core material to the containment atmosphere. The Direct Heating Containment Vessel Interactions Module, DHCVIM, has been developed at BNL to mechanistically model the mechanisms of containment loading resulting from the direct heating accident sequence. The calculational procedure is being used at present to model the Sandia National Laboratory 1/10th-scale Surtsey direct containment heating experiments. The objective of the code is to provide a test bed for detailed modeling of various aspects of the thermal, chemical and hydrodynamic interactions which are expected to occur in three regions of a containment building: reactor cavity, intermediate subcompartments and containment done. Major emphasis is placed, at present, on the description of reactor cavity dynamics. This paper summarizes the modeling principles which are incorporated in DHCVIM and presents a prediction of the Surtsey Test DCH-2 which was made prior to execution of the experiment.

  3. DHCVIM - a direct heating containment vessel interactions module: applications to Sandia National Laboratories Surtsey experiments

    SciTech Connect

    Ginsberg, T.; Tutu, N.K.

    1987-01-01

    Direct containment heating is the mechanism of severe nuclear reactor accident containment loading that results from transfer of thermal and chemical energy from high-temperature, finely divided, molten core material to the containment atmosphere. The direct heating containment vessel interactions module (DHCVIM) has been developed at Brookhaven National Laboratory to model the mechanisms of containment loading resulting from the direct heating accident sequence. The calculational procedure is being used at present to model the Sandia National Laboratories one-tenth-scale Surtsey direct containment heating experiments. The objective of the code is to provide a test bed for detailed modeling of various aspects of the thermal, chemical, and hydrodynamic interactions that are expected to occur in three regions of a containment building: reactor cavity, intermediate subcompartments, and containment dome. Major emphasis is placed on the description of reactor cavity dynamics. This paper summarizes the modeling principles that are incorporated in DHCVIM and presents a prediction of the Surtsey Test DCH-2 that was made prior to execution of the experiment.

  4. Processing of Lewisite munitions in the explosive destruction system.

    SciTech Connect

    Shepodd, Timothy J.; Didlake, John E., Jr.; Bradshaw, Robert W., PhD; Weiss, Tricia

    2005-03-01

    The Explosive Destruction System (EDS) is a transportable system designed to treat chemical munitions. The EDS is transported on an open trailer that provides a mounting surface for major system components and an operator's work platform. The trailer is towed by a prime mover. An explosive containment vessel contains the shock, munition fragments, and the chemical agent during the munition opening process, and then provides a vessel for the subsequent chemical treatment of the agent. A fragmentation suppression system houses the chemical munition and protects the containment vessel from high velocity fragments. An explosive accessing system uses shaped charges to cut the munition open and attack the burster. A firing system detonates the shaped charges. A chemical feed system supplies neutralizing reagents and water to the containment vessel. A waste handling system drains the treated effluent.

  5. Some properties of explosive mixtures containing peroxides Part I. Relative performance and detonation of mixtures with triacetone triperoxide.

    PubMed

    Zeman, Svatopluk; Trzci?ski, Waldemar A; Matyás, Robert

    2008-06-15

    This study concerns mixtures of triacetone triperoxide (3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane, TATP) and ammonium nitrate (AN) with added water (W), as the case may be, and dry mixtures of TATP with urea nitrate (UN). Relative performances (RP) of the mixtures and their individual components, relative to TNT, were determined by means of ballistic mortar. The detonation energies, E0, and detonation velocities, D, were calculated for the mixtures studied by means of the thermodynamic code CHEETAH. Relationships have been found and are discussed between the RP and the E0 values related to unit volume of gaseous products of detonation of these mixtures. These relationships together with those between RP and oxygen balance values of the mixtures studied indicate different types of participation of AN and UN in the explosive decomposition of the respective mixtures. Dry TATP/UN mixtures exhibit lower RP than analogous mixtures TATP/AN containing up to 25% of water. Depending on the water content, the TATP/AN mixtures possess higher detonability values than the ANFO explosives. A semi-logarithmic relationship between the D values and oxygen coefficients has been derived for all the mixtures studied at the charge density of 1000 kg m(-3). Among the mixtures studied, this relationship distinguishes several samples of the type of "tertiary explosives" as well as samples that approach "high explosives" in their performances and detonation velocities. PMID:18023972

  6. Explosive destruction system for disposal of chemical munitions

    DOEpatents

    Tschritter, Kenneth L. (Livermore, CA); Haroldsen, Brent L. (Manteca, CA); Shepodd, Timothy J. (Livermore, CA); Stofleth, Jerome H. (Albuquerque, NM); DiBerardo, Raymond A. (Baltimore, MD)

    2005-04-19

    An explosive destruction system and method for safely destroying explosively configured chemical munitions. The system comprises a sealable, gas-tight explosive containment vessel, a fragment suppression system positioned in said vessel, and shaped charge means for accessing the interior of the munition when the munition is placed within the vessel and fragment suppression system. Also provided is a means for treatment and neutralization of the munition's chemical fills, and means for heating and agitating the contents of the vessel. The system is portable, rapidly deployable and provides the capability of explosively destroying and detoxifying chemical munitions within a gas-tight enclosure so that there is no venting of toxic or hazardous chemicals during detonation.

  7. HALFTON: A high-explosive containment experiment in partially saturated tuff

    SciTech Connect

    Smith, C.W.

    1996-03-01

    The HALFTON experiment explored the phenomena of high explosive detonations in 90% water-saturated tuff rock. The explosive source was a 453 kg TNT sphere which was grouted in a drift in G Tunnel, Nevada Test Site. Active gages measured stresses and motions in the range of 1.3 to 5.3 cavity radii and showed a peak stress decay as range raised to the {minus}2.77 power. Additional stress gages were fielded to investigate the gage inclusion problem.

  8. The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment

    E-print Network

    Benziger, J; Calaprice, F; De Haas, E; Fernholz, R; Ford, R; Galbiati, C; Goretti, A; Harding, E; Ianni, A; Kidner, S; Leung, M; Löser, F; McCarty, K; Nelson, A; Parsells, R; Pocar, A; Shutt, T; Sonnenschein, A; Vogelaar, R B; Ianni, An.

    2007-01-01

    Borexino is a solar neutrino experiment designed to observe the 0.86 MeV Be-7 neutrinos emitted in the pp cycle of the sun. Neutrinos will be detected by their elastic scattering on electrons in 100 tons of liquid scintillator. The neutrino event rate in the scintillator is expected to be low (~0.35 events per day per ton), and the signals will be at energies below 1.5 MeV, where background from natural radioactivity is prominent. Scintillation light produced by the recoil electrons is observed by an array of 2240 photomultiplier tubes. Because of the intrinsic radioactive contaminants in these PMTs, the liquid scintillator is shielded from them by a thick barrier of buffer fluid. A spherical vessel made of thin nylon film contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by a second nylon vessel in order to prevent inward diffusion of radon atoms. The radioactive background requirements for Borexino are challenging to meet, es...

  9. EVALUATION OF TROQUE VS CLOSURE BOLT PRELOAD FOR A TYPICAL CONTAINMENT VESSEL UNDER SERVICE CONDITIONS

    SciTech Connect

    Smith, A.

    2010-02-16

    Radioactive material package containment vessels typically employ bolted closures of various configurations. Closure bolts must retain the lid of a package and must maintain required seal loads, while subjected to internal pressure, impact loads and vibration. The need for insuring that the specified preload is achieved in closure bolts for radioactive materials packagings has been a continual subject of concern for both designers and regulatory reviewers. The extensive literature on threaded fasteners provides sound guidance on design and torque specification for closure bolts. The literature also shows the uncertainty associated with use of torque to establish preload is typically between 10 and 35%. These studies have been performed under controlled, laboratory conditions. The ability to insure required preload in normal service is, consequently, an important question. The study described here investigated the relationship between indicated torque and resulting bolt load for a typical radioactive materials package closure using methods available under normal service conditions.

  10. Composting of soils/sediments and sludges containing toxic organics including high energy explosives. Final report

    SciTech Connect

    Doyle, R.C.; Kitchens, J.F.

    1993-07-01

    Laboratory and pilot-scale experimentation were conducted to evaluate composting as an on-site treatment technology to remediate soils contaminated with hazardous waste at DOE`s PANTEX Plant. Suspected contaminated sites within the PANTEX Plant were sampled and analyzed for explosives, other organics, and inorganic wastes. Soils in drainage ditches and playas at PANTEX Plant were found to be contaminated with low levels of explosives (including RDX, HMX, PETN and TATB). Additional sites previously used for solvent disposal were heavily contaminated with solvents and transformation products of the solvent, as well as explosives and by-products of explosives. Laboratory studies were conducted using {sup 14}C-labeled explosives and {sup 14}C-labeled diacetone alcohol contaminated soil loaded into horse manure/hay composts at three rates: 20, 30, and 40%(W/W). The composts were incubated for six weeks at approximately 60{degree}C with continuous aeration. All explosives degraded rapidly and were reduced to below detection limits within 3 weeks in the laboratory studies. {sup 14}C-degradates from {sup 14}C-RDX, {sup 14}C-HMX and {sup 14}C-TATB were largely limited to {sup 14}CO{sub 2} and unextracted residue in the compost. Volatile and non-volatile {sup 14}C-degradates were found to result from {sup 14}C-PETN breakdown, but these compounds were not identified. {sup 14}C-diacetone alcohol concentrations were significantly reduced during composting. However, most of the radioactivity was volatilized from the compost as non-{sup 14}CO{sub 2} degradates or as {sup 14}C-diacetone alcohol. Pilot scale composts loaded with explosives contaminated soil at 30% (W/W) with intermittent aeration were monitored over six weeks. Data from the pilot-scale study generally was in agreement with the laboratory studies. However, the {sup 14}C-labeled TATB degraded much faster than the unlabeled TATB. Some formulations of TATB may be more resistant to composting activity than others.

  11. Perturbation of baseline thermal stress in the Mound 9516 Shipping Package primary containment vessel

    NASA Astrophysics Data System (ADS)

    Sansalone, Keith H. F.

    1995-01-01

    Full-capacity loading of heat sources into the Mound 9516 Shipping Package primary containment vessel (PCV) results in temperature gradients which are symmetric, due to the axisymmetry of the package design. Concern over the change in thermal gradients (and therefore, stress) in the PCV due to sub-capacity loading led to the analytical examination of this phenomenon. The PCVs are cylindrical in shape and are loaded into the package such that they and all containment components are concentrically arranged along a common longitudinal axis. If the design full-capacity loading of the PCVs in this package assumes the axisymmetric (or more precisely, cyclicly symmetric) arrangement of its heat-producing contents, then sub-capacity loading implies that in many cases, the load arrangement could be asymmetric with respect to the longitudinal axis. It is then feasible that the departure from heat load axisymmetry could perturb the nominal thermal gradients so that thermally-induced stress within the PCV might increase to levels deemed unacceptable. This study applies Finite Element analysis (FEA) to the problem and demonstrates that no such unacceptable thermal stress increase occurs in the PCV material due to the asymmetric arrangement of contents.

  12. RADIOACTIVE MATERIAL SHIPPING PACKAGINGS AND METAL TO METAL SEALS FOUND IN THE CLOSURES OF CONTAINMENT VESSELS INCORPORATING CONE SEAL CLOSURES

    SciTech Connect

    Loftin, B; Glenn Abramczyk, G; Allen Smith, A

    2007-06-06

    The containment vessels for the Model 9975 radioactive material shipping packaging employ a cone-seal closure. The possibility of a metal-to-metal seal forming between the mating conical surfaces, independent of the elastomer seals, has been raised. It was postulated that such an occurrence would compromise the containment vessel hydrostatic and leakage tests. The possibility of formation of such a seal has been investigated by testing and by structural and statistical analyses. The results of the testing and the statistical analysis demonstrate and procedural changes ensure that hydrostatic proof and annual leakage testing can be accomplished to the appropriate standards.

  13. Application of microwave induced combustion in closed vessels for carbon black-containing elastomers decomposition

    NASA Astrophysics Data System (ADS)

    Moraes, Diogo P.; Mesko, Márcia F.; Mello, Paola A.; Paniz, José N. G.; Dressler, Valderi L.; Knapp, Günter; Flores, Érico M. M.

    2007-09-01

    A rapid digestion procedure for the determination of Al, Fe, Mn, Sr and Zn in carbon black-containing elastomers (30%) has been developed using sample combustion in closed quartz vessels. Microwave radiation was used for ignition. Combustion takes place in the presence of oxygen under pressure using ammonium nitrate (50 ?l of 6 mol l - 1 ) as aid for ignition. Samples of nitrile-butadiene rubber and ethylenepropylene-diene monomer were decomposed. A quartz device was used simultaneously as a sample holder and for the protection of vessel cap. The influence of the absorption solution (nitric acid or water) and the necessity of an additional reflux step were evaluated. Determination of Al, Fe, Mn, Sr and Zn was performed by inductively coupled plasma optical emission spectrometry. A reference method (ASTM D 4004-06) based on conventional dry ashing and flame atomic absorption spectrometry was used for comparison (Mn and Zn). Results were also compared to those obtained by using wet acid digestion in closed systems. Concentrated and diluted (4 mol l - 1 ) nitric acid, with 5 min of reflux after the combustion, gave best recoveries for all analytes (from 97 to 101%). For dry ashing quantitative recoveries were found only for Zn whereas for Al, Fe, Mn and Sr the recoveries were only 14, 37, 72 and 37%, respectively. With the proposed procedure the residual carbon content was below 0.5% and further determination of analytes was feasible with only the combustion step (for Fe a reflux with diluted HNO 3 was necessary). Complete sample digestion is obtained in less time using the proposed procedure than with other procedures and no concentrated acids were necessary.

  14. Predicting runaway reaction in a solid explosive containing a single crack

    SciTech Connect

    Jackson, Scott I; Hill, Larry G

    2009-01-01

    Mechanically damaged high explosive (HE) undergoing defiagration has recently been shown capable of generating combustion pressures and flame speeds dramatically in excess of those observed in undamaged HE. Flame penetration of HE cracks large enough to support the reaction zone serves to increase the burning surface area and the rate of gas production. Cracks confine the product gas, elevating the local pressure and reducing the reaction zone thickness such that the flame can enter smaller-width cracks. As the reaction zone decreases sufficiently to enter the smallest cracks, the flame surface area will grow appreciably, rapidly pressurizing the cracks. This runaway of pressure and burning area, termed combustion bootstrapping, can dramatically accelerate the combustion mode and in the most extreme cases may result in deflagration-to-detonation transition [3, 4]. The current study is intended to help predict the conditions required for the onset of reaction runaway in a narrow slot in HE. We review experiments [5] where flames were observed to propagate though a narrow slot (intended to simulate a well-formed crack) in high explosive at velocities up to 10 km/s, reaching pressures in excess of 1 kbar. Pressurization of the slot due to gas-dynamic choking is then used to predict the onset of runaway reaction. This model agrees with experimental pressure measurements of observed reaction runaway in slots.

  15. Measurement of the flow properties within a copper tube containing a deflagrating explosive

    SciTech Connect

    Hill, Larry G; Morris, John S; Jackson, Scott I

    2009-01-01

    We report on the propagation of deflagration waves in the high explosive (HE) PBX 9501 (95 wt % HMX, 5 wt% binder). Our test configuration, which we call the def1agration cylinder test (DFCT), is fashioned after the detonation cylinder test (DTCT) that is used to calibrate the JWL detonation product equation of state (EOS). In the DFCT, the HE is heated to a uniform slightly subcritical temperature, and is ignited at one end by a hot wire. For some configurations and initial conditions, we observe a quasi-steady wave that flares the tube into a funnel shape, stretching it to the point of rupture. This behavior is qualitatively like the DTCT, such that, by invoking certain additional approximations that we discuss, its behavior can be analyzed by the same methods. We employ an analysis proposed by G.I. Taylor to infer the pressure-volume curve for the burning, expanding flow. By comparing this result to the EOS of HMX product gas alone. we infer that only {approx}20 wt% of the HMX has burned at tube rupture. This result confirms pre-existing observations about the role of convective burning in HMX cookoff explosions.

  16. Analytical Prediction of the Seismic Response of a Reinforced Concrete Containment Vessel

    SciTech Connect

    James, R.J.; Rashid, Y.R.; Cherry, J.L.; Chokshi, N.; Tsurumaki, S.

    1999-03-19

    Under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan, the Nuclear Power Engineering Corporation (NUPEC) is investigating the seismic behavior of a Reinforced Concrete Containment Vessel (RCCV) through scale-model testing using the high-performance shaking table at the Tadotsu Engineering Laboratory. A series of tests representing design-level seismic ground motions was initially conducted to gather valuable experimental measurements for use in design verification. Additional tests will be conducted with increasing amplifications of the seismic input until a structural failure of the test model occurs. In a cooperative program with NUPEC, the US Nuclear Regulatory Commission (USNRC), through Sandia National Laboratories (SNL), is conducting analytical research on the seismic behavior of RCCV structures. As part of this program, pretest analytical predictions of the model tests are being performed. The dynamic time-history analysis utilizes a highly detailed concrete constitutive model applied to a three-dimensional finite element representation of the test structure. This paper describes the details of the analysis model and provides analysis results.

  17. A flag-based algorithm and associated neutron interrogation system for the detection of explosives in sea-land cargo containers

    NASA Astrophysics Data System (ADS)

    Lehnert, A. L.; Kearfott, K. J.

    2015-07-01

    Recent efforts in the simulation of sea-land cargo containers in active neutron interrogation scenarios resulted in the identification of several flags indicating the presence of conventional explosives. These flags, defined by specific mathematical manipulations of the neutron and photon spectra, have been combined into a detection algorithm for screening cargo containers at international borders and seaports. The detection algorithm's steps include classifying the cargo type, identifying containers filled with explosives, triggering in the presence of concealed explosives, and minimizing the number of false positives due to cargo heterogeneity. The algorithm has been implemented in a system that includes both neutron and photon detectors. This system will take about 10 min to scan a container and cost approximately 1M to construct. Dose calculations resulted in estimates of less than 0.5 mSv for a person hidden in the container, and an operator annual dose of less than 0.9 mSv.

  18. Proceedings of the seventh symposium on containment of underground nuclear explosions. Volume 1

    SciTech Connect

    Olsen, C.W.

    1993-12-31

    This is Volume 1 of two unclassified volumes of a meeting of workers at all levels in the science and technology of containment. Papers on containment and related geological, geophysical, engineering, chemical, and computational topics were included. Particular topics included in this volume are: General containment,tunnel and LOS topics, cavity conditions, and LYNER and chemical kiloton. Individual papers are indexed separately on the data base.

  19. AN EXPERIMENTAL STUDY OF THE STABILITY OF VESSEL-SPANNING BUBBLES IN CYLINDRICAL & ANNULAR & OBROUND & AND CONICAL CONTAINERS

    SciTech Connect

    DHALIWAL TK

    2010-01-28

    This report provides a summary of experiments that were performed by Fauske & Associates on the stability of vessel-spanning bubbles. The report by Fauske & Associates, An Experimental Study of the Stability of Vessel-Spanning Bubbles in Cylindrical, Annular, Obround and Conical Containers, is included in Appendix A. Results from the experiments confirm that the gravity yield parameter, Y{sub G}, correctly includes container size and can be applied to full-scale containers to predict the possibility of the formation of a stable vessel spanning bubble. The results also indicate that a vessel spanning bubble will likely form inside the STSC for KE, KW, and Settler sludges if the shear strengths of these sludges exceed 1820, 2080, and 2120 Pa, respectively. A passive mechanism installed in the STSC is effective at disrupting a rising sludge plug and preventing the sludge from plugging the vent filter or being forced out of the container. The Sludge Treatment Project for Engineered Container and Settler Sludge (EC/ST) Disposition Subproject is being conducted in two phases. Phase 1 of the EC/ST Disposition Subproject will retrieve the radioactive sludge currently stored in the K West (KW) Basin into Sludge Transport and Storage Containers (STSCs) and transport the STSCs to T-Plant for interim storage. Phase 2 of the EC/ST Disposition Subproject will retrieve the sludge from interim storage, treat and package sludge for disposal at the Waste Isolation Pilot Plant. The STSC is a cylindrical container; similar to previously used large diameter containers. A STSC (Figure 1) with a diameter of 58 inches will be used to transport KE and KW originating sludge (located in Engineered Containers 210, 220, 240, 250, and 260) to T-Plant. A STSC with an annulus (Figure 2) will be used to transport Settler Tank sludge, located in Engineered Container 230. An obround small canister design was previously considered to retrieve sludge from the basin. The obround design was selected in Small Canister Design Selection, PRC-STP-00052. However, the small canister was not selected for transporting the sludge. The STSC was selected for sludge loading and transport to T-Plant as discussed in Decision Report for Direct Hydraulic Loading of Sludge into Sludge Transport and Storage Containers, PRC-STP-00112. The STSC will be directly loaded with sludge as described in the Preliminary STP Container and Settler Sludge Process System Description and Material Balance, HNF-41051.

  20. Proceedings of the seventh symposium on containment of underground nuclear explosions. Volume 2

    SciTech Connect

    Olsen, C.W.

    1993-12-31

    This is Volume 2 of two unclassified volumes of a meeting of workers at all levels in the science and technology of containment. Papers on containment and related geological, geophysical, engineering, chemical, and computational topics were included. Particular topics in this volume include: Low-yield test beds, modeling and residual stress, material properties, collapse phenomena and shock diagnostics, stemming practices and performance, geophysics, and geosciences and weapons destruction. Individual papers are indexed separately on the data base.

  1. Initiative for Explosives Detection

    E-print Network

    Initiative for Explosives Detection Highly Concealed Bulk Explosives Detection This focus area emphasizes the detection of explosives or IEDs hidden in vehicles, buildings or various types of containers of highly concealed explosives include the development of enhanced energy sources, improved electronics

  2. Optically detonated explosive device

    NASA Technical Reports Server (NTRS)

    Yang, L. C.; Menichelli, V. J. (inventors)

    1974-01-01

    A technique and apparatus for optically detonating insensitive high explosives, is disclosed. An explosive device is formed by containing high explosive material in a house having a transparent window. A thin metallic film is provided on the interior surface of the window and maintained in contact with the high explosive. A laser pulse provided by a Q-switched laser is focussed on the window to vaporize the metallic film and thereby create a shock wave which detonates the high explosive. Explosive devices may be concurrently or sequentially detonated by employing a fiber optic bundle to transmit the laser pulse to each of the several individual explosive devices.

  3. A reassessment of the potential for an alpha-mode containment failure and a review of the current understanding of broader fuel-coolant interaction issues. Second steam explosion review group workshop

    SciTech Connect

    Basu, S.; Ginsberg, T.

    1996-08-01

    This report summarizes the review and evaluation by experts of the current understanding of the molten fuel-coolant interaction (FCI) issues covering the complete spectrum of interactions, i.e., from mild quenching to very energetic interactions including those that could lead to the alpha-mode containment failure. Of the eleven experts polled, all but two concluded that the alpha-mode failure issue was resolved from a risk perspective, meaning that this mode of failure is of very low probability, that it is of little or no significance to the overall risk from a nuclear power plant, and that any further reduction in residual uncertainties is not likely to change the probability in an appreciable manner. To a lesser degree, discussions also took place on the broader FCI issues such as mild quenching of core melt during non-explosive FCI, and shock loading of lower head and ex-vessel support structures arising from explosive localized FCIs. These latter issues are relevant with regard to determining the efficacy of certain accident management strategies for operating reactors as well as for advanced light water reactors. The experts reviewed the status of understanding of the FCI phenomena in the context of these broader issues, identified residual uncertainties in the understanding, and recommended future research (both experimental and analytical) to reduce the uncertainties.

  4. Static-stress analysis of dual-axis safety vessel

    NASA Astrophysics Data System (ADS)

    Bultman, D. H.

    1992-11-01

    An 8 ft diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the 'shell to nozzle' interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.

  5. Analysis of complex vessel experiments using the Hybrid Lagrangian-Eulerian containment code ALICE-II

    SciTech Connect

    Wang, C.Y.; Ku, J.L.; Zeuch, W.R.

    1984-03-01

    This paper describes the ALICE-II analysis of and comparison with complex vessel experiments. Tests SM-2 through SM-5 were performed by SRI International in 1978 in studying the structural response of 1/20 scale models of the Clinch River Breeder Reactor to a simulated hypothetical core-disruptive accident. These experiments provided quality data for validating treatments of the nonlinear fluid-structure interactions and many complex excursion phenomena, such as flow through perforated structures, large material distortions, multi-dimensional sliding interfaces, flow around sharp corners, and highly contorted fluid boundaries. Correlations of the predicted pressures with the test results of all gauges are made. Wave characteristics and arrival times are also compared. Results show that the ALICE-II code predicts the pressure profile well. Despite the complexity, the code gave good results for the SM-5 test.

  6. The influence of selected containment structures on debris dispersal and transport following high pressure melt ejection from the reactor vessel

    SciTech Connect

    Pilch, M.; Tarbell, W.W.; Brockmann, J.E.

    1988-09-01

    High pressure expulsion of molten core debris from the reactor pressure vessel may result in dispersal of the debris from the reactor cavity. In most plants, the cavity exits into the containment such that the debris impinges on structures. Retention of the debris on the structures may affect the further transport of the debris throughout the containment. Two tests were done with scaled structural shapes placed at the exit of 1:10 linear scale models of the Zion cavity. The results show that the debris does not adhere significantly to structures. The lack of retention is attributed to splashing from the surface and reentrainment in the gas flowing over the surface. These processes are shown to be applicable to reactor scale. A third experiment was done to simulate the annular gap between the reactor vessel and cavity wall. Debris collection showed that the fraction of debris exiting through the gap was greater than the gap-to-total flow area ratio. Film records indicate that dispersal was primarily by entrainment of the molten debris in the cavity. 29 refs., 36 figs., 11 tabs.

  7. Containment vs confinement trade study, small HTGR plant PCRV [prestressed concrete reactor vessel] concept

    SciTech Connect

    1985-03-01

    This trade study has been conducted to evaluate the differences between four different HTGR nuclear power plants. All of the plants use a prestressed concrete reactor vessel (PCRV) to house the core and steam generation equipment. The reactor uses LEU U/Th fuel in prismatic carbon blocks. All plant concepts meet the utility/user requirements established for small HTGR plants. All plants will be evaluated with regard to their ability to produce safe, economical power to satisfy Goals 1, 2, and 3 of the HTGR program and by meeting the MUST criteria established in the concept evaluation plan. Capital costs for each plant were evaluated on a differential cost basis. These costs were developed according to the ``NUS`` code of accounts as defined in the Cost Estimating and Control Procedure, HP-20901. Accounts that were identical in scope for all four plants were not used for the comparison. Table 1-1 is a list of capital cost accounts that were evaluated for each plant.

  8. Inspection tester for explosives

    DOEpatents

    Haas, Jeffrey S. (San Ramon, CA); Simpson, Randall L. (Livermore, CA); Satcher, Joe H. (Patterson, CA)

    2010-10-05

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  9. Inspection tester for explosives

    DOEpatents

    Haas, Jeffrey S. (San Ramon, CA); Simpson, Randall L. (Livermore, CA); Satcher, Joe H. (Patterson, CA)

    2007-11-13

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  10. Static-stress analysis of dual-axis confinement vessel

    NASA Astrophysics Data System (ADS)

    Bultman, D. H.

    1992-11-01

    This study evaluates the static-pressure containment capability of a 6-ft-diameter, spherical vessel, made of HSLA-100 steel, to be used for high-explosive (HE) containment. The confinement vessel is designed for use with the Dual-Axis Radiographic Hydrotest Facility (DARHT) being developed at Los Alamos National Laboratory. Two sets of openings in the vessel are covered with x-ray transparent covers to allow radiographic imaging of an explosion as it occurs inside the vessel. The confinement vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC-107. Combined stresses resulting from internal pressure and external loads on nozzles are calculated and compared with the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzles of the confinement vessel are adequately designed to safely contain the maximum residual pressure of 1675 psi that would result from an HE charge of 24.2 kg detonated in a vacuum. Shell stresses at the shell-to-nozzle interface, produced from external loads on the nozzles, were less than 400 psi. The maximum combined stress resulting from the internal pressure plus external loads was 16,070 psi, which is less than half the allowable stress of 42,375 psi for HSLA-100 steel.

  11. Test results on direct containment heating by high-pressure melt ejection into the Surtsey vessel: The TDS test series

    SciTech Connect

    Allen, M.D.; Blanchat, T.K.; Pilch, M.M.

    1994-08-01

    The Technology Development and Scoping (TDS) test series was conducted to test and develop instrumentation and procedures for performing steam-driven, high-pressure melt ejection (HPME) experiments at the Surtsey Test Facility to investigate direct containment heating (DCH). Seven experiments, designated TDS-1 through TDS-7, were performed in this test series. These experiments were conducted using similar initial conditions; the primary variable was the initial pressure in the Surtsey vessel. All experiments in this test series were performed with a steam driving gas pressure of {approx_equal} 4 MPa, 80 kg of lumina/iron/chromium thermite melt simulant, an initial hole diameter of 4.8 cm (which ablated to a final hole diameter of {approx_equal} 6 cm), and a 1/10th linear scale model of the Surry reactor cavity. The Surtsey vessel was purged with argon (<0.25 mol% O{sub 2}) to limit the recombination of hydrogen and oxygen, and gas grab samples were taken to measure the amount of hydrogen produced.

  12. Experimental results of direct containment heating by high-pressure melt ejection into the Surtsey vessel: The DCH-3 and DCH-4 tests

    SciTech Connect

    Allen, M.D.; Pilch, M.; Brockmann, J.E.; Tarbell, W.W. ); Nichols, R.T. ); Sweet, D.W. )

    1991-08-01

    Two experiments, DCH-3 and DCH-4, were performed at the Surtsey test facility to investigate phenomena associated with a high-pressure melt ejection (HPME) reactor accident sequence resulting in direct containment heating (DCH). These experiments were performed using the same experimental apparatus with identical initial conditions, except that the Surtsey test vessel contained air in DCH-3 and argon in DCH-4. Inerting the vessel with argon eliminated chemical reactions between metallic debris and oxygen. Thus, a comparison of the pressure response in DCH-3 and DCH-4 gave an indication of the DCH contribution due to metal/oxygen reactions. 44 refs., 110 figs., 43 tabs.

  13. Ultrasonic, Non-Invasive Classification/Discrimination of Liquid Explosives (LEs) and Threat Liquids from Non-Threat Liquids in Sealed Containers

    SciTech Connect

    Diaz, Aaron A.; Cinson, Anthony D.; Tucker, Brian J.; Samuel, Todd J.; Morales, Romarie

    2009-07-20

    Government agencies and homeland security organizations are searching for more effective approaches for dealing with the increasing demand for inspections involving potential threat liquids and hazardous chemicals, including liquid explosives (LEs). The quantity and variability of hand-held and cargo-sized containers being shipped worldwide drives the need for rapid and effective ways for conducting non-intrusive inspections of liquid-filled containers of a diverse range of types, shapes and sizes. Such inspections need to quickly classify/discriminate between liquids within containers and also ascertain the presence of unexpected objects within a container. The science base, methodology and prototype device for classification/discrimination between classes of liquids has been developed. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device for classification/discrimination of a wide variety of liquids (including threat liquids and their precursors), providing noninvasive liquid classification/discrimination capabilities using a nondestructive ultrasonic measurement approach for inspecting sealed containers. The Container Screening Device (CSD) employs frequency-modulated (FM) chirp excitation and pulse-compression signal processing techniques to measure ultrasonic velocity and a relative attenuation value for liquids within a container, and is capable of determining other acoustic properties from through-transmission, contact measurements over a wide frequency range. Recent algorithm developments are beginning to address the issues of container wall variations and thickness. A description of the basic science, measurement approach and sources of variability in the measurement will be presented and laboratory measurements acquired from a suite of commercial products and precursor liquids used in the manufacturing of Homemade Explosives (HMEs) will be given.

  14. Report on an Explosion and Fire involving the Motor Vessel Atlantic Duchess at Queen's Dock, Swansea, Glamorganshire on 2nd February, 1951 

    E-print Network

    Watts, H. E.

    1951-04-02

    REPORT TO THE RIGHT HONOURABLE THE SECRETARY OF STATE FOR THE HOME DEPARTMENT ON THE CIRCUMSTANCES ATTENDING AN EXPLOSION AND FIRE WHICH OCCURRED ON 2ND FEBRUARY. 1951, AT QUEEN'S DOCK SWANSEA, IN THE COUNTY OF ...

  15. Functional and structural failure mode overpressurization tests of 1:4-scale prestressed concrete containment vessel model.

    SciTech Connect

    Costello, James F. (United States Nuclear Regulatory Commission, Washington, DC); Shibata, Satoru (Nuclear Power Engineering Corporation, Tokyo, Japan); Hessheimer, Michael F.

    2003-02-01

    A 1:4-scale model of a prestressed concrete containment vessel (PCCV), representative of a pressurized water reactor (PWR) plant in Japan, was constructed by NUPEC at Sandia National Laboratories from January 1997 through June, 2000. Concurrently, Sandia instrumented the model with nearly 1500 transducers to measure strain, displacement and forces in the model from prestressing through the pressure testing. The limit state test of the PCCV model, culminating in functional failure (i.e. leakage by cracking and liner tearing) was conducted in September, 2000 at Sandia National Laboratories. After inspecting the model and the data after the limit state test, it became clear that, other than liner tearing and leakage, structural damage was limited to concrete cracking and the overall structural response (displacements, rebar and tendon strains, etc.) was only slightly beyond yield. (Global hoop strains at the mid-height of the cylinder only reached 0.4%, approximately twice the yield strain in steel.) In order to provide additional structural response data, for comparison with inelastic response conditions, the PCCV model filled nearly full with water and pressurized to 3.6 times the design pressure, when a catastrophic rupture occurred preceded only briefly by successive tensile failure of several hoop tendons. This paper summarizes the results of these tests.

  16. Explosives tester with heater

    SciTech Connect

    Del Eckels, Joel; Nunes, Peter J.; Simpson, Randall L.; Whipple, Richard E.; Carter, J. Chance; Reynolds, John G.

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  17. 46 CFR 153.921 - Explosives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Explosives. 153.921 Section 153.921 Shipping COAST GUARD....921 Explosives. No person may load, off-load, or carry a cargo listed in this part on board a vessel that carries explosives unless he has the prior written permission of the Commandant (CG-ENG)....

  18. 46 CFR 153.921 - Explosives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Explosives. 153.921 Section 153.921 Shipping COAST GUARD....921 Explosives. No person may load, off-load, or carry a cargo listed in this part on board a vessel that carries explosives unless he has the prior written permission of the Commandant (CG-ENG)....

  19. 46 CFR 153.921 - Explosives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Explosives. 153.921 Section 153.921 Shipping COAST GUARD....921 Explosives. No person may load, off-load, or carry a cargo listed in this part on board a vessel that carries explosives unless he has the prior written permission of the Commandant (CG-522)....

  20. 46 CFR 153.921 - Explosives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Explosives. 153.921 Section 153.921 Shipping COAST GUARD....921 Explosives. No person may load, off-load, or carry a cargo listed in this part on board a vessel that carries explosives unless he has the prior written permission of the Commandant (CG-ENG)....

  1. 46 CFR 153.921 - Explosives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Explosives. 153.921 Section 153.921 Shipping COAST GUARD....921 Explosives. No person may load, off-load, or carry a cargo listed in this part on board a vessel that carries explosives unless he has the prior written permission of the Commandant (CG-522)....

  2. Simultaneous identification and quantification of nitro-containing explosives by advanced chemometric data treatment of cyclic voltammetry at screen-printed electrodes.

    PubMed

    Cetó, Xavier; O' Mahony, Aoife M; Wang, Joseph; Del Valle, Manel

    2013-03-30

    The simultaneous determination of three nitro-containing compounds found in the majority of explosive mixtures, namely hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN), is demonstrated using both qualitative and quantitative approaches involving the coupling of electrochemical measurements and advanced chemometric data processing. Voltammetric responses were obtained from a single bare screen-printed carbon electrode (SPCE), which exhibited marked mix-responses towards the compounds examined. The responses obtained were then preprocessed employing discrete wavelet transform (DWT) and the resulting coefficients were input to an artificial neural network (ANN) model. Subsequently, meaningful data was extracted from the complex voltammetric readings, achieving either the correct discrimination of the different commercial mixtures (100% of accuracy, sensitivity and specificity) or the individual quantification of each of the compounds under study (total NRMSE of 0.162 for the external test subset). PMID:23598222

  3. 46 CFR 35.30-25 - Explosives-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Explosives-TB/ALL. 35.30-25 Section 35.30-25 Shipping... Explosives—TB/ALL. Fulminates or other detonating compounds in bulk in dry condition; explosive compositions... other like explosives shall not be accepted, stored, stowed or transported on board tank vessels....

  4. 33 CFR 401.68 - Explosives Permission Letter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Explosives Permission Letter. 401..., DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Dangerous Cargo § 401.68 Explosives Permission Letter. (a) A Seaway Explosives Permission Letter is required for an explosive vessel in...

  5. 33 CFR 401.68 - Explosives Permission Letter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Explosives Permission Letter. 401..., DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Dangerous Cargo § 401.68 Explosives Permission Letter. (a) A Seaway Explosives Permission Letter is required for an explosive vessel in...

  6. 33 CFR 401.68 - Explosives Permission Letter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Explosives Permission Letter. 401..., DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Dangerous Cargo § 401.68 Explosives Permission Letter. (a) A Seaway Explosives Permission Letter is required for an explosive vessel in...

  7. 46 CFR 35.30-25 - Explosives-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Explosives-TB/ALL. 35.30-25 Section 35.30-25 Shipping... Explosives—TB/ALL. Fulminates or other detonating compounds in bulk in dry condition; explosive compositions... other like explosives shall not be accepted, stored, stowed or transported on board tank vessels....

  8. 46 CFR 35.30-25 - Explosives-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Explosives-TB/ALL. 35.30-25 Section 35.30-25 Shipping... Explosives—TB/ALL. Fulminates or other detonating compounds in bulk in dry condition; explosive compositions... other like explosives shall not be accepted, stored, stowed or transported on board tank vessels....

  9. 33 CFR 401.68 - Explosives permission letter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Explosives permission letter. 401..., DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Dangerous Cargo § 401.68 Explosives permission letter. (a) A Seaway Explosives Permission Letter is required for an explosive vessel in...

  10. 46 CFR 35.30-25 - Explosives-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Explosives-TB/ALL. 35.30-25 Section 35.30-25 Shipping... Explosives—TB/ALL. Fulminates or other detonating compounds in bulk in dry condition; explosive compositions... other like explosives shall not be accepted, stored, stowed or transported on board tank vessels....

  11. 33 CFR 401.68 - Explosives Permission Letter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Explosives Permission Letter. 401..., DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Dangerous Cargo § 401.68 Explosives Permission Letter. (a) A Seaway Explosives Permission Letter is required for an explosive vessel in...

  12. 46 CFR 35.30-25 - Explosives-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Explosives-TB/ALL. 35.30-25 Section 35.30-25 Shipping... Explosives—TB/ALL. Fulminates or other detonating compounds in bulk in dry condition; explosive compositions... other like explosives shall not be accepted, stored, stowed or transported on board tank vessels....

  13. 49 CFR 176.184 - Class 1 (explosive) materials of Compatibility Group L.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Class 1 (explosive) materials of Compatibility Group L. ...VESSEL Detailed Requirements for Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.184...

  14. 49 CFR 176.184 - Class 1 (explosive) materials of Compatibility Group L.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Class 1 (explosive) materials of Compatibility Group L. ...VESSEL Detailed Requirements for Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.184...

  15. 49 CFR 176.184 - Class 1 (explosive) materials of Compatibility Group L.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Class 1 (explosive) materials of Compatibility Group L. ...VESSEL Detailed Requirements for Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.184...

  16. 49 CFR 176.184 - Class 1 (explosive) materials of Compatibility Group L.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Class 1 (explosive) materials of Compatibility Group L. ...VESSEL Detailed Requirements for Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.184...

  17. 49 CFR 176.184 - Class 1 (explosive) materials of Compatibility Group L.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Class 1 (explosive) materials of Compatibility Group L. ...VESSEL Detailed Requirements for Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.184...

  18. An unsteady model for the simulation of the rapid depressurization of vessels containing two-phase mixtures in non-equilibrium conditions

    NASA Astrophysics Data System (ADS)

    Ricci, R.; D'Alessandro, V.; Montelpare, S.; Binci, L.; Zoppi, A.

    2015-11-01

    This paper describes the development of a simulation tool for the rapid depressurization (blowdown) of vessels containing two-pliase mixtures in non equilibrium conditions. The model adopts the cubic equations of state for fluids mixtures with non ideal behavior for booth the phases, i.e. vapor and liquid, and it is based on a split two fluids model considering internal heat and mass transfer processes, as well as heat transfer with the vessel wall and the external environment. In order to account the mass and energy exchanged between the gas and the liquid phase, in conditions away from the thermodynamic equilibrium, a partial phase equilibrium (PPE) type approach has been introduced. In this paper the validation of the proposed model with two different literature test cases is addressed and the role of the Peneloux correction for the employed equation of state is also investigated.

  19. THE IMPACT OF OZONE ON THE LOWER FLAMMABLE LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect

    Sherburne, Carol; Osterberg, Paul; Johnson, Tom; Frawely, Thomas

    2013-01-23

    The Savannah River Site, in conjunction with AREVA Federal services, has designed a process to treat dissolved radioactive waste solids with ozone. It is known that in this radioactive waste process, radionuclides radiolytically break down water into gaseous hydrogen and oxygen, which presents a well defined flammability hazard. Flammability limits have been established for both ozone and hydrogen separately; however, there is little information on mixtures of hydrogen and ozone. Therefore, testing was designed to provide critical flammability information necessary to support safety related considerations for the development of ozone treatment and potential scale-up to the commercial level. Since information was lacking on flammability issues at low levels of hydrogen and ozone, a testing program was developed to focus on filling this portion of the information gap. A 2-L vessel was used to conduct flammability tests at atmospheric pressure and temperature using a fuse wire ignition source at 1 percent ozone intervals spanning from no ozone to the Lower Flammable Limit (LFL) of ozone in the vessel, determined as 8.4%(v/v) ozone. An ozone generator and ozone detector were used to generate and measure the ozone concentration within the vessel in situ, since ozone decomposes rapidly on standing. The lower flammability limit of hydrogen in an ozone-oxygen mixture was found to decrease from the LFL of hydrogen in air, determined as 4.2 % (v/v) in this vessel. From the results of this testing, Savannah River was able to develop safety procedures and operating parameters to effectively minimize the formation of a flammable atmosphere.

  20. VESSEL SAFETY CHECKLIST Vessel Name: ___________________________________ Vessel Number: _________________________________

    E-print Network

    Chen, Shu-Ching

    VESSEL SAFETY CHECKLIST Vessel Name: ___________________________________ Vessel Number Checklist- Required Float plan submitted Boater education card Boat registration Compass and GPS Up to date means of boarding) Vessel System Checklist Drain plug installed Fuel tank full Bilge free of water

  1. New Mix Explosives for Explosive Welding

    NASA Astrophysics Data System (ADS)

    Andreevskikh, Leonid

    2011-06-01

    Suggested and tested were some mix explosives--powder mixtures of a brisant high explosive (HE = RDX, PETN) and an inert diluent (baking soda)--for use in explosive welding. RDX and PETN were selected in view of their high throwing ability and low critical diameter. Since the decomposition of baking soda yields a huge amount of gaseous products, its presence ensures (even at a low HE percentage) a throwing speed that is sufficient for realization of explosive welding, at a reduced brisant action of charge. Mix chargers containing 30-70 wt % HE (the rest baking soda) have been tested experimentally and optimized. For study of possibility to reduce critical diameter of HE mixture, the mixture was prepared where HE crystal sizes did not exceed 10 ?m. The tests, which were performed with this HE, revealed that the mixture detonated stably with the velocity D ~ 2 km/s, if the layer thickness was d = 2 mm. The above explosives afford to markedly diminish deformations within the oblique impact zone and thus to carry out explosive welding of hollow items and thin metallic foils.

  2. Parametric Explosion Spectral Model

    SciTech Connect

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  3. Neutrino Factory Target Vessel

    E-print Network

    McDonald, Kirk

    Neutrino Factory Target Vessel Concepts Updated 4/16/12 V. Graves Target Studies EVO April 11, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 16 Apr 2012 Target Vessel Requirements · Accurate jet placement · Jet/beam dump pool · Double containment of mercury

  4. Confinement Vessel Dynamic Analysis

    SciTech Connect

    R. Robert Stevens; Stephen P. Rojas

    1999-08-01

    A series of hydrodynamic and structural analyses of a spherical confinement vessel has been performed. The analyses used a hydrodynamic code to estimate the dynamic blast pressures at the vessel's internal surfaces caused by the detonation of a mass of high explosive, then used those blast pressures as applied loads in an explicit finite element model to simulate the vessel's structural response. Numerous load cases were considered. Particular attention was paid to the bolted port connections and the O-ring pressure seals. The analysis methods and results are discussed, and comparisons to experimental results are made.

  5. 29 CFR 570.51 - Occupations in or about plants or establishments manufacturing or storing explosives or articles...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...terms explosives and articles containing explosive components mean and include ammunition, black powder, blasting caps, fireworks, high explosives, primers, smokeless powder, and explosives and explosive materials as defined in 18 U.S.C....

  6. Explosive nucleosynthesis

    E-print Network

    M. Hernanz

    2001-03-26

    Many radioactive nuclei relevant for gamma-ray astrophysics are synthesized during explosive events, such as classical novae and supernovae. A review of recent results of explosive nucleosynthesis in these scenarios is presented, with a special emphasis on the ensuing gamma-ray emission from individual nova and supernova explosions. The influence of the dynamic properties of the ejecta on the gamma-ray emission features, as well as the still remaining uncertainties in nova and supernova models is also reviewed.

  7. 46 CFR 188.10-25 - Explosive.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Explosive. 188.10-25 Section 188.10-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-25 Explosive. This term means a chemical compound or mixture, the primary purpose of which is...

  8. Curved detonation fronts in solid explosives 1 Curved detonation fronts in solid explosives#

    E-print Network

    Aslam, Tariq

    Curved detonation fronts in solid explosives 1 Curved detonation fronts in solid explosives ###. At the edges of the explosive# D n ### is supplemented with boundary conditons. By direct numerical simulation for simulating complex explosive#containing systems. Key words# Detonation# Curvature e#ect# Edge interactions

  9. Curved detonation fronts in solid explosives 1 Curved detonation fronts in solid explosives

    E-print Network

    Aslam, Tariq

    Curved detonation fronts in solid explosives 1 Curved detonation fronts in solid explosives(). At the edges of the explosive, Dn() is supplemented with boundary conditons. By direct numerical simulation for simulating complex explosive-containing systems. Key words: Detonation, Curvature eect, Edge interactions

  10. Chemical analysis kit for the presence of explosives

    DOEpatents

    Eckels, Joel Del (Livermore, CA); Nunes; Peter J. (Danville, CA); Alcaraz, Armando (Livermore, CA); Whipple, Richard E. (Livermore, CA)

    2011-05-10

    A tester for testing for explosives associated with a test location comprising a first explosives detecting reagent; a first reagent holder, the first reagent holder containing the first explosives detecting reagent; a second explosives detecting reagent; a second reagent holder, the second reagent holder containing the second explosives detecting reagent; a sample collection unit for exposure to the test location, exposure to the first explosives detecting reagent, and exposure to the second explosives detecting reagent; and a body unit containing a heater for heating the sample collection unit for testing the test location for the explosives.

  11. 27 CFR 70.445 - Commerce in explosives.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Cartridges, and Explosives § 70.445 Commerce in explosives. Part 55 of title 27 CFR contains the regulations... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Commerce in explosives. 70..., explosives, (b) Permits for users who buy or transport explosives in interstate or foreign commerce,...

  12. 29 CFR 570.51 - Occupations in or about plants or establishments manufacturing or storing explosives or articles...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...plants or establishments manufacturing or storing explosives or articles containing explosive components (Order 1). 570.51 Section...plants or establishments manufacturing or storing explosives or articles containing explosive...

  13. 29 CFR 570.51 - Occupations in or about plants or establishments manufacturing or storing explosives or articles...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...plants or establishments manufacturing or storing explosives or articles containing explosive components (Order 1). 570.51 Section...plants or establishments manufacturing or storing explosives or articles containing explosive...

  14. Detection of Explosives via Photolytic Cleavage of Nitroesters and Nitramines

    E-print Network

    Swager, Timothy Manning

    The nitramine-containing explosive RDX and the nitroester-containing explosive PETN are shown to be susceptible to photofragmentation upon exposure to sunlight. Model compounds containing nitroester and nitramine moieties ...

  15. Design Considerations For Blast Loads In Pressure Vessels.

    SciTech Connect

    Rodriguez, E. A.; Nickell, Robert E.; Pepin, J. E.

    2007-01-01

    Los Alamos National Laboratory (LANL), under the auspices of the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA), conducts confined detonation experiments utilizing large, spherical, steel pressure vessels to contain the reaction products and hazardous materials from high-explosive (HE) events. Structural design and analysis considerations include: (a) Blast loading phase (i.e., impulsive loading); (b) Dynamic structural response; (c) Fragment (i.e., shrapnel) generation and penetration; (d) Ductile and non-ductile fracture; and (e) Design Criteria to ASME Code Sec. VIII, Div. 3, Impulsively Loaded Vessels. These vessels are designed for one-time-use only, efficiently utilizing the significant plastic energy absorption capability of ductile vessel materials. Alternatively, vessels may be designed for multiple-detonation events, in which case the material response is restricted to elastic or near-elastic range. Code of Federal Regulations, Title 10 Part 50 provides requirements for commercial nuclear reactor licensing; specifically dealing with accidental combustible gases in containment structures that might cause extreme loadings. The design philosophy contained herein may be applied to extreme loading events postulated to occur in nuclear reactor and non-nuclear systems or containments.

  16. 49 CFR 176.190 - Departure of vessel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Departure of vessel. 176.190 Section 176.190... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed... Departure of vessel. When loading of Class 1 (explosive) materials is completed, the vessel must depart...

  17. 49 CFR 176.190 - Departure of vessel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Departure of vessel. 176.190 Section 176.190... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed... Departure of vessel. When loading of Class 1 (explosive) materials is completed, the vessel must depart...

  18. Explosive Z Pinch

    E-print Network

    Francesco Giacosa; Ralf Hofmann; Markus Schwarz

    2006-11-08

    We propose an explanation for the recently observed powerful contained explosion in a Z pinch experiment performed at Sandia National Laboratories. Our arguments are based on the assumption that a pure SU(2) Yang-Mills theory of scale $\\sim 0.5 $MeV is responsible for the emergence of the electron and its neutrino.

  19. An Orientation to Explosive Safety.

    ERIC Educational Resources Information Center

    Harris, Betty W.

    1987-01-01

    Provides an overview of various types of explosives. Classifies and describes explosives as initiating or primary explosives, low explosives, and high (secondary explosives). Discusses detonating devices, domestic explosive systems, the sensitivity of explosives, explosive reactions, and emergency responses. (TW)

  20. Light metal explosives and propellants

    DOEpatents

    Wood, Lowell L.; Ishikawa, Muriel Y.; Nuckolls, John H.; Pagoria, Phillip F.; Viecelli, James A.

    2005-04-05

    Disclosed herein are light metal explosives, pyrotechnics and propellants (LME&Ps) comprising a light metal component such as Li, B, Be or their hydrides or intermetallic compounds and alloys containing them and an oxidizer component containing a classic explosive, such as CL-20, or a non-explosive oxidizer, such as lithium perchlorate, or combinations thereof. LME&P formulations may have light metal particles and oxidizer particles ranging in size from 0.01 .mu.m to 1000 .mu.m.

  1. 40 CFR 63.484 - Storage vessel provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-butadiene latex; (2) Storage vessels containing latex products other than styrene-butadiene latex, located downstream of the stripping operations; (3) Storage vessels containing high conversion latex products;...

  2. Supplement Analysis to the 1999 Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory for the Proposed Disposition of Certain Large Containment Vessels

    SciTech Connect

    N /A

    2004-02-12

    This Supplement Analysis (SA) has been prepared to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) (DOE/EIS-0238) (DOE 1999a) adequately addresses the environmental effects of introducing a proposed project for the clean-out and decontamination (DECON) of certain large containment vessels into the Chemistry and Metallurgy Research (CMR) Building located at Los Alamos National Laboratory (LANL) Technical Area (TA) 3, or if the SWEIS needs to be supplemented. After undergoing the clean-out and DECON steps, the subject containment vessels would be disposed of at LANL's TA-54 low-level waste (LLW) disposal site or, as appropriate, at a DOE or commercial offsite permitted LLW-regulated landfill; after actinides were recovered from the DECON solution within the CMR Building, they would be moved to LANL's TA-55 Plutonium Facility and undergo subsequent processing at that facility for reuse. Council on Environmental Quality regulations at Title 40, Section 1502.9(c) of the Code of Federal Regulations (40 CFR 1502.9[c]) require federal agencies to prepare a supplement to an environmental impact statement (EIS) when an agency makes substantial changes in the proposed action that are relevant to environmental concerns, or there are changed circumstances or new or changed information relevant to concerns and bearing on the proposed action or its impacts. This SA is prepared in accordance with Section 10 CFR 10211.314(c) of the DOE's regulations for National Environmental Policy Act (NEPA) implementation that states: ''When it is unclear whether or not an EIS supplement is required, DOE shall prepare a Supplement Analysis''. This SA specifically compares key impact assessment parameters of the proposed project action with the LANL operations capabilities evaluated in the 1999 SWEIS in support DOE's long-term hydrodynamic testing program at LANL, as well as the waste disposal capabilities evaluated in the SWEIS in support of LANL operations. It also provides an explanation of any differences between the proposed action and activities described in the SWEIS analysis. The SWEIS analyzed the impacts of performing plutonium (Pu) and actinide activities, including hydrodynamic testing support activity, at the Plutonium Facility and at the CMR Building.

  3. Nanoengineered explosives

    DOEpatents

    Makowiecki, D.M.

    1996-04-09

    A complex modulated structure is described for reactive elements that have the capability of considerably more heat than organic explosives while generating a working fluid or gas. The explosive and method of fabricating same involves a plurality of very thin, stacked, multilayer structures, each composed of reactive components, such as aluminum, separated from a less reactive element, such as copper oxide, by a separator material, such as carbon. The separator material not only separates the reactive materials, but it reacts therewith when detonated to generate higher temperatures. The various layers of material, thickness of 10 to 10,000 angstroms, can be deposited by magnetron sputter deposition. The explosive detonates and combusts a high velocity generating a gas, such as CO, and high temperatures. 2 figs.

  4. Nanoengineered explosives

    DOEpatents

    Makowiecki, Daniel M. (Livermore, CA)

    1996-01-01

    A complex modulated structure of reactive elements that have the capability of considerably more heat than organic explosives while generating a working fluid or gas. The explosive and method of fabricating same involves a plurality of very thin, stacked, multilayer structures, each composed of reactive components, such as aluminum, separated from a less reactive element, such as copper oxide, by a separator material, such as carbon. The separator material not only separates the reactive materials, but it reacts therewith when detonated to generate higher temperatures. The various layers of material, thickness of 10 to 10,000 angstroms, can be deposited by magnetron sputter deposition. The explosive detonates and combusts a high velocity generating a gas, such as CO, and high temperatures.

  5. Radiant vessel auxiliary cooling system

    SciTech Connect

    Germer, J.H.

    1987-07-07

    This patent describes an improved radiant vessel passive cooling system for liquid-metal poor-type modular nuclear reactors having a reactor vessel and a surrounding containment vessel spaced apart from the reactor vessel to form a first interstitial region containing an inert gas, the improvement comprising: a shell spaced apart from and surrounding the containment vessel to form a second interstitial region comprising a circulatory air passage. The circulatory air passage has an air inlet at a first position and an air outlet at a second position which is vertically higher than the first position. The second interstitial region lies between the shell and the containment vessel; and surface area extension means in the shell is longitudinally disposed from the shell into the second interstitial region towards the containment vessel to receive thermal radiation from the containment vessel. The surface area extension means is spaced apart from the external surface of the containment vessel where heat radiated form the containment vessel is received at the surface extension means for convection, conduction and radiation to air in the circulatory passage.

  6. A new mosaic pattern in glioma vascularization: exogenous endothelial progenitor cells integrating into the vessels containing tumor-derived endothelial cells.

    PubMed

    Chen, Xiao; Fang, Jingqin; Wang, Shunan; Liu, Heng; Du, Xuesong; Chen, Jinhua; Li, Xue; Yang, Yizeng; Zhang, Bo; Zhang, Weiguo

    2014-04-15

    Emerging evidence suggests that glioma stem-like cells (GSCs) transdifferentiating into vascular endothelial cells (ECs) possibly contributes to tumor resistance to antiangiogenic therapy. Endothelial progenitor cells (EPCs), showing active migration and incorporation into neovasculature of glioma, may be a good vehicle for delivering genes to target GSCs transdifferentiation. Here, we found a new mosaic pattern that exogenous EPCs integrated into the vessels containing the tumor-derived ECs in C6 glioma rat model. Further, we evaluated the effect of these homing EPCs on C6 glioma cells transdifferentiation. The transdifferentiation frequency of C6 glioma cells and the expressions of key factors on GSCs transdifferentiation, i.e. HIF-1?, Notch1, and Flk1 in gliomas with or without EPCs transplantation showed no significant difference. Additionally, magnetic resonance imaging could track the migration and incorporation of EPCs into glioma in vivo, which was confirmed by Prussian blue staining. The number of magnetically labeled EPCs estimated from T2 maps correlated well with direct measurements of labeled cell counts by flow cytometry. Taken together, our findings may provide a rational base for the future application of EPCs as a therapeutic and imaging probe to overcome antiangiogenic resistance for glioma and monitor the efficacy of this treatment. PMID:24722469

  7. Explosive complexes

    DOEpatents

    Huynh, My Hang V. (Los Alamos, NM)

    2009-09-22

    Lead-free primary explosives of the formula [M.sup.II(A).sub.R(B.sup.X).sub.S](C.sup.Y).sub.T, where A is 1,5-diaminotetrazole, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  8. Explosive complexes

    DOEpatents

    Huynh, My Hang V. (Los Alamos, NM)

    2011-08-16

    Lead-free primary explosives of the formula [M.sup.II(A).sub.R(B.sup.X).sub.S](C.sup.Y).sub.T, where A is 1,5-diaminotetrazole, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  9. Sandia Explosive Inventory and Information System

    SciTech Connect

    Clements, D.A.

    1994-08-01

    The Explosive Inventory and Information System (EIS) is being developed and implemented by Sandia National Laboratories (SNL) to incorporate a cradle to grave structure for all explosives and explosive containing devices and assemblies at SNL from acquisition through use, storage, reapplication, transfer or disposal. The system does more than track all material inventories. It provides information on material composition, characteristics, shipping requirements; life cycle cost information, plan of use; and duration of ownership. The system also provides for following the processes of explosive development; storage review; justification for retention; Resource, Recovery and Disposition Account (RRDA); disassembly and assembly; and job description, hazard analysis and training requirements for all locations and employees involved with explosive operations. In addition, other information systems will be provided through the system such as the Department of Energy (DOE) and SNL Explosive Safety manuals, the Navy`s Department of Defense (DoD) Explosive information system, and the Lawrence Livermore National Laboratories (LLNL) Handbook of Explosives.

  10. 27 CFR 70.445 - Commerce in explosives.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Relating to Alcohol, Tobacco, Firearms, and Explosives Provisions Relating to Firearms, Shells and Cartridges, and Explosives § 70.445 Commerce in explosives. Part 555 of title 27 CFR contains the regulations... 27 Alcohol, Tobacco Products and Firearms 2 2014-04-01 2014-04-01 false Commerce in explosives....

  11. 27 CFR 70.445 - Commerce in explosives.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Relating to Alcohol, Tobacco, Firearms, and Explosives Provisions Relating to Firearms, Shells and Cartridges, and Explosives § 70.445 Commerce in explosives. Part 555 of title 27 CFR contains the regulations... 27 Alcohol, Tobacco Products and Firearms 2 2012-04-01 2011-04-01 true Commerce in explosives....

  12. 27 CFR 70.445 - Commerce in explosives.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Relating to Alcohol, Tobacco, Firearms, and Explosives Provisions Relating to Firearms, Shells and Cartridges, and Explosives § 70.445 Commerce in explosives. Part 555 of title 27 CFR contains the regulations... 27 Alcohol, Tobacco Products and Firearms 2 2011-04-01 2011-04-01 false Commerce in explosives....

  13. 27 CFR 70.445 - Commerce in explosives.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Relating to Alcohol, Tobacco, Firearms, and Explosives Provisions Relating to Firearms, Shells and Cartridges, and Explosives § 70.445 Commerce in explosives. Part 555 of title 27 CFR contains the regulations... 27 Alcohol, Tobacco Products and Firearms 2 2013-04-01 2013-04-01 false Commerce in explosives....

  14. Fuel fire test results for RX-08-FK in a toroidal composite vessel

    SciTech Connect

    Black, W.; Bretl, D.; von Holtz, E.; Didlake, J.; Ferrario, M.; Spingarn, J.; Schwegel, J.

    1993-07-01

    A fuel first test was conducted on October 15, 1992, during which a toroidal composite vessel containing 6.5 kg of RX-08-FK Paste Extrudable Explosive was subjected to a dynamic (transient) thermal environment. The vessel was mounted inside a closed, but vented, thin-walled steel cylinder, and the entire assembly was then engulfed in a fuel fire. Approximately 5 minutes into the test, the PEX began to burn. At the time reaction of PEX occurred, temperatures of the inside wall of the steel cylinder were 815C and temperatures on outside wall of the composite vessel ranged from 163--454C. Subsequently, temperatures in excess of 950C were reached inside the cylinder for tens of minutes. Based on criteria set forth in MIL-STD-1648A(AS), the RX-08-FK-loaded vessel passed the fuel fire test, because no violent reaction beyond burning was observed.

  15. Spot test kit for explosives detection

    DOEpatents

    Pagoria, Philip F; Whipple, Richard E; Nunes, Peter J; Eckels, Joel Del; Reynolds, John G; Miles, Robin R; Chiarappa-Zucca, Marina L

    2014-03-11

    An explosion tester system comprising a body, a lateral flow membrane swab unit adapted to be removeably connected to the body, a first explosives detecting reagent, a first reagent holder and dispenser operatively connected to the body, the first reagent holder and dispenser containing the first explosives detecting reagent and positioned to deliver the first explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body, a second explosives detecting reagent, and a second reagent holder and dispenser operatively connected to the body, the second reagent holder and dispenser containing the second explosives detecting reagent and positioned to deliver the second explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body.

  16. High-nitrogen explosives

    SciTech Connect

    Naud, D.; Hiskey, M. A.; Kramer, J. F.; Bishop, R. L.; Harry, H. H.; Son, S. F.; Sullivan, G. K.

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAzF is equal to that of hexanitrostilbene (HNS), yet it has a greater CJ pressure and detonation velocity. In an effort to reduce the critical diameter of TATB without sacrificing its insensitivity, we have studied the explosive performances of TATB mixed with DAAzlF (X-0561) and TATB mixed with DAAF (X-0563).

  17. Explosive Joining

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Laurence J. Bement of Langley Research Center invented a technique to permit metal joining operations under hazardous or inaccessible conditions. The process, which provides a joint with double the strength of the parent metal, involves the use of very small quantities of ribbon explosive to create hermetically sealed joints. When the metal plates are slammed together by the explosion's force, joining is accomplished. The collision causes a skin deep melt and ejection of oxide films on the surfaces, allowing a linkup of electrons that produce superstrong, uniform joints. The technique can be used to join metals that otherwise would not join and offers advantages over mechanical fasteners and adhesives. With Langley assistance, Demex International Ltd. refined and commercialized the technology. Applications include plugging leaking tubes in feedwater heaters. Demex produces the small plugs, associated sleeves and detonators. The technology allows faster plugging, reduces downtime, cuts plugging costs and increases reliability.

  18. U. S. S. Iowa Explosion

    SciTech Connect

    Not Available

    1991-08-01

    In assessing the Navy's technical investigation of the April 1989 explosion aboard the U.S.S. Iowa, GAO enlisted the assistance of the Department of Energy's Sandia National Laboratories. This report contains Sandia's final report, which concludes that it is unclear whether the turret explosion that killed 47 sailors was due to sabotage or an accident. In fact, Sandia suggests as a possible cause the excessive speed of ramming powder bags into the chamber of a 16-inch gun.

  19. Workbook for predicting pressure wave and fragment effects of exploding propellant tanks and gas storage vessels

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Kulesz, J. J.; Ricker, R. E.; Bessey, R. L.; Westine, P. S.; Parr, V. B.; Oldham, G. A.

    1975-01-01

    Technology needed to predict damage and hazards from explosions of propellant tanks and bursts of pressure vessels, both near and far from these explosions is introduced. Data are summarized in graphs, tables, and nomographs.

  20. The Interaction of Explosively Generated Plasma with Explosives

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas; LANL Team

    2015-06-01

    It has been shown that the temperature of explosively generated plasma (EGP) is of the order of 1 eV and plasma ejecta can be focused to achieve velocities as high as 25 km/s. These high velocity plasma can readily penetrate a wide range of materials including metals. Proof-of-principle tests were performed to determine if EGP could be used for explosive ordnance demolition and other applications. The test goals were: to benignly disable ordnance containing relatively sensitive high performance explosives (PBX-9501); and to investigate the possibility of interrupting an ongoing detonation in a powerful high explosive (again PBX-9501) with EGP. Experiments were performed to establish the optimum sizes of plasma generators for the benign deactivation of high explosives, i.e., the destruction of the ordnance without initiating a detonation or comparable violent event. These experiments were followed by attempts to interrupt an ongoing detonation by the destruction of the unreacted explosive in its path. The results were encouraging. First, it was demonstrated that high explosives could be destroyed without the initiation of a detonation or high order reaction. Second, ongoing detonations were successfully interrupted with EGP. LA-UR-15-20612.

  1. Explosive simulants for testing explosive detection systems

    DOEpatents

    Kury, John W. (Danville, CA); Anderson, Brian L. (Lodi, CA)

    1999-09-28

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  2. VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010

    E-print Network

    van Dorp, Johan René

    VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 3D Relative Risk Profile Comparison Vessel Time Exposure GW-VCU Draft #12;11/21/2013 2 GW-VCU VESSEL TRAFFIC RISK ASSESSMENT (VTRA) 2010 RMM 1: Max. Speed of Container Vessels at 17 knots. RMM 2: Reduce Human Error incident on Oil Barges by 50% RMM 3: No Bunkering

  3. 46 CFR 169.249 - Pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels. 169.249 Section 169.249 Shipping COAST... and Certification Inspections § 169.249 Pressure vessels. Pressure vessels must meet the requirements of part 54 of this chapter. The inspection procedures for pressure vessels are contained in...

  4. 46 CFR 169.249 - Pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Pressure vessels. 169.249 Section 169.249 Shipping COAST... and Certification Inspections § 169.249 Pressure vessels. Pressure vessels must meet the requirements of part 54 of this chapter. The inspection procedures for pressure vessels are contained in...

  5. 46 CFR 169.249 - Pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Pressure vessels. 169.249 Section 169.249 Shipping COAST... and Certification Inspections § 169.249 Pressure vessels. Pressure vessels must meet the requirements of part 54 of this chapter. The inspection procedures for pressure vessels are contained in...

  6. 46 CFR 169.249 - Pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Pressure vessels. 169.249 Section 169.249 Shipping COAST... and Certification Inspections § 169.249 Pressure vessels. Pressure vessels must meet the requirements of part 54 of this chapter. The inspection procedures for pressure vessels are contained in...

  7. 46 CFR 169.249 - Pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Pressure vessels. 169.249 Section 169.249 Shipping COAST... and Certification Inspections § 169.249 Pressure vessels. Pressure vessels must meet the requirements of part 54 of this chapter. The inspection procedures for pressure vessels are contained in...

  8. 46 CFR 189.20-25 - Chemical and explosive hazards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Chemical and explosive hazards. 189.20-25 Section 189.20-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS INSPECTION AND CERTIFICATION Initial Inspection § 189.20-25 Chemical and explosive hazards. (a) If...

  9. 46 CFR 189.20-25 - Chemical and explosive hazards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Chemical and explosive hazards. 189.20-25 Section 189.20-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS INSPECTION AND CERTIFICATION Initial Inspection § 189.20-25 Chemical and explosive hazards. (a) If...

  10. 46 CFR 189.20-25 - Chemical and explosive hazards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Chemical and explosive hazards. 189.20-25 Section 189.20-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS INSPECTION AND CERTIFICATION Initial Inspection § 189.20-25 Chemical and explosive hazards. (a) If...

  11. 46 CFR 189.20-25 - Chemical and explosive hazards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Chemical and explosive hazards. 189.20-25 Section 189.20-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS INSPECTION AND CERTIFICATION Initial Inspection § 189.20-25 Chemical and explosive hazards. (a) If...

  12. 46 CFR 189.20-25 - Chemical and explosive hazards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Chemical and explosive hazards. 189.20-25 Section 189.20-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS INSPECTION AND CERTIFICATION Initial Inspection § 189.20-25 Chemical and explosive hazards. (a) If...

  13. Low flammability cap-sensitive flexible explosive composition

    DOEpatents

    Wagner, Martin G. (Wilmington, DE)

    1992-01-14

    A cap-sensitive flexible explosive composition of reduced flammability is provided by incorporating a finely divided, cap-sensitive explosive in a flame resistant polymeric binder system which contains a compatible flame retardant material.

  14. Universe Explosions

    E-print Network

    Ram Brustein; Maximilian Schmidt-Sommerfeld

    2012-09-24

    A scenario for a quantum big crunch to big bang transition is proposed. We first clarify the similarities between this transition and the final stages of black hole evaporation. The black hole and the universe are thought of as quantum states. The importance of an external observer for understanding the big crunch to big bang transition is emphasized. Then, relying on the similarities between the black hole and the universe, we propose that the transition should be described as an explosion that connects the contracting phase to the expanding one. The explosion occurs when entropy bounds are saturated, or equivalently when the states cease to be semiclassically (meta)stable. We discuss our scenario in three examples: collapsing dust, a brane universe falling into a bulk black hole in anti-de Sitter space, and a contracting universe filled with a negative cosmological constant and a small amount of matter. We briefly discuss the late time observables that may carry some information about the state of the universe before the transition.

  15. Analysis of the xplAB-Containing Gene Cluster Involved in the Bacterial Degradation of the Explosive Hexahydro-1,3,5-Trinitro-1,3,5-Triazine

    PubMed Central

    Chong, Chun Shiong; Sabir, Dana Khdr; Lorenz, Astrid; Bontemps, Cyril; Andeer, Peter; Stahl, David A.; Strand, Stuart E.; Rylott, Elizabeth L.

    2014-01-01

    Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX. PMID:25128343

  16. Analysis of the xplAB-containing gene cluster involved in the bacterial degradation of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine.

    PubMed

    Chong, Chun Shiong; Sabir, Dana Khdr; Lorenz, Astrid; Bontemps, Cyril; Andeer, Peter; Stahl, David A; Strand, Stuart E; Rylott, Elizabeth L; Bruce, Neil C

    2014-11-01

    Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX. PMID:25128343

  17. Chaotic Explosions

    E-print Network

    Eduardo G. Altmann; Jefferson S. E. Portela; Tamás Tél

    2015-01-22

    We investigate chaotic dynamical systems for which the intensity of trajectories might grow unlimited in time. We show that (i) the intensity grows exponentially in time and is distributed spatially according to a fractal measure with an information dimension smaller than that of the phase space,(ii) such exploding cases can be described by an operator formalism similar to the one applied to chaotic systems with absorption (decaying intensities), but (iii) the invariant quantities characterizing explosion and absorption are typically not directly related to each other, e.g., the decay rate and fractal dimensions of absorbing maps typically differ from the ones computed in the corresponding inverse (exploding) maps. We illustrate our general results through numerical simulation in the cardioid billiard mimicking a lasing optical cavity, and through analytical calculations in the baker map.

  18. Explosive Microsphere Particle Standards for Trace Explosive Detection Instruments

    NASA Astrophysics Data System (ADS)

    Staymates, Matthew; Fletcher, Robert; Gillen, Greg

    2007-11-01

    Increases in Homeland Security measures have led to a substantial deployment of trace explosive detection systems within the United States and US embassies around the world. One such system is a walk-through portal which aerodynamically screens people for trace explosive particles. Another system is a benchtop instrument that can detect explosives from swipes used to collect explosive particles from surfaces of luggage and clothing. The National Institute of Standards and Technology is involved in a chemical metrology program to support the operational deployment and effective utilization of trace explosive and narcotic detection devices and is working to develop a measurement infrastructure to optimize, calibrate and standardize these instruments. Well characterized test materials are essential for validating the performance of these systems. Particle size, chemical composition, and detector response are particularly important. Here, we describe one method for producing monodisperse polymer microspheres encapsulating trace explosives, simulants, and narcotics using a sonicated co-flow Berkland nozzle. The nozzle creates uniform droplets that undergo an oil/water emulsion process and cure to form hardened microspheres containing the desired analyte. Issues such as particle size, particle uniformity and levels of analyte composition will be discussed.

  19. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.168 Transport of Class 1 (explosive) materials in vehicle spaces. (a)...

  20. 49 CFR 176.174 - Transport of Class 1 (explosive) materials in shipborne barges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Transport of Class 1 (explosive) materials in... REGULATIONS CARRIAGE BY VESSEL Detailed Requirements for Class 1 (Explosive) Materials Cargo Transport Units and Shipborne Barges § 176.174 Transport of Class 1 (explosive) materials in shipborne barges....

  1. Pressure vessel flex joint

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B. (inventor)

    1992-01-01

    An airtight, flexible joint is disclosed for the interfacing of two pressure vessels such as between the Space Station docking tunnel and the Space Shuttle Orbiter bulkhead adapter. The joint provides for flexibility while still retaining a structural link between the two vessels required due to the loading created by the internal/external pressure differential. The joint design provides for limiting the axial load carried across the joint to a specific value, a function returned in the Orbiter/Station tunnel interface. The flex joint comprises a floating structural segment which is permanently attached to one of the pressure vessels through the use of an inflatable seal. The geometric configuration of the joint causes the tension between the vessels created by the internal gas pressure to compress the inflatable seal. The inflation pressure of the seal is kept at a value above the internal/external pressure differential of the vessels in order to maintain a controlled distance between the floating segment and pressure vessel. The inflatable seal consists of either a hollow torus-shaped flexible bladder or two rolling convoluted diaphragm seals which may be reinforced by a system of straps or fabric anchored to the hard structures. The joint acts as a flexible link to allow both angular motion and lateral displacement while it still contains the internal pressure and holds the axial tension between the vessels.

  2. 49 CFR 173.54 - Forbidden explosives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... loaded firearm (except as provided in 49 CFR 1544.219). (g) Fireworks that combine an explosive and a detonator. (h) Fireworks containing yellow or white phosphorus. (i) A toy torpedo, the maximum outside..., black antimony (antimony sulfide), and sulfur, if the weight of the explosive material in the...

  3. Simulating thermal explosion of RDX-based explosives: Model comparison with experiment

    SciTech Connect

    Yoh, J J; McClelland, M A; Maienschein, J L; Wardell, J F; Tarver, C M

    2004-10-11

    We compare two-dimensional model results with measurements for the thermal, chemical and mechanical behavior in a thermal explosion experiment. Confined high explosives are heated at a rate of 1 C per hour until an explosion is observed. The heating, ignition, and deflagration phases are modeled using an Arbitrarily Lagrangian-Eulerian code (ALE3D) that can handle a wide range of time scales that vary from a structural to a dynamic hydro time scale. During the pre-ignition phase, quasi-static mechanics and diffusive thermal transfer from a heat source to the HE are coupled with the finite chemical reactions that include both endothermic and exothermic processes. Once the HE ignites, a hydro dynamic calculation is performed as a burn front propagates through the HE. Two RDX-based explosives, C-4 and PBXN-109, are considered, whose chemical-thermal-mechanical models are constructed based on measurements of thermal and mechanical properties along with small scale thermal explosion measurements. The simulated dynamic response of HE confinement during the explosive phase is compared to measurements in large scale thermal explosion tests. The explosion temperatures for both HE's are predicted to within 5 C. Calculated and measured wall strains provide an indication of vessel pressurization during the heating phase and violence during the explosive phase. During the heating phase, simulated wall strains provide only an approximate representation of measured values indicating a better numerical treatment is needed to provide accurate results. The results also show that more numerical accuracy is needed for vessels with lesser confinement strength. For PBXN-109, the measured wall strains during the explosion are well represented by the ALE3D calculations.

  4. Chromospheric explosions

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; theory. (3) Resolved: Most chromospheric h; theory. (3) Resolved: Most chromospheric h

    1986-01-01

    Three issues relative to chromospheric explosions were debated. (1) Resolved: The blue-shifted components of x-ray spectral lines are signatures of chromospheric evaporation. It was concluded that the plasma rising with the corona is indeed the primary source of thermal plasma observed in the corona during flares. (2) Resolved: The excess line broading of UV and X-ray lines is accounted for by a convective velocity distribution in evaporation. It is concluded that the hypothesis that convective evaporation produces the observed X-ray line widths in flares is no more than a hypothesis. It is not supported by any self-consistent physical theory. (3) Resolved: Most chromospheric heating is driven by electron beams. Although it is possible to cast doubt on many lines of evidence for electron beams in the chromosphere, a balanced view that debaters on both sides of the question might agree to is that electron beams probably heat the low corona and upper chromosphere, but their direct impact on evaporating the chromosphere is energetically unimportant when compared to conduction. This represents a major departure from the thick-target flare models that were popular before the Workshop.

  5. Technical Review Report for the Mound 1KW Package Safety Analysis Report for Packaging Waiver for the Use of Modified Primary Containment Vessel (PCV)

    SciTech Connect

    West, M; Hafner, R

    2008-05-05

    This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) staff, at the request of the U.S. Department of Energy (DOE), on the Waiver for the Use of Modified Primary Containment Vessels (PCV). The waiver is to be used to support a limited number of shipments of fuel for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Project in support of the National Aeronautics and Space Administration's (NASA's) Mars Science Laboratory (MSL) mission. Under the waiver, an inventory of existing national security PCVs will be converted to standard PCVs. Both types of PCVs are currently approved for use by the Office of Nuclear Energy. LLNL has previously reviewed the national security PCVs under Mound 1KW Package Safety Analysis Report for Packaging, Addendum No. 1, Revision c, dated June 2007 (Addendum 1). The safety analysis of the package is documented in the Safety Analysis Report for Packaging (SARP) for the Mound 1KW Package (i.e., the Mound 1KW SARP, or the SARP) where the standard PCVs have been reviewed by LLNL. The Mound 1KW Package is certified by DOE Certificate of Compliance (CoC) number USA/9516/B(U)F-85 for the transportation of Type B quantities of plutonium heat source material. The waiver requests an exemption, claiming safety equivalent to the requirements specified in 10 CFR 71.12, Specific Exemptions, and will lead to a letter amendment to the CoC. Under the waiver, the Office of Radioisotope Power Systems, NE-34, is seeking an exemption from 10 CFR 71.19(d)(1), Previously Approved Package,[5] which states: '(d) NRC will approve modifications to the design and authorized contents of a Type B package, or a fissile material package, previously approved by NRC, provided--(1) The modifications of a Type B package are not significant with respect to the design, operating characteristics, or safe performance of the containment system, when the package is subjected to the tests specified in {section}71.71 and 71.73.' The LLNL staff had previously reviewed a request from Idaho National Laboratory (INL) to reconfigure national security PCVs to standard PCVs. With a nominal 50% reduction in both the height and the volume, the LLNL staff initially deemed the modifications to be significant, which would not be allowed under the provisions of 10 CFR 71.19(d)(1)--see above. As a follow-up, the DOE requested additional clarification from the Nuclear Regulatory Commission (NRC). The NRC concluded that the reconfiguration would be a new fabrication, and that an exemption to the regulations would be required to allow its use, as per the requirements specified in 10 CFR 71.19(c)(1), Previously Approved Package: '(c) A Type B(U) package, a Type B(M) package, or a fissile material package previously approved by the NRC with the designation '-85' in the identification number of the NRC CoC, may be used under the general license of {section}71.17 with the following additional conditions: (1) Fabrication of the package must be satisfactorily completed by December 31, 2006, as demonstrated by application of its model number in accordance with 71.85(c).' Although the preferred approach toward the resolution of this issue would be for the applicant to submit an updated SARP, the applicant has stated that the process of updating the Model Mound 1KW Package SARP is a work that is in progress, but that the updated SARP is not yet ready for submittal. The applicant has to provide a submittal, proving that the package meets the '-96' requirements of International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1, in order to fabricate approved packagings after December 31, 2006. The applicant has further stated that all other packaging features, as described in the currently approved Model Mound 1KW Package SARP, remain unchanged. This report documents the LLNL review of the waiver request. The specific review for each SARP Chapter is documented.

  6. Extrusion cast explosive

    DOEpatents

    Scribner, Kenneth J. (Livermore, CA)

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  7. Reactor vessel support system. [LMFBR

    DOEpatents

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  8. Colorimetric chemical analysis sampler for the presence of explosives

    DOEpatents

    Nunes, Peter J. (Danville, CA); Del Eckels, Joel (Livermore, CA); Reynolds, John G. (San Ramon, CA); Pagoria, Philip F. (Livermore, CA); Simpson, Randall L. (Livermore, CA)

    2011-09-27

    A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.

  9. 30 CFR 56.6205 - Conveying explosives by hand.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Conveying explosives by hand. 56.6205 Section... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Transportation § 56.6205 Conveying explosives by hand. Closed, nonconductive containers shall be used to...

  10. Explosive silicic eruptions in Iceland: from vent to peat bog

    E-print Network

    Explosive silicic eruptions in Iceland: from vent to peat bog OUTLINE Microtephra horizons, found in soils across Scotland, contain fine ash produced by explosive eruptions in Iceland. They represent; Thordarson & Larsen 2007), but vary in size and explosivity. The primary threat to Scotland from the tephra

  11. 30 CFR 56.6205 - Conveying explosives by hand.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Conveying explosives by hand. 56.6205 Section... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Transportation § 56.6205 Conveying explosives by hand. Closed, nonconductive containers shall be used to...

  12. UTILIZATION OF SEISMIC AND INFRASOUND SIGNALS FOR CHARACTERIZING MINING EXPLOSIONS

    E-print Network

    Stump, Brian W.

    UTILIZATION OF SEISMIC AND INFRASOUND SIGNALS FOR CHARACTERIZING MINING EXPLOSIONS Brian Stump1 is designed to quantify mining explosions as sources of seismic and infrasound signals. The study focuses explosive yields and peak amplitude either in the mine or at regional distances. A series of contained

  13. 30 CFR 56.6205 - Conveying explosives by hand.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Conveying explosives by hand. 56.6205 Section... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Transportation § 56.6205 Conveying explosives by hand. Closed, nonconductive containers shall be used to...

  14. 30 CFR 56.6205 - Conveying explosives by hand.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Conveying explosives by hand. 56.6205 Section... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Transportation § 56.6205 Conveying explosives by hand. Closed, nonconductive containers shall be used to...

  15. 30 CFR 56.6205 - Conveying explosives by hand.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Conveying explosives by hand. 56.6205 Section... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Transportation § 56.6205 Conveying explosives by hand. Closed, nonconductive containers shall be used to...

  16. Colorimetric chemical analysis sampler for the presence of explosives

    DOEpatents

    Nunes, Peter J.; Eckels, Joel Del; Reynolds, John G.; Pagoria, Philip F.; Simpson, Randall L.

    2014-07-01

    A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.

  17. Large panel design for containment air baffle

    DOEpatents

    Orr, R.S.

    1992-12-08

    The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel. 9 figs.

  18. Large panel design for containment air baffle

    DOEpatents

    Orr, Richard S. (Pittsburgh, PA)

    1992-01-01

    The movable air baffle shield means in accordance with the present invention provides an efficient method of cooling the space surrounding the containment vessel while also providing the capability of being moved away from the containment vessel during inspection. The containment apparatus comprises a generally cylindrical sealed containment vessel for containing at least a portion of a nuclear power generation plant, a disparate shield building surrounding and housing the containment vessel therein and spaced outwardly thereof so as to form an air annulus in the space between the shield building and the containment vessel, a shield baffle means positioned in the air annulus around at least a portion of the sides of the containment vessel providing a coolant path between the baffle means and the containment vessel to permit cooling of the containment vessel by air, the shield baffle means being movable to afford access to the containment vessel.

  19. Ammonium nitrate explosive systems

    DOEpatents

    Stinecipher, Mary M. (Los Alamos, NM); Coburn, Michael D. (Los Alamos, NM)

    1981-01-01

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  20. 49 CFR 173.54 - Forbidden explosives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., including a salt of a weak base and a strong acid. (c) A leaking or damaged package or article containing an... loaded firearm (except as provided in 49 CFR 1544.219). (g) Fireworks that combine an explosive and...

  1. 49 CFR 173.54 - Forbidden explosives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., including a salt of a weak base and a strong acid. (c) A leaking or damaged package or article containing an... loaded firearm (except as provided in 49 CFR 1544.219). (g) Fireworks that combine an explosive and...

  2. 49 CFR 173.54 - Forbidden explosives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., including a salt of a weak base and a strong acid. (c) A leaking or damaged package or article containing an... loaded firearm (except as provided in 49 CFR 1544.219). (g) Fireworks that combine an explosive and...

  3. 49 CFR 173.54 - Forbidden explosives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., including a salt of a weak base and a strong acid. (c) A leaking or damaged package or article containing an... loaded firearm (except as provided in 49 CFR 1544.219). (g) Fireworks that combine an explosive and...

  4. 49 CFR 173.54 - Forbidden explosives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...subchapter. (f) A loaded firearm (except as provided in 49 CFR 1544.219). (g) Fireworks that combine an explosive and a detonator. (h) Fireworks containing yellow or white phosphorus. (i) A toy torpedo, the maximum...

  5. 49 CFR 173.54 - Forbidden explosives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...subchapter. (f) A loaded firearm (except as provided in 49 CFR 1544.219). (g) Fireworks that combine an explosive and a detonator. (h) Fireworks containing yellow or white phosphorus. (i) A toy torpedo, the maximum...

  6. 49 CFR 173.54 - Forbidden explosives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...subchapter. (f) A loaded firearm (except as provided in 49 CFR 1544.219). (g) Fireworks that combine an explosive and a detonator. (h) Fireworks containing yellow or white phosphorus. (i) A toy torpedo, the maximum...

  7. 49 CFR 173.54 - Forbidden explosives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...subchapter. (f) A loaded firearm (except as provided in 49 CFR 1544.219). (g) Fireworks that combine an explosive and a detonator. (h) Fireworks containing yellow or white phosphorus. (i) A toy torpedo, the maximum...

  8. 49 CFR 173.54 - Forbidden explosives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...subchapter. (f) A loaded firearm (except as provided in 49 CFR 1544.219). (g) Fireworks that combine an explosive and a detonator. (h) Fireworks containing yellow or white phosphorus. (i) A toy torpedo, the maximum...

  9. Blood Vessel Tension Tester

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In the photo, a medical researcher is using a specially designed laboratory apparatus for measuring blood vessel tension. It was designed by Langley Research Center as a service to researchers of Norfolk General Hospital and Eastern Virginia Medical School, Norfolk, Virginia. The investigators are studying how vascular smooth muscle-muscle in the walls of blood vessels-reacts to various stimulants, such as coffee, tea, alcohol or drugs. They sought help from Langley Research Center in devising a method of measuring the tension in blood vessel segments subjected to various stimuli. The task was complicated by the extremely small size of the specimens to be tested, blood vessel "loops" resembling small rubber bands, some only half a millimeter in diameter. Langley's Instrumentation Development Section responded with a miniaturized system whose key components are a "micropositioner" for stretching a length of blood vessel and a strain gage for measuring the smooth muscle tension developed. The micropositioner is a two-pronged holder. The loop of Mood vessel is hooked over the prongs and it is stretched by increasing the distance between the prongs in minute increments, fractions of a millimeter. At each increase, the tension developed is carefully measured. In some experiments, the holder and specimen are lowered into the test tubes shown, which contain a saline solution simulating body fluid; the effect of the compound on developed tension is then measured. The device has functioned well and the investigators say it has saved several months research time.

  10. LANL Robotic Vessel Scanning

    SciTech Connect

    Webber, Nels W.

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  11. Explosion protection methods for the power generation industry. Evaluating the hazard and reviewing explosion protection methods

    SciTech Connect

    Nixon, C.I.

    1998-07-01

    Handling carbonaceous fuels such as coal presents explosion hazards to the Power Generation Industry. This paper discusses the nature of explosions. It also provides a basis for hazard evaluation and discusses the various methods available for explosion protection. These methods include deflagration relief venting, deflagration suppression, deflagration isolation, containment and inerting. Process equipment protected by these methods include mills, cyclones, silos, hoppers and dust collectors.

  12. The Effect of the Presence of Ozone on the Lower Flammability Limit (LFL) of Hydrogen in Vessels Containing Savannah River Site High Level Waste - 12387

    SciTech Connect

    Sherburne, Carol; Osterberg, Paul

    2012-07-01

    The Enhanced Chemical Cleaning (ECC) process uses ozone to effect the oxidation of metal oxalates produced during the dissolution of sludge in the Savannah River Site (SRS) waste tanks. The ozone reacts with the metal oxalates to form metal oxide and hydroxide precipitants, and the CO{sub 2}, O{sub 2}, H{sub 2}O and any unreacted O{sub 3} gases are discharged into the vapor space. In addition to the non-radioactive metals in the waste, however, the SRS radioactive waste also contains a variety of radionuclides, hence, hydrogen gas is also present in the vapor space of the ECC system. Because hydrogen is flammable, the impact of this resultant gas stream on the Lower Flammability Limit (LFL) of hydrogen must be understood for all possible operating scenarios of both normal and off-normal situations, with particular emphasis at the elevated temperatures and pressures of the typical ECC operating conditions. Oxygen is a known accelerant in combustion reactions, but while there are data associated with the behavior of hydrogen/oxygen environments, recent, relevant studies addressing the effect of ozone on the flammability limit of hydrogen proved scarce. Further, discussions with industry experts verified the absence of data in this area and indicated that laboratory testing, specific to defined operating parameters, was needed to comprehensively address the issue. Testing was thus designed and commissioned to provide the data necessary to support safety related considerations for the ECC process. A test matrix was developed to envelope the bounding conditions considered credible during ECC processing. Each test consists of combining a gas stream of high purity hydrogen with a gas stream comprised of a specified mixture of ozone and oxygen in a temperature and pressure regulated chamber such that the relative compositions of the two streams are controlled. The gases are then stirred to obtain a homogeneous mixture and ignition attempted by applying 10J of energy to a fuse wire. A gas combination is considered flammable when a pressure rise of 7% of the initial absolute pressure is observed. The specified testing methodology is consistent with guidelines established in ASTM E-918-83 (2005) 'Standard Practices for Determining Limits of Flammability of Chemicals at Elevated Temperature and Pressure'. The LFL of hydrogen in air was determined and is in good agreement with the literature data. Ozone-oxygen mixtures were found to be flammable at concentrations above 8.3 vol.% based on the ASTM E918 7% pressure rise criteria for flame propagation. This result is lower than previously reported values which can be explained through the variations in the test setup and procedure. It is believed that the lower values obtained in this work are a result of improvements of the test methodology. Tests performed with hydrogen in various concentrations of ozone in oxygen have shown that the LFL of hydrogen decreases as the concentration of ozone in the mixture increases. This testing was designed to provide data under the conditions considered most optimal to produce deflagration. The geometry and materials of construction of the testing vessel; the location of the fuse wire; the magnitude of the supplied energy; the careful minimization of diluents and other contaminants; and meticulous procedural detail to maintain integrity of the ozone to the maximum extent practical, result in data that reflect not the expected process conditions, but those that enhance the possibility of flame propagation. For this reason, there is believed to be considerable conservatism in the indicated results. Per the vendor, the maximum possible ozone concentration producible by the planned ECC Ozone generator is 8 volume percent (the typical maximum operating setpoint concentration is 6.8 vol%), less than the 8.3 minimum volume % concentration shown to be flammable in a 99.999% pure O{sub 2} environment at the optimally conservative conditions established in this testing. Further, the feed to the ECC ozone generator is only 87% oxygen, the remainder, water vapor

  13. Projectile-generating explosive access tool

    DOEpatents

    Jakaboski, Juan-Carlos; Hughs, Chance G; Todd, Steven N

    2013-06-11

    A method for generating a projectile using an explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.

  14. Projectile-generating explosive access tool

    DOEpatents

    Jakaboski, Juan-Carlos (Albuquerque, NM; Hughs, Chance G. (Tijeras, NM); Todd, Steven N. (Rio Rancho, NM)

    2011-10-18

    An explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.

  15. Reactor vessel annealing system

    DOEpatents

    Miller, Phillip E. (Greensburg, PA); Katz, Leonoard R. (Pittsburgh, PA); Nath, Raymond J. (Murrysville, PA); Blaushild, Ronald M. (Export, PA); Tatch, Michael D. (Randolph, NJ); Kordalski, Frank J. (White Oak, PA); Wykstra, Donald T. (Pittsburgh, PA); Kavalkovich, William M. (Monroeville, PA)

    1991-01-01

    A system for annealing a vessel (14) in situ by heating the vessel (14) to a defined temperature, composed of: an electrically operated heater assembly (10) insertable into the vessel (14) for heating the vessel (14) to the defined temperature; temperature monitoring components positioned relative to the heater assembly (10) for monitoring the temperature of the vessel (14); a controllable electric power supply unit (32-60) for supplying electric power required by the heater assembly (10); a control unit (80-86) for controlling the power supplied by the power supply unit (32-60); a first vehicle (2) containing the power supply unit (32-60); a second vehicle (4) containing the control unit (80-86); power conductors (18,22) connectable between the power supply unit (32-60) and the heater unit (10) for delivering the power supplied by the power supply unit (32-60) to the heater assembly (10); signal conductors (20,24) connectable between the temperature monitoring components and the control unit (80-86) for delivering temperature indicating signals from the temperature monitoring components to the control unit (80-86); and control conductors (8) connectable between the control unit (80-86) and the power supply unit (32-60) for delivering to the power supply unit (32-60) control signals for controlling the level of power supplied by the power supply unit (32-60) to the heater assembly (10).

  16. Optimal dynamic detection of explosives

    SciTech Connect

    Moore, David Steven; Mcgrane, Shawn D; Greenfield, Margo T; Scharff, R J; Rabitz, Herschel A; Roslund, J

    2009-01-01

    The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.

  17. Design of explosive logic elements

    SciTech Connect

    Meyers, W.H.

    1984-01-01

    Los Alamos has been exploring explosive logic systems to see if they might provide advantages in weapon safety or weapon command and control. We use the extrudable explosive EXTEX (80% PETN, 20% Sylgard) for this work. These systems contain at least one but usually several discrete logic elements, and the worth - the reliability - of the system is directly dependent on the reliability of these elements. We perceive that the troubles encountered in the early attempts to use explosive logic can be attributed to the lack of a truly reliable design for one or more of the elements being used. At Los Alamos, we express this as the need for a Safety/Reliability Window. In this short presentation, that concept will be emphasized. The development of three elements for which working windows are available will be discussed.

  18. Practical small-scale explosive seam welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1983-01-01

    Joining principles and variables, types of joints, capabilities, and current and potential applications are described for an explosive seam welding process developed at NASA Langley Research Center. Variable small quantities of RDX explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long length, uniform, hermetrically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The first major all application of the process is the repair of four nuclear reactors in Canada. Potential applications include pipelines, sealing of vessels, and assembly of large space structures.

  19. Bioremediation of high explosives

    SciTech Connect

    Kitts, C.L.; Alvarez, M.A.; Hanners, J.L.; Ogden, K.L.; Vanderberg-Twary, L.; Unkefer, P.J.

    1995-09-01

    Manufacture and use of high explosives has resulted in contamination of ground water and soils throughout the world. The use of biological methods for remediation of high explosives contamination has received considerable attention in recent years. Biodegradation is most easily studied using organisms in liquid cultures. Thus, the amount of explosive that can be degraded in liquid culture is quite small. However, these experiments are useful for gathering basic information about the biochemical pathways of biodegradation, identifying appropriate organisms and obtaining rates of degradation. The authors` laboratory has investigated all three major areas of explosives bioremediation: explosives in solution, explosives in soil, and the disposal of bulk explosives from demilitarization operations. They investigated the three explosives most commonly used in modern high explosive formulations: 2,4,6-trinitrotoluene (TNT), hexahydro 1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX).

  20. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O. (Cambridge, MA)

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  1. 15 CFR 970.205 - Vessel safety.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Vessel safety. 970.205 Section 970.205... SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Applications Contents § 970.205 Vessel... contain the following information, except for those vessels under 300 gross tons which are engaged...

  2. 15 CFR 970.205 - Vessel safety.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Vessel safety. 970.205 Section 970.205... SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Applications Contents § 970.205 Vessel... contain the following information, except for those vessels under 300 gross tons which are engaged...

  3. 15 CFR 970.205 - Vessel safety.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Vessel safety. 970.205 Section 970.205... SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Applications Contents § 970.205 Vessel... contain the following information, except for those vessels under 300 gross tons which are engaged...

  4. 15 CFR 970.205 - Vessel safety.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Vessel safety. 970.205 Section 970.205... SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Applications Contents § 970.205 Vessel... contain the following information, except for those vessels under 300 gross tons which are engaged...

  5. 15 CFR 970.205 - Vessel safety.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Vessel safety. 970.205 Section 970.205... SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Applications Contents § 970.205 Vessel... contain the following information, except for those vessels under 300 gross tons which are engaged...

  6. Pressure suppression containment system

    DOEpatents

    Gluntz, D.M.; Townsend, H.E.

    1994-03-15

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of-coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto. 6 figures.

  7. Pressure suppression containment system

    DOEpatents

    Gluntz, Douglas M. (San Jose, CA); Townsend, Harold E. (San Jose, CA)

    1994-03-15

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto.

  8. Passive containment cooling system

    DOEpatents

    Billig, P.F.; Cooke, F.E.; Fitch, J.R.

    1994-01-25

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

  9. Passive containment cooling system

    DOEpatents

    Billig, Paul F. (San Jose, CA); Cooke, Franklin E. (San Jose, CA); Fitch, James R. (San Jose, CA)

    1994-01-01

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

  10. Collapsing Containers.

    ERIC Educational Resources Information Center

    Brown, Justina L.; Battino, Rubin

    1994-01-01

    Describes variations on atmospheric pressure demonstrations and some systematic studies. Demonstrations use steam, generated either externally or internally to the container, to sweep out residual air. Preferred vessels collapsed slowly. Demonstrations use plastic milk jugs set in layers of aluminum foil, pop bottles immersed in 4-L beakers…

  11. Breccias related to explosive volcanism

    NASA Astrophysics Data System (ADS)

    Wolfe, John A.

    Explosive breccia pipes were formed in the phreatomagmatic eruption of Taal volcano 60 km south of Manila, Philippines in September 1976. They were photographed in eruption which consisted of a series of small explosions occurring during the peak of activity at 10 sec intervals. These four breccia pipes formed on the collapse fault marking the margin of the much more intense eruption of 28 September 1965 when a diatreme 800 m in diameter formed. Renewed eruption in October 1977 on one of the breccia pipes blasted out the sealed plug and breccia fragments in all stages of alteration were included in the tephra. They ranged from barely agglomerated to strongly cemented through argillized and pyritized to totally replaced by silica and pyrite, fragments indistinguishable from those found in many mining districts. The violence of the explosion initiating a phreatomagmatic eruptive sequence results in strong crackling of the walls of the pipe and the crakle zone may become mineralized (cf. Braden, Chile). Usually the crater collapses on ring faults after eruption, forming a marginal tectonic breccia which can be mineralized (cf. Balatoc, Philippines.) The small craters with steep inner walls and tapering outer slopes which form during phreatomagmatic eruptions, sometimes containing lakes, are called maars and they are the surficial expression of an explosive breccia pipe or diatreme. Superficially similar craters are formed over kimberlite pipes. Hydrothermal explosion craters are somewhat similar. Collapse breccia pipes can form in the same sequence with explosive pipes. When one rising plug encounters ground water and explodes, fluostatic pressure on any other cupolas rising from the same magma drops rapidly, resulting in withdrawal of magma and collapse of walls and roof (Perry 1961). "Fluidization" is not thought to be of any significance in formation of breccia pipes (Wolfe 1980) contrary to Reynolds (1954) and many authors who have cited that work. An explosive breccia pipe is like an open window resulting in rapid depression of the isotherms of a pluton. A concentrated brine front can build up in minutes after an explosion. The very rapid cooling may explain why many explosive breccia pipes are altered by silica and pyrite only, the system being cooled before metallic solutions have time to replace breccia matrix or fragments.

  12. Simulation of Steam Explosion with a General Purpose CFD Code

    SciTech Connect

    Leskovar, Matjaz; Koncar, Bostjan

    2006-07-01

    An ex-vessel steam explosion may occur when during a severe reactor accident the reactor vessel fails and the molten core pours into the water in the reactor cavity. A steam explosion is a fuel coolant interaction process where the heat transfer from the melt to water is so intense and rapid that the timescale for heat transfer is shorter than the timescale for pressure relief. This can lead to the formation of shock waves and production of missiles at later times, during the expansion of the highly pressurized water vapor, that may endanger surrounding structures. In contrast to specialized steam explosion CFD codes, where the steam explosion is modeled on micro-scale using fundamental averaged multiphase flow conservation equations, in the presented approach the steam explosion is modeled in a simplified manner as an expanding high-pressure pre-mixture of dispersed molten fuel, liquid water and vapor. Applying the developed steam explosion model, a comprehensive analysis of the ex-vessel steam explosion in a typical PWR reactor cavity was done using the CFD code CFX-10. At four selected locations, which are of importance for the assessment of the vulnerability of cavity structures, the pressure histories were recorded and the corresponding pressure impulses calculated. The pressure impulses determine the destructive potential of the steam explosion and represent the input for the structural mechanical analysis of the cavity structures. The simulation results show that the pressure impulses depend mainly on the steam explosion energy conversion ratio, whereas the influence of the pre-mixture vapor volume fraction, which is a parameter in our model and determines the maximum steam explosion pressure, is not significant. (authors)

  13. 29 CFR 1926.904 - Storage of explosives and blasting agents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Tobacco and Firearms regulations contained in 27 CFR part 55, Commerce in Explosives. (b) Blasting caps... feet of explosives and detonator storage magazine. (d) No explosives or blasting agents shall be... magazines containing detonators shall not be located closer than 50 feet to any magazine containing...

  14. Volcanic Explosivity Index (VEI): An estimate of explosive magnitude for historical volcanism

    SciTech Connect

    Newhall, C.G.; Self, S.

    1982-02-20

    Knowledge of the frequencies of highly explosive, moderately explosive, and nonexplosive eruptions would be useful in a variety of volcano studies. Historical records are generally incomplete, however, and contain very littly quantitative data from which explosive magnitude can be estimated. Only the largest eruptions have a complete record back to the early 19th Century; other important explosive events went unrecorded prior to about 1960. Only a handful of the very biggest eruptions are represented in the geologic record, so it will be impossible to augment historical records post facto. A composite estimate of the magnitude of past explosive eruptions, termed the Volcanic Explosivity Index (VEI), is proposed as a semiquantitative compromise between poor data and the need in various disciplines to evaluate the record of past volcanism. The VEI has been assigned to over 8000 historic and prehistoric eruptions, and a complete list is available in a companion document.

  15. Totally confined explosive welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J. (inventor)

    1978-01-01

    The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.

  16. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  17. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  18. 27 CFR 555.180 - Prohibitions relating to unmarked plastic explosives.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... unmarked plastic explosives. 555.180 Section 555.180 Alcohol, Tobacco Products, and Firearms BUREAU OF... Marking of Plastic Explosives § 555.180 Prohibitions relating to unmarked plastic explosives. (a) No person shall manufacture any plastic explosive that does not contain a detection agent. (b) No...

  19. 27 CFR 555.180 - Prohibitions relating to unmarked plastic explosives.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... unmarked plastic explosives. 555.180 Section 555.180 Alcohol, Tobacco Products, and Firearms BUREAU OF... Marking of Plastic Explosives § 555.180 Prohibitions relating to unmarked plastic explosives. (a) No person shall manufacture any plastic explosive that does not contain a detection agent. (b) No...

  20. 27 CFR 555.180 - Prohibitions relating to unmarked plastic explosives.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... unmarked plastic explosives. 555.180 Section 555.180 Alcohol, Tobacco Products, and Firearms BUREAU OF... Marking of Plastic Explosives § 555.180 Prohibitions relating to unmarked plastic explosives. (a) No person shall manufacture any plastic explosive that does not contain a detection agent. (b) No...

  1. 27 CFR 555.180 - Prohibitions relating to unmarked plastic explosives.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... unmarked plastic explosives. 555.180 Section 555.180 Alcohol, Tobacco Products, and Firearms BUREAU OF... Marking of Plastic Explosives § 555.180 Prohibitions relating to unmarked plastic explosives. (a) No person shall manufacture any plastic explosive that does not contain a detection agent. (b) No...

  2. 27 CFR 555.180 - Prohibitions relating to unmarked plastic explosives.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... unmarked plastic explosives. 555.180 Section 555.180 Alcohol, Tobacco Products, and Firearms BUREAU OF... Marking of Plastic Explosives § 555.180 Prohibitions relating to unmarked plastic explosives. (a) No person shall manufacture any plastic explosive that does not contain a detection agent. (b) No...

  3. Explosion proof battery

    SciTech Connect

    Brooks, A. S.

    1985-07-16

    Apparatus for eliminating the possibility of propagation of gas ignition from the outside to the interior of wet cell batteries such as those used in autos, boats, tractors and the like. The invention in its simplest form is characterized by a set of chambers attached to or incorporated with the structure of a wet cell battery to form a single compact explosion proof battery assembly. The chambers contain non flammable liquid through which gases traveling to and from the interior of the battery pass and thereby create a barrier to the propagation of ignition from the outside of the battery to the interior of the battery. Supporting inventive means are provided to make the apparatus fully functional and practical. Such supporting means include an injection fill means, a liquid level indicator and a pressure release tube for conducting gases safely away from the apparatus.

  4. Mixing in explosions

    SciTech Connect

    Kuhl, A.L.

    1993-12-01

    Explosions always contain embedded turbulent mixing regions, for example: boundary layers, shear layers, wall jets, and unstable interfaces. Described here is one particular example of the latter, namely, the turbulent mixing occurring in the fireball of an HE-driven blast wave. The evolution of the turbulent mixing was studied via two-dimensional numerical simulations of the convective mixing processes on an adaptive mesh. Vorticity was generated on the fireball interface by baroclinic effects. The interface was unstable, and rapidly evolved into a turbulent mixing layer. Four phases of mixing were observed: (1) a strong blast wave phase; (2) and implosion phase; (3) a reshocking phase; and (4) an asymptotic mixing phase. The flowfield was azimuthally averaged to evaluate the mean and r.m.s. fluctuation profiles across the mixing layer. The vorticity decayed due to a cascade process. This caused the corresponding enstrophy parameter to increase linearly with time -- in agreement with homogeneous turbulence calculations of G.K. Batchelor.

  5. Development of Tritium Storage and Transport Vessels

    SciTech Connect

    Paek, S.; Lee, M.; Kim, K.R.; Ahn, D.H.; Song, K.M.; Shon, S.H.

    2008-07-01

    The purpose of this study is to develop tritium storage and transport vessels for industrial applications. Prototype tritium storage and transport vessels were designed and manufactured. Uranium and zirconium/cobalt (ZrCo) metals were selected for the storage materials. The prototype transport container for the vessel was designed on the basis of Type B transportation package standards. The transport container was composed of a steel drum, inner packing materials, and a storage vessel. A second refinement cap was installed on the prototype vessel to protect the valves on the 100 kCi vessel. The vessel is stored in a steel drum packed with a thermal barrier and a shock absorber. Structural, thermal, shielding, and confinement analyses have to be performed for this container based on Type B requirements. (authors)

  6. Plastic explosives Mike Hopkins

    E-print Network

    Ravenel, Douglas

    Plastic explosives Mike Hill Mike Hopkins Doug Ravenel What this talk is about The poster The HHRH The reduced E4 -term 1.1 Plastic explosives: A C4 analog of the Kervaire invariant calculation Conference of Virginia Mike Hopkins Harvard University Doug Ravenel University of Rochester #12;Plastic explosives Mike

  7. 19 CFR 4.7c - Vessel stow plan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Vessel stow plan. 4.7c Section 4.7c Customs Duties... VESSELS IN FOREIGN AND DOMESTIC TRADES Arrival and Entry of Vessels § 4.7c Vessel stow plan. Vessel stow... and the container status message requirements pursuant to § 4.7d of this part, for all vessels...

  8. 19 CFR 4.7c - Vessel stow plan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Vessel stow plan. 4.7c Section 4.7c Customs Duties... VESSELS IN FOREIGN AND DOMESTIC TRADES Arrival and Entry of Vessels § 4.7c Vessel stow plan. Vessel stow... and the container status message requirements pursuant to § 4.7d of this part, for all vessels...

  9. 19 CFR 4.7c - Vessel stow plan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Vessel stow plan. 4.7c Section 4.7c Customs Duties... VESSELS IN FOREIGN AND DOMESTIC TRADES Arrival and Entry of Vessels § 4.7c Vessel stow plan. Vessel stow... and the container status message requirements pursuant to § 4.7d of this part, for all vessels...

  10. PINS Testing and Modification for Explosive Identification

    SciTech Connect

    E.H. Seabury; A.J. Caffrey

    2011-09-01

    The INL's Portable Isotopic Neutron Spectroscopy System (PINS)1 non-intrusively identifies the chemical fill of munitions and sealed containers. PINS is used routinely by the U.S. Army, the Defense Threat Reduction Agency, and foreign military units to determine the contents of munitions and other containers suspected to contain explosives, smoke-generating chemicals, and chemical warfare agents such as mustard and nerve gas. The objects assayed with PINS range from softball-sized M139 chemical bomblets to 200 gallon DOT 500X ton containers. INL had previously examined2 the feasibility of using a similar system for the identification of explosives, and based on this proof-of-principle test, the development of a dedicated system for the identification of explosives in an improvised nuclear device appears entirely feasible. INL has been tasked by NNSA NA-42 Render Safe Research and Development with the development of such a system.

  11. Tailoring vessel morphology in vivo

    NASA Astrophysics Data System (ADS)

    Gould, Daniel Joseph

    Tissue engineering is a rapidly growing field which seeks to provide alternatives to organ transplantation in order to address the increasing need for transplantable tissues. One huge hurdle in this effort is the provision of thick tissues; this hurdle exists because currently there is no way to provide prevascularized or rapidly vascularizable scaffolds. To design thick, vascularized tissues, scaffolds are needed that can induce vessels which are similar to the microvasculature found in normal tissues. Angiogenic biomaterials are being developed to provide useful scaffolds to address this problem. In this thesis angiogenic and cell signaling and adhesion factors were incorporated into a biomimetic poly(ethylene glycol) (PEG) hydrogel system. The composition of these hydrogels was precisely tuned to induce the formation of differing vessel morphology. To sensitively measure induced microvascular morphology and to compare it to native microvessels in several tissues, this thesis developed an image-based tool for quantification of scale invariant and classical measures of vessel morphology. The tool displayed great utility in the comparison of native vessels and remodeling vessels in normal tissues. To utilize this tool to tune the vessel response in vivo, Flk1::myr-mCherry fluorescently labeled mice were implanted with Platelet Derived Growth Factor-BB (PDGF-BB) and basic Fibroblast Growth Factor (FGF-2) containing PEG-based hydrogels in a modified mouse corneal angiogenesis assay. Resulting vessels were imaged with confocal microscopy, analyzed with the image based tool created in this thesis to compare morphological differences between treatment groups, and used to create a linear relationship between space filling parameters and dose of growth factor release. Morphological parameters of native mouse tissue vessels were then compared to the linear fit to calculate the dose of growth factors needed to induce vessels similar in morphology to native vessels. Resulting induced vessels did match in morphology to the target vessels. Several other covalently bound signals were then analyzed in the assay and resulting morphology of vessels was compared in several studies which further highlighted the utility of the micropocket assay in conjunction with the image based tool for vessel morphological quantification. Finally, an alternative method to provide rapid vasculature to the constructs, which relied on pre-seeded hydrogels encapsulated endothelial cells was also developed and shown to allow anastamosis between induced host vessels and the implanted construct within 48 hours. These results indicate great promise in the rational design of synthetic, bioactive hydrogels, which can be used as a platform to study microvascular induction for regenerative medicine and angiogenesis research. Future applications of this research may help to develop therapeutic strategies to ameliorate human disease by replacing organs or correcting vessel morphology in the case of ischemic diseases and cancer.

  12. SUPERFUND TREATABILITY CLEARINGHOUSE: COMPOSITING EXPLOSIVES/ORGANICS CONTAMINATED SOILS

    EPA Science Inventory

    Laboratory scale and pilot scale studies were conducted to evaluate composting to treat sediments and soils containing explosive and organic compounds. Sediment and soil from lagoons at Army ammunition plants, located in Louisiana, Wisconsin and Pennsylvania contained high...

  13. Feasibility study for a containment to resist core-melt accidents

    SciTech Connect

    Butsch, J.; Schlueter, F.H.; Eibl, J.

    1995-09-01

    A feasibility study has been performed for a light water reactor containment able to resist even severe accidents by passive means. Upper-bound design loads have been considered for all physically possible scenarios after a core-melt accident as determined by Kernforschungszentrum Karlsruhe. The essential layout of this containment is presented. Based on the main system features of a German 1,300-MW Convoy reactor type, internal static pressure, hydrogen detonation, failure of the pressure vessel under high pressure, and steam explosion, respectively, have been regarded as well as such external loads as an airplane crash, earthquake, gas explosion, and so forth. The containment can remove the decay heat by purely passive means, and it is believed that the design can be realized at reasonable costs.

  14. 46 CFR 98.30-4 - Vessels carrying MPTs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Vessels carrying MPTs. 98.30-4 Section 98.30-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL... Intermediate Bulk Containers § 98.30-4 Vessels carrying MPTs. Each MPT on a vessel to which this part...

  15. 49 CFR 173.52 - Classification codes and compatibility groups of explosives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...containing such explosive substance C 1.1C1.2C 1.3C 1.4C Secondary detonating explosive substance or black powder or article containing a secondary detonating explosive substance, in each case without means of initiation and...

  16. 49 CFR 173.52 - Classification codes and compatibility groups of explosives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...containing such explosive substance C 1.1C1.2C 1.3C 1.4C Secondary detonating explosive substance or black powder or article containing a secondary detonating explosive substance, in each case without means of initiation and...

  17. Vapor generation methods for explosives detection research

    SciTech Connect

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  18. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ...Initiating tube systems. K KDNBF [potassium dinitrobenzo-furoxane]. L Lead azide...Picramide. Picrate explosives. Picrate of potassium explosive mixtures. Picratol. Picric...Polyolpolynitrate-nitrocellulose explosive gels. Potassium chlorate and lead sulfocyanate...

  19. THE EFFECT OF THE PRESENCE OF OZONE ON THE LOWER FLAMMABILITY LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect

    Sherburne, C.

    2012-01-12

    The Enhanced Chemical Cleaning (ECC) process uses ozone to effect the oxidation of metal oxalates produced during the dissolution of sludge in the Savannah River Site (SRS) waste tanks. The ozone reacts with the metal oxalates to form metal oxide and hydroxide precipitants, and the CO{sub 2}, O{sub 2}, H{sub 2}O and any unreacted O{sub 3} gases are discharged into the vapor space. In addition to the non-radioactive metals in the waste, however, the SRS radioactive waste also contains a variety of radionuclides, hence, hydrogen gas is also present in the vapor space of the ECC system. Because hydrogen is flammable, the impact of this resultant gas stream on the Lower Flammability Limit (LFL) of hydrogen must be understood for all possible operating scenarios of both normal and off-normal situations, with particular emphasis at the elevated temperatures and pressures of the typical ECC operating conditions. Oxygen is a known accelerant in combustion reactions, but while there are data associated with the behavior of hydrogen/oxygen environments, recent, relevant studies addressing the effect of ozone on the flammability limit of hydrogen proved scarce. Further, discussions with industry experts verified the absence of data in this area and indicated that laboratory testing, specific to defined operating parameters, was needed to comprehensively address the issue. Testing was thus designed and commissioned to provide the data necessary to support safety related considerations for the ECC process. A test matrix was developed to envelope the bounding conditions considered credible during ECC processing. Each test consists of combining a gas stream of high purity hydrogen with a gas stream comprised of a specified mixture of ozone and oxygen in a temperature and pressure regulated chamber such that the relative compositions of the two streams are controlled. The gases are then stirred to obtain a homogeneous mixture and ignition attempted by applying 10J of energy to a fuse wire. A gas combination is considered flammable when a pressure rise of 7% of the initial absolute pressure is observed. The specified testing methodology is consistent with guidelines established in ASTM E-918-83 (2005) 'Standard Practices for Determining Limits of Flammability of Chemicals at Elevated Temperature and Pressure'.

  20. Studies of the laser-induced fluorescence of explosives and explosive compositions.

    SciTech Connect

    Hargis, Philip Joseph, Jr.; Thorne, Lawrence R.; Phifer, Carol Celeste; Parmeter, John Ethan; Schmitt, Randal L.

    2006-10-01

    Continuing use of explosives by terrorists throughout the world has led to great interest in explosives detection technology, especially in technologies that have potential for standoff detection. This LDRD was undertaken in order to investigate the possible detection of explosive particulates at safe standoff distances in an attempt to identify vehicles that might contain large vehicle bombs (LVBs). The explosives investigated have included the common homogeneous or molecular explosives, 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclonite or hexogen (RDX), octogen (HMX), and the heterogeneous explosive, ammonium nitrate/fuel oil (ANFO), and its components. We have investigated standard excited/dispersed fluorescence, laser-excited prompt and delayed dispersed fluorescence using excitation wavelengths of 266 and 355 nm, the effects of polarization of the laser excitation light, and fluorescence imaging microscopy using 365- and 470-nm excitation. The four nitro-based, homogeneous explosives (TNT, PETN, RDX, and HMX) exhibit virtually no native fluorescence, but do exhibit quenching effects of varying magnitude when adsorbed on fluorescing surfaces. Ammonium nitrate and fuel oil mixtures fluoresce primarily due to the fuel oil, and, in some cases, due to the presence of hydrophobic coatings on ammonium nitrate prill or impurities in the ammonium nitrate itself. Pure ammonium nitrate shows no detectable fluorescence. These results are of scientific interest, but they provide little hope for the use of UV-excited fluorescence as a technique to perform safe standoff detection of adsorbed explosive particulates under real-world conditions with a useful degree of reliability.

  1. Quadractic Model of Thermodynamic States in SDF Explosions

    SciTech Connect

    Kuhl, A L; Khasainov, B

    2007-05-04

    We study the thermodynamic states encountered during Shock-Dispersed-Fuel (SDF) explosions. Such explosions contain up to six components: three fuels (PETN, TNT and Aluminum) and their products corresponding to stoichiometric combustion with air. We establish the loci in thermodynamic state space that correctly describes the behavior of the components. Results are fit with quadratic functions that serve as fast equations of state suitable for 3D numerical simulations of SDF explosions.

  2. The Role of Binder in Deflagrating HMX-based Explosives

    NASA Astrophysics Data System (ADS)

    Tringe, J. W.; Levie, H. W.; Glascoe, E. A.; Greenwood, D. W.; de Haven, M. R.; Molitoris, J. D.; Springer, H. K.

    2011-06-01

    Deflagration rates are known to be a strong function of temperature and pressure, but chemical reactions facilitated by the explosive's binder can also play an important role. Here we report a study of two HMX-based formulations, PBX-9501 (HMX 95%, estane 2.5%, bdnpa 1.25%, and bdnpf 1.25%) and LX-10 (HMX 95%, Viton-A 5%), which we use to investigate the origins of violence in thermal explosions. We employ flash x-ray radiography to directly image the rates at which reaction fronts proceed in a confined vessel. Photonic Doppler velocimetry (PDV) characterizes the vessel wall motion as a function of time. Our results show that thermal explosions of PBX-9501, with its more reactive binder, are more violent than explosions of LX-10. In LX-10, we observe quenched deflagration and limited violence. In PBX-9501, however, a higher deflagration rate is developed and sustained even after vessel rupture. Thermal explosions of initially-confined PBX-9501 therefore are more complete and significantly more violent. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Explosively pumped laser light

    DOEpatents

    Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  4. Explosive Percolation in Directed Networks

    E-print Network

    Anlage, Steven

    Explosive Percolation in Directed Networks Diego Alcala and Katherine Sytwu With Shane Squires ­ Directed and undirected networks ­ Percolation ­ Explosive percolation · Methodology · Results · Conclusion, infrastructure, etc. · Grow by the addition of links · New class of transitions: "explosive percolation" Taken

  5. Reaction of preshocked explosives

    SciTech Connect

    Mulford, R.N.

    1998-07-31

    In experiments in which an explosive is subjected to two successive shocks ({approximately}2.5 and {approximately}6.0 GPa), detonation of the explosive is delayed. High compaction resulting from shock compression of an explosive probably results in the removal of voids from the material. To the extent that these voids comprise the hotspots in the material, the shock-compressed explosive might be expected to behave as a homogeneous material, and initiate more like a liquid explosive than like a normal solid PBX. While some evidence is available from the data record to support this idea that detonation develops in a homogeneous manner, predominant aspects of the data indicate heterogeneous development of detonation in the preshocked material.

  6. Non-detonable explosive simulators

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  7. Non-detonable explosive simulators

    DOEpatents

    Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

    1994-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  8. Explosion-Induced Implosions of Cylindrical Shell Structures

    NASA Astrophysics Data System (ADS)

    Ikeda, C. M.; Duncan, J. H.

    2010-11-01

    An experimental study of the explosion-induced implosion of cylindrical shell structures in a high-pressure water environment was performed. The shell structures are filled with air at atmospheric pressure and are placed in a large water-filled pressure vessel. The vessel is then pressurized to various levels P?=?Pc, where Pc is the natural implosion pressure of the model and ? is a factor that ranges from 0.1 to 0.9. An explosive is then set off at various standoff distances, d, from the model center line, where d varies from R to 10R and R is the maximum radius of the explosion bubble. High-speed photography (27,000 fps) was used to observe the explosion and resulting shell structure implosion. High-frequency underwater blast sensors recorded dynamic pressure waves at 6 positions. The cylindrical models were made from aluminum (diameter D = 39.1 mm, wall thickness t = 0.89 mm, length L = 240 mm) and brass (D = 16.7 mm, t = 0.36 mm, L=152 mm) tubes. The pressure records are interpreted in light of the high-speed movies. It is found that the implosion is induced by two mechanisms: the shockwave generated by the explosion and the jet formed during the explosion-bubble collapse. Whether an implosion is caused by the shockwave or the jet depends on the maximum bubble diameter and the standoff distance.

  9. Methodology for Assessing a Boiling Liquid Expanding Vapor Explosion (BLEVE) Blast Potential

    NASA Technical Reports Server (NTRS)

    Keddy, Chris P.

    2012-01-01

    Composite Vessels are now used to store a variety of fluids or gases including cryogenic fluids under pressure. Sudden failure of these vessels under certain conditions can lead to a potentially catastrophic vapor expansion if thermal control is not maintained prior to failure. This can lead to a "Boiling Liquid Expanding Vapor Explosion" or BLEVE.

  10. Fish kill from underwater explosions

    USGS Publications Warehouse

    Stuart, David J.

    1962-01-01

    The U.S. Geological Survey has used 23 different shotpoints during two seasons of field work in our seismic study of crustal structure in western United States. Without exception, it has been found that under-water shotpoints result in a more efficient conversion of explosive energy into seismic energy than do drilled-hole shotpoints. This experience, together with elimination of drilling costs, has led to the use of underwater shotpoints wherever possible. Three of the 23 shotpoints were in the Pacific Ocean, and for these we have no detailed information on the fish kill. Another six shotpoints were located in inland bodies of water. These are: * Soda Lake near Fallon, Nevada * Mono Lake near Lee Vining, California * Lake Mead near Boulder City, Nevada * Shasta Lake near Redding, California * C.J. Strike Reservoir near Bruneau, Idaho * Lucky Peak Reservoir near Boise, Idaho The 22 high-explosive charges, weighing a total of 95,100 pounds, that were fired in lakes containing fish life resulted in the known death of 2,413 game fish with a total weight of 759 pounds. The average mortality was 110 game fish or 34.5 pounds of game fish killed per average shot of 4,325 pounds of high-explosives.

  11. Unreacted Hugoniots of Three Plastic Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Milne, A. M.; Bourne, N. K.; Millett, J. C. F.

    2005-07-01

    There is a continuing interest in determining the detonation characteristics of loaded plastic-bonded explosives (PBXs). The UK licensing agency for explosives, DOSG, wishes to better understand the response of insensitive high explosives. This has required more detailed investigation of the transit of reaction from the unreacted state to products. The starting condition, before application of a kinetic scheme to describe reaction, is thus the unreacted Hugoniot for the material. In this work three PBXs, manufactured by BAE Landsystems, are investigated and modelled. All contain RDX in differing quantities in an HTPB binder. One of them contains aluminium. Two of the materials have the same weight percentage of filler and binder but differ in the grain size distribution entrained. The experimental Hugoniots are presented, and a composite equation of state is derived using an engineering model and shown to describe the measurements well. Further applications of the technique are described and future application is outlined.

  12. 49 CFR 173.60 - General packaging requirements for explosives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-freeze creates a fire hazard, it may not be used. When a percentage of water in the substance is... materials, nor leakage, causes the explosive to become unsafe in transportation, or the hazard division or compatibility group to change (see § 173.24(e)(2)). (10) An explosive article containing an electrical means...

  13. 49 CFR 173.60 - General packaging requirements for explosives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-freeze creates a fire hazard, it may not be used. When a percentage of water in the substance is... materials, nor leakage, causes the explosive to become unsafe in transportation, or the hazard division or compatibility group to change (see § 173.24(e)(2)). (10) An explosive article containing an electrical means...

  14. 49 CFR 173.60 - General packaging requirements for explosives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-freeze creates a fire hazard, it may not be used. When a percentage of water in the substance is... materials, nor leakage, causes the explosive to become unsafe in transportation, or the hazard division or compatibility group to change (see § 173.24(e)(2)). (10) An explosive article containing an electrical means...

  15. Stress Growth Measurements for the Explosive IRX-4

    NASA Astrophysics Data System (ADS)

    Sutherland, Gerrit T.

    2002-07-01

    Embedded gauge experiments were performed to measure the shock reactivity of IRX-4, a plastic-bonded explosive that contains HMX, Al, AP and HTPB binder. The pressure-time profiles obtained are similar to those obtained for similar composite explosives. Hugoniot points obtained are in agreement with those obtained with mixture theory.

  16. Optically measured explosive impulse

    NASA Astrophysics Data System (ADS)

    Biss, Matthew M.; McNesby, Kevin L.

    2014-06-01

    An experimental technique is investigated to optically measure the explosive impulse produced by laboratory-scale spherical charges detonated in air. Explosive impulse has historically been calculated from temporal pressure measurements obtained via piezoelectric transducers. The presented technique instead combines schlieren flow visualization and high-speed digital imaging to optically measure explosive impulse. Prior to an explosive event, schlieren system calibration is performed using known light-ray refractions and resulting digital image intensities. Explosive charges are detonated in the test section of a schlieren system and imaged by a high-speed digital camera in pseudo-streak mode. Spatiotemporal schlieren intensity maps are converted using an Abel deconvolution, Rankine-Hugoniot jump equations, ideal gas law, triangular temperature decay profile, and Schardin's standard photometric technique to yield spatiotemporal pressure maps. Temporal integration of individual pixel pressure profiles over the positive pressure duration of the shock wave yields the explosive impulse generated for a given radial standoff. Calculated explosive impulses are shown to exhibit good agreement between optically derived values and pencil gage pressure transducers.

  17. Lithium niobate explosion monitor

    DOEpatents

    Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

    1990-01-09

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

  18. Lithium niobate explosion monitor

    DOEpatents

    Bundy, Charles H. (Clearwater, FL); Graham, Robert A. (Los Lunas, NM); Kuehn, Stephen F. (Albuquerque, NM); Precit, Richard R. (Albuquerque, NM); Rogers, Michael S. (Albuquerque, NM)

    1990-01-01

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  19. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... supersedes the List of Explosives Materials dated September 20, 2012 (Docket No. ATF 47N, 77 FR 58410... Bureau of Alcohol, Tobacco, Firearms, and Explosives Commerce in Explosives; List of Explosives Materials.... Display fireworks. DNPA . DNPD . Dynamite. E EDDN . EDNA . Ednatol. EDNP . EGDN . Erythritol...

  20. 50 CFR 600.501 - Vessel permits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... additional permit restrictions on the permit under 15 CFR part 904, if the vessel is involved in the... are contained in 50 CFR part 229 of this title. (b) Responsibility of owners and operators. The owners... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Vessel permits. 600.501 Section...

  1. 50 CFR 600.501 - Vessel permits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... additional permit restrictions on the permit under 15 CFR part 904, if the vessel is involved in the... are contained in 50 CFR part 229 of this title. (b) Responsibility of owners and operators. The owners... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Vessel permits. 600.501 Section...

  2. 50 CFR 600.501 - Vessel permits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... additional permit restrictions on the permit under 15 CFR part 904, if the vessel is involved in the... are contained in 50 CFR part 229 of this title. (b) Responsibility of owners and operators. The owners... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Vessel permits. 600.501 Section...

  3. 50 CFR 600.501 - Vessel permits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... additional permit restrictions on the permit under 15 CFR part 904, if the vessel is involved in the... are contained in 50 CFR part 229 of this title. (b) Responsibility of owners and operators. The owners... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Vessel permits. 600.501 Section...

  4. 77 FR 55108 - Explosive Siting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ...of the fault tolerance of the system. \\6\\ On a related note...total quantity of liquid fuel and oxidizer available on a...of the RFA provides that the head of the agency may so certify...containing an explosive, oxidizer, fuel, or combination of the...

  5. Modeling nuclear explosion

    NASA Astrophysics Data System (ADS)

    Redd, Jeremy; Panin, Alexander

    2012-10-01

    As a result of the Nuclear Test Ban Treaty, no nuclear explosion tests have been performed by the US since 1992. This appreciably limits valuable experimental data needed for improvement of existing weapons and development of new ones, as well as for use of nuclear devices in non-military applications (such as making underground oil reservoirs or compressed air energy storages). This in turn increases the value of numerical modeling of nuclear explosions and of their effects on the environment. We develop numerical codes simulating fission chain reactions in a supercritical U and Pu core and the dynamics of the subsequent expansion of generated hot plasma in order to better understand the impact of such explosions on their surroundings. The results of our simulations (of both above ground and underground explosions) of various energy yields are presented.

  6. Disorder induces explosive synchronization

    E-print Network

    Per Sebastian Skardal; Alex Arenas

    2014-06-02

    We study explosive synchronization, a phenomenon characterized by first-order phase transitions between incoherent and synchronized states in networks of coupled oscillators. While explosive synchronization has been the subject of many recent studies, in each case strong conditions on either the heterogeneity of the network, its link weights, or its initial construction are imposed to engineer a first-order phase transition. This raises the question of how robust explosive synchronization is in view of more realistic structural and dynamical properties. Here we show that explosive synchronization can be induced in mildly heterogeneous networks by the addition of quenched disorder to the oscillators' frequencies, demonstrating that it is not only robust to, but moreover promoted by, this natural mechanism. We support these findings with numerical and analytical results, presenting simulations of a real neural network as well as a self-consistency theory used to study synthetic networks.

  7. Explosive Collisions at RHIC?

    E-print Network

    Adrian Dumitru; Robert D. Pisarski

    2001-02-02

    Motivated by experimental results from RHIC, we suggest how a condensate for the Polyakov loop might produce explosive behavior at the QCD phase transition. This is due to a rapid rollover of the condensate field below the transition temperature.

  8. Idaho Explosive Detection System

    SciTech Connect

    Klinger, Jeff

    2011-01-01

    Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory

  9. Explosion suppression system

    DOEpatents

    Sapko, Michael J. (Finleyville, PA); Cortese, Robert A. (Pittsburgh, PA)

    1992-01-01

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  10. Nuclear explosive driven experiments

    SciTech Connect

    Ragan, C.E.

    1981-01-01

    Ultrahigh pressures are generated in the vicinity of a nuclear explosion. We have developed diagnostic techniques to obtain precise high pressures equation-of-state data in this exotic but hostile environment.

  11. Explosive Nucleosynthesis: Prospects

    E-print Network

    David Arnett

    1999-08-16

    Explosive nucleosynthesis is a combination of the nuclear physics of thermonuclear reactions, and the hydrodynamics of the plasma in which the reactions occur. It depends upon the initial conditions---the stellar evolution up to the explosive instability, and the nature of the explosion mechanism. Some key issues for explosive nucleosynthesis are the interaction of burning with hydrodynamics, the degree of microscopic mixing in convective zones, and the breaking of spherical symmetry by convection and rotation. Recent experiments on high intensity lasers provides new opportunities for laboratory testing of astrophysical hydrodynamic codes. Implications of SN1987A, SN1998bw (GRB980425?), and eta Carina are discussed, as well as the formation of black holes or neutron stars.

  12. Idaho Explosive Detection System

    ScienceCinema

    Klinger, Jeff

    2013-05-28

    Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory

  13. ( 'tams Dlvllan LSPE EXPLOSIVE PACKAGE

    E-print Network

    Rathbun, Julie A.

    ~ ( ·'tams Dlvl·lan LSPE EXPLOSIVE PACKAGE STOWAGE THERMAL CONSTRAINTS LSPE EXPLOSIVE PACKAGE presents the study of LSPE High Explosive Package and transport frame stowage thermal constraints subsequent to LM touchdown and prior to lunar deployment. Approved by: #12;LSPE EXPLOSIVE PACKAGE STOWAGE

  14. Upper explosive limit of dusts: Experimental evidence for its existence under certain circumstances

    SciTech Connect

    Mintz, K.J. . Mining Research Labs.)

    1993-07-01

    An experimental study of the explosibility of cornstarch using the 20-liter vessel shows that, for a narrow size fraction near its limiting particle size for explosibility, an upper explosive limit exists. Upper explosive limits were also observed with both cornstarch and Pittsburgh Standard coal dust at low oxygen concentrations. These upper limits occur at accessible dust concentrations. A simple mechanism, the oxygen depletion phenomenological concept, is described. The optimum dust concentration, calculated using this mechanism, gives reasonable agreement with the experimental values, as well as explaining the variation of optimum concentration with particle size and oxygen concentration.

  15. Explosive Welding and Cladding

    NASA Astrophysics Data System (ADS)

    Meuken, D.; Carton, E. P.

    2004-07-01

    Explosive welding or cladding is usually performed on relative thick plates by means of a large scale parallel plate set-up. At TNO-PML several of the explosive welding configurations that were developed mainly in the nineteen sixties and seventies are being investigated for their potential use in modern industrial applications. Configurations for explosive cladding of curved surfaces such as tubes and rods are also being examined. This can be used to make special bimetallic heat exchanger tubes, or for the protection of electrodes that are used in electrolysis. Explosive line and seam welding are important bonding techniques that allow the welding of both similar and dissimilar metal plates and sheets. Here, bonding occurs over a small overlapping fraction of the two surfaces. This requires only a small amount of explosive (e.g. 5 g/m for line welds in thin ductile sheets). Explosive foil cladding can be used as an alternative coating technique. Plates that are clad with a foil on one or both sides were fabricated in one process step. They can be further machined or deformed using conventional techniques, due to the ductility of the bond and clad material.

  16. Modeling ‘Hot-Spot’ Contributions in Shocked High Explosives at the Mesoscale

    SciTech Connect

    Harrier, Danielle

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  17. Determination of explosive blast loading equivalencies with an explosively driven shock tube

    SciTech Connect

    Jackson, Scott I; Hill, Larry G; Morris, John S

    2009-01-01

    Recently there has been significant interest in evaluating the potential of many different non-ideal energetic materials to cause blast damage. We present a method intended to quantitatively compare the blast loading generated by different energetic materials through use of an explosively driven shock tube. The test explosive is placed at the closed breech end of the tube and initiated with a booster charge. The resulting shock waves are then contained and focused by the tube walls to form a quasi-one-dimensional blast wave. Pressure transducers along the tube wall measure the blast overpressure versus distance from the source and allow the use of the one-dimensional blast scaling relationship to determine the energy deposited into the blast wave per unit mass of test explosive. These values are then compared for different explosives of interest and to other methods of equivalency determination.

  18. Pressure sensor for sealed containers

    DOEpatents

    Hodges, Franklin R. (Loudon, TN)

    2001-01-01

    A magnetic pressure sensor for sensing a pressure change inside a sealed container. The sensor includes a sealed deformable vessel having a first end attachable to an interior surface of the sealed container, and a second end. A magnet mounted to the vessel second end defining a distance away from the container surface provides an externally detectable magnetic field. A pressure change inside the sealed container causes deformation of the vessel changing the distance of the magnet away from the container surface, and thus the detectable intensity of the magnetic field.

  19. Flying-plate detonator using a high-density high explosive

    DOEpatents

    Stroud, John R. (Livermore, CA); Ornellas, Donald L. (Livermore, CA)

    1988-01-01

    A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).

  20. 49 CFR 173.59 - Description of terms for explosives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...deflagrating solid explosive, used...propulsion. Propellants. Deflagrating...equipment quickly. Rocket motors. Articles...consisting of a solid, liquid, or hypergolic propellant contained in...designed to propel a rocket or guided...

  1. 49 CFR 173.59 - Description of terms for explosives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...deflagrating solid explosive, used...propulsion. Propellants. Deflagrating...equipment quickly. Rocket motors. Articles...consisting of a solid, liquid, or hypergolic propellant contained in...designed to propel a rocket or guided...

  2. 49 CFR 173.59 - Description of terms for explosives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...deflagrating solid explosive, used...propulsion. Propellants. Deflagrating...equipment quickly. Rocket motors. Articles...consisting of a solid, liquid, or hypergolic propellant contained in...designed to propel a rocket or guided...

  3. 46 CFR 35.30-25 - Explosives-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...Fulminates or other detonating compounds in bulk in dry condition; explosive compositions that ignite spontaneously or undergo marked decomposition when subjected for forty-eight consecutive hours to a temperature of 167 °F. or more; composition containing an...

  4. 46 CFR 35.30-25 - Explosives-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...Fulminates or other detonating compounds in bulk in dry condition; explosive compositions that ignite spontaneously or undergo marked decomposition when subjected for forty-eight consecutive hours to a temperature of 167 °F. or more; composition containing an...

  5. 46 CFR 35.30-25 - Explosives-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...Fulminates or other detonating compounds in bulk in dry condition; explosive compositions that ignite spontaneously or undergo marked decomposition when subjected for forty-eight consecutive hours to a temperature of 167 °F. or more; composition containing an...

  6. 49 CFR 173.62 - Specific packaging requirements for explosives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...explosives of UN0082 when they are mixtures of ammonium nitrate or other inorganic nitrates with other combustible substances that are...not contain nitroglycerin, similar liquid organic nitrates, liquid or solid nitrocarbons, or...

  7. 49 CFR 173.62 - Specific packaging requirements for explosives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...explosives of UN0082 when they are mixtures of ammonium nitrate or other inorganic nitrates with other combustible substances that are...not contain nitroglycerin, similar liquid organic nitrates, liquid or solid nitrocarbons, or...

  8. Explosive-driven, high speed, arcless switch

    DOEpatents

    Skogmo, P.J.; Tucker, T.J.

    1987-07-14

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed. 7 figs.

  9. Explosive-driven, high speed, arcless switch

    DOEpatents

    Skogmo, P.J.; Tucker, T.J.

    1986-05-02

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.

  10. Introduction Explosions in evolution problems The explosion time Stochastic Differential Equations with explosions

    E-print Network

    Groisman, Pablo

    Introduction Explosions in evolution problems The explosion time Stochastic Differential Equations with explosions Pablo Groisman University of Buenos Aires Joint work with J. Fern´andez Bonder, UBA J.D. Rossi, UBA ERPEM, November 29th, 2006 Pablo Groisman UBA Stochastic Differential Equations with explosions

  11. Non-detonable and non-explosive explosive simulators

    DOEpatents

    Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

    1997-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive.

  12. Non-detonable and non-explosive explosive simulators

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1997-07-15

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.

  13. Neutrino Factory Target Vessel

    E-print Network

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept V. Graves Target Studies EVO April 11, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 11 Apr 2012 Target Vessel;3 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 11 Apr 2012 Starting Point

  14. Reagent Selection Methodology for a Novel Explosives Detection Platform

    ScienceCinema

    None

    2012-12-31

    This video describes research being conducted by Dr. Marvin Warner, a research scientist at Pacific Northwest National Laboratory, in the individual pieces of antibodies used to set up a chemical reaction that will give off light just by mixing reagents together with a sample that contains an explosive molecule. This technology would help detect if explosives are present with just the use of a handheld system or container.

  15. Reagent Selection Methodology for a Novel Explosives Detection Platform

    SciTech Connect

    2010-06-01

    This video describes research being conducted by Dr. Marvin Warner, a research scientist at Pacific Northwest National Laboratory, in the individual pieces of antibodies used to set up a chemical reaction that will give off light just by mixing reagents together with a sample that contains an explosive molecule. This technology would help detect if explosives are present with just the use of a handheld system or container.

  16. 49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES...

  17. 49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES...

  18. 49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES...

  19. 49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES...

  20. Steam Explosions in Slurry-fed Ceramic Melters

    SciTech Connect

    Carter, J.T.

    2001-03-28

    This report assesses the potential and consequences of a steam explosion in Slurry Feed Ceramic Melters (SFCM). The principles that determine if an interaction is realistically probable within a SFCM are established. Also considered are the mitigating effects due to dissolved, non-condensable gas(es) and suspended solids within the slurry feed, radiation, high glass viscosity, and the existence of a cold cap. The report finds that, even if any explosion were to occur, however, it would not be large enough to compromise vessel integrity.

  1. Explosively separable casing

    DOEpatents

    Jacobson, Albin K. (Albuquerque, NM); Rychnovsky, Raymond E. (Livermore, CA); Visbeck, Cornelius N. (Livermore, CA)

    1985-01-01

    An explosively separable casing including a cylindrical afterbody and a circular cover for one end of the afterbody is disclosed. The afterbody has a cylindrical tongue extending longitudinally from one end which is matingly received in a corresponding groove in the cover. The groove is sized to provide a pocket between the end of the tongue and the remainder of the groove so that an explosive can be located therein. A seal is also provided between the tongue and the groove for sealing the pocket from the atmosphere. A frangible holding device is utilized to hold the cover to the afterbody. When the explosive is ignited, the increase in pressure in the pocket causes the cover to be accelerated away from the afterbody. Preferably, the inner wall of the afterbody is in the same plane as the inner wall of the tongue to provide a maximum space for storage in the afterbody and the side wall of the cover is thicker than the side wall of the afterbody so as to provide a sufficiently strong surrounding portion for the pocket in which the explosion takes place. The detonator for the explosive is also located on the cover and is carried away with the cover during separation. The seal is preferably located at the longitudinal end of the tongue and has a chevron cross section.

  2. Molecular models for explosives

    SciTech Connect

    Ritchie, J.P.; Bachrach, S.M.

    1987-01-01

    Any fundamental understanding of detonations and explosives' behavior requires as a starting point a knowledge of molecular properties. Indeed, there is a sizable literature concerning observed decomposition kinetics, x-ray crystal structures, heats of formation, etc. for explosives. As a result of this extensive experimental work, a large and ever increasing number of observed properties of explosives are available. Given sufficient data, models for the prediction of molecular properties can be developed and calibrated. Nevertheless, many desirable molecular properties can be obtained with considerable effort and, in many cases, experimental measurements are not possible for practical reasons; e.g., bond dissociation energies are very difficult to obtain for explosives. Consequently, theoretical methods for obtaining these properties are quite desirable. In addition, it is oftentimes desired to estimate the properties of unknown molecules. Consequently, methods for the estimation of molecular properties, which might seem quite crude by other standards, can be of considerable practical value. We present in this paper some of our recent efforts at extending and developing molecular models for explosives. These efforts fall into three main areas: Estimation of crystal densities of organic nitrates and perchlorates by an entirely empirical group additivity method; calculation of molecular heats of formation and bond dissociation energies (BDE's) by a semi-empirical molecular orbital method (AM1); and the electronic structure of nitrobenzene as obtained from non-empirical (sometimes called ab initio molecular orbital calculations. 10 refs.

  3. 21 CFR 868.1575 - Gas collection vessel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gas collection vessel. 868.1575 Section 868.1575...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1575 Gas collection vessel. (a) Identification. A gas collection vessel is a container-like device intended to collect a patient's exhaled...

  4. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested... testing requirements for boilers are contained in § 61.05 in subchapter F of this chapter....

  5. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping...Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested...inspection and testing requirements for boilers are contained in § 61.05 in...

  6. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 false Pressure vessels and boilers. 176.812 Section 176.812 Shipping...Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be...inspection and testing requirements for boilers are contained in § 61.05 in...

  7. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping...Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested...inspection and testing requirements for boilers are contained in § 61.05 in...

  8. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 false Pressure vessels and boilers. 176.812 Section 176.812 Shipping...Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be...inspection and testing requirements for boilers are contained in § 61.05 in...

  9. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812 Shipping...Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be...inspection and testing requirements for boilers are contained in § 61.05 in...

  10. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping...Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested...inspection and testing requirements for boilers are contained in § 61.05 in...

  11. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 false Pressure vessels and boilers. 176.812 Section 176.812 Shipping...Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be...inspection and testing requirements for boilers are contained in § 61.05 in...

  12. 46 CFR 176.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 false Pressure vessels and boilers. 176.812 Section 176.812 Shipping...Inspections § 176.812 Pressure vessels and boilers. (a) Pressure vessels must be...inspection and testing requirements for boilers are contained in § 61.05 in...

  13. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping...Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested...inspection and testing requirements for boilers are contained in § 61.05 in...

  14. 46 CFR 115.812 - Pressure vessels and boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping...Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested...inspection and testing requirements for boilers are contained in § 61.05 in...

  15. Explosive volcanism: Inception, evolution, and hazards

    SciTech Connect

    Not Available

    1984-01-01

    One purpose of the studies is to provide assessments from the scientific community to aid policymakers in decisions on societal problems that involve geophysics. An important part of such an assessment is an evaluation of the adequacy of present geophysical knowledge and the appropriateness of present research programs to provide information required for those decisions. Some of the studies place more emphasis on assessing the present status of a field of geophysics and identifying the most promising directions for future research. This study on explosive volcanism was begun soon after the cataclysmic eruptions of Mount St. Helens. It readily became apparent to the committee that an assessment of the explosive nature of volcanoes must cover all types of volcanic activity; any volcano can be explosive. Improved understanding of the physics of volcanic eruptions is an exciting goal that is vital to progress in hazard evaluation. The study of explosive volcanism must include an appreciation of the severe social problems that are caused by erupting volcanoes. None is of greater urgency than planning for a crisis. This report considers the progress in research on these aspects of explosive volcanism and the need for additional research efforts. This volume contains 13 papers. Topics include tectonism, volcanism, volcanic periodicity, eruptive mechanics, emergency planning and recommendations. Individual papers are indexed separately on the energy data base.

  16. Canine detection odor signatures for explosives

    NASA Astrophysics Data System (ADS)

    Williams, Marc; Johnston, J. M.; Cicoria, Matt; Paletz, E.; Waggoner, L. Paul; Edge, Cindy C.; Hallowell, Susan F.

    1998-12-01

    Dogs are capable of detecting and discriminating a number of compounds constituting a complex odor. However, they use only a few of these to recognize a substance. The focus of this research is to determine the compounds dogs learn to use in recognizing explosives. This is accomplished by training dogs under behavioral laboratory conditions to respond differentially on separate levers to 1) blank air, 2) a target odor, such as an explosive, and 3) all other odors (non-target odors). Vapor samples are generated by a serial dilution vapor generator whose operation and output is characterized by GC/MS. Once dogs learn this three-lever discrimination, testing sessions are conducted containing a number of probe trials in which vapor from constituent compounds of the target is presented. Which lever the dogs respond to on these probe trials indicates whether they can smell the compound at all (blank lever) or whether it smells like toe target odor (e.g., the explosive) or like something else. This method was conducted using TNT, C-4, and commercial dynamite. The data show the dogs' reactions to each of the constituent compounds tested for each explosive. Analysis of these data reveal the canine detection odor signature for these explosives.

  17. Trace explosive sensor devices based on semiconductor nanomaterials

    NASA Astrophysics Data System (ADS)

    Wang, Danling

    This dissertation discusses an explosive sensing device based on semiconductor nanomaterials. Here, we mainly focus on two kinds of materials: titanium dioxide nanowires and silicon nanowires to detect explosive trace vapor. Herein, methods for the synthesis, fabrication, design of nanostructured sensing materials using low-cost hydrothermal process are present. In addition, the nanomaterials have been systemically tested on different explosive. The first part of dissertation is focused on the fabrication of TiO2(B) dominant nanowires and testing the response to explosives. It was found that the high porous TiO2(B) nanowires when mixed anatase TiO2, exhibit a very fast and highly sensitive response to nitro-containing explosives. The second part of dissertation has studied the basic sensing mechanism of TiO2(B) nanowire sensor to detect explosives. It shows the specific surface characteristics of TiO2 responsible for the nitro-containing explosives. This information is then used to propose a method using UV illumination to reduce the effect of water vapor on TiO2(B) nanowires. The third part discussed an explosive sensor based on silicon nanowires. We analyzed the mechanism of silicon nanowires to detect nitro-related explosive compounds. In order to further investigate the sensing mechanism of TiO2, the fourth part of dissertation studies the effect on sensor performance by using different crystal phases of TiO2, different microstructure of TiO2, surface modification of TiO2, and different kinds of nanostructured semiconductors such as ZnO nanowires, TiO2 coated ZnO nanowires, V2O5 nanowires, and CdS nanowires to detect explosives. It is found that only TiO2 related semiconductor shows good response to explosives.

  18. Explosive Synchronization is Discontinuous

    E-print Network

    Vladimir Vlasov; Yong Zou; Tiago Pereira

    2014-11-25

    Spontaneous explosive is an abrupt transition to collective behavior taking place in heterogeneous networks when the frequencies of the nodes are positively correlated to the node degree. This explosive transition was conjectured to be discontinuous. Indeed, numerical investigations reveal a hysteresis behavior associated with the transition. Here, we analyze explosive synchronization in star graphs. We show that in the thermodynamic limit the transition to (and out) collective behavior is indeed discontinuous. The discontinuous nature of the transition is related to the nonlinear behavior of the order parameter, which in the thermodynamic limit exhibits multiple fixed points. Moreover, we unravel the hysteresis behavior in terms of the graph parameters. Our numerical results show that finite size graphs are well described by our predictions.

  19. Continuous steam explosion

    SciTech Connect

    Taylor, J.D.; Yu, E.K.C.

    1995-02-01

    StakeTech has focused on developing steam explosion on a commercial basis. The company essentially a biomass conversion company dealing with cellulosic biomass such as wood, crop residues and, more recently, wastepaper and municipal solid waste (MSW). They are faced with a tremendous opportunity to develop uses for the 50% of biomass that is currently wasted. The StakeTech steam explosion process is able to break the bonds using only high-pressure steam with no chemical additives. The continuous StakeTech System now has been installed in five countries and has proved effective in processing a wide variety of raw materials including wood chips, straw, sugarcane bagasse, and waste paper. End-use applications range from specialty chemicals to large-volume agricultural products. The increase of development activities in steam explosion should lead to expanded end-use applications, and acceptance of the technology by industry should accelerate in the years to come.

  20. ELECTROMAGNETIC FIELD EFFECTS IN EXPLOSIVES

    SciTech Connect

    Tasker, D. G.; Whitley, V. H.; Lee, R. J.

    2009-12-28

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: enhancement of performance; and control of initiation and growth of reaction. Two series of experiments were performed to determine the effects of 1-T magnetic fields on explosive initiation and growth in the modified gap test and on the propagation of explosively generated plasma into air. The results have implications for the control of reactions in explosives and for the use of electromagnetic particle velocity gauges.

  1. An explosion in Tunguska

    NASA Astrophysics Data System (ADS)

    Nistor, Ioan

    A detailed History of exploration of the place at Podkamennaya Tunguska, where a well known explosion has occured on 30 June 1908 is given with emphasys on the role by Leonid Kulik (1928-29). A short biography of Leonid Kulik is given. A review of subsequent expeditions is given. A review of existing theories concerning the explosion at Podkamennaya Tunguska on 30 June 1908 is given, including that of a meteor impact, asteroid impact, atomic explosion (F. Zigel and other), comet impact (V.G. Fesenkov and other). The theory sustained by author is that of a methan gas explosion initialazed by a meteor in a volume of about 0.25-2.5 billions m3 of methan. The shape of the place could be explained by few gaseous pouches, which could explode in a chain reaction. A review of similar explosions on the level of ground is given in the USSR as well as elsewhere. The soil fluidization is reviewed during earthquakes and similar phenomena. The original hypothesis by author was published in the "Lumea" N 41 magazin (Romania) on October 12 1989. The author disagree with atomic hypotesis enounced by F. Zigel, while the main factor of the explosion is the formation of one or few methan pouches above the soil. The programe of one of the most important international workshops (Tunguska 96 in Bologna on July 14-17) is attached. The site by Ioan Nistor gives a collection of informations about the event from elsewhere as well as the "gaseous pouches" hypothesis by the author.

  2. A real explosion: the requirement of steam explosion pretreatment.

    PubMed

    Yu, Zhengdao; Zhang, Bailiang; Yu, Fuqiang; Xu, Guizhuan; Song, Andong

    2012-10-01

    The severity factor is a common term used in steam explosion (SE) pretreatment that describes the combined effects of the temperature and duration of the pretreatment. However, it ignores the duration of the explosion process. This paper describes a new parameter, the explosion power density (EPD), which is independent of the severity factor. Furthermore, we present the adoption of a 5m(3) SE model for a catapult explosion mode, which completes the explosion within 0.0875 s. The explosion duration ratio of this model to a conventional model of the same volume is 1:123. The comparison between the two modes revealed a qualitative change by explosion speed, demonstrating that this real explosion satisfied the two requirements of consistency, and suggested a guiding mechanism for the design of SE devices. PMID:22858504

  3. Microcantilever detector for explosives

    DOEpatents

    Thundat, Thomas G. (Knoxville, TN)

    1999-01-01

    Methods and apparatus for detecting the presence of explosives by analyzing a vapor sample from the suspect vicinity utilize at least one microcantilever. Explosive gas molecules which have been adsorbed onto the microcantilever are subsequently heated to cause combustion. Heat, along with momentum transfer from combustion, causes bending and a transient resonance response of the microcantilever which may be detected by a laser diode which is focused on the microcantilever and a photodetector which detects deflection of the reflected laser beam caused by heat-induced deflection and resonance response of the microcantilever.

  4. Microcantilever detector for explosives

    DOEpatents

    Thundat, T.G.

    1999-06-29

    Methods and apparatus for detecting the presence of explosives by analyzing a vapor sample from the suspect vicinity utilize at least one microcantilever. Explosive gas molecules which have been adsorbed onto the microcantilever are subsequently heated to cause combustion. Heat, along with momentum transfer from combustion, causes bending and a transient resonance response of the microcantilever which may be detected by a laser diode which is focused on the microcantilever and a photodetector which detects deflection of the reflected laser beam caused by heat-induced deflection and resonance response of the microcantilever. 2 figs.

  5. BIOASSAY VESSEL FAILURE ANALYSIS

    SciTech Connect

    Vormelker, P

    2008-09-22

    Two high-pressure bioassay vessels failed at the Savannah River Site during a microwave heating process for biosample testing. Improper installation of the thermal shield in the first failure caused the vessel to burst during microwave heating. The second vessel failure is attributed to overpressurization during a test run. Vessel failure appeared to initiate in the mold parting line, the thinnest cross-section of the octagonal vessel. No material flaws were found in the vessel that would impair its structural performance. Content weight should be minimized to reduce operating temperature and pressure. Outer vessel life is dependent on actual temperature exposure. Since thermal aging of the vessels can be detrimental to their performance, it was recommended that the vessels be used for a limited number of cycles to be determined by additional testing.

  6. Modeling the Effects of Confinement during Cookoff of Explosives

    NASA Astrophysics Data System (ADS)

    Hobbs, Michael

    2013-06-01

    In practical scenarios, cookoff of explosives is a three-dimensional transient phenomenon where the rate limiting reactions may occur either in the condensed or gas phase. The effects of confinement are more dramatic when the rate-limiting reactions occur in the gas phase. Explosives can be self-confined, where the decomposing gases are contained within non-permeable regions of the explosive, or confined by a metal or composite container. Self-confinement is prevalent in plastic bonded explosives at full density. The time-to-ignition can be delayed by orders of magnitude if the reactive gases leave the confining apparatus. Delays in ignition can also occur when the confining apparatus has excess gas volume or ullage. Explosives with low melting points, such as trinitrotoluene (TNT) or cyclotrimethylenetrinitramine (RDX) are complex since melting and flow need to be considered when simulating cookoff. Cookoff of composite explosives such as Comp-B (mixture of TNT and RDX) are even more complex since dissolution of one component increases the reactivity of the other component. Understanding the effects of confinement is required to accurately model cookoff at various scales ranging from small laboratory experiments to large real systems that contain explosives. Sandia National Laboratories is managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... supersedes the List of Explosives Materials dated September 20, 2012 (Docket No. ATF 47N, 77 FR 58410... hydrocarbons. Explosive organic nitrate mixtures. Explosive powders. F Flash powder. ] Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating platinum. Fulminating silver....

  8. Explosion at Glyncorrwg Colliery, Glamorganshire 

    E-print Network

    Jones, T.A.

    MINISTRY OF FUEL AND POWER EXPLOSION AT GLYNCORRWG COLLIERY, GLAMORGANSHIRE REPORT On the causes of, and circumstances attending, the Explosion which occurred at Glyncorrwg Colliery, Glamorganshire, on 13th January, ...

  9. Explosion at Walton Colliery Yorkshire 

    E-print Network

    Rogers, T. A.

    MINISTRY OF POWER EXPLOSION AT WALTON COLLIERY YORKSHIRE REPORT On the causes of, and circumstances attending, the explosion which occurred at Walton Colliery, Yorkshire, on 22nd April, 1959 by T. A. ROGERS, C.B.E. H.M. ...

  10. Explosion at Cardowan Colliery Lanarkshire 

    E-print Network

    Houston, H. R.

    MINISTRY OF POWER EXPLOSION AT CARDOWAN COLLIERY LANARKSHIRE REPORT On the causes of, and circumstances attending, the explosion which occurred at Cardowan Colliery, Lanarkshire, on 25th July, 1960 BY H. R. HOUSTON, C.B.E ...

  11. Explosive inventory program

    SciTech Connect

    Lewis, L.A.; Taylor, R.S.

    1990-09-01

    This report describes the computer program used at the Tonopah Test Range to maintain the explosive inventory. The program, which uses dBASE III or dBASE III Plus and runs on an IBM PC or compatible, has the capabilities to update (add or subtract) items, edit or delete, append, and generate various reports.

  12. Naked Singularity Explosion

    E-print Network

    Tomohiro Harada; Hideo Iguchi; Ken-ichi Nakao

    2000-03-09

    It is known that the gravitational collapse of a dust ball results in naked singularity formation from an initial density profile which is physically reasonable. In this paper, we show that explosive radiation is emitted during the formation process of the naked singularity.

  13. Ecotoxicology of Explosives

    SciTech Connect

    Efroymson, Rebecca Ann; Giffen, Neil R; Morrill, Valerie; Jenkins, Thomas

    2009-04-01

    Managing sites contaminated with munitions constituents is an international challenge. Although the choice of approach and the use of Ecological Risk Assessment (ERA) tools may vary from country to country, the assurance of quality and the direction of ecotoxicological research are universally recognized as shared concerns. Drawing on a multidisciplinary team of contributors, 'Ecotoxicology of Explosives' provides comprehensive and critical reviews available to date on fate, transport, and effects of explosives. The book delineates the state of the science of the ecotoxicology of explosives, past, present, and recently developed. It reviews the accessible fate and ecotoxicological data for energetic materials (EMs) and the methods for their development. The chapters characterize the fate of explosives in the environment, then provide information on their ecological effects in key environmental media, including aquatic, sedimentary, and terrestrial habitats. The book also discusses approaches for assembling these lines of evidence for risk assessment purposes. The chapter authors have critically examined the peer-reviewed literature to identify and prioritize the knowledge gaps and to recommend future areas of research. The editors include a review of the genotoxic effects of the EMs and the cellular and molecular mechanisms underlying the toxicity of these chemicals. They also discuss the transport, transformation, and degradation pathways of these chemicals in the environment that underlie the potential hazardous impact and bioaccumulation of EMs in different terrestrial and aquatic ecological receptors. This information translates into practical applications for the environmental risk assessment of EM-contaminated sites and into recommendations for the sustainable use of defense installations.

  14. Managing the data explosion

    USGS Publications Warehouse

    Hooper, Richard P.; Aulenbach, Brent T.

    1993-01-01

    The 'data explosion' brought on by electronic sensors and automatic samplers can strain the capabilities of existing water-quality data-management systems just when they're needed most to process the information. The U.S. Geological Survey has responded to the problem by setting up an innovative system that allows rapid data analysis.

  15. Portable raman explosives detection

    SciTech Connect

    Moore, David Steven; Scharff, Robert J

    2008-01-01

    Recent advances in portable Raman instruments have dramatically increased their application to emergency response and forensics, as well as homeland defense. This paper reviews the relevant attributes and disadvantages of portable Raman spectroscopy, both essentially and instrumentally, to the task of explosives detection in the field.

  16. Crashing Waves, Awesome Explosions,

    E-print Network

    Varadarajan, Veeravalli S.

    's an exploding fire- ball in Star Wars: Episode 3 or a swirling maelstrom in Pirates of the Caribbean: At World in movie and video game special effects include water, fire, smoke, explosions, rigid body dynamics-based special effects for smoke, fire, water, and other fluids have become much more prevalent. The governing

  17. 75 FR 5545 - Explosives

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... Administration (OSHA); Labor. ACTION: Proposed rule; termination. SUMMARY: In this notice, OSHA is terminating... its Explosives and Blasting Agents Standard at 29 CFR 1910.109 (36 FR 10553-10562). OSHA based the... revisions to the standard (37 FR 6577, 57 FR 6356, and 63 FR 33450). On July 29, 2002, the Institute...

  18. Analysis of wave curvature experiments for monomodal explosives with different crystal quality and particle size characteristics

    SciTech Connect

    Sutherland, G. T.; Lemar, E. R.; Marcus, M. H.

    2007-12-12

    Wood-Kirkwood theory reaction zone thickness determinations and computer simulations of wave curvature experiments of two sets of explosives are presented. One set included explosives composed of RDX with different crystal quality characteristics. The other set of explosives was composed of monomodal explosives made from fine, coarse and very coarse sieved RDX and bimodal explosives made from combining the fine and very coarse RDX. The calculated reaction zone thickness was found to be greater for explosives with higher RDX crystal quality and for those of higher mean particle size. A simplified two-term ignition and growth reactive model parameterized by embedded gauge experiments was used in CTH hydrocode simulations of the wave curvature experiments for the explosives where crystal quality was varied. The simulations under-predicted the axial position lag seen in experiment and predicted as seen in experiment, that the explosive containing the higher quality crystals had a greater axial position lag.

  19. Big Explosives Experimental Facility - BEEF

    SciTech Connect

    2014-10-31

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  20. LSP EXPLOSIVE PACKAGES FRAGMENTATION STUDY

    E-print Network

    Rathbun, Julie A.

    ATM 1046 LSP EXPLOSIVE PACKAGES FRAGMENTATION STUDY Prepared by: ,11. 15. :n-~ G. B. Min Approved considerations the probability of fragments from an LSP explosive package striking the ALSEP Central Station Experiment requires that Explosive Charges be detonated on the luoar surface early in the ALSEP lunar mission

  1. Hand held explosives detection system

    DOEpatents

    Conrad, Frank J. (Albuquerque, NM)

    1992-01-01

    The present invention is directed to a sensitive hand-held explosives detection device capable of detecting the presence of extremely low quantities of high explosives molecules, and which is applicable to sampling vapors from personnel, baggage, cargo, etc., as part of an explosives detection system.

  2. Big Explosives Experimental Facility - BEEF

    ScienceCinema

    None

    2015-01-07

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  3. Probabilistic modeling of propagating explosions

    SciTech Connect

    Luck, L.B.; Eisenhawer, S.W.; Bott, T.F.

    1996-03-01

    Weapons containing significant quantities of high explosives (HE) are sometimes located in close proximity to one another. If an explosion occurs in a weapon, the possibility of propagation to one or more additional weapons may exist, with severe consequences possibly resulting. In the general case, a system of concern consists of multiple weapons and various other objects in a complex, three-dimensional geometry. In each weapon, HE is enclosed by (casing) materials that function as protection in the event of a neighbor detonation but become a source of fragments if the HE is initiated. The protection afforded by the casing means that only high-momentum fragments, which occur rarely, are of concern. These fragments, generated in an initial donor weapon are transported to other weapons either directly or by ricochet. Interaction of a fragment with an acceptor weapon can produce a reaction in the acceptor HE and result in a second detonation. In this paper we describe a comprehensive methodology to estimate the probability of various consequences for fragment-induced propagating detonations in arrays of weapons containing HE. Analysis of this problem requires an approach that can both define the circumstances under which rare events can occur and calculate the probability of such occurrences. Our approach is based on combining process tree methodology with Monte Carlo transport simulation. Our Monte Carlo technique very effectively captures important features of these differences. Process tree methodology is described and its use is discussed for a simplified problem and to illustrate the power of Monte Carlo simulation in estimating fragment-induced detonation of an acceptor weapon.

  4. Experimental investigation of external explosion in the venting process*

    PubMed Central

    Du, Zhi-min; Jin, Xin-qiao; Cui, Dong-ming; Ye, Jing-fang

    2005-01-01

    Experimental investigations were conducted on the process of combustion and explosion vent in a 200 mm (diameter)×400 mm (length) vertical cylindrical vessel. When CH4-air mixture gases were used and the vent diameter was 55 mm, conditions of ? (equivalent ratio)=0.8, ?=1.0 and ?=1.3 and two ignition positions (at the cylinder center and bottom) were selected. The venting processes and the correlated factors are discussed in this paper. PMID:15822147

  5. Plastic explosive RDX: Cyclotrimethylenetrinitramine. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-12-01

    The bibliography contains citations concerning the properties and handling of plastics explosive RDX. Production, decomposition, toxicology studies, and desensitizing techniques are discussed. RDX detection in munitions plant wastewater and air samples is described along with methods of eliminating this explosive from the effluent. Molecular dynamics, sensitivity to shock and heat, burning behavior, and explosion velocity are presented. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Plastic explosive RDX: Cyclotrimethylenetrinitramine. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-10-01

    The bibliography contains citations concerning the properties and handling of plastics explosive RDX. Production, decomposition, toxicology studies, and desensitizing techniques are discussed. RDX detection in munitions plant wastewater and air samples is described along with methods of eliminating this explosive from the effluent. Molecular dynamics, sensitivity to shock and heat, burning behavior, and explosion velocity are presented. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Neutrino Factory Target Vessel

    E-print Network

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept V. Graves Target Studies EVO May 1, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Concept 1 May 2012 Review ­ Two Target Vessel Ideas · Solid-Battelle for the U.S. Department of Energy Target Vessel Concept 1 May 2012 #12;4 Managed by UT-Battelle for the U

  8. Effect of Velocity of Detonation of Explosives on Seismic Radiation

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2014-12-01

    We studied seismic body wave generation from four fully contained explosions of approximately the same yields (68 kg of TNT equivalent) conducted in anisotropic granite in Barre, VT. The explosions were detonated using three types of explosives with different velocities of detonation (VOD): Black Powder (BP), Ammonium Nitrate Fuel Oil/Emulsion (ANFO), and Composition B (COMP B). The main objective of the experiment was to study differences in seismic wave generation among different types of explosives, and to determine the mechanism responsible for these differences. The explosives with slow burn rate (BP) produced lower P-wave amplitude and lower corner frequency, which resulted in lower seismic efficiency (0.35%) in comparison with high burn rate explosives (2.2% for ANFO and 3% for COMP B). The seismic efficiency estimates for ANFO and COMP B agree with previous studies for nuclear explosions in granite. The body wave radiation pattern is consistent with an isotropic explosion with an added azimuthal component caused by vertical tensile fractures oriented along pre-existing micro-fracturing in the granite, although the complexities in the P- and S-wave radiation patterns suggest that more than one fracture orientation could be responsible for their generation. High S/P amplitude ratios and low P-wave amplitudes suggest that a significant fraction of the BP source mechanism can be explained by opening of the tensile fractures as a result of the slow energy release.

  9. Neutrino Factory Target Vessel

    E-print Network

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept Update V. Graves T. Lessard Target Studies EVO June 26, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Update 26 June 2012 of Energy Target Vessel Update 26 June 2012 Review - Mercury Module Extraction #12;4 Managed by UT

  10. Neutrino Factory Target Vessel

    E-print Network

    McDonald, Kirk

    Neutrino Factory Target Vessel Concept Update V. Graves Target Studies EVO June 12, 2012 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Update 12 June 2012 Review ­ IPAC #12;3 Managed by UT-Battelle for the U.S. Department of Energy Target Vessel Update 12 June 2012 Inner

  11. Thermal analysis of PWR vessel failure due to debris/vessel interaction

    SciTech Connect

    Yang, J.W.

    1981-01-01

    The modified model represents a more realistic approach and predicts a longer time to vessel breach. External vessel cooling could help to maintain the integrity of the lower head, but the melting of the upper internal structure may cause massive collapse of these structures into the core debris in the lower head. More experiments on molten pools containing frozen particles in hemispheric containers are needed to improve the analytical model.

  12. NO FISHING REPORTING FORM Vessel ID. NO. Vessel Name

    E-print Network

    NO FISHING REPORTING FORM Vessel ID. NO. Vessel Name: During the entire month of , year this vessel fishery if your vessel does not have a permit for it > Use Black Ink NMFS Use Only: Opened: Atlantic King Mackerel Spanish Mackerel Schedule # NO FISHING REPORTING FORM Vessel ID. NO. Vessel Name: During

  13. Large-scale dust explosion experiments to determine the effects of scaling on explosion parameters. [Coal dusts and cornstarch

    SciTech Connect

    Kumar, R.K.; Bowles, E.M. ); Mintz, K.J. )

    1992-06-01

    This paper reports on experiments performed in a 1.5-m-diameter, 5.7-m-high (volume, 10.3 m{sup 3}) cylindrical vessel with cornstarch and coal dusts for comparison with explosion parameters in smaller vessels. The maximum explosion pressures for cornstarch and coal dusts were found to be in reasonably agreement with those reported for smaller vessels. The usual method of size-normalizing the rate of pressure rise through the cube root of the volume does not appear to be applicable to high aspect ratio cylinders; the length of the cylinder was used for this purpose. The results thus obtained were in reasonable agreement with those available in literature for cornstarch, but too high for coal dust. The effect of fan-induced turbulence was found to be small on explosion pressure, but substantial on the rate of pressure rise. The burning velocities calculated from the measured flame speeds were of the order of 0.3 m/s for both cornstarch and coal dusts, with no significant dependence on concentration.

  14. Super eruption environments make for "super" hydrothermal explosions: Extreme hydrothermal explosions in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Morgan, L. A.; Shanks, W. P.; Pierce, K. L.

    2006-12-01

    Hydrothermal explosions are violent events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments over areas that range from a few meters in diameter up to several kilometers in diameter. Hydrothermal explosions occur where shallow interconnected reservoirs of steam-saturated fluids underlie thermal fields. Sudden reduction in pressure causes the fluids to flash to steam resulting in significant expansion, rock fragmentation, and debris ejection. In Yellowstone, at least 20 large (>100 meters in diameter) hydrothermal explosions have been identified, and the scale of the individual events dwarfs similar features in other hydrothermal and geothermal areas of the world. Large explosions in Yellowstone have occurred over the past 16 ka at an interval of ~1 per every 700 yrs and similar events are likely to occur in the future. Our studies of hydrothermal explosive events indicate: 1) none are associated with magmatic or volcanic events; 2) several have been triggered by seismic events coupled with other processes; 3) lithic clasts and matrix from explosion deposits are extensively altered, indicating long-term, extensive hydrothermal mineralization in areas that were incorporated into the explosion deposit; 4) many lithic clasts in explosion breccia deposits contain evidence of repeated fracturing and cementation; and 4) dimensions of many documented large hydrothermal explosion craters in Yellowstone are similar to the dimensions of currently active geyser basins or thermal areas in Yellowstone. The vast majority of active thermal areas in Yellowstone are characterized by 1) high-temperature hot-water systems in areas of high heat-flow, 2) extensive systems of hot springs, fumaroles, geysers, sinter terraces, mud pots, and, in places, small hydrothermal explosion craters, 3) widespread alteration of host rocks, 4) large areal dimensions (>several 100 m) and 5) intermittent but long-lived activity (40,000 to 300,000 years). Critical requirements for large hydrothermal explosions are an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow and a water-saturated system close to or at boiling temperatures. Important factors are the active deformation of the Yellowstone caldera, active faults and moderate seismicity, high heat flow, climate changes, and regional stresses. Ascending fluids flow along fractures that develop in response to active deformation of the Yellowstone caldera and along edges of impermeable rhyolitic lava flows. Alteration, self sealing, and dissolution further constrain the distribution and development of hydrothermal fields. A partial impermeable cap can contribute to the final over-pressurization. An abrupt drop in pressure initiates steam-flashing and is instantly transmitted through interconnected fractures, resulting in a series of multiple large-scale explosions and excavation of an explosion crater. Strong similarities between large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic failures leading to large hydrothermal explosions represent a unique phase in the life cycle of a geyser basin.

  15. Explosive bulk charge

    DOEpatents

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  16. Designing for explosive safety'': The Explosive Components Facility at Sandia National Laboratories

    SciTech Connect

    Couch, W.A.

    1990-12-01

    The Explosive Components Facility (ECF) is to be a new major facility in the Sandia National Laboratories (SNL) Weapons Program. The ECF is a self-contained, secure site on SNL property and is surrounded by Kirtland Air Force Base which is located 6-1/2 miles east of downtown Albuquerque, New Mexico. The ECF will be dedicated to research, development, and testing of detonators, neutron generators, batteries, explosives, and other weapon components. It will have capabilities for conducting explosive test fires, gas gun testing, physical analyses, chemical analyses, electrical testing and ancillary explosive storage in magazines. The ECF complex is composed of a building covering an area of approximately 91,000 square feet, six exterior explosive service magazines and a remote test cell. Approximately 50% of the building space will be devoted to highly specialized laboratory and test areas, the other 50% of the building is considered nonhazardous. Critical to the laboratory and test areas are the blast-structural design consideration and operational considerations, particularly those concerning personnel access control, safety and environmental protection. This area will be decoupled from the rest of the building to the extent that routine tests will not be heard or felt in the administrative area of the building. While the ECF is designed in accordance with the DOE Explosives Safety Manual to mitigate any off-site blast effects, potential injuries or death to the ECF staff may result from an accidental detonation of explosive material within the facility. Therefore, reducing the risk of exposing operation personnel to hazardous and energetic material is paramount in the design of the ECF.

  17. Prediction of the explosion effect of aluminized explosives

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Xiang, Cong; Liang, HuiMin

    2013-05-01

    We present an approach to predict the explosion load for aluminized explosives using a numerical calculation. A code to calculate the species of detonation products of high energy ingredients and those of the secondary reaction of aluminum and the detonation products, velocity of detonation, pressure, temperature and JWL parameters of aluminized explosives has been developed in this study. Through numerical calculations carried out with this code, the predicted JWL parameters for aluminized explosives have been compared with those measured by the cylinder test. The predicted JWL parameters with this code agree with those measured by the cylinder test. Furthermore, the load of explosion for the aluminized explosive was calculated using the numerical simulation by using the JWL equation of state. The loads of explosion for the aluminized explosive obtained using the predicted JWL parameters have been compared with those using the measured JWL parameters. Both of them are almost the same. The numerical results using the predicted JWL parameters show that the explosion air shock wave is the strongest when the mass fraction of aluminum powder in the explosive mixtures is 30%. This result agrees with the empirical data.

  18. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineers Boiler and Pressure Vessel Code, Section VIII, Rules for Construction of Unfired Pressure Vessels... 29 Labor 7 2010-07-01 2010-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's...

  19. Structural Analysis of the NCSX Vacuum Vessel

    SciTech Connect

    Fred Dahlgren; Art Brooks; Paul Goranson; Mike Cole; Peter Titus

    2004-09-28

    The NCSX (National Compact Stellarator Experiment) vacuum vessel has a rather unique shape being very closely coupled topologically to the three-fold stellarator symmetry of the plasma it contains. This shape does not permit the use of the common forms of pressure vessel analysis and necessitates the reliance on finite element analysis. The current paper describes the NCSX vacuum vessel stress analysis including external pressure, thermal, and electro-magnetic loading from internal plasma disruptions and bakeout temperatures of up to 400 degrees centigrade. Buckling and dynamic loading conditions are also considered.

  20. Explosives Classifications Tracking System User Manual

    SciTech Connect

    Genoni, R.P.

    1993-10-01

    The Explosives Classification Tracking System (ECTS) presents information and data for U.S. Department of Energy (DOE) explosives classifications of interest to EM-561, Transportation Management Division, other DOE facilities, and contractors. It is intended to be useful to the scientist, engineer, and transportation professional, who needs to classify or transport explosives. This release of the ECTS reflects upgrading of the software which provides the user with an environment that makes comprehensive retrieval of explosives related information quick and easy. Quarterly updates will be provided to the ECTS throughout its development in FY 1993 and thereafter. The ECTS is a stand alone, single user system that contains unclassified, publicly available information, and administrative information (contractor names, product descriptions, transmittal dates, EX-Numbers, etc.) information from many sources for non-decisional engineering and shipping activities. The data is the most up-to-date and accurate available to the knowledge of the system developer. The system is designed to permit easy revision and updating as new information and data become available. These, additions and corrections are welcomed by the developer. This user manual is intended to help the user install, understand, and operate the system so that the desired information may be readily obtained, reviewed, and reported.

  1. New Dark Matter Detector using Nanoscale Explosives

    E-print Network

    Lopez, Alejandro; Freese, Katherine; Kurdak, Cagliyan; Tarle, Gregory

    2014-01-01

    We present nanoscale explosives as a novel type of dark matter detector and study the ignition properties. When a Weakly Interacting Massive Particle WIMP from the Galactic Halo elastically scatters off of a nucleus in the detector, the small amount of energy deposited can trigger an explosion. For specificity, this paper focuses on a type of two-component explosive known as a nanothermite, consisting of a metal and an oxide in close proximity. When the two components interact they undergo a rapid exothermic reaction --- an explosion. As a specific example, we consider metal nanoparticles of 5 nm radius embedded in an oxide. One cell contains more than a few million nanoparticles, and a large number of cells adds up to a total of 1 kg detector mass. A WIMP interacts with a metal nucleus of the nanoparticles, depositing enough energy to initiate a reaction at the interface between the two layers. When one nanoparticle explodes it initiates a chain reaction throughout the cell. A number of possible thermite mat...

  2. Dust cluster explosion

    SciTech Connect

    Saxena, Vikrant; Avinash, K.; Sen, A.

    2012-09-15

    A model for the dust cluster explosion where micron/sub-micron sized particles are accelerated at the expense of plasma thermal energy, in the afterglow phase of a complex plasma discharge is proposed. The model is tested by molecular dynamics simulations of dust particles in a confining potential. The nature of the explosion (caused by switching off the discharge) and the concomitant dust acceleration is found to depend critically on the pressure of the background neutral gas. At low gas pressure, the explosion is due to unshielded Coulomb repulsion between dust particles and yields maximum acceleration, while in the high pressure regime it is due to shielded Yukawa repulsion and yields much feebler acceleration. These results are in agreement with experimental findings. Our simulations also confirm a recently proposed electrostatic (ES) isothermal scaling relation, P{sub E}{proportional_to}V{sub d}{sup -2} (where P{sub E} is the ES pressure of the dust particles and V{sub d} is the confining volume).

  3. Explosive Welding of Pipes

    NASA Astrophysics Data System (ADS)

    Burtseva, Olga

    2007-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler. Reduction of pipe diameter after dynamic loading and explosive welding was ˜2%.

  4. Explosive Welding of Pipes

    NASA Astrophysics Data System (ADS)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  5. Containment system for supercritical water oxidation reactor

    DOEpatents

    Chastagner, Philippe (3134 Natalie Cir., Augusta, GA 30909-2748)

    1994-01-01

    A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

  6. Containment system for supercritical water oxidation reactor

    DOEpatents

    Chastagner, P.

    1994-07-05

    A system is described for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary. 2 figures.

  7. Infrared spectrometry and radiometry of high-explosive detonations: the Los Alamos experiments

    SciTech Connect

    Rogers, E H; Williams, R L; Frazier, E N; Stone, D K; Herr, K C; Young, R M; Robbins, R G

    1982-11-01

    The purpose of these experiments was to determine whether the infrared spectra of high-explosive detonations can be used to infer the type of explosive material and/or the containment material employed. Infrared spectra and radiometric traces were measured during a test series of twenty-three detonations; some were contained and some uncontained. A variety of high-explosive materials and containment materials were included. The explosive charge was typically about 175 g. Infrared spectra were taken at the rate of 250 spectra/sec. This rate was too slow to characterize the very early gas expansion or burn pase of these explosions. The infrared spectra of the delayed or afterburn phase of these explosions often displayed molecular emission and absorption features. Absorption by NH/sub 3/ was observed when C-4 was the high-explosive material, and not observed for any other material. Emissions from H/sub 2/O and CO/sub 2/ were observed part of the time. Their occurence does not seem to be correlated with the type of containment or type of high-explosive material, or peak temperature reached in the afterburn. From the radiometric traces, one concludes that the relative peak radiance from the burn and afterburn phases depend strongly on the type of high-explosive material. For similar devices the burn phase is consistent from shot to shot, whereas the afterburn is very inconsistent. The answer to the question whether infrared spectra of high-explosive detonations can be used to infer the type of explosive material and/or the containment material must await spectral observations of the burn phase. We now believe that spectra of the burn phase are likely to be the ones most useful in identifying the high-explosive or containment material.

  8. 14 CFR 437.57 - Operating area containment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... containment. (a) During each permitted flight, a permittee must contain its reusable suborbital rocket's..., railway traffic, or waterborne vessel traffic. (c) The FAA may prohibit a reusable suborbital...

  9. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  10. Towards an Empirically Based Parametric Explosion Spectral Model

    SciTech Connect

    Ford, S R; Walter, W R; Ruppert, S; Matzel, E; Hauk, T; Gok, R

    2009-08-31

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before been tested. The focus of our work is on the local and regional distances (< 2000 km) and phases (Pn, Pg, Sn, Lg) necessary to see small explosions. We are developing a parametric model of the nuclear explosion seismic source spectrum that is compatible with the earthquake-based geometrical spreading and attenuation models developed using the Magnitude Distance Amplitude Correction (MDAC) techniques (Walter and Taylor, 2002). The explosion parametric model will be particularly important in regions without any prior explosion data for calibration. The model is being developed using the available body of seismic data at local and regional distances for past nuclear explosions at foreign and domestic test sites. Parametric modeling is a simple and practical approach for widespread monitoring applications, prior to the capability to carry out fully deterministic modeling. The achievable goal of our parametric model development is to be able to predict observed local and regional distance seismic amplitudes for event identification and yield determination in regions with incomplete or no prior history of underground nuclear testing. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  11. Direct real-time detection of vapors from explosive compounds.

    PubMed

    Ewing, Robert G; Clowers, Brian H; Atkinson, David A

    2013-11-19

    The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX, and nitroglycerine along with various compositions containing these substances was demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a nonradioactive ionization source coupled to a mass spectrometer. Direct vapor detection was accomplished in less than 5 s at ambient temperature without sample preconcentration. The several seconds of residence time of analytes in the AFT provided a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ions (NO3(-) and NO3(-)·HNO3), enabled highly sensitive explosives detection from explosive vapors present in ambient laboratory air. Observed signals from diluted explosive vapors indicated detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284, and 289 for tetryl, PETN, RDX, and NG, respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations sampled in ambient laboratory air, including double base propellants, plastic explosives, and commercial blasting explosives using SIM for the NG, PETN, and RDX product ions. PMID:24090362

  12. Low voltage nonprimary explosive detonator

    DOEpatents

    Dinegar, Robert H. (Los Alamos, NM); Kirkham, John (Newbury, GB2)

    1982-01-01

    A low voltage, electrically actuated, nonprimary explosive detonator is disclosed wherein said detonation is achieved by means of an explosive train in which a deflagration-to-detonation transition is made to occur. The explosive train is confined within a cylindrical body and positioned adjacent to low voltage ignition means have electrical leads extending outwardly from the cylindrical confining body. Application of a low voltage current to the electrical leads ignites a self-sustained deflagration in a donor portion of the explosive train which then is made to undergo a transition to detonation further down the train.

  13. Simplified explosive-weld evaluation

    NASA Technical Reports Server (NTRS)

    Mclarty, D. M.

    1976-01-01

    Weld surfaces, coated with commercially available molybdenum disulfide, allow visual inspection of significant indications of bond quality. Process reduces number of trial welds, making explosive bonding more competitive.

  14. Explosive scabbling of structural materials

    DOEpatents

    Bickes, Jr., Robert W. (Albuquerque, NM); Bonzon, Lloyd L. (Albuquerque, NM)

    2002-01-01

    A new approach to scabbling of surfaces of structural materials is disclosed. A layer of mildly energetic explosive composition is applied to the surface to be scabbled. The explosive composition is then detonated, rubbleizing the surface. Explosive compositions used must sustain a detonation front along the surface to which it is applied and conform closely to the surface being scabbled. Suitable explosive compositions exist which are stable under handling, easy to apply, easy to transport, have limited toxicity, and can be reliably detonated using conventional techniques.

  15. Towards optoelectronic detection of explosives

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Stacewicz, T.; Bielecki, Z.; Rutecka, B.; Medrzycki, R.; Mikolajczyk, J.

    2013-06-01

    Detection of explosives is an important challenge for contemporary science and technology of security systems. We present an application of NOx sensors equipped with concentrator in searching of explosives. The sensors using CRDS with blue — violet diode lasers (410 nm) as well as with QCL lasers (5.26 ?m and 4.53 ?m) are described. The detection method is based either on reaction of the sensors to the nitrogen oxides emitted by explosives or to NOx produced during thermal decomposition of explosive vapours. For TNT, PETN, RDX, and HMX the detection limit better than 1 ng has been achieved.

  16. NCSX Vacuum Vessel Fabrication

    SciTech Connect

    Viola, M. E.; Brown, T.; Heitzenroeder, P.; Malinowski, F.; Reiersen, W.; Sutton, L.; Goranson, P.; Nelson, B.; Cole, M.; Manuel, M.; McCorkle, D.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120º vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1" of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120º vessel segments are formed by welding two 60º segments together. Each 60º segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8" (20.3 cm) wide spacer "spool pieces." The vessel must have a total leak rate less than 5 X 10-6 t-l/s, magnetic permeability less than 1.02?, and its contours must be within 0.188" (4.76 mm). It is scheduled for completion in January 2006.

  17. Internal Detonation Velocity Measurements Inside High Explosives

    SciTech Connect

    Benterou, J; Bennett, C V; Cole, G; Hare, D E; May, C; Udd, E

    2009-01-16

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation models and detonation models of high explosives, the ability to continuously measure the detonation velocity within an explosive is required. Progress on an embedded velocity diagnostic using a 125 micron diameter optical fiber containing a chirped fiber Bragg grating is reported. As the chirped fiber Bragg grating is consumed by the moving detonation wave, the physical length of the unconsumed Bragg grating is monitored with a fast InGaAs photodiode. Experimental details of the associated equipment and data in the form of continuous detonation velocity records within PBX-9502 are presented. This small diameter fiber sensor has the potential to measure internal detonation velocities on the order of 10 mm/{micro}sec along path lengths tens of millimeters long.

  18. Shipping container for fissile material

    DOEpatents

    Crowder, H.E.

    1984-12-17

    The present invention is directed to a shipping container for the interstate transportation of enriched uranium materials. The shipping container is comprised of a rigid, high-strength, cylindrical-shaped outer vessel lined with thermal insulation. Disposed inside the thermal insulation and spaced apart from the inner walls of the outer vessel is a rigid, high-strength, cylindrical inner vessel impervious to liquid and gaseous substances and having the inner surfaces coated with a layer of cadmium to prevent nuclear criticality. The cadmium is, in turn, lined with a protective shield of high-density urethane for corrosion and wear protection. 2 figs.

  19. Introduction Explosions in evolution problems Numerical approximations Adaptive numerical scheme Stochastic Differential Equations with explosions

    E-print Network

    Groisman, Pablo

    Introduction Explosions in evolution problems Numerical approximations Adaptive numerical scheme Stochastic Differential Equations with explosions Pablo Groisman University of Buenos Aires Joint work with J Stochastic Differential Equations with explosions #12;Introduction Explosions in evolution problems Numerical

  20. Flexible Composite-Material Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  1. Radon free storage container and method

    SciTech Connect

    Langner, Jr., G. Harold; Rangel, Mark J.

    1991-01-01

    A radon free containment environment for either short or long term storage of radon gas detectors can be provided as active, passive, or combined active and passive embodiments. A passive embodiment includes a resealable vessel containing a basket capable of holding and storing detectors and an activated charcoal adsorbing liner between the basket and the containment vessel wall. An active embodiment includes the resealable vessel of the passive embodiment, and also includes an external activated charcoal filter that circulates the gas inside the vessel through the activated charcoal filter. An embodiment combining the active and passive embodiments is also provided.

  2. Los Alamos Explosives Performance Key to Stockpile Stewardship

    SciTech Connect

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  3. On-site Analysis of Explosives in Various Matrices

    SciTech Connect

    Reynolds, J G; Nunes, P; Whipple, R E; Alcaraz, A

    2006-01-25

    Lawrence Livermore National Laboratory (LLNL) has developed several different strategies and technologies for the on-site detection of explosives. These on-site detection techniques include a colorimetric test, thin layer chromatography (TLC) kit and portable gas chromatography mass spectrometer (GC/MS). The screening of suspicious containers on-site and the search for trace explosive residue in a post-blast forensic investigation are of great importance. For these reasons, LLNL's Forensic Science Center has developed a variety of fieldable detection technologies to screen for a wide range of explosives in various matrices and scenarios. Ideally, what is needed is a fast, accurate, easy-to-use, pocket-size and inexpensive field screening test for explosives.

  4. Fragment Impact Characterisation of Melt-Cast and PBX Explosives

    NASA Astrophysics Data System (ADS)

    Cook, Malcolm D.; Haskins, Peter J.; Briggs, Richard I.; Stennett, Chris; Fellows, Justin; Cheese, Philip J.; DERA Team

    2001-06-01

    In this paper we report new experimental results on the shock to detonation transition characteristics of the melt-cast explosive RDX/TNT 60:40, and two PBX explosives, one containing RDX, and the other HMX, with HTPB as the binder in both cases. These experiments employed right-regular cylindrical steel projectiles impacting charges covered by either steel or aluminium barrier plates. Response curves were generated giving the threshold impact velocity for prompt shock initiation as a function of barrier thickness. The results of these experiments showed some general trends. Firstly, the melt-cast explosive was generally more shock sensitive than the PBX formulations. The PBX compositions showed similar shock sensitivities; despite the RDX based material having a higher percentage of nitramine (88compared to the HMX material (85appeared to have at least one discontinuity. For the melt-cast explosive this appeared at thicker barriers than for the PBX formulations. The result

  5. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema

    Dattelbaum, Dana

    2015-01-05

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  6. Ultrafast laser based coherent control methods for explosives detection

    SciTech Connect

    Moore, David Steven

    2010-12-06

    The detection of explosives is a notoriously difficult problem, especially at stand-off, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring Optimal Dynamic Detection of Explosives (ODD-Ex), which exploits the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity to explosives signatures while dramatically improving specificity, particularly against matrix materials and background interferences. These goals are being addressed by operating in an optimal non-linear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe subpulses. Recent results will be presented.

  7. High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.

    2014-05-01

    High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.

  8. Controlled by Distant Explosions

    NASA Astrophysics Data System (ADS)

    2007-03-01

    VLT Automatically Takes Detailed Spectra of Gamma-Ray Burst Afterglows Only Minutes After Discovery A time-series of high-resolution spectra in the optical and ultraviolet has twice been obtained just a few minutes after the detection of a gamma-ray bust explosion in a distant galaxy. The international team of astronomers responsible for these observations derived new conclusive evidence about the nature of the surroundings of these powerful explosions linked to the death of massive stars. At 11:08 pm on 17 April 2006, an alarm rang in the Control Room of ESO's Very Large Telescope on Paranal, Chile. Fortunately, it did not announce any catastrophe on the mountain, nor with one of the world's largest telescopes. Instead, it signalled the doom of a massive star, 9.3 billion light-years away, whose final scream of agony - a powerful burst of gamma rays - had been recorded by the Swift satellite only two minutes earlier. The alarm was triggered by the activation of the VLT Rapid Response Mode, a novel system that allows for robotic observations without any human intervention, except for the alignment of the spectrograph slit. ESO PR Photo 17a/07 ESO PR Photo 17a/07 Triggered by an Explosion Starting less than 10 minutes after the Swift detection, a series of spectra of increasing integration times (3, 5, 10, 20, 40 and 80 minutes) were taken with the Ultraviolet and Visual Echelle Spectrograph (UVES), mounted on Kueyen, the second Unit Telescope of the VLT. "With the Rapid Response Mode, the VLT is directly controlled by a distant explosion," said ESO astronomer Paul Vreeswijk, who requested the observations and is lead-author of the paper reporting the results. "All I really had to do, once I was informed of the gamma-ray burst detection, was to phone the staff astronomers at the Paranal Observatory, Stefano Bagnulo and Stan Stefl, to check that everything was fine." The first spectrum of this time series was the quickest ever taken of a gamma-ray burst afterglow, let alone with an instrument such as UVES, which is capable of splitting the afterglow light with uttermost precision. What is more, this amazing record was broken less than two months later by the same team. On 7 June 2006, the Rapid-Response Mode triggered UVES observations of the afterglow of an even more distant gamma-ray source a mere 7.5 minutes after its detection by the Swift satellite. Gamma-ray bursts are the most intense explosions in the Universe. They are also very brief. They randomly occur in galaxies in the distant Universe and, after the energetic gamma-ray emission has ceased, they radiate an afterglow flux at longer wavelengths (i.e. lower energies). They are classified as long and short bursts according to their duration and burst energetics, but hybrid bursts have also been discovered (see ESO PR 49/06). The scientific community agrees that gamma-ray bursts are associated with the formation of black holes, but the exact nature of the bursts remains enigmatic. ESO PR Photo 17b/07 ESO PR Photo 17b/07 Kueyen at Night Because a gamma-ray burst typically occurs at very large distances, its optical afterglow is faint. In addition, it fades very rapidly: in only a few hours the optical afterglow brightness can fade by as much as a factor of 500. This makes detailed spectral analysis possible only for a few hours after the gamma-ray detection, even with large telescopes. During the first minutes and hours after the explosion, there is also the important opportunity to observe time-dependent phenomena related to the influence of the explosion on its surroundings. The technical challenge therefore consists of obtaining high-resolution spectroscopy with 8-10 m class telescopes as quickly as possible. "The afterglow spectra provide a wealth of information about the composition of the interstellar medium of the galaxy in which the star exploded. Some of us even hoped to characterize the gas in the vicinity of the explosion," said team member Cédric Ledoux (ESO). ESO PR Photo 17c/07 ESO PR Photo 17c/07 The Kueyen Control Room

  9. Laser machining of explosives

    DOEpatents

    Perry, Michael D. (Livermore, CA); Stuart, Brent C. (Fremont, CA); Banks, Paul S. (Livermore, CA); Myers, Booth R. (Livermore, CA); Sefcik, Joseph A. (Tracy, CA)

    2000-01-01

    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  10. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  11. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2007-02-20

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  12. Ion transport membrane module and vessel system

    DOEpatents

    Stein, VanEric Edward (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Chen, Christopher M. (Allentown, PA); Armstrong, Phillip Andrew (Orefield, PA); Wahle, Harold W. (North Canton, OH); Ohrn, Theodore R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Rackers, Keith Gerard (Louisville, OH); Blake, James Erik (Uniontown, OH); Nataraj, Shankar (Allentown, PA); Van Doorn, Rene Hendrik Elias (Obersulm-Willsbach, DE); Wilson, Merrill Anderson (West Jordan, UT)

    2012-02-14

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  13. Explosive components facility certification tests

    SciTech Connect

    Dorrell, L.; Johnson, D.

    1995-08-01

    Sandia National Laboratories has recently completed construction of a new Explosive Components Facility (ECF) that will be used for the research and development of advanced explosives technology. The ECF includes nine indoor firing pads for detonating explosives and monitoring the detonations. Department of Energy requirements for certification of this facility include detonation of explosive levels up to 125 percent of the rated firing pad capacity with no visual structural degradation resulting from the explosion. The Explosives Projects and Diagnostics Department at Sandia decided to expand this certification process to include vibration and acoustic monitoring at various locations throughout the building during these explosive events. This information could then be used to help determine the best locations for noise and vibration sensitive equipment (e.g. scanning electron microscopes) used for analysis throughout the building. This facility has many unique isolation features built into the explosive chamber and laboratory areas of the building that allow normal operation of other building activities during explosive tests. This paper discusses the design of this facility and the various types of explosive testing performed by the Explosives Projects and Diagnostics Department at Sandia. However, the primary focus of the paper is directed at the vibration and acoustic data acquired during the certification process. This includes the vibration test setup and data acquisition parameters, as well as analysis methods used for generating peak acceleration levels and spectral information. Concerns over instrumentation issues such as the choice of transducers (appropriate ranges, resonant frequencies, etc.) and measurements with long cable lengths (500 feet) are also discussed.

  14. 49 CFR 176.76 - Transport vehicles, freight containers, and portable tanks containing hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...portable tanks containing hazardous materials. 176.76 Section 176.76 ...Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL...

  15. 49 CFR 176.76 - Transport vehicles, freight containers, and portable tanks containing hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...portable tanks containing hazardous materials. 176.76 Section 176.76 ...Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL...

  16. Green primary explosives: 5-Nitrotetrazolato-N2-ferrate hierarchies

    PubMed Central

    Huynh, My Hang V.; Coburn, Michael D.; Meyer, Thomas J.; Wetzler, Modi

    2006-01-01

    The sensitive explosives used in initiating devices like primers and detonators are called primary explosives. Successful detonations of secondary explosives are accomplished by suitable sources of initiation energy that is transmitted directly from the primaries or through secondary explosive boosters. Reliable initiating mechanisms are available in numerous forms of primers and detonators depending upon the nature of the secondary explosives. The technology of initiation devices used for military and civilian purposes continues to expand owing to variations in initiating method, chemical composition, quantity, sensitivity, explosive performance, and other necessary built-in mechanisms. Although the most widely used primaries contain toxic lead azide and lead styphnate, mixtures of thermally unstable primaries, like diazodinitrophenol and tetracene, or poisonous agents, like antimony sulfide and barium nitrate, are also used. Novel environmentally friendly primary explosives are expanded here to include cat[FeII(NT)3(H2O)3], cat2[FeII(NT)4(H2O)2], cat3[FeII(NT)5(H2O)], and cat4[FeII(NT)6] with cat = cation and NT? = 5-nitrotetrazolato-N2. With available alkaline, alkaline earth, and organic cations as partners, four series of 5-nitrotetrazolato-N2-ferrate hierarchies have been prepared that provide a plethora of green primaries with diverse initiating sensitivity and explosive performance. They hold great promise for replacing not only toxic lead primaries but also thermally unstable primaries and poisonous agents. Strategies are also described for the systematic preparation of coordination complex green primaries based on appropriate selection of ligands, metals, and synthetic procedures. These strategies allow for maximum versatility in initiating sensitivity and explosive performance while retaining properties required for green primaries. PMID:16803957

  17. Fatigue of LX-14 and LX-19 plastic bonded explosives

    SciTech Connect

    Hoffman, D. M., LLNL

    1998-04-23

    The DOD uses the plastic bonded explosive (PBX) LX-14 in a wide variety of applications including shaped charges and explosively forged projectiles. LX- 19 is a higher energy explosive, which could be easily substituted for LX-14 because it contains the identical Estane 5703p binder and more energetic CL-20 explosive. Delivery systems for large shaped charges, such as TOW-2, include the Apache helicopter. Loads associated with vibrations and expansion from thermal excursions in field operations may, even at low levels over long time periods, cause flaws, already present in the PBX to grow. Flaws near the explosive/liner interface of a shaped charge can reduce performance. Small flaws in explosives are one mechanism (the hot spot mechanism) proposed for initiation and growth to detonation of PBXs like LX-14, PBXN 5, LX-04 and LX-17 among others. Unlike cast-cured explosives and propellants, PBXs cannot usually be compression molded to full density. Generally, the amount of explosive ignited by a shock wave is approximately equal to the original void volume. Whether or not these flaws or cracks grow during field operations to an extent sufficient to adversely affect the shaped charge performance or increase the vulnerability of the PBX is the ultimate question this effort could address. Currently the fatigue life of LX-14 under controlled conditions is being studied in order to generate its failure stress as a function of the number of fatigue cycles (S- N curve). Proposed future work will address flaw and crack growth and their relationship to hot-spot concentration and explosive vulnerability to shock and/or fragment initiation.

  18. Development of a non-propagating explosives storage cabinet

    SciTech Connect

    Couch, W.A. ); Schneider, B.A. . Engineering Research Inst.)

    1991-08-01

    Sandia National Laboratories, Albuquerque (SNL) has completed the design of an Explosive Components Facility (ECF). Construction of the ECF is scheduled to begin in 1992 with completion in 1995. An integral part of the ECF will be on-site storage of explosives in six earth-covered service magazines. Each magazine will contain a non-propagating Explosives Storage Cabinet (ESC) system made up to twenty modular units. In addition to the secure storage of explosives, a primary purpose of the cabinet system is to prevent a sympathetic detonation of the explosives stored in the surrounding units as a result of an accidental detonation of up to 5.0 pounds of explosives (TNT equivalent) stored in a donor'' unit in the cabinet. Therefore, the maximum creditable event'' for each service magazine is 5.0 pounds, even though each magazine could contain up to 100 pounds of explosives stored in 5.0 pounds increments. A new material being developed at the New Mexico Engineering Research Institute (NMERI) known as SIFCON (Slurry Infiltrated Fiber CONcrete), had been shown to be highly resistant to back spall from blast loadings, and penetration by high-velocity ballistic projectiles and fragments. These, and other characteristics unique to SIFCON, such as very high strength and ductility, appeared to make it an excellent candidate material for the modular units of the ESC. In 1989 SNL contracted with NMERI to develop a SIFCON modular unit for the ESC. Based upon the success of Phase 1 program, a more extensive Phase 2 program was undertaken in 1990 and has been successfully completed. This paper is a summary of the Phase 1 and Phase 2 work, which includes the design, fabrication, and explosive testing of the modular units.

  19. Dual shell pressure balanced vessel

    DOEpatents

    Fassbender, Alexander G. (West Richland, WA)

    1992-01-01

    A dual-wall pressure balanced vessel for processing high viscosity slurries at high temperatures and pressures having an outer pressure vessel and an inner vessel with an annular space between the vessels pressurized at a pressure slightly less than or equivalent to the pressure within the inner vessel.

  20. Imprinted Clay Coil Vessels

    ERIC Educational Resources Information Center

    Lohr, Tresa Rae

    2006-01-01

    The author teaches clay vessel construction in the fifth grade, and it is amazing what can be accomplished in one forty-five minute period when the expectations are clarified in the initial lesson. The author introduces clay coil vessels with a discussion of the sources of clay and how clay relates to fifth-grade science curriculum concepts such…

  1. Moving Vessel Profiler

    USGS Multimedia Gallery

    The Moving Vessel Profiler is an instrument used for aiding in the collection of accurate water data while the vessel is still in motion rather than having to stop. The USGS returned from a seafloor data mapping mission offshore of the Delmarva Peninsula (Ocean City, MD) on July 25th, 2014. The dat...

  2. Nonterrorist suicidal deaths involving explosives.

    PubMed

    Shields, Lisa B E; Hunsaker, Donna M; Hunsaker, John C; Humbert, Karl A

    2003-06-01

    Suicidal deaths involving explosives unconnected to terrorism are rare. The investigation of deaths from explosive devices requires a multidisciplinary collaborative effort, as demonstrated in this study. Reported are 2 cases of nonterrorist suicidal explosive-related deaths with massive craniocerebral destruction. The first case involves a 20-year-old man who was discovered in the basement apartment of his father's home seconds after an explosion. At the scene investigators recovered illegal improvised power-technique explosive devices, specifically M-100s, together with the victim's handwritten suicide note. The victim exhibited extensive craniofacial injuries, which medicolegal officials attributed to the decedent's intentionally placing one of these devices in his mouth. The second case involves a 46-year-old man who was found by his wife at his home. In the victim's facial wound, investigators recovered portions of a detonator blasting cap attached to electrical lead wires extending to his right hand. A suicide note was discovered at the scene. The appropriate collection of physical evidence at the scene of the explosion and a detailed examination of the victim's history is as important as documentation of injury patterns and recovery of trace evidence at autopsy. A basic understanding of the variety of explosive devices is also necessary. This investigatory approach greatly enhances the medicolegal death investigator's ability to reconstruct the fatal event as a means of separating accidental and homicidal explosive-related deaths from this uncommon form of suicide. PMID:12773843

  3. Cotton Gin Dust Explosibility Determinations 

    E-print Network

    Vanderlick, Francis Jerome

    2014-01-06

    test method was found to be flawed. It used pressure as the only criterion for a dust explosion, utilized high energy ignition sources, limited the amount of oxygen, and had no requirement for a dust to have a minimum explosible concentration (MEC...

  4. Numerical Model for Hydrovolcanic Explosions.

    NASA Astrophysics Data System (ADS)

    Mader, Charles; Gittings, Michael

    2007-03-01

    A hydrovolcanic explosion is generated by the interaction of hot magma with ground water. It is called Surtseyan after the 1963 explosive eruption off Iceland. The water flashes to steam and expands explosively. Liquid water becomes water gas at constant volume and generates pressures of about 3GPa. The Krakatoa hydrovolcanic explosion was modeled using the full Navier-Stokes AMR Eulerian compressible hydrodynamic code called SAGE [1] which includes the high pressure physics of explosions. The water in the hydrovolcanic explosion was described as liquid water heated by magma to 1100 K. The high temperature water is treated as an explosive with the hot liquid water going to water gas. The BKW [2] steady state detonation state has a peak pressure of 8.9 GPa, a propagation velocity of 5900 meters/sec and the water is compressed to 1.33 g/cc. [1] Numerical Modeling of Water Waves, Second Edition, Charles L. Mader, CRC Press 2004. [2] Numerical Modeling of Explosions and Propellants, Charles L. Mader, CRC Press 1998.

  5. Energy saving heating vessel

    SciTech Connect

    Conant, L.A.; Bolton, W.M.; Wilson, J.E.

    1984-02-21

    Energy saving heating vessel adapted for heating by contact with bottom surface heating means, such as a hotplate, is disclosed. The described vessels typically have a heating rate 2 to 5 times faster than a conventional glass vessel while consuming about half the energy or less. The vessel includes sidewalls of a nonmetal material such as a plastic, and a composite bottom. The composite bottom has a high heating surface contact area and includes a liquid-impervious innermost film of a non-metal material of a minimal thickness to minimize its resistance to heat transfer through it, bonded to and supported by an outermost layer of a rigid good thermal conductivity material preferably a graphitic material having a conductivity at least ten times higher than the sidewalls and the inner film, such outermost layer being the hot plate contacting element. The vessel can be made in a variety of shapes adapted for use in laboratory, domestic, service and industrial applications.

  6. Results of an experiment in a Zion-like geometry to investigate the effect of water on the containment basement floor on direct containment heating (DCH) in the Surtsey Test Facility: The IET-4 test

    SciTech Connect

    Allen, M.D.; Blanchat, T.K.; Pilch, M.; Nichols, R.T.

    1992-09-01

    This document discusses the fourth experiment of the Integral Effects Test (IET-4) series which was conducted to investigate the effects of high pressure melt ejection on direct containment heating. Scale models (1:10) of the Zion reactor pressure vessel (RPV), cavity, instrument tunnel, and subcompartment structures were constructed in the Surtsey Test Facility at Sandia National Laboratories. The RPV was modeled with a melt generator that consisted of a steel pressure barrier, a cast MgO crucible, and a thin steel inner liner. The melt generator/crucible had a hemispherical bottom head containing a graphite limitor plate with a 3.5-cm exit hole to simulate the ablated hole in the RPV bottom head that would be tonned by tube ejection in a severe nuclear power plant accident. The reactor cavity model contained 3.48 kg of water with a depth of 0.9 cm that corresponded to condensate levels in the Zion plant. A 43-kg initial charge of iron oxide/aluminum/chromium thermite was used to simulate corium debris on the bottom head of the RPV. Molten thermite was ejected into the scaled reactor cavity by 6.7 MPa steam. IET-4 replicated the third experiment in the IET series (IET-3), except the Surtsey vessel contained slightly more preexisting oxygen (9.6 mol.% vs. 9.0 mol.%), and water was placed on the basement floor inside the crane wall. The cavity pressure measurements showed that a small steam explosion occurred in the cavity at about the same time as the steam explosion in IET-1. The oxygen in the Surtsey vessel in IET-4 resulted in a vigorous hydrogen bum, which caused a significant increase in the peak pressure, 262 kPa compared to 98 kPa in the IET-1 test. EET-3, with similar pre-existing oxygen concentrations, also had a large peak pressure of 246 kPa.

  7. Trace Explosive Detection Using Nanosensors

    SciTech Connect

    Senesac, Larry R; Thundat, Thomas George

    2008-01-01

    Selective and sensitive detection of explosives is very important in countering terrorist threats. Detecting trace explosives has become a very complex and expensive endeavor because of a number of factors, such as the wide variety of materials that can be used as explosives, the lack of easily detectable signatures, the vast number of avenues by which these weapons can be deployed, and the lack of inexpensive sensors with high sensitivity and selectivity. High sensitivity and selectivity, combined with the ability to lower the deployment cost of sensors using mass production, is essential in winning the war on explosives-based terrorism. Nanosensors have the potential to satisfy all the requirements for an effective platform for the trace detection of explosives.

  8. The Scaled Thermal Explosion Experiment

    SciTech Connect

    Wardell, J F; Maienschein, J L

    2002-07-05

    We have developed the Scaled Thermal Explosion Experiment (STEX) to provide a database of reaction violence from thermal explosion for explosives of interest. Such data are needed to develop, calibrate, and validate predictive capability for thermal explosions using simulation computer codes. A cylinder of explosive 25, 50 or 100 mm in diameter, is confined in a steel cylinder with heavy end caps, and heated under controlled conditions until reaction. Reaction violence is quantified through non-contact micropower impulse radar measurements of the cylinder wall velocity and by strain gauge data at reaction onset. Here we describe the test concept, design and diagnostic recording, and report results with HMX- and RDX-based energetic materials.

  9. Multilayer Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2005-01-01

    A method has been devised to enable the fabrication of lightweight pressure vessels from multilayer composite materials. This method is related to, but not the same as, the method described in gMaking a Metal- Lined Composite-Overwrapped Pressure Vessel h (MFS-31814), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 59. The method is flexible in that it poses no major impediment to changes in tank design and is applicable to a wide range of tank sizes. The figure depicts a finished tank fabricated by this method, showing layers added at various stages of the fabrication process. In the first step of the process, a mandrel that defines the size and shape of the interior of the tank is machined from a polyurethane foam or other suitable lightweight tooling material. The mandrel is outfitted with metallic end fittings on a shaft. Each end fitting includes an outer flange that has a small step to accommodate a thin layer of graphite/epoxy or other suitable composite material. The outer surface of the mandrel (but not the fittings) is covered with a suitable release material. The composite material is filament- wound so as to cover the entire surface of the mandrel from the step on one end fitting to the step on the other end fitting. The composite material is then cured in place. The entire workpiece is cut in half in a plane perpendicular to the axis of symmetry at its mid-length point, yielding two composite-material half shells, each containing half of the foam mandrel. The halves of the mandrel are removed from within the composite shells, then the shells are reassembled and bonded together with a belly band of cured composite material. The resulting composite shell becomes a mandrel for the subsequent steps of the fabrication process and remains inside the final tank. The outer surface of the composite shell is covered with a layer of material designed to be impermeable by the pressurized fluid to be contained in the tank. A second step on the outer flange of each end fitting accommodates this layer. Depending on the application, this layer could be, for example, a layer of rubber, a polymer film, or an electrodeposited layer of metal. If the fluid to be contained in the tank is a gas, then the best permeation barrier is electrodeposited metal (typically copper or nickel), which can be effective at a thickness of as little as 0.005 in (.0.13 mm). The electrodeposited metal becomes molecularly bonded to the second step on each metallic end fitting. The permeation-barrier layer is covered with many layers of filament-wound composite material, which could be the same as, or different from, the composite material of the inner shell. Finally, the filament-wound composite material is cured in an ov

  10. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect

    Kajino, T.; Aoki, W.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Mathews, G. J.; Nakamura, K.; Suzuki, T.

    2014-05-09

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on ?{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  11. Explosion risks from nanomaterials

    NASA Astrophysics Data System (ADS)

    Bouillard, Jacques; Vignes, Alexis; Dufaud, Olivier; Perrin, Laurent; Thomas, Dominique

    2009-05-01

    Emerging nanomanufactured products are being incorporated in a variety of consumer products ranging from closer body contact products (i.e. cosmetics, sunscreens, toothpastes, pharmaceuticals, clothing) to more remote body-contact products (electronics, plastics, tires, automotive and aeronautical), hence posing potential health and environmental risks. The new field of nanosafety has emerged and needs to be explored now rather than after problems becomes so ubiquitous and difficult to treat that their trend become irreversible. Such endeavour necessitates a transdisciplinary approach. A commonly forgotten and/or misunderstood risk is that of explosion/detonation of nanopowders, due to their high specific active surface areas. Such risk is emphasized and illustrated with the present development of an appropriate risk analysis. For this particular risk, a review of characterization methods and their limitations with regard to nanopowders is presented and illustrated for a few organic and metallic nanopowders.

  12. Nucleosynthesis in stellar explosions

    SciTech Connect

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10/sup 6/ M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints.

  13. 49 CFR 173.52 - Classification codes and compatibility groups of explosives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... C 1.1C1.2C 1.3C 1.4C Secondary detonating explosive substance or black powder or article containing... one containing white phosphorus, phosphide or flammable liquid or gel or hypergolic liquid) G 1.1G1.2G 1.3G 1.4G Article containing both an explosive substance and white phosphorus H 1.2H1.3H...

  14. 49 CFR 173.52 - Classification codes and compatibility groups of explosives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... C 1.1C1.2C 1.3C 1.4C Secondary detonating explosive substance or black powder or article containing... one containing white phosphorus, phosphide or flammable liquid or gel or hypergolic liquid) G 1.1G1.2G 1.3G 1.4G Article containing both an explosive substance and white phosphorus H 1.2H1.3H...

  15. 49 CFR 173.52 - Classification codes and compatibility groups of explosives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... C 1.1C1.2C 1.3C 1.4C Secondary detonating explosive substance or black powder or article containing... one containing white phosphorus, phosphide or flammable liquid or gel or hypergolic liquid) G 1.1G1.2G 1.3G 1.4G Article containing both an explosive substance and white phosphorus H 1.2H1.3H...

  16. Enhancing commerical aircraft explosion survivability via active venting

    NASA Astrophysics Data System (ADS)

    Veldman, Roger Lee

    2001-10-01

    A new technique for enhancing aircraft safety in the event of an on-board explosion was studied. The method under study employs deployable vent panels located on the fuselage which are activated by an array of pressure sensors in the aircraft interior. In the event that an explosion is detected, appropriate vent panels are rapidly released from the aircraft. This approach seeks to provide timely relief of explosive pressures within an aircraft to prevent catastrophic structural failure. In this study, the approximate time scale of an explosive detonation and the subsequent sensing and electronic processing was determined. Then, the actuation response times of several vent panel systems were determined through analytical modeling and scale-model experimental testing with good correlation achieved. A scale-model experimental analysis was also conducted to determine the decompression venting time of an aircraft fuselage under a variety of conditions. Two different sized pressure vessels were used in the experimental work and the results correlated quite favorably with an analytical model for decompression times. Finally, a dynamic finite element analysis was conducted to determine the response of a portion of a typical commercial aircraft fuselage subjected to explosive pressure loading. It was determined from this analysis that the pre-stressing of the fuselage from cabin pressurization increases the damage vulnerability of a commercial aircraft fuselage to internal explosions. It was also learned from the structural analysis that the peak fuselage strains due to blast loading occur quickly (within approximately 2 milliseconds) while it was conservatively estimated that approximately 5 to 7 milliseconds would be required to sense the explosion, to actuate selected vent panels, and to initiate the release of cabin pressure from the aircraft. Additionally, since it was determined that predicted fuselage strains for both pressurized and unpressurized load cases remained well below the material strain limit, ultimate failure of the aircraft under blast loading may occur later than originally thought due to secondary explosive pressure reflections and the significant overall increase in cabin pressure after detonation. This delayed onset of failure indicates that an active venting system may indeed be capable of functioning rapidly enough to reduce significant fuselage explosive damage.

  17. Reaction zone measurements in detonating aluminized explosives

    SciTech Connect

    Lubyatinsky, S.N.; Loboiko, B.G.

    1996-05-01

    Detonation reaction zone measurements have been made on five RDX-based explosives (60 {mu}m average particle size RDX), containing 6{percent} polymer binder and from 0 to 19{percent} aluminum of different particle size (from 2 {mu}m to 20 {mu}m). A photoelectric technique was employed to record the radiation intensity history of the shock front propagating through chloroform in contact with the charge face. The record was then translated into the explosive/chloroform interface velocity history. In all cases, the Zeldovich-von Neumann-Doering detonation wave structure was observed. Aluminum particle size was found to have no appreciable effect on the reaction zone length, which increases from 0.34 mm to 0.58 mm as aluminum content increases from 0 to 19{percent}. Nevertheless, the reaction zone lengths of the studied explosives are less than that of RDX/TNT 50/50 (0.59 mm), which implies relatively high rate of the reaction between aluminum and RDX detonation products. {copyright} {ital 1996 American Institute of Physics.}

  18. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...169.736 Section 169.736 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained...

  19. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...169.736 Section 169.736 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained...

  20. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...169.736 Section 169.736 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained...