Science.gov

Sample records for expressing human epidermal

  1. Differential expression of SKALP/Elafin in human epidermal tumors.

    PubMed Central

    Alkemade, H. A.; Molhuizen, H. O.; van Vlijmen-Willems, I. M.; van Haelst, U. J.; Schalkwijk, J.

    1993-01-01

    Recently we described a new epidermal serine proteinase inhibitor, skin-derived antileukoproteinase (SKALP), also known as elafin. SKALP/elafin was found to be absent in normal human epidermis, but can be induced in vitro and in vivo under hyperproliferative conditions. Here we studied the expression of SKALP/elafin in several types of epidermal tumors (basal cell carcinoma, squamous cell carcinoma, Bowen's disease, actinic keratosis, and keratoacanthoma). Using immunohistochemical staining SKALP/elafin appeared to be differentially expressed in these tumors. Functional measurements of anti-proteinase activity, and Western blotting of tumor extracts confirmed our findings at the histological level. In well differentiated squamous cell carcinoma, SKALP/elafin messenger RNA was demonstrated by non-radioactive in situ hybridization. We conclude that SKALP/elafin is a marker for abnormal or disturbed squamous differentiation. A possible role of SKALP/elafin in the control of tumor cell invasion is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8256855

  2. Transgenic expression of human amphiregulin in mouse skin: inflammatory epidermal hyperplasia and enlarged sebaceous glands

    PubMed Central

    Li, Yong; Stoll, Stefan W.; Sekhon, Sahil; Talsma, Caroline; Camhi, Maya I.; Jones, Jennifer L.; Lambert, Sylviane; Marley, Hue; Rittié, Laure; Grachtchouk, Marina; Fritz, Yi; Ward, Nicole L.; Elder, James T.

    2016-01-01

    To explore the role of amphiregulin in inflammatory epidermal hyperplasia, we overexpressed human AREG (hAREG) in FVB/N mice using a bovine K5 promoter. A construct containing AREG coding sequences flanked by 5′ and 3′ untranslated region sequences (AREG-UTR) led to a >10-fold increase in hAREG expression compared to an otherwise-identical construct containing only the coding region (AREG-CDR). AREG-UTR mice developed tousled, greasy fur as well as elongated nails and thickened, erythematous tail skin. No such phenotype was evident in AREG-CDR mice. Histologically, AREG-UTR mice presented with marked epidermal hyperplasia of tail skin (2.1-fold increase in epidermal thickness with a 9.5-fold increase in Ki-67+ cells) accompanied by significantly increased CD4+ T-cell infiltration. Dorsal skin of AREG-UTR mice manifested lesser but still significant increases in epidermal thickness and keratinocyte hyperplasia. AREG-UTR mice also developed marked and significant sebaceous gland enlargement, with corresponding increases in Ki-67+ cells. To determine the response of AREG-UTR animals to a pro-inflammatory skin challenge, topical imiquimod (IMQ) or vehicle cream was applied to dorsal and tail skin. IMQ increased dorsal skin thickness similarly in both AREG-UTR and wild type mice (1.7- and 2.2-fold vs vehicle, P < 0.001 each), but had no such effect on tail skin. These results confirm that keratinocyte expression of hAREG elicits inflammatory epidermal hyperplasia, and are consistent with prior reports of tail epidermal hyperplasia and increased sebaceous gland size in mice expressing human epigen. PMID:26519132

  3. Expression profiling of human epidermal keratinocyte response following 1-minute JP-8 exposure.

    PubMed

    Chou, Chi-Chung; Yang, Jen-Hung; Chen, San-Duo; Monteiro-Riviere, Nancy A; Li, Han-Ni; Chen, Jeremy J W

    2006-01-01

    The cDNA microarray analysis of 9600 expressed sequence tags was performed to examine the gene expression changes in human epidermal keratinocytes after 1-minute JP-8 exposure; 151 genes were identified as JP-8 responsive and classified into 8 clusters by self organization map. Genes involved in basal transcription and translations were up-regulated, whereas genes related to DNA repair, metabolism, and keratin were mostly down-regulated. Genes encoded for growth factors, apoptosis, signal transduction, and adhesion were also altered. These results indicated that human keratinocyte responds to a single dose of JP-8 insult and revealed several cellular processes previously not associated with jet fuel exposure. PMID:16835149

  4. Chemical synthesis of a gene for human epidermal growth factor urogastrone and its expression in yeast.

    PubMed Central

    Urdea, M S; Merryweather, J P; Mullenbach, G T; Coit, D; Heberlein, U; Valenzuela, P; Barr, P J

    1983-01-01

    We have chemically synthesized and expressed in yeast a gene coding for human epidermal growth factor (urogastrone), a 53-amino-acid polypeptide that has been shown to promote epithelial cell proliferation and to inhibit gastric acid secretion. The synthetic gene, consisting of 170 base pairs, was designed with yeast-preferred codons and assembled by enzymatic ligation of synthetic fragments produced by phosphoramidite chemistry. The DNA synthesis protocol used allows for facile synthesis of oligonucleotides larger than 50 bases. Yeast cells were transformed with plasmids containing the synthetic gene under control of a yeast glyceraldehyde-3-phosphate dehydrogenase gene promoter and were shown to synthesize a biologically active human epidermal growth factor. Images PMID:6369317

  5. Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression

    PubMed Central

    Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean

    2012-01-01

    Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868

  6. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    PubMed

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. PMID:21640721

  7. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells

    PubMed Central

    Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.

    2013-01-01

    Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486

  8. The expression of peripheral benzodiazepine receptors in human skin: the relationship with epidermal cell differentiation.

    PubMed

    Stoebner, P E; Carayon, P; Penarier, G; Fréchin, N; Barnéon, G; Casellas, P; Cano, J P; Meynadier, J; Meunier, L

    1999-06-01

    The peripheral benzodiazepine receptor (PBR) is a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands. PBR is part of a heteromeric receptor complex involved in the formation of mitochondrial permeability transition pores and in the early events of apoptosis. PBR may function as an oxygen-dependent signal generator; recent data indicate that these receptors may preserve the mitochondria of haematopoietic cell lines from damage caused by oxygen radicals. To identify PBRs in human skin, we used a specific monoclonal antibody directed against the C-terminus fragment of the human receptor. PBR immunoreactivity was found in keratinocytes, Langerhans cells, hair follicles and dermal vascular endothelial cells. Interestingly, confocal microscopic examination of skin sections revealed that PBR expression was strongly upregulated in the superficial differentiated layers of the epidermis. Ultrastructurally, PBRs were distributed throughout the cytoplasm but were selectively expressed on the mitochondrial membranes of epidermal cells. The elevated level of PBRs in the spinous layer was not associated with an increased number of mitochondria nor with an increased amount of mRNA as assessed by in situ hybridization on microautoradiographed skin sections. The present work provides, for the first time, evidence of PBR immunoreactivity in human skin. This mitochondrial receptor may modulate apoptosis in the epidermis; its increased expression in differentiated epidermal layers may represent a novel mechanism of natural skin protection against free radical damage generated by ultraviolet exposure. PMID:10354064

  9. Cloning, Expression, and Cost Effective Purification of Authentic Human Epidermal Growth Factor With High Activity

    PubMed Central

    Pouranvari, Sara; Ebrahimi, Firouz; Javadi, Gholamreza; Maddah, Bozorgmehr

    2016-01-01

    Background: Epidermal growth factor (EGF) plays a fundamental role in the healing of wounds relating to skin damage, the cornea, and the gastrointestinal tract. Objectives: The aim of this study is the cloning, expression, and purification of recombinant human EGF (rhEGF), and an assessment of its activity. Materials and Methods: In the present experimental study, a synthetic pET28a (+) -hEGF construct was prepared. In order to ligate hEGF into pET24a (+), the PCR technique was performed, using special primers that possess restriction enzyme sites, which are also located in appropriate sites in pET24a (+). After transferring this construct into E. coli cells, protein expression was performed under standard conditions. Protein solubilization was done by urea. hEGF purification and refolding were carried out using gradient dialysis against the urea. We used RP-HPLC to compare between rhEGF and commercial rhEGF as a control. Finally, an MTT assay was performed to assess the viability of the NIH 3T3 cells treated with various concentrations of rhEGF. Results: Dialysis after urea solubilization caused precipitation of unwanted proteins, resulting in achievement of purified EGF with > 90% purity, without the need for expensive and time-consuming process. The MTT assay results showed that our rhEGF activate significantly higher proliferation of NIH 3T3 cells in comparison to the control (P-values were < 0.0001), in total concentrations and times evaluated Conclusions: Via our purification protocol, a sufficient amount of bioactive recombinant human epidermal growth factor was obtained in just a few affordable steps, with superlative purity. PMID:27247796

  10. Novel protein in human epidermal keratinocytes: regulation of expression during differentiation

    SciTech Connect

    Kartasova, T.; van Muijen, G.N.; van Pelt-Heerschap, H.; van de Putte, P.

    1988-05-01

    Recently, two groups of cDNA clones have been isolated from human epidermal keratinocytes; the clones correspond to genes whose expression is stimulated by exposure of the cells to UV light or treatment with 4-nitroquinoline 1-oxide or 12-O-tetradecanoylphorbol 13-acetate. The proteins predicted by the nucleotide sequence of both groups of cDNAs are small (8 to 10 kilodaltons), are exceptionally rich in proline, glutamine, and cysteine, and contain repeating elements with a common sequence, PK PEPC. These proteins were designated sprI and sprII (small, proline rich). Here we describe the characterization of the sprIa protein, which is encoded by one of the group 1 cDNAs. The expression of this protein during keratinocyte differentiation in vitro and the distribution of the sprIa protein in some human tissues was studied by using a specific rabbit antiserum directed against a synthetic polypeptide corresponding to the 30 amino acids of the C-terminal region of the sprIa gene product. The results indicate that the expression of the sprIa protein is stimulated during keratinocyte differentiation both in vitro and in vivo.

  11. 2,3,7,8-Tetrachlorodibenzo-p-dioxin increases the expression of genes in the human epidermal differentiation complex and accelerates epidermal barrier formation.

    PubMed

    Sutter, Carrie Hayes; Bodreddigari, Sridevi; Campion, Christina; Wible, Ryan S; Sutter, Thomas R

    2011-11-01

    Chloracne is commonly observed in people exposed to dioxins, yet the mechanism of toxicity is not well understood. The pathology of chloracne is characterized by hyperkeratinization of the interfollicular squamous epithelium, hyperproliferation and hyperkeratinization of hair follicle cells as well as a metaplastic response of the ductular sebum secreting sebaceous glands. In vitro studies using normal human epidermal keratinocytes to model interfollicular human epidermis demonstrate a 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated acceleration of differentiation and increase in gene expression of several prodifferentiation genes, including filaggrin (FLG). Here, we demonstrated that the TCDD-activated aryl hydrocarbon receptor (AHR) bound a small fragment of DNA upstream of the transcriptional start sites of the FLG gene, containing one of two candidate xenobiotic response elements (XREs). Reporter assays using the promoter region of FLG containing the two putative XREs indicated that the increase in this messenger RNA (mRNA) was due to TCDD-mediated enhanced transcription, which was lost when both XREs were mutated. As FLG is part of the human epidermal differentiation complex (EDC) found on chromosome 1, we measured mRNAs from an additional 18 EDC genes for their regulation by TCDD. Of these genes, 14 were increased by TCDD. Immunoblot assays demonstrated that the proteins of FLG as well as that of another prodifferentiation gene, small proline rich protein 2, were increased by TCDD. In utero exposure to TCDD accelerated the formation of the epidermal barrier in the developing mouse fetus by approximately 1 day. These results indicate that the epidermal permeability barrier is a functional target of the TCDD-activated AHR. PMID:21835898

  12. Epidermal growth factor receptor expression in primary cultured human colorectal carcinoma cells.

    PubMed Central

    Tong, W. M.; Ellinger, A.; Sheinin, Y.; Cross, H. S.

    1998-01-01

    In situ hybridization on human colon tissue demonstrates that epidermal growth factor receptor (EGFR) mRNA expression is strongly increased during tumour progression. To obtain test systems to evaluate the relevance of growth factor action during carcinogenesis, primary cultures from human colorectal carcinomas were established. EGFR distribution was determined in 2 of the 27 primary cultures and was compared with that in well-defined subclones derived from the Caco-2 cell line, which has the unique property to differentiate spontaneously in vitro in a manner similar to normal enterocytes. The primary carcinoma-derived cells had up to three-fold higher total EGFR levels than the Caco-2 subclones and a basal mitotic rate at least fourfold higher. The EGFR affinity constant is 0.26 nmol l(-1), which is similar to that reported in Caco-2 cells. The proliferation rate of Caco-2 cells is mainly induced by EGF from the basolateral cell surface where the majority of receptors are located, whereas primary cultures are strongly stimulated from the apical side also. This corresponds to a three- to fivefold higher level of EGFR at the apical cell surface. This redistribution of EGFR to apical plasma membranes in advanced colon carcinoma cells suggests that autocrine growth factors in the colon lumen may play a significant role during tumour progression. Images Figure 1 Figure 2 PMID:9667648

  13. H(+)/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport.

    PubMed

    Kudo, Michiko; Katayoshi, Takeshi; Kobayashi-Nakamura, Kumiko; Akagawa, Mitsugu; Tsuji-Naito, Kentaro

    2016-07-01

    Peptide transporter 2 (PEPT2) is a member of the proton-coupled oligopeptide transporter family, which mediates the cellular uptake of oligopeptides and peptide-like drugs. Although PEPT2 is expressed in many tissues, its expression in epidermal keratinocytes remains unclear. We investigated PEPT2 expression profile and functional activity in keratinocytes. We confirmed PEPT2 mRNA expression in three keratinocyte lines (normal human epidermal keratinocytes (NHEKs), immortalized keratinocytes, and malignant keratinocytes) by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. In contrast to PEPT1, PEPT2 expression in the three keratinocytes was similar or higher than that in HepG2 cells, used as PEPT2-positive cells. Immunolocalization analysis using human skin showed epidermal PEPT2 localization. We studied keratinocyte transport function by measuring the oligopeptide content using liquid chromatography/tandem mass spectrometry. Glycylsarcosine uptake in NHEKs was pH-dependent, suggesting that keratinocytes could absorb small peptides in the presence of an inward H(+) gradient. We also performed a skin-permeability test of several oligopeptides using skin substitute, suggesting that di- and tripeptides pass actively through the epidermis. In conclusion, PEPT2 is expressed in keratinocytes and involved in skin oligopeptide uptake. PMID:27216463

  14. Expression of an Exogenous Growth Hormone Gene by Transplantable Human Epidermal Cells

    NASA Astrophysics Data System (ADS)

    Morgan, Jeffrey R.; Barrandon, Yann; Green, Howard; Mulligan, Richard C.

    1987-09-01

    Retrovirus-mediated gene transfer was used to introduce a recombinant human growth hormone gene into cultured human keratinocytes. The transduced keratinocytes secreted biologically active growth hormone into the culture medium. When grafted as an epithelial sheet onto athymic mice, these cultured keratinocytes reconstituted an epidermis that was similar in appearance to that resulting from normal cells, but from which human growth hormone could be extracted. Transduced epidermal cells may prove to be a general vehicle for the delivery of gene products by means of grafting.

  15. Expression of histamine H4 receptor in human epidermal tissues and attenuation of experimental pruritus using H4 receptor antagonist.

    PubMed

    Yamaura, Katsunori; Oda, Manabu; Suwa, Eriko; Suzuki, Masahiko; Sato, Hiromi; Ueno, Koichi

    2009-10-01

    Many medicines exist which can cause pruritus (itching) as "serious adverse events." Many severe pruritic conditions respond poorly to histamine H1 receptor antagonists; there is no generally accepted antipruritic treatment. Recently described histamine H4 receptors are expressed in haematopoietic cells and have been linked to the pathology of allergy and asthma. We previously reported their expression in human dermal fibroblasts; in this study we have investigated H4 receptor expression in human epidermal tissue and found it to be greater in keratinocytes in the epidermal upper layer than in the lower layer. We have also investigated the effect of histamine H4 receptor antagonists on histamine H1 receptor antagonist-resistant pruritus using a mouse model. Scratching behavior was induced by histamine (300 nmol) or substance P (100 nmol) injected intradermally into the rostral part of the back of each mouse. Fexofenadine, a histamine H1 receptor antagonist, reduced scratching induced by histamine but not by substance P, whereas JNJ7777120, a histamine H4 receptor antagonist, significantly reduced both histamine- and substance P-induced scratching. These results suggest that H4 receptor antagonists may be useful for treatment of H1 receptor antagonist-resistant pruritus. PMID:19652466

  16. IgG and IgA with potential microbial-binding activity are expressed by normal human skin epidermal cells.

    PubMed

    Jiang, Dongyang; Ge, Jing; Liao, Qinyuan; Ma, Junfan; Liu, Yang; Huang, Jing; Wang, Chong; Xu, Weiyan; Zheng, Jie; Shao, Wenwei; Lee, Gregory; Qiu, Xiaoyan

    2015-01-01

    The innate immune system of the skin is thought to depend largely on a multi-layered mechanical barrier supplemented by epidermis-derived antimicrobial peptides. To date, there are no reports of antimicrobial antibody secretion by the epidermis. In this study, we report the expression of functional immunoglobulin G (IgG) and immunoglobulin A (IgA), previously thought to be only produced by B cells, in normal human epidermal cells and the human keratinocyte line HaCaT. While B cells express a fully diverse Ig, epidermal cell-expressed IgG or IgA showed one or two conservative VHDJH rearrangements in each individual. These unique VDJ rearrangements in epidermal cells were found neither in the B cell-derived Ig VDJ databases published by others nor in our positive controls. IgG and IgA from epidermal cells of the same individual had different VDJ rearrangement patterns. IgG was found primarily in prickle cells, and IgA was mainly detected in basal cells. Both epidermal cell-derived IgG and IgA showed potential antibody activity by binding pathogens like Staphylococcus aureus, the most common pathogenic skin bacteria, but the microbial-binding profile was different. Our data indicates that normal human epidermal cells spontaneously express IgG and IgA, and we speculate that these Igs participate in skin innate immunity. PMID:25625513

  17. Differential regulation of human Eag1 channel expression by serum and epidermal growth factor in lung and breast cancer cells

    PubMed Central

    Acuña-Macías, Isabel; Vera, Eunice; Vázquez-Sánchez, Alma Yolanda; Mendoza-Garrido, María Eugenia; Camacho, Javier

    2015-01-01

    Oncogenic ether à-go-go-1 (Eag1) potassium channels are overexpressed in most primary human solid tumors. Low oxygen and nutrient/growth factor concentrations play critical roles in tumorigenesis. However, the mechanisms by which tumor cells survive and proliferate under growth factor-depleted conditions remain elusive. Here, we investigated whether serum-deprived conditions and epidermal growth factor (EGF) regulate Eag1 expression in human lung and breast cancer cells. The human cancer cell lines A549 and MCF-7 (from the lungs and breast, respectively) were obtained from the American Type Culture Collection and cultured following the manufacturer’s recommendations. Eag1 gene and protein expression were studied by real-time PCR and immunocytochemistry, respectively. Cell proliferation was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and ERK1/2 phosphorylation was investigated by Western blot. Serum-deprived conditions increased Eag1 mRNA and protein expression in both cell lines. This Eag1 upregulation was prevented by EGF and the ERK1/2 inhibitor U0126 in only lung cancer cells; vascular endothelial growth factor did not prevent Eag1 upregulation. Our results suggest that Eag1 may act as a survival and mitogenic factor under low-serum and nutrient conditions and may be a clinical target during the early stages of tumor development. PMID:26527881

  18. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells.

    PubMed Central

    Sehgal, I; Bailey, J; Hitzemann, K; Pittelkow, M R; Maihle, N J

    1994-01-01

    Amphiregulin is a heparin-binding epidermal growth factor (EGF)-related peptide that binds to the EGF receptor (EGF-R) with high affinity. In this study, we report a role for amphiregulin in androgen-stimulated regulation of prostate cancer cell growth. Androgen is known to enhance EGF-R expression in the androgen-sensitive LNCaP human prostate carcinoma cell line, and it has been suggested that androgenic stimuli may regulate proliferation, in part, through autocrine mechanisms involving the EGF-R. In this study, we demonstrate that LNCaP cells express amphiregulin mRNA and peptide and that this expression is elevated by androgenic stimulation. We also show that ligand-dependent EGF-R stimulation induces amphiregulin expression and that androgenic effects on amphiregulin synthesis are mediated through this EGF-R pathway. Parallel studies using the estrogen-responsive breast carcinoma cell line, MCF-7, suggest that regulation of amphiregulin by estrogen may also be mediated via an EGF-R pathway. In addition, heparin treatment of LNCaP cells inhibits androgen-stimulated cell growth further suggesting that amphiregulin can mediate androgen-stimulated LNCaP proliferation. Together, these results implicate an androgen-regulated autocrine loop composed of amphiregulin and its receptor in prostate cancer cell growth and suggest that the mechanism of steroid hormone regulation of amphiregulin synthesis may occur through androgen upregulation of the EGF-R and subsequent receptor-dependent pathways. Images PMID:8049525

  19. Expression and Prognostic Significance of Human Epidermal Growth Factor Receptors 1 and 3 in Gastric and Esophageal Adenocarcinoma

    PubMed Central

    Hedner, Charlotta; Borg, David; Nodin, Björn; Karnevi, Emelie; Jirström, Karin; Eberhard, Jakob

    2016-01-01

    Background Gastric and esophageal adenocarcinomas are major global cancer burdens. These cancer forms are characterized by a poor prognosis and a modest response to chemo- radio- and targeted treatment. Hence there is an obvious need for further enhanced diagnostic and treatment strategies. The aim of this study was to examine the expression and prognostic impact of human epidermal growth factor receptor 1 (HER1/EGFR) and 3 (HER3), as well as the occurrence of EGFR and KRAS mutations in gastric and esophageal adenocarcinoma. Methods Immunohistochemical expression of EGFR and HER3 was analysed in all primary tumours and a subset of lymph node metastases in a consecutive cohort of 174 patients with adenocarcinoma of the stomach, cardia and esophagus. The anti-HER3 antibody used was validated by siRNA-mediated knockdown, immunohistochemistry and quantitative real-time PCR. EGFR and KRAS mutation status was analysed by pyrosequencing tecchnology. Results and Discussion High EGFR expression was an independent risk factor for shorter overall survival (OS), whereas high HER3 expression was associated with a borderline significant trend towards a longer OS. KRAS mutations were present in only 4% of the tumours and had no prognostic impact. All tumours were EGFR wild-type. These findings contribute to the ongoing efforts to decide on the potential clinical value of different HERs and druggable mutations in gastric and esophageal adenocarcinomas, and attention is drawn to the need for more standardised investigational methods. PMID:26844548

  20. Hydrolyzed Methylhesperidin Induces Antioxidant Enzyme Expression via the Nrf2-ARE Pathway in Normal Human Epidermal Keratinocytes.

    PubMed

    Kuwano, Tetsuya; Watanabe, Manabu; Kagawa, Daiji; Murase, Takatoshi

    2015-09-16

    Methylhesperidin (MHES) is a mixture of methylated derivatives of the citrus flavonoid hesperidin and is used as a food or pharmaceutical additive. Dietary MHES could be hydrolyzed by gut microflora to give aglycons. Therefore, we prepared hydrolyzed methylhesperidin (h-MHES) and assessed its pharmacological activity in human epidermal keratinocytes. h-MHES promoted nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and the expression of cytoprotective genes (e.g., heme oxygenase-1 (HO-1) and glutamate cysteine ligase catalytic subunit (GCLC)). h-MHES also increased intracellular glutathione levels and reduced UVB-induced reactive oxygen species. Moreover, h-MHES increased phosphorylation of p38 mitogen-activated protein kinase (MAPK), and a p38 MAPK inhibitor significantly attenuated h-MHES-induced HO-1 and GCLC expression. Furthermore, when we purified the components of h-MHES, we identified two methoxy-chalcones as novel Nrf2 activators. Our study demonstrates that h-MHES can induce cytoprotective gene expression and reduce oxidative stress via the Nrf2-ARE pathway in keratinocytes, suggesting that MHES may contribute to the suppression of UVB-induced skin damage in vivo. PMID:26313892

  1. NEU1 Sialidase Expressed in Human Airway Epithelia Regulates Epidermal Growth Factor Receptor (EGFR) and MUC1 Protein Signaling*

    PubMed Central

    Lillehoj, Erik P.; Hyun, Sang Won; Feng, Chiguang; Zhang, Lei; Liu, Anguo; Guang, Wei; Nguyen, Chinh; Luzina, Irina G.; Atamas, Sergei P.; Passaniti, Antonino; Twaddell, William S.; Puché, Adam C.; Wang, Lai-Xi; Cross, Alan S.; Goldblum, Simeon E.

    2012-01-01

    Epithelial cells (ECs) lining the airways provide a protective barrier between the external environment and the internal host milieu. These same airway epithelia express receptors that respond to danger signals and initiate repair programs. Because the sialylation state of a receptor can influence its function and is dictated in part by sialidase activity, we asked whether airway epithelia express catalytically active sialidase(s). Human primary small airway and A549 ECs expressed NEU1 sialidase at the mRNA and protein levels, and NEU1 accounted for >70% of EC sialidase activity. Blotting with Maackia amurensis and peanut agglutinin lectins established epidermal growth factor receptor (EGFR) and MUC1 as in vivo substrates for NEU1. NEU1 associated with EGFR and MUC1, and NEU1-EGFR association was regulated by EGF stimulation. NEU1 overexpression diminished EGF-stimulated EGFR Tyr-1068 autophosphorylation by up to 44% but enhanced MUC1-dependent Pseudomonas aeruginosa adhesion by 1.6–1.7-fold and flagellin-stimulated ERK1/2 activation by 1.7–1.9-fold. In contrast, NEU1 depletion increased EGFR activation (1.5-fold) and diminished MUC1-mediated bacterial adhesion (38–56%) and signaling (73%). These data indicate for the first time that human airway epithelia express catalytically active NEU1 sialidase that regulates EGFR- and MUC1-dependent signaling and bacterial adhesion. NEU1 catalytic activity may offer an additional level of regulation over the airway epithelial response to ligands, pathogens, and injurious stimuli. PMID:22247545

  2. Design, expression and evaluation of a novel humanized single chain antibody against epidermal growth factor receptor (EGFR).

    PubMed

    Akbari, Bahman; Farajnia, Safar; Zarghami, Nosratollah; Mahdieh, Nejat; Rahmati, Mohammad; Khosroshahi, Shiva Ahdi; Rahbarnia, Leila

    2016-11-01

    Various strategies have been attempted for targeting of epidermal growth factor receptor (EGFR), as an essential biomarker in a variety of cancers. Several anti-EGFR antibodies including cetuximab are used in clinics for treatment of EGFR-overexpressing colorectal and head and neck cancers but the efficiency of these antibodies is threatened by their large size and chimeric nature. Humanized single chains antibodies (huscFv) are smaller generation of antibodies with lower immunogenicity may overcome these limitations. This article reports production and evaluation of a novel humanized anti-EGFR scFv. The CDRs of cetuximab heavy and light chains were grafted onto human antibody frameworks as framework donors. To maintain the antigen binding affinity of murine antibody, the murine vernier zone residues were retained in framework regions of huscFv. Additionally, two point mutations in CDR-L1 and CDR-L3 and three point mutations in CDR-H2 and CDR-H3 loops of the humanized scFv (huscFv) were introduced to increase affinity of the huscFv to EGFR. Analysis of results demonstrated that the humanness degree of resultant huscFv was increased as 19%. HuscFv was expressed in BL21 (DE3) and affinity purified via Ni-NTA column. The reactivity of huscFv with EGFR was evaluated by ELISA and dot blot techniques. Analysis by ELISA and dot blot showed that the huscFv was able to recognize and react with EGFR. Toxicity analysis by MTT assay indicated an inhibitory effect on growth of EGFR-overexpressing A431 cells. In conclusion, the huscFv produced in this study revealed decreased immunogenicity while retained growth inhibitory effect on EGFR-overexpressing tumor cells. PMID:27298212

  3. The trifunctional antibody ertumaxomab destroys tumor cells that express low levels of human epidermal growth factor receptor 2.

    PubMed

    Jäger, Michael; Schoberth, Alexandra; Ruf, Peter; Hess, Jürgen; Lindhofer, Horst

    2009-05-15

    Human epidermal growth factor receptor 2 (HER2/neu) is an important target for the treatment of the breast cancers in which it is overexpressed. However, no approved anti-HER2/neu therapy is available for the majority of breast cancer patients, who express HER2/neu at low levels (with scores of 1+ or 2+/fluorescence in situ hybridization-negative). The trifunctional antibody ertumaxomab targets HER2/neu, CD3, and activating Fcgamma receptors. In presence of ertumaxomab, tri-cell complexes consisting of tumor cells, T cells, and accessory cells form to cause tumor cell lysis. In a phase I trial with metastatic breast cancer patients, ertumaxomab could be applied safely and resulted in radiographically confirmed clinical responses. In this study, we compare ertumaxomab- and trastuzumab-mediated killing of cancer cell lines that express HER2/neu at low and high levels. Under optimal conditions for trastuzumab-mediated destruction of HER2/neu-overexpressing cells, only ertumaxomab was able to mediate the elimination of tumor cell lines that express HER2/neu at low levels (1+). Ertumaxomab-mediated activity was accompanied by a Th1-based cytokine release, a unique mode of action of trifunctional antibodies. Competitive binding studies with trastuzumab and 520C9 mapped the binding site of ertumaxomab to the extracellular regions II and III of the HER2/neu ectodomain. This site is distinct from the binding site of trastuzumab, so that HER2/neu-expressing tumor cells can be eliminated by ertumaxomab in the presence of high amounts of trastuzumab. The ability of ertumaxomab to induce cytotoxicity against various tumor cell lines, including those with low HER2/neu antigen density, may provide a novel therapeutic option for breast cancer patients who are not eligible for trastuzumab treatment. PMID:19435924

  4. Increased epidermal growth factor receptor gene expression by gamma-interferon in a human breast carcinoma cell line.

    PubMed Central

    Hamburger, A. W.; Pinnamaneni, G. D.

    1991-01-01

    The interferons are a group of naturally occurring proteins that inhibit the growth of tumours in vivo and many transformed cell lines in vitro. The mechanisms of action of interferon, however, remain unclear. The IFN induced inhibition of growth of many epithelial cancer cell lines is associated with changes in Epidermal Growth Factor Receptor (EGFR) binding or expression. Therefore, we examined the effect of IFN treatment on the expression of EGFR in a human breast carcinoma cell line, MDA 468. We have found the IFN-gamma inhibited, in a dose dependent fashion, the growth of MDA 468 cells. IFN decreased cell surface binding of 125I-EGF to EGFR by changing receptor number rather than affinity. However, total cellular receptor protein, as measured by immunoprecipitation with monoclonal antibodies, was increased in IFN-treated cells. The half-life of the metabolically labelled receptor was unchanged by treatment with IFN. Increased amounts of EGFR mRNA were observed in MDA 468 cells treated with IFN-gamma for 3 days. The levels of mRNA increased with time in culture, reaching a peak of four times control values after 5 days of treatment. This effect was observable with as little as 10 U ml-1 of IFN-gamma. Treatment of the cells with Actinomycin D to inhibit new RNA synthesis suggested that the stability of EGFR mRNA was not enhanced in IFN-gamma treated cells. The increase in receptor mRNA induced by IFN was not inhibited by cycloheximide. These data suggest IFN-gamma can increase expression of EGFR mRNA and protein in MDA 468 cells. Increased expression of EGFR mRNA and protein by IFN-gamma is associated with inhibition of cell growth. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1906727

  5. Neurotensin Decreases the Proinflammatory Status of Human Skin Fibroblasts and Increases Epidermal Growth Factor Expression

    PubMed Central

    Miguel Neves, Bruno; Cruz, Maria Teresa; Carvalho, Eugénia

    2014-01-01

    Fibroblasts colonization into injured areas during wound healing (WH) is responsible for skin remodelling and is also involved in the modulation of inflammation, as fibroblasts are immunologically active. Herein, we aimed to determine neurotensin effect on the immunomodulatory profile of fibroblasts, both in homeostatic and inflammatory conditions. Neurotensin mediated responses occurred through NTR1 or NTR3 receptors, while under inflammatory conditions NTR1 expression increase seemed to modulate neurotensin responses. Among different immunomodulatory genes, CCL11, IL-8, and IL-6 were the most expressed genes, while CCL4 and EGF were the less expressed genes. After neurotensin exposure, IL-8 mRNA expression was increased while CCL11 was decreased, suggesting a proinflammatory upregulation and chemoattractant ability downregulation of fibroblasts. Under inflammatory conditions, gene expression was significantly increased. After neurotensin exposure, CCL4 and IL-6 mRNA expression were decreased while CCL11 was increased, suggesting again a decrease in the chemoattractant capacity of fibroblasts and in their proinflammatory status. Furthermore, the expression of EGF, a crucial growth factor for skin cells proliferation and WH, was increased in all conditions. Overall, neurotensin, released by nerve fibers or skin cells, may be involved in the decrease of the chemotaxis and the proinflammatory status in the proliferation and remodelling phases of WH. PMID:25180119

  6. Downregulation of Epidermal Growth Factor Receptor Expression Contributes to α-TEA's Proapoptotic Effects in Human Ovarian Cancer Cell Lines

    PubMed Central

    Shun, Ming-Chieh; Yu, Weiping; Park, Sook-Kyung; Sanders, Bob G.; Kline, Kimberly

    2010-01-01

    RRR-α-tocopherol derivative α-TEA (RRR-α-tocopherol ether-linked acetic acid analog) has been shown to be a potent antitumor agent both in vivo and in vitro. In this study, we investigated the effects of α-TEA on the expression of epidermal growth factor receptor (EGFR) family members, ErbB1, 2 and 3, and the role of ErbB 2 and 3 in α-TEA-induced apoptosis and suppression of Akt, FLIP and survivin in the cisplatin-sensitive (A2780S) and -resistant (A2780/CP70R) human ovarian cancer cell lines. Data show that α-TEA's ability to induced apoptosis was associated with reduced expression of ErbB1 (cisplatin-resistant cells), 2 and 3 (both cell types) and reduced levels of the phosphorylated (active) form of Akt; as well as, reduced levels of FLIP and survivin proteins in both cell types. Ectopic overexpression and siRNA knockdown studies showed that ErbB2, ErbB3, Akt, FLIP and survivin are involved in α-TEA-induce apoptosis and that α-TEA downregulates FLIP and survivin via suppression of pAkt, which is mediated by ErbB2 and ErB3. Thus, α-TEA is a potent pro-apoptotic agent for both cisplatin-sensitive and -resistant ovarian cancer cell lines in cell culture and it produces cell death, at least in part, by downregulation of members of the EGFR family. PMID:20224651

  7. Construction of Yeast Recombinant Expression Vector Containing Human Epidermal Growth Factor (hEGF)

    PubMed Central

    Mohammadian, Jamal; Mansoori-Derakhshan, Sima; Mohammadian, Masood; Shekari-Khaniani, Mahmoud

    2013-01-01

    Purpose: The objective of this study was construction of recombinant hEGF-pPIC9 which may be used for expression of recombinant hEGF in following studies. Methods: EGF cDNA was purchased from Genecopoeia Company and used for PCR amplification. Prior to ligation, the PCR product and pPIC9 vector was digested with EcoRI and XhoI and ligated in pPIC9 vector and subjected to colony PCR screening and sequencing analysis. Results: PCR amplification of EGF cDNA using recombinant hEGF-pPIC9 vector as template was concluded in amplification of 197bp fragment. Construction of recombinant hEGF-pPIC9 of EGf gene was verified by PCR and sequencing. Conclusion: Construction of Recombinant hEGF-pPIC9 was the primary stage for production and expression of EFG in the future study. PMID:24312882

  8. Gene Expression of Normal Human Epidermal Keratinocytes Modulated by Trivalent Arsenicals

    EPA Science Inventory

    Chronic exposure to inorganic arsenic (iAs) is associated with the development of benign and malignant human skin lesions including nonmelanoma skin cancers. The precise arsenical form(s) responsible for this carcinogenic effect are unknown, although trivalent inorganic arsenic (...

  9. Human epidermal growth factor receptor 2 expression in urothelial carcinoma of the renal pelvis: correlation with clinicopathologic parameters.

    PubMed

    Ehsani, Laleh; Osunkoya, Adeboye O

    2014-01-01

    The significance of human epidermal growth factor receptor 2 (HER2) overexpression in breast cancer is well established, and these patients are subsequently treated with Trastuzumab. Although HER2 expression in urothelial carcinoma of the urinary bladder has also been recently characterized, it has not been well studied in urothelial carcinoma of the renal pelvis. We investigated the relationship between HER2 overexpression in urothelial carcinoma of the renal pelvis and clinicopathologic parameters. Forty six cases were identified. HER2 overexpression was present in 34/46 (74%) cases. Mean patient age with HER2 overexpression was 68 years (range: 42-87 years). There was a male predominance with 28/34 (82%) patients. High grade urothelial carcinoma was present in 32/34 (94%) cases and 2/34 (6%) cases had low grade urothelial carcinoma. Pathologic staging was as follows; 9/34 (26%) cases were pTa, 10/34 (29%) cases were pT1, 2/34 (6%) cases were pT2, 12/34 (35%) cases were pT3, and 1/34 (3%) cases was pT4. An inverted growth pattern was present in 23/46 (50%) cases. HER2 overexpression was present in 15/23 (65%) cases of urothelial carcinoma with an inverted growth pattern. Our study showed that HER2 overexpression is more common in male patients with high grade urothelial carcinoma, especially those with an inverted growth pattern. It is highly conceivable that patients with urothelial carcinoma of the renal pelvis may be further stratified based on HER2 overexpression, and may also be potential candidates for Trastuzumab therapy in the neoadjuvant or adjuvant setting. PMID:24966967

  10. p53 protein expression in human breast carcinoma: relationship to expression of epidermal growth factor receptor, c-erbB-2 protein overexpression, and oestrogen receptor.

    PubMed Central

    Poller, D. N.; Hutchings, C. E.; Galea, M.; Bell, J. A.; Nicholson, R. A.; Elston, C. W.; Blamey, R. W.; Ellis, I. O.

    1992-01-01

    The expression of p53 protein, oestrogen receptor protein, epidermal growth factor receptor (EGFR) and overexpression of the c-erbB-2 oncoprotein was examined in a series of 149 primary symptomatic breast carcinomas. Expression of p53 was present in 62 of 146 cases (42.5%) of the invasive carcinoma and one of three cases (33.3%) of ductal carcinoma in situ (DCIS) examined. Statistical associations of tumour oestrogen receptor positivity and lack of p53 protein expression, chi 2 = 19.78 (d.f. = 1), P less than 0.001, positive tumour p53 status and poor tumour grade; chi 2 = 14.1 (d.f. = 2), P less than 0.001, EGFR expression chi 2 = 7.07, (d.f. = 1), P less than 0.01 and tumour c-erbB-2 protein overexpression; chi 2 = 4.61 (d.f. = 1), P = 0.032 were identified. Expression of p53 is rare in invasive lobular carcinoma of classical type (8.3% of cases examined) in contrast to other common types of mammary carcinoma. Non-significant trends of p53 protein expression and increased regional tumour recurrence; chi 2 = 3.20 (d.f. = 1), P = 0.074 and also poorer patient survival; chi 2 = 3.76 (d.f. = 1), P = 0.053 were identified. p53 protein expression is a common event in human breast cancer and is present in both DCIS and invasive mammary carcinoma. Abnormal expression of p53 protein is a feature of both in situ and invasive breast carcinoma, implying that the abnormal p53 protein expression may be implicated in the early stages of mammary carcinoma progression. Images Figure 1 PMID:1355662

  11. Expression, purification, and characterization of recombinant human and murine milk fat globule-epidermal growth factor-factor 8.

    PubMed

    Castellanos, Erick R; Ciferri, Claudio; Phung, Wilson; Sandoval, Wendy; Matsumoto, Marissa L

    2016-08-01

    Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), as its name suggests, is a major glycoprotein component of milk fat globules secreted by the mammary epithelium. Although its role in milk fat production is unclear, MFG-E8 has been shown to act as a bridge linking apoptotic cells to phagocytes for removal of these dying cells. MFG-E8 is capable of bridging these two very different cell types via interactions through both its epidermal growth factor (EGF)-like domain(s) and its lectin-type C domains. The EGF-like domain interacts with αVβ3 and αVβ5 integrins on the surface of phagocytes, whereas the C domains bind phosphatidylserine found on the surface of apoptotic cells. In an attempt to purify full-length, recombinant MFG-E8 expressed in either insect cells or CHO cells, we find that it is highly aggregated. Systematic truncation of the domain architecture of MFG-E8 indicates that the C domains are mainly responsible for the aggregation propensity. Addition of Triton X-100 to the conditioned cell culture media allowed partial recovery of non-aggregated, full-length MFG-E8. A more comprehensive detergent screen identified CHAPS as a stabilizer of MFG-E8 and allowed purification of a significant portion of non-aggregated, full-length protein. The CHAPS-stabilized recombinant MFG-E8 retained its natural ability to bind both αVβ3 and αVβ5 integrins and phosphatidylserine suggesting that it is properly folded and active. Herein we describe an efficient purification method for production of non-aggregated, full-length MFG-E8. PMID:27102803

  12. Sulfation of estradiol in human epidermal keratinocyte.

    PubMed

    Kushida, Akira; Hattori, Kenji; Yamaguchi, Nozomi; Kobayashi, Tetsuyuki; Date, Akira; Tamura, Hiroomi

    2011-01-01

    Epidermis is one of the well-known estrogen target tissues. Information regarding estrogen metabolism in epidermis is still very limited compared to that of estrogen action. In the breast cancer tissue, 17β-estradiol (E(2)) is inactivated by sulfation and the expression level of estrogen sulfotransferase (SULT1E1) is inversely correlated with its malignancy. However, there is little datum about inactivation of estradiol in skin. In order to detect and measure E(2) and its metabolites simultaneously, we established an assay method with radio HPLC. A majority of [(3)H] labeled E(2) was converted to E(2) sulfate in normal human epidermal keratinocyte (NHEK) cells. The estimated activity of sulfotransferase toward E(2) at 20 nM was 0.11±0.01 (pmol/min/mg protein). Significant induction of estrogen sulfotransferase activity was observed in calcium-differentiated NHEK cells (0.58±0.07 (pmol/min/mg protein)). The gene expression of SULT1E1 was fifteen-fold higher in differentiated keratinocyte than in proliferating keratinocyte, whereas that of steroid sulfatase was reduced. These results suggest that E(2) inactivation is primarily mediated by SULT1E1 in keratinocyte and E(2) action is likely suppressed in epidermal differentiation. PMID:21720030

  13. Blister fluid T lymphocytes during toxic epidermal necrolysis are functional cytotoxic cells which express human natural killer (NK) inhibitory receptors

    PubMed Central

    Le Cleach, L; Delaire, S; Boumsell, L; Bagot, M; Bourgault-Villada, I; Bensussan, A; Roujeau, J C

    2000-01-01

    Toxic epidermal necrolysis (TEN) is a rare life-threatening adverse drug reaction characterized by a massive destruction of the epidermis. Immunohistological studies of skin biopsies of TEN showed infiltrates of predominantly CD8+ T lymphocytes even though other authors reported a prominent involvement of cells of the monocyte-macrophage lineage. The aim of this study was to characterize phenotypically and functionally the cells present in the cutaneous blister fluid of four patients with TEN. We first determined that lymphocytes were predominant in blister fluid obtained early, while monocytes/macrophages later became the most important population. We then showed that this lymphocyte population, mainly CD3+CD8+, corresponded to a peculiar cell subset as they expressed cutaneous leucocyte antigen, killer inhibitory receptors KIR/KAR and failed to express CD28 molecule. Functionally, we determined that blister T lymphocytes had a cytotoxic T lymphocyte (CTL)- and NK-like cytotoxicity. The role of this cytotoxic lymphocyte population present at the site of lesions during TEN remains to be understood. PMID:10606987

  14. Expression of epidermal growth factor receptor, p53, Bcl2, vascular endothelial growth factor, cyclooxygenase-2, cyclin D1, human epidermal receptor-2 and Ki-67: Association with clinicopathological profiles and outcomes in gallbladder carcinoma

    PubMed Central

    Doval, Dinesh Chandra; Azam, Saud; Sinha, Rupal; Batra, Ullas; Mehta, Anurag

    2014-01-01

    Background: The present study observed the expression levels of epidermal growth factor receptor (EGFR), p53, Bcl2, vascular endothelial growth factor (VEGF), cyclooxygenase-2 (cox-2), cyclin D1, human epidermal receptor-2 (HER-2) and Ki-67 in gallbladder carcinoma (GBC) and their association with clinicopathological profiles and disease outcomes. Materials and Methods: Fifty consecutive samples of cholecystectomy/biopsies from GB bed (archived formalin fixed paraffin embedded tissue blocks of different stages of GBC) were included, and patient details related to their demographic profile, investigations, tumor profile, treatment, and follow-up were recorded. Immunohistochemistry was performed to study the expression levels. Results: Overexpression of EGFR, p53, Bcl2, VEGF, cox-2, cyclin D1 and HER-2 was observed as 74%, 44%, 8%, 34%, 66%, 64%, and 4%, respectively. Association of Bcl2 overexpression in mucinous morphology (40%, P = 0.045), cox-2 overexpression in early stage (I/II) tumors (87.5%, P = 0.028) and VEGF overexpression in alive patients (47.1%, P = 0.044) was observed. Co-expression of EGFR and p53 were statistically significant (P = 0.033). Ki-67 labeling index was significantly higher in patients in age group <40 years (P = 0.027), and poorly differentiated tumors (P = 0.023). Advanced disease and poorly differentiated tumors showed a significantly poor median survival (P < 0.05). Conclusion: EGFR, cox-2 and cyclin D1 were largely overexpressed. Advanced tumor stages and poorly differentiated tumors are predictors of poor survival. PMID:25225463

  15. Targeted expression of the E6 and E7 oncogenes of human papillomavirus type 16 in the epidermis of transgenic mice elicits generalized epidermal hyperplasia involving autocrine factors.

    PubMed Central

    Auewarakul, P; Gissmann, L; Cid-Arregui, A

    1994-01-01

    The E6 and E7 early genes of human papillomavirus type 16 have been shown in vitro to play a central role in the transforming capability of this virus. To explore their effects on differentiating epithelial cells in vivo, we used a bovine cytokeratin 10 (K10) promoter to target the expression of E6 and E7 to the suprabasal layers of the epidermis of transgenic mice. In two different lines of mice efficiently expressing the transgene, animals displayed generalized epidermal hyperplasia, hyperkeratosis and parakeratosis in the skin and the forestomach, both known to be sites of K10 expression. Northern (RNA) blot analysis revealed high levels of E6 and E7 transcripts, and in situ hybridizations localized these transcripts to the suprabasal strata of epidermis. In vivo labeling of proliferating cells showed two distinct effects of E6 and E7 expression in the epidermis: (i) an increase in the number of growing cells in the undifferentiated basal layer and (ii) abnormal proliferation of differentiated cells in the suprabasal strata. The expression of c-myc in the skin of transgenics was higher than that in control animals. The induction of c-myc transcription by topical application of tetradecanoyl phorbol acetate was prevented by simultaneous treatment with transforming growth factor beta 1 in nontransgenic skin but not in transgenic skin. In addition, transforming growth factor alpha was found to be overexpressed in the suprabasal layers of the transgenic epidermis. These findings suggest that autocrine mechanisms are involved in the development and maintenance of epidermal hyperplasia. Animals of both lines developed papillomas in skin sites exposed to mechanical irritation and wounding, suggesting that secondary events are necessary for progression to neoplasia. Collectively, these results provide new insights into the tumor promoter activities of human papillomavirus type 16 in epithelial cells in vivo. Images PMID:7969162

  16. Epidermal growth factor receptor expression affects the efficacy of the combined application of saponin and a targeted toxin on human cervical carcinoma cells.

    PubMed

    Bachran, Diana; Schneider, Stefanie; Bachran, Christopher; Urban, Romy; Weng, Alexander; Melzig, Matthias F; Hoffmann, Corinna; Kaufmann, Andreas M; Fuchs, Hendrik

    2010-09-01

    Cervical cancer is the second most common cancer in women worldwide. Targeting the epidermal growth factor receptor (EGFR) is a very promising approach since it is overexpressed in about 90% of cervical tumors. Here, we quantified the toxic effect of SE, a targeted toxin consisting of epidermal growth factor (EGF) as targeting moiety and the plant toxin saporin-3, on 3 common human cervical carcinoma cell lines (HeLa, CaSki and SiHa) and recently established lines (PHCC1 and PHCC2) from 2 different individuals. A human melanocytic and a mouse cell line served as negative control. Additionally, we combined SE with saponinum album, a saponin composite from Gypsophila paniculata, which exhibited synergistic properties in previous studies. The cell lines, except for SiHa cells, revealed high sensitivity to SE with 50% cell survival in the range of 5-24.5 nM. The combination with saponin resulted in a remarkable enhancement of cytotoxicity with enhancement factors ranging from 9,000-fold to 2,500,000-fold. The cytotoxicity of SE was clearly target receptor specific since free EGF blocks the effect and saporin-3 alone was considerably less toxic. For all cervical carcinoma cell lines, we evinced a clear correlation between EGFR expression and SE sensitivity. Our data indicate a potential use of targeted toxins for the treatment of cervical cancer. In particular, the combination with saponins is a promising approach since efficacy is drastically improved. PMID:20020492

  17. Expression and Prognostic Significance of Human Epidermal Growth Factor Receptors 1, 2 and 3 in Periampullary Adenocarcinoma

    PubMed Central

    Heby, Margareta; Warfvinge, Carl Fredrik; Nodin, Björn; Eberhard, Jakob; Jirström, Karin

    2016-01-01

    Periampullary adenocarcinoma, including pancreatic cancer, is a heterogeneous group of tumours with dismal prognosis, for which there is an urgent need to identify novel treatment strategies. The human epithelial growth factor receptors EGFR, HER2 and HER3 have been studied in several tumour types, and HER-targeting drugs have a beneficial effect on survival in selected types of cancer. However, these effects have not been evident in pancreatic cancer, and remain unexplored in other types of periampullary cancer. The prognostic impact of HER-expression in these cancers also remains unclear. The aim of this study was therefore to examine the expression and prognostic value of EGFR, HER2 and HER3 in periampullary cancer, with particular reference to histological subtype. To this end, protein expression of EGFR, HER2 and HER3, and HER2 gene amplification was assessed by immunohistochemistry and silver in situ hybridization, respectively, on tissue microarrays with tumours from 175 periampullary adenocarcinomas, with follow-up data on recurrence-free survival (RFS) and overall survival (OS) for up to 5 years. EGFR expression was similar in pancreatobiliary (PB) and intestinal (I) type tumours, but high HER2 and HER3 expression was significantly more common in I-type tumours. In PB-type cases receiving adjuvant gemcitabine, but not in untreated cases, high EGFR expression was significantly associated with a shorter OS and RFS, with a significant treatment interaction in relation to OS (pinteraction = 0.042). In I-type cases, high EGFR expression was associated with a shorter OS and RFS in univariable, but not in multivariable, analysis. High HER3 expression was associated with a prolonged RFS in univariable, but not in multivariable, analysis. Neither HER2 protein expression nor gene amplification was prognostic. The finding of a potential interaction between the expression of EGFR and response to adjuvant chemotherapy in PB-type tumours needs validation, and merits

  18. Epidermal melanin absorption in human skin

    NASA Astrophysics Data System (ADS)

    Norvang Nilsen, Lill T.; Fiskerstrand, Elisanne J.; Nelson, J. Stuart; Berns, Michael W.; Svaasand, Lars O.

    1996-01-01

    The principle of laser induced selective photothermolysis is to induced thermal damage to specific targets in such a manner that the temperature of the surrounding tissue is maintained below the threshold for thermal damage. The selectivity is obtained by selection of a proper wavelength and pulse duration. The technique is presently being used in the clinic for removal of port-wine stains. The presence of melanin in the epidermal layer can represent a limitation to the selectivity. Melanin absorption drops off significantly with increasing wavelength, but is significant in the entire wavelength region where the blood absorption is high. Treatment of port-wine stain in patients with high skin pigmentation may therefore give overheating of the epidermis, resulting in epidermal necrosis. Melanosomal heating is dependent on the energy and duration of the laser pulse. The heating mechanism for time scales less than typically 1 microsecond(s) corresponds to a transient local heating of the individual melanosomes. For larger time scales, heat diffusion out of the melanosomes become of increased importance, and the temperature distribution will reach a local steady state condition after typically 10 microsecond(s) . For even longer pulse duration, heat diffusing from neighboring melanosomes becomes important, and the temperature rise in a time scale from 100 - 500 microsecond(s) is dominated by this mechanism. The epidermal heating during the typical 450 microsecond(s) pulse used for therapy is thus dependent on the average epidermal melanin content rather than on the absorption coefficient of the individual melanosomes. This study will present in vivo measurements of the epidermal melanin absorption of human skin when exposed to short laser pulses (< 0.1 microsecond(s) ) from a Q-switched ruby laser and with long laser pulses (approximately 500 microsecond(s) ) from a free-running ruby laser or a long pulse length flashlamp pumped dye laser. The epidermal melanin

  19. Regulation of the human melanocortin 1 receptor expression in epidermal melanocytes by paracrine and endocrine factors and by ultraviolet radiation.

    PubMed

    Scott, M Cathy; Suzuki, Itaru; Abdel-Malek, Zalfa A

    2002-12-01

    The aim of this study is to investigate the regulation of the human melanocortin 1 receptor (MC1R) expression in cultured normal human melanocytes (NHM) by specific paracrine and endocrine factors, and by ultraviolet radiation (UVR). Treatment of NHM with alpha-melanotropin [alpha-melanocyte stimulating hormone (alpha-MSH)] increased MC1R mRNA level; the response was often more pronounced in NHM with a low (NHM-c) than in NHM with a high melanin content (NHM-b). Endothelin-1 increased MC1R mRNA level in NHM regardless of their melanin content. Basic fibroblast growth factor consistently up regulated MC1R mRNA level in NHM-b but not in NHM-c. Activation of protein kinase C by 12-0-tetradecanoylphorbol-13-acetate slightly increased, while stimulation of adenylate cyclase by forskolin markedly up-regulated the MC1R mRNA level. beta-Estradiol increased, and combined treatment with beta-estradiol and alpha-MSH further elevated, MC1R mRNA level in NHM-c and NHM-b. Testosterone reduced, while progesterone had no effect on, MC1R mRNA level. Agouti signaling protein reduced, and UVR down regulated dose-dependently MC1R mRNA level in NHM-b and NHM-c. This effect was reversed 24 h after irradiation with the lower doses of 7 or 14 mJ/cm2, but not after exposure to a higher, more cytotoxic dose of UVR. We conclude that the MC1R is regulated by paracrine factors, including its own ligands, by specific endocrine sex hormones, and by UVR. Differences in the responses of NHM to some of these factors suggest differential regulation of MC1R gene expression, which may contribute to the variation in constitutive and UV-induced cutaneous pigmentation in humans. PMID:12453185

  20. Improved biological activity of a single chain antibody fragment against human epidermal growth factor receptor 2 (HER2) expressed in the periplasm of Escherichia coli.

    PubMed

    Akbari, Vajihe; Sadeghi, Hamid Mir Mohammad; Jafarian-Dehkordi, Abbas; Abedi, Daryoush; Chou, C Perry

    2015-12-01

    A novel monoclonal antibody against human epidermal growth factor receptor 2 (HER2), i.e., pertuzumab (Perjeta®) developed by Genentech, has been verified to be effective in treating metastatic HER2-overexpressing breast cancer. The fact that the presence of the Fc region of the anti-HER2 is uncritical for growth inhibition of tumor cells suggests the potential biological activity of the associated antibody fragments. In the present study, we report functional expression of anti-HER2his-scFv, a single-chain variable fragment (scFv) derived from pertuzumab, in the periplasm of Escherichia coli and its purification. Biological activity of the soluble scFv produced in this manner was characterized using immunofluorescent staining, immunocytochemistry, flow cytometry and cytotoxicity assay. The effect of anti-HER2his-scFv on HER2 dimerization was also assessed by tyrosine kinase assay. It was observed that the purified scFv had a high specificity and affinity to HER2 receptors expressed on the surface of tumor cells with a selective cytotoxic effect on HER2-overexpressing SK-OV-3 cells. In addition, anti-HER2his-scFv was able to suppress phosphorylation of HER2 in the presence of heregulin. The results suggest that anti-HER2his-scFv can be a potential candidate for various therapeutic and diagnosis applications. PMID:26166178

  1. Spatiotemporal Expression of p63 in Mouse Epidermal Commitment

    PubMed Central

    Zhao, Qian; Liu, Shuang; Zhang, Huishan; Li, Na; Wang, Xinyue; Cao, Yujing; Ning, Lina; Duan, Enkui; Xia, Guoliang

    2015-01-01

    The embryonic surface ectoderm is a simple flat epithelium consisting of cells that express the cytokeratins K8/K18. Before stratification, K5/K14 expression substitutes K8/K18 expression, marking the event called epidermal commitment. Previous studies show that the transcription factor p63 plays an essential role in epidermal commitment. However, detailed expression information of p63 during early epidermal development in mice is still unclear. We systematically studied the expression pattern of p63 in mouse epidermal commitment, together with K8 and K5. We show that p63 expression could be detected as early as E8.5 in mouse embryos preceding epidermal commitment. p63 expression first appears near the newly formed somites and the posterior part of the embryo, further expanding to the whole embryonic surface with particular enrichment in the first branchial arches and the limb buds. ΔNp63 is the major class of isoforms expressed in this period. Relative expression intensity of p63 depends on the embryonic position. In summary, there is a sequential and regular expression pattern of K8, p63 and K5 in mouse epidermal commitment. Our study not only contributes to understanding the early events during epidermal development but also provides a basal tool to study the function of p63 in mammals. PMID:26690418

  2. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    PubMed Central

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Background and objective Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. Materials and methods DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths. Results A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05). Conclusion We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both

  3. Dactylone inhibits epidermal growth factor-induced transformation and phenotype expression of human cancer cells and induces G1-S arrest and apoptosis.

    PubMed

    Fedorov, Sergey N; Shubina, Larisa K; Bode, Ann M; Stonik, Valentin A; Dong, Zigang

    2007-06-15

    The marine natural chamigrane-type sesquiterpenoid, dactylone, is closely related to secondary metabolites of some edible species of red algae. In the present study, the effect of dactylone was tested on the mouse skin epidermal JB6 P+ Cl41 cell line and its stable transfectants as well as on several human tumor cell lines, including lung (H460), colon (HCT-116), and skin melanomas (SK-MEL-5 and SK-MEL-28). This natural product was effective at nontoxic doses as a cancer-preventive agent, which exerted its actions, at least in part, through the inhibition of cyclin D3 and Cdk4 expression and retinoblastoma tumor suppressor protein (Rb) phosphorylation. The inhibition of these cell cycle components was followed by cell cycle arrest at the G1-S transition with subsequent p53-independent apoptosis. Therefore, these data showed that application of dactylone and related compounds may lead to decreased malignant cell transformation and/or decreased tumor cell proliferation. PMID:17575161

  4. Expression of human epidermal growth factor receptor 2 in primary and paired parenchymal recurrent and/or metastatic sites of gastric cancer.

    PubMed

    Shibata, Ryosuke; Nimura, Satoshi; Hashimoto, Tatsuya; Miyake, Toru; Takeno, Shinsuke; Hoshino, Seiichiro; Nabeshima, Kazuki; Yamashita, Yuichi

    2014-09-01

    Human epidermal growth factor receptor 2 (HER2) status has been evaluated at the primary site of gastric cancer when planning trastuzumab therapy against recurrent or metastatic lesions, since tissue sampling is uncommon in recurrent or metastatic lesions. This study retrospectively investigated the concordance of HER2 expression between primary and metastatic/recurrent lesions in order to confirm sensitivity to trastuzumab. The subjects comprised 37 patients with gastric adenocarcinoma who underwent tissue biopsy or surgical resection of the primary sites and 49 paired synchronous or metachronous metastatic sites (excluding lymph nodes) at the Fukuoka University Hospital between January, 1998 and September, 2012. All the samples were evaluated for HER2 status at the invasive front by immunohistochemistry (IHC). The HER2 positivity rate of the primary sites was ~16% and the concordance ratio of the IHC results between primary and paired metastatic sites was ~97%. No discordant cases regarding HER2 status were found among metachronous interventions for metastatic lesions. Only one patient exhibited conversion from a HER2-negative status in all the portions of the primary site to a positive status in a metastatic site. In conclusion, a high concordance ratio for HER2 status was observed between primary and paired metastatic lesions. Thus, employing trastuzumab therapy against metastatic or recurrent gastric cancer based on the HER2 status of the primary lesion appears to be an acceptable approach. PMID:25054041

  5. Clinicopathological and prognostic impact of human epidermal growth factor receptor type 2 (HER2) and hormone receptor expression in uterine papillary serous carcinoma.

    PubMed

    Togami, Shinichi; Sasajima, Yuko; Oi, Takateru; Ishikawa, Mitsuya; Onda, Takashi; Ikeda, Shun-Ichi; Kato, Tomoyasu; Tsuda, Hitoshi; Kasamatsu, Takahiro

    2012-05-01

    Uterine papillary serous carcinoma (UPSC) is a rare and aggressive variant of endometrial carcinoma. Little is known about the pathological and biological features of this tumor. Human epidermal growth factor receptor 2 (HER2) and hormone receptor (HR) expression have an important role in tumor behavior and clinical outcome, but their relevance in UPSC is not clear. In the present study, the immunohistochemical expression of HER2 and HR was assessed in 27 patients with Stage I disease, 13 with Stage II disease, 25 with Stage III disease, and 6 with Stage IV disease. Correlations between HER2 and HR expression and the clinicopathological parameters of UPSC were evaluated using Cox's univariate and multivariate analyses. For all patients, the 5-year recurrence-free survival (RFS) and overall survival (OS) rates were 51% and 66%, respectively; in patients with Stage I, II, III and IV disease, the RFS and OS were 67%/81%, 59%/77%, 43%/54% and 0%/0%, respectively. Of all 71 patients, 14% (10/71) were positive for HER2 and 52% (37/71) were positive for HR. Overexpression of HER2 was correlated with lower OS (P = 0.01), whereas HR overexpression was correlated with higher OS (P = 0.008). In multivariate models, HER2, HR, and histologic subtype were identified as independent prognostic indicators for RFS (P = 0.022, P = 0.018, and P = 0.01, respectively), but HR was the only independent factor associated with OS (P = 0.044). Thus, HER2 and HR are prognostic variables in UPSC, with HR an independent prognostic factor for OS. PMID:22329832

  6. Infection of Keratinocytes with Trichophytum rubrum Induces Epidermal Growth Factor-Dependent RNase 7 and Human Beta-Defensin-3 Expression

    PubMed Central

    Rademacher, Franziska; Schröder, Lena; Brasch, Jochen; Harder, Jürgen

    2014-01-01

    Human keratinocytes are able to express various antimicrobial peptides (AMP) to protect the skin from exaggerated microbial colonization and infection. Recently, in vitro growth-inhibiting activity of the skin-derived AMP psoriasin, RNase 7 and human beta-defensin (hBD)-2 against dermatophytes such as Trichophyton (T.) rubrum have been reported. To evaluate whether keratinocytes are able to respond to T. rubrum infection by an induced expression of AMP we exposed primary keratinocytes to living conidia of T. rubrum. This led to conidia germination and mycelial growth which was paralleled by a strong gene induction of the skin-derived AMP RNase 7 and hBD-3. Gene expression of the AMP psoriasin (S100A7) and hBD-2 were only slightly induced. The T. rubrum-mediated RNase 7 gene induction was accompanied by increased secretion of RNase 7. Parallel treatment of the keratinocytes with T. rubrum and the cytokine combination IL-17A/IFN-γ resulted in synergistic induction of RNase 7 and hBD-3 expression. Since patients receiving therapy by inhibition of the epidermal growth factor receptor (EGFR) more often suffer from dermatophytoses we investigated whether EGFR may be involved in the T. rubrum-mediated RNase 7 and hBD-3 induction. Primary keratinocytes incubated with an EGFR blocking antibody as well as with the EGFR antagonist AG1478 showed a significantly diminished RNase 7 and hBD-3 induction upon exposure of the keratinocytes to T. rubrum indicating that EGFR is involved in the T. rubrum-mediated induction of RNase 7 and hBD-3. The growth of T. rubrum in vitro was inhibited by hBD-3 in a dose-dependent manner suggesting that hBD-3 may contribute to cutaneous innate defense against T. rubrum. Taken together our data indicate that keratinocytes are able to initiate a fast defense response towards T. rubrum by the increased expression of AMP active against T. rubrum. A dysregulation of AMP may contribute to chronic and recurring dermatophytoses. PMID:24747887

  7. Molecular characterization of the body site-specific human epidermal cytokeratin 9: cDNA cloning, amino acid sequence, and tissue specificity of gene expression.

    PubMed

    Langbein, L; Heid, H W; Moll, I; Franke, W W

    1993-12-01

    /plantar epidermis was found positive. By in situ hybridization and immunolocalization we further showed that CK 9 is only expressed in the suprabasal cell layers of this special epidermal tissue. We discuss the molecular properties of CK 9 and its cell type- and body site-specific expression in relation to the special differentiation of palmar/plantar epidermis and to diseases specific for this body site. PMID:7507869

  8. Coregulation of Epidermal Growth Factor Receptor/Human Epidermal Growth Factor Receptor 2 (HER2) Levels and Locations: Quantitative Analysis of HER2 Overexpression Effects

    SciTech Connect

    Hendriks, Bart S.; Opresko, Lee; Wiley, H. S.; Lauffenburger, Douglas A.

    2003-03-01

    Elevated expression of human epidermal growth factor receptor 2 (HER2) is know to alter cell signalilng and behavioral responses implicated in tumor progression. However, multiple diverse mechanisms may be involved in these overall effects, including signaling by HER2 itself, modulation of signalilng by epidermal growth factor receptor (EGFR) and modification of trafficking dynamics for both EGFR and HER2. Continued....

  9. Epidermal Growth Factor Receptor Expression Modulates Antitumor Efficacy of Vandetanib or Cediranib Combined With Radiotherapy in Human Glioblastoma Xenografts

    SciTech Connect

    Wachsberger, Phyllis R.; Lawrence, Yaacov R.; Liu Yi; Daroczi, Borbala; Xu Xia; Dicker, Adam P.

    2012-01-01

    Purpose: The purpose of this study was to determine the ability of radiation therapy (RT) combined with the tyrosine kinase inhibitors (TKI) vandetanib (antiepidermal growth factor receptor [EGFR] plus antivascular endothelial growth factor receptor [anti-VEGFR]) and cediranib (anti-VEGFR) to inhibit glioblastoma multiforme (GBM) growth. A secondary aim was to investigate how this regimen is modulated by tumor EGFR expression. Methods and Materials: Radiosensitivity was assessed by clonogenic cell survival assay. VEGF secretion was quantified by enzyme-linked immunosorbent assay. GBM (U87MG wild-type EGFR [wtEGFR] and U87MG EGFR-null) xenografts were treated with vandetanib, cediranib, and RT, alone or in combinations. Excised tumor sections were stained for proliferative and survival biomarkers. Results: In vitro, U87MG wtEGFR and U87 EGFR-null cells had similar growth kinetics. Neither TKI affected clonogenic cell survival following RT. However, in vivo, exogenous overexpression of wtEGFR decreased tumor doubling time (T2x) in U87MG xenografts (2.70 vs. 4.41 days for U87MG wtEGFR vs. U87MG vector, respectively). In U87MG EGFR-null cells, TKI combined with radiation was no better than radiation therapy alone. In U87MG wtEGFR, RT in combination with vandetanib (but not with cediranib) significantly increased tumor T2x compared with RT alone (T2x, 10.4 days vs. 4.8 days; p < 0.001). In vivo, growth delay correlated with suppression of pAkt, survivin, and Ki67 expression in tumor samples. The presence of EGFR augmented RT-stimulated VEGF release; this effect was inhibited by vandetanib. Conclusions: EGFR expression promoted tumor growth in vivo but not in vitro, suggesting a microenvironmental effect. GBM xenografts expressing EGFR exhibited greater sensitivity to both cediranib and vandetanib than EGFR-null tumors. Hence EGFR status plays a major role in determining a tumor's in vivo response to radiation combined with TKI, supporting a 'personalized' approach to

  10. Effects of Wnt3a on proliferation and differentiation of human epidermal stem cells

    SciTech Connect

    Jia Liwei; Zhou Jiaxi; Peng Sha; Li Juxue; Cao Yujing; Duan Enkui

    2008-04-11

    Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/{beta}-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active {beta}-catenin, two key members of the Wnt/{beta}-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/{beta}-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis.

  11. Cell motion predicts human epidermal stemness

    PubMed Central

    Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki

    2015-01-01

    Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083

  12. Production of human epidermal growth factor using adenoviral based system

    PubMed Central

    Negahdari, Babak; Shahosseini, Zahra; Baniasadi, Vahid

    2016-01-01

    Epidermal growth factor (EGF), a growth factor involved in cell growth and differentiation, is a small polypeptide with molecular weight of approximately 6 kDa known to be present in a number of different mammalian species. Experimental studies in animals and humans have demonstrated that the topical application of EGF accelerates the rate of epidermal regeneration of partial-thickness wounds and second-degree burns. Due to its commercial applications, Human EGF (hEGF) has been cloned in several forms. In the present study, adenoviral based expression system was used to produce biologically active recombinant hEGF. The presence of secreted recombinant hEGF was confirmed by a dot blot and its expression level was determined by enzyme-linked immuno-sorbent assay. Moreover, biological activity of secreted hEGF was evaluated by a proliferation assay performed on A549 cells. For production of hEGF in a secretory form, a chimeric gene coding for the hEGF fused to the signal peptide was expressed using adenoviral based method. This method enables the production of hEGF at the site of interest and moreover it could be used for cell proliferation and differentiation assays in tissue engineering research experiments instead of using commercially available EGF. PMID:27051431

  13. Neu differentiation factor upregulates epidermal migration and integrin expression in excisional wounds.

    PubMed Central

    Danilenko, D M; Ring, B D; Lu, J Z; Tarpley, J E; Chang, D; Liu, N; Wen, D; Pierce, G F

    1995-01-01

    Neu differentiation factor (NDF) is a 44-kD glycoprotein which was isolated from ras-transformed rat fibroblasts and indirectly induces tyrosine phosphorylation of the HER-2/neu receptor via binding to either the HER-3 or HER-4 receptor. NDF contains a receptor binding epidermal growth factor (EGF)-like domain and is a member of the EGF family. There are multiple different isoforms of NDF which arise by alternative splicing of a single gene. To date, in vivo biologic activities have not been demonstrated for any NDF isoform. Since NDF, HER-2/neu, and HER-3 are present in skin, and other EGF family members can influence wound keratinocytes in vivo, we investigated whether NDF would stimulate epidermal migration and proliferation in a rabbit ear model of excisional wound repair. In this model, recombinant human NDF-alpha 2 (rhNDF-alpha 2), applied once at the time of wounding, induced a highly significant increase in both epidermal migration and epidermal thickness at doses ranging from 4 to 40 micrograms/cm2. In contrast, rhNDF-alpha 1, rhNDF-beta 1, and rhNDF-beta 2 had no apparent biologic effects in this model. rhNDF-alpha 2 also induced increased neoepidermal expression of alpha 5 and alpha 6 integrins, two of the earliest integrins to appear during epidermal migration. In addition, rhNDF-alpha 2-treated wounds exhibited increased neoepidermal expression of cytokeratin 10 and filaggrin, both epidermal differentiation markers. NDF alpha isoforms were expressed in dermal fibroblasts of wounded and unwounded skin, while both HER-2/neu and HER-3 were expressed in unwounded epidermis and dermal adnexa. In wounds, HER-2/neu expression was markedly decreased in the wound neoepidermis while neoepidermal HER-3 expression was markedly upregulated. Taken together, these results suggest that endogenous NDF-alpha 2 may function as a paracrine mediator directing initial epidermal migration during cutaneous tissue repair. Images PMID:7860768

  14. Lowered Humidity Produces Human Epidermal Equivalents with Enhanced Barrier Properties

    PubMed Central

    Sun, Richard; Celli, Anna; Crumrine, Debra; Hupe, Melanie; Adame, Lillian C.; Pennypacker, Sally D.; Park, Kyungho; Uchida, Yoshikazu; Feingold, Kenneth R.; Elias, Peter M.; Ilic, Dusko

    2015-01-01

    Multilayered human keratinocyte cultures increasingly are used to model human epidermis. Until now, studies utilizing human epidermal equivalents (HEEs) have been limited because previous preparations do not establish a normal epidermal permeability barrier. In this report, we show that reducing environmental humidity to 50% relative humidity yields HEEs that closely match human postnatal epidermis and have enhanced repair of the permeability barrier. These cultures display low transepidermal water loss and possess a calcium and pH gradient that resembles those seen in human epidermis. These cultures upregulate glucosylceramide synthase and make normal-appearing lipid lamellar bilayers. The epidermal permeability barrier of these cultures can be perturbed, using the identical tools previously described for human skin, and recover in the same time course seen during in vivo barrier recovery. These cultures will be useful for basic and applied studies on epidermal barrier function. PMID:24803151

  15. Characterization of microfluidic human epidermal keratinocyte culture

    PubMed Central

    O’Neill, Adrian T.; Monteiro-Riviere, Nancy A.

    2008-01-01

    Human epidermal keratinocytes (HEK) are skin cells of primary importance in maintaining the body’s defensive barrier and are used in vitro to assess the irritation potential and toxicity of chemical compounds. Microfluidic systems hold promise for high throughput irritant and toxicity assays, but HEK growth kinetics have yet to be characterized within microscale culture chambers. This research demonstrates HEK patterning on microscale patches of Type I collagen within microfluidic channels and maintenance of these cells under constant medium perfusion for 72 h. HEK were shown to maintain 93.0%–99.6% viability at 72 h under medium perfusion ranging from 0.025–0.4 μl min−1. HEK maintained this viability while ∼100% confluent—a level not possible in 96 well plates. Microscale HEK cultures offer the ability to precisely examine the morphology, behavior and viability of individual cells which may open the door to new discoveries in toxicological screening methods and wound healing techniques. PMID:19002858

  16. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    PubMed

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. PMID:27371895

  17. Genome-wide transcriptome analysis of human epidermal melanocytes

    PubMed Central

    Haltaufderhyde, Kirk D.; Oancea, Elena

    2015-01-01

    Because human epidermal melanocytes (HEMs) provide critical protection against skin cancer, sunburn, and photoaging, a genome-wide perspective of gene expression in these cells is vital to understanding human skin physiology. In this study we performed high throughput sequencing of HEMs to obtain a complete data set of transcript sizes, abundances, and splicing. As expected, we found that melanocyte specific genes that function in pigmentation were among the highest expressed genes. We analyzed receptor, ion channel and transcription factor gene families to get a better understanding of the cell signalling pathways used by melanocytes. We also performed a comparative transcriptomic analysis of lightly versus darkly pigmented HEMs and found 16 genes differentially expressed in the two pigmentation phenotypes; of those, only one putative melanosomal transporter (SLC45A2) has known function in pigmentation. In addition, we found 166 genes with splice isoforms expressed exclusively in one pigmentation phenotype, 17 of which are genes involved in signal transduction. Our melanocyte transcriptome study provides a comprehensive view and may help identify novel pigmentation genes and potential pharmacological targets. PMID:25451175

  18. Activation of the human keratinocyte B1 bradykinin receptor induces expression and secretion of metalloproteases 2 and 9 by transactivation of epidermal growth factor receptor.

    PubMed

    Matus, Carola E; Ehrenfeld, Pamela; Pavicic, Francisca; González, Carlos B; Concha, Miguel; Bhoola, Kanti D; Burgos, Rafael A; Figueroa, Carlos D

    2016-09-01

    The B1 bradykinin receptor (BDKRB1) is a component of the kinin cascade localized in the human skin. Some of the effects produced by stimulation of BDKRB1 depend on transactivation of epidermal growth factor receptor (EGFR), but the mechanisms involved in this process have not been clarified yet. The primary purpose of this study was to determine the effect of a BDKRB1 agonist on wound healing in a mouse model and the migration and secretion of metalloproteases 2 and 9 from human HaCaT keratinocytes and delineate the signalling pathways that triggered their secretion. Although stimulation of BDKRB1 induces weak chemotactic migration of keratinocytes and wound closure in an in vitro scratch-wound assay, the BDKRB1 agonist improved wound closure in a mouse model. BDKRB1 stimulation triggers synthesis and secretion of both metalloproteases, effects that depend on the activity of EGFR and subsequent phosphorylation of ERK1/2 and p38 mitogen-activated protein kinases and PI3K/Akt. In the mouse model, immunoreactivity for both gelatinases was concentrated around wound borders. EGFR transactivation by BDKRB1 agonist involves Src kinases family and ADAM17. In addition to extracellular matrix degradation, metalloproteases 2 and 9 regulate cell migration and differentiation, cell functions that are associated with the role of BDKRB1 in keratinocyte differentiation. Considering that BDKRB1 is up-regulated by inflammation and/or by cytokines that are abundant in the inflammatory milieu, more stable BDKRB1 agonists may be of therapeutic value to modulate wound healing. PMID:27093919

  19. COMPARISON OF IN VITRO AND IN VIVO RESPONSES TO ARSENIC: GENE EXPRESSION PROFILING IN NORMAL HUMAN EPIDERMAL KERATINOCYTES AND HYPERKERATOSES FROM ARSENIC-EXPOSED HUMANS

    EPA Science Inventory

    Chronic exposure to arsenic is positively associated with skin, urinary bladder, lung, liver and kidney cancer development in humans. Elucidating the mode of action of arsenic carcinogenesis is a complicated issue as target cells are exposed to different toxic species of arsenic....

  20. Interleukin-4 Downregulation of Involucrin Expression in Human Epidermal Keratinocytes Involves Stat6 Sequestration of the Coactivator CREB-Binding Protein.

    PubMed

    Bao, Lei; Alexander, Jaime B; Zhang, Huayi; Shen, Kui; Chan, Lawrence S

    2016-06-01

    Skin barrier defects play an important role in atopic dermatitis (AD). Involucrin, an important barrier protein suppressed in human AD, is downregulated by interleukin-4 (IL-4). However, the molecular mechanism for IL-4 downregulation of involucrin has not been delineated, and especially how Stat6, a transcriptional activator, represses involucrin expression is unknown. Since Stats usually recruit p300/CBP in the general transcription machinery of their target genes and involucrin expression also involves p300/CBP, we hypothesize that Stat6 activated by IL-4 may sequestrate p300/CBP from the involucrin transcription complex, thus suppressing involucrin expression in keratinocytes. Using IL-4 transgenic mice, an AD mouse model, we find that involucrin expression is similarly downregulated as in human AD. In HaCat cells, the Jak inhibitor and dominant negative studies indicate that the Jaks-Stat6 pathway is involved in IL-4 downregulation of involucrin. Next, we transfected HaCat cells with an involucrin promoter-luciferase construct and then treated them with IL-4. IL-4 greatly suppresses the promoter activity, which is totally abolished by cotransfecting the CREB-binding protein (CBP) expression vector, indicating that IL-4 cannot downregulate involucrin in the presence of excess CBP. Finally, chromatin immunoprecipitation assay demonstrates that IL-4 decreases CBP binding to the involucrin transcription complex. For the first time, we defined a molecular mechanism for IL-4 downregulation of involucrin in keratinocytes, which may play an important role in the pathogenesis of AD. PMID:26918372

  1. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF)

    PubMed Central

    He, Yonghua; Schmidt, Monica A.; Erwin, Christopher; Guo, Jun; Sun, Raphael; Pendarvis, Ken; Warner, Brad W.; Herman, Eliot M.

    2016-01-01

    Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother’s breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N’ terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform. PMID:27314851

  2. Attribution to Heterogeneous Risk Factors for Breast Cancer Subtypes Based on Hormone Receptor and Human Epidermal Growth Factor 2 Receptor Expression in Korea.

    PubMed

    Park, Boyoung; Choi, Ji-Yeob; Sung, Ho Kyung; Ahn, Choonghyun; Hwang, Yunji; Jang, Jieun; Lee, Juyeon; Kim, Heewon; Shin, Hai-Rim; Park, Sohee; Han, Wonshik; Noh, Dong-Young; Yoo, Keun-Young; Kang, Daehee; Park, Sue K

    2016-04-01

    We conducted a heterogeneous risk assessment of breast cancer based on the hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) calculating the risks and population-based attributable fractions (PAFs) for modifiable and nonmodifiable factors.Using matched case-control study design from the Seoul Breast Cancer Study and the national prevalence of exposure, the risks and PAFs for modifiable and nonmodifiable factors were estimated for total breast cancers and subtypes.The attribution to modifiable factors was different for each subtype (luminal A, PAF = 61.4% [95% confidence interval, CI = 54.3%-69.8%]; luminal B, 21.4% [95% CI = 18.6-24.9%]; HER2-overexpression, 59.4% [95% CI = 47.8%-74.3%], and triple negative tumors [TNs], 27.1% [95% CI = 22.9%-32.4%)], and the attribution to the modifiable factors for the luminal A and HER2-overexpression subtypes was higher than that of the luminal B and TN subtypes (P heterogeneity ≤ 0.001). The contribution of modifiable reproductive factors to luminal A type in premenopausal women was higher than that of the other subtypes (18.2% for luminal A; 3.1%, 8.1%, and -3.1% for luminal B, HER2-overexpression, and TN subtypes, respectively; P heterogeneity ≤ 0.001). Physical activity had the highest impact preventing 32.6% of luminal A, 14.5% of luminal B, 38.0% of HER2-overexpression, and 26.9% of TN subtypes (P heterogeneity = 0.014). Total reproductive factors were also heterogeneously attributed to each breast cancer subtype (luminal A, 65.4%; luminal B, 24.1%; HER2-overexpression, 57.9%, and TN subtypes, -3.1%; P heterogeneity ≤ 0.001).Each pathological subtype of breast cancer by HRs and HER2 status may be associated with heterogeneous risk factors and their attributable risk, suggesting a different etiology. The luminal B and TN subtypes seemed to be less preventable despite intervention for alleged risk factors, even though physical activity had a high preventable

  3. Neoplastic transformation of immortalized human epidermal keratinocytes by ionizing radiation

    SciTech Connect

    Thraves, P.; Salehi, Z.; Dritschilo, A.; Rhim, J.S. )

    1990-02-01

    Efforts to investigate the progression of events that cause human cells to become neoplastic in response to ionizing radiation have been aided by the development of tissue culture systems of epithelial cells. In the present study, nontumorigenic human epidermal keratinocytes immortalized by adenovirus type 12 and simian virus 40 have been transformed by exposure to x-ray irradiation. Such transformants showed morphological alterations, formed colonies in soft agar, and induced carcinomas when transplanted into nude mice, whereas primary human epidermal keratinocytes exposed to radiation in this manner failed to show any evidence of transformation. These findings demonstrate the malignant transformation of human primary epithelial cells in culture by the combined action of a DNA tumor virus and radiation, indicating a multistep process for radiation-induced neoplastic conversion. This in vitro system may be useful as a tool for dissecting the process of radiation-induced neoplastic transformation of human epithelial cells and for detecting previously unreported human oncogenes.

  4. Epidermal growth factor receptor (EGFR) antisense transfection reduces the expression of EGFR and suppresses the malignant phenotype of a human ovarian cancer cell line.

    PubMed

    Brader, K R; Wolf, J K; Chakrabarty, S; Price, J E

    1998-01-01

    An EGFR-expressing clone of the human ovarian cancer line 2774 was transfected with an antisense construct of EGFR to test how suppression of this gene modulates the malignant phenotype. Transfected clones were screened for EGFR expression by Western blot and FACS analysis. Anchorage-independent growth was used to assess the effect of reduced EGFR on the malignant behavior of the cells. Several transfected clones with decreased EGFR (40-50% reduction) were identified. A correlation was noted between reduced EGFR and decreased anchorage-independent growth, with the transfected clones losing the ability to grow in agarose and responsiveness to exogenous EGF. These results suggest that EGFR may be an important factor in the malignant behavior of this ovarian cancer cell line. PMID:9683849

  5. Low expression of the E3 Ubiquitin Ligase CBL Confers Chemoresistance in Human Pancreatic Cancer and is Targeted by Epidermal Growth Factor Receptor Inhibition

    PubMed Central

    Kadera, Brian E.; Toste, Paul A.; Wu, Nanping; Li, Luyi; Nguyen, Andrew H.; Dawson, David W.; Donahue, Timothy R.

    2014-01-01

    Purpose Expression of CBL, an ubiquitin ligase, is decreased in 60% of human pancreatic ductal adenocarcinomas (PDACs) and is associated with shorter overall survival. We sought to determine how low CBL directly contributes to clinically more aggressive PDAC. Experimental Design Human PDACs were stained for CBL, pEGFR, and EGFR. CBL-low was modeled in PDAC cells (Panc-1, L3.6pl, AsPC-1) via transient transfection (siRNA) or stable knockdown (shRNA). Cell viability and apoptosis were measured by MTT assays and FACS. Immunoblot and a phospho-receptor tyrosine kinase (pRTK) array were used to probe signal transduction. NOD-scid-IL2Rγnull mice were subcutaneously implanted with PDAC or PDACCBL-low cells on opposite flanks and treated with gemcitabine ± erlotinib for ≥4 weeks. Results There was an inverse correlation between CBL and pEGFR protein expression in 12 of 15 tumors. CBL knockdown increased PDAC resistance to gemcitabine and 5-FU by upregulating pEGFR (Y1068), pERK, and pAKT. A pRTK array of PDACCBL-low cells revealed additional activated tyrosine kinases but all to a much lower magnitude than EGFR. Increased chemoresistance from low CBL was abrogated by the EGFR inhibitor erlotinib both in vitro and in vivo. Erlotinib + gemcitabine treated PDACCBL-low cells exhibited greater apoptosis by cleaved PARP, Caspase 3 and Annexin V/PI. Conclusions Low CBL causes chemoresistance in PDAC via stress-induced EGFR activation that can be effectively abrogated by EGFR inhibition. These results suggest that dysregulation of ubiquitination is a key mechanism of EGFR hyperactivation in PDAC and that low CBL may define PDAC tumors likely to respond to erlotinib treatment. PMID:25348515

  6. The distribution of saponins in vivo affects their synergy with chimeric toxins against tumours expressing human epidermal growth factor receptors in mice

    PubMed Central

    Bachran, C; Weng, A; Bachran, D; Riese, SB; Schellmann, N; Melzig, MF; Fuchs, H

    2010-01-01

    Background and purpose: Certain saponins synergize with antitumour drugs to enhance their efficacy, but the mechanisms underlying this synergy in vivo are not well studied. Here, we describe the distribution of Saponinum album (Spn) from Gypsophila paniculata L. in mice after subcutaneous injection. Experimental approach: The [3H]-labelled Spn used for in vivo experiments was biologically active, as it still increased the cytotoxicity of a chimeric toxin in vitro. Distribution of [3H]-Spn was measured in BALB/c mice, with or without subcutaneous tumours in the flank. Labelled Spn was subcutaneously injected in the neck, and samples of organs, blood, urine and tumour tissue were analysed for radioactivity, 5–240 min after the injection. Key results: The majority of [3H]-Spn distributed within 10 min throughout the entire animal, with high levels of radioactivity in the urine by 30 min. No preferential accumulation in tumour tissue or other organs was observed. In tumour-bearing mice, using a sequential combination of Spn (given first) and a chimeric toxin against the epidermal growth factor receptor, ErbB1, we tested two different pretreatment times for Spn. There was high antitumour efficacy (66% inhibition of tumour growth) after 60 min pre treatment with Spn, but no significant inhibition after 10 min pre treatment with Spn. Conclusions and implications: [3H]-Spn was rapidly cleared from the mice after s.c. injection, and antitumour synergy with chimeric toxins was correlated with the removal of excess Spn from tissues. Disposition of Spn in vivo may critically determine antitumour synergy with chimeric toxins. PMID:20015087

  7. Changes in epidermal growth factor receptor expression and response to ligand associated with acquired tamoxifen resistance or oestrogen independence in the ZR-75-1 human breast cancer cell line.

    PubMed Central

    Long, B.; McKibben, B. M.; Lynch, M.; van den Berg, H. W.

    1992-01-01

    We have examined the expression of receptors for epidermal growth factor (EGFR) by the ZR-75-1 human breast cancer cell line and tamoxifen resistant (ZR-75-9al 8 microM) and oestrogen independent/tamoxifen sensitive (ZR-PR-LT) variants. The parent line expressed a single class of high affinity binding sites (4,340 +/- 460 receptors/cell; Kd 0.23 +/- 0.04 nM). ZR-75-9al 8 microM cells, routinely maintained in medium containing 8 microM tamoxifen, were negative for oestrogen receptor (ER) and progesterone receptor (PGR) and expressed a markedly increased number of EGFR (14,723 +/- 2116 receptors/cell). Receptor affinity was unchanged. Time dependent reversal of the tamoxifen resistant phenotype was accompanied by a return to ER and PGR positivity and a fall in EGFR numbers to parent cell levels. In contrast ZR-PR-LT cells had a greatly reduced EGFR content (803 +/- 161 receptors/cell) accompanying elevated PGR numbers. Pre-treatment of these cells with suramin or mild acid stripping failed to expose receptors which may have been occupied by endogenously produced ligand. Increased proliferation of ZR-75-1 cells treated with EGFR (0.01-10 ng ml-1) was only observed in serum-free medium lacking insulin and oestradiol. Under these conditions untreated cells failed to proliferate. Both variant lines continued to proliferate in serum free medium in the absence or presence of insulin and oestradiol but failed to respond to exogenous EGF. PMID:1616857

  8. The biology of human epidermal growth factor receptor 2.

    PubMed

    Sundaresan, S; Penuel, E; Sliwkowski, M X

    1999-09-01

    Our understanding of the normal signaling mechanisms and functions of human epidermal growth factor receptor 2 (HER2) and other members of the HER family, namely epidermal growth factor receptor, HER3, and HER4, is growing rapidly. Activation of these receptors results in a diverse array of signals through the formation of homodimeric and heterodimeric receptor complexes; HER2 is the preferred dimerization partner for the other HERs. These oligomeric receptor complexes activate distinct signaling pathways, such as the Ras-MAPK and PI3-kinase pathways. These, in turn, affect various cellular processes. Recent gene deletion experiments in mice point to an important role for HER2 in cardiac and neural development, and evidence from other studies indicates that HER2 is involved in normal breast growth and development. Thus, HER2 is a key component of a complex signaling network that plays a critical role in the regulation of tissue development, growth, and differentiation. PMID:11122793

  9. Expression profiles of cortisol-inactivating enzyme, 11β-hydroxysteroid dehydrogenase-2, in human epidermal tumors and its role in keratinocyte proliferation.

    PubMed

    Terao, Mika; Itoi, Saori; Murota, Hiroyuki; Katayama, Ichiro

    2013-02-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) catalyzes the interconversion between hormonally active cortisol and inactive cortisone within cells. There are two isozymes: 11β-HSD1 activates cortisol from cortisone and 11β-HSD2 inactivates cortisol to cortisone. 11β-HSD1 was recently discovered in skin, and we subsequently found that the enzyme negatively regulates keratinocyte proliferation. We verified 11β-HSD1 and 11β-HSD2 expression in benign and malignant skin tumors and investigated the role of 11β-HSD in skin tumor pathogenesis. Randomly selected formalin-fixed sections of skin lesions of seborrheic keratosis (SK), squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) were stained with 11β-HSD1 and 11β-HSD2 antibodies, and 11β-HSD expression was also evaluated in murine epidermis in which hyperproliferation was induced by 12-O-tetradecanoylphorbol-13 acetate (TPA). We observed that 11β-HSD1 expression was decreased in all SK, SCC, and BCC lesions compared with unaffected skin. Conversely, 11β-HSD2 expression was increased in SK and BCC but not in SCC. Overexpression of 11β-HSD2 in keratinocytes increased cell proliferation. In the murine model, 11β-HSD1 expression was decreased in TPA-treated hyperproliferative skin. Our findings suggest that 11β-HSD1 expression is decreased in keratinocyte proliferative conditions, and 11β-HSD2 expression is increased in basal cell proliferating conditions, such as BCC and SK. Assessing 11β-HSD1 and 11β-HSD2 expression could be a useful tool for diagnosing and characterizing skin tumors. PMID:23362866

  10. Delphinidin, a dietary antioxidant, induces human epidermal keratinocyte differentiation but not apoptosis: studies in submerged and three-dimensional epidermal equivalent models.

    PubMed

    Chamcheu, Jean Christopher; Afaq, Farrukh; Syed, Deeba N; Siddiqui, Imtiaz A; Adhami, Vaqar M; Khan, Naghma; Singh, Sohinderjit; Boylan, Brendan T; Wood, Gary S; Mukhtar, Hasan

    2013-05-01

    Delphinidin (Del), [3,5,7,3'-,4'-,5'-hexahydroxyflavylium], an anthocyanidin and a potent antioxidant abundantly found in pigmented fruits and vegetables exhibits proapoptotic effects in many cancer cells. Here, we determined the effect of Del on growth, apoptosis and differentiation of normal human epidermal keratinocytes (NHEKs) in vitro in submerged cultures and examined its effects in a three-dimensional (3D) epidermal equivalent (EE) model that permits complete differentiation reminiscent of in vivo skin. Treatment of NHEKs with Del (10-40 μm; 24-48 h) significantly enhanced keratinocyte differentiation. In Del-treated cells, there was marked increase in human involucrin (hINV) promoter activity with simultaneous increase in the mRNA and protein expressions of involucrin and other epidermal differentiation markers including procaspase-14 and transglutaminase-1 (TGM1), but without any effect on TGM2. Del treatment of NHEKs was associated with minimal decrease in cell viability, which was not associated with apoptosis as evident by lack of modulation of caspases, apoptosis-related proteins including Bcl-2 family of proteins and poly(ADP-ribose) polymerase cleavage. To establish the in vivo relevance of our observations in submerged cultures, we then validated these effects in a 3D EE model, where Del was found to significantly enhance cornification and increase the protein expression of cornification markers including caspase-14 and keratin 1. For the first time, we show that Del induces epidermal differentiation using an experimental system that closely mimics in vivo human skin. These observations suggest that Del could be a useful agent for dermatoses associated with epidermal barrier defects including aberrant keratinization, hyperproliferation or inflammation observed in skin diseases like psoriasis and ichthyoses. PMID:23614741

  11. Delphinidin, a dietary antioxidant, induces human epidermal keratinocyte differentiation but not apoptosis: studies in submerged and three-dimensional epidermal equivalent models

    PubMed Central

    Chamcheu, Jean Christopher; Afaq, Farrukh; Syed, Deeba N.; Siddiqui, Imtiaz A.; Adhami, Vaqar M.; Khan, Naghma; Singh, Sohinderjit; Boylan, Brendan T.; Wood, Gary S.; Mukhtar, Hasan

    2013-01-01

    Delphinidin (Del), [3,5,7,3′-,4′-,5′-hexahydroxyflavylium], an anthocyanidin and a potent antioxidant abundantly found in pigmented fruits and vegetables exhibits proapoptotic effects in many cancer cells. Here, we determined the effect of Del on growth, apoptosis and differentiation of normal human epidermal keratinocytes (NHEKs) in vitro in submerged cultures and examined its effects in a three-dimensional (3D) epidermal equivalent (EE) model that permits complete differentiation reminiscent of in vivo skin. Treatment of NHEKs with Del (10–40 μm; 24–48 h) significantly enhanced keratinocyte differentiation. In Del-treated cells, there was marked increase in human involucrin (hINV) promoter activity with simultaneous increase in the mRNA and protein expressions of involucrin and other epidermal differentiation markers including procaspase-14 and transglutaminase-1 (TGM1), but without any effect on TGM2. Del treatment of NHEKs was associated with minimal decrease in cell viability, which was not associated with apoptosis as evident by lack of modulation of caspases, apoptosis-related proteins including Bcl-2 family of proteins and poly(ADP-ribose) polymerase cleavage. To establish the in vivo relevance of our observations in submerged cultures, we then validated these effects in a 3D EE model, where Del was found to significantly enhance cornification and increase the protein expression of cornification markers including caspase-14 and keratin 1. For the first time, we show that Del induces epidermal differentiation using an experimental system that closely mimics in vivo human skin. These observations suggest that Del could be a useful agent for dermatoses associated with epidermal barrier defects including aberrant keratinization, hyperproliferation or inflammation observed in skin diseases like psoriasis and ichthyoses. PMID:23614741

  12. Neuropilin 1 expression correlates with differentiation status of epidermal cells and cutaneous squamous cell carcinomas.

    PubMed

    Shahrabi-Farahani, Shokoufeh; Wang, Lili; Zwaans, Bernadette M M; Santana, Jeans M; Shimizu, Akio; Takashima, Seiji; Kreuter, Michael; Coultas, Leigh; D'Amore, Patricia A; Arbeit, Jeffrey M; Akslen, Lars A; Bielenberg, Diane R

    2014-07-01

    Neuropilins (NRPs) are cell surface receptors for vascular endothelial growth factor (VEGF) and SEMA3 (class 3 semaphorin) family members. The role of NRPs in neurons and endothelial cells has been investigated, but the expression and role of NRPs in epithelial cells is much less clear. Herein, the expression and localization of NRP1 was investigated in human and mouse skin and squamous cell carcinomas (SCCs). Results indicated that NRP1 mRNA and protein was expressed in the suprabasal epithelial layers of the skin sections. NRP1 staining did not overlap with that of keratin 14 (K14) or proliferating cell nuclear antigen, but did co-localize with staining for keratin 1, indicating that differentiated keratinocytes express NRP1. Similar to the expression of NRP1, VEGF-A was expressed in suprabasal epithelial cells, whereas Nrp2 and VEGFR2 were not detectable in the epidermis. The expression of NRP1 correlated with a high degree of differentiation in human SCC specimens, human SCC xenografts, and mouse K14-HPV16 transgenic SCC. UVB irradiation of mouse skin induced Nrp1 upregulation. In vitro, Nrp1 was upregulated in primary keratinocytes in response to differentiating media or epidermal growth factor-family growth factors. In conclusion, the expression of NRP1 is regulated in the skin and is selectively produced in differentiated epithelial cells. NRP1 may function as a reservoir to sequester VEGF ligand within the epithelial compartment, thereby modulating its bioactivity. PMID:24791743

  13. Esterase Activity and Intracellular Localization in Reconstructed Human Epidermal Cultured Skin Models

    PubMed Central

    Katayanagi, Mishina; Hashimoto, Fumie

    2015-01-01

    Background Reconstructed human epidermal culture skin models have been developed for cosmetic and pharmaceutical research. Objective This study evaluated the total and carboxyl esterase activities (i.e., Km and Vmax, respectively) and localization in two reconstructed human epidermal culture skin models (LabCyte EPI-MODEL [Japan Tissue Engineering] and EpiDerm [MatTek/Kurabo]). The usefulness of the reconstruction cultured epidermis was also verified by comparison with human and rat epidermis. Methods Homogenized epidermal samples were fractioned by centrifugation. p-nitrophenyl acetate and 4-methylumbelliferyl acetate were used as substrates of total esterase and carboxyl esterase, respectively. Results Total and carboxyl esterase activities were present in the reconstructed human epidermal culture skin models and were localized in the cytosol. Moreover, the activities and localization were the same as those in human and rat epidermis. Conclusion LabCyte EPI-MODEL and EpiDerm are potentially useful for esterase activity prediction in human epidermis. PMID:26082583

  14. Corrective transduction of human epidermal stem cells in laminin-5-dependent junctional epidermolysis bullosa.

    PubMed

    Dellambra, E; Vailly, J; Pellegrini, G; Bondanza, S; Golisano, O; Macchia, C; Zambruno, G; Meneguzzi, G; De Luca, M

    1998-06-10

    Laminin-5 is composed of three distinct polypeptides, alpha3, beta3, and gamma2, which are encoded by three different genes, LAMA3, LAMB3, and LAMC2, respectively. We have isolated epidermal keratinocytes from a patient presenting with a lethal form of junctional epidermolysis bullosa characterized by a homozygous mutation of the LAMB3 gene, which led to complete absence of the beta3 polypeptide. In vitro, beta3-null keratinocytes were unable to synthesize laminin-5 and to assemble hemidesmosomes, maintained the impairment of their adhesive properties, and displayed a decrease of their colony-forming ability. A retroviral construct expressing a human beta3 cDNA was used to transduce primary beta3-null keratinocytes. Clonogenic beta3-null keratinocytes were transduced with an efficiency of 100%. Beta3-transduced keratinocytes were able to synthesize and secrete mature heterotrimeric laminin-5. Gene correction fully restored the keratinocyte adhesion machinery, including the capacity of proper hemidesmosomal assembly, and prevented the loss of the colony-forming ability, suggesting a direct link between adhesion to laminin-5 and keratinocyte proliferative capacity. Clonal analysis demonstrated that holoclones expressed the transgene permanently, suggesting stable correction of epidermal stem cells. Because cultured keratinocytes are used routinely to make autologous grafts for patients suffering from large skin or mucosal defects, the full phenotypic reversion of primary human epidermal stem cells defective for a structural protein opens new perspectives in the long-term treatment of genodermatoses. PMID:9650620

  15. In vitro human epidermal penetration of 1-bromopropane.

    PubMed

    Frasch, H Frederick; Dotson, G Scott; Barbero, Ana M

    2011-01-01

    1-Bromopropane (1-BP; CAS number 106-94-5), also known as n-propyl bromide, is a halogenated short-chain alkane used as an organic solvent with numerous commercial and industrial applications, including garment dry cleaning and vapor degreasing of metals. The purpose of this study was to determine the dermal absorption characteristics and corrosivity of 1-BP. Heat-separated human epidermal membranes were mounted on static diffusion cells. Different exposure scenarios were studied (infinite dose, finite dose, and transient exposure) using neat 1-BP and saturated aqueous solution as donor. Steady-state fluxes for infinite-dose neat 1-BP exposure averaged 625 to 960 μg cm(-2) h(-1). The finite-dose (10 μl/cm(2) = 13.5 mg/cm(2)) unoccluded donor resulted in penetration of <0.2% of the applied dose (22 μg/cm(2)). A 10-min transient exposure to infinite dose resulted in total penetration of 179 μg/cm(2). Steady-state 1-BP fluxes from neat application of a commercial dry cleaning solvent were similar (441 to 722 μg cm(-2) h(-1)). The permeability coefficient of 1-BP in water vehicle was 0.257 ± 0.141 cm/h. The absorption potential of 1-BP following dermal exposure is dependent upon the type and duration of exposure. Donor losses due to evaporation were approximately 500-fold greater than dermal absorption flux; evaporation flux was 420 mg cm(-2) h(-1). 1-BP is cytotoxic but not corrosive, based on results from a cultured reconstructed human epidermal model (EpiDerm Skin Corrosivity Test). PMID:21830855

  16. Imaging sulfur mustard lesions in human epidermal tissues and keratinocytes by confocal and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert; Madren-Whalley, Janna S.

    2002-06-01

    Topical exposure to sulfur mustard (HD), a known theat agent, produces persistent and debilitating cutaneous blisters. The blisters occur at the dermal-epidermal junction following a dose-dependent latent period of 8-24 h, however, the primary lesions causing vesication remain uncertain. Immunofluorescent images reveal that a 5-min exposure to 400 (mu) M HD disrupts molecules that are also disrupted by epidermolysis bullosa-type blistering diseases of the skin. Using keratinocyte cultures and fluorochomes conjugated to two different keratin-14 (K14) antibodies (clones CKB1 and LL002), results have shown a statistically significant (p<0.1) 1-h decrease of 29.2% in expression of the CKB1 epitope, a nearly complete loss of CKB1 expression within 2 h, and progressive cytoskeletal (K14) collapse without loss in expression of the LL002 epitope. With human epidermal tissues, multi-photon images of (alpha) 6 integrin and laminin 5 showed disruptive changes in the cell-surface organization and integrity of these adhesion molecules. At 1 H postexposure, analyses showed a statistically significant (p<0.1) decrease of 27.3% in (alpha) 6 integrin emissions, and a 32% decrease in laminin 5 volume. Multi-photon imaging indicates that molecules essential for epidermal-dermal attachment are early targets in the alkylating events leading to HD-induced vesication.

  17. Mucin1 expression in focal epidermal dysplasia of actinic keratosis

    PubMed Central

    Carrillo, Luz Marina; Rojas, Héctor; Ramírez, Richard; Reyes, Oscar; Suárez, Ambar; Ortega, Fabiana

    2015-01-01

    Background Actinic keratoses (AKs) are generally considered as premalignant skin lesions that can progress into squamous cell carcinoma (SCC) in situ and invasive SCC. However, its progression to SCC is still matter of debate. A transmembrane glycoprotein that contributes to the progression of certain premalignant and malignant lesions is mucin1 (MUC1). Nevertheless, their functions in the skin lesions are not yet fully clear. Therefore, the aim of this study is to ascertain whether MUC1 is present in the focal epidermal dysplasia of AK. Methods Fourteen skin biopsies from patients diagnosed with AK were selected. They were classified according to the degree of dysplasia in keratinocyte intraepidermal neoplasia (KIN) I, KIN II, and KIN III. In five biopsies the three degrees were present, in two biopsies both KIN I and KIN II, in four biopsies only KIN I, and in three biopsies only KIN III. The presence of MUC1 was assessed by immunofluorescence staining using confocal laser scanning microscopy. Results Immunostaining revealed that MUC1 was present over the entire cell surface of only a few atypical basal keratinocytes confined to the lower third of the epidermis (KIN I). While in KIN II where atypical keratinocytes occupy the lower two thirds, MUC1 was localized at the apical surface of some atypical keratinocytes and over the entire cell surface of some of them. Interestingly, in KIN III where the atypical keratinocytes extend throughout the full thickness, MUC1 was localized at the apical surface and over the entire cell surface of many of these cells. Conversely, MUC1 expression was not detected in the epidermis of normal skin. Conclusions Our findings suggest that the expression of MUC1 in AK would be induced by alteration of keratinocyte stratification and differentiation and associated to the degree of dysplasia rather than the thickness of the epidermis. PMID:26605291

  18. Dynamic and Physical Clustering of Gene Expression during Epidermal Barrier Formation in Differentiating Keratinocytes

    PubMed Central

    Copley, Richard; Taylor, Martin S.; Hayden, Patrick J.; Stolper, Gina; Mott, Richard; Hein, Jotun; Moffatt, Miriam F.; Cookson, William O. C. M.

    2009-01-01

    The mammalian epidermis is a continually renewing structure that provides the interface between the organism and an innately hostile environment. The keratinocyte is its principal cell. Keratinocyte proteins form a physical epithelial barrier, protect against microbial damage, and prepare immune responses to danger. Epithelial immunity is disordered in many common diseases and disordered epithelial differentiation underlies many cancers. In order to identify the genes that mediate epithelial development we used a tissue model of the skin derived from primary human keratinocytes. We measured global gene expression in triplicate at five times over the ten days that the keratinocytes took to fully differentiate. We identified 1282 gene transcripts that significantly changed during differentiation (false discovery rate <0.01%). We robustly grouped these transcripts by K-means clustering into modules with distinct temporal expression patterns, shared regulatory motifs, and biological functions. We found a striking cluster of late expressed genes that form the structural and innate immune defences of the epithelial barrier. Gene Ontology analyses showed that undifferentiated keratinocytes were characterised by genes for motility and the adaptive immune response. We systematically identified calcium-binding genes, which may operate with the epidermal calcium gradient to control keratinocyte division during skin repair. The results provide multiple novel insights into keratinocyte biology, in particular providing a comprehensive list of known and previously unrecognised major components of the epidermal barrier. The findings provide a reference for subsequent understanding of how the barrier functions in health and disease. PMID:19888454

  19. Prognostic impact of KI67, p53, human epithelial growth factor receptor 2, topoisomerase IIalpha, epidermal growth factor receptor, and nm23 expression of ovarian carcinomas and disseminated tumor cells in the bone marrow.

    PubMed

    Schindlbeck, C; Hantschmann, P; Zerzer, M; Jahns, B; Rjosk, D; Janni, W; Rack, B; Sommer, H; Friese, K

    2007-01-01

    Examination of tumor biological factors for prognostic and predictive indicators is not part of routine testing in ovarian cancer. As in other tumors, the detection of hematogenous tumor spread could help to estimate the risk of metastatic disease. We examined the expression of p53, KI67, topoisomerase IIalpha (Top IIa), epidermal growth factor receptor (EGFR), human epithelial growth factor receptor 2 (HER2) and nm23 in tumor tissues from 90 patients with ovarian cancer. All underwent bone marrow (BM) aspiration and screening for disseminated tumor cells in the bone marrow (DTC-BM) at primary diagnosis. BM aspiration, cytospin preparation, and immunocytochemical staining with the anticytokeratin antibody (A45-B/B3) were done following a standardized protocol. The expression of p53, KI67, Top IIa, EGFR, HER2, and nm23 was evaluated by immunohistochemistry on paraffin-embedded tissue samples and classified by percentage of stained cells or immunoreactive score (IRS). The prognostic impact of the individual factors together with standard histologic parameters was calculated by univariate and multivariate analyses. Expression rates for HER2 (2+/3+: 34.5%), KI67 (median 30%), p53 (median IRS 5), and Top IIa (median IRS 4) were relatively high, whereas nm23 (median IRS 2) and EGFR (IRS 0: 61%) showed weak staining. In 21/90 patients (23.3%), DTC-BM (>/=1/2 x 10(6) cells) could be detected. The presence of DTC-BM was inversely related to nodal status (P = .015) but not to the other factors examined. Tumor stage (P = .02), lymph node involvement (P = .003), grade (P = .046), postoperative tumor residue (P < .001), peritoneal seeding (P = .02), and KI67 (P = .046) significantly correlated with overall survival (OS) after a median observation time of 28 months (2-105). The finding of ascites was borderline significant (P = .050). The presence of DTC-BM (P = .04) and KI67 positivity (P = .02) predicted reduced distant disease-free survival. By multivariate analysis

  20. Modulation of epidermal growth factor receptors by human alpha interferon.

    PubMed Central

    Zoon, K C; Karasaki, Y; zur Nedden, D L; Hu, R Q; Arnheiter, H

    1986-01-01

    Treatment of Madin-Darby bovine kidney (MDBK) cells with human interferon (IFN)-alpha 2 at 37 degrees C results in a dose-dependent inhibition of cell growth and a reduction of the subsequent binding of 125I-labeled epidermal growth factor (EGF) at 4 degrees C. Human IFN-beta and -gamma, which exhibit little antiviral and antiproliferative activities on MDBK cells, have little effect on cell growth or the binding of 125I-labeled EGF to these cells. The binding of EGF is decreased after exposure to IFN-alpha for greater than 8 hr. Scatchard analyses of the EGF binding data indicate that a 20-hr exposure period results in a decrease in the apparent number of cell-surface EGF receptors and a reduction in the affinity of EGF for its receptor. The rate of internalization of EGF by MDBK cells does not appear to be affected by IFN treatment. PMID:3095830

  1. Modulation of epidermal growth factor receptors by human alpha interferon.

    PubMed

    Zoon, K C; Karasaki, Y; zur Nedden, D L; Hu, R Q; Arnheiter, H

    1986-11-01

    Treatment of Madin-Darby bovine kidney (MDBK) cells with human interferon (IFN)-alpha 2 at 37 degrees C results in a dose-dependent inhibition of cell growth and a reduction of the subsequent binding of 125I-labeled epidermal growth factor (EGF) at 4 degrees C. Human IFN-beta and -gamma, which exhibit little antiviral and antiproliferative activities on MDBK cells, have little effect on cell growth or the binding of 125I-labeled EGF to these cells. The binding of EGF is decreased after exposure to IFN-alpha for greater than 8 hr. Scatchard analyses of the EGF binding data indicate that a 20-hr exposure period results in a decrease in the apparent number of cell-surface EGF receptors and a reduction in the affinity of EGF for its receptor. The rate of internalization of EGF by MDBK cells does not appear to be affected by IFN treatment. PMID:3095830

  2. p53 Acts as a Co-Repressor to Regulate Keratin 14 Expression during Epidermal Cell Differentiation

    PubMed Central

    Chao, Chung-Faye; Lu, Mei-Hua; Lin, Hwang-Chi; Chiou, Shih-Hwa; Tao, Pao-Luh; Chen, Jang-Yi

    2012-01-01

    During epidermal cell differentiation, keratin 14 (K14) expression is down-regulated, p53 expression varies, and the expression of the p53 target genes, p21 and 14-3-3σ, increases. These trends suggest that the relative transcriptional activity of p53 is increased during epidermal cell differentiation. To determine the relationship between K14 and p53, we constructed K14 promoters of various sizes and found that wild-type p53 could repress the promoter activity of all of the K14 promoter constructs in H1299 cells. K14-p160 contains an SP1 binding site mutation that prevents p53 from repressing K14 expression. Using a DNA affinity precipitation assay, we confirmed that p53 forms a complex with SP1 at the SP1 binding site between nucleotides -48 and -43 on the K14 promoter. Thus, our data indicate that p53 acts as a co-repressor to down-regulate K14 expression by binding to SP1. Next, we used a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced epidermal cell differentiation model to examine the inhibition of K14 expression caused by increased p53 activity. Human ovarian teratocarcinoma C9 cells were treated with TPA to induce differentiation. Over-expression of the dominant negative p53 mutant ΔTAp53, which inhibits p53 activity, prevented the TPA-induced K14 down-regulation in C9 cells. Furthermore, treatment of normal primary human foreskin keratinocytes (PHFK) with the p53 inhibitor pifithrin-α (PFT-α) showed that the inhibition of p53 activity relieves K14 repression during epidermal cell differentiation. Finally, we found that TPA induces the phosphorylation of p53 at residue 378, which enhances the affinity of p53 to bind to Sp1 and repress K14 expression. PMID:22911849

  3. EFFECT OF PARACETAMOL ON MELANIZATION PROCESS IN HUMAN EPIDERMAL MELANOCYTES.

    PubMed

    Wrześniok, Dorota; Oprzondek, Martyna; Hechmann, Anna; Beberok, Artur; Otreba, Michał; Buszman, Ewa

    2016-01-01

    Paracetamol (acetaminophen) is commonly used as a drug of choice for treatment of pain and fever. Unlike non-steroidal anti-inflammatory drugs (NSAIDs) it does not cause gastrointestinal damage or untoward cardiorenal effects, however cutaneous adverse effects have been reported. It is known that paracetamol binds to melanin biopolymers, but the relation between the affinity of this drug to melanin and its toxicity is not documented. The aim of this work was to examine the impact of paracetamol on melanogenesis in cultured human normal epidermal melanocytes (HEMn-DP). The effect of paracetamol on cell viability was determined by WST-1 assay, melanin content and tyrosinase activity were measured spectrophotometrically. It has been demonstrated that paracetamol induced concentration-dependent loss in melanocytes viability. The value of EC50 was found to be - 20.0 mM. The analyzed drug inhibited melanin biosynthesis in a concentration-dependent manner by decreasing the melanin content as well as the tyrosinase activity. The demonstrated inhibitory effect of paracetamol on melanization process in normal epidermal melanocytes in vitro may explain the potential role of melanin biopolymer in the mechanisms of undesirable side effects of this drug in vivo, as a result of its accumulation in pigmented tissues. PMID:27476283

  4. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    SciTech Connect

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-04-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.

  5. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    SciTech Connect

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-08-26

    Highlights: {yields} Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. {yields} The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. {yields} Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  6. BRCA1 regulation of epidermal growth factor receptor (EGFR) expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function.

    PubMed

    Kumaraswamy, E; Wendt, K L; Augustine, L A; Stecklein, S R; Sibala, E C; Li, D; Gunewardena, S; Jensen, R A

    2015-08-13

    Breast cancer 1 (BRCA1)-associated breast cancers are mostly basal-like high-grade ductal carcinomas that frequently overexpress epidermal growth factor receptor (EGFR). Aberrant EGFR expression is correlated with disease progression, resistance to radiation and chemotherapy, and poor clinical prognosis. Although BRCA1 is involved in multiple cellular processes, its functional role in EGFR regulation remains enigmatic. Here, we report a previously unrecognized posttranscriptional mechanism by which BRCA1 regulates EGFR expression through the induction of miR-146a. We demonstrate that EGFR expression correlates negatively with BRCA1, whereas miR-146a levels increase with BRCA1. We show that BRCA1 binds to MIR146A promoter and activates transcription, which in turn attenuates EGFR expression. Knockdown of miR-146a in BRCA1-overexpressing cells negated this effect and suppressed its ability to inhibit proliferation and transformation. In archived triple-negative breast cancer samples, we show a strong positive correlation between BRCA1 and miR-146a expression. We also show that low expression of miR-146a strongly predicts positive lymph node status and is associated with distinctively poor overall survival of patients. Together, these observations provide an insight into a novel BRCA1miR-146aEGFR paradigm by which BRCA1 carries out an aspect of tumor suppressor function that is potentially amenable to therapeutic intervention. PMID:25417703

  7. Kinetics of growth and differentiation of cultured human epidermal keratinocytes

    SciTech Connect

    Albers, K.M.

    1985-01-01

    A study was made of the interrelationship between replication and differentiation in cultures of human epidermal keratinocytes. Measures of both parameters were made using newly developed methods to quantify the rate at which keratinocytes replicate and the rate at which they withdraw from the cell cycle. Keratinocyte replication was measured by determining the cell doubling time, labeling index, and cell cycle duration. Cell cycle length was measured using a double label assay that determines the length of time between two successive phases of DNA synthesis. The first DNA synthesis phase was marked by labeling keratinocytes with /sup 14/C-thymidine. At the next round of DNA synthesis, cells were labeled with bromodeoxyuridine, a heavy analog of thymidine. The cell cycle length is given by the time required for the /sup 14/C-labeled DNA to become double labeled. To measure keratinocyte differentiation, the rate at which cells withdraw from the cell cycle was determined. To measure withdrawal, the percentage of cells labeled by a pulse of /sup 14/C-thymidine that failed to undergo a second cycle of DNA synthesis, as measured by bromodeoxyuridine incorporation, was determined. Cells which failed to undergo a second cycle of synthesis were considered to have differentiated and withdrawn from the cell cycle.

  8. Effects of soap-water wash on human epidermal penetration.

    PubMed

    Zhu, Hanjiang; Jung, Eui-Chang; Phuong, Christina; Hui, Xiaoying; Maibach, Howard

    2016-08-01

    Skin decontamination is a primary interventional method used to decrease dermal absorption of hazardous contaminants, including chemical warfare agents, pesticides and industrial pollutants. Soap and water wash, the most common and readily available decontamination system, may enhance percutaneous absorption through the "wash-in effect." To understand better the effect of soap-water wash on percutaneous penetration, and provide insight to improving skin decontamination methods, in vitro human epidermal penetration rates of four C(14) -labeled model chemicals (hydroquinone, clonidine, benzoic acid and paraoxon) were assayed using flow-through diffusion cells. Stratum corneum (SC) absorption rates of these chemicals at various hydration levels (0-295% of the dry SC weights) were determined and compared with the results of the epidermal penetration study to clarify the effect of SC hydration on skin permeability. Results showed accelerated penetration curves of benzoic acid and paraoxon after surface wash at 30 min postdosing. Thirty minutes after washing (60 min postdosing), penetration rates of hydroquinone and benzoic acid decreased due to reduced amounts of chemical on the skin surface and in the SC. At the end of the experiment (90 min postdosing), a soap-water wash resulted in lower hydroquinone penetration, greater paraoxon penetration and similar levels of benzoic acid and clonidine penetration compared to penetration levels in the non-wash groups. The observed wash-in effect agrees with the enhancement effect of SC hydration on the SC chemical absorption rate. These results suggest SC hydration derived from surface wash to be one cause of the wash-in effect. Further, the occurrence of a wash-in effect is dependent on chemical identity and elapsed time between exposure and onset of decontamination. By reducing chemical residue quantity on skin surface and in the SC reservoir, the soap-water wash may decrease the total quantity of chemical absorbed in the

  9. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function

    PubMed Central

    Duchnik, Ewa; Maleszka, Romuald; Marchlewicz, Mariola

    2016-01-01

    The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part – stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function. PMID:26985171

  10. Nifedipine prevents sodium caprate-induced barrier dysfunction in human epidermal keratinocyte cultures.

    PubMed

    Uchino, Yoshihiro; Matsumoto, Junichi; Watanabe, Takuya; Hamabashiri, Masato; Tsuchiya, Takashi; Kimura, Ikuya; Yamauchi, Atsushi; Kataoka, Yasufumi

    2015-01-01

    Tight junctions (TJs) of the epidermis play an important role in maintaining the epidermal barrier. TJ breakdown is associated with skin problems, such as wrinkles and transepidermal water loss (TEWL). Clinical studies have reported that topical nifedipine is effective in reducing the depth of wrinkles and improving TEWL. However, it remains unknown whether nifedipine influences the TJ function in the epidermis. In the present study, we investigated the effect of nifedipine on epidermal barrier dysfunction in normal human epidermal keratinocytes (NHEKs) treated with sodium caprate (C10), a TJ inhibitor. Nifedipine reversed the C10-decreased transepithelial electrical resistance values as a measure of disruption of the epidermal barrier. Immunocytochemical observations revealed that nifedipine improved the C10-induced irregular arrangement of claudin-1, a key protein in TJs. Taken together, these findings suggest that nifedipine prevents epidermal barrier dysfunction, at least in part, by reconstituting the irregular claudin-1 localization at TJs in C10-treated NHEKs. PMID:26027835

  11. Loss of epidermal MMP-14 expression interferes with angiogenesis but not with re-epithelialization.

    PubMed

    Zigrino, Paola; Ayachi, Ouissam; Schild, Alexander; Kaltenberg, Jennifer; Zamek, Jan; Nischt, Roswitha; Koch, Manuel; Mauch, Cornelia

    2012-10-01

    Synthesis and activation of matrix metalloproteinases during wound healing are important for remodeling the extracellular matrix and modulating various cellular functions. The membrane-type 1 matrix metalloproteinase (MMP-14) has been shown to play a key role during these processes. To analyze the function of epidermal-derived MMP-14 during skin repair we generated mice lacking MMP-14 expression in the epidermis (MMP-14(ep-/-)). These mice displayed overall normal skin morphology and epidermal differentiation patterns. Wound repair in MMP-14(ep-/-) followed the same kinetics as in wild type mice (MMP-14(ep+/+)), and infiltration of neutrophils, leukocytes, and macrophages into the wound site was comparable. Microscopic analysis showed no altered re-epithelialization in the absence of epidermal MMP-14. Furthermore, epidermal differentiation at the end of the repair process and scar formation was normal. However, at day 14 post wounding, sustained angiogenesis was observed in MMP-14(ep-/-) mice in contrast to control mice. Interestingly, decreased levels of endostatin were detected in wound lysates of MMP-14(ep-/-) mice as well as in cultured keratinocytes. Taken together, these data indicate that MMP-14 expression in keratinocytes is dispensable for skin homeostasis and repair, but plays a crucial role in the epidermal-dermal crosstalk leading to modulation of vessel density. PMID:22717126

  12. Epidermal Merkel cells in psoriatic lesions: immunohistochemical investigations on neuroendocrine antigen expression.

    PubMed

    Wollina, U; Mahrle, G

    1992-05-01

    Biopsy specimens from lesional psoriatic skin and from normal controls were investigated by immunohistochemistry for the presence of epidermal Merkel cells (MC). MC were defined as epidermal cells expressing simple-type keratins, i.e. nos. 8, 18, and 19. A significant number of MC could be found at the bottom of the rete ridges of psoriatic lesions (about 19.6 MC per square mm skin surface area) and of normal skin (about 14.0 MC per square mm surface area). In contrast to normal skin, MC of psoriatic lesions were positive for synaptophysin (21.7% of simple-type keratin positive epidermal cells, i.e. MC), pancreatic polypeptide (14.8%), somatostatin (7.0%), and chromogranin A (less than 3%). The immunostaining was rather faint though significantly different from normal skin. The findings suggest that in psoriasis, epidermal MC show variations of the expression of neuropeptides compared to normal skin. Since some of the neuropeptides are thought to be involved in hyperproliferation and/or skin immunology, our findings might suggest a functional activity of epidermal MC in psoriatic lesions different from normal controls. PMID:1498093

  13. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene.

    PubMed Central

    Plowman, G D; Whitney, G S; Neubauer, M G; Green, J M; McDonald, V L; Todaro, G J; Shoyab, M

    1990-01-01

    Epidermal growth factor (EGF), transforming growth factor alpha (TGF-alpha), and amphiregulin are structurally and functionally related growth regulatory proteins. These secreted polypeptides all bind to the 170-kDa cell-surface EGF receptor, activating its intrinsic kinase activity. However, amphiregulin exhibits different activities than EGF and TGF-alpha in a number of biological assays. Amphiregulin only partially competes with EGF for binding EGF receptor, and amphiregulin does not induce anchorage-independent growth of normal rat kidney cells (NRK) in the presence of TGF-beta. Amphiregulin also appears to abrogate the stimulatory effect of TGF-alpha on the growth of several aggressive epithelial carcinomas that overexpress EGF receptor. These findings suggest that amphiregulin may interact with a separate receptor in certain cell types. Here we report the cloning of another member of the human EGF receptor (HER) family of receptor tyrosine kinases, which we have named "HER3/ERRB3." The cDNA was isolated from a human carcinoma cell line, and its 6-kilobase transcript was identified in various human tissues. We have generated peptide-specific antisera that recognizes the 160-kDa HER3 protein when transiently expressed in COS cells. These reagents will allow us to determine whether HER3 binds amphiregulin or other growth regulatory proteins and what role HER3 protein plays in the regulation of cell growth. Images PMID:2164210

  14. An in vitro skin irritation test (SIT) using the EpiDerm reconstructed human epidermal (RHE) model.

    PubMed

    Kandárová, Helena; Hayden, Patrick; Klausner, Mitchell; Kubilus, Joseph; Sheasgreen, John

    2009-01-01

    The EpiDerm Skin Irritation test (EpiDerm SIT) was developed and validated for in vitro skin irritation testing of chemicals, including cosmetic and pharmaceutical ingredients. The EpiDerm SIT utilizes the 3D in vitro reconstructed human epidermal (RHE) model EpiDerm. The procedure described in this protocol allows for discrimination between irritants of GHS category 2 and non-irritants. The test is performed over the course of a 4 day time period, consisting of pre-incubation, 60 minute exposure, 42 hour post-incubation and MTT viability assay. After tissue receipt and overnight pre-incubation (Day 0), tissues are topically exposed to the test chemicals (Day 1), which can be liquid, semisolid, solid or waxy. Three tissues are used for each test chemical, as well as for the positive control (5% aq. SDS solution), and a negative control (DPBS). Chemical exposure lasts for 60 minutes, 35 min of which the tissues are kept in an incubator at 37 degrees C. The test substances are then removed from the tissue surface by an extensive washing procedure. The tissue inserts are blotted and transferred to fresh medium. After a 24 hr incubation period (Day 2), the medium is exchanged. The medium can be saved for further analysis of cytokines or other endpoints of interest. After the medium exchange, tissues are incubated for an additional 18 hours. At the end of the entire 42 h post-incubation (day 3), the tissues are transferred into yellow MTT solution and incubated for 3 hours. The resultant purple-blue formazan salt, formed mainly by mitochondrial metabolism, is extracted for 2 hours using isopropanol. The optical density of the extracted formazan is determined using a spectrophotometer. A chemical is classified as an irritant if the tissue viability relative to the negative control treated tissues is reduced below 50%. This procedure can be used as full replacement of the in vivo rabbit skin irritation test for hazard identification and labeling of chemicals in line with

  15. Large-scale identification of human genes implicated in epidermal barrier function

    PubMed Central

    Toulza, Eve; Mattiuzzo, Nicolas R; Galliano, Marie-Florence; Jonca, Nathalie; Dossat, Carole; Jacob, Daniel; de Daruvar, Antoine; Wincker, Patrick; Serre, Guy; Guerrin, Marina

    2007-01-01

    Background During epidermal differentiation, keratinocytes progressing through the suprabasal layers undergo complex and tightly regulated biochemical modifications leading to cornification and desquamation. The last living cells, the granular keratinocytes (GKs), produce almost all of the proteins and lipids required for the protective barrier function before their programmed cell death gives rise to corneocytes. We present here the first analysis of the transcriptome of human GKs, purified from healthy epidermis by an original approach. Results Using the ORESTES method, 22,585 expressed sequence tags (ESTs) were produced that matched 3,387 genes. Despite normalization provided by this method (mean 4.6 ORESTES per gene), some highly transcribed genes, including that encoding dermokine, were overrepresented. About 330 expressed genes displayed less than 100 ESTs in UniGene clusters and are most likely to be specific for GKs and potentially involved in barrier function. This hypothesis was tested by comparing the relative expression of 73 genes in the basal and granular layers of epidermis by quantitative RT-PCR. Among these, 33 were identified as new, highly specific markers of GKs, including those encoding a protease, protease inhibitors and proteins involved in lipid metabolism and transport. We identified filaggrin 2 (also called ifapsoriasin), a poorly characterized member of the epidermal differentiation complex, as well as three new lipase genes clustered with paralogous genes on chromosome 10q23.31. A new gene of unknown function, C1orf81, is specifically disrupted in the human genome by a frameshift mutation. Conclusion These data increase the present knowledge of genes responsible for the formation of the skin barrier and suggest new candidates for genodermatoses of unknown origin. PMID:17562024

  16. NOVEL NON-CALCEMIC SECOSTEROIDS THAT ARE PRODUCED BY HUMAN EPIDERMAL KERATINOCYTES PROTECT AGAINST SOLAR RADIATION

    PubMed Central

    Slominski, Andrzej T.; Janjetovic, Zorica; Kim, Tae-Kang; Wasilewski, Piotr; Rosas, Sofia; Hanna, Sherie; Sayre, Robert M.; Dowdy, John C.; Li, Wei; Tuckey, Robert C.

    2015-01-01

    CYP11A1 hydroxylates the side chain of vitamin D3 (D3) in a sequential fashion [D3→20S(OH)D3→20,23(OH)2D3→ 17,20,23(OH)3D3], in an alternative to the classical pathway of activation [D3→25(OH)D3→1,25(OH)2D3]. The products/intermediates of the pathway can be further modified by the action of CYP27B1. The CYP11A1-derived products are biologically active with functions determined by the lineage of the target cells. This pathway can operate in epidermal keratinocytes. To further define the role of these novel secosteroids we tested them for protective effects against UVB-induced damage in human epidermal keratinocytes, melanocytes and HaCaT keratinocytes, cultured in vitro. The secosteroids attenuated ROS, H2O2 and NO production by UVB-irradiated keratinocytes and melanocytes, with an efficacy similar to 1,25(OH)2D3, while 25(OH)D3 had lower efficacy. These attenuations were also seen to some extent for the 20(OH)D3 precursor, 20S-hydroxy-7-dehydrocholesterol. These effects were accompanied by upregulation of genes encoding enzymes responsible for defence against oxidative stress. Using immunofluorescent staining we observed that the secosteroids reduced the generation cyclobutane pyrimidine dimers in response to UVB and enhanced expression of p53 phosphorylated at Ser-15, but not at Ser-46. Additional evidence for protection against DNA damage in cells exposed to UVB and treated with secosteroids was provided by the Comet assay where DNA fragmentation was markedly reduced by 20(OH)D3 and 20,23(OH)2D3. In conclusion, novel secosteroids that can be produced by the action of CYP11A1 in epidermal keratinocytes have protective effects against UVB radiation. PMID:25617667

  17. Epidermal expression of the truncated prelamin A causing Hutchinson-Gilford progeria syndrome: effects on keratinocytes, hair and skin.

    PubMed

    Wang, Yuexia; Panteleyev, Andrey A; Owens, David M; Djabali, Karima; Stewart, Colin L; Worman, Howard J

    2008-08-01

    Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by point mutation in LMNA encoding A-type nuclear lamins. The mutations in LMNA activate a cryptic splice donor site, resulting in expression of a truncated, prenylated prelamin A called progerin. Expression of progerin leads to alterations in nuclear morphology, which may underlie pathology in HGPS. We generated transgenic mice expressing progerin in epidermis under control of a keratin 14 promoter. The mice had severe abnormalities in morphology of skin keratinocyte nuclei, including nuclear envelope lobulation and decreased nuclear circularity not present in transgenic mice expressing wild-type human lamin A. Primary keratinocytes isolated from these mice had a higher frequency of nuclei with abnormal shape compared to those from transgenic mice expressing wild-type human lamin A. Treatment with a farnesyltransferase inhibitor significantly improved nuclear shape abnormalities and induced the formation of intranuclear foci in the primary keratinocytes expressing progerin. Similarly, spontaneous immortalization of progerin-expressing cultured keratinocytes selected for cells with normal nuclear morphology. Despite morphological alterations in keratinocyte nuclei, mice expressing progerin in epidermis had normal hair grown and wound healing. Hair and skin thickness were normal even after crossing to Lmna null mice to reduce or eliminate expression of normal A-type lamins. Although progerin induces significant alterations in keratinocyte nuclear morphology that are reversed by inhibition of farnesyltransferasae, epidermal expression does not lead to alopecia or other skin abnormalities typically seen in human subjects with HGPS. PMID:18442998

  18. Epidermal expression of the truncated prelamin A causing Hutchinson–Gilford progeria syndrome: effects on keratinocytes, hair and skin

    PubMed Central

    Wang, Yuexia; Panteleyev, Andrey A.; Owens, David M.; Djabali, Karima; Stewart, Colin L.; Worman, Howard J.

    2008-01-01

    Hutchinson–Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by point mutation in LMNA encoding A-type nuclear lamins. The mutations in LMNA activate a cryptic splice donor site, resulting in expression of a truncated, prenylated prelamin A called progerin. Expression of progerin leads to alterations in nuclear morphology, which may underlie pathology in HGPS. We generated transgenic mice expressing progerin in epidermis under control of a keratin 14 promoter. The mice had severe abnormalities in morphology of skin keratinocyte nuclei, including nuclear envelope lobulation and decreased nuclear circularity not present in transgenic mice expressing wild-type human lamin A. Primary keratinocytes isolated from these mice had a higher frequency of nuclei with abnormal shape compared to those from transgenic mice expressing wild-type human lamin A. Treatment with a farnesyltransferase inhibitor significantly improved nuclear shape abnormalities and induced the formation of intranuclear foci in the primary keratinocytes expressing progerin. Similarly, spontaneous immortalization of progerin-expressing cultured keratinocytes selected for cells with normal nuclear morphology. Despite morphological alterations in keratinocyte nuclei, mice expressing progerin in epidermis had normal hair grown and wound healing. Hair and skin thickness were normal even after crossing to Lmna null mice to reduce or eliminate expression of normal A-type lamins. Although progerin induces significant alterations in keratinocyte nuclear morphology that are reversed by inhibition of farnesyltransferasae, epidermal expression does not lead to alopecia or other skin abnormalities typically seen in human subjects with HGPS. PMID:18442998

  19. S100A7 (psoriasin) inhibits human epidermal differentiation by enhanced IL-6 secretion through IκB/NF-κB signalling.

    PubMed

    Son, Eui Dong; Kim, Hyoung-June; Kim, Kyu Han; Bin, Bum Ho; Bae, Il-Hong; Lim, Kyung-Min; Yu, Seok Jong; Cho, Eun-Gyung; Lee, Tae Ryong

    2016-08-01

    Psoriasin (S100A7), a member of the S100 protein family, is a well-known antimicrobial peptide and a signalling molecule which regulates cellular function and is highly expressed in hyperproliferative skin conditions such as atopic dermatitis (AD) and psoriasis with disrupted skin barrier function. However, its role in epidermal differentiation remains unknown. We examined the effect of S100A7 on epidermal differentiation in normal human keratinocytes (NHKs) and on a reconstituted human epidermis model. When NHKs were exposed to disruptive stimuli such as Staphylococcus aureus, ultraviolet irradiation and retinoic acid, the secretion of S100A7 into the culture medium increased and the expression of epidermal differentiation markers decreased. Treatment of NHKs with S100A7 significantly inhibited epidermal differentiation by reducing the expression of keratin 1, keratin 10, involucrin and loricrin and by increasing the expression of abnormal differentiation markers (keratin 6 and keratin 16). We verified that the MyD88-IκB/NF-κB signal cascade was activated via RAGE after S100A7 treatment, resulting in the upregulation of interleukin-6. Finally, we confirmed that S100A7 is a negative regulator of epidermal differentiation using a reconstituted human epidermis model. This study suggests that S100A7-related signalling molecules could be potent targets for recovering skin barrier function in AD and psoriasis where S100A7 is accumulated excessively. PMID:27060579

  20. Transient Expression of P-type ATPases in Tobacco Epidermal Cells.

    PubMed

    Poulsen, Lisbeth R; Palmgren, Michael G; López-Marqués, Rosa L

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellular space between leaf epidermal cells, which results in DNA transfer from the bacteria to the plant and expression of the corresponding proteins. By injecting mixes of Agrobacterium strains, this system offers the possibility to co-express a number of target proteins simultaneously, thus allowing for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits. PMID:26695049

  1. Construction of an immunotoxin by linking a monoclonal antibody against the human epidermal growth factor receptor and a hemolytic toxin.

    PubMed

    Avila, Ana D; Calderón, Carlos F; Pérez, Rita M; Pons, Carmen; Pereda, Celia M; Ortiz, Ana R

    2007-01-01

    Hybrid molecules obtained through conjugation of monoclonal antibodies and toxins constitute an approach under exploration to generate potential agents for the treatment of cancer and other diseases. A frequently employed toxic component in the construction of such immunotoxins is ricin, a plant toxin which inhibits protein synthesis at ribosomal level and so requires to be internalized by the cell. A hemolytic toxin isolated from the sea anemone Stichodactyla helianthus, which is active at the cell membrane level, was linked through a disulfide bond to the anti-epidermal growth factor receptor monoclonal antibody ior egf/r3. The resulting immunotoxin did not exhibit hemolytic activity except under reducing conditions. It was toxic for H125 cells that express the human epidermal growth factor receptor, but non-toxic for U1906 cells that do not express this receptor. PMID:18064354

  2. Mechanical Stretch on Human Skin Equivalents Increases the Epidermal Thickness and Develops the Basement Membrane

    PubMed Central

    Tokuyama, Eijiro; Nagai, Yusuke; Takahashi, Ken; Kimata, Yoshihiro; Naruse, Keiji

    2015-01-01

    All previous reports concerning the effect of stretch on cultured skin cells dealt with experiments on epidermal keratinocytes or dermal fibroblasts alone. The aim of the present study was to develop a system that allows application of stretch stimuli to human skin equivalents (HSEs), prepared by coculturing of these two types of cells. In addition, this study aimed to analyze the effect of a stretch on keratinization of the epidermis and on the basement membrane. HSEs were prepared in a gutter-like structure created with a porous silicone sheet in a silicone chamber. After 5-day stimulation with stretching, HSEs were analyzed histologically and immunohistologically. Stretch-stimulated HSEs had a thicker epidermal layer and expressed significantly greater levels of laminin 5 and collagen IV/VII in the basal layer compared with HSEs not subjected to stretch stimulation. Transmission electron microscopy revealed that the structure of the basement membrane was more developed in HSEs subjected to stretching. Our model may be relevant for extrapolating the effect of a stretch on the skin in a state similar to an in vivo system. This experimental system may be useful for analysis of the effects of stretch stimuli on skin properties and wound healing and is also expected to be applicable to an in vitro model of a hypertrophic scar in the future. PMID:26528823

  3. Sensitivity of human granulosa cell tumor cells to epidermal growth factor receptor inhibition.

    PubMed

    Andersson, Noora; Anttonen, Mikko; Färkkilä, Anniina; Pihlajoki, Marjut; Bützow, Ralf; Unkila-Kallio, Leila; Heikinheimo, Markku

    2014-04-01

    Epidermal growth factor receptor (EGFR) is implicated in the progression of many human cancers, but its significance in ovarian granulosa cell tumor (GCT) pathobiology remains poorly understood. We assessed the EGFR gene copy number, surveyed the mRNA and protein expression patterns of EGFR in 90 adult GCTs, and assessed the in vitro sensitivity of GCT cells to EGFR inhibition. Low-level amplification of EGFR gene was observed in five GCTs and high-level amplification in one sample. EGFR mRNA was robustly expressed in GCTs. Most tumors expressed both unphosphorylated and phosphorylated EGFR protein, but the protein expression did not correlate with clinical parameters, including the risk of recurrence. Small-molecule EGFR inhibitors reduced the EGF-induced activation of EGFR and its downstream signaling molecules at nanomolar doses, but cell viability was reduced, and caspase-3/7 was activated in GCT cells only at micromolar doses. Based on the present results, EGFR is active and abundantly expressed in the majority of GCTs, but probably has only minor contribution to GCT cell growth. Given the high doses of EGFR inhibitors required to reduce GCT cell viability in vitro, they are not likely to be effective for GCT treatment as single agents; they should rather be tested as part of combination therapies for these malignancies. PMID:24463098

  4. Human Papilloma Viral DNA Replicates as a Stable Episome in Cultured Epidermal Keratinocytes

    NASA Astrophysics Data System (ADS)

    Laporta, Robert F.; Taichman, Lorne B.

    1982-06-01

    Human papilloma virus (HPV) is poorly understood because systems for its growth in tissue culture have not been developed. We report here that cultured human epidermal keratinocytes could be infected with HPV from plantar warts and that the viral DNA persisted and replicated as a stable episome. There were 50-200 copies of viral DNA per cell and there was no evidence to indicate integration of viral DNA into the cellular genome. There was also no evidence to suggest that viral DNA underwent productive replication. We conclude that cultured human epidermal keratinocytes may be a model for the study of certain aspects of HPV biology.

  5. Human epidermal neural crest stem cells as a source of Schwann cells

    PubMed Central

    Sakaue, Motoharu; Sieber-Blum, Maya

    2015-01-01

    We show that highly pure populations of human Schwann cells can be derived rapidly and in a straightforward way, without the need for genetic manipulation, from human epidermal neural crest stem cells [hEPI-NCSC(s)] present in the bulge of hair follicles. These human Schwann cells promise to be a useful tool for cell-based therapies, disease modelling and drug discovery. Schwann cells are glia that support axons of peripheral nerves and are direct descendants of the embryonic neural crest. Peripheral nerves are damaged in various conditions, including through trauma or tumour-related surgery, and Schwann cells are required for their repair and regeneration. Schwann cells also promise to be useful for treating spinal cord injuries. Ex vivo expansion of hEPI-NCSC isolated from hair bulge explants, manipulating the WNT, sonic hedgehog and TGFβ signalling pathways, and exposure of the cells to pertinent growth factors led to the expression of the Schwann cell markers SOX10, KROX20 (EGR2), p75NTR (NGFR), MBP and S100B by day 4 in virtually all cells, and maturation was completed by 2 weeks of differentiation. Gene expression profiling demonstrated expression of transcripts for neurotrophic and angiogenic factors, as well as JUN, all of which are essential for nerve regeneration. Co-culture of hEPI-NCSC-derived human Schwann cells with rodent dorsal root ganglia showed interaction of the Schwann cells with axons, providing evidence of Schwann cell functionality. We conclude that hEPI-NCSCs are a biologically relevant source for generating large and highly pure populations of human Schwann cells. PMID:26251357

  6. Upregulated RIP3 Expression Potentiates MLKL Phosphorylation-Mediated Programmed Necrosis in Toxic Epidermal Necrolysis.

    PubMed

    Kim, Sue Kyung; Kim, Woo-Jung; Yoon, Jung-Ho; Ji, Jae-Hoon; Morgan, Michael J; Cho, Hyeseong; Kim, You Chan; Kim, You-Sun

    2015-08-01

    Toxic epidermal necrolysis (TEN) is a severe adverse drug reaction involving extensive keratinocyte death in the epidermis. Histologically, the skin from TEN patients exhibits separation at the dermo-epidermal junction and accompanying necrosis of epidermal keratinocytes. Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is an essential part of the cellular machinery that executes "programmed", or "regulated", necrosis and has a key role in spontaneous cell death and inflammation in keratinocytes under certain conditions. Here we show that RIP3 expression is highly upregulated in skin sections from TEN patients and may therefore contribute to the pathological damage in TEN through activation of programmed necrotic cell death. The expression level of mixed lineage kinase domain-like protein (MLKL), a key downstream component of RIP3, was not significantly different in skin lesions of TEN. However, elevated MLKL phosphorylation was observed in the skin from TEN patients, indicating the presence of RIP3-dependent programmed necrosis. Importantly, in an in vitro model of TEN, dabrafenib, an inhibitor of RIP3, prevented RIP3-mediated MLKL phosphorylation and decreased cell death. Results from this study suggest that the high expression of RIP3 in keratinocytes from TEN patients potentiates MLKL phosphorylation/activation and necrotic cell death. Thus, RIP3 represents a potential target for treatment of TEN. PMID:25748555

  7. Intracrine sex steroid synthesis and signaling in human epidermal keratinocytes and dermal fibroblasts.

    PubMed

    Pomari, Elena; Dalla Valle, Luisa; Pertile, Paolo; Colombo, Lorenzo; Thornton, M Julie

    2015-02-01

    Peripheral intracrine sex steroid synthesis from adrenal precursors dehydroepiandrosterone (DHEA) and DHEA-sulfate has evolved in humans. We sought to establish if there are differences in intracrine, paracrine, and endocrine regulation of sex steroids by primary cultures of human skin epidermal keratinocytes and dermal fibroblasts. Microarray analysis identified multifunctional genes modulated by steroids, quantitative RT-PCR (qRT-PCR) mRNA expression, enzymatic assay aromatase activity, scratch assay cell migration, immunocytochemistry α-smooth muscle actin (α-SMA), and collagen gel fibroblast contraction. All steroidogenic components were present, although only keratinocytes expressed the organic anion organic anion transporter protein (OATP) 2B1 transporter. Both expressed the G-protein-coupled estrogen receptor (GPER1). Steroids modulated multifunctional genes, up-regulating genes important in repair and aging [angiopoietin-like 4 (ANGPTL4), chemokine (C-X-C motif) ligand 1 (CXCL1), lamin B1 (LMNB1), and thioredoxin interacting protein (TXNIP)]. DHEA-sulfate (DHEA-S), DHEA, and 17β-estradiol stimulated keratinocyte and fibroblast migration at early (4 h) and late (24-48 h) time points, suggesting involvement of genomic and nongenomic signaling. Migration was blocked by aromatase and steroid sulfatase (STS) inhibitors confirming intracrine synthesis to estrogen. Testosterone had little effect, implying it is not an intermediate. Steroids stimulated fibroblast contraction but not α-SMA expression. Mechanical wounding reduced fibroblast aromatase activity but increased keratinocyte activity, amplifying the bioavailability of intracellular estrogen. Cultured fibroblasts and keratinocytes provide a biologically relevant model system to investigate the complex pathways of sex steroid intracrinology in human skin. PMID:25392269

  8. Parabens and Human Epidermal Growth Factor Receptor Ligand Cross-Talk in Breast Cancer Cells

    PubMed Central

    Pan, Shawn; Yuan, Chaoshen; Tagmount, Abderrahmane; Rudel, Ruthann A.; Ackerman, Janet M.; Yaswen, Paul; Vulpe, Chris D.; Leitman, Dale C.

    2015-01-01

    Background: Xenoestrogens are synthetic compounds that mimic endogenous estrogens by binding to and activating estrogen receptors. Exposure to estrogens and to some xenoestrogens has been associated with cell proliferation and an increased risk of breast cancer. Despite evidence of estrogenicity, parabens are among the most widely used xenoestrogens in cosmetics and personal-care products and are generally considered safe. However, previous cell-based studies with parabens do not take into account the signaling cross-talk between estrogen receptor α (ERα) and the human epidermal growth factor receptor (HER) family. Objectives: We investigated the hypothesis that the potency of parabens can be increased with HER ligands, such as heregulin (HRG). Methods: The effects of HER ligands on paraben activation of c-Myc expression and cell proliferation were determined by real-time polymerase chain reaction, Western blots, flow cytometry, and chromatin immunoprecipitation assays in ERα- and HER2-positive human BT-474 breast cancer cells. Results: Butylparaben (BP) and HRG produced a synergistic increase in c-Myc mRNA and protein levels in BT-474 cells. Estrogen receptor antagonists blocked the synergistic increase in c-Myc protein levels. The combination of BP and HRG also stimulated proliferation of BT-474 cells compared with the effects of BP alone. HRG decreased the dose required for BP-mediated stimulation of c-Myc mRNA expression and cell proliferation. HRG caused the phosphorylation of serine 167 in ERα. BP and HRG produced a synergistic increase in ERα recruitment to the c-Myc gene. Conclusion: Our results show that HER ligands enhanced the potency of BP to stimulate oncogene expression and breast cancer cell proliferation in vitro via ERα, suggesting that parabens might be active at exposure levels not previously considered toxicologically relevant from studies testing their effects in isolation. Citation: Pan S, Yuan C, Tagmount A, Rudel RA, Ackerman JM

  9. Dedifferentiation of human epidermal melanocytes into melanoblasts in vitro.

    PubMed

    Zhao, Zhiguo; Jin, Cheng; Ding, Keyun; Ge, Xiaopeng; Dai, Lllan

    2012-07-01

    Melanoblasts (MB) are also called melanocyte (MC) precursor cells. In recent years, people have successfully cultivated human and mouse MB. Previous studies have shown that EDN3 induces cultivated bird MC to re-differentiate into double potential progenitor cells of MB. However, no study has reported whether in vitro cultivated human MC can be dedifferentiated. Our research on MC that were purified and cultivated in vitro found that adding 10 nm endothelin 1 (EDN1) (ET-1) to the MC medium without phorbol 12-myristate 13-acetate (PMA) induced a few MC to dedifferentiate and become a new type of cell. This new cell type was separated, purified, cloned and identified using multiple approaches. The results show that 88.7%, 8.69% and 2.5% of this new cell type were cells in the G(0) -G(1) , G(2) -M and S stages, respectively. The new cell type did not exhibit an apparent apoptotic peak, and its apoptotic rate was 0.09%. Stage I melanosomes were observed in the cytoplasm and were negative for the DOPA reaction. The cell surface antigen expression was positive for tyrosinase-related protein 2, negative or positive for c-kit and negative for S-100 and HMB45, showing that these cells were dedifferentiated MB of MC. Our findings provided evidence for atavism of mature human MC under certain conditions. PMID:22540983

  10. Zinc oxide nanoparticles-induced epigenetic change and G2/M arrest are associated with apoptosis in human epidermal keratinocytes.

    PubMed

    Gao, Fei; Ma, Ningjie; Zhou, Hong; Wang, Qing; Zhang, Hao; Wang, Pu; Hou, Haoli; Wen, Huan; Li, Lijia

    2016-01-01

    As an engineered nanomaterial, zinc oxide nanoparticles (ZnO NPs) are used frequently in biological applications and can make contact with human skin. Here, we systematically investigated the effects of ZnO NPs on non-tumorigenic human epidermal keratinocytes, which were used as a test model for this in vitro study, at the epigenetic and molecular levels. Our results showed that ZnO NPs induced cell cycle arrest at the G2/M checkpoint before the viability of human epidermal keratinocytes was reduced, which was associated with the chromatin changes at the epigenetic level, including increased methylation of histone H3K9 and decreased acetylation of histone H4K5 accompanied by chromatin condensation at 24 hours. The mRNA expression of the methyltransferase genes G9a and GLP was also increased upon treatment with ZnO NPs, and the acetyltransferase genes GCN5, P300, and CBP were downregulated. Reactive oxygen species were found to be more abundant after treatment with ZnO NPs for 6 hours, and DNA damage was observed at 24 hours. Transmission electron microscopy and flow cytometry confirmed that ZnO NPs were absorbed into the cell when they were added to the medium. Apoptotic human epidermal keratinocytes were detected, and the expression of the proapoptotic genes Bax, Noxa, and Puma increased significantly, while the expression of the antiapoptotic gene Bcl-xl decreased 24 hours after exposure to ZnO NPs. These findings suggest that the ZnO NPs induced cell cycle arrest at G2/M, which was associated with epigenetic changes and accompanied by p53-Bax mitochondrial pathway-mediated apoptosis. PMID:27570453

  11. Zinc oxide nanoparticles-induced epigenetic change and G2/M arrest are associated with apoptosis in human epidermal keratinocytes

    PubMed Central

    Gao, Fei; Ma, Ningjie; Zhou, Hong; Wang, Qing; Zhang, Hao; Wang, Pu; Hou, Haoli; Wen, Huan; Li, Lijia

    2016-01-01

    As an engineered nanomaterial, zinc oxide nanoparticles (ZnO NPs) are used frequently in biological applications and can make contact with human skin. Here, we systematically investigated the effects of ZnO NPs on non-tumorigenic human epidermal keratinocytes, which were used as a test model for this in vitro study, at the epigenetic and molecular levels. Our results showed that ZnO NPs induced cell cycle arrest at the G2/M checkpoint before the viability of human epidermal keratinocytes was reduced, which was associated with the chromatin changes at the epigenetic level, including increased methylation of histone H3K9 and decreased acetylation of histone H4K5 accompanied by chromatin condensation at 24 hours. The mRNA expression of the methyltransferase genes G9a and GLP was also increased upon treatment with ZnO NPs, and the acetyltransferase genes GCN5, P300, and CBP were downregulated. Reactive oxygen species were found to be more abundant after treatment with ZnO NPs for 6 hours, and DNA damage was observed at 24 hours. Transmission electron microscopy and flow cytometry confirmed that ZnO NPs were absorbed into the cell when they were added to the medium. Apoptotic human epidermal keratinocytes were detected, and the expression of the proapoptotic genes Bax, Noxa, and Puma increased significantly, while the expression of the antiapoptotic gene Bcl-xl decreased 24 hours after exposure to ZnO NPs. These findings suggest that the ZnO NPs induced cell cycle arrest at G2/M, which was associated with epigenetic changes and accompanied by p53-Bax mitochondrial pathway-mediated apoptosis. PMID:27570453

  12. Growth of melanocytes in human epidermal cell cultures

    SciTech Connect

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C. )

    1990-08-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient.

  13. Sequential cultivation of human epidermal keratinocytes and dermal mesenchymal like stromal cells in vitro.

    PubMed

    Mahabal, Shyam; Konala, Vijay Bhaskar Reddy; Mamidi, Murali Krishna; Kanafi, Mohammad Mahboob; Mishra, Suniti; Shankar, Krupa; Pal, Rajarshi; Bhonde, Ramesh

    2016-08-01

    Human skin has continuous self-renewal potential throughout adult life and serves as first line of defence. Its cellular components such as human epidermal keratinocytes (HEKs) and dermal mesenchymal stromal cells (DMSCs) are valuable resources for wound healing applications and cell based therapies. Here we show a simple, scalable and cost-effective method for sequential isolation and propagation of HEKs and DMSCs under defined culture conditions. Human skin biopsy samples obtained surgically were cut into fine pieces and cultured employing explant technique. Plated skin samples attached and showed outgrowth of HEKs. Gross microscopic examination displayed polygonal cells with a granular cytoplasm and H&E staining revealed archetypal HEK morphology. RT-PCR and immunocytochemistry authenticated the presence of key HEK markers including trans-membrane protein epithelial cadherin (E-cadherin), keratins and cytokeratin. After collection of HEKs by trypsin-EDTA treatment, mother explants were left intact and cultured further. Interestingly, we observed the appearance of another cell type with fibroblastic or stromal morphology which were able to grow up to 15 passages in vitro. Growth pattern, expression of cytoskeletal protein vimentin, surface proteins such as CD44, CD73, CD90, CD166 and mesodermal differentiation potential into osteocytes, adipocytes and chondrocytes confirmed their bonafide mesenchymal stem cell like status. These findings albeit preliminary may open up significant opportunities for novel applications in wound healing. PMID:25698160

  14. SNAI2 controls the undifferentiated state of human epidermal progenitor cells.

    PubMed

    Mistry, Devendra S; Chen, Yifang; Wang, Ying; Zhang, Kang; Sen, George L

    2014-12-01

    The transcription factor, SNAI2, is an inducer of the epithelial to mesenchymal transition (EMT) which mediates cell migration during development and tumor invasion. SNAI2 can also promote the generation of mammary epithelial stem cells from differentiated luminal cells when overexpressed. How SNAI2 regulates these critical and diverse functions is unclear. Here, we show that the levels of SNAI2 expression are important for epidermal cell fate decisions. The expression of SNAI2 was found to be enriched in the basal layer of the interfollicular epidermis where progenitor cells reside and extinguished upon differentiation. Loss of SNAI2 resulted in premature differentiation whereas gain of SNAI2 expression inhibited differentiation. SNAI2 controls the differentiation status of epidermal progenitor cells by binding to and repressing the expression of differentiation genes with increased binding leading to further transcriptional silencing. Thus, the levels of SNAI2 binding to genomic targets determine the differentiation status of epithelial cells with increased levels triggering EMT and dedifferentiation, moderate (physiological) levels promoting epidermal progenitor function, and low levels leading to epidermal differentiation. PMID:25100569

  15. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces.

    PubMed

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui

    2015-06-30

    A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4×10(6)cellsmL(-1) with a detection limit of 40cellsmL(-1) was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35×10(5) with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening. PMID:26041531

  16. Increased epidermal cell proliferation in normal human skin in vivo following local administration of interferon-gamma.

    PubMed Central

    Barker, J. N.; Goodlad, J. R.; Ross, E. L.; Yu, C. C.; Groves, R. W.; MacDonald, D. M.

    1993-01-01

    Recombinant human interferon-gamma was administered intradermally (10 micrograms in 0.1 ml) to healthy adult human volunteers from day 1 to day 3, and epidermal cell proliferation was measured on whole skin biopsies at day 6. Three independent parameters were assessed, namely, a) epidermal keratin-16 expression, b) keratinocyte proliferating cell nuclear antigen expression, and c) keratinocyte silver nucleolar organizer region counts. Significantly increased scores for each parameter were observed after interferon-gamma injection (P < 0.01 in each case) compared to site-matched controls. Keratin-16 expression was confined to suprabasal epidermis, whereas proliferating cell nuclear antigen and silver nucleolar organizer region counts were particularly elevated in the basal epidermis. Taken together with previous findings, these studies indicate both proinflammatory and growth regulatory roles for interferon-gamma in human skin. These data are likely to be of particular importance to pathophysiological mechanisms of psoriasis and related cutaneous inflammatory diseases. Images Figure 1 Figure 2 Figure 3 PMID:7682760

  17. Novel non-calcemic secosteroids that are produced by human epidermal keratinocytes protect against solar radiation.

    PubMed

    Slominski, Andrzej T; Janjetovic, Zorica; Kim, Tae-Kang; Wasilewski, Piotr; Rosas, Sofia; Hanna, Sherie; Sayre, Robert M; Dowdy, John C; Li, Wei; Tuckey, Robert C

    2015-04-01

    CYP11A1 hydroxylates the side chain of vitamin D3 (D3) in a sequential fashion [D3→20S(OH)D3→20,23(OH)2D3→17,20,23(OH)3D3], in an alternative to the classical pathway of activation [D3→25(OH)D3→1,25(OH)2D3]. The products/intermediates of the pathway can be further modified by the action of CYP27B1. The CYP11A1-derived products are biologically active with functions determined by the lineage of the target cells. This pathway can operate in epidermal keratinocytes. To further define the role of these novel secosteroids we tested them for protective effects against UVB-induced damage in human epidermal keratinocytes, melanocytes and HaCaT keratinocytes, cultured in vitro. The secosteroids attenuated ROS, H2O2 and NO production by UVB-irradiated keratinocytes and melanocytes, with an efficacy similar to 1,25(OH)2D3, while 25(OH)D3 had lower efficacy. These attenuations were also seen to some extent for the 20(OH)D3 precursor, 20S-hydroxy-7-dehydrocholesterol. These effects were accompanied by upregulation of genes encoding enzymes responsible for defense against oxidative stress. Using immunofluorescent staining we observed that the secosteroids reduced the generation cyclobutane pyrimidine dimers in response to UVB and enhanced expression of p53 phosphorylated at Ser-15, but not at Ser-46. Additional evidence for protection against DNA damage in cells exposed to UVB and treated with secosteroids was provided by the Comet assay where DNA fragmentation was markedly reduced by 20(OH)D3 and 20,23(OH)2D3. In conclusion, novel secosteroids that can be produced by the action of CYP11A1 in epidermal keratinocytes have protective effects against UVB radiation. This article is part of a special issue entitled '17th Vitamin D Workshop'. PMID:25617667

  18. Conditional epidermal expression of TGFβ1 blocks neonatal lethality but causes a reversible hyperplasia and alopecia

    PubMed Central

    Liu, Xin; Alexander, Valarie; Vijayachandra, Kinnimulki; Bhogte, Ervind; Diamond, Ilysa; Glick, Adam

    2001-01-01

    To study the role of transforming growth factor type β1 (TGFβ1) in epidermal growth control and disease, we have generated a conditional expression system by using the bovine keratin 5 promoter to drive expression of the tetracycline-regulated transactivators tTA and rTA, and a constitutively active mutant of TGFβ1 linked to the tetO target sequence for the transactivator. This model allows for induction or suppression of exogenous TGFβ1 with oral doxycycline. Maximal expression of TGFβ1 during gestation caused embryonic lethality, whereas partial suppression allowed full-term development with neonatal lethality characterized by runting, epidermal hypoproliferation, and blocked hair follicle growth. With complete suppression, phenotypically normal double transgenic (DT) mice were born. Acute induction of TGFβ1 in the epidermis of adult mice inhibited basal and follicular keratinocyte proliferation and reentry of telogen hair follicles into anagen. However, chronic expression of TGFβ1 in adult DTs caused severe alopecia characterized by epidermal and follicular hyperproliferation, apoptosis, as well as dermal fibrosis and inflammation. Readministration of doxycycline to tTA DT mice caused hair regrowth within 14 days. The mRNA and protein for Smad7, an inhibitor of TGFβ signaling, were up-regulated in the epidermis and hair follicles of alopecic skin and rapidly induced in rTA mice in parallel with the TGFβ1 transgene, suggesting that the hyperproliferative phenotype may result in part from development of a sustained negative feedback loop. Thus, this conditional expression system provides an important model for understanding the role of TGFβ1 during development, in normal skin biology, and in disease. PMID:11481479

  19. Prevention of UVB Radiation-induced Epidermal Damage by Expression of Heat Shock Protein 70*

    PubMed Central

    Matsuda, Minoru; Hoshino, Tatsuya; Yamashita, Yasuhiro; Tanaka, Ken-ichiro; Maji, Daisuke; Sato, Keizo; Adachi, Hiroaki; Sobue, Gen; Ihn, Hironobu; Funasaka, Yoko; Mizushima, Tohru

    2010-01-01

    Irradiation with UV light, especially UVB, causes epidermal damage via the induction of apoptosis, inflammatory responses, and DNA damage. Various stressors, including UV light, induce heat shock proteins (HSPs) and the induction, particularly that of HSP70, provides cellular resistance to such stressors. The anti-inflammatory activity of HSP70, such as its inhibition of nuclear factor kappa B (NF-κB), was recently revealed. These in vitro results suggest that HSP70 protects against UVB-induced epidermal damage. Here we tested this idea by using transgenic mice expressing HSP70 and cultured keratinocytes. Irradiation of wild-type mice with UVB caused epidermal damage such as induction of apoptosis, which was suppressed in transgenic mice expressing HSP70. UVB-induced apoptosis in cultured keratinocytes was suppressed by overexpression of HSP70. Irradiation of wild-type mice with UVB decreased the cutaneous level of IκB-α (an inhibitor of NF-κB) and increased the infiltration of leukocytes and levels of pro-inflammatory cytokines and chemokines in the epidermis. These inflammatory responses were suppressed in transgenic mice expressing HSP70. In vitro, the overexpression of HSP70 suppressed the expression of pro-inflammatory cytokines and chemokines and increased the level of IκB-α in keratinocytes irradiated with UVB. UVB induced an increase in cutaneous levels of cyclobutane pyrimidine dimers and 8-hydroxy-2′-deoxyguanosine, both of which were suppressed in transgenic mice expressing HSP70. This study provides genetic evidence that HSP70 protects the epidermis from UVB-induced radiation damage. The findings here also suggest that the protective action of HSP70 is mediated by anti-apoptotic, anti-inflammatory, and anti-DNA damage effects. PMID:20018843

  20. Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes

    EPA Science Inventory

    Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes Nanoparticle uptake in cells may be an important determinant of their potential cytotoxic and inflammatory effects. Six commercial TiO2 NP (A=Alfa Aesar,10nm, A*=Alfa Aesar 32nm, B=P25 27...

  1. Dysregulated function of normal human epidermal keratinocytes in the absence of filaggrin

    PubMed Central

    Dang, Ningning; Ma, Xiaoli; Meng, Xianguang; An, Liguo; Pang, Shuguang

    2016-01-01

    The aim of the present study was to investigate the impact of filaggrin knockdown on the function of normal human epidermal keratinocytes (NHEKs). Filaggrin expression levels in NHEKs were knocked down by lentivirus (LV) encoding small hairpin RNA (shRNA), with control cells infected with nonsense shRNA or not infected. Cell migration and invasion were assayed using Transwell inserts, cell adhesion and proliferation by the Cell Counting kit-8 assay, and apoptosis and cell cycle progression by flow cytometry. shRNA efficiently suppressed expression of filaggrin protein. The LV group had significantly decreased cell migration, adhesion and proliferation, and increased apoptosis compared with the control groups (P=0.027). In addition, the proportion of cells in G1 and G2 phases were significantly increased in the LV group compared with control groups (P=0.018). The results of the present study demonstrate that filaggrin knockdown inhibits NHEK migration, adhesion and proliferation, promotes apoptosis and disturbs cell cycle progression. PMID:27485743

  2. Dysregulated function of normal human epidermal keratinocytes in the absence of filaggrin.

    PubMed

    Dang, Ningning; Ma, Xiaoli; Meng, Xianguang; An, Liguo; Pang, Shuguang

    2016-09-01

    The aim of the present study was to investigate the impact of filaggrin knockdown on the function of normal human epidermal keratinocytes (NHEKs). Filaggrin expression levels in NHEKs were knocked down by lentivirus (LV) encoding small hairpin RNA (shRNA), with control cells infected with nonsense shRNA or not infected. Cell migration and invasion were assayed using Transwell inserts, cell adhesion and proliferation by the Cell Counting kit‑8 assay, and apoptosis and cell cycle progression by flow cytometry. shRNA efficiently suppressed expression of filaggrin protein. The LV group had significantly decreased cell migration, adhesion and proliferation, and increased apoptosis compared with the control groups (P=0.027). In addition, the proportion of cells in G1 and G2 phases were significantly increased in the LV group compared with control groups (P=0.018). The results of the present study demonstrate that filaggrin knockdown inhibits NHEK migration, adhesion and proliferation, promotes apoptosis and disturbs cell cycle progression. PMID:27485743

  3. Barrier Requirements as the Evolutionary “Driver” of Epidermal Pigmentation in Humans

    PubMed Central

    ELIAS, PETER M.; MENON, GOPINATHAN; WETZEL, BRUCE K.; WILLIAMS, JOHN (JACK) W.

    2011-01-01

    Current explanations for the development of epidermal pigmentation during human evolution are not tenable as stand-alone hypotheses. Accordingly, we assessed instead whether xeric- and UV-B-induced stress to the epidermal permeability barrier, critical to survival in a terrestrial environment, could have “driven” the development of epidermal pigmentation. (1) Megadroughts prevailed in central Africa when hominids expanded into open savannahs [≈1.5–0.8 million years ago], resulting in sustained exposure to both extreme aridity and erythemogenic UV-B, correlating with genetic evidence that pigment developed ≈1.2 million years ago. (2) Pigmented skin is endowed with enhanced permeability barrier function, stratum corneum integrity/cohesion, and a reduced susceptibility to infections. The enhanced function of pigmented skin can be attributed to the lower pH of the outer epidermis, likely due to the persistence of (more-acidic) melanosomes into the outer epidermis, as well as the conservation of genes associated with eumelanin synthesis and melanosome acidification (e.g., TYR, OCA2 [p protein], SLC24A5, SLC45A2, MATP) in pigmented populations. Five keratinocyte-derived signals (stem cell factor⇒KIT; FOXn1⇒FGF2; IL-1α, NGF, and p53) are potential candidates to have stimulated the sequential development of epidermal pigmentation in response to stress to the barrier. We summarize evidence here that epidermal interfollicular pigmentation in early hominids likely evolved in response to stress to the permeability barrier. PMID:20209486

  4. Intra-epidermal nerve fibres in human skin: back to the roots.

    PubMed

    Abels, Christoph

    2014-04-01

    Regarding the existence and the role of intra-epidermal nerve fibres, the literature is ambiguous. However, performing a literature search, a landmark paper turned up that even many dermatologists seem to have forgotten, or may not even know at all. This paper is entitled 'The innervation of human epidermis' written by Arthur and Shelley (J Invest Dermatol, 32, 1959, 397). The full text is available via http://www.nature.com/jid/journal/v32/n3/pdf/jid195969a.pdf. The authors present data on intra-epidermal nerves at 16 representative body areas. The existence of intra-epidermal nerve fibres is undisputable and does not only explain clinical symptoms but may even provide a promising target for drug development. PMID:24450967

  5. Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice.

    PubMed

    Aberg, Karin M; Radek, Katherine A; Choi, Eung-Ho; Kim, Dong-Kun; Demerjian, Marianne; Hupe, Melanie; Kerbleski, Joseph; Gallo, Richard L; Ganz, Tomas; Mauro, Theodora; Feingold, Kenneth R; Elias, Peter M

    2007-11-01

    The skin is the first line of defense against microbial infection, and psychological stress (PS) has been shown to have adverse effects on cutaneous barrier function. Here we show that PS increased the severity of group A Streptococcus pyogenes (GAS) cutaneous skin infection in mice; this was accompanied by increased production of endogenous glucocorticoids (GCs), which inhibited epidermal lipid synthesis and decreased lamellar body (LB) secretion. LBs encapsulate antimicrobial peptides (AMPs), and PS or systemic or topical GC administration downregulated epidermal expression of murine AMPs cathelin-related AMP and beta-defensin 3. Pharmacological blockade of the stress hormone corticotrophin-releasing factor or of peripheral GC action, as well as topical administration of physiologic lipids, normalized epidermal AMP levels and delivery to LBs and decreased the severity of GAS infection during PS. Our results show that PS decreases the levels of 2 key AMPs in the epidermis and their delivery into LBs and that this is attributable to increased endogenous GC production. These data suggest that GC blockade and/or topical lipid administration could normalize cutaneous antimicrobial defense during PS or GC increase. We believe this to be the first mechanistic link between PS and increased susceptibility to infection by microbial pathogens. PMID:17975669

  6. Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice

    PubMed Central

    Aberg, Karin M.; Radek, Katherine A.; Choi, Eung-Ho; Kim, Dong-Kun; Demerjian, Marianne; Hupe, Melanie; Kerbleski, Joseph; Gallo, Richard L.; Ganz, Tomas; Mauro, Theodora; Feingold, Kenneth R.; Elias, Peter M.

    2007-01-01

    The skin is the first line of defense against microbial infection, and psychological stress (PS) has been shown to have adverse effects on cutaneous barrier function. Here we show that PS increased the severity of group A Streptococcus pyogenes (GAS) cutaneous skin infection in mice; this was accompanied by increased production of endogenous glucocorticoids (GCs), which inhibited epidermal lipid synthesis and decreased lamellar body (LB) secretion. LBs encapsulate antimicrobial peptides (AMPs), and PS or systemic or topical GC administration downregulated epidermal expression of murine AMPs cathelin-related AMP and β-defensin 3. Pharmacological blockade of the stress hormone corticotrophin-releasing factor or of peripheral GC action, as well as topical administration of physiologic lipids, normalized epidermal AMP levels and delivery to LBs and decreased the severity of GAS infection during PS. Our results show that PS decreases the levels of 2 key AMPs in the epidermis and their delivery into LBs and that this is attributable to increased endogenous GC production. These data suggest that GC blockade and/or topical lipid administration could normalize cutaneous antimicrobial defense during PS or GC increase. We believe this to be the first mechanistic link between PS and increased susceptibility to infection by microbial pathogens. PMID:17975669

  7. Markedly diminished epidermal keratinocyte expression of intercellular adhesion molecule-1 (ICAM-1) in Sezary syndrome

    SciTech Connect

    Nickoloff, B.J.; Griffiths, E.M.; Baadsgaard, O.; Voorhees, J.J.; Hanson, C.A.; Cooper, K.D. )

    1989-04-21

    In mucosis fungoides the malignant T cells express lymphocyte function-associated antigen-1, which allows them to bind to epidermal keratinocytes expressing the gamma interferon-inducible intercellular adhesion molecule-1. In this report, a patient with leukemic-stage mucosis fungoides (Sezary syndrome) had widespread erythematous dermal infiltrates containing malignant T cells, but without any epidermotropism. The authors discovered that the T cells expressed normal amounts of functional lymphocyte function-associated antigen-1, but the keratinocytes did not express significant levels of intercellular adhesion molecule-1, which was probably due to the inability of the malignant T cells to produce gamma interferon. These results support the concept that the inability of malignant T cells to enter the epidermis may contribute to emergence of more clinically aggressive T-cell clones that are no longer confined to the skin, but infiltrate the blood, lymph nodes, and viscera, as is seen in Sezary syndrome.

  8. A composite enhancer regulates p63 gene expression in epidermal morphogenesis and in keratinocyte differentiation by multiple mechanisms

    PubMed Central

    Antonini, Dario; Sirico, Anna; Aberdam, Edith; Ambrosio, Raffaele; Campanile, Carmen; Fagoonee, Sharmila; Altruda, Fiorella; Aberdam, Daniel; Brissette, Janice L.; Missero, Caterina

    2015-01-01

    p63 is a crucial regulator of epidermal development, but its transcriptional control has remained elusive. Here, we report the identification of a long-range enhancer (p63LRE) that is composed of two evolutionary conserved modules (C38 and C40), acting in concert to control tissue- and layer-specific expression of the p63 gene. Both modules are in an open and active chromatin state in human and mouse keratinocytes and in embryonic epidermis, and are strongly bound by p63. p63LRE activity is dependent on p63 expression in embryonic skin, and also in the commitment of human induced pluripotent stem cells toward an epithelial cell fate. A search for other transcription factors involved in p63LRE regulation revealed that the CAAT enhancer binding proteins Cebpa and Cebpb and the POU domain-containing protein Pou3f1 repress p63 expression during keratinocyte differentiation by binding the p63LRE enhancer. Collectively, our data indicate that p63LRE is composed of additive and partly redundant enhancer modules that act to direct robust p63 expression selectively in the basal layer of the epidermis. PMID:25567987

  9. Genome-wide p63-regulated gene expression in differentiating epidermal keratinocytes

    PubMed Central

    Oti, Martin; Kouwenhoven, Evelyn N.; Zhou, Huiqing

    2015-01-01

    The transcription factor p63 is a key regulator in epidermal keratinocyte proliferation and differentiation. However, the role of p63 in gene regulation during these processes is not well understood. To investigate this, we recently generated genome-wide profiles of gene expression, p63 binding sites and active regulatory regions with the H3K27ac histone mark (Kouwenhoven et al., 2015). We showed that only a subset of p63 binding sites are active in keratinocytes, and that differentiation-associated gene expression dynamics correlate with the activity of p63 binding sites rather than with their occurrence per se. Here we describe in detail the generation and processing of the ChIP-seq and RNA-seq datasets used in this study. These data sets are deposited in the Gene Expression Omnibus (GEO) repository under the accession number GSE59827. PMID:26484246

  10. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    SciTech Connect

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-05-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.

  11. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed Central

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-01-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8105469

  12. System theoretical investigation of human epidermal growth factor receptor-mediated signalling

    SciTech Connect

    Zhang, Yi; Shankaran, Harish; Opresko, Lee; Resat, Haluk

    2008-09-01

    The partitioning of biological networks into coupled functional modules is gaining increasing attention in the biological sciences. This approach has the advantage that predicting a system level response does not require a mechanistic description of the internal dynamics of each module. Identification of the input-output characteristics of the network modules and the connectivity between the modules provide the necessary quantitative representation of system dynamics. However, determination of the input-output relationships of the modules is not trivial; it requires the controlled perturbation of module inputs and systematic analysis of experimental data. In this report, we apply a system theoretical analysis approach to derive the causal input-output relationships of the functional module for the human epidermal growth factor receptor (HER) mediated Erk and Akt signaling pathways. Using a library of cell lines expressing varying levels of EGFR and HER2, we show that a transfer function-based representation can be successfully applied to quantitatively characterize information transfer in this system.

  13. Induction of proteins and mRNAs after uv irradiation of human epidermal keratinocytes

    SciTech Connect

    Kartasova, T.; Ponec, M.; van de Putte, P.

    1988-02-01

    uv sensitivity of cultured human epidermal keratinocytes was analyzed at different growth conditions and compared with the sensitivity of dermal fibroblasts derived from the same skin specimen. No significant differences in survival curves were found between these two cell types, although keratinocytes grown under standard conditions were slightly more resistant to uv irradiation than fibroblasts. The extracellular concentration of calcium appeared to be critical not only in the regulation of keratinocyte proliferation and differentiation, but also in the uv sensitivity of these cells: keratinocytes grown under conditions which favor cell proliferation (low calcium concentration) are more resistant to uv irradiation than those grown under conditions favoring differentiation (high calcium concentration). Two-dimensional protein gel electrophoresis was used to detect a possible effect of uv irradiation on the accumulation of specific mRNAs in the cytoplasm and/or on the synthesis of specific proteins. Proteins were pulse labeled in vivo with (/sup 35/S)methionine or synthesized in vitro in rabbit reticulocyte lysates on mRNA isolated from keratinocytes that were irradiated with different uv doses at different periods of time prior to isolation. Alterations in expression were demonstrated for several proteins in both in vivo and in vitro experiments.

  14. Distribution of apoptosis-mediating Fas antigen in human skin and effects of anti-Fas monoclonal antibody on human epidermal keratinocyte and squamous cell carcinoma cell lines.

    PubMed

    Oishi, M; Maeda, K; Sugiyama, S

    1994-01-01

    Fast antigen is a cell surface protein that mediates apoptosis. Using immunohistological, flow cytometry and electron microscopic analyses, we investigated the expression of Fas antigen on various skin tissues, and on cultured SV40-transformed human epidermal keratinocyte cell line KJD and human skin squamous cell carcinoma cell line HSC. The Fas antigen was widely distributed in skin components such as the keratinocytes in the lower portion of the epidermis, epidermal dendritic cells, endothelial cells, fibroblasts, apocrine glands, eccrine sweat glands, sebaceous glands, some normal melanocytes and infiltrating lymphoid cells. It was also strongly expressed on the keratinocytes of lichenoid eruptions seen in lupus erythematosus and lichen planus, and on the spongiotic or acanthotic epidermis seen in chronic eczema, adult T-cell leukaemia/lymphoma (ATLL) and atopic dermatitis. Its expression was closely correlated with lymphoid infiltrating cells and it was strongly expressed in lymphoid neoplastic cells, particularly ATLL cells, and fibroblasts seen in dermatofibroma. However, the antigen was not detected on basal cell epithelioma cells, some malignant melanomas or any junctional naevi. The cell lines KJD and HSC strongly expressed the Fas antigen, and crosslinking of the Fas antigen by an anti-Fas monoclonal antibody induced apoptosis of these cell lines. These results indicate that the apoptosis-mediating Fas antigen may play an important role in normal skin turnover and cell differentiation, in immune regulation of skin tumours, and in the pathogenesis of various skin diseases. PMID:7529480

  15. The Mitogenic Potential of Heparin-Binding Epidermal Growth Factor in the Human Endometrium Is Mediated by the Epidermal Growth Factor Receptor and Is Modulated by Tumor Necrosis Factor-α

    PubMed Central

    CHOBOTOVA, KATYA; MUCHMORE, MARY-ELIZABETH; CARVER, JANET; YOO, HYUNG-J; MANEK, SANJIV; GULLICK, WILLIAM J.; BARLOW, DAVID H.; MARDON, HELEN J.

    2006-01-01

    Heparin-binding epidermal growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family, is implicated in a variety of biological processes, including reproduction. Previous studies describe increased levels of HB-EGF in the human endometrium during the midsecretory stage of the menstrual cycle, suggesting a function for HB-EGF in implantation of the human blastocyst. Here we have investigated the expression and function of the soluble and transmembrane forms of HB-EGF in the human endometrium. We show that the expression of the transmembrane form of HB-EGF in the human endometrium is modulated according to the stage of the menstrual cycle. We present data demonstrating that both the soluble and transmembrane forms of HB-EGF induce DNA synthesis in human endometrial stromal cells. Furthermore, TNFα has a cooperative effect on HB-EGF, EGF, TGFα, and betacellulin-induced DNA synthesis in stromal cells, suggesting roles for the EGF family and TNFα in regeneration and maturation of human endometrium. Induction of DNA synthesis by HB-EGF and its modulation by TNFα in endometrial stromal cells are mediated by the EGF receptor and not the HB-EGF receptor ErbB4. Our data suggest key functions for HB-EGF, TNFα, and the EGF receptor in endometrial maturation, via autocrine/paracrine and juxtacrine pathways, in preparation for embryo implantation. PMID:12466384

  16. Improvement of epidermal differentiation and barrier function in reconstructed human skin after grafting onto athymic nude mice.

    PubMed

    Higounenc, I; Démarchez, M; Régnier, M; Schmidt, R; Ponec, M; Shroot, B

    1994-01-01

    To determine whether epidermis reconstructed in vitro at the air-liquid interface on de-epidermized dermis has the capacity to normalize the expression of differentiation-specific markers, its lipid composition and stratum corneum barrier properties, human skin equivalents were transplanted onto athymic nude mice and investigated at different stages ranging from 1 to 4 months after grafting. Indirect immunofluorescence with species- or non-species-specific antibodies revealed that as early as 1 month after transplantation keratinization, and involucrin, loricrin and transglutaminase patterns were normalized. Human melanocytes were observed in the basal layer of the pigmented graft. As revealed by high-performance thin-layer chromatography and transmission electron microscopy after ruthenium tetroxide fixation, the lipid profile and the intracellular lamellar organization were similar to those found in natural epidermis. Transepidermal water loss measurements and penetration studies showed that the barrier properties of the reconstructed epidermis after transplantation were comparable to those of normal human skin. PMID:8154923

  17. Expression and activation of erbB-2 and epidermal growth factor receptor in lung adenocarcinomas.

    PubMed Central

    Rachwal, W. J.; Bongiorno, P. F.; Orringer, M. B.; Whyte, R. I.; Ethier, S. P.; Beer, D. G.

    1995-01-01

    ErbB-2 and EGFR (epidermal growth factor receptor) are expressed in lung adenocarcinomas and associated with a poor prognosis. Immunocytochemical analysis revealed erbB-2 and EGFR coexperession as a characteristic feature of most lung adenocarcinomas, and at levels of receptor expression present in bronchial epithelial cells. In primary lung tumours and cell lines, erbB-2 detected using Western blot analysis demonstrated low-level phosphotyrosine staining of the 185 kDa band, as compared with breast cancer cell lines. A549 and A427 lung adenocarcinoma cells treated with neu differentiation factor (NDF) showed increased erbB-2 phosphotyrosine staining, but to a much lesser extent than breast cancer cells. The lung cells were examined for expression of the potential autocrine growth factors NDF and transforming growth factor alpha (TGF-alpha) by Northern blot analysis. Both NDF and TFG-alpha mRNA were abundantly expressed in the A549 cells. NDF mRNA was highest during active cell proliferation and decreased in confluent cells or after treatment with the growth-inhibitory steroid dexamethasone. Primary tumours and cell lines expressed EGFR, showing higher basal level phosphotyrosine staining than erbB-2. Treatment with NDF and EGF (epidermal growth factor) stimulated cell growth, and in A549 cells the presence of both factors provided an additive increase in cell growth. The growth stimulus that ligand-activated erbB-2 and EGFR provides to lung adenocarcinoma cells may establish a background of continued cell proliferation over which other critical transforming events may occur. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7599067

  18. Epidermal elafin expression is an indicator of poor prognosis in cutaneous graft-versus-host disease.

    PubMed

    Brüggen, Marie-Charlotte; Petzelbauer, Peter; Greinix, Hildegard; Contassot, Emmanuel; Jankovic, Dragana; French, Lars; Socié, Gérard; Rabitsch, Werner; Kuzmina, Zoya; Kalhs, Peter; Knobler, Robert; Stingl, Georg; Stary, Georg

    2015-04-01

    Graft-versus-host disease (GVHD) remains a common and potentially life-threatening complication of allogeneic hematopoietic stem cell transplantation. In the skin, GVHD can present in an acute (aGVHD), chronic lichenoid (clGVHD), or chronic sclerotic form (csGVHD). Measuring peripheral blood levels of the keratinocyte-derived protease inhibitor elafin has recently emerged as a promising tool for the diagnosis of cutaneous aGVHD. We evaluated whether the analysis of elafin expression in skin would allow distinguishing aGVHD from drug hypersensitivity rashes (DHR) and whether cutaneous elafin expression would correlate with disease severity or altered prognosis of aGVHD and clGVHD/csGVHD. Skin biopsies from aGVHD (n=22), clGVHD (n=15), csGVHD (n=7), and DHR (n=10) patients were collected and epidermal elafin expression and its association with diverse clinical/histological parameters were analyzed. Acute GVHD and DHR displayed varying degrees of elafin expression. No elafin was detectable in csGVHD, whereas the molecule was increased in clGVHD as compared with aGVHD. Elafin-high aGVHD/clGVHD lesions presented with epidermal thickening and were associated with poor prognosis-i.e., decreased overall survival in aGVHD and corticosteroid resistance in clGVHD. Although cutaneous elafin does not seem to discriminate aGVHD from DHR lesions, our study strongly suggests an association between cutaneous elafin expression and poor prognosis for patients with cutaneous GVHD. PMID:25405322

  19. Epidermal changes in human skin following irradiation with either UVB or UVA

    SciTech Connect

    Pearse, A.D.; Gaskell, S.A.; Marks, R.

    1987-01-01

    We have demonstrated previously that following UVB irradiation to normal volunteers there is an increase in epidermal and stratum corneum thickness and an increase in the thymidine autoradiographic labeling index. These changes are coupled with alterations in epidermal glucose-6-phosphate dehydrogenase and succinic dehydrogenase activities, despite the absence of erythema clinically. The use of a sunscreen did not completely prevent these changes. In this study, we have examined the effects of repeated irradiation of human skin with either UVB or UVA alone in order to compare the changes produced in the epidermis and to ascertain whether UVA irradiation could cause these. Irradiation with either UVB or UVA alone was found to increase the mean epidermal thickness, the mean stratum corneum thickness, and mean keratinocyte height significantly. Glucose-6-phosphate dehydrogenase activity was significantly increased throughout the epidermis, and succinic dehydrogenase activity was significantly decreased. The autoradiographic labeling index was significantly increased following UVB irradiation but not following UVA irradiation. These results demonstrate that UVA alone can have a direct effect on epidermal morphology and metabolism, suggesting that protection of skin from UV radiation should include adequate protection from UVA.

  20. Cyclin D2 Overexpression in Transgenic Mice Induces Thymic and Epidermal Hyperplasia whereas Cyclin D3 Expression Results Only in Epidermal Hyperplasia

    PubMed Central

    Rodriguez-Puebla, Marcelo L.; LaCava, Margaret; Miliani de Marval, Paula L.; Jorcano, Jose L.; Richie, Ellen R.; Conti, Claudio J.

    2000-01-01

    In a previous report, we described the effects of cyclin D1 expression in epithelial tissues of transgenic mice. To study the involvement of D-type cyclins (D1, D2, and D3) in epithelial growth and differentiation and their putative role as oncogenes in skin, transgenic mice were developed which carry cyclin D2 or D3 genes driven by a keratin 5 promoter. As expected, both transgenic lines showed expression of these proteins in most of the squamous tissues analyzed. Epidermal proliferation increased in transgenic animals and basal cell hyperplasia was observed. All of the animals also had a minor thickening of the epidermis. The pattern of expression of keratin 1 and keratin 5 indicated that epidermal differentiation was not affected. Transgenic K5D2 mice developed mild thymic hyperplasia that reversed at 4 months of age. On the other hand, high expression of cyclin D3 in the thymus did not produce hyperplasia. This model provides in vivo evidence of the action of cyclin D2 and cyclin D3 as mediators of proliferation in squamous epithelial cells. A direct comparison among the three D-type cyclin transgenic mice suggests that cyclin D1 and cyclin D2 have similar roles in epithelial thymus cells. However, overexpression of each D-type cyclin produces a distinct phenotype in thymic epithelial cells. PMID:10980142

  1. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer.

    PubMed Central

    Bartlett, J. M.; Langdon, S. P.; Simpson, B. J.; Stewart, M.; Katsaros, D.; Sismondi, P.; Love, S.; Scott, W. N.; Williams, A. R.; Lessells, A. M.; Macleod, K. G.; Smyth, J. F.; Miller, W. R.

    1996-01-01

    The expression of mRNA for the epidermal growth factor (EGF) receptor, EGF and transforming growth factor alpha (TGF-alpha) was determined in 76 malignant, six borderline and 15 benign primary ovarian tumours using the reverse transcriptase-polymerase chain reaction and related to clinical and pathological parameters. Of the malignant tumours, 70% (53/76) expressed EGF receptor mRNA, 31% (23/75) expressed EGF mRNA and 35% (26/75) expressed TGF-alpha mRNA. For the borderline tumours, four of six (67%) expressed EGF receptor mRNA, 1/6 (17%) expressed TGF-alpha mRNA and none expressed EGF mRNA. Finally, 33% (5/15) of the benign tumours expressed EGF receptor mRNA, whereas 40% (6/15) expressed EGF mRNA and 7% (1/15) expressed TGF-alpha mRNA. The presence of the EGF receptor in malignant tumours was associated with that of TGF-alpha (P = 0.0015) but not with EGF (P = 1.00), whereas there was no relationship between the presence of EGF and TGF-alpha (P = 1.00). EGF receptor mRNA expression was significantly and positively associated with serous histology (P = 0.006) but not with stage or grade. Neither EGF nor TGF-alpha showed any link with histological subtype or stage. The survival of patients with malignant tumours possessing EGF receptor mRNA was significantly reduced compared with that of patients whose tumours were negative (P = 0.030 for all malignant tumours; P = 0.007 for malignant epithelial tumours only). In contrast, neither the expression of TGF-alpha nor EGF was related to survival. These data suggest that the presence of EGF receptor mRNA is associated with poor prognosis in primary ovarian cancer. Images Figure 1 PMID:8562334

  2. Successful human epidermal growth receptor 2-targeted therapy beyond disease progression for extramammary Paget's disease.

    PubMed

    Watanabe, Satomi; Takeda, Masayuki; Takahama, Takayuki; Iwasa, Tsutomu; Tsurutani, Junji; Tanizaki, Junko; Shimizu, Toshio; Sakai, Kazuko; Wada, Yoshitaka; Isogai, Noritaka; Nishio, Kazuto; Nakagawa, Kazuhiko

    2016-06-01

    Extramammary Paget's disease is a malignant intraepithelial carcinoma, which constitutes less than 1 % of all vulvar malignancies. Surgical resection is the first treatment of choice and standard chemotherapy has not been established for advanced or recurrent disease. Experimental and clinical studies have identified human epidermal growth receptor 2 as a potential therapeutic target. A 63-year-old male was referred for recurrent extramammary Paget's disease after surgery. Human epidermal growth receptor 2 was shown to be overexpressed and amplified by immunohistochemical analysis and fluorescence in situ hybridization analysis, respectively. After two cycles of trastuzumab monotherapy, all lymph node metastases decreased in size. However, he experienced recurrence in the lymph nodes during the seven courses of trastuzumab. As a subsequent treatment, trastuzumab was administered in combination with docetaxel and pertuzumab; clinical response was sustained for 12 months without significant adverse events. PMID:26856856

  3. Immunohistochemical localization of the epidermal growth factor receptor in normal human tissues.

    PubMed

    Damjanov, I; Mildner, B; Knowles, B B

    1986-11-01

    A monoclonal antibody recognizing an epitope of the external domain of the human epidermal growth factor (EGF) receptor was used to localize this protein in selected normal human tissues. Two patterns of reactivity were recognized: strong linear or granular cell surface staining, and granular cytoplasmic staining. In one tissue, the endometrium, a change in the reaction pattern associated with changes in hormonal stimulation was observed. In some tissues such as epididymis and skin, the antibody showed surface reactivity with cells considered to represent part of the proliferating cell compartment, whereas in liver, pancreas, and prostate, all cells were reactive with the antibody, though the predominant reactivity was localized in the cytoplasm. The differential distribution of the epidermal growth factor receptor to specific cell types and cellular compartments may signify adaptations that permit growth factor responsiveness in a milieu of available ligand. PMID:3534450

  4. Hesperetin induces melanin production in adult human epidermal melanocytes.

    PubMed

    Usach, Iris; Taléns-Visconti, Raquel; Magraner-Pardo, Lorena; Peris, José-Esteban

    2015-06-01

    One of the major sources of flavonoids for humans are citrus fruits, hesperidin being the predominant flavonoid. Hesperetin (HSP), the aglycon of hesperidin, has been reported to provide health benefits such as antioxidant, anti-inflammatory and anticarcinogenic effects. However, the effect of HSP on skin pigmentation is not clear. Some authors have found that HSP induces melanogenesis in murine B16-F10 melanoma cells, which, if extrapolated to in vivo conditions, might protect skin against photodamage. Since the effect of HSP on normal melanocytes could be different to that observed on melanoma cells, the described effect of HSP on murine melanoma cells has been compared to the effect obtained using normal human melanocytes. HSP concentrations of 25 and 50 µM induced melanin synthesis and tyrosinase activity in human melanocytes in a concentration-dependent manner. Compared to control melanocytes, 25 µM HSP increased melanin production and tyrosinase activity 1.4-fold (p < 0.01) and 1.1-fold (p < 0.01), respectively, and the corresponding increases in the case of 50 µM HSP were 1.9-fold (p < 0.001) and 1.3-fold (p < 0.001). Therefore, HSP could be considered a valuable photoprotective substance if its capacity to increase melanin production in human melanocyte cultures could be reproduced on human skin. PMID:25765751

  5. Over-expression of hedgehog signaling is associated with epidermal tumor formation in vitamin D receptor null mice

    PubMed Central

    Teichert, Arnaud; Elalieh, Hashem; Elias, Peter; Welsh, JoEllen; Bikle, Daniel D.

    2011-01-01

    The vitamin D receptor (VDR) ligand, 1,25(OH)2D3, reduces proliferation and enhances differentiation and thus has been investigated for a role in preventing or treating cancer. Mice deficient for the VDR display a hyperproliferative response in the hair follicle and epidermis and decreased epidermal differentiation. Unlike their wild type littermates, when treated with 7,12 dimethylbenzanthracene (DMBA) or UVB, they develop skin tumors, including some characteristic of over-expression of the hedgehog (Hh) pathway. Both the epidermis and utricles of the VDR null animals over-express elements of the Hh pathway [Sonic Hedgehog (Shh, 2.02 fold), Patched1 1.58 fold, Smoothened 3.54 fold, Gli1 1.17 fold, and Gli2 1.66 fold]. This over-expression occurs at an age (11 weeks) where epidermal hyperproliferation is most visible and is spatially controlled in the epidermis. DMBA or UVB induced tumors in the VDR null mice also over-express elements of this pathway. Moreover, 1,25(OH)2D3 down-regulates the expression of some members of the Hh pathway in an epidermal explants culture system, suggesting a direct regulation by 1,25(OH)2D3. Our results suggest that increased expression of Shh in the keratinocytes of the VDR null animal activates the Hh pathway, predisposing the skin to the development of both malignant and benign epidermal neoplasms. PMID:21814234

  6. Biafine applied on human epidermal wounds is chemotactic for macrophages and increases the IL-1/IL-6 ratio.

    PubMed

    Coulomb, B; Friteau, L; Dubertret, L

    1997-01-01

    Using a model of pure epidermal wounds in normal human volunteers, we have studied the effects of Biafine emulsion firstly on inflammatory cell migration, vascular permeability and cytokine release during the first 24 h, and secondly on epidermal wound healing by measuring transepidermal water loss from day 1 to day 7. Under these conditions, Biafine does not improve epidermal healing, in contrast to what is observed with bleeding dermoepidermal wounds. Our results suggest that the effects of Biafine are essentially at the dermis level. The analysis of epidermal wound exudates leads to the same conclusion. As a matter of fact, we demonstrated that Biafine is chemotactic for macrophages and increases the IL-1/IL-6 ratio, chiefly by reducing the secretion of IL-6. This study permits to progressively clarify the mode of action of Biafine, that seems to be located at the level of granulation tissue formation and not at the epidermal level. PMID:9449167

  7. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    PubMed

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  8. Epigallocatechin-3-gallate attenuates the AIM2-induced secretion of IL-1β in human epidermal keratinocytes.

    PubMed

    Yun, Mihee; Seo, Gimoon; Lee, Ji-Young; Chae, Gue Tae; Lee, Seong-Beom

    2015-11-27

    The pro-inflammatory cytokine interleukin-1β (IL-1β) plays a central role in the pathogenesis of psoriasis. Keratinocytes are a major source of IL-1β and express absent in melanoma 2 (AIM2). AIM2 recognizes a double-stranded DNA and initiates the IL-1β-processing of inflammasome. The AIM2 inflammasome is a cytosolic multiprotein complex composed of AIM2, an apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and pro-caspase-1. Epigallocatechin-3-Gallate (EGCG), a major polyphenolic component of green tea, has anti-inflammatory properties. In the current study, we investigated the issue of whether or how EGCG suppresses AIM2 inflammasome in human epidermal keratinocytes, neonatal (HEKn). Treatment with EGCG, before or after IFN-γ priming, attenuated poly(dA:dT)-induced IL-1β secretion in HEKn cells. Pre-treatment with EGCG reduced the level of IFN-γ-induced priming signal via the down-regulation of pro-IL-1β and pro-capspase-1 in HEKn cells. Furthermore, treatment with EGCG attenuated poly(dA:dT)-induced ASC oligomerization and caspase-1 activation in IFN-γ-primed HEKn cells. These results suggest that EGCG attenuates AIM2-induced IL-1β secretion by suppressing both IFN-γ-mediated priming and poly(dA:dT)-induced ASC oligomerization of inflammasomes in human epidermal keratinocytes. PMID:26494301

  9. Photoprotective effects of oxyresveratrol and Kuwanon O on DNA damage induced by UVA in human epidermal keratinocytes.

    PubMed

    Hu, Shuting; Chen, Feng; Wang, Mingfu

    2015-03-16

    Ultraviolet A not only plays a major part in photoaging and skin tanning but also induces genetic damage and mutation in the epidermal basal layer of human skin. The photoprotective effect of oxyresveratrol and kuwanon O, two phenolic compounds from the root extract of Morus australis, in human primary epidermal keratinocytes was investigated in this study. Both of them were nontoxic to cells at a concentration less than 10 and 0.5 μM, respectively. After pretreatment at the concentrations of 5 and 10 μM, oxyresveratrol increased cell viability, exhibited significant suppressions on UVA- or H2O2-induced cellular ROS. UVA-enhanced nitrotyrosine was also reduced by post-treatment with oxyresveratrol at theses concentrations. Kuwanon O presented similar inhibitions on cellular ROS and nitrotyrosine with lower concentrations (0.25 and 0.5 μM), but there is no significant protection on cell survival after UVA irradiation. Their photoprotective effects also involved the enhanced repair of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and cyclobutane pyrimidine dimers (CPDs) as mediated by the augment of p53 expression after UVA radiation. PMID:25588103

  10. Mechanism of interleukin-1α transcriptional regulation of S100A9 in a human epidermal keratinocyte cell line

    PubMed Central

    Bando, Mika; Zou, Xianqiong; Hiroshima, Yuka; Kataoka, Masatoshi; Ross, Karen F; Shinohara, Yasuo; Nagata, Toshihiko; Herzberg, Mark C; Kido, Jun-ichi

    2013-01-01

    S100A9 is a calcium-binding protein and subunit of antimicrobial calprotectin complex (S100A8/A9). Produced by neutrophils, monocytes/ macrophages and keratinocytes, S100A9 expression increases in response to inflammation. For example, IL-1α produced by epithelial cells acts autonomously on the same cells to induce expression of S100A8/A9 and cellular differentiation. Whereas it is well known that IL-1α and members of the IL-10 family of cytokines upregulate S100A8 and S100A9 in several cell lineages, the pathway and mechanism of IL-1α-dependent transcriptional control of S100A9 in epithelial cells is not established. Modeled using human epidermal keratinocytes (HaCaT cells), IL-1α stimulated phosphorylation of p38 MAPK and induced S100A9 expression, which was blocked by IL-1 receptor antagonist, RNAi suppression of p38, or a p38 MAPK inhibitor. Transcription of S100A9 in HaCaT cells depended on nucleotides -94 to -53 in the upstream promoter region, based upon use of deletion constructs and luciferase reporter activity. Within the responsive promoter region, IL-1α increased the binding activity of CCAAT/enhancer binding protein β (C/EBPβ). Mutated C/EBPβ binding sequences or C/EBPβ-specific siRNA inhibited the S100A9 transcriptional response. Hence, IL-1α is strongly suggested to increase S100A9 expression in a human epidermal keratinocyte cell line by signaling through the IL-1 receptor and p38 MAPK, increasing C/EBPβ-dependent transcriptional activity. PMID:23563247

  11. Epidermal growth factor receptor expression in different subtypes of oral lichenoid disease

    PubMed Central

    Cortés-Ramírez, Dionisio A.; Rodríguez-Tojo, María J.; Coca-Meneses, Juan C.; Marichalar-Mendia, Xabier

    2014-01-01

    The oral lichenoid disease (OLD) includes different chronic inflammatory processes such as oral lichen planus (OLP) and oral lichenoid lesions (OLL), both entities with controversial diagnosis and malignant potential. Epidermal growth factor receptor (EFGR) is an important oral carcinogenesis biomarker and overexpressed in several oral potentially malignant disorders. Objectives: To analyze the EGFR expression in the OLD to find differences between OLP and OLL, and to correlate it with the main clinical and pathological features. Material and Methods: Forty-four OLD cases were studied and classified according to their clinical (Group C1: only papular lesions / Group C2: papular and other lesions) and histopathological features (Group HT: OLP-typical / Group HC: OLP-compatible) based in previous published criteria. Standard immunohistochemical identification of EGFR protein was performed. Comparative and descriptive statistical analyses were performed. Results: Thirty-five cases (79.5%) showed EGFR overexpression without significant differences between clinical and histopathological groups (p<0.05). Histological groups showed significant differences in the EGFR expression pattern (p=0.016). Conlusions: All OLD samples showed high EGFR expression. The type of clinical lesion was not related with EGFR expression; however, there are differences in the EGFR expression pattern between histological groups that may be related with a different biological profile and malignant risk. Key words:Oral lichenoid disease, oral lichen planus, oral lichenoid lesion, oral carcinogenesis, EGFR. PMID:24880441

  12. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells

    PubMed Central

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future. PMID:27362942

  13. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications

    PubMed Central

    Iqbal, Nida; Iqbal, Naveed

    2014-01-01

    Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Dimerization of the receptor results in the autophosphorylation of tyrosine residues within the cytoplasmic domain of the receptors and initiates a variety of signaling pathways leading to cell proliferation and tumorigenesis. Amplification or overexpression of HER2 occurs in approximately 15–30% of breast cancers and 10–30% of gastric/gastroesophageal cancers and serves as a prognostic and predictive biomarker. HER2 overexpression has also been seen in other cancers like ovary, endometrium, bladder, lung, colon, and head and neck. The introduction of HER2 directed therapies has dramatically influenced the outcome of patients with HER2 positive breast and gastric/gastroesophageal cancers; however, the results have been proved disappointing in other HER2 overexpressing cancers. This review discusses the role of HER2 in various cancers and therapeutic modalities available targeting HER2. PMID:25276427

  14. Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation

    PubMed Central

    Cavazza, Alessia; Miccio, Annarita; Romano, Oriana; Petiti, Luca; Malagoli Tagliazucchi, Guidantonio; Peano, Clelia; Severgnini, Marco; Rizzi, Ermanno; De Bellis, Gianluca; Bicciato, Silvio; Mavilio, Fulvio

    2016-01-01

    Summary Human skin is maintained by the differentiation and maturation of interfollicular stem and progenitors cells. We used DeepCAGE, genome-wide profiling of histone modifications and retroviral integration analysis, to map transcripts, promoters, enhancers, and super-enhancers (SEs) in prospectively isolated keratinocytes and transit-amplifying progenitors, and retrospectively defined keratinocyte stem cells. We show that >95% of the active promoters are in common and differentially regulated in progenitors and differentiated keratinocytes, while approximately half of the enhancers and SEs are stage specific and account for most of the epigenetic changes occurring during differentiation. Transcription factor (TF) motif identification and correlation with TF binding site maps allowed the identification of TF circuitries acting on enhancers and SEs during differentiation. Overall, our study provides a broad, genome-wide description of chromatin dynamics and differential enhancer and promoter usage during epithelial differentiation, and describes a novel approach to identify active regulatory elements in rare stem cell populations. PMID:27050947

  15. Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation.

    PubMed

    Cavazza, Alessia; Miccio, Annarita; Romano, Oriana; Petiti, Luca; Malagoli Tagliazucchi, Guidantonio; Peano, Clelia; Severgnini, Marco; Rizzi, Ermanno; De Bellis, Gianluca; Bicciato, Silvio; Mavilio, Fulvio

    2016-04-12

    Human skin is maintained by the differentiation and maturation of interfollicular stem and progenitors cells. We used DeepCAGE, genome-wide profiling of histone modifications and retroviral integration analysis, to map transcripts, promoters, enhancers, and super-enhancers (SEs) in prospectively isolated keratinocytes and transit-amplifying progenitors, and retrospectively defined keratinocyte stem cells. We show that >95% of the active promoters are in common and differentially regulated in progenitors and differentiated keratinocytes, while approximately half of the enhancers and SEs are stage specific and account for most of the epigenetic changes occurring during differentiation. Transcription factor (TF) motif identification and correlation with TF binding site maps allowed the identification of TF circuitries acting on enhancers and SEs during differentiation. Overall, our study provides a broad, genome-wide description of chromatin dynamics and differential enhancer and promoter usage during epithelial differentiation, and describes a novel approach to identify active regulatory elements in rare stem cell populations. PMID:27050947

  16. In vivo modulation of epidermal growth factor receptor phosphorylation in mice expressing different gangliosides.

    PubMed

    Daniotti, Jose L; Crespo, Pilar M; Yamashita, Tadashi

    2006-12-01

    We studied in this work the in vivo phosphorylation of the epidermal growth factor receptor (EGFr) in skin from knockout mice lacking different ganglioside glycosyltransferases. Results show an enhancement of EGFr phosphorylation, after EGF stimulation, in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice as compared with wild-type and Sial-T1 knockout mice. Qualitative analysis of ganglioside composition in mice skin suggest that the increase of EGFr phosphorylation observed in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice in response to EGF might not be primary attributed to the expression of GD3 or a-series gangliosides in mice skin. These studies provide, for the first time, an approach for studying the molecular mechanisms involved in the in vivo regulation of EGFr function by gangliosides. PMID:16817235

  17. The peanut lectin-binding glycoproteins of human epidermal keratinocytes

    SciTech Connect

    Morrison, A.I. ); Keeble, S.; Watt, F.M. )

    1988-08-01

    The peanut lectin (PNA) is known to bind more strongly to keratinocytes that are undergoing terminal differentiation than to proliferating keratinocytes. In order to investigate the significance of this change in cell-surface carbohydrate authors have identified the PNA-binding glycoproteins of cultured human keratinocytes and antibodies against them. Two heavily glycosylated bands of 110 and 250 kDa were resolved by PAGE of ({sup 14}C)galactose- or ({sup 14}C)mannose- and ({sup 14}C)glucosamine-labeled cell extracts eluted with galactose from PNA affinity columns. The higher molecular weight band was also detected on PNA blots of unlabeled cell extracts transferred to nitrocellulose. Both bands were sensitive to pronase digestion, but only the 250-kDa band was digested with trypsin. A rabbit antiserum that we prepared (anti-PNA-gp) immunoprecipitated both bands from cell extracts. In contrast to PNA, anti-PNA-gp bound equally to proliferating and terminally differentiating cells, indicating that some epitope(s) of the PNA-binding glycoproteins is present on the cell surface prior to terminal differentiation. When keratinocytes grown as a monolayer in low-calcium medium were switched to medium containing 2 mM calcium ions in order to induce desmosome formation and stratification, there was a dramatic redistribution of the PNA-binding glycoproteins, which became concentrated at the boundaries between cells. This may suggest a role for the glycoproteins in cell-cell interactions during stratification.

  18. Expression of paired-like homeodomain transcription factor 2c (PITX2c) in epidermal keratinocytes

    SciTech Connect

    Shi, Ge; Sohn, Kyung-Cheol; Choi, Tae-Young; Choi, Dae-Kyoung; Lee, Sang-Sin; Ou, Bai-sheng; Kim, Sooil; Lee, Young Ho; Yoon, Tae-Jin; Kim, Seong-Jin; Lee, Young; Seo, Young-Joon; Lee, Jeung-Hoon; Kim, Chang Deok

    2010-11-15

    Paired-like homeodomain transcription factor 2 (PITX2) has been implicated as one of the genes responsible for Rieger syndrome. It has been also shown to play a central role during development. In this study, we investigated the functional role of PITX2 in keratinocyte differentiation. RT-PCR analysis showed that PITX2c isoform was predominantly expressed in a differentiation-dependent manner. Consistent with, immunohistochemical staining showed that PITX2 expression was increased in the upper layer of epidermis. When PITX2c was overexpressed in cultured keratinocytes by a recombinant adenovirus, the differentiation markers such as involucrin and loricrin were significantly increased at both mRNA and protein levels. In addition, PITX2c overexpression led to the decrease of cell growth, concomitantly with the upregulation of cell cycle-related genes p21. To investigate the effect of PITX2c in vivo, we microinjected PITX2c expression vector into zebrafish embryo. Interestingly, overexpression of PITX2c in zebrafish embryo led to the formation of horn-like structure and thickening of epidermis, together with the increase of keratin 8 (K8) expression. These results suggest that PITX2c has a role in proliferation and differentiation of epidermal keratinocytes.

  19. Dermal Contributions to Human Interfollicular Epidermal Architecture and Self-Renewal

    PubMed Central

    Lawlor, Kynan T.; Kaur, Pritinder

    2015-01-01

    The human interfollicular epidermis is renewed throughout life by populations of proliferating basal keratinocytes. Though interfollicular keratinocyte stem cells have been identified, it is not known how self-renewal in this compartment is spatially organized. At the epidermal-dermal junction, keratinocytes sit atop a heterogeneous mix of dermal cells that may regulate keratinocyte self-renewal by influencing local tissue architecture and signalling microenvironments. Focusing on the rete ridges and complementary dermal papillae in human skin, we review the identity and organisation of abundant dermal cells types and present evidence for interactions between the dermal microenvironment and the interfollicular keratinocytes. PMID:26602926

  20. First in human nanotechnology doxorubicin delivery system to target epidermal growth factor receptors in recurrent glioblastoma.

    PubMed

    Whittle, James R; Lickliter, Jason D; Gan, Hui K; Scott, Andrew M; Simes, John; Solomon, Benjamin J; MacDiarmid, Jennifer A; Brahmbhatt, Himanshu; Rosenthal, Mark A

    2015-12-01

    There are limited treatment options for patients with recurrent glioblastoma (GBM). The EnGeneIC delivery vehicle (EDV) is a novel nanocellular (minicell) compound which packages theoretically effective concentrations of chemotherapeutic drugs that are designed to target tumors via minicell-surface attached bispecific proteins (EnGeneIC, Lane Cove West, NSW, Australia). Epidermal growth factor receptor (EGFR) is overexpressed in 40-50% of patients with GBM and is a promising target for new therapeutics. (V)EDVDox contains doxorubicin (Dox) within the minicells and targets EGFR through Vectibix (V; Amgen Biologicals, Thousand Oaks, CA, USA). We conducted a first in human Phase I study of (V)EDVDox in adults with recurrent GBM expressing EGFR on immunohistochemistry, following standard therapy including radiation and temozolomide, to establish a safe maximum tolerated dose and determine a recommended Phase II dose (RPTD). (V)EDVDox was administered weekly in an 8week cycle, with dose escalation in successive cohorts of patients using a standard 3+3 design. In total, 14 patients were treated at three dose levels, and the RPTD was identified as 5×10(9)(V)EDVDox. Overall (V)EDVDox was well tolerated, with no dose limiting toxicity and no withdrawals from the study due to adverse events. The most common adverse events were nausea, fever, and chills or rigors, experienced in seven, five and five patients, respectively. Transient uncomplicated hypophosphatemia was seen in seven patients and was not dose-related. Our results demonstrate that (V)EDVDox, up to a dose of 5×10(9)(V)EDVDox weekly, is well tolerated in patients with recurrent GBM. PMID:26279503

  1. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  2. Epidermal Cells Expressing Putative Cell Markers in Nonglabrous Skin Existing in Direct Proximity with the Distal End of the Arrector Pili Muscle

    PubMed Central

    Rufaut, N. W.; Jones, L.; Sinclair, R.

    2016-01-01

    Inconsistent with the view that epidermal stem cells reside randomly spread along the basal layer of the epidermal rete ridges, we found that epidermal cells expressing stem cell markers in nonglabrous skin exist in direct connection with the distal end of the arrector pili muscle. The epidermal cells that express stem cell markers consist of a subpopulation of basal keratinocytes located in a niche at the lowermost portion of the rete ridges at the distal arrector pili muscle attachment site. Keratinocytes in the epidermal stem cell niche express K15, MCSP, and α6 integrin. α5 integrin marks the distal end of the APM colocalized with basal keratinocytes expressing stem cell markers located in a well-protected and nourished environment at the lowermost point of the epidermis; these cells are hypothesized to participate directly in epidermal renewal and homeostasis and also indirectly in wound healing through communication with the hair follicle bulge epithelial stem cell population through the APM. Our findings, plus a reevaluation of the literature, support the hierarchical model of interfollicular epidermal stem cell units of Fitzpatrick. This new view provides insights into epidermal control and the possible involvement of epidermal stem cells in nonmelanoma skin carcinogenesis. PMID:27375744

  3. Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields.

    PubMed

    Collard, J-F; Hinsenkamp, M

    2015-05-01

    We observed on different tissues and organisms a biological response after exposure to pulsed low frequency and low amplitude electric or electromagnetic fields but the precise mechanism of cell response remains unknown. The aim of this publication is to understand, using bioinformatics, the biological relevance of processes involved in the modification of gene expression. The list of genes analyzed was obtained after microarray protocol realized on cultures of human epidermal explants growing on deepidermized human skin exposed to a pulsed low frequency electric field. The directed acyclic graph on a WebGestalt Gene Ontology module shows six categories under the biological process root: "biological regulation", "cellular process", "cell proliferation", "death", "metabolic process" and "response to stimulus". Enriched derived categories are coherent with the type of in vitro culture, the stimulation protocol or with the previous results showing a decrease of cell proliferation and an increase of differentiation. The Kegg module on WebGestalt has highlighted "cell cycle" and "p53 signaling pathway" as significantly involved. The Kegg website brings out interactions between FoxO, MAPK, JNK, p53, p38, PI3K/Akt, Wnt, mTor or NF-KappaB. Some genes expressed by the stimulation are known to have an exclusive function on these pathways. Analyses performed with Pathway Studio linked cell proliferation, cell differentiation, apoptosis, cell cycle, mitosis, cell death etc. with our microarrays results. Medline citation generated by the software and the fold change variation confirms a diminution of the proliferation, activation of the differentiation and a less well-defined role of apoptosis or wound healing. Wnt and DKK functional classes, DKK1, MACF1, ATF3, MME, TXNRD1, and BMP-2 genes proposed in previous publications after a manual analysis are also highlighted with other genes after Pathway Studio automatic procedure. Finally, an analysis conducted on a list of genes

  4. Targeting of epidermal growth factor receptor (EGFR)-expressing tumor cells with sterically stabilized affibody liposomes (SAL).

    PubMed

    Beuttler, Julia; Rothdiener, Miriam; Müller, Dafne; Frejd, Fredrik Y; Kontermann, Roland E

    2009-06-01

    Affibody molecules are small and stable antigen-binding molecules derived from the B domain of protein A. We applied a bivalent, high-affinity epidermal growth factor receptor (EGFR)-specific affibody molecule for the generation of targeted PEGylated liposomes. These sterically stabilized affibody liposomes (SAL) were produced by chemical coupling of the cysteine-modified affibody molecule to maleimide-PEG(2000)-DSPE and subsequent insertion into PEGylated liposomes. These SAL showed strong and selective binding to EGFR-expressing tumor cell lines. Binding was dependent on the amount of inserted affibody molecule-lipid conjugates and could be blocked by soluble EGF. Approximately 30% of binding activity was still retained after 6 days of incubation in human plasma at 37 degrees C. Binding of SAL to cells led to efficient internalization of the liposomes. Using mitoxantrone-loaded liposomes, we observed for SAL, compared to untargeted liposomes, an enhanced cytotoxicity toward EGFR-expressing cells. In summary, we show that SAL can be easily prepared from affibody molecules and thus may be suitable for the development of carrier systems for targeted delivery of drugs. PMID:19435362

  5. Dysregulation of epidermal growth factor receptor expression in premalignant lesions during head and neck tumorigenesis.

    PubMed

    Shin, D M; Ro, J Y; Hong, W K; Hittelman, W N

    1994-06-15

    The development of head and neck cancer, believed to result from field cancerization and a multistep process of tumorigenesis, is often associated with an accumulation of genotypic and phenotypic alterations. The phenotypic changes could be the result of dysregulation of growth control genes such as epidermal growth factor receptor (EGFR). With the goal of identifying a potential biomarker of the multistep process of tumorigensis, we studied specimens of 36 head and neck squamous cell carcinomas from 5 different sites that contained normal epithelia and/or premalignant lesions adjacent to the tumors. Almost all of the individuals from whom these specimens were obtained had been exposed to first-hand smoking and/or alcohol consumption. Using a monoclonal anti-EGFR antibody for immunohistochemical analysis on paraffin-embedded sections with attached 886 cells for internal control, the levels of EGFR expression were assessed by image analysis. The relative staining intensity of EGFR in normal epithelia adjacent to tumors was 2-fold higher than that in normal control epithelium (P = 0.021), suggesting that, even in histologically normal epithelium, EGFR was already up-regulated in tissues surrounding tumors. These findings supported the theory of field cancerization in head and neck tumorigenesis. As tissue progressed from normal tissue adjacent to tumor to hyperplasia and to dysplasia, EGFR expression remained elevated. However, in the step from dysplasia to squamous cell carcinoma, EGFR expression was further and dramatically up-regulated (P = 0.01). Therefore, these results indicate that EGFR dysregulation happens in two steps, the moderate up-regulation of EGFR expression in normal epithelium adjacent to tumor and the further up-regulation of EGFR expression in the change from dysplasia to squamous cell carcinoma. In summary, the studies presented here indicate that EGFR dysregulation might be a useful marker for identifying individuals at risk of tumor development

  6. Transgenic Expression of Cyclin-Dependent Kinase 4 Results in Epidermal Hyperplasia, Hypertrophy, and Severe Dermal Fibrosis

    PubMed Central

    Miliani de Marval, Paula L.; Gimenez-Conti, Irma B.; LaCava, Margaret; Martinez, Luis A.; Conti, Claudio J.; Rodriguez-Puebla, Marcelo L.

    2001-01-01

    In a previous report we have described the effects of expression of D-type cyclins in epithelial tissues of transgenic mice. To study the involvement of the D-type cyclin partner cyclin-dependent kinase 4 (CDK4) in epithelial growth and differentiation, transgenic mice were generated carrying the CDK4 gene under the control of a keratin 5 promoter. As expected, transgenic mice showed expression of CDK4 in the epidermal basal-cell layer. Epidermal proliferation increased dramatically and basal cell hyperplasia and hypertrophy were observed. The hyperproliferative phenotype of these transgenic mice was independent of D-type cyclin expression because no overexpression of these proteins was detected. CDK4 and CDK2 kinase activities increased in transgenic animals and were associated with elevated binding of p27Kip1 to CDK4. Expression of CDK4 in the epidermis results in an increased spinous layer compared with normal epidermis, and a mild hyperkeratosis in the cornified layer. In addition to epidermal changes, severe dermal fibrosis was observed and part of the subcutaneous adipose tissue was replaced by connective tissue. Also, abnormal expression of keratin 6 associated with the hyperproliferative phenotype was observed in transgenic epidermis. This model provides in vivo evidence for the role of CDK4 as a mediator of proliferation in epithelial cells independent of D-type cyclin expression. PMID:11438484

  7. Benzoyl peroxide interferes with metabolic co-operation between cultured human epidermal keratinocytes

    SciTech Connect

    Lawrence, N.J.; Parkinson, E.K.; Emmerson, A.

    1984-03-01

    The ability of benzoyl peroxide to inhibit metabolic co-operation in rodent cell cultures may be relevant to its recently reported tumour promoting activity in mouse epidermis. We show here that non-toxic doses of this compound reduce metabolic co-operation between human epidermal keratinocytes to approximately 30% of that found in controls. The doses of benzoyl peroxide used did not affect keratinocyte morphology or their rate of attachment to the culture substratum. These results could be important as benzoyl peroxide is widely used in industry.

  8. Toxic epidermal necrolysis caused by fluconazole in a patient with human immunodeficiency virus infection.

    PubMed

    George, Jacob; Sharma, Arun; Dixit, Ramakant; Chhabra, Naveen; Sharma, Smita

    2012-07-01

    Stevens-Johnson syndrome and toxic epidermal necrolysis (TEN) are rare but serious dermatologic disorders. These grave conditions present as medical emergency, requiring prompt diagnosis and management. These are often drug induced and various groups of drugs, such as sulfa drugs, NSAIDS, etc., have been implicated as to cause TEN. Fluconazole is a commonly used drug with mild side effects. TEN caused by fluconazole is rare, and till now only few cases have been reported in the literature. We present a case of TEN in a human immunodeficiency virus infected man following fluconazole therapy in view of its rare occurrence. PMID:23129968

  9. Transient expression of minimum linear gene cassettes in onion epidermal cells via direct transformation.

    PubMed

    Cheng, Yun-Qing; Yang, Jun; Xu, Feng-Ping; An, Li-Jia; Liu, Jian-Feng; Chen, Zhi-Wen

    2009-12-01

    A new method without any special devices for direct transformation of linear gene cassettes was developed. Its feasibility was verified through 5'-fluorescent dye (fluorescein isothiocyanate, FITC)-labeled fluorescent tracing and transient expression of a gus reporter gene. Minimal linear gene cassettes, containing necessary regulation elements and a gus reporter gene, was prepared by polymerase chain reaction and dissolved in transformation buffer solution to 100 ng/mL. The basic transformation solution used was Murashige and Skoog basal salt mixture (MS) liquid medium. Hypertonic pretreatment of explants and transformation cofactors, including Ca(2+), surfactant assistants, Agrobacterium LBA4404 cell culture on transformation efficiency were evaluated. Prior to the incubation of the explants and target linear cassette in each designed transformation solution for 3 h, the onion low epidermal explants were pre-cultured in darkness at 27 degrees C for 48 h and then transferred to MS solid media for 72 h. FITC-labeled linear DNA was used to trace the delivery of DNA entry into the cell and the nuclei. By GUS staining and flow-cytometry-mediated fluorescent detection, a significant increase of the ratios of fluorescent nuclei as well as expression of the gus reporter gene was observed by each designed transformation solution. This potent and feasible method showed prospective applications in plant transgenic research. PMID:19255730

  10. Epidermal growth factor receptor mutation in combination with expression of MIG6 alters gefitinib sensitivity

    PubMed Central

    2011-01-01

    Background Epidermal growth factor receptor (EGFR) signaling plays an important role in the regulation of cell proliferation, survival, metastasis, and invasion in various tumors. Earlier studies showed that the EGFR is frequently overexpressed in non-small-cell lung cancer (NSCLC) and EGFR mutations at specific amino acid residues in the kinase domain induce altered responsiveness to gefitinib, a small molecule EGFR tyrosine kinase inhibitor. However, the mechanism underlying the drug response modulated by EGFR mutation is still largely unknown. To elucidate drug response in EGFR signal transduction pathway in which complex dynamics of multiple molecules involved, a systematic approach is necessary. In this paper, we performed experimental and computational analyses to clarify the underlying mechanism of EGFR signaling and cell-specific gefitinib responsiveness in three H1299-derived NSCLC cell lines; H1299 wild type (H1299WT), H1299 with an overexpressed wild type EGFR (H1299EGFR-WT), and H1299 with an overexpressed mutant EGFR L858R (H1299L858R; gefitinib sensitive mutant). Results We predicted and experimentally verified that Mig6, which is a known negative regulator of EGFR and specifically expressed in H1299L858R cells, synergized with gefitinib to suppress cellular growth. Computational analyses indicated that this inhibitory effect is amplified at the phosphorylation/dephosphorylation steps of MEK and ERK. Conclusions Thus, we showed that L858R receptor mutation in combination with expression of its negative regulator, Mig6, alters signaling outcomes and results in variable drug sensitivity. PMID:21333004

  11. ImmunoPET and biodistribution with human epidermal growth factor receptor 3 targeting antibody 89Zr-RG7116

    PubMed Central

    Terwisscha van Scheltinga, Anton GT; Lub-de Hooge, Marjolijn N; Abiraj, Keelara; Schröder, Carolien P; Pot, Linda; Bossenmaier, Birgit; Thomas, Marlene; Hölzlwimmer, Gabriele; Friess, Thomas; Kosterink, Jos GW; de Vries, Elisabeth GE

    2014-01-01

    The humanized monoclonal antibody with high affinity for the human epidermal growth factor receptor (HER) 3, RG7116, is a glycoengineered, IgG1 class antibody. By labeling RG7116 with zirconium-89 (89Zr) we aimed to visualize in vivo HER3 expression and study the biodistribution of this antibody in human tumor-bearing mice. Biodistribution of 89Zr-RG7116 was studied in subcutaneously xenografted FaDu tumor cells (HER3-positive). Dose-dependency of 89Zr-RG7116 organ distribution and specific tumor uptake was assessed by administering doses ranging from 0.05 to 10 mg/kg RG7116 to SCID/Beige mice. Biodistribution was analyzed at 24 and 144 h after injection. MicroPET imaging was performed at 1, 3, and 6 days after injection of 1.0 mg/kg 89Zr-RG7116 in the FaDu, H441, QG-56 and Calu-1 xenografts with varying HER3 expression. The excised tumors were analyzed for HER3 expression. Biodistribution analyses showed a dose- and time-dependent 89Zr-RG7116 tumor uptake in FaDu tumors. The highest tumor uptake of 89Zr-RG7116 was observed in the 0.05 mg/kg dose group with 27.5%ID/g at 144 h after tracer injection. MicroPET imaging revealed specific tumor uptake of 89Zr-RG7116 in FaDu and H441 models with an increase in tumor uptake over time. Biodistribution data was consistent with the microPET findings in FaDu, H441, QG56 and Calu-1 xenografts, which correlated with HER3 expression levels. In conclusion, 89Zr-RG7116 specifically accumulates in HER3 expressing tumors. PET imaging with this tracer provides real-time non-invasive information about RG7116 distribution, tumor targeting and tumor HER3 expression levels. PMID:24870719

  12. Isolation of genes predominantly expressed in guard cells and epidermal cells of Nicotiana glauca.

    PubMed

    Smart, L B; Cameron, K D; Bennett, A B

    2000-04-01

    Guard cells are specialized and metabolically active cells which arise during the differentiation of the epidermis. Using Nicotiana glauca epidermal peels as a source of purified guard cells, we have constructed a cDNA library from guard cell RNA. In order to isolate genes that are predominantly expressed in guard cells, we performed a differential screen of this library, comparing the hybridization of a radiolabeled cDNA probe synthesized from guard cell RNA to that from a mesophyll cell cDNA probe. Sixteen clones were isolated based on their greater level of hybridization with the guard cell probe. Of these, eight had high homology to lipid transfer protein (LTP), two were similar to glycine-rich protein (GRP), and one displayed high homology to proline-rich proteins from Arabidopsis thaliana (AtPRP2, AtPRP4) and from potato guard cells (GPP). Northern analysis confirmed that one or more NgLTP genes, NgGRP1, and NgGPP1 are all differentially expressed, with highest levels in guard cells, and low or undetectable levels in mesophyll cells and in roots. In addition, all are induced to some degree in drought-stressed guard cells. NgLTP and NgGRP1 expression was localized by in situ hybridization to the guard cells and pavement cells in the epidermis. NgGRP1 expression was also detected in cells of the vasculature. Genomic Southern analysis indicated that LTP is encoded by a family of highly similar genes in N. glauca. This work has identified members of a subset of epidermis- and guard cell-predominant genes, whose protein products are likely to contribute to the unique properties acquired by guard cells and pavement cells during differentiation. PMID:10890533

  13. UV radiation induces CXCL5 expression in human skin.

    PubMed

    Reichert, Olga; Kolbe, Ludger; Terstegen, Lara; Staeb, Franz; Wenck, Horst; Schmelz, Martin; Genth, Harald; Kaever, Volkhard; Roggenkamp, Dennis; Neufang, Gitta

    2015-04-01

    CXCL5 has recently been identified as a mediator of UVB-induced pain in rodents. To compare and to extend previous knowledge of cutaneous CXCL5 regulation, we performed a comprehensive study on the effects of UV radiation on CXCL5 regulation in human skin. Our results show a dose-dependent increase in CXCL5 protein in human skin after UV radiation. CXCL5 can be released by different cell types in the skin. We presumed that, in addition to immune cells, non-immune skin cells also contribute to UV-induced increase in CXCL5 protein. Analysis of monocultured dermal fibroblasts and keratinocytes revealed that only fibroblasts but not keratinocytes displayed up regulated CXCL5 levels after UV stimulation. Whereas UV treatment of human skin equivalents, induced epidermal CXCL5 mRNA and protein expression. Up regulation of epidermal CXCL5 was independent of keratinocyte differentiation and keratinocyte-keratinocyte interactions in epidermal layers. Our findings provide first evidence on the release of CXCL5 in UV-radiated human skin and the essential role of fibroblast-keratinocyte interaction in the regulation of epidermal CXCL5. PMID:25690483

  14. Antiestrogen fulvestrant enhances the antiproliferative effects of epidermal growth factor receptor inhibitors in human non-small cell lung cancer

    PubMed Central

    Garon, Edward B.; Pietras, Richard J.; Finn, Richard S.; Kamranpour, Naeimeh; Pitts, Sharon; Márquez-Garbán, Diana C.; Desai, Amrita J.; Dering, Judy; Hosmer, Wylie; von Euw, Erika M.; Dubinett, Steven M.; Slamon, Dennis J.

    2012-01-01

    Introduction Estrogen receptor (ER) signaling and its interaction with epidermal growth factor receptor (EGFR) is a potential therapeutic target in non-small cell lung cancer (NSCLC). To explore cross-communication between ER and EGFR, we have correlated ER pathway gene and protein expression profiles and examined effects of antiestrogens with or without EGFR inhibitors in preclinical models of human NSCLC. Methods We evaluated 54 NSCLC cell lines for growth inhibition with EGFR inhibitors, antiestrogen treatment or the combination. Each line was evaluated for baseline ER pathway protein expression. The majority were also evaluated for baseline ER pathway gene expression. Human NSCLC xenografts were evaluated for effects of inhibition of each pathway either individually or in combination. Results The specific antiestrogen fulvestrant has modest single agent activity in vitro, but in many lines fulvestrant adds to effects of EGFR inhibitors, including synergy in the EGFR mutant, erlotinib-resistant H1975 line. ERα, ERβ, progesterone receptor (PR)-A, PR-B and aromatase proteins are expressed in all lines to varying degrees, with trends towards lower aromatase in more sensitive cell lines. Sensitivity to fulvestrant correlates with greater baseline ERα gene expression. Tumor stability is achieved in human tumor xenografts with either fulvestrant or EGFR inhibitors, but tumors regress significantly when both pathways are inhibited. Conclusions These data provide a rationale for further investigation of the antitumor activity of combined therapy with antiestrogen and anti-EGFR agents in the clinic. Future work should also evaluate dual ER and EGFR inhibition in the setting of secondary resistance to EGFR inhibition. PMID:23399957

  15. Involvement of Toll-like receptor 2 and epidermal growth factor receptor signaling in epithelial expression of airway remodeling factors.

    PubMed

    Homma, Tetsuya; Kato, Atsushi; Sakashita, Masafumi; Norton, James E; Suh, Lydia A; Carter, Roderick G; Schleimer, Robert P

    2015-04-01

    Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti-TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2-dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti-TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α-dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis. PMID:25180535

  16. Involvement of Toll-Like Receptor 2 and Epidermal Growth Factor Receptor Signaling in Epithelial Expression of Airway Remodeling Factors

    PubMed Central

    Kato, Atsushi; Sakashita, Masafumi; Norton, James E.; Suh, Lydia A.; Carter, Roderick G.; Schleimer, Robert P.

    2015-01-01

    Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti–TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2–dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti–TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α–dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis. PMID:25180535

  17. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification;Epidermal growth factor receptor; Radiotherapy; Squamous cell carcinoma; Biomarker; Local tumor control

    SciTech Connect

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-07-15

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  18. Regenerative and reparative effects of human chorion-derived stem cell conditioned medium on photo-aged epidermal cells.

    PubMed

    Li, Qiankun; Chen, Yan; Ma, Kui; Zhao, Along; Zhang, Cuiping; Fu, Xiaobing

    2016-04-17

    Epidermal cells are an important regenerative source for skin wound healing. Aged epidermal cells have a low ability to renew themselves and repair skin injury. Ultraviolet (UV) radiation, particularly UVB, can cause photo-aging of the skin by suppressing the viability of human epidermal cells. A chorion-derived stem cell conditioned medium (CDSC-CNM) is thought to have regenerative properties. This study aimed to determine the regenerative effects of CDSC-CNM on UVB-induced photo-aged epidermal cells. Epidermal cells were passaged four times and irradiated with quantitative UVB, and non-irradiated cells served as a control group. Cells were then treated with different concentrations of CDSC-CNM. Compared to the non-irradiated group, the proliferation rates and migration rates of UVB-induced photo-aged epidermal cells significantly decreased (p < 0.05) with increasing intracellular radical oxygen species (ROS) generation and DNA damage. After treatment with CDSC-CNM, photo-aged epidermal cells significantly improved their viability, and their ROS generation and DNA damage decreased. The secretory factors in CDSC-CNM, including epidermal growth factor (EGF), transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-8 and the related signaling pathway protein levels, increased compared to the control medium (CM). The potential regenerative and reparative effects of CDSC-CNM indicate that it may be a candidate material for the treatment of prematurely aged skin. The functions of the secretory factors and the mechanisms of CDSC-CNM therapy deserve further attention. PMID:27097375

  19. [The effect of low temperatures on the viability of human epidermal keratinocytes found at different stages of differentiation].

    PubMed

    Raĭdan, M; Shubin, N A; Blinova, M I; Prokhorov, G G; Pinaev, G P

    2011-01-01

    The aim of this study was a comparative analysis to the degree of stability of human epidermal cells found at different stages of differentiation to low temperatures. The effect of different subzero temperatures of liquid nitrogen vapor on keratinocytes found both in human skin fragments and as isolated cells extracted from skin fragments has been studied. The degree of stability of epidermal cells low temperatures was evaluated by their ability to form a multilayer stratum in culture; hence this phenomenon explains the survival of a sufficient amount of proliferative cells after exposure to subzero temperatures. Quantitative analysis of the ratio of epidermal stem, transitory and differentiated cells in a population of viable cells before and after exposure to low temperatures were determined using antibodies corresponding to their different stages of differentiation. The results of this research show that the stability of human epidermal cells to low temperature differs depending on their stage of differentiation both in situ and in vitro. Epidermal stem cells and transitory cells are more stable than differentiated cells. PMID:21473115

  20. Epidermal differentiation complex (locus 1q21) gene expression in head and neck cancer and normal mucosa.

    PubMed

    Tyszkiewicz, Tomasz; Jarzab, Michal; Szymczyk, Cezary; Kowal, Monika; Krajewska, Jolanta; Jaworska, Magdalena; Fraczek, Marcin; Krajewska, Anna; Hadas, Ewa; Swierniak, Michal; Markowski, Jaroslaw; Lange, Dariusz; Poltorak, Stanislaw; Wiench, Malgorzata; Krecicki, Tomasz; Jarzab, Jerzy; Maciejewski, Adam

    2014-01-01

    Epidermal differentiation complex (EDC) comprises a number of genes associated with human skin diseases including psoriasis, atopic dermatitis and hyperkeratosis. These genes have also been linked to numerous cancers, among them skin, gastric, colorectal, lung, ovarian and renal carcinomas. The involvement of EDC components encoding S100 proteins, small proline-rich proteins (SPRRs) and other genes in the tumorigenesis of head and neck squamous cell cancer (HNSCC) has been previously suggested. The aim of the study was to systematically analyze the expression of EDC components on the transcript level in HNSCC. Tissue specimens from 93 patients with HNC of oral cavity and 87 samples from adjacent or distant grossly normal oral mucosawere analyzed. 48 samples (24 tumor and 24 corresponding surrounding tissue) were hybridized to Affymetrix GeneChip Human 1.0 ST Arrays. For validation by quantitative real-time PCR (QPCR) the total RNA from all180 samples collected in the study was analyzed with Real-Time PCR system and fluorescent amplicon specific-probes. Additional set of samples from 14 patients with laryngeal carcinoma previously obtained by HG-U133 Plus 2.0 microarray was also included in the analyses. The expression of analyzed EDC genes was heterogeneous. Two transcripts (S100A1 and S100A4) were significantly down-regulated in oral cancer when compared to normal mucosa (0.69 and 0.36-fold change, respectively), showing an opposite pattern of expression to the remaining S100 genes. Significant up-regulation in tumors was found for S100A11, S100A7, LCE3D, S100A3 and S100A2 genes. The increased expression of S100A7 was subsequently validated by QPCR, confirming significant differences. The remaining EDC genes, including all encoding SPRR molecules, did not show any differences between oral cancer and normal mucosa. The observed differences were also assessed in the independent set of laryngeal cancer samples, confirming the role of S100A3 and LCE3D transcripts in

  1. Cloning of human epidermal growth factor as a bacterial secretory protein, its properties and mutagenesis

    SciTech Connect

    Engler, D.A.; Matsunami, R.K.; Campion, S.R.; Foote, R.S.; Mural, R.J.; Larimer, F.W.; Stevens, A.; Niyogi, S.K.

    1987-05-01

    A chimeric gene, containing the DNA coding for the human epidermal growth factor (EGF) and that for the signal peptide of E. coli alkaline phosphatase, was constructed by the annealing and subsequent ligation of appropriate DNA oligonucleotides synthesized in an automated DNA synthesizer. The gene was then cloned into a bacterial plasmid under the transcriptional control of the E. coli trp-lac (tac) promoter, and then transformed into E. coli. Following induction with isopropylthiogalactoside, the secretion of EGF into the E. coli periplasmic space and some into the growth medium was confirmed by its specific binding to the EGF receptor and stimulation of the EGF receptor tyrosine kinase activity. The size and physicochemical properties of the purified protein mimicked those of authentic human EGF. Studies of structure/function relationships by specific alterations of targeted amino acid residues in the EGF molecule have been initiated by utilizing site-directed mutagenesis.

  2. Parotid gland is the main source of human salivary epidermal growth factor

    SciTech Connect

    Thesleff, I.; Viinikka, L.; Saxen, L.; Lehtonen, E.; Perheentupa, J.

    1988-01-01

    To clarify the production of human epidermal growth factor (EGF) by different salivary glands, the authors measured its concentration by radioimmunoassay separately in whole saliva, in parotid gland (PG) saliva and in mixed submandibular (SMG) and sublingual gland (SLG) saliva. Also, they studied the presence of EGF in PG and SMG by immunohistochemistry. The mean concentrations of EDG in PG saliva was higher than in whole saliva, which in turn was higher than in mixed SMG + SLG saliva. No sex difference existed in any salivary gland EGF. Immunohistochemistry revealed EGF in the acinar cells of both PG and SMG, buy only in PG there were prominent EDG deposits in luminal spaces. Their data suggest that EDG is produced by both PG and SMG, but that more of it is secreted from the PG. This result is new and challenges the general view that human salivary EDG is mainly from SMG.

  3. New Whitening Constituents from Taiwan-Native Pyracantha koidzumii: Structures and Tyrosinase Inhibitory Analysis in Human Epidermal Melanocytes

    PubMed Central

    Lin, Rong-Dih; Chen, Mei-Chuan; Liu, Yan-Ling; Lin, Yi-Tzu; Lu, Mei-Kuang; Hsu, Feng-Lin; Lee, Mei-Hsien

    2015-01-01

    Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata) Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9) and 3,4-dihydroxy-5-methoxybiphenyl-2ʹ-O-β-d-glucopyranoside (13), as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver–Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics. PMID:26633381

  4. Discovery of Novel Human Epidermal Growth Factor Receptor-2 Inhibitors by Structure-based Virtual Screening

    PubMed Central

    Shi, Zheng; Yu, Tian; Sun, Rong; Wang, Shan; Chen, Xiao-Qian; Cheng, Li-Jia; Liu, Rong

    2016-01-01

    Background: Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Objective: Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. Materials and Methods: In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential “new use” drugs. Results: Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. Conclusion: Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study. SUMMARY A series of elegant bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations were took advantage to identify human epidermal growth factor receptor-2 (HER2) inhibitors. Molecular docking recognized top 10 candidate compounds, which showed spectrum affinity to HER2. Further, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) in candidate compounds were identified as potential “new use” drugs against HER2-targeted anti-breast cancer therapeutics. Abbreviations used: HER2: Human epidermal growth factor receptor-2

  5. Cytogenetic evaluation of human glial tumors: correlation of overexpression of epidermal growth factor receptor (EGFB) with abnormalities of chromosome 7

    SciTech Connect

    Bell, C.W.

    1987-01-01

    Chromosome banding analysis of human glial tumors were performed using G- and Q-banding techniques in an attempt to establish recurring sites of chromosome change. Results revealed a nonrandom karyotypic profile including aneuploidy and considerable variation in chromosome number (range 40 ..-->.. 200). All tumors examined displayed numerical abnormalities, with the most common numeric change being a gain of chromosome 7. An attempt was then made to correlate the observed chromosome 7 changes with activation of the cellular proto-oncogene c-erb-B, whose produce is the epidermal growth factor receptor (EGFR). Six human glial tumors were analyzed for /sup 125/I-EGF binding, EGFR gene copy number, EGFR gene rearrangement, mRNA expression, and karyotypic profile. Saturation analysis at 4/sup 0/C revealed significant numbers of EGFR's in all 6 tumors. Southern blotting analysis utilizing cDNA probes for the EGFR failed to demonstrate significant amplification or structural rearrangement of the EFGR gene. The results suggest that overexpression of the EGFR may be related to an alternative mechanism, other than gene amplification and elevated mRNA levels, such as the regulation of receptor biosynthesis and degradation. In summary, findings indicate that alterations of chromosome 7 are the most prevalent chromosomal change in human glial tumors, and that these alterations may lead to overexpression of the protooncogene c-erb-B.

  6. Expression and localization of epidermal growth factor, transforming growth factor-α and epidermal growth factor receptor in the canine testis

    PubMed Central

    TAMADA, Hiromichi; TAKEMOTO, Kohei; TOMINAGA, Masato; KAWATE, Noritoshi; TAKAHASHI, Masahiro; HATOYA, Shingo; MATSUYAMA, Satoshi; INABA, Toshio; SAWADA, Tsutomu

    2015-01-01

    Gene expression of epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and EGF receptor (EGF-R) and the localization of the corresponding proteins in the canine testis were studied. Levels of mRNA expressions were determined by semiquantitative reverse transcription polymerase chain reaction in the testes of the peripubertal (4–6 months), young adult (3–4 years), advanced adult (7–8 years) and senescent (11–16 years) groups. The EGF-R mRNA level in the testes of the peripubertal group was significantly higher than those in the other groups, whereas there was no difference in EGF and TGF-α mRNA levels among groups. Immunohistochemical stainings for EGF, TGF-α and EGF-R in the testis revealed that immunoreactivity in the seminiferous epithelium and Sertoli cell was weak and nonspecific for the stage of spermatogenesis, and distinct staining was found in Leydig cells. These results suggest that the EGF family of growth factors may be involved in testicular maturation and function in the dog. PMID:26498203

  7. [Neoadjuvant treatment in human epidermal growth factor receptor 2-positive breast cancer].

    PubMed

    Liu, Yinhua; Liu, Shiwei; Zhang, Hong; Xu, Ling; Li, Ting; Duan, Xuening

    2015-12-01

    Breast cancer is the most prevalent malignancy among females worldwide. Human epidermal growth factor receptor 2 (HER2)-positive breast cancer represents a subtype with aggressive behavior, poor response to treatment and unfavorable prognosis. Anti-HER2-based neoadjuvant treatment has improved clinical outcomes of patients with HER2-positive disease. Pathological complete response (pCR) after neoadjuvant treatment indicates a favorable prognosis. With the development of HER2-targeted therapy and neoadjuvant treatment, numerous studies focus on the predictive factors of pCR or therapeutic resistance of anti-HER2 therapy. Identification of novel predictive factors in HER2-positive breast cancer, such as tumor-infiltrating lymphocytes, will be helpful for clinical decision. PMID:26850663

  8. Epidermal surface antigen (MS17S1) is highly conserved between mouse and human.

    PubMed

    Cho, Y J; Chema, D; Moskow, J J; Cho, M; Schroeder, W T; Overbeek, P; Buchberg, A M; Duvic, M

    1995-05-20

    A mouse monoclonal antibody ECS-1 raised to human keratinocytes detects a 35-kDa epidermal surface antigen (ESA) and causes keratinocyte dissociation in vitro. ECS-1 stains skin of 16-day mouse embryo and 8- to 9-week human fetus. Mouse Esa cDNA encodes a 379-amino-acid protein that is 99.2% identical to the human, differing at only 3 amino acids. The gene (M17S1) was mapped to mouse chromosome 11, high-lighting the conserved linkage synteny existing between human chromosome 17 and mouse chromosome 11. Although the nude locus has been mapped to the same region of chromosome 11, no abnormalities in protein, mRNA, or cDNA or genomic sequences were detected in nude mice. However, both nude and control mice were found to have a second Esa mRNA transcript that conserves amino acid sequence and molecular weight. The mouse and human 5' and 3' untranslated sequences are conserved. Similar RNA folding patterns of the 5' untranslated region are predicted despite a 91-bp insertion in the mouse. These data suggest that both the function and the regulation of ESA protein are of importance and that Esa (M17S1) is not the nude locus gene. PMID:7557989

  9. Epidermal surface antigen (MS17S1) is highly conserved between mouse and human

    SciTech Connect

    Cho, Y.J.; Chema, D.; Cho, M.

    1995-05-20

    A mouse monoclonal antibody ECS-1 raised to human keratinocytes detects a 35-kDa epidermal surface antigen (ESA) and causes keratinocyte dissociation in vitro. ECS-1 stains skin of 16-day mouse embryo and 8- to 9-week human fetus. Mouse Esa cDNA encodes a 379-amino-acid protein that is 99.2% identical to the human, differing at only 3 amino acids. The gene (M17S1) was mapped to mouse chromosome 11, highlighting the conserved linkage synteny existing between human chromosome 17 and mouse chromosome 11. Although the nude locus has been mapped to the same region of chromosome 11, no abnormalities in protein, mRNA, or cDNA or genomic sequences were detected in nude mice. However, both nude and control mice were found to have a second Esa mRNA transcript that conserves amino acid sequence and molecular weight. The mouse and human 5{prime} and 3{prime} untranslated sequences are conserved. Similar RNA folding patterns of the 5{prime} untranslated region are predicted despite a 91-bp insertion in the mouse. These data suggest that both the function and the regulation of ESA protein are of importance and that Esa (M17S1) is not the nude locus gene. 42 refs., 7 figs., 3 tabs.

  10. Effect of recombinant human epidermal growth factor against cutaneous scar formation in murine full-thickness wound healing.

    PubMed

    Kim, Young Seok; Lew, Dae Hyun; Tark, Kwan Chul; Rah, Dong Kyun; Hong, Joon Pio

    2010-04-01

    A visible cutaneous scar develops from the excess formation of immature collagen in response to an inflammatory reaction. This study examined the role of epidermal growth factor (EGF) in the formation of cutaneous scars. Twenty Crl:CD-1 (ICR) mice were used and 2 full-thickness skin wounds were made on the dorsum of each mouse. One of the wounds was treated with recombinant human EGF by local application and the other was treated with saline for control until complete healing was achieved. The EGF-treated group's wounds healed faster than the control group's. The width of the scar was smaller by 30% and the area was smaller by 26% in the EGF-treated group. Inflammatory cell numbers were significantly lower in the EGF-treated group. The expression of transforming growth factor (TGF)-beta(1) in the EGF-treated group was increased. It was observed that the amount of collagen in the EGF-treated group was larger than the control group. In the EGF-treated group, the visible external scars were less noticeable than that in the control group. These results suggest that EGF can reduce cutaneous scars by suppressing inflammatory reactions, decreasing expression of TGF-beta(1), and mediating the formation of collagen. PMID:20358003

  11. Activation of c-fos gene expression by a kinase-deficient epidermal growth factor receptor.

    PubMed Central

    Eldredge, E R; Korf, G M; Christensen, T A; Connolly, D C; Getz, M J; Maihle, N J

    1994-01-01

    The intrinsic tyrosine kinase activity of the epidermal growth factor receptor (EGFR) has been shown to be responsible for many of the pleiotropic intracellular effects resulting from ligand stimulation [W.S. Chen, C.S. Lazar, M. Poenie, R.Y. Tsien, G.N. Gill, and M.G. Rosenfeld, Nature (London) 328:820-823, 1987; A.M. Honegger, D. Szapary, A. Schmidt, R. Lyall, E. Van Obberghen, T.J. Dull, A. Ulrich, and J. Schlessinger, Mol. Cell. Biol. 7:4568-4571, 1987]. Recently, however, it has been shown that addition of ligand to cells expressing kinase-defective EGFR mutants can result in the phosphorylation of mitogen-activated protein kinase (R. Campos-González and J.R. Glenney, Jr., J. Biol. Chem. 267:14535-14538, 1992; E. Selva, D.L. Raden, and R.J. Davis, J. Biol. Chem. 268:2250-2254, 1993), as well as stimulation of DNA synthesis (K.J. Coker, J.V. Staros, and C.A. Guyer, Proc. Natl. Acad. Sci. USA 91:6967-6971, 1994). Moreover, mitogen-activated protein kinase has been shown to phosphorylate the transcription factor p62TCF in vitro, leading to enhanced ternary complex formation between p62TCF, p67SRF, and the c-fos serum response element (SRE) [H. Gille, A.D. Sharrocks, and P.E. Shaw, Nature (London) 358:414-417, 1992]. On the basis of these observations, we have investigated the possibility that the intrinsic tyrosine kinase activity of the EGFR may not be necessary for transcriptional activation mediated via p62TCF. Here, we demonstrate that a kinase-defective EGFR mutant can signal ligand-induced expression of c-fos protein and that a significant component of this induction appears to be mediated at the transcriptional level. Investigation of transcriptional activation mediated by the c-fos SRE shows that this response is impaired by mutations in the SRE which eliminate binding of p62(TCF). These data indicate that information inherent in the structure of the EGFR can be accessed by ligand stimulation independent of the receptor's catalytic kinase function

  12. Regulation of human epidermal stem cell proliferation and senescence requires polycomb- dependent and -independent functions of Cbx4.

    PubMed

    Luis, Nuno Miguel; Morey, Lluis; Mejetta, Stefania; Pascual, Gloria; Janich, Peggy; Kuebler, Bernd; Cozutto, Luca; Roma, Guglielmo; Nascimento, Elisabete; Frye, Michaela; Di Croce, Luciano; Benitah, Salvador Aznar

    2011-09-01

    Human epidermal stem cells transit from a slow cycling to an actively proliferating state to contribute to homeostasis. Both stem cell states differ in their cell cycle profiles but must remain guarded from differentiation and senescence. Here we show that Cbx4, a Polycomb Repressive Complex 1 (PRC1)-associated protein, maintains human epidermal stem cells as slow-cycling and undifferentiated, while protecting them from senescence. Interestingly, abrogating the polycomb activity of Cbx4 impairs its antisenescent function without affecting stem cell differentiation, indicating that differentiation and senescence are independent processes in human epidermis. Conversely, Cbx4 inhibits stem cell activation and differentiation through its SUMO ligase activity. Global transcriptome and chromatin occupancy analyses indicate that Cbx4 regulates modulators of epidermal homeostasis and represses factors such as Ezh2, Dnmt1, and Bmi1 to prevent the active stem cell state. Our results suggest that distinct Polycomb complexes balance epidermal stem cell dormancy and activation, while continually preventing senescence and differentiation. PMID:21885019

  13. Cigarette Smoke Induces Human Epidermal Receptor 2-Dependent Changes in Epithelial Permeability.

    PubMed

    Mishra, Rangnath; Foster, Daniel; Vasu, Vihas T; Thaikoottathil, Jyoti V; Kosmider, Beata; Chu, Hong Wei; Bowler, Russell P; Finigan, James H

    2016-06-01

    The airway epithelium constitutes a protective barrier against inhaled insults, such as viruses, bacteria, and toxic fumes, including cigarette smoke (CS). Maintenance of bronchial epithelial integrity is central for airway health, and defective epithelial barrier function contributes to the pathogenesis of CS-mediated diseases, such as chronic obstructive pulmonary disease. Although CS has been shown to increase epithelial permeability, current understanding of the mechanisms involved in CS-induced epithelial barrier disruption remains incomplete. We have previously identified that the receptor tyrosine kinase human epidermal receptor (HER) 2 growth factor is activated by the ligand neuregulin-1 and increases epithelial permeability in models of inflammatory acute lung injury. We hypothesized that CS activates HER2 and that CS-mediated changes in barrier function would be HER2 dependent in airway epithelial cells. We determined that HER2 was activated in whole lung, as well as isolated epithelial cells, from smokers, and that acute CS exposure resulted in HER2 activation in cultured bronchial epithelial cells. Mechanistic studies determined that CS-mediated HER2 activation is independent of neuregulin-1 but required upstream activation of the epidermal growth factor receptor. HER2 was required for CS-induced epithelial permeability as knockdown of HER2 blocked increases in permeability after CS. CS caused an increase in IL-6 production by epithelial cells that was dependent on HER2-mediated extracellular signal-regulated kinases (Erk) activation. Finally, blockade of IL-6 attenuated CS-induced epithelial permeability. Our data indicate that CS activates pulmonary epithelial HER2 and that HER2 is a central mediator of CS-induced epithelial barrier dysfunction. PMID:26600084

  14. Improved tumor-to-organ ratios of a novel 67Ga-human epidermal growth factor radionuclide conjugate with preadministered antiepidermal growth factor receptor affibody molecules.

    PubMed

    Sandström, Karl; Haylock, Anna-Karin; Velikyan, Irina; Spiegelberg, Diana; Kareem, Heewa; Tolmachev, Vladimir; Lundqvist, Hans; Nestor, Marika

    2011-10-01

    The overexpression of the epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinoma (HNSCC) is associated with poor prognosis. Targeted nuclear imaging of the EGFR expression could improve the diagnostics in patients with HNSCC. However, the high expression of EGFR in normal organs may conceal the tumor uptake and therefore limit the use. This study assesses the biodistribution of a novel human epidermal growth factor (hEGF) radionuclide conjugate after preinjection with anti-EGFR affibody molecules. hEGF was conjugated with p-SCN-Bn-NOTA and labeled with (67)Ga. The biodistribution of [(67)Ga]Ga-NOTA-Bn-NCS-hEGF in nude mice with EGFR-expressing xenografts was evaluated either alone or 45 minutes after preinjection with one of the anti-EGFR affibody molecules Z(EGFR:1907), (Z(EGFR:1907))(2), or (Z(EGFR:955))(2). The novel radioimmunoconjugate, [(67)Ga]Ga-NOTA-Bn-NCS-hEGF, demonstrated high stability in vitro and specific binding to hEGF in vitro and in vivo. Preinjection with anti-EGFR affibody molecules improved the tumor-to-organ ratio in the liver, salivary glands, and colon. Overall, the dimeric high-affinity affibody molecule (Z(EGFR:1907))(2) exhibited the best results. These findings show that preblocking with an anti-EGFR affibody molecule is a promising tool that could improve the outcome of radionuclide-based imaging of EGFR-expressing tumors. PMID:21834651

  15. Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidermal growth factor (EGF) receptor (EGFR) is the founding member of the ErbB family of growth factor receptors that modulate a complex network of intracellular signaling pathways controlling growth, proliferation and differentiation. Selenoprotein W (SEPW1) is a diet-regulated, highly conserved...

  16. The expression of epidermal growth factor receptors and their ligands (epidermal growth factor, neuregulin, amphiregulin) in the bitch uterus during the estrus cycle.

    PubMed

    Sağsöz, Hakan; Liman, Narin; Saruhan, Berna Güney; Küçükaslan, İbrahim

    2014-06-30

    In order to study the possible role of EGFR receptors in the bitch reproductive process, we have analyzed the expression pattern and localization of EGFR receptors and some of their ligands epidermal growth factor (EGF), neuregulin (NRG), amphiregulin (AREG), in the uterus during the estrus cycle using immunohistochemistry. The immunostaining for receptors and ligands of EGFR/ligand system was confined to membrane and cytoplasm of the target cells. Variations were observed, not only at the different stages of the estrous cycle, but also in the different tissue compartments of the uterus. However, it was detected that the immunostainings for NRG and AREG in the different cells do not show important differences at stages of the estrus cycle. In the luminal epithelium, strong immunostaining for ErbB1/HER1, ErbB2/HER2, ErbB4/HER4 and EGF was found at estrus. In the glandular epithelium, strong immunostaining for ErbB4/HER4 was observed at diestrus, while strong immunostaining for EGF was detected in both of estrus and diestrus. ErbB3/HER3 immunoreactivity in the stromal cells was higher at diestrus and anestrus, while ErbB4/HER4 immunoreactivity was lower at anestrus. In the myometrium, the highest levels of immunoreactivity of ErbB2/HER2 were found at estrus, while ErbB3/HER3 immunoreactivity was higher at anestrus. EGF immunoreactivity was lower at anestrus compared to other stage of cycle. Altered EGFR/ligand system expression during the estrus cycle suggests this growth factor system is a potent regulator of proliferation and differentiation events during preparation for implantation of bitch uterus. PMID:24813021

  17. Anticancer activity of pristimerin in epidermal growth factor receptor 2-positive SKBR3 human breast cancer cells.

    PubMed

    Lee, Jin Sun; Yoon, In Sang; Lee, Myung Sun; Cha, Eun Young; Thuong, Phuong Thien; Diep, Trinh Thi; Kim, Je Ryong

    2013-01-01

    Pristimerin is a naturally occurring triterpenoid that causes cytotoxicity in several cancer cell lines. However, the mechanism of action for the cytotoxic effect of pristimerin has not been unexplored. The purpose of this study was to investigate the effect of pristimerin on cytotoxicity using the epidermal growth factor receptor 2 (HER2)-positive SKBR3 human breast cancer cell line. Pristimerin inhibited proliferation in dose- and time-dependent manners in cells. We found it to be effective for suppressing HER2 protein and mRNA expression. Fatty acid synthase (FASN) expression and FASN activity were downregulated by pristimerin. Adding of exogenous palmitate, the end product of de novo fatty acid synthesis, reduced the proliferation activity of pristimerin. The changes in HER2 and FASN expression induced by pristimerin altered the levels of Akt and mitogen-activated protein kinase (MAPK) phosphorylation (Erk1/2, p38, and c-Jun N-terminal kinase (JNK)). Pristimerin lowered the levels of phosphorylated mammalian target of rapamycin (mTOR) and its downstream targets such as phosphoprotein 70 ribosomal protein S6 kinase and 4E binding protein1. Pristimerin inhibited migration and invasion of cells, and co-treatment with the mTOR inhibitor rapamycin additionally suppressed these activities. Pristimerin-induced apoptosis was evaluated using Western blotting for caspase-3, -8, -9, and poly (ADP-ribose) polymerase expression and flow cytometric analysis for propidium iodide labeling. These results suggest that pristimerin is a novel HER2-downregulated compound that is able to decrease fatty acid synthase and modulate the Akt, MAPK, and mTOR signaling pathways to influence metastasis and apoptosis. Pristimerin may be further evaluated as a chemotherapeutic agent for HER2-positive breast cancers. PMID:23370361

  18. Decorin gene expression and its regulation in human keratinocytes

    SciTech Connect

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico; Kuri-Harcuch, Walid

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  19. Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase.

    PubMed

    Wang, Y; Shao, L; Shi, S; Harris, R J; Spellman, M W; Stanley, P; Haltiwanger, R S

    2001-10-26

    The O-fucose modification is found on epidermal growth factor-like repeats of a number of cell surface and secreted proteins. O-Fucose glycans play important roles in ligand-induced receptor signaling. For example, elongation of O-fucose on Notch by the beta1,3-N-acetylglucosaminyltransferase Fringe modulates the ability of Notch to respond to its ligands. The enzyme that adds O-fucose to epidermal growth factor-like repeats, GDP-fucose protein O-fucosyltransferase (O-FucT-1), was purified previously from Chinese hamster ovary (CHO) cells. Here we report the isolation of a cDNA that encodes human O-FucT-1. A probe deduced from N-terminal sequence analysis of purified CHO O-FucT-1 was used to screen a human heart cDNA library and expressed sequence tag and genomic data bases. The cDNA contains an open reading frame encoding a protein of 388 amino acids with a predicted N-terminal transmembrane sequence typical of a type II membrane orientation. Likewise, the mouse homolog obtained from an expressed sequence tag and 5'-rapid amplification of cDNA ends of a mouse liver cDNA library encodes a type II transmembrane protein of 393 amino acids with 90.4% identity to human O-FucT-1. Homologs were also found in Drosophila and Caenorhabditis elegans with 41.2 and 29.4% identity to human O-FucT-1, respectively. The human gene (POFUT1) is on chromosome 20 between PLAGL2 and KIF3B, near the centromere at 20p11. The mouse gene (Pofut1) maps near Plagl2 on a homologous region of mouse chromosome 2. POFUT1 gene transcripts were expressed in all tissues examined, consistent with the widespread localization of the modification. Expression of a soluble form of human O-FucT-1 in insect cells yielded a protein of the predicted molecular weight with O-FucT-1 kinetic and enzymatic properties similar to those of O-FucT-1 purified from CHO cells. The identification of the gene encoding protein O-fucosyltransferase I now makes possible mutational strategies to examine the functions of the

  20. Label-free and dynamic evaluation of cell-surface epidermal growth factor receptor expression via an electrochemiluminescence cytosensor.

    PubMed

    Qiu, Youyi; Wen, Qingqing; Zhang, Lin; Yang, Peihui

    2016-04-01

    A label-free electrochemiluminescence (ECL) cytosensor was developed for dynamically evaluating of epidermal growth factor receptor (EGFR) expression on MCF-7 cancer cells based on the specific recognition of epidermal growth factor (EGF) with its receptor (EGFR). EGF-cytosensor was fabricated by in-situ electro-polymerization of polyaniline as substrate, using CdS quantum dots (CdS QDs) as ECL probe and gold nanoparticles (AuNPs) as a carrier for loading of EGF. AuNPs and CdS QDs were jointly attached on polyaniline surface to provide a sensitive and stable sensing interface, as well as a simple and label-free mode for ECL assay. Electron microscopy, atomic force microscopy (AFM) and electrochemical methods were employed to characterize the multilayer construction process of the sensing interface. The proposed EGF-cytosensor exhibited excellent analytical performance for MCF-7 cancer cells, ranging from 12 to 1.2 × 10(6) cells mL(-1), with a low detection limit of 12 cells mL(-1). Also, it was successfully applied in evaluating EGFR expression of cells surface, which was stimulated by some inhibitors or activator, and the results were confirmed by using flow cytometry and laser scanning confocal microscopy analysis. The proposed ECL cytosensor has potential applications in monitoring the dynamic variation of receptor molecules expression on cell surfaces in response to external stimulation by drugs and screening anti-cancer therapeutic agents. PMID:26838410

  1. Long-wave ultraviolet light induces phospholipase activation in cultured human epidermal keratinocytes

    SciTech Connect

    Hanson, D.; DeLeo, V. )

    1990-08-01

    Long wave ultraviolet radiation (UVA) has been shown to play an important role in the overall response of skin to solar radiation, including sunburn, tanning, premature aging, and non-melanoma skin cancer. UVA induction of inflammation in human skin is thought to be mediated by membrane lipid derived products. In order to investigate the mechanism of this response we examined the effect of UVA on phospholipid metabolism of human epidermal keratinocytes in culture. Keratinocytes were grown in serum free low calcium medium. The cells were prelabeled with (3H) arachidonic acid or (3H) choline and irradiated with UVA (Honle 2002-Hg vapor lamp). Identification and quantitation of specific membrane phospholipid-derived components was achieved using high-performance liquid chromatography, paper chromatography, and radioimmunoassay. UVA resulted in a linear dose dependent release of (3H) arachidonic acid into medium between 1 and 20 joule/cm2. This response was inhibited in an oxygen-reduced environment. The radiolabel released was predominantly free arachidonate and cyclooxygenase metabolites. Cyclooxygenase metabolites prostaglandin E2 and prostacyclin derivative, 6-keto-prostaglandin F1a, were stimulated following UVA irradiation, but the lipoxygenase metabolite, leukotriene B was not detected. Maximal release was measured immediately after irradiation and changed little over 24 h post-irradiation. UVA stimulated an increase of (3H) choline metabolites glycerophosphorylcholine and phosphorylcholine in media extracts suggesting UVA activation of phospholipase C and phospholipase A2 or diacylglyceride lipase.

  2. Growth and differentiation in cultured human thyroid cells: effects of epidermal growth factor and thyrotropin.

    PubMed

    Errick, J E; Ing, K W; Eggo, M C; Burrow, G N

    1986-01-01

    Human thyroid cells were grown and subcultured in vitro to examine their responses to known hormones and growth factors, and to serum. The cells were obtained from surgical specimens and were either neoplastic or nonneoplastic. The effects of culture conditions on cell growth were measured by changes in cell numbers and by stimulation of [3H]thymidine incorporation. The results showed that serum (0.5%) was essential for cell proliferation, and that a mixture of insulin (10 micrograms/ml), transferrin (5 micrograms/ml), hydrocortisone (10 micrograms/ml), somatostatin (10 ng/ml), and glycyl-histidyl-lysine (10 ng/ml) enhanced the effect of serum. Maximum growth of the cells was obtained when epidermal growth factor was present at 10(-9) M. Differentiation was measured by production of thyroglobulin, which was found to be stimulated by thyrotropin. This system provides a means to study the hormonal control of growth and differentiation in human thyroid cells. PMID:3511027

  3. Effects of silver nanoparticles on human dermal fibroblasts and epidermal keratinocytes.

    PubMed

    Galandáková, A; Franková, J; Ambrožová, N; Habartová, K; Pivodová, V; Zálešák, B; Šafářová, K; Smékalová, M; Ulrichová, J

    2016-09-01

    Biomedical application of silver nanoparticles (AgNPs) has been rapidly increasing. Owing to their strong antimicrobial activity, AgNPs are used in dermatology in the treatment of wounds and burns. However, recent evidence for their cytotoxicity gives rise to safety concerns. This study was undertaken as a part of an ongoing programme in our laboratory to develop a topical agent for wound healing. Here, we investigated the potential toxicity of AgNPs using normal human dermal fibroblasts (NHDF) and normal human epidermal keratinocytes (NHEK) with the aim of comparing the effects of AgNPs and ionic silver (Ag-I). Besides the effect of AgNPs and Ag-I on cell viability, the inflammatory response and DNA damage in AgNPs and Ag-I-treated cells were examined. The results showed that Ag-I were significantly more toxic than AgNPs both on NHDF and NHEK. Non-cytotoxic concentrations of AgNPs and Ag-I did not induce DNA strand breaks and did not affect inflammatory markers, except for a transient increase in interleukin 6 levels in Ag-I-treated NHDF. The results showed that AgNPs are more suitable for the intended application as a topical agent for wound healing up to the concentration 25 µg/mL. PMID:26500221

  4. Effects of Asterias amurensis-derived Sphingoid Bases on the de novo Ceramide Synthesis in Cultured Normal Human Epidermal Keratinocytes.

    PubMed

    Mikami, Daisuke; Sakai, Shota; Sasaki, Shigefumi; Igarashi, Yasuyuki

    2016-08-01

    Asterias amurensis starfish provide several bioactive species in addition to being fishery waste. Glucosyl ceramides (GlcCers) were extracted from the viscera of these starfish and were isolated by silica gel column chromatography. Degraded GlcCers generated A. amurensis sphingoid bases (ASBs) that mainly consisted of the triene-type bases d18:3 and 9-methyl-d18:3. The effect of these bases on ceramide synthesis and content were analyzed using normal human epidermal keratinocytes (NHEKs). The bases significantly enhanced the de novo ceramide synthesis and gene expression in NHEKs for proteins, such as serine-palmitoyltransferase and ceramide synthase. Total ceramide, GlcCer, and sphingomyelin contents increased dramatically upon ASB treatment. In particular, GlcCer bearing very-long-chain fatty acids (≥C28) exhibited a significant content increase. These ASB-induced enhancements on de novo ceramide synthesis were only observed in undifferentiated NHEKs. This stimulation of the de novo sphingolipid synthesis may improve skin barrier functions. PMID:27430385

  5. Development of a new in vitro skin sensitization assay (Epidermal Sensitization Assay; EpiSensA) using reconstructed human epidermis.

    PubMed

    Saito, Kazutoshi; Nukada, Yuko; Takenouchi, Osamu; Miyazawa, Masaaki; Sakaguchi, Hitoshi; Nishiyama, Naohiro

    2013-12-01

    Recent changes in regulatory requirements and social views on animal testing have accelerated the development of reliable alternative tests for predicting skin sensitizing potential of chemicals. In this study, we aimed to develop a new in vitro skin sensitization assay using reconstructed human epidermis, RhE model, which is expected to have broader applicability domain rather than existing in vitro assays. Microarray analysis revealed that the expression of five genes (ATF3, DNAJB4, GCLM, HSPA6 and HSPH1) related to cellular stress response were significantly up-regulated in RhE model after 6h treatment with representative skin sensitizers, 1-fluoro-2,4-dinitrobenzene and oxazolone, but not a non-sensitizer, benzalkonium chloride. The predictive performance of five genes was examined with eight skin sensitizers (e.g., cinnamic aldehyde), four non-sensitizers (e.g., sodium lauryl sulfate) and four pre-/pro-haptens (e.g., p-phenylenediamine, isoeugenol). When the positive criteria were set to obtain the highest accuracy with the animal testing (LLNA), ATF3, DNAJB4 and GCLM exhibited a high predictive accuracy (100%, 93.8% and 87.5%, respectively). All tested pre-/pro-haptens were correctly predicted by both ATF3 and DNAJB4. These results suggested that the RhE-based assay, termed epidermal sensitization assay (EpiSensA), could be an useful skin sensitization assay with a broad applicability domain including pre-/pro-haptens. PMID:23999411

  6. Neutrophil extracellular trap formation is increased in psoriasis and induces human β-defensin-2 production in epidermal keratinocytes.

    PubMed

    Hu, Stephen Chu-Sung; Yu, Hsin-Su; Yen, Feng-Lin; Lin, Chi-Ling; Chen, Gwo-Shing; Lan, Cheng-Che E

    2016-01-01

    Neutrophil extracellular traps (NETs) have been implicated in the development of certain immune-mediated diseases, but their role in psoriasis has not been clearly defined. Human β-defensin-2 (HBD-2) is an important antimicrobial peptide overexpressed in psoriasis epidermis. We evaluated whether the amount of NETs is increased in psoriasis and determined the effect of NETs on HBD-2 production in epidermal keratinocytes. Using fluorescent microscopy, we found that patients with psoriasis (n = 48) had higher amount of NETotic cells in their peripheral blood compared to healthy controls (n = 48) and patients with eczema (n = 35). Psoriasis sera showed increased ability to induce NET formation in control neutrophils but normal NET degradation ability. The amount of NETs in the peripheral blood correlated with psoriasis disease severity. NETosis was also observed in the majority (18 of 20) of psoriasis skin specimens. Furthermore, NETs induced HBD-2 mRNA and protein production in keratinocytes, and immunohistochemical analysis confirmed strong expression of HBD-2 in psoriasis lesional skin. In summary, NET formation is increased in peripheral blood and lesional skin of psoriasis patients and correlates with disease severity. Additionally, NET-induced HBD-2 production may provide a novel mechanism for the decreased susceptibility of psoriasis plaques to microbial infections. PMID:27493143

  7. Regulation of human papillomavirus type 16 DNA replication by E2, glucocorticoid hormone and epidermal growth factor.

    PubMed

    Piccini, A; Storey, A; Romanos, M; Banks, L

    1997-08-01

    The E1 and E2 proteins are the only human papillomavirus (HPV) proteins required for transient replication of plasmids containing the viral origin. The E2 gene products play key roles in both viral transcription and replication. In this study we have analysed in further detail the nature of the association between E1 and E2 using a series of E2 proteins mutated in conserved regions of the N-terminal domain. These proteins were tested for their ability to activate transcription and to stimulate viral DNA replication. Several of these mutants revealed that the two functions of E2 can be separated, and that they define three widely spaced regions of the N-terminal domain which are important for DNA replication, two of which retain E1-binding activity. This suggests that E2 may have a role in viral DNA replication other than simply localizing E1 to the origin of replication. Additional important elements for regulating viral gene expression have been shown to be glucocorticoid hormones and epidermal growth factor (EGF). We show here that they may also be involved in regulating viral DNA replication. Our studies show that the addition of glucocorticoid hormone significantly stimulates viral DNA replication. In contrast, addition of EGF results in modest repression of viral DNA replication. These results have important implications for the pathogenesis of HPV infection and suggest that the relative levels of E2, glucocorticoid hormone and EGF may significantly affect the outcome of an HPV infection. PMID:9266995

  8. Inhibitory effects of tetrandrine on epidermal growth factor-induced invasion and migration in HT29 human colorectal adenocarcinoma cells.

    PubMed

    Horng, Chi-Ting; Yang, Jai-Sing; Chiang, Jo-Hua; Lu, Chi-Cheng; Lee, Chiu-Fang; Chiang, Ni-Na; Chen, Fu-An

    2016-01-01

    Tetrandrine has been shown to reduce cancer cell proliferation and to inhibit metastatic effects in multiple cancer models in vitro and in vivo. However, the effects of tetrandrine on the underlying mechanism of HT29 human colorectal adenocarcinoma cell metastasis remain to be fully elucidated. The aim of the present study was focused on tetrandrine‑treated HT29 cells following epidermal growth factor (EGF) treatment, and Transwell, gelatin zymography, gene expression and immunoblotting assays were performed to investigate metastatic effects in vitro. Tetrandrine was observed to dose‑dependently inhibit EGF‑induced HT29 cell invasion and migration, however, no effect on cell viability occurred following exposure to tetradrine between 0.5 and 2 µM. Tetrandrine treatment inhibited the enzymatic activity of matrix metalloprotease (MMP)‑2 and MMP‑9 in a concentration‑dependent manner. The present study also found a reduction in the mRNA expression levels of MMP‑2 and MMP‑9 in the tetrandrine‑treated HT29 cells. Tetrandrine also suppressed the phosphorylation of EGF receptor (EGFR) and its downstream pathway, including phosphoinositide‑dependent kinase 1, phosphatidylinositol 3‑kinase and phosphorylated AKT, suppressing the gene expression of MMP‑2 and MMP‑9. Furthermore, tetrandrine triggered mitogen‑activated protein kinase signaling through the suppressing the activation of phosphorylated extracellular signal‑regulated protein kinase. These data suggested that targeting EGFR signaling and its downstream molecules contributed to the inhibition of EGF‑induced HT29 cell metastasis caused by tetrandrine, eventually leading to a reduction in the mRNA and gelatinase activities of MMP-2 and MMP-9, respectively. PMID:26648313

  9. Reactive oxygen species promotes cellular senescence in normal human epidermal keratinocytes through epigenetic regulation of p16(INK4a.).

    PubMed

    Sasaki, Mina; Kajiya, Hiroshi; Ozeki, Satoru; Okabe, Koji; Ikebe, Tetsuro

    2014-09-26

    Reactive oxygen species (ROS) can cause severe damage to DNA, proteins and lipids in normal cells, contributing to carcinogenesis and various pathological conditions. While cellular senescence arrests the early phase of cell cycle without any detectable telomere loss or dysfunction. ROS is reported to contribute to induction of cellular senescence, as evidence by its premature onset upon treatment with antioxidants or inhibitors of cellular oxidant scavengers. Although cellular senescence is known to be implicated in tumor suppression, it remains unknown whether ROS initially contributed to be cellular senescence in normal human epidermal keratinocytes (NHEK) and their malignant counterparts. To clarify whether ROS induce cellular senescence in NHEKs, we examined the effect of hydrogen peroxide (H2O2) on the expression of cellular senescence-associated molecules in NHEKs, compared to in squamous carcinoma cells (SCCs). Hydrogen peroxide increased the number of cells positive in senescence associated-β-galactosidase (SA-β-Gal) activity in NHEKs, but not SCCs. The expression of cyclin-dependent kinase (CDK) inhibitors, especially p16(INK4a) was upregulated in NHEKs treated with H2O2. Interestingly, H2O2 suppressed the methylation of p16(INK4a), promoter region in NHEKs, but not in SCCs. Hydrogen peroxide also suppressed the expression of phosphorylated Rb and CDK4, resulting in arrest in G0/G1 phase in NHEKs, but not SCCs. Our results indicate that the ROS-induced cellular senescence in NHEKs was caused by the upregulation p16(INK4a) through demethylation in its promoter region, which is not detected in SCCs, suggesting that ROS-induced cellular senescence contributes to tumor suppression of NHEKs. PMID:25181340

  10. Human epidermal growth factor receptor-2 overexpression and amplification in metastatic and recurrent high grade or type 2 endometrial carcinomas

    PubMed Central

    Kato, Rina; Hasegawa, Kiyoshi; Ishii, Risa; Owaki, Akiko; Torii, Yutaka; Oe, Shuko; Hirasawa, Hiroshi; Kobayashi, Yoichi; Udagawa, Yasuhiro

    2013-01-01

    Introduction Human epidermal growth factor receptor (HER)-2 overexpression or gene amplification is more common in high-grade or type 2 endometrial carcinomas. We assessed the discordance of HER-2 expression between primary and metastatic or recurrent endometrial carcinomas. Materials and methods Thirty-six primary, along with 14 metastatic and five recurrent tumors (matched to primaries), pathologically confirmed as high-grade or type 2 endometrial carcinomas, were submitted for immunohistochemistry (IHC) for HER-2. Fluorescence in situ hybridization was performed when the tumors showed HER-2 overexpression (≥2+ IHC score). The results of the IHC and fluorescence in situ hybridization assays were compared between the primary and metastatic or recurrent tumors. The relationships between HER-2 expression and clinicopathological factors or prognosis were investigated. Results HER-2 overexpression and HER-2 amplification (a ratio of HER-2 copies to chromosome 17 [CEP17] copies ≥2.2) were detected in 33.3% (twelve of 36 patients) and 5.6% (two of 36 patients) of primary tumors, respectively. HER-2 overexpression was not associated with clinicopathological factors or prognosis. In 19 tumor specimens obtained from metastatic or recurrent tumors, HER-2 overexpression and HER-2 amplification were detected in 57.9% (eleven patients) and 15.8% (three patients), respectively. HER-2 overexpression tended to predict a worse prognosis. Conclusion HER-2 expression in metastatic or recurrent tumors was more frequent than in matched primary high-grade or type 2 endometrial carcinomas. Trastuzumab in combination with cytotoxic chemotherapy may represent an alternative therapeutic option for these tumors. PMID:23950654

  11. Differential cytokine modulation of the genes LAMA3, LAMB3, and LAMC2, encoding the constitutive polypeptides, alpha 3, beta 3, and gamma 2, of human laminin 5 in epidermal keratinocytes.

    PubMed

    Korang, K; Christiano, A M; Uitto, J; Mauviel, A

    1995-07-24

    Laminin 5, an anchoring filament protein previously known as nicein/kalinin/epiligrin, consists of three polypeptide chains, alpha 3, beta 3, and gamma 2, encoded by the genes LAMA3, LAMB3, and LAMC2, respectively. The expression of laminin 5 was detected by Northern hybridization with specific cDNA probes in various epidermal keratinocyte cultures, whereas no expression of any of the three genes could be detected in foreskin fibroblast cultures. Transforming growth factor-beta (TGF-beta) enhanced LAMA3, LAMB3, and LAMC2 gene expression in human epidermal keratinocytes, as well as in HaCaT and Balb/K cells in culture, although the extent of enhancement was greater for LAMA3 and LAMC2 genes than for LAMB3. Interestingly, tumor necrosis factor-alpha, (TNF-alpha) alone did not alter the expression of LAMB3 and LAMC2 genes in human epidermal keratinocytes, whereas it inhibited the expression of LAMA3. These results suggest that the expression of the three genes encoding the laminin 5 subunits is not coordinately regulated by the cytokines tested. PMID:7635220

  12. Changes of epidermal cell morphology and keratin expression induced by inhibitors of protein kinase C.

    PubMed

    Hegemann, L; Wevers, A; Bonnekoh, B; Mahrle, G

    1992-03-01

    Several lines of evidence show protein kinase C as being involved in various regulatory processes in keratinocyte biology, e.g. proliferation and differentiation. In the present study, we investigated the effects of three different inhibitors of protein kinase C, staurosporine, CP 46'665-1, and tiflucarbine, on cell morphology and keratin expression in a non-tumorigenic human keratinocyte cell line (HaCaT cells). Staurosporine, being the most potent inhibitor of protein kinase C activity in vitro, and CP 46'665-1 induced morphological transformation to a fibroblast-like cell shape. In contrast, no changes in cell morphology were observed after exposure to tiflucarbine. The investigation of keratin expression in HaCaT cells grown in the presence of the different compounds revealed the following changes: After 72 h of cultivation, keratins 8 and 18 were still expressed in treated cells, whereas expression of keratin 13 was decreased as compared to control cells. Immunoblotting to detect vimentin demonstrated its absence in treated and control cells. Since tiflucarbine is known as a dual protein kinase C/calmodulin inhibitor whereas staurosporine and CP 46'665-1 do not antagonize calmodulin function, it might be possible that not only protein kinase C but also calmodulin is involved in the process leading to the morphological changes. PMID:1376142

  13. Epidermal Growth Factor Receptor and PTEN Modulate Tissue Factor Expression in Glioblastoma through JunD/Activator Protein-1 Transcriptional Activity

    PubMed Central

    Rong, Yuan; Belozerov, Vladimir E.; Tucker-Burden, Carol; Chen, Gang; Durden, Donald L.; Olson, Jeffrey J.; Van Meir, Erwin G.; Mackman, Nigel; Brat, Daniel J.

    2009-01-01

    Hypoxia and necrosis are fundamental features of glioblastoma (GBM) and their emergence is critical for the rapid biological progression of this fatal tumor; yet, underlying mechanisms are poorly understood. We have suggested that vaso-occlusion following intravascular thrombosis could initiate or propagate hypoxia and necrosis in GBM. Tissue factor (TF), the main cellular initiator of coagulation, is overexpressed in GBMs and likely favors a thrombotic microenvironment. Epidermal growth factor receptor (EGFR) amplification and PTEN loss are two common genetic alterations seen in GBM but not in lower-grade astrocytomas that could be responsible for TF up-regulation. The most frequent EGFR mutation in GBM involves deletion of exons 2 to 7, resulting in the expression of a constitutively active receptor, EGFRvIII. Here, we show that overexpression of EGFR or EGFRvIII in human glioma cells causes increased basal TF expression and that stimulation of EGFR by its ligand, EGF, leads to a marked dose-dependent up-regulation of TF. In all cases, increased TF expression led to accelerated plasma coagulation in vitro. EGFR-mediated TF expression depended most strongly on activator protein-1 (AP-1) transcriptional activity and was associated with c-Jun NH2-terminal kinase (JNK) and JunD activation. Restoration of PTEN expression in PTEN-deficient GBM cells diminished EGFR-induced TF expression by inhibiting JunD/AP-1 transcriptional activity. PTEN mediated this effect by antagonizing phosphatidylinositol 3-kinase activity, which in turn attenuated both Akt and JNK activities. These mechanisms are likely at work in vivo, as EGFR expression was highly correlated with TF expression in human high-grade astrocytoma specimens. PMID:19276385

  14. Expression of Vascular Endothelial Growth Factor (VEGF) and Epidermal Growth Factor Receptor (EGFR) in Patients With Serous Ovarian Carcinoma and Their Clinical Significance

    PubMed Central

    Ranjbar, Reza; Nejatollahi, Foroogh; Nedaei Ahmadi, Ahmad Sina; Hafezi, Hossein; Safaie, Akbar

    2015-01-01

    Background: Vascular endothelial growth factor (VEGF) has an essential role in tumor metastasis by inducing the construction of abnormal blood vessels. Epidermal growth factor receptor (EGFR) is involved in different parts of cancer growth such as tumor initiation, angiogenesis and metastasis. Objectives: The aim of this study was to evaluate the expression of VEGF and EGFR in ovarian cancer in southern Iran and to assess the correlation between expression of these two markers and patients’ age, tumor stage, and grade. Patients and Methods: In this cross-sectional study, 50 paraffin blocks of serous ovarian adenocarcinomas and 50 paraffin-embedded specimens from control individuals operated for reasons other than malignancy were immunohistochemically stained using anti-human VEGF and EGFR antibodies. Results: A significant difference in the frequency of positive expression of VEGF was observed in ovarian cancer patients (25.0%) compared with the control group (8.0%) (P = 0.023). A significant difference between EGFR expression in patients (56.8%) and controls (24.0%) was also obtained (P = 0.001). No significant correlation between VEGF and EGFR expression and patients’ age, tumor grade and stage were detected (P > 0.05). Conclusions: The significant increase in both VEGF and EGFR in the patients with ovarian cancer compared to healthy individuals could have prognostic value. Identifying these markers may be useful for chemopreventive and chemotherapeutic strategies for patients with serous ovarian cancer. PMID:26478789

  15. Epoc-1: a POU-domain gene expressed in murine epidermal basal cells and thymic stromal cells.

    PubMed

    Yukawa, K; Yasui, T; Yamamoto, A; Shiku, H; Kishimoto, T; Kikutani, H

    1993-11-15

    POU-domain transcription factors are known as developmental regulators which control organ development and cell phenotypes. In order to clarify the roles of POU-domain transcription factors in cell differentiation, we cloned a novel POU family gene, Epoc-1, from a murine thymus cDNA library. The amino acid (aa) sequence of the POU-specific domain of Epoc-1 is almost identical to those of Oct-1 and Oct-2. However, within the POU-homeodomain, 13 out of 60 aa differ between Epoc-1 and Oct-2. Recombinant Epoc-1 products were found to bind specifically to the octamer sequence. Epoc-1 was found to be expressed in skin, thymus, stomach and testis. In situ hybridization experiments and RNase protection assays indicated that Epoc-1 is expressed in the epidermal basal cells of the skin, which contain stem cells unipotent for keratinocyte differentiation and in thymic stromal elements. These results suggest that Epoc-1 might be one of the developmental regulators which controls epidermal development and thymic organogenesis. PMID:8224904

  16. Epidermal growth factor-induced stimulation of proliferation and gene expression changes in the hypotrichous ciliate, Stylonychia lemnae.

    PubMed

    Mu, Weijie; Wang, Qi; Bourland, William A; Jiang, Chuanqi; Yuan, Dongxia; Pan, Xuming; Miao, Wei; Chen, Ying; Xiong, Jie

    2016-10-30

    Epidermal growth factor (EGF) induces proliferation of epidermal and epithelial tissues in mammals. However, the effect of EGF on the single-celled eukaryotes is not well characterized, especially in the protists. Ciliates, an important group of protists, are well characterized as both pollution indicators and model organisms for research. Stylonychia lemnae, is one of the most common free-living ciliates, widely distributed in ponds, rivers and marshes. Here, we report the role of EGF on cell proliferation stimulation in S. lemnae. The growth curve of S. lemnae was established, and the stimulation effect of EGF on the proliferation of S. lemnae was investigated. Based on the results, potential EGF receptors were identified in S. lemnae according to the conserved domains and gene expression. Differential gene expression revealed that EGF-induced genes in other organisms (e.g. antioxidant) also up-regulated in S. lemnae cells at propagation stages. In addition, our results showed that EGF could up-regulate the signal transduction-related processes in the decline stage of S. lemnae cells, indicating its potential function in apoptosis inhibition. In summary, this study reports findings of the first investigation of EGF effects in hypotrich ciliates, and establishes an additional system for the study of the molecular mechanisms of EGF actions in eukaryotic cell division and proliferation. PMID:27506312

  17. Luteinizing hormone/human chorionic gonadotrophin receptors in various epidermal structures.

    PubMed

    Venencie, P Y; Méduri, G; Pissard, S; Jolivet, A; Loosfelt, H; Milgrom, E; Misrahi, M

    1999-09-01

    Two different monoclonal antibodies recognizing different epitopes were used to study the localization of luteinizing hormone/human chorionic gonadotrophin (LH/hCG) receptors in human skin. Immunolabelling was observed only in the epidermis and derived structures but not in the dermis. The basal, spinal and granular layers were stained, whereas no receptors were detected in the non-nucleated horny cells. In the growing (anagen) hair, immunostaining was found in the inner root sheath below the level of the sebaceous glands and in the outer root sheath above this level. In the resting (telogen) hair, only the latter staining was observed. In the sebaceous glands, only the thin cells close to the walls of the ducts were immunolabelled. In the eccrine sweat glands, the external clear cells were stained in the secretory portion of the gland, whereas only the cells close to the lumen were labelled in the ducts. The distribution of LH/hCG receptors was compared with that of steroidogenic enzymes (side chain cleavage cytochrome P450, adrenodoxin, 3-beta-hydroxy-5-ene steroid dehydrogenase Delta5-Delta4 isomerase, 17-hydroxylase cytochrome P450 and cytochrome P450 aromatase). Only partial overlaps were observed. The presence of LH receptor mRNA in the skin was confirmed by reverse transcription-polymerase chain reaction. Monoclonal antibodies raised against the human follicle-stimulating hormone receptor failed to detect the latter in the epidermal structures and in the dermis. The role of LH and hCG in skin modifications occurring during pregnancy and after the menopause is unknown. These hormones may possibly act by regulating steroidogenic enzymes or by modulating cell growth and differentiation. PMID:10583046

  18. Synergistic Skin Penetration Enhancer and Nanoemulsion Formulations Promote the Human Epidermal Permeation of Caffeine and Naproxen.

    PubMed

    Abd, Eman; Namjoshi, Sarika; Mohammed, Yousuf H; Roberts, Michael S; Grice, Jeffrey E

    2016-01-01

    We examined the extent of skin permeation enhancement of the hydrophilic drug caffeine and lipophilic drug naproxen applied in nanoemulsions incorporating skin penetration enhancers. Infinite doses of fully characterized oil-in-water nanoemulsions containing the skin penetration enhancers oleic acid or eucalyptol as oil phases and caffeine (3%) or naproxen (2%) were applied to human epidermal membranes in Franz diffusion cells, along with aqueous control solutions. Caffeine and naproxen fluxes were determined over 8 h. Solute solubility in the formulations and in the stratum corneum (SC), as well as the uptake of product components into the SC were measured. The nanoemulsions significantly enhanced the skin penetration of caffeine and naproxen, compared to aqueous control solutions. Caffeine maximum flux enhancement was associated with a synergistic increase in both caffeine SC solubility and skin diffusivity, whereas a formulation-increased solubility in the SC was the dominant determinant for increased naproxen fluxes. Enhancements in SC solubility were related to the uptake of the formulation excipients containing the active compounds into the SC. Enhanced skin penetration in these systems is largely driven by uptake of formulation excipients containing the active compounds into the SC with impacts on SC solubility and diffusivity. PMID:26554868

  19. Recombinant Human Epidermal Growth Factor Accelerates Recovery of Mouse Small Intestinal Mucosa After Radiation Damage

    SciTech Connect

    Lee, Kang Kyoo; Jo, Hyang Jeong; Hong, Joon Pio; Lee, Sang-wook Sohn, Jung Sook; Moon, Soo Young; Yang, Sei Hoon; Shim, Hyeok; Lee, Sang Ho; Ryu, Seung-Hee; Moon, Sun Rock

    2008-07-15

    Purpose: To determine whether systemically administered recombinant human epidermal growth factor (rhEGF) accelerates the recovery of mouse small intestinal mucosa after irradiation. Methods and Materials: A mouse mucosal damage model was established by administering radiation to male BALB/c mice with a single dose of 15 Gy applied to the abdomen. After irradiation, rhEGF was administered subcutaneously at various doses (0.04, 0.2, 1.0, and 5.0 mg/kg/day) eight times at 2- to 3-day intervals. The evaluation methods included histologic changes of small intestinal mucosa, change in body weight, frequency of diarrhea, and survival rate. Results: The recovery of small intestinal mucosa after irradiation was significantly improved in the mice treated with a high dose of rhEGF. In the mice that underwent irradiation without rhEGF treatment, intestinal mucosal ulceration, mucosal layer damage, and severe inflammation occurred. The regeneration of villi was noticeable in mice treated with more than 0.2 mg/kg rhEGF, and the villi recovered fully in mice given more than 1 mg/kg rhEGF. The frequency of diarrhea persisting for more than 3 days was significantly greater in the radiation control group than in the rhEGF-treated groups. Conclusions: Systemic administration of rhEGF accelerates recovery from mucosal damage induced by irradiation. We suggest that rhEGF treatment shows promise for the reduction of small intestinal damage after irradiation.

  20. Influence of free residual chlorine on cultured human epidermal keratinocytes from normal skin and hypertrophic scars.

    PubMed

    Matsumoto, Y; Mori, H; Hayakawa, A; Ohashi, M

    1995-07-01

    In Japan, public health regulations state that the water in rinsing pools used before swimming should contain 50-100 mg/l of chlorine. We examined the influence of chlorination at high concentrations in rinsing pools on the skin using cultured human epidermal keratinocytes from normal skin and hypertrophic scars. Chlorination of cell culture for 15 min with 200 mg/l of free residual chlorine proved cytotoxic to both types of keratinocytes as did 100 mg/l of free residual chlorine for 1 or 3 consecutive days. Keratinocytes from hypertrophic scars, when cultivated in 100 mg/l of free residual chlorine, were more vulnerable to chlorine than those from normal skin. Cell characteristics of cultured keratinocytes from hypertrophic scars may be somewhat different from those of normal skin. The phenomena observed in this experimental model of the skin suggest that people exposed to chlorine in rinsing pools at concentrations in excess of 200 mg/l for about 15 min before swimming are at risk of developing cutaneous disorders, especially at sites of injury, e.g. scars. PMID:7577833

  1. Sulfur mustard induces the formation of keratin aggregates in human epidermal keratinocytes.

    PubMed

    Dillman, James F; McGary, Kriston L; Schlager, John J

    2003-12-01

    The vesicant sulfur mustard is an alkylating agent that has the capacity to cross-link biological molecules. We are interested in identifying specific proteins that are altered upon sulfur mustard exposure. Keratins are particularly important for the structural integrity of skin, and several genetically inherited blistering diseases have been linked to mutations in keratin 5 and keratin 14. We examined whether sulfur mustard exposure alters keratin biochemistry in cultured human epidermal keratinocytes. Western blotting with specific monoclonal antibodies revealed the formation of stable high-molecular-weight "aggregates" containing keratin 14 and/or keratin 5. These aggregates begin to form within 15 min after sulfur mustard exposure. These aggregates display a complex gel electrophoresis pattern between approximately 100 and approximately 200 kDa. Purification and analysis of these aggregates by one- and two-dimensional gel electrophoresis and mass spectrometry confirmed the presence of keratin 14 and keratin 5 and indicate that at least some of the aggregates are composed of keratin 14-keratin 14, keratin 14-keratin 5, or keratin 5-keratin 5 dimers. These studies demonstrate that sulfur mustard induces keratin aggregation in keratinocytes and support further investigation into the role of keratin aggregation in sulfur mustard-induced vesication. PMID:14644625

  2. Oak ellagitannins suppress the phosphorylation of the epidermal growth factor receptor in human colon carcinoma cells.

    PubMed

    Fridrich, Diana; Glabasnia, Arne; Fritz, Jessica; Esselen, Melanie; Pahlke, Gudrun; Hofmann, Thomas; Marko, Doris

    2008-05-14

    The ellagitannins castalagin and vescalagin, and the C-glycosides grandinin and roburin E as well as ellagic acid were found to potently inhibit the growth of human colon carcinoma cells (HT29) in vitro. In a cell-free system these compounds were identified as potent inhibitors of the protein tyrosine kinase activity of the epidermal growth factor receptor (EGFR) with IC 50 values in the low nanomolar range. To address the question of whether the interference with the activity of the isolated EGFR also plays a role within intact cells, effects on the phosphorylation status of the EGFR, as a measure for its activity, were determined in HT29 cells. As exemplified for castalagin and grandinin, both the nonglycosylated and the glycosylated ellagitannins effectively suppressed EGFR phosphorylation, but only at concentrations > or =10 microM, thus, in a concentration range where growth inhibition was observed. These results indicate that the suppression of EGFR-mediated signaling might contribute to the growth inhibitory effects of these compounds present in oak-matured wines and spirits such as whiskey. In contrast, despite substantial growth inhibitory properties, ellagic acid did not significantly affect EGFR phosphorylation in HT29 cells up to 100 microM. PMID:18419129

  3. Pertuzumab in human epidermal growth-factor receptor 2-positive breast cancer: clinical and economic considerations

    PubMed Central

    Lamond, Nathan WD; Younis, Tallal

    2014-01-01

    In the absence of specific therapy, the 15%–20% of breast cancers demonstrating human epidermal growth-factor receptor 2 (HER2) protein overexpression and/or gene amplification are characterized by a more aggressive phenotype and poorer prognosis compared to their HER2-negative counterparts. Trastuzumab (Herceptin), the first anti-HER2-targeted therapy, has been associated with improved survival outcomes in HER2-positive breast cancer. However, many patients with early stage disease continue to relapse, and metastatic disease remains incurable. In order to further improve these outcomes, several novel HER2-targeted agents have recently been developed. Pertuzumab (Perjeta), a monoclonal antibody against the HER2 dimerization domain, has also been associated with improved patient outcomes in clinical trials, and has recently been approved in combination with chemotherapy and trastuzumab for neoadjuvant therapy of early stage, HER2-positive breast cancer and first-line treatment of metastatic disease. This review briefly summarizes pertuzumab’s clinical development as well as the published evidence supporting its use, and highlights some of the currently unanswered questions that will influence pertuzumab’s incorporation into clinical practice. PMID:24876795

  4. Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment

    PubMed Central

    Koo, Taeryool

    2016-01-01

    Overexpression of human epidermal growth factor receptor 2 (HER2) is found in about 20% of breast cancer patients. With treatment using trastuzumab, an anti-HER2 monoclonal antibody, systemic control is improved. Nonetheless, the incidence of brain metastasis does not be improved, rather seems to be increased in HER2-positive breast cancer. The mainstay treatment for brain metastases is radiotherapy. According to the number of metastatic lesions and performance status of patients, radiosurgery or whole brain radiotherapy can be performed. The concurrent use of a radiosensitizer further improves intracranial control. Due to its large molecular weight, trastuzumab has a limited ability to cross the blood-brain barrier. However, small tyrosine kinase inhibitors such as lapatinib, has been noted to be a promising agent that can be used as a radiosensitizer to affect HER2-positive breast cancer. This review will outline general management of brain metastases and will focus on preclinical findings regarding the radiosensitizing effect of small molecule HER2 targeting agents. PMID:27104161

  5. The prognostic significance of tumor epidermal growth factor receptor (EGFR) expression change after neoadjuvant chemoradiation in patients with rectal adenocarcinoma

    PubMed Central

    Dvořák, Josef; Urbanec, Marek; Bluml, Antonin; Čermáková, Eva; Bartoš, Jiří; Petera, Jiří

    2015-01-01

    Aim of the study The aim of this retrospective study was to determine the prognostic impact of epidermal growth factor receptor (EGFR) expression changes during neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Material and methods Fifty patients with locally advanced rectal cancer were evaluated. All the patients were administered the total dose of 44 Gy. Capecitabine has been concomitantly administered in the dose 825 mg/m2 in two daily oral administrations. Surgery was indicated 4–8 weeks from the chemoradiotherapy completion. Epidermal growth factor receptor expression in the pretreatment biopsies and in the resected specimens was assessed with immunohistochemistry. Results All of 50 patients received radiotherapy without interruption up to the total planned dose. In 30 patients sphincter-saving surgery was performed, 20 patients underwent amputation of the rectum. Downstaging was described in 30 patients. Four patients have had complete pathologic remission. Twenty-six patients have had partial remission, the disease was stable in 15 patients. Progression was reported in 5 patients. The median disease-free survival was 64.9 months, median overall survival was 76.4 months. Increased EGFR expression was found in 12 patients (26.1%). A statistically significantly shorter overall survival (p < 0.0001) and disease-free survival (p < 0.0001) was found in patients with increased expression of EGFR compared with patients where no increase in the expression of EGFR during neoadjuvant chemoradiotherapy was observed. Conclusions The overexpression of EGFR during neoadjuvant chemoradiotherapy for locally advanced rectal adenokarcinoma associated with significant shorter overall survival and disease free survival. PMID:26199571

  6. The antimicrobial heterodimer S100A8/S100A9 (calprotectin) is upregulated by bacterial flagellin in human epidermal keratinocytes.

    PubMed

    Abtin, Arby; Eckhart, Leopold; Gläser, Regine; Gmeiner, Ramona; Mildner, Michael; Tschachler, Erwin

    2010-10-01

    Antimicrobial peptides (AMPs) have a central role in the innate immune system of the skin. Epidermal keratinocytes (KCs) express numerous such peptides either constitutively or in response to exposure to microbial compounds. Here, we investigated the regulation of S100A8 (calgranulin A) and S100A9 (calgranulin B), which form an antimicrobial heterodimeric complex also known as calprotectin, in KCs. Culture supernatants of gram-negative bacteria, but not of gram-positive bacteria nor of the yeast Candida albicans, triggered the expression of S100A8 and S100A9. To identify pathogen-associated molecular patterns (PAMPs) responsible for the upregulation of S100A8 and S100A9, KCs were stimulated with ligands for Toll-like receptors (TLRs). Quantitative real-time PCR (qRT-PCR) analysis revealed that the TLR5 ligand flagellin increased the mRNA expression of both S100A8 and S100A9. Supernatant from wild-type (WT) Escherichia coli, but not from a flagellin-deficient E. coli strain (ΔFliC), induced S100A8 and S100A9 protein production in KCs. Moreover, small interfering RNA-mediated knockdown of TLR5 expression suppressed the ability of KCs to upregulate S100A8 and S100A9 mRNA expression in response to E. coli supernatant. Like in cell culture, stimulation of human skin explants with E. coli induced the expression of S100A8 and S100A9. Our data suggest that bacterial flagellin induces the upregulation of S100A8/S100A9 via a TLR5-dependent mechanism in epidermal KCs. PMID:20555353

  7. Deposition of bioactive human epidermal growth factor in the egg white of transgenic hens using an oviduct-specific minisynthetic promoter.

    PubMed

    Park, Tae Sub; Lee, Hyo Gun; Moon, Jong Kook; Lee, Hong Jo; Yoon, Jong Won; Yun, Bit Na Rae; Kang, Sang-Chul; Kim, Jiho; Kim, Hyunil; Han, Jae Yong; Han, Beom Ku

    2015-06-01

    Currently, transgenic animals have found a wide range of industrial applications and are invaluable in various fields of basic research. Notably, deposition of transgene-encoded proteins in the egg white (EW) of hens affords optimal production of genetically engineered biomaterials. In the present study, we developed a minisynthetic promoter modulating transgene transcription specifically in the hen's oviduct, and assayed the bioactivity of human epidermal growth factor (hEGF) driven by that promoter, after partial purification of epidermal growth factor (EGF) from transgenic hen eggs. Our minisynthetic promoter driving expression of chicken codon-optimized human epidermal growth factor (cEGF) features 2 consecutive estrogen response elements of the ovalbumin (OV) promoter, ligated with a 3.0 kb OV promoter region carrying OV regulatory elements, and a 5'-UTR. Subsequently, a 3'-UTR carrying the poly-A tail sequence of the OV gene was added after incorporation of the cEGF transgene. Finally, we partially purified cEGF from transgenic hen eggs and evaluated the biofunctional activities thereof in vitro and in vivo. In the in vitro assay, EW-derived hEGF exhibited a proliferative effect on HeLa cells similar to that of commercial hEGF. In the in vivo assay, compared to the nontreated control, transgenic hen egg-derived EGF afforded slightly higher levels of re-epithelialization (via fibroplasia) and neovascularization of wounded skin of miniature pigs than did the commercial material. In conclusion, transgenic hens may be used to produce genetically engineered bioactive biomaterials driven by an oviduct-specific minisynthetic promoter. PMID:25690652

  8. Simultaneous suppression of epidermal growth factor receptor and c-erbB-2 reverses aneuploidy and malignant phenotype of a human ovarian carcinoma cell line.

    PubMed

    Pack, Svetlana D; Alper, Ozgül M; Stromberg, Kurt; Augustus, Meena; Ozdemirli, Metin; Miermont, Anne M; Klus, Greg; Rusin, Marek; Slack, Rebecca; Hacker, Neville F; Ried, Thomas; Szallasi, Zoltan; Alper, Ozge

    2004-02-01

    Coexpression of epidermal growth factor receptor (EGFR) and c-erbB-2 in 47-68% of ovarian cancer cells indicate their strong association with tumor formation. We examined the effects of simultaneous antisense- or immunosuppression of EGFR and c-erbB-2 expression on the invasive phenotype, aneuploidy, and genotype of cultured human ovarian carcinoma cells (NIH:OVCAR-8). We report here that suppression of both EGFR and c-erbB-2 results in regression of aneuploidy and genomic imbalances in NIH:OVCAR-8 cells, restores a more normal phenotype, and results in a more normal gene expression profile. Combined with cytogenetic analysis, our data demonstrate that the regression of aneuploidy is due to the selective apoptosis of double antisense transfected cells with highly abnormal karyotype. PMID:14871800

  9. Response to Therapy and Outcomes in Oropharyngeal Cancer Are Associated With Biomarkers Including Human Papillomavirus, Epidermal Growth Factor Receptor, Gender, and Smoking

    SciTech Connect

    Kumar, Bhavna; Cordell, Kitrina G.; Lee, Julia S.; Prince, Mark E.; Tran, Huong H.; Wolf, Gregory T.; Urba, Susan G.; Worden, Francis P.; Chepeha, Douglas B.; Teknos, Theodoros N.; Eisbruch, Avraham; Tsien, Christina I.; Taylor, Jeremy; D'Silva, Nisha J.; Yang, Kun; Kurnit, David M.; Bradford, Carol R.

    2007-10-01

    Induction chemotherapy and concurrent chemoradiation for responders or immediate surgery for non-responders is an effective treatment strategy head and neck squamous cell carcinoma (HNSCC) of the larynx and oropharynx. Biomarkers that predict outcome would be valuable in selecting patients for therapy. In this study, the presence and titer of high risk human papilloma virus (HPV) and expression of epidermal growth factor receptor (EGFR) in pre-treatment biopsies, as well as smoking and gender were examined in oropharynx cancer patients enrolled in an organ sparing trial. HPV16 copy number was positively associated with response to therapy and with overall and disease specific survival, whereas EGFR expression, current or former smoking behavior, and female gender (in this cohort) were associated with poor response and poor survival in multivariate analysis. Smoking cessation and strategies to target EGFR may be useful adjuncts for therapy to improve outcome in the cases with the poorest biomarker profile.

  10. Inhibition of jet fuel aliphatic hydrocarbon induced toxicity in human epidermal keratinocytes.

    PubMed

    Inman, A O; Monteiro-Riviere, N A; Riviere, J E

    2008-05-01

    Jet propellant (JP)-8, the primary jet fuel used by the U.S. military, consists of hydrocarbon-rich kerosene base commercial jet fuel (Jet-A) plus additives DC1-4A, Stadis 450 and diethylene glycol monomethyl ether. Human epidermal keratinocytes (HEK) were exposed to JP-8, aliphatic hydrocarbon (HC) fuel S-8 and aliphatic HC pentadecane (penta), tetradecane (tetra), tridecane (tri) and undecane (un) for 5 min. Additional studies were conducted with signal transduction pathway blockers parthenolide (P; 3.0 microm), isohelenin (I; 3.0 microm), SB 203580 (SB; 13.3 microm), substance P (SP; 3.0 microm) and recombinant human IL-10 (rHIL-10; 10 ng ml(-1)). In the absence of inhibitors, JP-8 and to a lesser extent un and S-8, had the greatest toxic effect on cell viability and inflammation suggesting, as least in vitro, that synthetic S-8 fuel is less irritating than the currently used JP-8. Each inhibitor significantly (P < 0.05) decreased HEK viability. DMSO, the vehicle for P, I and SB, had a minimal effect on viability. Overall, IL-8 production was suppressed at least 30% after treatment with each inhibitor. Normalizing data relative to control indicate which inhibitors suppress HC-mediated IL-8 to control levels. P was the most effective inhibitor of IL-8 release; IL-8 was significantly decreased after exposure to un, tri, tetra and penta but significantly increased after JP-8 exposure compared with controls. Inhibitors were not effective in suppressing IL-8 release in JP-8 exposures to control levels. This study shows that inhibiting NF-kappa B, which appears to play a role in cytokine production in HC-exposed HEK in vitro, may reduce the inflammatory effect of HC in vivo. PMID:17966119

  11. Intracellular modification of /sup 125/I-labeled epidermal growth factor by normal human foreskin fibroblasts

    SciTech Connect

    Schaudies, R.P.; Savage, C.R. Jr.

    1986-02-01

    Intracellular processing of /sup 125/I-labeled epidermal growth factor (EGF) in normal human foreskin fibroblasts was examined after incubation with saturating concentrations of (/sup 125/I)EGF. This report describes the column chromatographic separation of multiple processed forms of EGF generated by human foreskin fibroblasts and their structural characterization. More than 95% of the cell-bound (/sup 125/I)EGF was converted into multiple forms, which were separated into four distinct peaks of radioactivity using columns of Bio-Gel P-150 equilibrated with 0.2% sodium dodecyl sulfate. These were designated peaks 1-4. Cellular generation of these four peaks was dependent on culture conditions. Differences in absolute and relative amounts of peaks 1-4 were observed as a function of time of incubation at 37 C. In addition, chromatographic profiles of cell-associated /sup 125/I varied in relation to cell density. The radioactivity in peak 1 comigrated with /sup 125/I-labeled native EGF on nondenaturing polyacrylamide gels (pH 9.5), whereas peaks 2 and 3 exhibited more rapid electrophoretic mobilities. Electrophoretic mobilities of the radioactivity in peaks 2 and 3 were indistinguishable from those of chemically prepared derivatives of (/sup 125/I)EGF which were lacking either one or six amino acid residues from the carboxyterminus, respectively. The EGF receptor bound the radioactive material in peak 2 with an affinity equal to or greater than that of EGF; however, the radioactivity in peak 3 was bound to a much lesser extent. The radiolabel in both peaks 2 and 3 was greater than 95% precipitable by antiserum to native EGF. The labeled material in peak 4 was composed of (/sup 125/I)monoiodotyrosine, /sup 125/I-, and an unidentified peptide. None of the radiolabeled compounds in peak 4 interacted with the EGF receptor or with antiserum to native EGF.

  12. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor

    SciTech Connect

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung; Kim, Eun-Sun; Jeong, Tae Cheon; Chun, Young-Jin; Lee, Ai-Young; Noh, Minsoo

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. - Highlights: • Pro-inflammatory cytokines induced VEGF production in normal human

  13. Expression of transforming growth factor alpha and epidermal growth factor receptor in rat lung neoplasms induced by plutonium-239

    SciTech Connect

    Stegelmeier, B.L.; Gillett, N.A.; Hahn, F.F.; Kelly, G.; Rebar, A.H.

    1994-11-01

    Ninety-two rat lung proliferative lesions and neoplasms induced by inhaled {sup 239}PuO{sub 2} were evaluated for aberrant expression of transforming growth factor alpha (TGF-{alpha}) and epidermal growth factor receptor (EGFR). Expression of TGF-{alpha} protein, measured by immunohistochemistry, was higher in 94% of the squamous cell carcinomas and 87% of the foci of alveolar epithelial squamous metaplasia than that exhibited by the normal-appearing, adjacent lung parenchyma. In contrast, only 20% of adenocarcinomas and foci of epithelial hyperplasia expressed elevated levels of TGF-{alpha}. Many neoplasms expressing TGF-{alpha} also expressed excessive levels of EGFR mRNA. Southern and DNA slot blot analyses showed that the elevated EGFR expression was not due to amplification of the EGFR gene. These data suggest that increased amounts of TGF-{alpha} were early alterations in the progression of plutonium-induced squamous cell carcinoma, and these increases may occur in parallel with overexpression of the receptor for this growth factor. Together, these alterations create a potential autocrine loop for sustaining clonal expansion of cells initiated by high-LET radiation. 44 refs., 4 figs., 1 tab.

  14. Withaferin A abolishes the stem cell factor-stimulated pigmentation of human epidermal equivalents by interrupting the auto-phosphorylation of c-KIT in human melanocytes.

    PubMed

    Terazawa, Shuko; Nakajima, Hiroaki; Fukasawa, Katsunori; Imokawa, Genji

    2015-01-01

    We characterized the mechanism(s) underlying the abrogating effect of withaferin A (WFA) on the stem cell factor (SCF)-stimulated pigmentation of human epidermal equivalents (HEEs). Increased gene and protein expression levels of tyrosinase, tyrosinase-related protein1, dopachrome tautomerase, PMEL17, c-KIT and their targeted transcription factor, microphthalmia-associated transcription factor (MITF) were significantly reversed at days 7 and 10, respectively, by treatment with WFA. In WFA-treated normal human melanocytes (NHMs), there was a marked deficiency in the SCF-stimulated series of phosphorylations of c-KIT, Shc, Raf-1, MEK, ERK, MITF and CREB. Treatment with dithiothreitol (DTT) distinctly abolished the suppressive effect of WFA on the SCF-stimulated phosphorylation of c-KIT in NHMs. On the other hand, even after incubation at 4 °C for 2 h with 5 nM SCF, followed by the removal of unbound SCF by washing and then raising the temperature to 37 °C to start the signaling reaction, c-KIT was distinctly phosphorylated to a similar extent by incubation for 15 min with SCF only or with SCF + WFA. These findings indicate that WFA attenuates the SCF-induced activation of c-KIT in NHMs by interrupting the auto-phosphorylation of c-KIT through DTT-suppressible Michael addition thioalkylation reactions without interrupting the binding of SCF to the c-KIT receptor. PMID:25376854

  15. In vivo toxicity, pharmacokinetics, and anticancer activity of Genistein linked to recombinant human epidermal growth factor.

    PubMed

    Uckun, F M; Narla, R K; Zeren, T; Yanishevski, Y; Myers, D E; Waurzyniak, B; Ek, O; Schneider, E; Messinger, Y; Chelstrom, L M; Gunther, R; Evans, W

    1998-05-01

    Epidermal growth factor receptor (EGFR)-associated protein tyrosine kinase (PTK) complexes have vital anti-apoptotic functions in human breast cancer cells. We have shown previously that targeting the naturally occurring PTK inhibitor genistein to the EGFR-associated PTK complexes using the EGF-Genistein (Gen) conjugate triggers rapid apoptotic cell death in human breast cancer cells and abrogates their in vitro clonogenic growth. In the present study, we examined the in vivo toxicity profile, pharmacokinetics, and anticancer activity of EGF-Gen. No toxicities were observed in mice treated with EGF-Gen at dose levels as high as 40 mg/kg administered i.p. as a single dose or 140 mg/kg administered i.p. over 28 consecutive days. EGF-Gen significantly improved tumor-free survival in a severe combined immune deficiency (SCID) mouse xenograft model of human breast cancer, when it was administered 24 h after inoculation of tumor cells. At 100 microg/kg/day x 10 days (1 mg/kg total dose), which is >100-fold less than the highest tested and nontoxic cumulative dose (ie., 140 mg/kg) in mice, EGF-Gen was more effective than cyclophosphamide (50 mg/kg/day x 2 days), Adriamycin (2.5 mg/kg x 1 day), or methotrexate (0.5 mg/kg x 1 day), the most widely used standard chemotherapeutic drugs for breast cancer, and resulted in 60% long-term tumor-free survival. Furthermore, treating SCID mice with established s.c. human breast cancer xenografts of 0.5-cm diameter with EGF-Gen at this dose level resulted in disappearance of the tumors in two of five mice and >50% shrinkage in three of five mice within 10 days, whereas all of the control tumors in five PBS-treated mice as well as five mice treated with unconjugated Gen (1 mg/kg/day x 10 days) showed >200% increase in diameter during the same observation period. EGF-Gen treatment reduced the growth rate of breast cancer xenografts of 1.0-cm diameter, but unlike with tumors of 0.5-cm diameter, it failed to cause shrinkage or

  16. Dynamic changes in nicotinamide pyridine dinucleotide content in normal human epidermal keratinocytes and their effect on retinoic acid biosynthesis

    SciTech Connect

    Pinkas-Sarafova, Adriana . E-mail: apinkassaraf@notes.cc.sunysb.edu; Markova, N.G. . E-mail: nmarkova@notes.cc.sunysb.edu; Simon, M. . E-mail: marsimon@notes.cc.sunysb.edu

    2005-10-21

    The function of many enzymes that regulate metabolism and transcription depends critically on the nicotinamide pyridine dinucleotides. To understand the role of NAD(P)(H) in physiology and pathophysiology, it is imperative to estimate both their amount and ratios in a given cell type. In human epidermis and in cultured epidermal keratinocytes, we found that the total dinucleotide content is in the low millimolar range. The dinucleotide pattern changes during proliferation and maturation of keratinocytes in culture. Differences in the concentrations of NAD(P)(H) of 1.5- to 12-fold were observed. This resulted in alteration of the NAD(P)H/NAD(P) ratio, which could impact the differential regulation of both transcriptional and metabolic processes. In support of this notion, we provide evidence that the two-step oxidation of retinol to retinoic acid, a nuclear hormone critical for epidermal homeostasis, can be regulated by the relative physiological amounts of the pyridine dinucleotides.

  17. Genomic expression during human myelopoiesis

    PubMed Central

    Ferrari, Francesco; Bortoluzzi, Stefania; Coppe, Alessandro; Basso, Dario; Bicciato, Silvio; Zini, Roberta; Gemelli, Claudia; Danieli, Gian Antonio; Ferrari, Sergio

    2007-01-01

    Background Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where multipotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. Results Gene expression data from 24 experiments for 8 different cell types of the human myelopoietic lineage were used to generate an integrated myelopoiesis dataset of 9,425 genes, each reliably associated to a unique genomic position and chromosomal coordinate. Lists of genes constitutively expressed or silent during myelopoiesis and of genes differentially expressed in commitment phase of myelopoiesis were first identified using a classical data analysis procedure. Then, the genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. This approach allowed identifying specific chromosomal regions significantly highly or weakly expressed, and clusters of differentially expressed genes and of transcripts related to specific functional modules. Conclusion The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions. PMID:17683550

  18. Japanese Cedar (Cryptomeria japonica) pollen allergen induces elevation of intracellular calcium in human keratinocytes and impairs epidermal barrier function of human skin ex vivo.

    PubMed

    Kumamoto, Junichi; Tsutsumi, Moe; Goto, Makiko; Nagayama, Masaharu; Denda, Mitsuhiro

    2016-01-01

    Cry j1 is the major peptide allergen of Japanese cedar (Sugi), Cryptomeria japonica. Since some allergens disrupt epidermal permeability barrier homeostasis, we hypothesized that Cry j1 might have a similar effect. Intracellular calcium level in cultured human keratinocytes was measured with a ratiometric fluorescent probe, Fura-2 AM. Application of Cry j1 significantly increased the intracellular calcium level of keratinocytes, and this increase was inhibited by trypsin inhibitor or a protease-activated receptor 2 (PAR-2) antagonist. We found that Cry j1 itself did not show protease activity, but application of Cry j1 to cultured keratinocytes induced a rapid (within 30 s) and transient increase of protease activity in the medium. This transient increase was blocked by trypsin inhibitor or PAR-2 antagonist. The effect of Cry j1 on transepidermal water loss (TEWL) of cultured human skin was measured in the presence and absence of a trypsin inhibitor and PAR-2 antagonist. Cry j1 significantly impaired the barrier function of human skin ex vivo, and this action was blocked by co-application of trypsin inhibitor or PAR-2 antagonist. Our results suggested that interaction of Cry j1 with epidermal keratinocytes leads to the activation of PAR-2, which induces elevation of intracellular calcium and disruption of barrier function. Blocking the interaction of Cry j1 with epidermal keratinocytes might ameliorate allergic reaction and prevent disruption of epidermal permeability barrier homeostasis. PMID:26498292

  19. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes.

    PubMed

    Zhang, Leshuai W; Yu, William W; Colvin, Vicki L; Monteiro-Riviere, Nancy A

    2008-04-15

    Quantum dots nanoparticles have novel optical properties for biomedical applications and electronics, but little is known about their skin permeability and interaction with cells. QD621 are nail-shaped nanoparticles that contain a cadmium/selenide core with a cadmium sulfide shell coated with polyethylene glycol (PEG) and are soluble in water. QD were topically applied to porcine skin flow-through diffusion cells to assess penetration at 1 microM, 2 microM and 10 microM for 24 h. QD were also studied in human epidermal keratinocytes (HEK) to determine cellular uptake, cytotoxicity and inflammatory potential. Confocal microscopy depicted the penetration of QD621 through the uppermost stratum corneum (SC) layers of the epidermis and fluorescence was found primarily in the SC and near hair follicles. QD were found in the intercellular lipid bilayers of the SC by transmission electron microscopy (TEM). Inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis for cadmium (Cd) and fluorescence for QD both did not detect Cd nor fluorescence signal in the perfusate at any time point or concentration. In HEK, viability decreased significantly (p<0.05) from 1.25 nM to 10 nM after 24 h and 48 h. There was a significant increase in IL-6 at 1.25 nM to 10 nM, while IL-8 increased from 2.5 nM to 10 nM after 24 h and 48 h. TEM of HEK treated with 10 nM of QD621 at 24 h depicted QD in cytoplasmic vacuoles and at the periphery of the cell membranes. These results indicate that porcine skin penetration of QD621 is minimal and limited primarily to the outer SC layers, yet if the skin were damaged allowing direct QD exposure to skin or keratinocytes, an inflammatory response could be initiated. PMID:18261754

  20. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes

    SciTech Connect

    Zhang, Leshuai W.; Yu, William W.; Colvin, Vicki L.; Monteiro-Riviere, Nancy A.

    2008-04-15

    Quantum dots nanoparticles have novel optical properties for biomedical applications and electronics, but little is known about their skin permeability and interaction with cells. QD621 are nail-shaped nanoparticles that contain a cadmium/selenide core with a cadmium sulfide shell coated with polyethylene glycol (PEG) and are soluble in water. QD were topically applied to porcine skin flow-through diffusion cells to assess penetration at 1 {mu}M, 2 {mu}M and 10 {mu}M for 24 h. QD were also studied in human epidermal keratinocytes (HEK) to determine cellular uptake, cytotoxicity and inflammatory potential. Confocal microscopy depicted the penetration of QD621 through the uppermost stratum corneum (SC) layers of the epidermis and fluorescence was found primarily in the SC and near hair follicles. QD were found in the intercellular lipid bilayers of the SC by transmission electron microscopy (TEM). Inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis for cadmium (Cd) and fluorescence for QD both did not detect Cd nor fluorescence signal in the perfusate at any time point or concentration. In HEK, viability decreased significantly (p < 0.05) from 1.25 nM to 10nM after 24 h and 48 h. There was a significant increase in IL-6 at 1.25 nM to 10 nM, while IL-8 increased from 2.5nM to 10nM after 24 h and 48 h. TEM of HEK treated with 10 nM of QD621 at 24 h depicted QD in cytoplasmic vacuoles and at the periphery of the cell membranes. These results indicate that porcine skin penetration of QD621 is minimal and limited primarily to the outer SC layers, yet if the skin were damaged allowing direct QD exposure to skin or keratinocytes, an inflammatory response could be initiated.

  1. An epidermal stem cells niche microenvironment created by engineered human amniotic membrane.

    PubMed

    Ji, Shi-zhao; Xiao, Shi-chu; Luo, Peng-fei; Huang, Guo-feng; Wang, Guang-yi; Zhu, Shi-hui; Wu, Min-juan; Xia, Zhao-fan

    2011-11-01

    How to amplify epidermal stem cells (ESCs) rapidly is a challenging crux in skin tissue engineering research. The present study describes the preparation of 3D micronized (300-600 μm) amniotic membrane (mAM) by means of repeated freeze-thawing cycles to deplete cell components and homogenized with a macrohomogenizer in liquid nitrogen. This newly prepared mAM not only possessed the characteristics of a microcarrier but completely retained the basement membrane structure and abundant active substances such as NGF, HGF, KGF, bFGF, TGF-β1 and EGF in the AM matrix. The result showed that mAM combined with rotary cell culture system (RCCS) was able to amplify ESCs quickly. The relative cell viability at day 7 and 14 was significantly higher than that of the conventional 2D plate culture (326 ± 28% and 535 ± 47% versus 232 ± 21% and 307 ± 32%, P < 0.05). In addition, the new method was able to prevent cell differentiation effectively and retain the characteristics of stem cells. When mAM loaded with ESCs (ESC-mAM) was further transplanted to full-thickness skin defects in nude mice, ESCs survived well and formed a new epidermis. Four weeks after transplantation, papilla-like structures were observed, and collagen fibers were well and regularly arranged in the newly formed dermal layer. In conclusion, the mAM as a novel natural microcarrier possesses an intact basement membrane structure and bioactivities. It not only provides the microenvironment similar to the stem cell niche within the human body favorable for ex vivo culture and amplification of ESCs but can be used as the dermal scaffold in constructing a skin substitute containing ESCs for the repair of full-thickness skin defects. PMID:21803416

  2. UVB radiation induces an increase in intracellular zinc in human epidermal keratinocytes.

    PubMed

    Stork, Christian J; Martorano, Lisa M; Li, Yang V

    2010-10-01

    Ultraviolet (UV) radiation is known to cause oxidative stress, inflammation, DNA damage and apoptotic cell death; however, many details of these malign mechanism have yet to be elucidated. In this study, the exposure of adult human epidermal keratinocytes (HEKa) with UVB (>100 mJ/cm(2)) resulted in the significant increase of intracellular zinc that was released from its storage and was detected by fluorescent zinc indicators. Toxicity testing revealed that UVB-induced zinc release in HEKa is associated with HEKa cell death. Cells that showed elevated intracellular zinc fluorescence upon UVB exposure were also stained by propidium iodide (PI), a traditional viability indicator whose fluorescent signal is as a result of its intercalating with DNA fragments and is unaffected by zinc concentration, showing significant colocalization [Pearson's correlation coefficients r=0.956 (n=6)]. The cytotoxicity of zinc was also determined by an MTT assay after applying the exogenous zinc (ZnCl2) along with its ionophore pyrithione (20 microM) into HEKa culture medium. A significant reduction in cell viability as a function of both zinc concentration and exposure time was observed. The treatments of 1, 10 and 100 microM ZnCl2 with pyrithione demonstrated 2.3, 60 and 84% cell deaths, respectively (control 0.5%) after 30 min. ZnCl2 (100 microM) was also found to induce complete HEKa death after 1 h. Thus, the present study demonstrates that UVB irradiation-induced increased zinc is detrimental to HEKa viability, and zinc may be a necessary step in UVB-induced cell death signaling pathways. PMID:20818483

  3. Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer

    PubMed Central

    Wolff, Antonio C.; Hammond, M. Elizabeth H.; Hicks, David G.; Dowsett, Mitch; McShane, Lisa M.; Allison, Kimberly H.; Allred, Donald C.; Bartlett, John M.S.; Bilous, Michael; Fitzgibbons, Patrick; Hanna, Wedad; Jenkins, Robert B.; Mangu, Pamela B.; Paik, Soonmyung; Perez, Edith A.; Press, Michael F.; Spears, Patricia A.; Vance, Gail H.; Viale, Giuseppe; Hayes, Daniel F.

    2014-01-01

    Purpose To update the American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guideline recommendations for human epidermal growth factor receptor 2 (HER2) testing in breast cancer to improve the accuracy of HER2 testing and its utility as a predictive marker in invasive breast cancer. Methods ASCO/CAP convened an Update Committee that included coauthors of the 2007 guideline to conduct a systematic literature review and update recommendations for optimal HER2 testing. Results The Update Committee identified criteria and areas requiring clarification to improve the accuracy of HER2 testing by immunohistochemistry (IHC) or in situ hybridization (ISH). The guideline was reviewed and approved by both organizations. Recommendations The Update Committee recommends that HER2 status (HER2 negative or positive) be determined in all patients with invasive (early stage or recurrence) breast cancer on the basis of one or more HER2 test results (negative, equivocal, or positive). Testing criteria define HER2-positive status when (on observing within an area of tumor that amounts to >10% of contiguous and homogeneous tumor cells) there is evidence of protein overexpression (IHC) or gene amplification (HER2 copy number or HER2/CEP17 ratio by ISH based on counting at least 20 cells within the area). If results are equivocal (revised criteria), reflex testing should be performed using an alternative assay (IHC or ISH). Repeat testing should be considered if results seem discordant with other histopathologic findings. Laboratories should demonstrate high concordance with a validated HER2 test on a sufficiently large and representative set of specimens. Testing must be performed in a laboratory accredited by CAP or another accrediting entity. The Update Committee urges providers and health systems to cooperate to ensure the highest quality testing. PMID:24099077

  4. Lapatinib plus capecitabine resolved human epidermal growth factor receptor 2-positive brain metastases.

    PubMed

    Glück, Stefan; Castrellon, Aurelio

    2009-01-01

    Brain metastases affect 25%-30% of women with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer and are associated with a high burden of disease and poor prognosis. A 55-year-old woman presented with HER2-positive, hormone receptor-positive, locally advanced infiltrating ductal carcinoma. She received 4 cycles of neoadjuvant docetaxel (75 mg/m) plus trastuzumab (6 mg/kg) on a 21-day cycle, resulting in complete pathologic response at the time of surgery. Trastuzumab (6 mg/kg every 21 days) plus anastrozole (1 mg/d) was continued for 1 year. Two years later, the patient progressed with pulmonary nodules and a large pleural effusion. Computed tomography and positron emission tomography revealed multiple lesions in the liver and thoracic spine but no evidence of brain metastases. The patient received weekly trastuzumab (2 mg/kg), paclitaxel (80 mg/m), and carboplatin (area under the curve 2) for 6 months; her symptoms resolved and her disease stabilized. Seven months later, she developed diplopia and gait difficulties, and magnetic resonance imaging revealed multiple brain lesions. Whole-brain radiotherapy (30 Gy in 10 fractions) was delivered with excellent clinical results. The patient remained progression free without symptoms for approximately 3 months. When she developed central nervous system symptoms, she was treated with lapatinib (1250 mg/d continuously) plus capecitabine (2000 mg/m given on days 1-14 of a 21-day cycle). Four months later, a brain computed tomography performed shortly before her death from progressive systemic disease revealed near complete resolution of brain metastases. Lapatinib plus capecitabine seems to have clinical activity in HER2-positive brain metastases. PMID:19287304

  5. Epidermal Growth Factor Receptor Expression As Prognostic Marker in Patients With Anal Carcinoma Treated With Concurrent Chemoradiation Therapy

    SciTech Connect

    Fraunholz, Ingeborg; Falk, Stefan

    2013-08-01

    Purpose: To investigate the prognostic value of epidermal growth factor receptor (EGFR) expression in pretreatment tumor biopsy specimens of patients with anal cancer treated with concurrent 5-fluorouracil and mitomycin C-based chemoradiation therapy (CRT). Methods and Materials: Immunohistochemical staining for EGFR was performed in pretreatment biopsy specimens of 103 patients with anal carcinoma. EGFR expression was correlated with clinical and histopathologic characteristics and with clinical endpoints, including local failure-free survival (LFFS), colostomy-free survival (CFS), distant metastases-free survival (DMFS), cancer-specific survival (CSS), and overall survival (OS). Results: EGFR staining intensity was absent in 3%, weak in 23%, intermediate in 36% and intense in 38% of the patients. In univariate analysis, the level of EGFR staining was significantly correlated with CSS (absent/weak vs intermediate/intense expression: 5-year CSS, 70% vs 86%, P=.03). As a trend, this was also observed for DMFS (70% vs 86%, P=.06) and LFFS (70% vs 87%, P=.16). In multivariate analysis, N stage, tumor differentiation, and patients’ sex were independent prognostic factors for CSS, whereas EGFR expression only reached borderline significance (hazard ratio 2.75; P=.08). Conclusion: Our results suggest that elevated levels of pretreatment EGFR expression could be correlated with favorable clinical outcome in anal cancer patients treated with CRT. Further studies are warranted to elucidate how EGFR is involved in the response to CRT.

  6. Targeted delivery of polyamidoamine-paclitaxel conjugate functionalized with anti-human epidermal growth factor receptor 2 trastuzumab

    PubMed Central

    Ma, Pengkai; Zhang, Xuemei; Ni, Ling; Li, Jinming; Zhang, Fengpu; Wang, Zheng; Lian, Shengnan; Sun, Kaoxiang

    2015-01-01

    Background Antibody-dendrimer conjugates have the potential to improve the targeting and release of chemotherapeutic drugs at the tumor site while reducing adverse side effects caused by drug accumulation in healthy tissues. In this study, trastuzumab (TMAB), which binds to human epidermal growth factor receptor 2 (HER2), was used as a targeting agent in a TMAB-polyamidoamine (PAMAM) conjugate carrying paclitaxel (PTX) specifically to cells overexpressing HER2. Methods TMAB was covalently linked to a PAMAM dendrimer via bifunctional polyethylene glycol (PEG). PTX was conjugated to PAMAM using succinic anhydride as a cross-linker, yielding TMAB-PEG-PAMAM-PTX. Dynamic light scattering and transmission electron microscopy were used to characterize the conjugates. The cellular uptake and in vivo biodistribution were studied by fluorescence microscopy, flow cytometry, and Carestream In Vivo FX, respectively. Results Nuclear magnetic resonance spectroscopy demonstrated that PEG, PTX, fluorescein isothiocyanate, and cyanine7 were conjugated to PAMAM. Ultraviolet-visible spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that TMAB was conjugated to PEG-PAMAM. Dynamic light scattering and transmission electron microscopy measurements revealed that the different conjugates ranged in size between 10 and 35 nm and had a spherical shape. In vitro cellular uptake demonstrated that the TMAB-conjugated PAMAM was taken up by HER2-overexpressing BT474 cells more efficiently than MCF-7 cells that expressed lower levels of HER2. Co-localization experiments indicated that TMAB-conjugated PAMAM was located in the cytoplasm. The in vitro cytotoxicity of TMAB-conjugated PAMAM was lower than free PTX due to the slow release of PTX from the conjugate. In vivo targeting further demonstrated that TMAB-conjugated PAMAM accumulated in the BT474 tumor model more efficiently than non-conjugated PAMAM. Conclusion TMAB can serve as an effective targeting agent

  7. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    SciTech Connect

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-02-15

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure.

  8. Malignant Peripheral Nerve Sheath Tumor Invasion Requires Aberrantly Expressed Epidermal Growth Factor (EGF) Receptors and is Variably Enhanced by Multiple EGF Family Ligands

    PubMed Central

    Byer, Stephanie J.; Brossier, Nicole M.; Peavler, Lafe T.; Eckert, Jenell M.; Watkins, Stacey; Roth, Kevin A.; Carroll, Steven L.

    2013-01-01

    Aberrant epidermal growth factor receptor (EGFR) expression promotes the pathogenesis of malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy associated with neurofibromatosis type 1, but the mechanisms by which EGFR expression promotes MPNST pathogenesis are poorly understood. We hypothesized that inappropriately expressed EGFRs promote MPNST invasion and found that these kinases are concentrated in MPNST invadopodia in vitro. EGFR knockdown inhibited the migration of unstimulated MPNST cells in vitro and exogenous EGF further enhanced MPNST migration in a substrate-specific manner, promoting migration on laminin and, to a lesser extent, collagen. Thus, in this setting, EGF acts as a chemotactic factor. We also found that the 7 known EGFR ligands (EGF, betacellulin, epiregulin, heparin-binding EGF, transforming growth factor α [TGFα], amphiregulin, and epigen) variably enhanced MPNST migration in a concentration-dependent manner, with TGFα being particularly potent. With the exception of epigen, these factors similarly promoted the migration of non-neoplastic Schwann cells. Although transcripts encoding all 7 EGFR ligands were detected in human MPNST cells and tumor tissues, only TGFα was consistently overexpressed and was found to colocalize with EGFR in situ. These data indicate that constitutive EGFR activation, potentially driven by autocrine or paracrine TGFα signaling, promotes the aggressive invasive behavior characteristic of MPNSTs. PMID:23399900

  9. Analysis of gene expression dynamics revealed delayed and abnormal epidermal repair process in aged compared to young skin.

    PubMed

    Sextius, Peggy; Marionnet, Claire; Tacheau, Charlotte; Bon, François-Xavier; Bastien, Philippe; Mauviel, Alain; Bernard, Bruno A; Bernerd, Françoise; Dubertret, Louis

    2015-05-01

    With aging, epidermal homeostasis and barrier function are disrupted. In a previous study, we analyzed the transcriptomic response of young skin epidermis after stratum corneum removal, and obtained a global kinetic view of the molecular processes involved in barrier function recovery. In the present study, the same analysis was performed in aged skin in order to better understand the defects which occur with aging. Thirty healthy male volunteers (67 ± 4 years old) were involved. Tape-strippings were carried out on the inner face of one forearm, the other unstripped forearm serving as control. At 2, 6, 18, 30 and 72 h after stripping, TEWL measurements were taken, and epidermis samples were collected. Total RNA was extracted and analyzed using DermArray(®) cDNA microarrays. The results highlighted that barrier function recovery and overall kinetics of gene expression were delayed following stripping in aged skin. Indeed, the TEWL measurements showed that barrier recovery in the young group appeared to be dramatically significant during the overall kinetics, while there were no significant evolution in the aged group until 30 h. Moreover, gene expression analysis revealed that the number of modulated genes following tape stripping increased as a function of time and reached a peak at 6 h after tape stripping in young skin, while it was at 30 h in aged skin, showing that cellular activity linked to the repair process may be engaged earlier in young epidermis than in aged epidermis. A total of 370 genes were modulated in the young group. In the aged group, 382 genes were modulated, whose 184 were also modulated in the young group. Only eight genes that were modulated in both groups were significantly differently modulated. The characterization of these genes into 15 functional families helped to draw a scenario for the aging process affecting epidermal repair capacity. PMID:25740152

  10. Effect of atmospheric fine particles on epidermal growth factor receptor mRNA expression in mouse skin tissue.

    PubMed

    Han, X; Liang, W L; Zhang, Y; Sun, L D; Liang, W Y

    2016-01-01

    We investigated the effect of atmospheric fine particles on epidermal growth factor receptor (Egfr) mRNA expression in mouse skin tissue and explored the effect of atmospheric fine particles on skin aging. Forty female BALB/c mice were randomly divided into four groups (each comprising 10 mice) as follows: a saline control group and low-, medium-, and high-dose atmospheric fine particle groups (1.6, 8.0, and 40.0 mg/kg, respectively) (fine particles were defined as those with a diameter of £2.5 mm, i.e., PM2.5). Each dose group was exposed to intratracheal instillation for 3 days. Twenty-four hours after the last exposure, real-time quantitative polymerase chain reaction was used to detect the expression of Egfr mRNA in the skin tissue of each mouse. The expression levels of Egfr mRNA in the medium- and high-dose PM2.5 groups were significantly higher (P < 0.05) than that in the control group, and were positively correlated with the dose. Medium and high concentrations of PM2.5 can induce the expression of Egfr mRNA and promote skin aging. PMID:27050971

  11. Comparative gene expression analysis of genital tubercle development reveals a putative appendicular Wnt7 network for the epidermal differentiation

    PubMed Central

    Chiu, Han Sheng; Szucsik, John C.; Georgas, Kylie M.; Jones, Julia L.; Rumballe, Bree A.; Tang, Dave; Grimmond, Sean M.; Lewis, Alfor G.; Aronow, Bruce J.; Lessard, James L.; Little, Melissa H.

    2010-01-01

    Here we describe the first detailed catalogue of gene expression in the developing lower urinary tract (LUT), including epithelial and mesenchymal portions of the developing bladder, urogenital sinus, urethra and genital tubercle (GT) at E13 and E14. Top compartment-specific genes implicated by the microarray data were validated using wholemount in situ hybridization (ISH) over the entire LUT. To demonstrate the potential of this resource to implicate developmentally critical features, we focused on gene expression patterns and pathways in the sexually indeterminate, androgen-independent GT. GT expression patterns reinforced the proposed similarities between development of GT, limb and craniofacial prominences. Comparison of spatial expression patterns predicted a network of Wnt7a-associated GT-enriched epithelial genes, including Gjb2, Dsc3, Krt5 and Sostdc1. Known from other contexts, these genes are associated with normal epidermal differentiation, with disruptions in Dsc3 and Gjb2 showing palmo-plantar keratoderma in the limb. We propose that this gene network contributes to normal foreskin, scrotum and labial development. As several of these are known regulated by, or contain cis elements responsive to retinoic acid, estrogen, or androgen, this implicates this pathway in the later androgen-dependent development of the GT. PMID:20510229

  12. Superior antitumor activity of trastuzumab combined with capecitabine plus oxaliplatin in a human epidermal growth factor receptor 2-positive human gastric cancer xenograft model

    PubMed Central

    HARADA, SUGURU; YANAGISAWA, MIEKO; KANEKO, SAORI; YOROZU, KEIGO; YAMAMOTO, KANAME; MORIYA, YOICHIRO; HARADA, NAOKI

    2015-01-01

    In the treatment of human epidermal growth factor receptor 2 (HER2)-positive advanced gastric or gastroesophageal junction cancer, it has been reported that the combination of trastuzumab with capecitabine plus cisplatin, or with 5-fluorouracil (5-FU) plus cisplatin, significantly increased overall survival compared with chemotherapy alone (ToGA trial). In addition, adjuvant therapy with capecitabine plus oxaliplatin (XELOX) improved the survival of patients who received curative D2 gastrectomy (CLASSIC trial). However, the efficacy of the combination of trastuzumab with XELOX for patients with HER2-positive gastric cancer remains unknown. The aim of this study, was to investigate the efficacy of the combination of trastuzumab with XELOX in a HER2-positive human gastric cancer xenograft model. Combination treatment with these three agents (trastuzumab 20 mg/kg, capecitabine 359 mg/kg and oxaliplatin 10 mg/kg), was found to exhibit a significantly stronger antitumor activity in NCI-N87 xenografts compared with either trastuzumab or XELOX alone. In this model, treatment with trastuzumab alone or trastuzumab plus oxaliplatin enhanced the expression of thymidine phosphorylase (TP), a key enzyme in the generation of 5-FU from capecitabine in tumor tissues. In in vitro experiments, trastuzumab induced TP mRNA expression in NCI-N87 cells. In addition, NCI-N87 cells co-cultured with the natural killer (NK) cell line CD16(158V)/NK-92 exhibited increased expression of TP mRNA. When NCI-N87 cells were cultured with CD16(158V)/NK-92 cells in the presence of trastuzumab, the mRNA expression of cytokines reported to have the ability to induce TP was upregulated in tumor cells. Furthermore, a medium conditioned by CD16(158V)/NK-92 cells also upregulated the expression of TP mRNA in NCI-N87 cells. These results suggest that trastuzumab promotes TP expression, either by acting directly on NCI-N87 cells, or indirectly via a mechanism that includes trastuzumab-mediated interactions

  13. [Epidermal cell cultures--significance for wound coverage in the human].

    PubMed

    Bonnekoh, B; Thiele, B; Mahrle, G; Steigleder, G K

    1986-10-15

    Epithelial sheets can be cultivated from isolated epidermal cells; in this way, it is possible to increase the cell number considerably. H. Green and co-workers were the first to make use of such epithelia for the autologous covering of burn wounds. We modified this method and report on our experiences with this technique in a patient with small skin defects. PMID:2432733

  14. PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled ZEGFR:2377 affibody molecules

    PubMed Central

    GAROUSI, JAVAD; ANDERSSON, KEN G.; MITRAN, BOGDAN; PICHL, MARIE-LOUISE; STÅHL, STEFAN; ORLOVA, ANNA; LÖFBLOM, JOHN; TOLMACHEV, VLADIMIR

    2016-01-01

    Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor, which is overexpressed in many types of cancer. The use of EGFR-targeting monoclonal antibodies and tyrosine-kinase inhibitors improves significantly survival of patients with colorectal, non-small cell lung cancer and head and neck squamous cell carcinoma. Detection of EGFR overexpression provides important prognostic and predictive information influencing management of the patients. The use of radionuclide molecular imaging would enable non-invasive repeatable determination of EGFR expression in disseminated cancer. Moreover, positron emission tomography (PET) would provide superior sensitivity and quantitation accuracy in EGFR expression imaging. Affibody molecules are a new type of imaging probes, providing high contrast in molecular imaging. In the present study, an EGFR-binding affibody molecule (ZEGFR:2377) was site-specifically conjugated with a deferoxamine (DFO) chelator and labelled under mild conditions (room temperature and neutral pH) with a positron-emitting radionuclide 89Zr. The 89Zr-DFO-ZEGFR:2377 tracer demonstrated specific high affinity (160±60 pM) binding to EGFR-expressing A431 epidermoid carcinoma cell line. In mice bearing A431 xenografts, 89Zr-DFO-ZEGFR:2377 demonstrated specific uptake in tumours and EGFR-expressing tissues. The tracer provided tumour uptake of 2.6±0.5% ID/g and tumour-to-blood ratio of 3.7±0.6 at 24 h after injection. 89Zr-DFO-ZEGFR:2377 provides higher tumour-to-organ ratios than anti-EGFR antibody 89Zr-DFO-cetuximab at 48 h after injection. EGFR-expressing tumours were clearly visualized by microPET using 89Zr-DFO-ZEGFR:2377 at both 3 and 24 h after injection. In conclusion, 89Zr-DFO-ZEGFR:2377 is a potential probe for PET imaging of EGFR-expression in vivo. PMID:26847636

  15. PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled ZEGFR:2377 affibody molecules.

    PubMed

    Garousi, Javad; Andersson, Ken G; Mitran, Bogdan; Pichl, Marie-Louise; Ståhl, Stefan; Orlova, Anna; Löfblom, John; Tolmachev, Vladimir

    2016-04-01

    Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor, which is overexpressed in many types of cancer. The use of EGFR-targeting monoclonal antibodies and tyrosine-kinase inhibitors improves significantly survival of patients with colorectal, non-small cell lung cancer and head and neck squamous cell carcinoma. Detection of EGFR overexpression provides important prognostic and predictive information influencing management of the patients. The use of radionuclide molecular imaging would enable non-invasive repeatable determination of EGFR expression in disseminated cancer. Moreover, positron emission tomography (PET) would provide superior sensitivity and quantitation accuracy in EGFR expression imaging. Affibody molecules are a new type of imaging probes, providing high contrast in molecular imaging. In the present study, an EGFR-binding affibody molecule (ZEGFR:2377) was site-specifically conjugated with a deferoxamine (DFO) chelator and labelled under mild conditions (room temperature and neutral pH) with a positron-emitting radionuclide (89)Zr. The (89)Zr-DFO-ZEGFR:2377 tracer demonstrated specific high affinity (160 ± 60 pM) binding to EGFR-expressing A431 epidermoid carcinoma cell line. In mice bearing A431 xenografts, (89)Zr-DFO-ZEGFR:2377 demonstrated specific uptake in tumours and EGFR-expressing tissues. The tracer provided tumour uptake of 2.6 ± 0.5% ID/g and tumour-to-blood ratio of 3.7 ± 0.6 at 24 h after injection. (89)Zr-DFO-ZEGFR:2377 provides higher tumour-to-organ ratios than anti-EGFR antibody (89)Zr-DFO-cetuximab at 48 h after injection. EGFR‑expressing tumours were clearly visualized by microPET using (89)Zr-DFO-ZEGFR:2377 at both 3 and 24 h after injection. In conclusion, 8(9)Zr-DFO-ZEGFR:2377 is a potential probe for PET imaging of EGFR-expression in vivo. PMID:26847636

  16. In vivo ultraviolet-exposed human epidermal cells activate T suppressor cell pathways that involve CD4+CD45RA+ suppressor-inducer T cells

    SciTech Connect

    Baadsgaard, O.; Salvo, B.; Mannie, A.; Dass, B.; Fox, D.A.; Cooper, K.D. )

    1990-11-01

    In vivo UV exposure of human epidermis abrogates the function of CD1+DR+ Langerhans cells and induces the appearance of CD1-DR+ Ag-presenting macrophages. Epidermal cells from UV-exposed skin, in contrast to epidermal cells from normal skin, potently activate autologous CD4+ T cells, and, in particular, the CD45RA+ (2H4+) (suppressor-inducer) subset. We therefore determined whether UV-exposure in humans leads to a T cell response in which suppression dominates. Autologous blood T cells were incubated with epidermal cell suspensions from in vivo UV-irradiated skin. After activation, repurified T cells were transferred in graded numbers to autologous mononuclear cells (MNC) stimulated with PWM and the resultant IgG production analyzed by ELISA. Relative to T cells activated by unirradiated control epidermal cells, T cells activated by UV-exposed epidermal cells demonstrated enhanced capacity to suppress IgG production (n = 6; p less than or equal to 0.03). Within the T cell population, CD8+ cells stimulated by UV-exposed epidermal cells could be directly activated to suppress PWM-stimulated MNC Ig production if IL-2 was provided in the reaction mixture. The suppressive activity was also transferable with purified CD4+ T cells stimulated by UV-exposed epidermal cells (n = 10; p less than or equal to 0.01), and was radiosensitive. Suppression was decreased when PWM-stimulated MNC were depleted of CD8+ T cells before mixing with CD4+ T cells activated by UV-exposed epidermal cells, suggesting indirect induction of CD8+ Ts cells contained within the responding MNC populations. Indeed, physical depletion of CD45RA+ cells resulted in total abrogation of the suppressor function contained in the CD4+ T cells. Activation of suppressor function was critically dependent on DR+ APC contained in UV-exposed epidermis.

  17. Self-inactivating MLV vectors have a reduced genotoxic profile in human epidermal keratinocytes.

    PubMed

    Cavazza, A; Cocchiarella, F; Bartholomae, C; Schmidt, M; Pincelli, C; Larcher, F; Mavilio, F

    2013-09-01

    Transplantation of epithelia derived from keratinocyte stem cells transduced by retroviral vectors is a potential therapy for epidermolysis bullosa (EB), a family of inherited skin adhesion defects. The biosafety characteristics of retroviral vectors in keratinocytes are, however, poorly defined. We developed self-inactivating (SIN) vectors derived from the Moloney murine leukemia (MLV) and the human immunodeficiency (HIV) viruses expressing therapeutic levels of LAMB3, a transgene defective in junctional EB, and tested their integration profile in human primary keratinocytes. The SIN-HIV vector showed the expected preference for transcribed genes while the SIN-MLV vector integrated preferentially in regulatory elements, but showed a significantly lower tendency to target cell growth-related genes, transcription start sites and epigenetically defined promoters compared with a wild-type MLV vector in an epithelial cell context. A quantitative gene expression assay in individual keratinocyte clones showed that MLV-derived vectors deregulate expression of targeted genes at a lower frequency than in hematopoietic cells, and that the SIN-MLV design has the lowest activity compared to both MLV and SIN-HIV vectors. This study indicates that SIN-MLV vectors may have a better safety profile in keratinocyte than in hematopoietic cells, and be a reasonable alternative to lentiviral vectors for gene therapy of inherited skin disorders. PMID:23615186

  18. The effect of Psoroptes ovis infestation on ovine epidermal barrier function

    PubMed Central

    2013-01-01

    Sheep scab is an intensively pruritic, exudative and allergic dermatitis of sheep caused by the ectoparasitic mite Psoroptes ovis. The purpose of the present study was to investigate the effect of P. ovis infestation on different components of the ovine epidermal barrier within the first 24 hours post-infestation (hpi). To achieve this, the expression of epidermal differentiation complex (EDC) genes and epidermal barrier proteins, the nature and severity of epidermal pathology and transepidermal water loss (TEWL) were evaluated. By 1 hpi a significant dermal polymorphonuclear infiltrate and a significant increase in TEWL with maximal mean TEWL (598.67 g/m2h) were observed. Epidermal pathology involving intra-epidermal pustulation, loss of epidermal architecture and damage to the basement membrane was seen by 3 hpi. Filaggrin and loricrin protein levels in the stratum corneum declined significantly in the first 24 hpi and qPCR validation confirmed the decrease in expression of the key EDC genes involucrin, filaggrin and loricrin observed by microarray analysis, with 5.8-fold, 4.5-fold and 80-fold decreases, respectively by 24 hpi. The present study has demonstrated that early P. ovis infestation disrupts the ovine epidermal barrier causing significant alterations in the expression of critical barrier components, epidermal pathology, and TEWL. Many of these features have also been documented in human and canine atopic dermatitis suggesting that sheep scab may provide a model for the elucidation of events occurring in the early phases of atopic sensitisation. PMID:23398847

  19. Strain differences in the expression of an H-2K/sup k/ gene product by epidermal and spleen cells

    SciTech Connect

    Hadley, G.A.; Steinmuller, D.

    1986-03-01

    Cytotoxic T lymphocytes (CTL) directed against Epa-1, a non-H-2 alloantigen expressed by epidermal cells (EC) but no lymphoid cells, lyse EC of different H-2/sup k/, Epa-1/sup +/ strains at different levels. For example, the mean percent lysis values for EC of strains CBA, AKR, C58, and RF are 60, 46, 41, and 35 respectively. Since the CTL used to obtain these values recognize Epa-1 only in the context of H-2K/sup k/, the different levels of lysis could reflect differences in either Epa-1 or K/sup k/ antigens. The goal of this investigation was to test the second alternative. For this purpose, the authors obtained hybridoma 16-1-11N that secretes a K/sup k/-specific MoAb. They first demonstrated the capacity of MoAb 16-1-11N to block the lysis of CBA EC by Epa-1-specific CTL. They then utilized it as the probe in a cellar RIA, with /sup 125/I-protein A as the second reagent, to quantitate the expression of K/sup k/ antigens on EC of strains CBA, AKR, C58, and RF. They found that C58 and RF EC bound significantly less of the K/sup k/ MoAb than CBA EC. Although AKR EC also bound less of the MoAb than CBA EC, the difference was not significant. Nonetheless, these data support the hypothesis that the differential susceptibility of the strains to lysis by Epa-1-specific CTL is due to differences in the expression of the H-2 restricting element. The authors also tested spleen cells (SC) of the four strains in the RIA described above and found that SC of RF, but not of C58 or AKR, express reduced levels of K/sup k/ antigens compared to CBA SC.

  20. pH dependence of ligand-induced human epidermal growth factor receptor activation investigated by molecular dynamics simulations.

    PubMed

    Dong, Jun; Zhang, Yonghui; Zhang, Zhiyong

    2016-06-01

    The activation of human epidermal growth factor receptor (hEGFR) involves a large conformational change in its soluble extracellular domains (sECD, residues 1-620), from a tethered to an extended conformation upon binding of ligands, such as EGF. It has been reported that this dynamic process is pH-dependent, that is, hEGFR can be activated by EGF at high pH to form an extended dimer but remains as an inactive monomer at low pH. In this paper, we perform all-atom molecular dynamics (MD) simulations starting from the tethered conformation of sECD:EGF complex, at pH 5.0 and 8.5, respectively. Simulation results indicate that sECD:EGF shows different dynamic properties between the two pHs, and the complex may have a higher tendency of activation at pH 8.5. Twenty residues, including 13 histidines, in sECD:EGF have different protonation states between the two pHs (calculated by the H++ server). The charge distribution at pH 8.5 is more favorable for forming an extended conformation toward the active state of sECD than that at pH 5.0. Our study may shed light on the mechanism of pH dependence of hEGFR activation. Graphical abstract pH dependence of ligand-induced human epidermal growth factor receptor activation. PMID:27179806

  1. UV Radiation Induces the Epidermal Recruitment of Dendritic Cells that Compensate for the Depletion of Langerhans Cells in Human Skin.

    PubMed

    Achachi, Amine; Vocanson, Marc; Bastien, Philippe; Péguet-Navarro, Josette; Grande, Sophie; Goujon, Catherine; Breton, Lionel; Castiel-Higounenc, Isabelle; Nicolas, Jean-François; Gueniche, Audrey

    2015-08-01

    UVR causes skin injury and inflammation, resulting in impaired immune function and increased skin cancer risk. Langerhans cells (LCs), the immune sentinels of the epidermis, are depleted for several days following a single UVR exposure and can be reconstituted from circulating monocytes. However, the differentiation pathways leading to the recovery of a normal pool of LCs is still unclear. To study the dynamic changes in human skin with UV injury, we exposed a cohort of 29 healthy human volunteers to a clinically relevant dose of UVR and analyzed sequential epidermal biopsies for changes in leukocyte and dendritic cell (DC) subsets. UV-induced depletion of CD1a(high) LC was compensated by sequential appearance of various epidermal leukocytes. CD14(+) monocytes were recruited as early as D1 post exposure, followed by recruitment of two inflammatory DC subsets that may represent precursors of LCs. These CD1a(low) CD207(-) and the heretofore unknown CD1a(low) CD207(+) DCs appeared at day 1 and day 4 post UVR, respectively, and were endowed with T-cell-activating properties similar to those of LCs. We conclude that recruitment of monocytes and inflammatory DCs appear as a physiological response of the epidermis in order to repair UVR-induced LC depletion associated with immune suppression. PMID:25806853

  2. Effects of dietary supplementation with epidermal growth factor-expressing Saccharomyces cerevisiae on duodenal development in weaned piglets.

    PubMed

    Wang, Shujin; Guo, Chunhua; Zhou, Lin; Zhong, Zhendong; Zhu, Wuzheng; Huang, Yanling; Zhang, Zhengfan; Gorgels, Theo G M F; Berendschot, Tos T J M

    2016-05-01

    The aim of the present study was to assess the effects of dietary supplementation with epidermal growth factor (EGF)-expressing Saccharomyces cerevisiae on duodenal development in weaned piglets. In total, forty piglets weaned at 21-26 d of age were assigned to one of the five groups that were provided basic diet (control group) or diet supplemented with S. cerevisiae expressing either empty-vector (INVSc1(EV) group), tagged EGF (T-EGF) (INVSc1-TE(-) group), extracellular EGF (EE-EGF) (INVSc1-EE(+) group) or intracellular EGF (IE-EGF) (INVSc1-IE(+) group). All treatments were delivered as 60·00 μg/kg body weight EGF/d. On 0, 7, 14 and 21 d, eight piglets per treatment were sacrificed to analyse the morphology, activities and mRNA expressions of digestive enzymes, as well as Ig levels (IgA, IgM, IgG) in duodenal mucosa. The results showed significant improvement on 7, 14 and 21 d, with respect to average daily gain (P<0·05), mucosa morphology (villus height and crypt depth) (P<0·05), Ig levels (P<0·01), activities and mRNA expressions of digestive enzymes (creatine kinase, alkaline phosphatase, lactate dehydrogenase and sucrase) (P<0·05) and the mRNA expression of EGF-receptor (P<0·01) in NVSc1-TE(-), INVSc1-EE(+) and INVSc1-IE(+) groups compared with control and INVSc1(EV) groups. In addition, a trend was observed in which the INVSc1-IE(+) group showed an improvement in Ig levels (0·05expressions of digestive enzymes and EGF-receptor (P<0·05) compared with NVSc1-TE(-) and INVSc1-EE(+) groups. These results indicate that supplementing recombinant EGF-expressing S. cerevisiae to the diet of weaned piglets enhanced duodenal development. Moreover, biological activity (Ig levels, mRNA expressions of digestive enzymes and EGF-receptor) of IE-EGF was better than either EE-EGF or T-EGF. PMID:26983845

  3. Establishment of 3D organotypic cultures using human neonatal epidermal cells.

    PubMed

    Gangatirkar, Pradnya; Paquet-Fifield, Sophie; Li, Amy; Rossi, Ralph; Kaur, Pritinder

    2007-01-01

    This protocol describes an ex vivo three-dimensional coculture system optimized to study the skin regenerative ability of primary human keratinocytes grown at the air-liquid interface on collagen matrices embedded with human dermal fibroblasts. An option for enrichment of keratinocyte stem cells and their progeny using fluorescence-activated cell sorting is also provided. Initially, dermal equivalents, comprising human passaged fibroblasts seeded in a collagen matrix, are grown on porous filters (3 mum) placed in transwells. After 1 week, primary human keratinocytes are seeded on this base. One week later, an air-lift transition is performed, leading to the differentiation of the keratinocytes, which are macroscopically visible as artificial skin after a couple of days. The cultures can be harvested 1 week after the air-lift and processed for immunohistochemistry or gene expression analysis. The overall procedure can be completed in 3 weeks, including the preparation of the dermal equivalent and the seeding of the primary keratinocytes. PMID:17401352

  4. Constitutive Autophagy and Nucleophagy during Epidermal Differentiation.

    PubMed

    Akinduro, Olufolake; Sully, Katherine; Patel, Ankit; Robinson, Deborah J; Chikh, Anissa; McPhail, Graham; Braun, Kristin M; Philpott, Michael P; Harwood, Catherine A; Byrne, Carolyn; O'Shaughnessy, Ryan F L; Bergamaschi, Daniele

    2016-07-01

    Epidermal keratinocytes migrate through the epidermis up to the granular layer where, on terminal differentiation, they progressively lose organelles and convert into anucleate cells or corneocytes. Our report explores the role of autophagy in ensuring epidermal function providing the first comprehensive profile of autophagy marker expression in developing epidermis. We show that autophagy is constitutively active in the epidermal granular layer where by electron microscopy we identified double-membrane autophagosomes. We demonstrate that differentiating keratinocytes undergo a selective form of nucleophagy characterized by accumulation of microtubule-associated protein light chain 3/lysosomal-associated membrane protein 2/p62 positive autolysosomes. These perinuclear vesicles displayed positivity for histone interacting protein, heterochromatin protein 1α, and localize in proximity with Lamin A and B1 accumulation, whereas in newborn mice and adult human skin, we report LC3 puncta coincident with misshaped nuclei within the granular layer. This process relies on autophagy integrity as confirmed by lack of nucleophagy in differentiating keratinocytes depleted from WD repeat domain phosphoinositide interacting 1 or Unc-51 like autophagy activating kinase 1. Final validation into a skin disease model showed that impaired autophagy contributes to the pathogenesis of psoriasis. Lack of LC3 expression in psoriatic skin lesions correlates with parakeratosis and deregulated expression or location of most of the autophagic markers. Our findings may have implications and improve treatment options for patients with epidermal barrier defects. PMID:27021405

  5. GATA3 Expression in Normal Skin and in Benign and Malignant Epidermal and Cutaneous Adnexal Neoplasms

    PubMed Central

    de Peralta-Venturina, Mariza N.; Balzer, Bonnie L.; Frishberg, David P.

    2015-01-01

    Abstract: Initial investigations reported GATA3 to be a sensitive and relatively specific marker for mammary and urothelial carcinomas. Recently, GATA3 expression has been described in several other epithelial tumors. However, there has been only limited investigation of GATA3 expression in cutaneous epithelial tumors. The objective of this study was to examine the immunohistochemical expression of GATA3 in a wide variety of cutaneous epithelial neoplasms. GATA3 expression was evaluated in 99 benign and 63 malignant cutaneous epithelial tumors. GATA3 was consistently and usually strongly expressed in clear cell acanthoma, trichofolliculoma, trichoepithelioma, trichilemmoma, sebaceous adenoma, sebaceoma, apocrine hidrocystoma, apocrine tubular papillary adenoma, hidradenoma papilliferum, and syringocystadenoma papilliferum. Hidradenomas exhibited variable positive staining. Most poromas, syringomas, chondroid syringomas, cylindromas, and spiradenomas were negative or only focally and weakly positive. Focal staining was present in all pilomatrixomas. Thirteen of 14 basal cell carcinomas, 21 of 24 squamous carcinomas, and all 6 sebaceous carcinomas exhibited positive staining. The 1 apocrine carcinoma, both mucinous carcinomas, and 2 of 3 microcystic adnexal carcinomas also exhibited positive staining, whereas the 1 eccrine porocarcinoma and the 1 adenoid cystic carcinoma were negative. One of 11 Merkel cell carcinomas exhibited focal weak staining. Our findings demonstrate that GATA3 is expressed in a wide variety of benign and malignant cutaneous epithelial neoplasms. In addition to carcinomas of breast and urothelial origin and other more recently described GATA3-positive tumors, the differential diagnosis of a metastatic tumor of unknown primary origin that expresses GATA3 should also include a carcinoma of cutaneous epithelial origin. PMID:26595821

  6. Differences in human skin between the epidermal growth factor receptor distribution detected by EGF binding and monoclonal antibody recognition.

    PubMed

    Green, M R; Couchman, J R

    1985-09-01

    Two methods have been used to examine epidermal growth factor (EGF) receptor distribution in human scalp and foreskin. The first employed [125I]EGF viable explants and autoradiography to determine the EGF binding pattern while the second used a monoclonal antibody to the human EGF receptor to map the distribution on frozen skin sections of an extracellular epitope on the EGF receptor. The [125I]EGF binding experiments showed accessible, unoccupied EGF receptors to be present on the epidermal basal cells (with reduced binding to spinous cells), the basal cells of the hair shaft and sebaceous gland, the eccrine sweat glands, capillary system, and the hair follicle outer root sheath, generally similar in pattern to that previously reported for full-thickness rat skin and human epidermis. The same areas also bound EGF-R1 but in addition the monoclonal antibody recognized a cone of melanin containing presumptive cortex cells, excluding the medulla, lying around and above the upper dermal papilla of anagen hair follicles, epithelial cells around the lower dermal papilla region, and in some tissue samples the cell margins of the viable differentiating layers of the epidermis. In a control study, to clarify whether EGF-R1 could recognize molecules unrelated to the EGF receptor, the EGF binding and EGF-R1 recognition profiles were compared on cultures of SVK14 cells, a SV40 transformed human keratinocyte cell line. EGF binding and EGF-R1 monoclonal antibody distribution on these cells was found to be similar, indicating that, at least for SVK14 cells, EGF-R1 binding provides a reliable marker for EGF binding. Explanations for the discrepancies between these two methods for determining EGF receptor distribution in human skin are discussed, including the possibility that latent EGF receptors, unable to bind [125I]EGF, may be present in some differentiating epithelial compartments. PMID:2411822

  7. Synergistic and multidimensional regulation of plasminogen activator inhibitor type 1 expression by transforming growth factor type β and epidermal growth factor

    SciTech Connect

    Song, Xiaoling; Thalacker, F.W.; Nilsen-Hamilton, Marit

    2012-04-06

    The major physiological inhibitor of plasminogen activator, type I plasminogen activator inhibitor (PAI-1), controls blood clotting and tissue remodeling events that involve cell migration. Transforming growth factor type β (TGFβ) and epidermal growth factor (EGF) interact synergistically to increase PAI-1 mRNA and protein levels in human HepG2 and mink Mv1Lu cells. Other growth factors that activate tyrosine kinase receptors can substitute for EGF. EGF and TGFβ regulate PAI-1 by synergistically activating transcription, which is further amplified by a decrease in the rate of mRNA degradation, the latter being regulated only by EGF. The combined effect of transcriptional activation and mRNA stabilization results in a rapid 2-order of magnitude increase in the level of PAI-1. TGFβ also increases the sensitivity of the cells to EGF, thereby recruiting the cooperation of EGF at lower than normally effective concentrations. The contribution of EGF to the regulation of PAI-1 involves the MAPK pathway, and the synergistic interface with the TGFβ pathway is downstream of MEK1/2 and involves phosphorylation of neither ERK1/2 nor Smad2/3. Synergism requires the presence of both Smad and AP-1 recognition sites in the promoter. This work demonstrates the existence of a multidimensional cellular mechanism by which EGF and TGFβ are able to promote large and rapid changes in PAI-1 expression.

  8. The relationship of quantitative epidermal growth factor receptor expression in non-small cell lung cancer to long term survival.

    PubMed Central

    Veale, D.; Kerr, N.; Gibson, G. J.; Kelly, P. J.; Harris, A. L.

    1993-01-01

    Increased expression of epidermal growth factor receptor (EGFr) has been reported in non small cell lung cancers (NSCLC) when compared to normal lung. We have examined post-operative survival in 19 surgically treated patients with NSCLC who had full characterisation of EGFr on primary tumour membrane preparations from resection specimens. There were ten squamous, seven adeno and two large cell carcinomas. The median concentration of high affinity sites was 31 fmol per mg of protein (4-1532) and the median dissociation constant (Kd) of these high affinity sites was 2.3 x 10(-10) per mol (1.2-30 x 10(-10)). Seven patients survived over 5 years. Twelve patients died between 8.5 and 55 months from the time of surgery. When > 5 year survivors were compared to non-survivors there was no difference as regards tumour size or stage, or as regards age or sex. The survivors had a median concentration of high affinity EGFr sites of 16.1 fmol mg-1 protein compared to a median concentration of 68.6 fmol mg-1 protein in the non-survivors (P = 0.01 Wilcoxon test). No long term survivor had > 35 fmol mg-1 protein of receptor. Thus EGFr quantitation may give independent prognostic information in NSCLC and help to select patients for adjuvant therapy after surgery. These results need confirmation in a larger prospective study. PMID:8391303

  9. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model.

    PubMed Central

    Ghadially, R; Brown, B E; Sequeira-Martin, S M; Feingold, K R; Elias, P M

    1995-01-01

    Aged epidermis displays altered drug permeability, increased susceptibility to irritant contact dermatitis, and often severe xerosis, suggesting compromise of the aged epidermal barrier. To delineate the functional, structural, and lipid biochemical basis of epidermal aging, we compared barrier function in young (20-30 yr) vs aged (> 80 yr) human subjects, and in a murine model. Baseline transepidermal water loss in both aged humans and senescent mice was subnormal. However, the aged barrier was perturbed more readily with either acetone or tape stripping (18 +/- 2 strippings vs 31 +/- 5 strippings in aged vs young human subjects, respectively). Moreover, after either acetone treatment or tape stripping, the barrier recovered more slowly in aged than in young human subjects (50 and 80% recovery at 24 and 72 h, respectively, in young subjects vs 15% recovery at 24 h in aged subjects), followed by a further delay over the next 6 d. Similar differences in barrier recovery were seen in senescent vs young mice. Although the total lipid content was decreased in the stratum corneum of aged mice (approximately 30%), the distribution of ceramides (including ceramide 1), cholesterol, and free fatty acids was unchanged. Moreover, a normal complement of esterified, very long-chain fatty acids was present. Finally, stratum corneum lamellar bilayers displayed normal substructure and dimensions, but were focally decreased in number, with decreased secretion of lamellar body contents. Thus, assessment of barrier function in aged epidermis under basal conditions is misleading, since both barrier integrity and barrier repair are markedly abnormal. These functional changes can be attributed to a global deficiency in all key stratum corneum lipids, resulting in decreased lamellar bilayers in the stratum corneum interstices. This constellation of findings may explain the increased susceptibility of intrinsically aged skin to exogenous and environmental insults. Images PMID:7738193

  10. Tumor biology in estrogen receptor-positive, human epidermal growth factor receptor type 2-negative breast cancer: Mind the menopausal status

    PubMed Central

    Yamashita, Hiroko

    2015-01-01

    Breast cancer is not one disease, but can be categorized into four major molecular subtypes according to hormone receptor [estrogen receptor (ER) and progesterone receptor (PgR)] and human epidermal growth factor receptor type 2 (HER2) expression status. Ki67 labeling index and/or multigene assays are used to classify ER-positive, HER2-negative breast cancer into luminal A and luminal B (HER2-negative) subtypes. To date, most studies analyzing predictive or prognostic factors in ER-positive breast cancer have been performed in postmenopausal women, mainly using patients and samples in adjuvant aromatase inhibitor trials. In contrast, even the clinical roles of PgR and Ki67 have been little analyzed so far in premenopausal women. PgR is one of the estrogen-responsive genes, and it has been reported that plasma estradiol levels are related to expression levels of estrogen-responsive genes including PGR in ER-positive breast cancer. In this article, biological differences, especially differences in expression of PgR and Ki67 in ER-positive breast cancer between pre- and postmenopausal women are discussed. Clinical roles of PgR and Ki67 in ER-positive breast cancer differ between pre- and postmenopausal women. We suggest that the mechanisms of development and estrogen-dependent growth of ER-positive breast cancer might differ according to menopausal status. PMID:26677435

  11. Expression of Epidermal c-Kit+ of Vitiligo Lesions Is Related to Responses to Excimer Laser

    PubMed Central

    Park, Oun Jae; Han, Ji Su; Lee, Sang Hyung; Park, Chan-Sik; Won, Chong Hyun; Lee, Mi Woo; Choi, Jee Ho

    2016-01-01

    Background The survival and growth of melanocytes are controlled by the binding of stem cell factor to its cell surface receptor c-kit+ (CD117). We have observed that c-kit+ melanocytes existed in some lesions of vitiligo, while Melan A+ cells were absent. Objective To verify possible relation between c-kit+ expression and treatment response in non-segmental vitiligo lesions Methods Skin biopsies were done from the center of the 47 lesions from the 47 patients with non-segmental vitiligo. Expression of c-kit+ and Melan A, and amounts of melanin in the epidermis were assessed in each lesion, and treatment responses to excimer laser were evaluated. Results Thirty-five of the 47 lesions (74.5%) had c-kit+ phenotypes. There was significant difference of c-kit staining value between good responders in 3 months of excimer laser treatment (average of 24 sessions) and the others. Conclusion c-Kit expression in vitiliginous epidermis may be related to better treatment responses to excimer laser. PMID:27489428

  12. Scotin: A new p63 target gene expressed during epidermal differentiation

    SciTech Connect

    Zocchi, Loredana; Codispoti, Andrea; Lane, David P.; Melino, Gerry Terrinoni, Alessandro

    2008-03-07

    p63, a member of the p53 family, is transcribed from two different promoters giving rise to two different proteins: TAp63 that contains the N-terminal transactivation domain and {delta}N that lacks this domain. In this article we describe a new target gene Scotin induced by TAp63 during epithelial differentiation. This gene was previously isolated as a p53-inducible proapoptotic gene and the protein is located in the endoplasmic reticulum and in the nuclear membrane. Scotin expression is induced in response to endoplasmic reticulum (ER) stress in a p53 dependent or independent manner. We detected Scotin upregulation in primary keratinocyte cell lines committed to differentiate. In this paper we also show that Scotin is expressed in the supra basal layer of the epidermis in parallel with TAp63, but not {delta}Np63 expression. We conclude that Scotin is a new p63 target gene induced during epithelial differentiation, a complex process that also involves ER stress induction.

  13. FOLATE DEFICIENCY ENHANCES ARSENIC EFFECTS ON EXPRESSION OF GENES INVOLVED IN EPIDERMAL DIFFERENTIATION

    EPA Science Inventory

    Chronic arsenic exposure in humans is associated with cancers of the skin, lung, and bladder. There is evidence that folate deficiency may increase susceptibility to arsenic¿s effects, including arsenic-induced skin lesions. K6/ODC mice develop skin tumors when exposed to 10 ppm ...

  14. Proteomic assessment of sulfur mustard-induced protein adducts and other protein modifications in human epidermal keratinocytes

    SciTech Connect

    Mol, Marijke A.E. Berg, Roland M. van den; Benschop, Henk P.

    2008-07-01

    Although some toxicological mechanisms of sulfur mustard (HD) have been uncovered, new knowledge will allow for advanced insight in the pathways that lead towards epidermal-dermal separation in skin. In the present investigation, we aimed to survey events that occur at the protein level in human epidermal keratinocytes (HEK) during 24 h after exposure to HD. By using radiolabeled {sup 14}C-HD, it was found that proteins in cultured HEK are significant targets for alkylation by HD. HD-adducted proteins were visualized by two-dimensional gel electrophoresis and analyzed by mass spectrometry. Several type I and II cytokeratins, actin, stratifin (14-3-3{sigma}) and galectin-7 were identified. These proteins are involved in the maintenance of the cellular cytoskeleton. Their alkylation may cause changes in the cellular architecture and, in direct line with that, be determinative for the onset of vesication. Furthermore, differential proteomic analysis was applied to search for novel features of the cellular response to HD. Partial breakdown of type I cytokeratins K14, K16 and K17 as well as the emergence of new charge variants of the proteins heat shock protein 27 and ribosomal protein P0 were observed. Studies with caspase inhibitors showed that caspase-6 is probably responsible for the breakdown of type I cytokeratins in HEK. The significance of the results is discussed in terms of toxicological relevance and possible clues for therapeutic intervention.

  15. Human epidermal growth factor receptor 2 positive (HER2+) metastatic breast cancer: how the latest results are improving therapeutic options

    PubMed Central

    Jiang, Hanfang; Rugo, Hope S.

    2015-01-01

    Human epidermal growth factor receptor 2 positive (HER2+) metastatic breast cancer (MBC) remains an incurable disease, and approximately 25% of patients with HER2+ early breast cancer still relapse after adjuvant trastuzumab-based treatment. HER2 is a validated therapeutic target that remains relevant throughout the disease process. Recently, a number of novel HER2 targeted agents have become available, including lapatinib (a small molecule tyrosine kinase inhibitor of both HER2 and the epidermal growth factor receptor), pertuzumab (a new anti-HER2 monoclonal antibody) and ado-trastuzumab emtansine (T-DM1, a novel antibody–drug conjugate), which provide additional treatment options for patients with HER2+ MBC. The latest clinical trials have demonstrated improved outcome with treatment including pertuzumab or T-DM1 compared with standard HER2 targeted therapy. Here we review the clinical development of approved and investigational targeted agents for the treatment of HER2+ MBC, summarize the latest results of important clinical trials supporting use of these agents in the treatment of HER2+ MBC, and discuss how these results impact therapeutic options in clinical practice. PMID:26557900

  16. Effects of non-toxic zinc exposure on human epidermal keratinocytes.

    PubMed

    Emri, Eszter; Miko, Edit; Bai, Péter; Boros, Gábor; Nagy, Georgina; Rózsa, Dávid; Juhász, Tamás; Hegedűs, Csaba; Horkay, Irén; Remenyik, Éva; Emri, Gabriella

    2015-03-01

    Zinc is an essential microelement; its importance to the skin is highlighted by the severe skin symptoms in hereditary or acquired zinc deficiency, by the improvement of several skin conditions using systemic or topical zinc preparations and by the induced intracellular zinc release upon UVB exposure, which is the main harmful environmental factor to the skin. Understanding the molecular background of the role of zinc in skin may help gain insight into the pathology of skin disorders and provide evidence for the therapeutic usefulness of zinc supplementation. Herein, we studied the effects of zinc chloride (ZnCl2) exposure on the function of HaCaT keratinocytes, and the results showed that a non-toxic elevation in the concentration of extracellular zinc (100 μM) facilitated cell proliferation and induced significant alterations in the mRNA expression of NOTCH1, IL8, and cyclooxygenase-2. In addition, increased heme oxygenase-1 (HMOX1) expression and non-toxic generation of superoxide were detected in the first 4 h. Regarding the effects on the UVB-induced toxicity, although the level of cyclobutane pyrimidine dimers in the keratinocytes pre-treated with zinc for 24 h was reduced 3 h after UVB irradiation, significantly enhanced superoxide generation was observed 10 h after UVB exposure in the zinc pre-exposed cells. The overall survival was unaffected; however, there was a decrease in the percentage of early apoptotic cells and an increase in the percentage of late apoptotic plus necrotic cells. These results suggest that the exposure of human keratinocytes to non-toxic concentrations of ZnCl2 impacts gene expression, cell proliferation and the responses to environmental stress in the skin. It would be important to further examine the role of zinc in skin and further clarify whether this issue can affect our thinking regarding the pathogenesis of skin diseases. PMID:25659595

  17. Human Epidermal Growth Factor Receptor Family-Targeted Therapies in the Treatment of HER2-Overexpressing Breast Cancer

    PubMed Central

    Eroglu, Zeynep; Tagawa, Tomoko

    2014-01-01

    Breast cancer characterized by overexpression of human epidermal growth factor receptor 2 (HER2) has been associated with more aggressive disease progression and a poorer prognosis. Although an improved understanding of breast cancer pathogenesis and the role of HER2 signaling has resulted in significant survival improvements in the past 20 years, resistance to HER2-targeted therapy remains a concern. A number of strategies to prevent or overcome resistance to HER2-targeted therapy in breast cancer are being evaluated. This article provides a comprehensive review of (a) the role of HER2 signaling in breast cancer pathogenesis, (b) potential receptor and downstream therapeutic targets in breast cancer to overcome resistance to HER2-targeted therapy, and (c) clinical trials evaluating agents targeting one or more members of the HER family and/or downstream pathways for the treatment of breast cancer, with a focus on metastatic disease. PMID:24436312

  18. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    SciTech Connect

    Gomez, M.L.; Tellez-Inon, M.T. ); Medrano, E.E.; Cafferatta, E.G.A. )

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  19. Receptor-purified, Bolton-Hunter radioiodinated, recombinant, human epidermal growth factor: An improved radioligand for receptor studies

    SciTech Connect

    Kermode, J.C.; Tritton, T.R. )

    1990-01-01

    We report an assessment of the applicability of the Bolton-Hunter method to the radioiodination of epidermal growth factor (EGF). Recombinant human EGF (hEGF) could be radioiodinated successfully by this method, whereas murine EGF could not. Bolton-Hunter {sup 125}I-labeled hEGF was compared with commercial 125I-labeled hEGF prepared by the chloramine-T radioiodination method. Neither radioligand was sufficiently pure for a detailed characterization of the purportedly heterogeneous pattern of binding of EGF to its receptors. A procedure based on receptor adsorption was thus developed for repurification of the Bolton-Hunter 125I-labeled hEGF. This provided a much purer radioligand suitable for detailed studies of receptor-binding heterogeneity.

  20. EGFR-mediated expression of aquaporin-3 is involved in human skin fibroblast migration

    PubMed Central

    Cao, Cong; Sun, Yun; Healey, Sarah; Bi, Zhigang; Hu, Gang; Wan, Shu; Kouttab, Nicola; Chu, Wenming; Wan, Yinsheng

    2006-01-01

    AQP3 (aquaporin-3), known as an integral membrane channel in epidermal keratinocytes, facilitates water and glycerol movement into and out of the skin. Here, we demonstrate that AQP3 is also expressed in cultured human skin fibroblasts, which under normal wound healing processes migrate from surrounding tissues to close the wound. EGF (epidermal growth factor), which induced fibroblast migration, also induced AQP3 expression in a time- and dose-dependent manner. CuSO4 and NiCl2, previously known as AQP3 water transport inhibitors, as well as two other bivalent heavy metals Mn2+ and Co2+, inhibited EGF-induced cell migration in human skin fibroblasts. AQP3 knockdown by small interfering RNA inhibited EGF-induced AQP3 expression and cell migration. Furthermore, an EGFR (EGF receptor) kinase inhibitor, PD153035, blocked EGF-induced AQP3 expression and cell migration. MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK inhibitor U0126 and PI3K (phosphoinositide 3-kinase) inhibitor LY294002 also inhibited EGF-induced AQP3 expression and cell migration. Collectively, our findings show for the first time that AQP3 is expressed in human skin fibroblasts and that EGF induces AQP3 expression via EGFR, PI3K and ERK signal transduction pathways. We have provided evidence for a novel role of AQP3 in human skin fibroblast cell migration, which occurs during normal wound healing. PMID:16848764

  1. Ultraviolet B radiation up-regulates the expression of IL-15 in human skin

    SciTech Connect

    Mohamadzadeh, M.; Takashima, Akira; Dougherty, I.

    1995-11-01

    Ultraviolet B (UVB) radiation is a potent modulator of skin-related immune responses, particularly those involving the synthesis and the secretion of cytokines. The discovery of a new T cell mitogen, IL-15, prompted us to investigate its expression in skin and to examine the effects of UVB radiation on such expression. RNA from unirradiated and UVB-irradiated epidermal and dermal sheets derived from human foreskin as well as from unirradiated and UVB-irradiated skin cell populations were assayed for IL-15 expression by semiquantitative RT-PCR. Constitutive levels of IL-15 mRNA were detected in dermal sheets, but not in epidermal sheets. Following UVB treatment, IL-15 mRNA was induced in epidermal sheets and enhanced in dermal sheets. UVB-inducible epidermal expression of IL-15 mRNA was traced to HLA-DR{sup -} cells (presumably keratinocytes) and not to HLA-DR{sup +} cells (Langerhans cells). Cultured keratinocytes and dermal fibroblasts displayed basal levels of IL-15 mRNA that were also up-regulated following UVB exposure. Immunoblot analysis revealed secretion of IL-15 protein by keratinocytes that enhanced following UVB treatment. These results constitute the first report of IL-15 mRNA expression and protein production in human skin. In addition to expanding the known influence of UVB radiation on the capacity of keratinocytes and dermal fibroblasts to express immunomodulatory cytokines, these findings suggest a new mechanism by which UVB can promote Ag-independent T cell responses via elaboration of IL-15. 51 refs., 6 figs.

  2. MATRIX METALLOPROTEINS (MMP)-MEDIATED PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZINC (ZN)

    EPA Science Inventory

    Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)
    Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. Bromberg
    Center fo...

  3. Effect of Standardized Boesenbergia pandurata Extract and Its Active Compound Panduratin A on Skin Hydration and Barrier Function in Human Epidermal Keratinocytes

    PubMed Central

    Woo, Seon Wook; Rhim, Dong-Bin; Kim, Changhee; Hwang, Jae-Kwan

    2015-01-01

    The skin plays a key role in protecting the body from the environment and from water loss. Cornified envelope (CE) and natural moisturizing factor (NMF) are considered as the primary regulators of skin hydration and barrier function. The CE prevents loss of water from the body and is formed by cross-linking of several proteins. Among these proteins, filaggrin is an important protein because NMF is produced by the degradation of filaggrin. Proteases, including matriptase and prostasin, stimulate the generation of filaggrin from profilaggrin and caspase-14 plays a role in the degradation of filaggrin. This study elucidated the effects of an ethanol extract of Boesenbergia pandurata (Roxb.) Schltr., known as fingerroot, and its active compound panduratin A on CE formation and filaggrin processing in HaCaT, human epidermal keratinocytes. B. pandurata extract (BPE) and panduratin A significantly stimulated not only CE formation but also the expression of CE proteins, such as loricrin, involucrin, and transglutaminase, which were associated with PPARα expression. The mRNA and protein levels of filaggrin and filaggrin-related enzymes, such as matriptase, prostasin, and caspase-14 were also up-regulated by BPE and panduratin A treatment. These results suggest that BPE and panduratin A are potential nutraceuticals which can enhance skin hydration and barrier function based on their CE formation and filaggrin processing. PMID:25866745

  4. Novel epidermal growth factor receptor pathway mediates release of human β-defensin 3 from Helicobacter pylori-infected gastric epithelial cells.

    PubMed

    Muhammad, Jibran S; Zaidi, Syed F; Zhou, Yue; Sakurai, Hiroaki; Sugiyama, Toshiro

    2016-04-01

    Persistent Helicobacter pylori (H. pylori) infection in hostile gastric mucosa can result in gastric diseases. Helicobacter pylori induces to express antimicrobial peptides from gastric epithelial cells, especially human β-defensin 3 (hBD3), as an innate immune response, and this expression of hBD3 is mediated by epidermal growth factor receptor (EGFR) activation. In this study, we found that phosphorylation of a serine residue of EGFR via transforming growth factor β-activated kinase-1 (TAK1), and subsequent p38α activation is essential for H. pylori-induced hBD3 release from gastric epithelial cells. We showed that this pathway was dependent on H. pylori type IV secretion system and was independent of H. pylori-derived CagA or peptidoglycan. H. pylori infection induced phosphorylation of serine residue of EGFR, and this phosphorylation was followed by internalization of EGFR; consequently, hBD3 was released at an early phase of the infection. In the presence of TAK1 or p38α inhibitors, synthesis of hBD3 was completely inhibited. Similar results were observed in EGFR-, TAK1- or p38α-knockdown cells. However, NOD1 knockdown in gastric epithelial cells did not inhibit hBD3 induction. Our study has firstly demonstrated that this novel EGFR activating pathway functioned to induce hBD3 at an early phase of H. pylori infection. PMID:26733497

  5. Growth performance of early-weaned pigs is enhanced by feeding epidermal growth factor-expressing Lactococcus lactis fermentation product.

    PubMed

    Bedford, Andrea; Huynh, Evanna; Fu, Molei; Zhu, Cuilan; Wey, Doug; de Lange, Cornelis; Li, Julang

    2014-03-10

    We have previously generated epidermal growth factor expressing Lactococcus lactis (EGF-LL) using bioengineering approach, and shown that feeding newly-weaned piglets EGF-LL improves digestive function. To address concerns over the use of genetically modified organisms (GMO), the objective of the current study was to investigate the effect of feeding the EGF-LL fermentation product, after removal of the genetically modified EGF-LL, on growth performance and intestine development of newly-weaned piglets. One hundred and twenty newly-weaned piglets were fed ad libitum according to a 2-phase feeding program. Four pens were assigned to each of three treatments: (1) complete EGF-LL fermentation product (Ferm), (2) supernatant of EGF-LL fermentation product, after removal of EGF-LL (Supern), or (3) blank M17GE media (Control). EGF-LL or its fermented supernatant was administrated to piglets in the first 3 weeks post-weaning; their growth performance was monitored throughout treatment, and for the following week. Daily body weight gain (254.8g vs. 200.5g) and Gain:Feed (0.541kg/kg vs. 0.454kg/kg) of pigs on the Supern group were significantly improved compared to that of Control, although no difference was observed between the Ferm and Control pigs. Intestinal sucrase activity was increased in Supern- compared to Control group (166.3±62.1 vs. 81.4±56.5nmol glucose released/mg protein; P<0.05). The lack of growth response with Ferm pigs may be attributed to an overload of bacteria (daily dose included 4.56×10(10)CFU/kg BW/day EGF-LL). These results suggest that GMO-free EGF-LL fermentation product is effective in increasing growth performance of early-weaned piglets. PMID:24445174

  6. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  7. Expression of Heat Shock Protein 70 in Human Skin Cells as a Photoprotective Function after UV Exposure

    PubMed Central

    Roh, Byoung Hwa; Kim, Dae Hyun; Cho, Moon Kyun; Park, Young Lip

    2008-01-01

    Background Human skin is exposed to various environmental stresses, such as heat, cold, and ultraviolet (UV) radiation. Heat shock proteins (HSPs) induced by temperature elevations, as a physiologic response to mediate repair mechanisms and reduce cellular damage. Objective The purpose of this study was to investigate the induction of HSPs in human skin cells after UV exposure. Methods We performed immunoblotting using a specific monoclonal antibody to the HSP70 family, one of the best-conserved stress proteins in humans, with cultured normal human keratinocytes, A431 cells, human melanocytes, SK30 cells, and human dermal fibroblasts (HDF). Results Our results indicated that high expression of HSP70 in the unstressed state was noted in epidermal cells, including normal human keratinocytes, A431 cells, human melanocytes, and SK30 cells, but epidermal cells showed no additional up-regulation of HSP70 after UV irradiation. On the other hand, HDF expressed very small amounts of HSP70 at baseline, but significantly higher amounts of HSP70 after UV exposure. Conclusion These findings suggest that constitutive expression of HSP70 in epidermal cells may be an important mechanism for protection of the human epidermis from environmental stresses, such as sunlight exposure. PMID:27303188

  8. Epidermal Expression of Intercellular Adhesion Molecule 1 is Not a Primary Inducer of Cutaneous Inflammation in Transgenic Mice

    NASA Astrophysics Data System (ADS)

    Williams, Ifor R.; Kupper, Thomas S.

    1994-10-01

    Keratinocytes at sites of cutaneous inflammation have increased expression of intercellular adhesion molecule 1 (ICAM-1), a cytokine-inducible adhesion molecule which binds the leukocyte integrins LFA-1 and Mac-1. Transgenic mice were prepared in which the expression of mouse ICAM-1 was targeted to basal keratinocytes by using the human K14 keratin promoter. The level of constitutive expression attained in the transgenic mice exceeded the peak level of ICAM-1 expression induced on nontransgenic mouse keratinocytes in vitro by optimal combinations of interferon γ and tumor necrosis factor α or in vivo by proinflammatory stimuli such as phorbol 12-myristate 13-acetate. In vitro adhesion assays demonstrated that cultured transgenic keratinocytes were superior to normal keratinocytes as a substrate for the LFA-1-dependent binding of mouse T cells, confirming that the transgene-encoded ICAM-1 was expressed in a functional form. However, the high level of constitutive ICAM-1 expression achieved on keratinocytes in vivo in these transgenic mice did not result in additional recruitment of CD45^+ leukocytes into transgenic epidermis, nor did it elicit dermal inflammation. Keratinocyte ICAM-1 expression also did not potentiate contact-hypersensitivity reactions to epicutaneous application of haptens. The absence of a spontaneous phenotype in these transgenic mice was not the result of increased levels of soluble ICAM-1, since serum levels of soluble ICAM-1 were equal in transgenic mice and controls. We conclude that elevated ICAM-1 expression on keratinocytes cannot act independently to influence leukocyte trafficking and elicit cutaneous inflammation.

  9. Loss of BRCA1 leads to an increase in epidermal growth factor receptor expression in mammary epithelial cells, and epidermal growth factor receptor inhibition prevents estrogen receptor-negative cancers in BRCA1-mutant mice

    PubMed Central

    2011-01-01

    Introduction Women who carry a BRCA1 mutation typically develop "triple-negative" breast cancers (TNBC), defined by the absence of estrogen receptor (ER), progesterone receptor and Her2/neu. In contrast to ER-positive tumors, TNBCs frequently express high levels of epidermal growth factor receptor (EGFR). Previously, we found a disproportionate fraction of progenitor cells in BRCA1 mutation carriers with EGFR overexpression. Here we examine the role of EGFR in mammary epithelial cells (MECs) in the emergence of BRCA1-related tumors and as a potential target for the prevention of TNBC. Methods Cultures of MECs were used to examine EGFR protein levels and promoter activity in response to BRCA1 suppression with inhibitory RNA. EGFR was assessed by immunoblot and immunofluorescence analysis, real-time reverse transcriptase-polymerase chain reaction assay (RT-PCR) and flow cytometry. Binding of epidermal growth factor (EGF) to subpopulations of MECs was examined by Scatchard analysis. The responsiveness of MECs to the EGFR inhibitor erlotinib was assessed in vitro in three-dimensional cultures and in vivo. Mouse mammary tumor virus-Cre recombinase (MMTV-Cre) BRCA1flox/flox p53+/- mice were treated daily with erlotinib or vehicle control, and breast cancer-free survival was analyzed using the Kaplan-Meier method. Results Inhibition of BRCA1 in MECs led to upregulation of EGFR with an inverse correlation of BRCA1 with cellular EGFR protein levels (r2 = 0.87) and to an increase in cell surface-expressed EGFR. EGFR upregulation in response to BRCA1 suppression was mediated by transcriptional and posttranslational mechanisms. Aldehyde dehydrogenase 1 (ALDH1)-positive MECs expressed higher levels of EGFR than ALDH1-negative MECs and were expanded two- to threefold in the BRCA1-inhibited MEC population. All MECs were exquisitely sensitive to EGFR inhibition with erlotinib in vitro. EGFR inhibition in MMTV-Cre BRCA1flox/flox p53+/- female mice starting at age 3 months increased

  10. Serum IgE, tumor epidermal growth factor receptor expression, and inherited polymorphisms associated with glioma survival.

    PubMed

    Wrensch, Margaret; Wiencke, John K; Wiemels, Joe; Miike, Rei; Patoka, Joe; Moghadassi, Michelle; McMillan, Alex; Kelsey, Karl T; Aldape, Kenneth; Lamborn, Kathleen R; Parsa, Andrew T; Sison, Jennette D; Prados, Michael D

    2006-04-15

    In population-based glioma patients, we examined survival in relation to potentially pertinent constitutive polymorphisms, serologic factors, and tumor genetic and protein alterations in epidermal growth factor receptor (EGFR), MDM2, and TP53. Subjects were newly diagnosed adults residing in the San Francisco Bay Surveillance Epidemiology and End Results Area during 1991 to 1994 and 1997 to 1999 with central neuropathology review (n = 873). Subjects provided blood for serologic studies of IgE and IgG to four herpes viruses and constitutive specimens for genotyping 22 polymorphisms in 13 genes (n = 471). We obtained 595 of 697 astrocytic tumors for marker studies. We determined treatments, vital status, and other factors using registry, interview, medical record, and active follow-up data. Cox regressions for survival were adjusted for age, gender, ethnicity, study series, resection versus biopsy only, radiation, and chemotherapy. Using a stringent P < 0.001, glioma survival was associated with ERCC1 C8092A [hazard ratio (HR), 0.72; 95% confidence limits (95% CL), 0.60-0.86; P = 0.0004] and GSTT1 deletion (HR, 1.64; 95% CL, 1.25-2.16; P = 0.0004); glioblastoma patients with elevated IgE had 9 months longer survival than those with normal or borderline IgE levels (HR, 0.62; 95% CL, 0.47-0.82; P = 0.0007), and EGFR expression in anaplastic astrocytoma was associated with nearly 3-fold poorer survival (HR, 2.97; 95% CL, 1.70-5.19; P = 0.0001). Based on our and others' findings, we recommend further studies to (a) understand relationships of elevated IgE levels and other immunologic factors with improved glioblastoma survival potentially relevant to immunologic therapies and (b) determine which inherited ERCC1 variants or other variants in the 19q13.3 region influence survival. We also suggest that tumor EGFR expression be incorporated into clinical evaluation of anaplastic astrocytoma patients. PMID:16618782

  11. Ado-Trastuzumab Emtansine Targets Hepatocytes Via Human Epidermal Growth Factor Receptor 2 to Induce Hepatotoxicity.

    PubMed

    Yan, Haoheng; Endo, Yukinori; Shen, Yi; Rotstein, David; Dokmanovic, Milos; Mohan, Nishant; Mukhopadhyay, Partha; Gao, Bin; Pacher, Pal; Wu, Wen Jin

    2016-03-01

    Ado-trastuzumab emtansine (T-DM1) is an antibody-drug conjugate (ADC) approved for the treatment of HER2-positive metastatic breast cancer. It consists of trastuzumab, a humanized mAb directed against HER2, and a microtubule inhibitor, DM1, conjugated to trastuzumab via a thioether linker. Hepatotoxicity is one of the serious adverse events associated with T-DM1 therapy. Mechanisms underlying T-DM1-induced hepatotoxicity remain elusive. Here, we use hepatocytes and mouse models to investigate the mechanisms of T-DM1-induced hepatotoxicity. We show that T-DM1 is internalized upon binding to cell surface HER2 and is colocalized with LAMP1, resulting in DM1-associated cytotoxicity, including disorganized microtubules, nuclear fragmentation/multiple nuclei, and cell growth inhibition. We further demonstrate that T-DM1 treatment significantly increases the serum levels of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase in mice and induces inflammation and necrosis in liver tissues, and that T-DM1-induced hepatotoxicity is dose dependent. Moreover, the gene expression of TNFα in liver tissues is significantly increased in mice treated with T-DM1 as compared with those treated with trastuzumab or vehicle. We propose that T-DM1-induced upregulation of TNFα enhances the liver injury that may be initially caused by DM1-mediated intracellular damage. Our proposal is underscored by the fact that T-DM1 induces the outer mitochondrial membrane rupture, a typical morphologic change in the mitochondrial-dependent apoptosis, and mitochondrial membrane potential dysfunction. Our work provides mechanistic insights into T-DM1-induced hepatotoxicity, which may yield novel strategies to manage liver injury induced by T-DM1 or other ADCs. PMID:26712117

  12. Increased epidermal growth factor-receptor protein in a human mesothelial cell line in response to long asbestos fibers.

    PubMed Central

    Pache, J. C.; Janssen, Y. M.; Walsh, E. S.; Quinlan, T. R.; Zanella, C. L.; Low, R. B.; Taatjes, D. J.; Mossman, B. T.

    1998-01-01

    Epidermal growth factor (EGF) is a potent mitogen for human mesothelial cells, and autophosphorylation of the EGF receptor (EGF-R) occurs in these cell types after exposure to asbestos, a carcinogen associated with the development of mesothelioma. Here, the intensity and distribution of EGF-R protein was documented by immunocytochemistry in a human mesothelial cell line (MET5A) exposed to various concentrations of crocidolite asbestos and man-made vitreous fibers (MMVF-10). Whereas cells in contact with or phagocytizing shorter asbestos fibers (<60 microm length) or MMVF-10 at a range of concentrations showed no increase in EGF-R protein as determined by immunofluorescence, elongated cells phagocytizing and surrounding longer fibers (> or =60 microm) showed intense staining for EGF-R. In contrast, human A549 lung carcinoma cells showed neither elongation nor increased accumulation of EGF-R protein in response to long fibers. Patterns of aggregation and increases in EGF-R protein in mesothelial cells phagocytizing long asbestos fibers were distinct from diffuse staining of phosphotyrosine residues observed in asbestos-exposed cultures. These studies indicate that aggregation of EGF-R by long fibers may initiate cell signaling cascades important in asbestos-induced mitogenesis and carcinogenesis. Images Figure 1 Figure 2 Figure 3 PMID:9466557

  13. Raman Spectroscopy of Human Neuronal and Epidermal Cells Exposed to an Insecticide Mixture of Chlorpyrifos and Deltamethrin.

    PubMed

    2014-10-01

    Many pesticides are increasingly used in combinations for crop protection. Their chemical stability ensures the presence of such mixtures, both in the workspaces of the operators involved in agricultural activities and in foodstuffs, thus making probable human exposure to such chemicals in the environment. We report an investigation, performed by means of Raman microspectroscopy and principal component analysis, concerning the effects of in vitro cellular exposure to a commercial insecticide based on a chlorpyrifos and deltamethrin mixture. The investigated cells belong to the SHSY-5Y and human keratinocyte (HUKE) cell lines, which can be considered representative of neuronal and epidermal cells, respectively. After 24 h exposure at a concentration one-tenth of that usually used by operators, about 50% of the investigated cells were dead and the relative content of the biochemical components of both types of cells that were still alive had been affected by the exposure. A statistically significant decrease in the protein and nucleic acid content occurred in the SHSY-5Y cells, and a lowering of the lipid and carbohydrate content was observed in the HUKE cells. This study shows the utility of Raman microspectroscopy and principal component analysis for the investigation of the effects on human cells of environmental exposure to any chemicals. PMID:25199150

  14. Cyclooxygenases in human and mouse skin and cultured human keratinocytes: association of COX-2 expression with human keratinocyte differentiation

    NASA Technical Reports Server (NTRS)

    Leong, J.; Hughes-Fulford, M.; Rakhlin, N.; Habib, A.; Maclouf, J.; Goldyne, M. E.

    1996-01-01

    Epidermal expression of the two isoforms of the prostaglandin H-generating cyclooxygenase (COX-1 and COX-2) was evaluated both by immunohistochemistry performed on human and mouse skin biopsy sections and by Western blotting of protein extracts from cultured human neonatal foreskin keratinocytes. In normal human skin, COX-1 immunostaining is observed throughout the epidermis whereas COX-2 immunostaining increases in the more differentiated, suprabasilar keratinocytes. Basal cell carcinomas express little if any COX-1 or COX-2 immunostaining whereas both isozymes are strongly expressed in squamous cell carcinomas deriving from a more differentiated layer of the epidermis. In human keratinocyte cultures, raising the extracellular calcium concentration, a recognized stimulus for keratinocyte differentiation, leads to an increased expression of both COX-2 protein and mRNA; expression of COX-1 protein, however, shows no significant alteration in response to calcium. Because of a recent report that failed to show COX-2 in normal mouse epidermis, we also looked for COX-1 and COX-2 immunostaining in sections of normal and acetone-treated mouse skin. In agreement with a previous report, some COX-1, but no COX-2, immunostaining is seen in normal murine epidermis. However, following acetone treatment, there is a marked increase in COX-1 expression as well as the appearance of significant COX-2 immunostaining in the basal layer. These data suggest that in human epidermis as well as in human keratinocyte cultures, the expression of COX-2 occurs as a part of normal keratinocyte differentiation whereas in murine epidermis, its constitutive expression is absent, but inducible as previously published.

  15. Differential suppression of epidermal antimicrobial protein expression in atopic dermatitis and in EFAD mice by pimecrolimus compared to corticosteroids.

    PubMed

    Jensen, Jens-Michael; Ahrens, Kerstin; Meingassner, Josef; Scherer, Andreas; Bräutigam, Matthias; Stütz, Anton; Schwarz, Thomas; Fölster-Holst, Regina; Harder, Jürgen; Gläser, Regine; Proksch, Ehrhardt

    2011-10-01

    It has been suggested that the increased rate of bacterial infection in atopic dermatitis (AD) may be caused by reduced antimicrobial protein (AMP) expression. We were interested whether common treatments in AD affect antimicrobial defense. We investigated the effects of topically applied corticosteroids betamethasone valerate (BV) and triamacinolone acetonide (TA) and those of the calcineurin inhibitor pimecrolimus for 3 weeks on AMP expression in AD. BV and TA treatment in AD led to a significant reduction in AMP expression; protein expression of human beta-defensins (hBD)-2 and hBD-3, psoriasin, RNase 7 and cathelicidin LL-37 was below the level in skin of healthy controls. After pimecrolimus treatment, AMP expression was also reduced but less compared to BV and TA; the expression levels of hBD-2, psoriasin and RNase 7 still remained above the control levels. In essential fatty acid-deficient (EFAD) mice, a model of chronic skin barrier disease with inflammation, expression of the mouse beta-defensins mBD-1, mBD-3 and mBD-14 (orthologues for hBD-1, hBD-2 and hBD-3, respectively), was reduced by both treatments, again more pronounced by BV compared to pimecrolimus. In summary, we found that treatment for AD with corticosteroids in human skin and EFAD mice caused a strong reduction in AMPs; reduction was less with pimecrolimus. This result may explain the clinical observation that prolonged treatment with topical corticosteroids sometimes leads to bacterial infection. PMID:21707760

  16. Epidermal Growth Factor Receptor Kinase Inhibitors Synergize with TCDD to Induce CYP1A1/1A2 in Human Breast Epithelial MCF10A Cells.

    PubMed

    Joiakim, Aby; Mathieu, Patricia A; Shelp, Catherine; Boerner, Julie; Reiners, John J

    2016-05-01

    CYP1A1andCYP1A2are transcriptionally activated in the human normal breast epithelial cell line MCF10A following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Shifting MCF10A cultures to medium deficient in serum and epidermal growth factor (EGF) caused rapid reductions in the activated (i.e., phosphorylated) forms of extracellular regulated kinases (ERKs) and the epidermal growth factor receptor (EGFR). Shifting to serum/EGF-deficient medium also enhanced TCDD-mediated induction of cytochrome P450 (CYP)1A1 Treatment of cells cultured in complete medium with the EGFR inhibitors gefitinib (Iressa), AG1478, and CI-1033 resulted in concentration-dependent reductions of active EGFR and ERKs, and increased CYP1A1 mRNA content ∼3- to 18-fold above basal level. EGFR inhibitors synergized with TCDD and resulted in transient CYP1A1 and CYP1A2 mRNA accumulations ∼8-fold greater (maximum at 5 hours) than that achieved with only TCDD. AG1478, gefitinib, and TCDD individually induced small increases (∼1.2- to 2.5-fold) in CYP1A1 protein content but did not cause additive or synergistic accumulations of CYP1A1 protein when used in combination. The mitogen-activated protein kinase kinase inhibitor PD184352 inhibited ERK and EGFR activation in a concentration-dependent fashion without causing CYP1A1 mRNA accumulation. However, cotreatment with PD184352 potentiated TCDD-mediatedCYP1A1induction. TCDD-mediated induction ofCYP1A1in MCF7-TETon-EGFR cells, a MCF7 variant in which EGFR expression can be controlled, was not affected by the activity status of EGFR or ERKs. Hence, EGFR signaling mutes both basal and ligand-induced expression of two aryl hydrocarbon receptor-responsive P450s in MCF10A cultures. However, these effects are cell context-dependent. Furthermore, CYP1A1 mRNA and protein abundance are not closely coupled in MCF10A cultures. PMID:26953171

  17. Human epidermal growth factor antagonists and cardiotoxicity-A short review of the problem and preventative measures.

    PubMed

    Dias, A; Claudino, W; Sinha, R; Perez, C A; Jain, D

    2016-08-01

    The Human Epidermal growth factor Receptor 2 (HER2) is a potent mediator of cellular growth and proliferation. It plays an important role in cardiac development and maintaining the physiologic function of an adult heart. Amplification of the HER2 gene, and the corresponding overexpression of the HER2 receptor, occurs in roughly 20% of breast tumors and is associated with a poor outcome. Molecular targeting of the HER2 receptor with the humanized monoclonal antibody, Trastuzumab has improved disease-free and overall survival in patients with both metastatic and early HER2-positive breast cancer. Although trastuzumab is devoid of the classical toxicities associated with chemotherapy, one of the major concerns noted is the occurrence of symptomatic and asymptomatic cardiotoxicity (decline in left-ventricular-ejection-fraction (LVEF). Additionally, newer HER2 therapies such as Lapatinib, Pertuzumab and Ado-trastuzumab (TDM1) are either approved or are being evaluated in clinical trials for cancer therapy. Targeted therapies against HER2 have led to revolutionary strides in breast cancer research and treatment. With the concern of cardiotoxicity caused by these agents, new treatment strategies for preventing cardiac side effects need to be developed. In this review, we discuss the proposed mechanisms of HER 2 antagonist-induced cardiotoxicity and the ways to prevent it. PMID:27338847

  18. Trichloroethylene-mediated cytotoxicity in human epidermal keratinocytes is mediated by the rapid accumulation of intracellular calcium: Interception by naringenin.

    PubMed

    Ali, F; Khan, A Q; Khan, R; Sultana, S

    2016-02-01

    Industrial solvents pose a significant threat to the humankind. The mechanisms of their toxicity still remain in debate. Trichloroethylene (TCE) is a widespread industrial solvent responsible for severe liver dysfunction, cutaneous toxicity in occupationally exposed humans. We utilized an in vitro system of human epidermal keratinocyte (HaCaT) cells in this study to avoid complex cell and extracellular interactions. We report the cytotoxicity of organic solvent TCE in HaCaT and its reversal by a natural flavanone, naringenin (Nar). The cytotoxicity was attributed to the rapid intracellular free calcium (Ca(2+)) release, which might lead to the elevation of protein kinase C along with robust free radical generation, instability due to energy depletion, and sensitization of intracellular stress signal transducer nuclear factor κB. These effects were actually seen to induce significant amount of genomic DNA fragmentation. Furthermore, all these effects of TCE were effectively reversed by the treatment of Nar, a natural flavanone. Our studies identify intracellular Ca as a unique target used by organic solvents in the cytotoxicity and highlight the Ca(2+) ion stabilizer properties of Nar. PMID:25855085

  19. Discovery of new human epidermal growth factor receptor-2 (HER2) inhibitors for potential use as anticancer agents via ligand-based pharmacophore modeling.

    PubMed

    Zalloum, Hiba; Tayyem, Rabab; Irmaileh, Basha'er Abu-; Bustanji, Yasser; Zihlif, Malek; Mohammad, Mohammad; Rjai, Talal Abu; Mubarak, Mohammad S

    2015-09-01

    To discover potential antitumor agents directed toward human epidermal growth factor receptor-2HER2/ErbB2 overexpression in cancer, we have explored the pharmacophoric space of 115 HER2/ErbB2 inhibitors. This identified 240 pharmacophores which were subsequently clustered into 20 groups and cluster centers were used as 3D-pharmacophoric descriptors in QSAR analysis with 2D-physicochemical descriptors to select the optimal combination. We were obliged to use ligand efficiency as the response variable because the logarithmic transformation of bioactivities failed to access self-consistent QSAR models. Two binding pharmacophore models emerged in the optimal QSAR equation, suggesting the existence of distinct binding modes accessible to ligands within the HER2/ErbB2 binding pocket. The QSAR equation and its associated pharmacophore models were employed to screen the National Cancer Institute (NCI) and Drug Bank databases to search for new, promising, and structurally diverse HER2 inhibitory leads. Inhibitory activities were tested against HER2-overexpressing SKOV3 Ovarian cancer cell line and MCF-7 which express low levels of HER2. In silico mining identified 80 inhibitors out of which four HER2 selective compounds inhibited the growth of SKOV3 cells with IC50 values < 5μM and with virtually no effect in MCF-7 cells. These lead compounds are excellent candidates for further optimization. PMID:26188796

  20. Graphene Nanoribbons Elicit Cell Specific Uptake and Delivery Via Activation of Epidermal Growth Factor Receptor Enhanced by Human PapillomaVirus E5 Protein

    PubMed Central

    Chowdhury, Sayan Mullick; Mannepalli, Prady; Sitharaman, Balaji

    2014-01-01

    Ligands such as peptides, antibodies or other epitopes bind and activate specific cell receptors, and are employed for targeted cellular delivery of pharmaceuticals such as drugs, genes and imaging agents. Herein, we show that oxidized graphene nanoribbons, non-covalently functionalized with PEG-DSPE (1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N[amino(polyethyleneglycol)]) (O-GNR-PEG-DSPE) activate epidermal growth factor receptors (EGFRs). This activation generates predominantly dynamin-dependent macropinocytosis-like response, and results in significant O-GNR-PEG-DSPE uptake into cells with high EGFR expression. Cells with an integrated human papillomavirus (HPV) genome also show increased uptake due to the modulation of the activated EFGR by the viral protein E5. We demonstrate that this cell specific uptake of O-GNR-PEG-DSPE can be exploited to achieve significantly enhanced drug efficacies even in drug resistant cells. These results have implications towards the development of active targeting and delivery agents without ligand functionalization for use in the diagnosis and treatment of pathologies that overexpress EGFR or mediated by HPV. PMID:24980059

  1. Human epidermal growth factor receptor-2 antibodies enhance the specificity and anticancer activity of light-sensitive doxorubicin-labeled liposomes.

    PubMed

    Li, Qingpo; Tang, Qin; Zhang, Peizun; Wang, Zuhua; Zhao, Tiantian; Zhou, Jialin; Li, Hongrui; Ding, Qian; Li, Wei; Hu, Fuqiang; Du, Yongzhong; Yuan, Hong; Chen, Shuqing; Gao, Jianqing; Zhan, Jinbiao; You, Jian

    2015-07-01

    Antibody-mediated targeting therapy has been successful in treating patients with cancers by improving the specificity and clinical efficacy. In this study, we developed a human epidermal growth factor receptor-2 (HER2) antibody-conjugated drug delivery system, using near-infrared (NIR) light-sensitive liposomes containing doxorubicin (DOX) and hollow gold nanospheres (HAuNS). We demonstrated the specific binding and selective toxicity of the system to HER2-positive tumor cells in co-cultures of HER2-positive and -negative cells. Furthermore, the HER2-antibody-mediated delivery of targeted liposomes was confirmed in a double-tumor model in nude mice simultaneously bearing HER2-positive and -negative tumors. This induced a >2-fold increased accumulation in the tumors with positive expression of HER2 than that with non-targeted liposomes (no HER2-antibody conjugation). The combination of targeted liposomes with NIR laser irradiation had significant antitumor activity in vivo with the tumor inhibition efficiency up to 92.7%, attributed to the increased accumulation in tumors and the double efficacy of photothermal-chemotherapy. Moreover, targeted liposomes did not cause systemic toxicity during the experiment period, attributable to the reduced dose of DOX, the decreased accumulation of liposomes in normal tissues, and the low irradiation power. The targeted liposomes provide a multifunctional nanotechnology platform for antibody-mediated delivery, light-trigged drug release, and combined photothermal-chemotherapy, which may have potential in the clinical treatment of cancer. PMID:25956192

  2. Expression of a dominant negative mutant of epidermal growth factor receptor in the epidermis of transgenic mice elicits striking alterations in hair follicle development and skin structure.

    PubMed Central

    Murillas, R; Larcher, F; Conti, C J; Santos, M; Ullrich, A; Jorcano, J L

    1995-01-01

    Epidermal growth factor receptor (EGFR) is a key regulator of keratinocyte biology. However, the physiological role of EGFR in vivo has not been well established. To analyze the role of EGFR in skin, we have generated transgenic mice expressing an EGFR dominant negative mutant in the basal layer of epidermis and outer root sheath of hair follicles. Mice expressing the mutant receptor display short and waved pelage hair and curly whiskers during the first weeks of age, but subsequently pelage and vibrissa hairs become progressively sparser and atrophic. Eventually, most mice present severe alopecia. Histological examination of the skin of transgenic mice shows striking alterations in the development of hair follicles, which fail to enter into catagen stage. These alterations eventually lead to necrosis and disappearance of the follicles, accompanied by strong infiltration of the skin with inflammatory elements. The interfollicular epidermis of these mice shows marked hyperplasia, expression of hyperproliferation-associated keratin K6 and increased 5-bromo-2-deoxyuridine incorporation. EGFR function was inhibited in transgenic skin keratinocytes, since in vivo and in vitro autophosphorylation of EGFR was almost completely abolished on EGF stimulation. These results implicate EGFR in the control of hair cycle progression, and provide new information about its role in epidermal growth and differentiation. Images PMID:7489711

  3. Functioning methionine sulfoxide reductases A and B are present in human epidermal melanocytes in the cytosol and in the nucleus

    SciTech Connect

    Schallreuter, Karin U.; Chavan, Bhaven; Gillbro, Johanna M.

    2006-03-31

    Oxidation of methionine residues by reactive oxygen (ROS) in protein structures leads to the formation of methionine sulfoxide which can consequently lead to a plethora of impaired functionality. The generation of methionine sulfoxide yields ultimately a diastereomeric mixture of the S and R sulfoxides. So far two distinct enzyme families have been identified. MSRA reduces methionine S-sulfoxide, while MSRB reduces the R-diastereomer. It has been shown that these enzymes are involved in regulation of protein function and in elimination of ROS via reversible methionine formation besides protein repair. Importantly, both enzymes require coupling to the NADPH/thioredoxin reductase/thioredoxin electron donor system. In this report, we show for First time the expression and function of both sulfoxide reductases together with thioredoxin reductase in the cytosol as well as in the nucleus of epidermal melanocytes which are especially sensitive to ROS. Since this cell resides in the basal layer of the epidermis and its numbers and functions are reduced upon ageing and for instance also in depigmentation processes, we believe that this discovery adds an intricate repair mechanism to melanocyte homeostasis and survival.

  4. Heparin-Binding Epidermal Growth Factor and Its Receptors Mediate Decidualization and Potentiate Survival of Human Endometrial Stromal Cells

    PubMed Central

    Chobotova, Katya; Karpovich, Natalia; Carver, Janet; Manek, Sanjiv; Gullick, William J.; Barlow, David H.; Mardon, Helen J.

    2006-01-01

    Heparin-binding epidermal growth factor (HB-EGF) has pleiotropic biological functions in many tissues, including those of the female reproductive tract. It facilitates embryo development and mediates implantation and is thought to have a function in endometrial receptivity and maturation. The mature HB-EGF molecule manifests its activity as either a soluble factor (sol-HB-EGF) or a transmembrane precursor (tm-HB-EGF) and can bind two receptors, EGFR and ErbB4/HER4. In this study, we identify factors that modulate expression of HB-EGF, EGFR, and ErbB4 in endometrial stromal cells in vitro. We demonstrate that levels of sol- and tm-HB-EGF, EGFR, and ErbB4 are increased by cAMP, a potent inducer of decidualization of the endometrial stroma. We also show that production of sol- and tm-HB-EGF is differentially modulated by TNFα and TGFβ. Our data suggest that HB-EGF has a function in endometrial maturation in mediating decidualization and attenuating TNFα- and TGFβ-induced apoptosis of endometrial stromal cells. PMID:15562026

  5. 3D In Vitro Model of a Functional Epidermal Permeability Barrier from Human Embryonic Stem Cells and Induced Pluripotent Stem Cells

    PubMed Central

    Petrova, Anastasia; Celli, Anna; Jacquet, Laureen; Dafou, Dimitra; Crumrine, Debra; Hupe, Melanie; Arno, Matthew; Hobbs, Carl; Cvoro, Aleksandra; Karagiannis, Panagiotis; Devito, Liani; Sun, Richard; Adame, Lillian C.; Vaughan, Robert; McGrath, John A.; Mauro, Theodora M.; Ilic, Dusko

    2014-01-01

    Summary Cornification and epidermal barrier defects are associated with a number of clinically diverse skin disorders. However, a suitable in vitro model for studying normal barrier function and barrier defects is still lacking. Here, we demonstrate the generation of human epidermal equivalents (HEEs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). HEEs are structurally similar to native epidermis, with a functional permeability barrier. We exposed a pure population of hESC/iPSC-derived keratinocytes, whose transcriptome corresponds to the gene signature of normal primary human keratinocytes (NHKs), to a sequential high-to-low humidity environment in an air/liquid interface culture. The resulting HEEs had all of the cellular strata of the human epidermis, with skin barrier properties similar to those of normal skin. Such HEEs generated from disease-specific iPSCs will be an invaluable tool not only for dissecting molecular mechanisms that lead to epidermal barrier defects but also for drug development and screening. PMID:24936454

  6. Survival of human epidermal keratinocytes after short-duration high temperature: synthesis of HSP70 and IL-8.

    PubMed

    Bowman, P D; Schuschereba, S T; Lawlor, D F; Gilligan, G R; Mata, J R; DeBaere, D R

    1997-06-01

    Thermal injury by short pulses (1-30 s) of relatively high temperature (50-68 degrees C) was investigated in normal human epidermal keratinocytes (NHEK). NHEK were cultured on plastic cover-slips and dipped in medium held at various temperatures. Survival assessed by methylthiazol tetrazolium reduction assay at 6 days postheating demonstrated an inverse time-temperature relationship that indicated that most cells could survive after a 1-s, 60 degrees C exposure or a 30-s, 55 degrees C exposure. Arrhenius plots of the data indicated major transition points for cell injury at 50 and 60 degrees C. Heat shock protein 70 (HSP70) and interleukin-8 (IL-8) were both induced by elevation of temperature between 50 and 60 degrees C for as short a time as 1 s. HSP70 synthesis stimulated by short, high pulses of heat appeared to induce thermotolerance. These results demonstrate that brief exposure to relatively high temperature can induce HSP70 and IL-8 synthesis in keratinocytes. PMID:9227428

  7. Effects of Chemical Enhancers on Human Epidermal Membrane: Structure-Enhancement Relationship based on Maximum Enhancement (Emax)

    PubMed Central

    IBRAHIM, SARAH A.; LI, S. KEVIN

    2008-01-01

    Chemical penetration enhancers are widely used in transdermal pharmaceuticals as well as cosmetic products. Selection of suitable enhancers in topical formulations requires an understanding of the mechanism of action of these enhancers. The objective of the present study was to evaluate the enhancement effects of a number of commonly known enhancers and cosmetic ingredients on permeation across human epidermal membrane (HEM). The potencies of these chemical enhancers—maximum enhancement, Emax—were compared at their highest thermodynamic activity in equilibrium with HEM (i.e., solubility equilibrium). This was achieved by the treatment of HEM with the enhancer or phosphate buffered saline (PBS) saturated with the enhancer. Passive transport experiments were then conducted with a model permeant corticosterone to determine the effects of these enhancers on the lipoidal pathway of HEM. The results suggest that Emax of an enhancer is related to its octanol/water partition coefficient and its solubility in the HEM lipid domain. A relationship between enhancer Emax and its solubility in silicone elastomer was also observed, suggesting the use of silicone solubility to predict enhancer potency. Based on the Emax results, some common topical ingredients were found to be more potent enhancers than a number of well-known chemical enhancers. PMID:18623209

  8. Effects of oxygen-containing terpenes as skin permeation enhancers on the lipoidal pathways of human epidermal membrane.

    PubMed

    Chantasart, Doungdaw; Pongjanyakul, Thaned; Higuchi, William I; Li, S Kevin

    2009-10-01

    The present study investigated the effects of oxygen-containing terpenes as skin permeation enhancers on the lipoidal pathways of human epidermal membrane (HEM). The enhancement (E(HEM)) effects of menthol, thymol, carvacrol, menthone, and cineole on the transport of a probe permeant, corticosterone, across HEM were determined. It was found that the enhancer potencies of menthol, thymol, carvacrol, and menthone were essentially the same and higher than that of cineole based on their aqueous concentration in the diffusion cell chamber at E(HEM) = 4. Thymol and carvacrol also had the same E(HEM) = 10 concentration further supporting that they had the same enhancer potency based on the aqueous concentration. The uptake amounts of terpene into the HEM stratum corneum (SC) intercellular lipid under the same conditions indicate that the intrinsic potencies of the studied terpenes are the same based on their concentration in the SC and similar to those of n-alkanol and n-alkylphenyl alcohol. Moreover, they are all better enhancers compared to branched-chain alkanol. The approximately same uptake enhancement of beta-estradiol induced by the studied terpenes and alcohols at E(HEM) conditions into the SC intercellular lipids suggests that the mechanism of enhancement action for the terpenes and those of alcohols are essentially the same. PMID:19156845

  9. Phorbol ester and interferon-gamma modulation of epidermal growth factor receptors on human amniotic (WISH) cells.

    PubMed

    Karasaki, Y; Jaken, S; Komoriya, A; Zoon, K C

    1989-04-15

    In this study we report that pretreatment of human amniotic (WISH) cells with interferon gamma (IFN-gamma) in the presence of 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in the down-modulation of epidermal growth factor (EGF) receptors with respect to both receptor number and affinity. Scatchard analysis of EGF binding in the absence of both IFN-gamma and TPA indicated biphasic binding whereas addition of TPA resulted in the loss of the higher affinity class of sites. Pretreatment with IFN-gamma for 24 h enhanced the TPA-induced inhibition of EGF binding whereas IFN-gamma alone had no effect on binding. Protein kinase C (Ca2+/phospholipid-dependent enzyme) was examined as a possible mediator of IFN-induced EGF-receptor modulation; pretreatment of cells with IFN-gamma affected neither the binding of [3H]phorbol 12,13-dibutyrate to membrane or cytosolic fractions nor the protein kinase C activity, suggesting that IFN-gamma pretreatment did not result in translocation or activation of protein kinase C. PMID:2495278

  10. UV irradiation-induced zinc dissociation from commercial zinc oxide sunscreen and its action in human epidermal keratinocytes.

    PubMed

    Martorano, Lisa M; Stork, Christian J; Li, Yang V

    2010-12-01

    Zinc oxide (ZnO) is an active ingredient in sunscreen owing to its properties of broadly filtering the ultraviolet (UV) light spectrum and it is used to protect against the carcinogenic and photodamaging effects of solar radiation on the skin. This study investigated the dissociation of zinc (Zn(2+) ) from ZnO in commercial sunscreens under ultraviolet type B light (UVB) irradiation and assessed the cytotoxicity of Zn(2+) accumulation in human epidermal keratinocytes (HEK). Using Zn(2+) fluorescent microscopy, we observed a significant increase in Zn(2+) when ZnO sunscreens were irradiated by UVB light. The amount of Zn(2+) increase was dependent on both the irradiation intensity as well as on the ZnO concentration. A reduction in cell viability as a function of ZnO concentration was observed with cytotoxic assays. In a real-time cytotoxicity assay using propidium iodide, the treatment of UVB-irradiated ZnO sunscreen caused a late- or delayed-type cytotoxicity in HEK. The addition of a Zn(2+) chelator provided a protective effect against cellular death in all assays. Furthermore, Zn(2+) was found to induce the production of reactive oxygen species (ROS) in HEK. Our data suggest that UVB irradiation produces an increase in Zn(2+) dissociation in ZnO sunscreen and, consequently, the accumulation of free or labile Zn(2+) from sunscreen causes cytotoxicity and oxidative stress. PMID:21122045

  11. [Relationship between PTEN mutations and protein kinase B phosphorylation caused by insulin or recombinant human epidermal growth factor stimulation].

    PubMed

    Zhong, Hailan; Hu, Xianfu; Lin, Jianhua

    2016-08-01

    Objective To study the effect of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) mutations on protein kinase B (Akt) phosphorylation of CNE-1 nasopharyngeal carcinoma cell line. Methods CNE-1 cells were cultured in RPMI1640 medium containing 100 mL/L fetal calf serum, and then transfected with wild-type PTEN (wtPTEN), mutant PTEN C124S and mutant PTEN G129E plasmid separately. After overnight serum starvation, the cells were stimulated with 0.15 IU/mL insulin or 0.3 μg/mL recombinant human epidermal growth factor (rhEGF). At last, Akt phosphorylation was evaluated by Western blotting. Results Insulin or rhEGF stimulation led to Akt activation in CNE-1 cells. The wtPTEN inhibited insulin- or rhEGF-stimulated phosphorylation of Akt. PTEN C124S mutant activated insulin-stimulated phosphorylation of Akt, but not rhEGF-stimulated phosphorylation of Akt. PTEN G129E mutant inhibited insulin-stimulated phosphorylation of Akt. Conclusion The wtPTEN inhibited insulin- or rhEGF-stimulated phosphorylation of Akt, while PTEN C124S and G129E mutants failed to activate the phosphorylation of Akt consistently. This suggested PTEN mutations might not be correlated with activated Akt. PMID:27412938

  12. Epidermal growth factor upregulates Skp2/Cks1 and p27kip1 in human extrahepatic cholangiocarcinoma cells

    PubMed Central

    Kim, Ja-yeon; Kim, Hong Joo; Park, Jung Ho; Park, Dong Il; Cho, Yong Kyun; Sohn, Chong Il; Jeon, Woo Kyu; Kim, Byung Ik; Kim, Dong Hoon; Chae, Seoung Wan; Sohn, Jin Hee

    2014-01-01

    AIM: To evaluate the expression status of S-phase kinase-associated protein 2 (Skp2)/cyclin-dependent kinases regulatory subunit 1 (Cks1) and p27kip1, and assess the prognostic significance of Skp2/Cks1 expression with p27kip1 in patients with extrahepatic cholangiocarcinoma. METHODS: Seventy-six patients who underwent curative resection for histologically confirmed extrahepatic cholangiocarcinoma at our institution from December 1994 to March 2008 were enrolled. Immunohistochemical staining for Skp2, Cks1, p27kip1, and Ki67, along with other relevant molecular biologic experiments, were performed. RESULTS: By Cox regression analyses, advanced age (> 65 years), advanced AJCC tumor stage, poorly differentiated histology, and higher immunostaining intensity of Skp2 were identified as independent prognostic factors in patients with extrahepatic cholangiocarcinoma. Exogenous epidermal growth factor (EGF, especially 0.1-10 ng/mL) significantly increased the proliferation indices by MTT assay and the mRNA levels of Skp2/Cks1 and p27kip1 in SNU-1196, SNU-1079, and SNU-245 cells. The protein levels of Skp2/Cks1 (from nuclear lysates) and p27kip1 (from cytosolic lysate) were also significantly increased in these cells. There were significant reductions in the protein levels of Skp2/Cks1 and p27kip1 (from nuclear lysate) after the treatment of LY294002. By chromatin immunoprecipitation assay, we found that E2F1 transcription factor directly binds to the promoter site of Skp2. CONCLUSION: Higher immunostaining intensity of Skp2/Cks1 was an independent prognostic factor for patients with extrahepatic cholangiocarcinoma. EGF upregulates the mRNA and protein levels of Skp2/Cks1 and p27kip1 via the PI3K/Akt pathway and direct binding of E2F1 transcription factor with the Skp2 promoter. PMID:24574749

  13. Partial protection against epidermal IL-10 transcription and Langerhans cell depletion by sunscreens after exposure of human skin to UVB.

    PubMed

    Hochberg, M; Enk, C D

    1999-11-01

    Sunscreens capable of inhibiting erythema are assumed to protect against UV-induced carcinogenesis as well. However, the correlation between inflammation and carcinogenesis is uncertain, and the prevention of UV-induced erythema might in fact be biologically irrelevant as an indicator of protection against UV-induced skin cancer. Ultraviolet-B radiation promotes cutaneous immunosuppression by the release of immunoregulatory cytokines and by depletion of Langerhans cells. We investigated the ability of two different sunscreens to inhibit UVB-induced expression of epidermal interleukin (IL)-10 and depletion of Langerhans cells. Chemical and physical sunscreens were applied to the forearms of volunteers 15 min prior to 4 minimal erythemal doses of UVB exposure. Suction blisters were induced 24 h after irradiation, and RNA was extracted from the blister roofs. Reverse transcription polymerase chain reaction was performed using primers for IL-10 and CD1a. A chemical sunscreen containing octyl methoxycinnamate (12 sun protection factor [SPF]) and a physical sunscreen containing zinc oxide (16 SPF) were assayed: UVB-induced IL-10 mRNA expression was nearly totally inhibited by both sunscreens (median protection for chemical and physical sunscreens was 95% and 78%, respectively), whereas UVB-induced Langerhans cell depletion was partially prevented (47% and 50% for chemical and physical sunscreens, respectively). Langerhans cell protection by sunscreens was confirmed by estimation of cell density after ATPase staining. In contrast, both sunscreens effectively prevented the induction of UVB-induced erythema. We believe this to be the first demonstration that sunscreens can prevent the induction of cutaneous mediators of immunosuppression, and that the results indicate that the immunoprotection offered by the sunscreens is significantly lower than their ability to prevent erythema. PMID:10568168

  14. MUC5AC, a Gel-Forming Mucin Accumulating in Gallstone Disease, Is Overproduced via an Epidermal Growth Factor Receptor Pathway in the Human Gallbladder

    PubMed Central

    Finzi, Laetitia; Barbu, Véronique; Burgel, Pierre-Regis; Mergey, Martine; Kirkwood, Kimberly S.; Wick, Elizabeth C.; Scoazec, Jean-Yves; Peschaud, Frédérique; Paye, François; Nadel, Jay A.; Housset, Chantal

    2006-01-01

    Despite evidence that mucin overproduction is critical in the pathogenesis of gallstones, the mechanisms triggering mucin production in gallstone disease are unknown. Here, we tested the potential implication of an inflammation-dependent epidermal growth factor receptor (EGF-R) pathway in the regulation of gallbladder mucin synthesis. In gallbladder tissue sections from subjects with cholesterol gallstones, mucus accumulation was associated with neutrophil infiltration and with increased expressions of EGF-R and of tumor necrosis factor-α (TNF-α). In primary cultures of human gallbladder epithelial cells, TNF-α induced EGF-R overexpression. In the presence of TNF-α, EGF-R ligands (either EGF or transforming growth factor-α) caused significant increases in MUC5AC mRNA and protein production, whereas expression of the other gallbladder mucins MUC1, MUC3, and MUC5B was unchanged. In addition, on gallbladder tissue sections from subjects with gallstones, increased MUC5AC immunoreactivity was detected in the epithelium and within mucus gel in the lumen. Studies in primary cultures demonstrated that MUC5AC up-regulation induced by the combination of TNF-α with EGF-R ligands was completely blunted by inhibitors of EGF-R tyrosine kinase and mitogen-activated protein/extracellular signal-related kinase kinase. In conclusion, an inflammation-dependent EGF-R cascade causes overproduction of the gel-forming mucin MUC5AC, which accumulates in cholesterol gallstone disease. The ability to interrupt this cascade is of potential interest in the prevention of cholesterol gallstones. PMID:17148666

  15. Combination photoimmunotherapy with monoclonal antibodies recognizing different epitopes of human epidermal growth factor receptor 2: an assessment of phototherapeutic effect based on fluorescence molecular imaging

    PubMed Central

    Ito, Kimihiro; Mitsunaga, Makoto; Nishimura, Takashi; Kobayashi, Hisataka; Tajiri, Hisao

    2016-01-01

    Photoimmunotherapy is a new class of molecular targeted cancer therapy based on a monoclonal antibody (mAb) conjugated to a photosensitizer and irradiation with near-infrared (NIR) light for both imaging and therapy. Here, we sought to determine the feasibility of combining photoimmunotherapy using conjugates of human epidermal growth factor receptor 2 (HER2)-specific mAb-photosensitizer IR700, trastuzumab-IR700 and pertuzumab-IR700. HER2-expressing and non-expressing cells were treated with mAb-IR700 conjugates and irradiated with NIR light. Fluorescence imaging and cytotoxic effects were examined in cultured HER2-expressng cancer cell lines and in a mouse tumor xenograft model. Trastuzumab-IR700 and pertuzumab-IR700 could specifically bind to HER2 without competing, and the combination treatment of both agents yielded stronger HER2-specific IR700 fluorescence signals than with the treatment with either agent singly. A cytotoxicity assay showed that the combination treatment of both trastuzumab-IR700 and pertuzumab-IR700 followed by NIR light irradiation induced stronger cytotoxic effect than with treatment of either agent plus NIR light irradiation. Furthermore, the phototoxic and cytotoxic effects of mAb depended on HER2-specific IR700 signal intensities. Consistent with in vitro studies, in xenograft tumor models also, IR700 fluorescence imaging-guided NIR light irradiation after the combination treatment of trastuzumab-IR700 and pertuzumab-IR700 led to stronger antitumor effects than by treatment with either agent followed by NIR light irradiation. In conclusion, fluorescence molecular imaging can facilitate the assessment of treatment outcomes of molecular targeted photoimmunotherapy, which holds great potential in facilitating better outcomes in cancer patients. PMID:26909859

  16. Gene protein detection platform--a comparison of a new human epidermal growth factor receptor 2 assay with conventional immunohistochemistry and fluorescence in situ hybridization platforms.

    PubMed

    Stålhammar, Gustav; Farrajota, Pedro; Olsson, Ann; Silva, Cristina; Hartman, Johan; Elmberger, Göran

    2015-08-01

    Human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are widely used semiquantitative assays for selecting breast cancer patients for HER2 antibody therapy. However, both techniques have been shown to have disadvantages. Our aim was to test a recent automated technique of combined IHC and brightfield dual in situ hybridization-gene protein detection platform (GPDP)-in breast cancer HER2 protein, gene, and chromosome 17 centromere status evaluations, comparing the results in accordance to the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from both 2007 and 2013. The GPDP technique performance was evaluated on 52 consecutive whole slide invasive breast cancer cases with HER2 IHC 2/3+ scoring results. Applying in turns the American Society of Clinical Oncology/College of American Pathologists recommendations for HER2 testing in breast cancer from 2007 and 2013 to both FISH and GPDP DISH assays, the HER2 gene amplification results showed 100% concordance among amplified/nonamplified cases, but there was a shift in 4 cases toward positive from equivocal results and toward equivocal from negative results. This might be related to the emphasis on the average HER2 copy number in the 2013 criteria. HER2 expression by IVD market IHC kit (Pathway®) has a strong correlation with GPDP HER2 protein, including a full concordance for all cases scored as 3+ and a reduction from 2+ to 1+ in 7 cases corresponding to nonamplified cases. Gene protein detection platform HER2 protein "solo" could have spared the need for 7 FISH studies. In addition, the platform offered advantages on interpretation reassurance including selecting areas for counting gene signals paralleled with protein IHC expression, on heterogeneity detection, interpretation time, technical time, and tissue expense. PMID:25921313

  17. Dermal penetration and metabolism of p-aminophenol and p-phenylenediamine: application of the EpiDerm human reconstructed epidermis model.

    PubMed

    Hu, Ting; Bailey, Ruth E; Morrall, Stephen W; Aardema, Marilyn J; Stanley, Lesley A; Skare, Julie A

    2009-07-24

    To address the provision of the 7th Amendment to the EU Cosmetics Directive banning the use of in vivo genotoxicity assays for testing cosmetic ingredients in 2009, the 3D EpiDerm reconstructed human skin micronucleus assay has been developed. To further characterise the EpiDerm tissue for potential use in genotoxicity testing, we have evaluated the dermal penetration and metabolism of two hair dye ingredients, p-aminophenol (PAP) and p-phenylenediamine (PPD) in this reconstructed epidermis model. When EpiDerm tissue was topically exposed to PAP or PPD for 30 min (typical for a hair dye exposure), the majority (80->90%) of PAP or PPD was excluded from skin tissue and removed by rinsing. After a 23.5h recovery period, the PAP fraction that did penetrate was completely N-acetylated to acetaminophen (APAP). Similarly, 30 min topical application of PPD resulted in the formation of the N-mono- and N,N'-diacetylated metabolites of PPD. These results are consistent with published data on the dermal metabolism of these compounds from other in vitro systems as well as from in vivo studies. When tissue was exposed topically (PAP) or via the culture media (PPD) for 24h, there was good batch-to-batch and donor-to-donor reproducibility in the penetration and metabolism of PAP and PPD. Overall, the results demonstrate that these two aromatic amines are biotransformed in 3D EpiDerm tissue via N-acetylation. Characterising the metabolic capability of EpiDerm tissue is important for the evaluation of this model for use in genotoxicity testing. PMID:19446244

  18. Proteomic Analysis of Arsenic-Induced Oxidative Stress in Human Epidermal Keratinocytes

    EPA Science Inventory

    Chronic exposure to inorganic arsenic (IAs) has been associated with the development of several human cancers, including those found in the skin, lung, urinary bladder, liver, prostate and kidney. The precise mechanisms by which arsenic causes cancer are unknown. Defining the mod...

  19. Role of solar conditioning in DNA repair response and survival of human epidermal keratinocytes following UV irradiation

    SciTech Connect

    Liu, S.C.; Meagher, K.; Hanawalt, P.C.

    1985-08-01

    The authors have investigated the cumulative effects of sunlight exposure upon the excision-repair of UV radiation damage to DNA in epidermal keratinocytes from human donors of different ages as well as the possible effect on DNA repair of periodic conditioning of the cultured keratinocytes with sublethal UV radiation exposures. The authors have also compared the growth properties of UV-irradiated keratinocytes derived from habitually sun-exposed and nonexposed areas from the bodies of young and aged donors. DNA repair replication in keratinocytes from habitually sun-exposed facial skin and the less sun-exposed abdominal skin of middle-aged adults was found to be similar, with respect to both the UV dose response and the time course of repair after 20 J/m2, 254 nm. Growth and survival (after exposure up to 50 J/m2, 254 nm) were greater for keratinocytes from protected areas of the upper arm of young donors (under 18 years) than for cells from their own sun-exposed areas. Growth and survival were markedly reduced for all keratinocyte cultures from aged donors, especially those cultures developed from sun-exposed areas. Nevertheless, the DNA repair response to UV radiation was similar in all cases. The evident uncoupling of UV sensitivity from DNA repair capacity remains to be understood. These studies confirm that the cumulative effect of sunlight exposure indeed contributes to some skin aging processes. However, the authors have found no indication that an overall reduction in capacity for excision-repair of UV photoproducts in keratinocyte DNA accompanies senescence in human skin.

  20. Mechanisms of adherence of Candida albicans to cultured human epidermal keratinocytes.

    PubMed Central

    Ollert, M W; Söhnchen, R; Korting, H C; Ollert, U; Bräutigam, S; Bräutigam, W

    1993-01-01

    We established an in vitro adherence model with primarily cultured human keratinocytes as target cells which allows for the investigation of the molecular mechanisms that are responsible for Candida albicans host cell attachment in the initiation of cutaneous candidosis. The extent of C. albicans binding to cultured human keratinocytes was dependent on the yeast inoculum size and the incubation temperature. Heat and paraform-aldehyde treatment of yeasts completely abolished the binding activity of C. albicans. Of the different Candida species tested, C. albicans was by far the most adhesive species. C. albicans adherence was blocked by the acid protease inhibitor pepstatin A and the metabolic inhibitor sodium azide. The latter, however, was much less effective when yeasts were preincubated, suggesting that sodium azide was mainly acting on the keratinocytes. The extracellular matrix protein fibronectin was slightly inhibitory, whereas the fibronectin-derived peptides RGD and RGDS were not able to prevent attachment. PepTite-2000, another RGD-containing synthetic peptide, reduced C. albicans adherence by a margin of 25% (P < 0.005). CDPGYIGSR-NH2, which is a synthetic adhesive peptide derived from the laminin B chain, was much more efficient in its inhibitory activity than the RGD peptides and reduced C. albicans adherence to cultured human keratinocytes up to 76% (P < 0.001). Laminin itself and the synthetic pentapeptide YIGSR were less active. A dose-dependent reduction in adherence was also observed with collagen type III. Additionally, saccharides were tested for their potential to inhibit C. albicans attachment to keratinocytes. The most potent competitive saccharide inhibitors of C. albicans adherence to human keratinocytes were the amino sugars D-(+)-glucosamine and D-(+)-galactosamine with one isolate of C. albicans (4918) and D-(+)-glucosamine and alpha-D-(+)-fucose with another C. albicans isolate (Sp-1). Collectively, our data suggest the existence of

  1. TPRV-1 expression in human preeclamptic placenta.

    PubMed

    Martínez, Nora; Abán, Cyntia E; Leguizamón, Gustavo F; Damiano, Alicia E; Farina, Mariana G

    2016-04-01

    Preeclampsia is a multisystem disorder unique to human pregnancy, characterized by abnormal placentation. Although its causes remain unclear, it is known that the expression of several transporters is altered. Transient receptor potential vanilloid 1 (TRPV-1) is a nonselective cation channel, present in human placenta. Here, we evaluated the expression of TRPV-1 in preeclamptic placentas. We observed a deregulation in TRPV-1 expression in these placentas which may explain the impaired Ca(2+) homeostasis found in preeclampsia. PMID:27016779

  2. Membranous Insulin-like Growth Factor-1 Receptor (IGF1R) Expression Is Predictive of Poor Prognosis in Patients with Epidermal Growth Factor Receptor (EGFR)-Mutant Lung Adenocarcinoma

    PubMed Central

    Park, Eunhyang; Park, Soo Young; Kim, Hyojin; Sun, Ping-Li; Jin, Yan; Cho, Suk Ki; Kim, Kwhanmien; Lee, Choon-Taek; Chung, Jin-Haeng

    2015-01-01

    Background: Insulin-like growth factor-1 receptor (IGF1R) is a membrane receptor-type tyrosine kinase that has attracted considerable attention as a potential therapeutic target, although its clinical significance in non-small cell lung cancer (NSCLC) is controversial. This study aimed to clarify the clinical significance of IGF1R expression in human NSCLC. Methods: IGF1R protein expression was evaluated using immunohistochemistry in 372 patients with NSCLC who underwent curative surgical resection (146 squamous cell carcinomas [SqCCs] and 226 adenocarcinomas [ADCs]). We then analyzed correlations between expression of IGF1R and clinicopathological and molecular features and prognostic significance. Results: Membranous and cytoplasmic IGF1R expression were significantly higher in SqCCs than in ADCs. In patients with SqCC, membranous IGF1R expression was associated with absence of vascular, lymphatic, and perineural invasion; lower stage; and better progression-free survival (PFS) (hazard ratio [HR], 0.586; p = .040). In patients with ADC, IGF1R expression did not have a significant prognostic value; however, in the subgroup of epidermal growth factor receptor (EGFR)-mutant ADC, membranous IGF1R expression was associated with lymphatic and perineural invasion, solid predominant histology, and higher cancer stage and was significantly associated with worse PFS (HR, 2.582; p = .009). Conclusions: Lung ADC and SqCC showed distinct IGF1R expression profiles that demonstrated prognostic significance. High membranous IGF1R expression was predictive of poor PFS in EGFR-mutant lung ADC, while it was predictive of better PFS in SqCC. These findings will help improve study design for subsequent investigations and select patients for future anti-IGF1R therapy. PMID:26265685

  3. Small activating ribonucleic acid reverses tyrosine kinase inhibitor resistance in epidermal growth factor receptor‐mutant lung cancer by increasing the expression of phosphatase and tensin homolog

    PubMed Central

    Li, Meng; Peng, Zhongmin; Ren, Wangang

    2016-01-01

    Background Epidermal growth factor receptor‐tyrosine kinase inhibitors (TKI‐EGFRs) present a new prospect for the treatment of lung cancer. However, in clinical application, the majority of patients become TKI resistant within a year. More and more studies have shown that a loss of phosphatase and tensin homolog (PTEN) expression is associated with TKI resistance. An alternative method of upregulating PTEN expression may reverse TKI resistance. Methods We designed five candidate small activating ribonucleic acids (saRNAs) to target PTEN, and transfected them into H‐157 cells to screen out functional saRNA. We used reverse transcriptase‐polymerase chain reaction and Western blot to evaluate the effect of saRNA to PTEN expression. We then analyzed the growth and apoptosis of cells transfected with saRNA under the treatment of TKI to investigate whether saRNAs can reverse TKI resistance by upregulating PTEN expression. Results The functional saRNA we designed could upregulate PTEN expression. The H‐157 cells transfected with saRNA grew slower in the presence of TKI drugs than the cells that were not transfected with saRNA. The apoptosis rate was also obviously higher. Conclusions Our study proves that loss of PTEN expression is an important mechanism of TKI resistance. It is possible to control TKI resistance by upregulating PTEN expression using RNA activation technology. PMID:27385992

  4. Aging decreases collagen IV expression in vivo in the dermo-epidermal junction and in vitro in dermal fibroblasts: possible involvement of TGF-β1.

    PubMed

    Feru, Jezabel; Delobbe, Etienne; Ramont, Laurent; Brassart, Bertrand; Terryn, Christine; Dupont-Deshorgue, Aurelie; Garbar, Christian; Monboisse, Jean-Claude; Maquart, Francois-Xavier; Brassart-Pasco, Sylvie

    2016-08-01

    Collagen IV is a major component of the dermo-epidermal junction (DEJ). To study expression of collagen IV upon aging in the DEJ and dermal fibroblasts isolated from the same patients. A model of senescent fibroblasts was developed in order to identify biological compounds that might restore the level of collagen IV. Skin fragments of women (30 to 70 years old) were collected. Localisation of collagen IV expression in the DEJ was studied by immunofluorescence. Fibroblast collagen IV expression was studied by real-time PCR, ELISA, and western blotting. Premature senescence was simulated by exposing fibroblasts to subcytotoxic H2O2 concentrations. Collagen IV decreased in the DEJ and fibroblasts relative to age. TGF-β1 treatment significantly increased collagen IV gene and protein expression in fibroblasts and restored expression in the model of senescence. Addition of TGF-β1-neutralizing antibody to fibroblast cultures decreased collagen IV expression. Taken together, the results suggest that the decrease in collagen IV in the DEJ, relative to age, could be due to a decrease in collagen IV expression by senescent dermal fibroblasts and may involve TGF-β1 signalling. PMID:27124123

  5. Metabolism of the Antibacterial Triclocarban by Human Epidermal Keratinocytes to Yield Protein Adducts

    PubMed Central

    Schebb, Nils Helge; Buchholz, Bruce A.; Hammock, Bruce D.; Rice, Robert H.

    2012-01-01

    Previous studies of triclocarban suggest that its biotransformation could yield reactive metabolites that form protein adducts. Since the skin is the major route of triclocarban exposure, present work examined this possibility in cultured human keratinocytes. The results provide evidence for considerable biotransformation and protein adduct formation when cytochrome P450 activity is induced in the cells by TCDD, a model Ah receptor ligand. Since detecting low adduct levels in cells and tissues is difficult, we utilized the novel approach of accelerator mass spectrometry for this purpose. Exploiting the sensitivity of the method, we demonstrated that a substantial portion of triclocarban forms adducts with keratinocyte protein under the P450 inducing conditions employed. PMID:22711420

  6. Human neuroepithelial cells express NMDA receptors.

    PubMed

    Sharp, Christopher D; Fowler, M; Jackson, T H; Houghton, J; Warren, A; Nanda, A; Chandler, I; Cappell, B; Long, A; Minagar, A; Alexander, J S

    2003-11-13

    L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1) cerebral endothelial barrier and 2) cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells) have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR) expression via immunohistochemistry and murine neuroepithelial cell line (V1) were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease. PMID:14614784

  7. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  8. α-Klotho Expression in Human Tissues

    PubMed Central

    Lim, Kenneth; Groen, Arnoud; Molostvov, Guerman; Lu, Tzongshi; Lilley, Kathryn S.; Snead, David; James, Sean; Wilkinson, Ian B.; Ting, Stephen

    2015-01-01

    Context: α-Klotho has emerged as a powerful regulator of the aging process. To date, the expression profile of α-Klotho in human tissues is unknown, and its existence in some human tissue types is subject to much controversy. Objective: This is the first study to characterize systemwide tissue expression of transmembrane α-Klotho in humans. We have employed next-generation targeted proteomic analysis using parallel reaction monitoring in parallel with conventional antibody-based methods to determine the expression and spatial distribution of human α-Klotho expression in health. Results: The distribution of α-Klotho in human tissues from various organ systems, including arterial, epithelial, endocrine, reproductive, and neuronal tissues, was first identified by immunohistochemistry. Kidney tissues showed strong α-Klotho expression, whereas liver did not reveal a detectable signal. These results were next confirmed by Western blotting of both whole tissues and primary cells. To validate our antibody-based results, α-Klotho-expressing tissues were subjected to parallel reaction monitoring mass spectrometry (data deposited at ProteomeXchange, PXD002775) identifying peptides specific for the full-length, transmembrane α-Klotho isoform. Conclusions: The data presented confirm α-Klotho expression in the kidney tubule and in the artery and provide evidence of α-Klotho expression across organ systems and cell types that has not previously been described in humans. PMID:26280509

  9. Effect of permeation enhancer pretreatment on the iontophoresis of luteinizing hormone releasing hormone (LHRH) through human epidermal membrane (HEM).

    PubMed

    Smyth, Hugh D C; Becket, Gordon; Mehta, Samir

    2002-05-01

    A 2 x 2 factorial design was performed to determine the effect of a permeation enhancer (oleic acid/propylene glycol), iontophoresis (2 V), and the combination of the two treatments on the permeation enhancement of a model peptide, LHRH (luteinizing hormone releasing hormone), through human epidermal membrane (HEM). In parallel studies, TEAB (tetraethylammonium bromide, a small ionic solute) and sucrose (an electroosmotic flow marker) were also investigated. Structural changes in the HEM were monitored via conductance measurements, differential scanning calorimetry (DSC), and infrared (IR) spectroscopy experiments. LHRH enhancement due to enhancer in combination with iontophoresis (I + E; 29.5 times passive permeability, P), was greater than during iontophoresis alone (I; 14.3) and enhancer treatment alone (E; 3.5). I + E had an additive effect of I and E, indicating the mechanisms of action of the individual enhancement strategies were likely to be located at different sites in the skin. Also, no synergistic enhancement was observed with I + E for either TEAB or sucrose. For TEAB, permeability enhancement due to I (approximately 1400) was much higher than that due to E (14.9), and no additive effect could be detected. For sucrose, E had no effect on either passive or iontophoretic permeability, eliminating the possibility that electroosmosis could explain increases in LHRH permeability. Evidence of synergy between E and I was found, with conductance measurements indicating that I + E synergistically increased the membrane permeability to conducting ions (Na+ and Cl-). It appears these pathways were not available for transport for the solutes used in the current study. DSC and IR investigations showed significant changes in stratum corneum lipid structure following E treatment but not following I. These findings probably arise from the localized action of iontophoresis compared with the bulk action of enhancer. In summary, increased LHRH delivery through HEM in

  10. Active post-marketing surveillance of the intralesional administration of human recombinant epidermal growth factor in diabetic foot ulcers

    PubMed Central

    2013-01-01

    Background After several exploratory and confirmatory clinical trials, the intralesional administration of human recombinant epidermal growth factor (hrEGF) has been approved for the treatment of advanced diabetic foot ulcers (DFU). The aim of this work was to evaluate the effectiveness and safety of this procedure in medical practice. Methods A prospective, post-marketing active pharmacosurveillance was conducted in 41 hospitals and 19 primary care polyclinics. Patients with DFU received hrEGF, 25 or 75 μg, intralesionally 3 times per week until complete granulation of the ulcer or 8 weeks maximum, adjuvant to standard wound care. Outcomes measured were complete granulation, amputations, and adverse events (AE) during treatment; complete lesion re-epithelization and relapses in follow-up (median: 1.2; maximum 4.2 years). Results The study included 1788 patients with 1835 DFU (81% Wagner’s grades 3 or 4; 43% ischemic) treated from May 2007 to April 2010. Complete granulation was observed in 76% of the ulcers in 5 weeks (median). Ulcer non-ischemic etiology (OR: 3.6; 95% CI: 2.8-4.7) and age (1.02; 1.01-1.03, for each younger year) were the main variables with influence on this outcome. During treatment, 220 (12%) amputations (171 major) were required in 214 patients, mostly in ischemic or Wagner’s grade 3 to 5 ulcers. Re-epithelization was documented in 61% of the 1659 followed-up cases; 5% relapsed per year. AE (4171) were reported in 47% of the subjects. Mild or moderate local pain and burning sensation, shivering and chills, were 87% of the events. Serious events, not related to treatment, occurred in 1.7% of the patients. Conclusions The favorable benefit/risk balance, confirms the beneficial clinical profile of intralesional hrEGF in the treatment of DFUs. PMID:24004460

  11. Epidermal changes following application of 7,12-dimethylbenz(a)anthracene and 12-O-tetradecanoylphorbol-13-acetate to human skin transplanted to nude mice studied with histological species markers

    SciTech Connect

    Graem, N.

    1986-01-01

    Effects of the tumor initiator 7,12-dimethylbenz(a)anthracene (DMBA) and of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) on epidermis of human fetal and adult skin were studied in the nude mouse/human skin model. Human skin grafts on NC nude mice were exposed to two topical applications of 1 mg of DMBA in 50 microliter of acetone with an interval of 3 days and/or to applications of 10 micrograms of TPA in 50 microliter of acetone twice weekly. In some animals, it was attempted to augment the susceptibility of the grafts to the tumor-initiating effect of DMBA by pretreatment with TPA or ultraviolet light. The mice were sacrificed 8-32 wk after the initial treatment. Tumors did not appear in the central portions of any of the grafts, but epidermal tumors were seen at the graft border in 34.9% of the DMBA-treated animals. To identify human epidermis on the grafts and to determine the species origin of the induced tumors, two independently working histological marker methods were applied. (a) The first is detection of a human Blood Group B-like antigen present in mouse epidermis and in chemically induced murine epidermal tumors. This antigen cannot be demonstrated in human epidermis and in epidermal tumors of human patients. (b) The second is histological staining with the DNA-specific fluorochrome, bisbenzimide, displaying a characteristic pattern of 5-10 intranuclear fluorescent bodies in murine nonneoplastic epidermal cells and in murine epidermal tumor cells. Such a pattern is not seen in human epidermis and in epidermal tumors of human patients. The studies showed that TPA treatment resulted in epidermal hyperplasia in both the human epidermis and the adjacent mouse epidermis and that the induced tumors were derived from murine tissue.

  12. Gene expression profiling in developing human hippocampus.

    PubMed

    Zhang, Yan; Mei, Pinchao; Lou, Rong; Zhang, Michael Q; Wu, Guanyun; Qiang, Boqin; Zhang, Zhengguo; Shen, Yan

    2002-10-15

    The gene expression profile of developing human hippocampus is of particular interest and importance to neurobiologists devoted to development of the human brain and related diseases. To gain further molecular insight into the developmental and functional characteristics, we analyzed the expression profile of active genes in developing human hippocampus. Expressed sequence tags (ESTs) were selected by sequencing randomly selected clones from an original 3'-directed cDNA library of 150-day human fetal hippocampus, and a digital expression profile of 946 known genes that could be divided into 16 categories was generated. We also used for comparison 14 other expression profiles of related human neural cells/tissues, including human adult hippocampus. To yield more confidence regarding differential expression, a method was applied to attach normalized expression data to genes with a low false-positive rate (<0.05). Finally, hierarchical cluster analysis was used to exhibit related gene expression patterns. Our results are in accordance with anatomical and physiological observations made during the developmental process of the human hippocampus. Furthermore, some novel findings appeared to be unique to our results. The abundant expression of genes for cell surface components and disease-related genes drew our attention. Twenty-four genes are significantly different from adult, and 13 genes might be developing hippocampus-specific candidate genes, including wnt2b and some Alzheimer's disease-related genes. Our results could provide useful information on the ontogeny, development, and function of cells in the human hippocampus at the molecular level and underscore the utility of large-scale, parallel gene expression analyses in the study of complex biological phenomena. PMID:12271469

  13. Molecular subclassification determined by human papillomavirus and epidermal growth factor receptor status is associated with the prognosis of oropharyngeal squamous cell carcinoma.

    PubMed

    Nakano, Takafumi; Yamamoto, Hidetaka; Nakashima, Torahiko; Nishijima, Toshimitsu; Satoh, Masanobu; Hatanaka, Yui; Shiratsuchi, Hideki; Yasumatsu, Ryuji; Toh, Satoshi; Komune, Shizuo; Oda, Yoshinao

    2016-04-01

    Human papillomavirus (HPV) infection is an indicator of good response to chemoradiotherapy in oropharyngeal squamous cell carcinoma (OPSCC), and epidermal growth factor receptor (EGFR) is a molecular-therapeutic target in head and neck squamous cell carcinoma. Here we investigated the prevalence and prognostic significance of HPV infection and EGFR alteration in OPSCC. We analyzed the presence of high-risk HPV using in situ hybridization, protein expressions of p16 and EGFR using immunohistochemistry, and the EGFR gene copy number gain using chromogenic in situ hybridization (CISH) in 105 cases of OPSCC. The biopsy specimens before chemoradiotherapy were used for these analyses. HPV infection and p16 protein overexpression were detected in 53.3% and 52.4% of the OPSCCs, and each factor was associated with better overall survival (P = .0026 and P = .0026) and nonkeratinizing histology (P = .0002 and P = .0004), respectively. EGFR gene copy number gain (high polysomy or amplification) was detected in 12.4% of the OPSCCs and was correlated with EGFR protein overexpression (P = .0667) and worse overall survival (P < .0001). HPV infection and EGFR gene copy number gain (EGFR CISH positive) were mutually exclusive. The HPV-negative/EGFR CISH-positive OPSCCs had significantly worse overall survival than did the HPV-positive/EGFR CISH-negative OPSCCs and HPV-negative/EGFR CISH-negative OPSCCs (P < .0001 and P < .0001, respectively). The EGFR CISH-negative OPSCCs had favorable prognosis irrespective of HPV infection. Our results suggest that EGFR gene copy number gain-positive tumors represent an HPV-negative, aggressive subgroup of OPSCCs. The molecular subclassification of OPSCCs based on HPV infection and EGFR status may serve as important information for appropriate therapeutic strategy. PMID:26997438

  14. Human Epidermal Growth Factor Receptor 2 (HER2) –Specific Chimeric Antigen Receptor–Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma

    PubMed Central

    Ahmed, Nabil; Brawley, Vita S.; Hegde, Meenakshi; Robertson, Catherine; Ghazi, Alexia; Gerken, Claudia; Liu, Enli; Dakhova, Olga; Ashoori, Aidin; Corder, Amanda; Gray, Tara; Wu, Meng-Fen; Liu, Hao; Hicks, John; Rainusso, Nino; Dotti, Gianpietro; Mei, Zhuyong; Grilley, Bambi; Gee, Adrian; Rooney, Cliona M.; Brenner, Malcolm K.; Heslop, Helen E.; Wels, Winfried S.; Wang, Lisa L.; Anderson, Peter; Gottschalk, Stephen

    2015-01-01

    Purpose The outcome for patients with metastatic or recurrent sarcoma remains poor. Adoptive therapy with tumor-directed T cells is an attractive therapeutic option but has never been evaluated in sarcoma. Patients and Methods We conducted a phase I/II clinical study in which patients with recurrent/refractory human epidermal growth factor receptor 2 (HER2) –positive sarcoma received escalating doses (1 × 104/m2 to 1 × 108/m2) of T cells expressing an HER2-specific chimeric antigen receptor with a CD28.ζ signaling domain (HER2-CAR T cells). Results We enrolled 19 patients with HER2-positive tumors (16 osteosarcomas, one Ewing sarcoma, one primitive neuroectodermal tumor, and one desmoplastic small round cell tumor). HER2-CAR T-cell infusions were well tolerated with no dose-limiting toxicity. At dose level 3 (1 × 105/m2) and above, we detected HER2-CAR T cells 3 hours after infusion by quantitative polymerase chain reaction in 14 of 16 patients. HER2-CAR T cells persisted for at least 6 weeks in seven of the nine evaluable patients who received greater than 1 × 106/m2 HER2-CAR T cells (P = .005). HER2-CAR T cells were detected at tumor sites of two of two patients examined. Of 17 evaluable patients, four had stable disease for 12 weeks to 14 months. Three of these patients had their tumor removed, with one showing ≥ 90% necrosis. The median overall survival of all 19 infused patients was 10.3 months (range, 5.1 to 29.1 months). Conclusion This first evaluation of the safety and efficacy of HER2-CAR T cells in patients with cancer shows the cells can persist for 6 weeks without evident toxicities, setting the stage for studies that combine HER2-CAR T cells with other immunomodulatory approaches to enhance their expansion and persistence. PMID:25800760

  15. Enhanced wound healing by recombinant Escherichia coli Nissle 1917 via human epidermal growth factor receptor in human intestinal epithelial cells: therapeutic implication using recombinant probiotics.

    PubMed

    Choi, Hye Jin; Ahn, Jung Hoon; Park, Seong-Hwan; Do, Kee Hun; Kim, Juil; Moon, Yuseok

    2012-03-01

    The gastrointestinal mucosa has a remarkable ability to repair damage with the support of epidermal growth factor (EGF), which stimulates epithelial migration and proliferative reepithelialization. For the treatment of mucosal injuries, it is important to develop efficient methods for the localized delivery of mucoactive biotherapeutics. The basic idea in the present study came from the assumption that an intestinal probiotic vehicle can carry and deliver key recombinant medicinal proteins to the injured epithelial target in patients with intestinal ulcerative diseases, including inflammatory bowel disease. The study was focused on the use of the safe probiotic E. coli Nissle 1917, which was constructed to secrete human EGF in conjunction with the lipase ABC transporter recognition domain (LARD). Using the in vitro physically wounded monolayer model, ABC transporter-mediated EGF secretion by probiotic E. coli Nissle 1917 was demonstrated to enhance the wound-healing migration of human enterocytes. Moreover, the epithelial wound closure was dependent on EGF receptor-linked activation, which exclusively involved the subsequent signaling pathway of the mitogen-activated protein kinase kinase (MEK) extracellular-related kinases 1 and 2 (ERK1/2). In particular, the migrating frontier of the wounded edge displayed the strongest EGF receptor-linked signaling activation in the presence of the recombinant probiotic. The present study provides a basis for the clinical application of human recombinant biotherapeutics via an efficient, safe probiotic vehicle. PMID:22184415

  16. Zinc pyrithione impairs zinc homeostasis and upregulates stress response gene expression in reconstructed human epidermis

    PubMed Central

    Lamore, Sarah D.

    2014-01-01

    Zinc ion homeostasis plays an important role in human cutaneous biology where it is involved in epidermal differentiation and barrier function, inflammatory and antimicrobial regulation, and wound healing. Zinc-based compounds designed for topical delivery therefore represent an important class of cutaneous therapeutics. Zinc pyrithione (ZnPT) is an FDA-approved microbicidal agent used worldwide in over-the-counter topical antimicrobials, and has also been examined as an investigational therapeutic targeting psoriasis and UVB-induced epidermal hyperplasia. Recently, we have demonstrated that cultured primary human skin keratinocytes display an exquisite sensitivity to nanomolar ZnPT concentrations causing induction of heat shock response gene expression and poly(ADP-ribose) polymerase (PARP)-dependent cell death (Cell Stress Chaperones 15:309–322, 2010). Here we demonstrate that ZnPT causes rapid accumulation of intracellular zinc in primary keratinocytes as observed by quantitative fluorescence microscopy and inductively coupled plasma mass spectrometry (ICP-MS), and that PARP activation, energy crisis, and genomic impairment are all antagonized by zinc chelation. In epidermal reconstructs (EpiDerm™) exposed to topical ZnPT (0.1–2% in Vanicream™), ICP-MS demonstrated rapid zinc accumulation, and expression array analysis demonstrated upregulation of stress response genes encoding metallothionein-2A (MT2A), heat shock proteins (HSPA6, HSPA1A, HSPB5, HSPA1L, DNAJA1, HSPH1, HSPD1, HSPE1), antioxidants (SOD2, GSTM3, HMOX1), and the cell cycle inhibitor p21 (CDKN1A). IHC analysis of ZnPT-treated EpiDerm™ confirmed upregulation of Hsp70 and TUNEL-positivity. Taken together our data demonstrate that ZnPT impairs zinc ion homeostasis and upregulates stress response gene expression in primary keratinocytes and reconstructed human epidermis, activities that may underlie therapeutic and toxicological effects of this topical drug. PMID:21424779

  17. MicroRNA-146a expression inhibits the proliferation and promotes the apoptosis of bronchial smooth muscle cells in asthma by directly targeting the epidermal growth factor receptor

    PubMed Central

    Zhang, Yanxia; Xue, Yan; Liu, Yan; Song, Guodong; Lv, Guofeng; Wang, Yongqiang; Wang, Yijiang; Li, Xiang; Yang, Leiying

    2016-01-01

    The present study aimed to determine the expression of microRNA-146a (miR-146a) in the plasma of children with asthma, and to investigate the effect of miR-146a on the proliferation and apoptosis of bronchial smooth muscle cells (BSMCs). Reverse transcription-quantitative polymerase chain reaction was used to determine the expression levels of miR-146a mimics and its inhibitor. A Cell Counting kit-8 assay was performed to examine the proliferation of BSMCs. Caspase-3/7 activity was determined using a Caspase-Glo 3/7 kit. To measure the expression levels of proteins associated with apoptosis, western blotting was performed. The target gene of miR-146a was identified using a dual-luciferase reporter assay. The plasma levels of miR-146a in children with asthma were significantly higher compared with those in healthy children. Enhanced miR-146a expression inhibited the proliferation of BSMCs. BSMC apoptosis was promoted by miR-146a. The mechanism underlying the miR-146a-induced promotion of BSMC apoptosis may be its direct targeting of epidermal growth factor receptor (EGFR), which affects downstream signaling pathways. In conclusion, miR-146a expression in asthma inhibits the proliferation and promotes the apoptosis of BSMCs by direct targeting of EGFR.

  18. Urine acidification has no effect on peroxisome proliferator-activated receptor (PPAR) signaling or epidermal growth factor (EGF) expression in rat urinary bladder urothelium

    SciTech Connect

    Achanzar, William E. Moyer, Carolyn F.; Marthaler, Laura T.; Gullo, Russell; Chen, Shen-Jue; French, Michele H.; Watson, Linda M.; Rhodes, James W.; Kozlosky, John C.; White, Melvin R.; Foster, William R.; Burgun, James J.; Car, Bruce D.; Cosma, Gregory N.; Dominick, Mark A.

    2007-09-15

    We previously reported prevention of urolithiasis and associated rat urinary bladder tumors by urine acidification (via diet acidification) in male rats treated with the dual peroxisome proliferator-activated receptor (PPAR){alpha}/{gamma} agonist muraglitazar. Because urine acidification could potentially alter PPAR signaling and/or cellular proliferation in urothelium, we evaluated urothelial cell PPAR{alpha}, PPAR{delta}, PPAR{gamma}, and epidermal growth factor receptor (EGFR) expression, PPAR signaling, and urothelial cell proliferation in rats fed either a normal or an acidified diet for 5, 18, or 33 days. A subset of rats in the 18-day study also received 63 mg/kg of the PPAR{gamma} agonist pioglitazone daily for the final 3 days to directly assess the effects of diet acidification on responsiveness to PPAR{gamma} agonism. Urothelial cell PPAR{alpha} and {gamma} expression and signaling were evaluated in the 18- and 33-day studies by immunohistochemical assessment of PPAR protein (33-day study only) and quantitative real-time polymerase chain reaction (qRT-PCR) measurement of PPAR-regulated gene expression. In the 5-day study, EGFR expression and phosphorylation status were evaluated by immunohistochemical staining and egfr and akt2 mRNA levels were assessed by qRT-PCR. Diet acidification did not alter PPAR{alpha}, {delta}, or {gamma} mRNA or protein expression, PPAR{alpha}- or {gamma}-regulated gene expression, total or phosphorylated EGFR protein, egfr or akt2 gene expression, or proliferation in urothelium. Moreover, diet acidification had no effect on pioglitazone-induced changes in urothelial PPAR{gamma}-regulated gene expression. These results support the contention that urine acidification does not prevent PPAR{gamma} agonist-induced bladder tumors by altering PPAR{alpha}, {gamma}, or EGFR expression or PPAR signaling in rat bladder urothelium.

  19. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing.

    PubMed Central

    Saarialho-Kere, U K; Kovacs, S O; Pentland, A P; Olerud, J E; Welgus, H G; Parks, W C

    1993-01-01

    We reported that interstitial collagenase is produced by keratinocytes at the edge of ulcers in pyogenic granuloma, and in this report, we assessed if production of this metalloproteinase is a common feature of the epidermal response in a variety of wounds. In all samples of chronic ulcers, regardless of etiology, and in incision wounds, collagenase mRNA, localized by in situ hybridization, was prominently expressed by basal keratinocytes bordering the sites of active re-epithelialization indicating that collagenolytic activity is a characteristic response of the epidermis to wounding. No expression of mRNAs for 72- and 92-kD gelatinases or matrilysin was seen in keratinocytes, and no signal for any metalloproteinase was detected in normal epidermis. Immunostaining for type IV collagen showed that collagenase-positive keratinocytes were not in contact with an intact basement membrane and, unlike normal keratinocytes, expressed alpha 5 beta 1 receptors. These observations suggest that cell-matrix interactions influence collagenase expression by epidermal cells. Indeed, as determined by ELISA, primary cultures of human keratinocytes grown on basement membrane proteins (Matrigel; Collaborative Research Inc., Bedford, MA) did not express significant levels of collagenase, whereas cells grown on type I collagen produced markedly increased levels. These results suggest that migrating keratinocytes actively involved in re-epithelialization acquire a collagenolytic phenotype upon contact with the dermal matrix. Images PMID:8254040

  20. Interleukin 1 gene expression in cultured human keratinocytes is augmented by ultraviolet irradiation

    SciTech Connect

    Kupper, T.S.; Chua, A.O.; Flood, P.; McGuire, J.; Gubler, U.

    1987-08-01

    Interleukin 1 (IL-1) is a family of polypeptides initially found to be produced by activated monocytes and macrophages that mediate a wide variety of cellular responses to injury and infection. Epidermal epithelial cells (keratinocytes) produce ''epidermal cell-derived thymocyte activating factor'' or ETAF, which has been recently shown to be identical to IL-1. Human epidermis is normally exposed to significant amounts of solar ultraviolet radiation. Certain ultraviolet wavelengths (UVB, 290-320 nm) are thought to be responsible for most of the immediate and long-term pathological consequences of excessive exposure to sunlight. In this study, we asked whether exposure to UVB irradiation induced IL-1 gene expression in cultured human keratinocytes. Cultured human keratinocytes contain detectable amounts of IL-1 alpha and beta mRNA and protein in the absence of apparent stimulation; these levels could be significantly enhanced 6 h after exposure to 10 ng/ml of 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Exposure to UVB irradiation with an emission spectrum comparable to that of sunlight (as opposed to that of an unfiltered artificial UV light source) significantly increased the steady state levels IL-1 alpha and beta mRNA in identical populations of human keratinocytes. This was reflected in the production of increased IL-1 activity by these cultures in vitro. In the same cell population, exposures to UVB irradiation did not alter the level of actin mRNA; therefore, the effect of UV irradiation on IL-1 represents a specific enhancement of IL-1 gene expression. Local increases of IL-1 may mediate the inflammation and vasodilation characteristic of acute UVB-injured skin, and systemic release of this epidermal IL-1 may account for fever, leukocytosis, and the acute phase response seen after excessive sun exposure.

  1. IL-2, IL-5, TNF-α and IFN-γ mRNA expression in epidermal keratinocytes of systemic lupus erythematosus skin lesions

    PubMed Central

    Carneiro, José Ronaldo M; Fuzii, Hellen T; Kayser, Cristiane; Alberto, Fernando L; Soares, Fernando A; Sato, Emília I; Andrade, Luís Eduardo C

    2011-01-01

    OBJECTIVE: To analyze cytokine gene expression in keratinocytes from patients with systemic lupus erythematosus (SLE). INTRODUCTION: Keratinocytes represent 95% of epidermal cells and can secrete several cytokines. METHODS: Keratinocytes were obtained by laser microdissection from 21 patients with SLE (10 discoid and 11 acute lesions) at involved and uninvolved sites. All patients were receiving a low/moderate prednisone dose and 18 were receiving chloroquine diphosphate. IL-2, IL-5, TNF-α and IFN-γ gene expression was evaluated by real-time PCR and expressed as the ratio (R) to a pool of skin samples from 12 healthy volunteers. RESULTS: Heterogeneity in cytokine gene expression was found among patients with SLE. Eighteen of 38 valid SLE samples (47%) presented overexpression (R>1) of at least one cytokine. Lesional skin samples tended to show higher cytokine expression than samples from uninvolved skin (p = 0.06). IL-5 and IFN-γ were the most commonly overexpressed cytokines. Samples with cytokine overexpression corresponded to more extensive and severe lesions. Prednisone dose did not differ between samples without cytokine overexpression (15.71±3.45 mg/day) and those with overexpressed cytokines (12.68±5.41 mg/day) (p = 0.216). Samples from all patients not receiving diphosphate chloroquine had at least one overexpressed cytokine. CONCLUSIONS: The heterogeneous keratinocyte cytokine gene expression reflects the complex immunological and inflammatory background in SLE. Patients with severe/extensive skin lesions showed a higher frequency of cytokine gene overexpression. Increased IFN-γ and IL-5 expression suggests that Th1 and Th2 cells are involved in SLE skin inflammation. The possibility that prednisone and antimalarial drugs may have contributed to low cytokine gene expression in some samples cannot be ruled out. PMID:21437440

  2. Neuropharmacology of Human Appetite Expression

    ERIC Educational Resources Information Center

    Halford, Jason C. G.; Harrold, Joanne A.

    2008-01-01

    The regulation of appetite relies on the integration of numerous episodic (meal) and tonic (energy storage) generated signals in energy regulatory centres within the central nervous system (CNS). These centers provide the pharmacological potential to modify human appetite (hunger and satiety) to increase or decrease caloric intake, or to normalize…

  3. Oral administration recombinant porcine epidermal growth factor enhances the jejunal digestive enzyme genes expression and activity of early-weaned piglets.

    PubMed

    Lee, D N; Chuang, Y S; Chiou, H Y; Wu, F Y; Yen, H T; Weng, C F

    2008-08-01

    This study attempted to determine ingested porcine epidermal growth factor (pEGF) on the gastrointestinal tract development of early-weaned piglets. Thirty-two piglets (14-day weaned) were randomly allotted to supplemented with 0 (control), 0.5, 1.0, or 1.5 mg pEGF/kg diet. Each treatment consisted of four replicates with two pigs per pen for a 14 days experimental period. Piglets were sacrificed and gastrointestinal tract samples were collected to measure mucosa morphology, mRNA expression and activities of digestive enzymes in the gastrointestinal tract of piglets at the end of the experiment. Diets supplemented with pEGF failed to influence growth performance but tended to increase jejunal mucosa weight (p < 0.09) and protein content (p < 0.07). Piglets supplemental pEGF induced incrementally the gastric pepsin activity (p < 0.05) and stimulated jejunal alkaline phosphatase (ALP) and lactase activities accompanied with the increase of jejunal ALP and maltase mRNA expression. No effect of pEGF on the activities of all enzymes in ileum except the stimulation of ileal aminopeptide N mRNA expression. These results reveal that dietary pEGF supplementation might enhance gene expression and activities of digestive enzymes in the stomach and jejunum of piglets. PMID:18662356

  4. Impact of Cell-surface Antigen Expression on Target Engagement and Function of an Epidermal Growth Factor Receptor × c-MET Bispecific Antibody*

    PubMed Central

    Jarantow, Stephen W.; Bushey, Barbara S.; Pardinas, Jose R.; Boakye, Ken; Lacy, Eilyn R.; Sanders, Renouard; Sepulveda, Manuel A.; Moores, Sheri L.; Chiu, Mark L.

    2015-01-01

    The efficacy of engaging multiple drug targets using bispecific antibodies (BsAbs) is affected by the relative cell-surface protein levels of the respective targets. In this work, the receptor density values were correlated to the in vitro activity of a BsAb (JNJ-61186372) targeting epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-MET). Simultaneous binding of the BsAb to both receptors was confirmed in vitro. By using controlled Fab-arm exchange, a set of BsAbs targeting EGFR and c-MET was generated to establish an accurate receptor quantitation of a panel of lung and gastric cancer cell lines expressing heterogeneous levels of EGFR and c-MET. EGFR and c-MET receptor density levels were correlated to the respective gene expression levels as well as to the respective receptor phosphorylation inhibition values. We observed a bias in BsAb binding toward the more highly expressed of the two receptors, EGFR or c-MET, which resulted in the enhanced in vitro potency of JNJ-61186372 against the less highly expressed target. On the basis of these observations, we propose an avidity model of how JNJ-61186372 engages EGFR and c-MET with potentially broad implications for bispecific drug efficacy and design. PMID:26260789

  5. Protective Effect of Tropical Highland Blackberry Juice (Rubus adenotrichos Schltdl.) Against UVB-Mediated Damage in Human Epidermal Keratinocytes and in a Reconstituted Skin Equivalent Model

    PubMed Central

    Calvo-Castro, Laura; Syed, Deeba N.; Chamcheu, Jean C.; Vilela, Fernanda M. P.; Pérez, Ana M.; Vaillant, Fabrice; Rojas, Miguel; Mukhtar, Hasan

    2014-01-01

    Solar ultraviolet (UV) radiation, particularly its UVB (280–320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica’s tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB-mediated responses in human epidermal keratinocytes and in a three-dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm−2)-mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB-mediated (1) poly(ADP-ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB-induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV-induced skin damage. PMID:23711186

  6. Protective effect of tropical highland blackberry juice (Rubus adenotrichos Schltdl.) against UVB-mediated damage in human epidermal keratinocytes and in a reconstituted skin equivalent model.

    PubMed

    Calvo-Castro, Laura; Syed, Deeba N; Chamcheu, Jean C; Vilela, Fernanda M P; Pérez, Ana M; Vaillant, Fabrice; Rojas, Miguel; Mukhtar, Hasan

    2013-01-01

    Solar ultraviolet (UV) radiation, particularly its UVB (280-320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica's tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB-mediated responses in human epidermal keratinocytes and in a three-dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm(-2))-mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB-mediated (1) poly(ADP-ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB-induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV-induced skin damage. PMID:23711186

  7. Pertuzumab for the treatment of patients with human epidermal growth factor receptor 2-positive breast cancer in Japan

    PubMed Central

    OSAKO, TOMOFUMI; NISHIMURA, REIKI; NISHIYAMA, YASUYUKI; FUJISUE, MAMIKO

    2015-01-01

    Pertuzumab, a novel anti-human epidermal growth factor receptor 2 (HER2) agent, is effective for metastatic HER2-positive breast cancer when used in combination with taxane and trastuzumab. The aim of the present study was to describe the use of pertuzumab in Japan. A phase I clinical trial of pertuzumab for HER2-positive metastatic breast cancer was first conducted in the United States in 2001 (study ID no. TOC2297g) and for HER2-positive solid cancers in Japan in 2004 (study ID no. JO17076). However, Japanese patients were not enrolled in a global phase II trial for metastatic breast cancer (study ID no. BO17929) and no phase II trial of pertuzumab for Japanese patients has yet been conducted. A phase III trial on pertuzumab for metastatic breast cancer (CLEOPATRA study), which included 53 Japanese patients, revealed that pertuzumab significantly prolonged progression-free and overall survival. However, the superiority of the pertuzumab group was not verified in the subgroup analysis of Japanese patients, which was not a preplanned analysis. Therefore, a postmarketing clinical trial for Japanese patients with HER2-positive metastatic breast cancer (COMACHI study) was initiated in November, 2013, to investigate the clinical effectiveness of pertuzumab in Japanese patients. As of December, 2014, global trials on pertuzumab in the metastatic and adjuvant settings are currently ongoing. These trials included Japanese patients with HER2-positive breast cancer. Pertuzumab was approved in Japan in August, 2013 due to the positive findings of the CLEOPATRA study. Unlike the United States and Europe, the Japanes Pharmaceutical and Medical Devices Agency approved the administration of pertuzumab as second- or later-line treatment for HER2-positive metastatic breast cancer, as well as first-line treatment. Furthermore, pertuzumab may be used in combination with other chemotherapeutic agents, with the exception of docetaxel. The approval of the expanded use of pertuzumab is

  8. [A case of effective trastuzumab plus gemcitabine therapy for human epidermal growth factor receptor 2-positive breast cancer].

    PubMed

    Yabe, Nobushige; Murai, Shinji; Shimizu, Hirotomo; Kitasato, Kenjiro; Yoshikawa, Takahisa; Oto, Ippei; Nakadai, Junpei; Jinno, Hiromitsu; Kitagawa, Yuko

    2013-11-01

    A 71-year-old postmenopausal woman was undergoing treatment for depression. She visited the hospital with a chief complaint of fibrosclerosis of the entire left breast 8 years previously. She was diagnosed as having stage IV( T3N1M1b) left breast cancer (papillotubular>scirrhous carcinoma, g+, f+, estrogen receptor [ER]-negative, progesterone receptor [PgR]-negative, and human epidermal growth factor receptor 2[ HER2/neu]-positive[ 3+]). Synchronous bone metastases were detected in the left tenth rib, the eleventh dorsal vertebra, and in the area spanning the lower lumbar to sacral vertebrae. First-line treatment was systemic therapy with 4 cycles of Adriamycin and cyclophosphamide (AC) followed by 4 cycles of trastuzumab and paclitaxel. The breast mass initially observed on clinical imaging disappeared and only calcifications were observed. Bone metastases were detected only in the left tenth rib. As an additional therapy, 3-dimensional radiotherapy( 50 Gy/25 fractions), which irradiated the left mammary gland, axilla, and supraclavicular fossa, was administered. The tumor was well controlled for approximately 3 years. However, a gradual increase in the level of carcinoembryonic antigen( CEA) was accompanied by an increase in the left breast mass and enlargement of left axillary lymph nodes. Modified radical mastectomy (Bt+Ax [level I]) was performed for this condition 3 years ago. Papillotubular-type invasive ductal carcinoma (INF β, ly3, v0, g+, f+, s+, nuclear grade 3 [atypia 3+mitosis 3]) was diagnosed histopathologically. Lymph node metastases were also detected. As histopathological examination of the bone metastatic lesion showed no progression, administration of lapatinib and capecitabine was initiated. After 15 cycles of treatment, enlarged right axillary lymph nodes were observed and local excision was performed. Histopathological examination revealed recurrence of the breast cancer. The patient was diagnosed as having grade 3( atypia 3, mitosis 2

  9. Ultraviolet radiation-induced tumor necrosis factor alpha, which is linked to the development of cutaneous SCC, modulates differential epidermal microRNAs expression.

    PubMed

    Singh, Ashok; Willems, Estelle; Singh, Anupama; Hafeez, Bilal Bin; Ong, Irene M; Mehta, Suresh L; Verma, Ajit Kumar

    2016-04-01

    Chronic exposure to ultraviolet radiation (UVR) is linked to the development of cutaneous squamous cell carcinoma (SCC), a non-melanoma form of skin cancer that can metastasize. Tumor necrosis factor-alpha (TNFα), a pro-inflammatory cytokine, is linked to UVR-induced development of SCC. To find clues about the mechanisms by which TNFα may promote UVR-induced development of SCC, we investigated changes in the expression profiling of microRNAs (miRNA), a novel class of short noncoding RNAs, which affects translation and stability of mRNAs. In this experiment, TNFα knockout (TNFα KO) mice and their wild type (WT) littermates were exposed to acute UVR (2.0 kJ/m2) and the expression profiling of epidermal miRNA was determined 4hr post UVR exposure. TNFα deletion in untreated WT mice resulted in differential expression (log fold change>1) of seventeen miRNA. UVR exposure in WT mice induced differential expression of 22 miRNA. However, UVR exposure in TNFα KO mice altered only two miRNAs. Four miRNA, were differentially expressed between WT+UVR and TNFα KO+UVR groups. Differentially expressed selected miRNAs were further validated using real time PCR. Few of the differentially expressed miRNAs (miR-31-5p, miR-196a-5p, miR-127-3p, miR-206-3p, miR-411-5p, miR-709, and miR-322-5p) were also observed in UVR-induced SCC. Finally, bio-informatics analysis using DIANA, MIRANDA, Target Scan, and miRDB algorithms revealed a link with major UVR-induced pathways (MAPK, PI3K-Akt, transcriptional mis-regulation, Wnt, and TGF-beta). PMID:26918454

  10. Ultraviolet radiation-induced tumor necrosis factor alpha, which is linked to the development of cutaneous SCC, modulates differential epidermal microRNAs expression

    PubMed Central

    Singh, Ashok; Willems, Estelle; Singh, Anupama; Hafeez, Bilal Bin; Ong, Irene M.; Mehta, Suresh L.; Verma, Ajit Kumar

    2016-01-01

    Chronic exposure to ultraviolet radiation (UVR) is linked to the development of cutaneous squamous cell carcinoma (SCC), a non-melanoma form of skin cancer that can metastasize. Tumor necrosis factor-alpha (TNFα), a pro-inflammatory cytokine, is linked to UVR-induced development of SCC. To find clues about the mechanisms by which TNFα may promote UVR-induced development of SCC, we investigated changes in the expression profiling of microRNAs (miRNA), a novel class of short noncoding RNAs, which affects translation and stability of mRNAs. In this experiment, TNFα knockout (TNFα KO) mice and their wild type (WT) littermates were exposed to acute UVR (2.0 kJ/m2) and the expression profiling of epidermal miRNA was determined 4hr post UVR exposure. TNFα deletion in untreated WT mice resulted in differential expression (log fold change>1) of seventeen miRNA. UVR exposure in WT mice induced differential expression of 22 miRNA. However, UVR exposure in TNFα KO mice altered only two miRNAs. Four miRNA, were differentially expressed between WT+UVR and TNFα KO+UVR groups. Differentially expressed selected miRNAs were further validated using real time PCR. Few of the differentially expressed miRNAs (miR-31-5p, miR-196a-5p, miR-127-3p, miR-206-3p, miR-411-5p, miR-709, and miR-322-5p) were also observed in UVR-induced SCC. Finally, bio-informatics analysis using DIANA, MIRANDA, Target Scan, and miRDB algorithms revealed a link with major UVR-induced pathways (MAPK, PI3K-Akt, transcriptional mis-regulation, Wnt, and TGF-beta). PMID:26918454

  11. ZD6474, a Multitargeted Inhibitor for Receptor Tyrosine Kinases, Suppresses Growth of Gliomas Expressing an Epidermal Growth Factor Receptor Mutant, EGFRvIII, in the Brain

    PubMed Central

    Yiin, Jia-Jean; Hu, Bo; Schornack, Paul A.; Sengar, Raghvendra S.; Liu, Kun-wei; Feng, Haizhong; Lieberman, Frank S.; Chiou, Shih-Hwa; Sarkaria, Jann N.; Wiener, Erik C.; Ma, Hsin-I; Cheng, Shi-Yuan

    2010-01-01

    Epidermal growth factor receptor (EGFR) vIII is a mutated EGFR that is frequently overexpressed in glioblastomas and implicated in response to receptor tyrosine kinase inhibitors. In this study, we investigate the effect of ZD6474 (ZACTIMA, vandetanib), a dual inhibitor for vascular endothelial growth factor receptor 2 and EGFR on growth and angiogenesis of gliomas expressing EGFRvIII. We used two glioma xenograft models, U87MG cells overexpressing EGFRvIII and short-term cultured primary glioma GBM8 cells with EGFRvIII. ZD6474 inhibited tumor growth and angiogenesis and induced cell apoptosis in various brain gliomas. Moreover, significant inhibition of EGFRvIII-expressing U87MG and GBM8 gliomas was observed compared with their controls. Magnetic resonance imaging analysis using the apparent diffusion coefficient and three-dimensional T2*weighed measurements validated ZD6474 inhibition on tumor growth and angiogenesis in EGFRvIII-expressing GBM8 gliomas. Mechanistically, ZD6474 shows better inhibition of cell growth and survival of U87MG/EGFRvIII, GBM6, and GBM8 cells that express EGFRvIII than U87MG or GBM14 cells that have nondetectable EGFRvIII through attenuation of activated phosphorylation of signal transducer and activator of transcription 3, Akt, and Bcl-XL expression. Albeit in lesser extent, ZD6474 also displays suppressions of U87MG/EGFR and GBM12 cells that overexpress wild-type EGFR. Additionally, ZD6474 inhibits activation of extracellular signal-regulated kinase 1/2 in both types of cells, and expression of a constitutively active phosphoinositide 3-kinases partially rescued ZD6474 inhibition in U87MG/EGFRvIII cells. Taken together, these data show that ZD6474 significantly inhibited growth and angiogenesis of gliomas expressing EGFRvIII by specifically blocking EGFRvIII-activated signaling mediators, suggesting a potential application of ZD6474 in treatments for glioblastomas that overexpress EGFRvIII. PMID:20371720

  12. Expressed miRNAs target feather related mRNAs involved in cell signaling, cell adhesion and structure during chicken epidermal development.

    PubMed

    Bao, Weier; Greenwold, Matthew J; Sawyer, Roger H

    2016-10-15

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Previous studies have shown that miRNA regulation contributes to a diverse set of processes including cellular differentiation and morphogenesis which leads to the creation of different cell types in multicellular organisms and is thus key to animal development. Feathers are one of the most distinctive features of extant birds and are important for multiple functions including flight, thermal regulation, and sexual selection. However, the role of miRNAs in feather development has been woefully understudied despite the identification of cell signaling pathways, cell adhesion molecules and structural genes involved in feather development. In this study, we performed a microarray experiment comparing the expression of miRNAs and mRNAs among three embryonic stages of development and two tissues (scutate scale and feather) of the chicken. We combined this expression data with miRNA target prediction tools and a curated list of feather related genes to produce a set of 19 miRNA-mRNA duplexes. These targeted mRNAs have been previously identified as important cell signaling and cell adhesion genes as well as structural genes involved in feather and scale morphogenesis. Interestingly, the miRNA target site of the cell signaling pathway gene, Aldehyde Dehydrogenase 1 Family, Member A3 (ALDH1A3), is unique to birds indicating a novel role in Aves. The identified miRNA target site of the cell adhesion gene, Tenascin C (TNC), is only found in specific chicken TNC splice variants that are differentially expressed in developing scutate scale and feather tissue indicating an important role of miRNA regulation in epidermal differentiation. Additionally, we found that β-keratins, a major structural component of avian and reptilian epidermal appendages, are targeted by multiple miRNA genes. In conclusion, our work provides quantitative expression data on miRNAs and m

  13. Control of proliferation of human vascular endothelial cells. Characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin.

    PubMed

    Gospodarowicz, D; Brown, K D; Birdwell, C R; Zetter, B R

    1978-06-01

    Because the response of human endothelial cells to growth factors and conditioning agents has broad implications for our understanding of wound healing angiogenesis, and human atherogenesis, we have investigated the responses of these cells to the fibroblast (FGF) and epidermal growth factors (EGF), as well as to the protease thrombin, which has been previously shown to potentiate the growth response of other cell types of FGF and EGF. Because the vascular endothelial cells that form the inner lining of blood vessels may be expected to be exposed to high thrombin concentrations after trauma or in pathological states associated with thrombosis, they are of particular interest with respect to the physiological role of this protease in potentiating cell proliferation. Our results indicate that human vascular endothelial cells respond poorly to either FGF or thrombin alone. In contrast, when cells are maintained in the presence of thrombin, their proliferative response to FGF is greatly increased even in cultures seeded at a density as low as 3 cells/mm2. Human vascular endothelial cells also respond to EGF and thrombin, although their rate of proliferation is much slower than when maintained with FGF and thrombin. In contrast, bovine vascular endothelial cells derived from vascular territories as diverse as the bovine heart, aortic arch, and umbilical vein respond maximally to FGF alone and neither respond to nor bind EGF. Furthermore, the response of bovine vascular endothelial cells to FGF was not potentiated by thrombin, indicating that the set of factors controlling the proliferation of vascular endothelial cells could be species-dependent. The requirement of cultured human vascular endothelial cells for thrombin could explain why the human cells, in contrast to bovine endothelial cells, are so difficult to maintain in tissue culture. Our results demonstrate that by using FGF and thrombin one can develop cultures of human vascular endothelial cells capable of

  14. In vitro and in vivo comparison of dermal irritancy of jet fuel exposure using EpiDerm (EPI-200) cultured human skin and hairless rats.

    PubMed

    Chatterjee, Abhijit; Babu, R Jayachandra; Klausner, M; Singh, Mandip

    2006-12-01

    The purpose of this study was to evaluate an in vitro EpiDerm human skin model (EPI-200) to study the irritation potential of jet fuels (JP-8 and JP-8+100). Parallel in vivo studies on hairless rats on the dermal irritancy of jet fuels were also conducted. Cytokines are an important part of an irritation and inflammatory cascade, which are expressed in upon dermal exposures of irritant chemicals even when there are no obvious visible marks of irritation on the skin. We have chosen two primary cytokines (IL-1alpha and TNF-1alpha) as markers of irritation response of jet fuels. Initially, the EPI-200 was treated with different quantities of JP-8 and JP-8+100 to determine quantities which did not cause significant cytotoxicity, as monitored using the MTT assay and paraffin embedded histological cross-sections. Volumes of 2.5-50 microl/tissue (approximately 4.0-78 microl/cm2) of JP-8 and JP-8+100 showed a dose dependent loss of tissue viability and morphological alterations of the tissue. At a quantity of 1.25 microl/tissue (approximately 2.0 microl/cm2), no significant change in tissue viability or morphology was observed for exposure time extending to 48 h. Nonetheless, this dose induced significant increase in IL-1alpha and TNF-alpha release versus non-treated controls after 24 and 48 h. In addition, IL-1alpha release for JP-8+100 was significantly higher than that observed for JP-8, but TNF-alpha release after 48 h exposure to these two jet fuels was the same. These findings parallel in vivo studies on hairless rats, which indicated higher irritation levels due to JP-8+100 versus JP-8. In vivo, transepidermal water loss (TEWL) and IL-1alpha expression levels followed the order JP-8+100 > JP-8 > control. Further, in vivo TNF-alpha levels for JP-8 and JP-8+100 were also elevated but not significantly different from one another. In aggregate, these findings indicate that EPI-200 tissue model can be utilized as an alternative to the use of animals in evaluating dermal

  15. Effects of the differentiated keratinocyte phenotype on expression levels of CYP1-4 family genes in human skin cells

    SciTech Connect

    Du Liping; Neis, Mark M.; Ladd, Patricia A.; Yost, Garold S.; Keeney, Diane S. . E-mail: diane.keeney@vanderbilt.edu

    2006-06-01

    Epoxyeicosatrienoic acids produced by mouse CYP2B19 have been implicated in mechanisms regulating epidermal cornification (Ladd, P.A., Du, L., Capdevila, J.H., Mernaugh, R., Keeney, D.S., 2003. Epoxyeicosatrienoic acids activate transglutaminases in situ and induce cornification of epidermal keratinocytes. J. Biol. Chem. 278, 35184-35192). In this study, we aimed to identify CYPs that are up-regulated during keratinocyte differentiation and potentially responsible for epoxyeicosatrienoic acid formation in human skin. The cellular differentiation state of human epidermal cell cultures was manipulated to resemble the basal, spinous, and granular cell phenotypes in vivo. Changes in CYP mRNA levels were measured as a function of differentiation state for a panel of 15 CYPs that included known and putative arachidonate monooxygenases. Quantitative real-time PCR analyses showed that all of the CYPs were expressed in differentiating epidermal cell cultures and in human epidermis, with the exception of CYP2B6, which was poorly expressed in vitro. Six CYPs were strongly up-regulated at Day 6 and Day 8 of in vitro differentiation (CYP4B1, 2W1, 2C18, 3A4, 2C19, 2C9); the increase in mRNA levels ranged from 27- to 356-fold. Only CYP2U1 mRNA levels decreased (6-fold change) during cellular differentiation. Six CYPs showed little variation (<2-fold change) in mRNA levels during in vitro differentiation (CYP2S1, 2J2, 1B1, 1A1, 2E1, 2D6). No single CYP was identifiable as being a functional counterpart to CYP2B19 in mouse skin since none qualified as being mainly responsible for epidermal epoxyeicosatrienoic acid formation. Rather, the data suggest that epoxyeicosatrienoic acids in human skin are formed by several CYPs expressed in different cell layers of the epidermis. This would predict that CYP-derived eicosanoids have different functions in different epidermal cell layers.

  16. The organic osmolyte betaine induces keratin 2 expression in rat epidermal keratinocytes - A genome-wide study in UVB irradiated organotypic 3D cultures.

    PubMed

    Rauhala, Leena; Hämäläinen, Lasse; Dunlop, Thomas W; Pehkonen, Petri; Bart, Geneviève; Kokkonen, Maarit; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-12-25

    The moisturizing and potentially protective properties of the organic osmolyte betaine (trimethylglycine) have made it an attractive component for skin care products. Its wide use despite the lack of comprehensive studies addressing its specific effects in skin led us to characterize the molecular targets of betaine in keratinocytes and to explore, whether it modifies the effects of acute UVB exposure. Genome-wide expression analysis was performed on organotypic cultures of rat epidermal keratinocytes, treated either with betaine (10mM), UVB (30 mJ/cm(2)) or their combination. Results were verified with qRT-PCR, western blotting and immunohistochemistry. Additionally, cell proliferation and differentiation were analyzed. Among the 89 genes influenced by betaine, the differentiation marker keratin 2 showed the highest upregulation, which was also confirmed at protein level. Expression of Egr1, a transcription factor, and Purkinje cell protein 4, a regulator of Ca(2+)/calmodulin metabolism, also increased, while downregulated genes included several ion-channel components, such as Fxyd2. Bioinformatics analyses suggest that genes modulated by betaine are involved in DNA replication, might counteract UV-induced processes, and include many targets of transcription factors associated with cell proliferation and differentiation. Our results indicate that betaine controls unique gene expression pathways in keratinocytes, including some involved in differentiation. PMID:26391144

  17. Down-Regulation of ClC-3 Expression Reduces Epidermal Stem Cell Migration by Inhibiting Volume-Activated Chloride Currents.

    PubMed

    Guo, Rui; Pan, Fuqiang; Tian, Yanping; Li, Hongli; Li, Shirong; Cao, Chuan

    2016-06-01

    ClC-3, a member of the ClC chloride (Cl(-)) channel family, has recently been proposed as the primary Cl(-) channel involved in cell volume regulation. Changes in cell volume influence excitability, contraction, migration, pathogen-host interactions, cell proliferation, and cell death processes. In this study, expression and function of ClC-3 channels were investigated during epidermal stem cell (ESC) migration. We observed differential expression of CLC-3 regulates migration of ESCs. Further, whole-cell patch-clamp recordings and image analysis demonstrated ClC-3 expression affected volume-activated Cl(-) current (I Cl,Vol) within ESCs. Live cell imaging systems, designed to observe cellular responses to overexpression and suppression of ClC-3 in real time, indicated ClC-3 may regulate ESC migratory dynamics. We employed IMARIS software to analyze the velocity and distance of ESC migration in vitro to demonstrate the function of ClC-3 channel in ESCs. As our data suggest volume-activated Cl(-) channels play a vital role in migration of ESCs, which contribute to skin repair by migrating from neighboring unwounded epidermis infundibulum, hair follicle or sebaceous glands, ClC-3 may represent a new and valuable target for stem cell therapies. PMID:26769712

  18. Restoration of miR-7 expression suppresses the growth of Lewis lung cancer cells by modulating epidermal growth factor receptor signaling.

    PubMed

    Li, Jingrong; Zheng, Yijie; Sun, Gengyun; Xiong, Shudao

    2014-12-01

    microRNAs are an abundant class of short endogenous non-coding RNAs that function as important regulators of multiple target genes and participate in diverse biological roles in carcinogenesis. However, the role of miR-7 in lung cancer remains unclear and requires further elucidation. In the present study, we found a reduction of miR-7 expression in Lewis lung cancer (3LL) cells originating from mice by real-time RT-PCR. Restoration of miR-7 inhibited 3LL cell proliferation, induced cell apoptosis in vitro and reduced tumorigenicity in vivo. We further confirmed that miR-7 downregulated the expression of both epidermal growth factor receptor (EGFR) and murine leukemia viral oncogene homologue-1 (RAF-1) oncogenes by real-time PCR and western blot analysis. Furthermore, inhibition of EGFR showed similar effects to miR-7 enforcement in 3LL cells. Taken together, these findings revealed that miR-7 acts as an antitumor miRNA in 3LL by targeting and suppressing the expression of both EGFR and RAF-1 oncogenes. This study may provide a rationale for the use of miR-7 in lung cancer target therapy. PMID:25334070

  19. Epidermal growth factor-expressing Lactococcus lactis enhances growth performance of early-weaned pigs fed diets devoid of blood plasma.

    PubMed

    Bedford, A; Li, Z; Li, M; Ji, S; Liu, W; Huai, Y; de Lange, C F M; Li, J

    2012-12-01

    The effect of supplementing Lactococcus lactis (L. lactis) that was engineered to express epidermal growth factor (EGF-LL) to early-weaned pigs fed diets with typical levels of blood plasma (5%) or diets without blood plasma [blood plasma was substituted with soybean (Glycine max) meal and fish meal, based on amino acid supply] was examined. A total of 108 weaned piglets (19-26 d of age; mean initial BW 6.58 kg; 9 pigs per pen) were fed ad libitum according to a 2-phase feeding program without growth promoters. Three pens were assigned to each of 4 treatments: i) blood plasma-containing diet with blank bacterial growth medium (BP-Con), ii) blood plasma-containing diet with fermented EGF-LL (BP-EGF), iii) blood plasma-free diet with blank bacterial growth medium (BPF-Con), and iv) blood plasma-free diet with fermented EGF-LL (BPF-EGF). The amount of epidermal growth factor (EGF) was determined in the fermentation product and pigs were allotted 60 μg EGF/kg BW/d for 3 wk postweaning. There were no differences in overall growth performance between BP-Con and BP-EGF pigs and no differences in overall growth performance between LoCon and BPF-EGF pigs. Pigs fed BPF-EGF showed increased daily BW gain (410 vs. 260 g/d; P < 0.01) and gain:feed (0.67 vs. 0.58; P < 0.05) compared to BPF-Con pigs in wk 3 postweaning; this was comparable to values for the BP-Con group (400 g/d and 0.64). These results indicate that supplementation with EGF-LL can be effective in enhancing the performance of early-weaned piglets fed a low complexity diet and reduces the need for feeding high-quality animal proteins and antibiotics. PMID:23365266

  20. Isolation, sequence, and expression of a human keratin K5 gene: transcriptional regulation of keratins and insights into pairwise control.

    PubMed Central

    Lersch, R; Stellmach, V; Stocks, C; Giudice, G; Fuchs, E

    1989-01-01

    The mitotically active basal layers of most stratified squamous epithelia express 10 to 30% of their total protein as keratin. The two keratins specifically expressed in these cells are the type II keratin K5 (58 kilodaltons) and its corresponding partner, type I keratin K14 (50 kilodaltons), both of which are essential for the formation of 8-nm filaments. Dissecting the molecular mechanisms underlying the coordinate regulation of the two keratins is an important first step in understanding epidermal differentiation and in designing promoters that will enable delivery and expression of foreign gene products in stratified squamous epithelia, e.g., skin. Previously, we reported the sequence of the gene encoding human K14 (D. Marchuk, S. McCrohon, and E. Fuchs, Cell 39:491-498, 1984; Marchuk et al., Proc. Natl. Acad. Sci. USA 82:1609-1613, 1985). We have now isolated and characterized the gene encoding human K5. The sequence of the coding portion of this gene matched perfectly with that of a partial K5 cDNA sequence obtained from a cultured human epidermal library (R. Lersch and E. Fuchs, Mol. Cell. Biol. 8:486-493, 1988), and gene transfection studies indicated that the gene is functional. Nuclear runoff experiments demonstrated that the K5 and K14 genes were both transcribed at dramatically higher levels in cultured human epidermal cells than in fibroblasts, indicating that at least part of the regulation of the expression of this keratin pair is at the transcriptional level. When the K5 gene was transfected transiently into NIH 3T3 fibroblasts, foreign expression of the gene caused the appearance of endogenous mouse K14 and the subsequent formation of a keratin filament array in the cells. In this case, transcriptional changes did not appear to be involved in the regulation, suggesting that there may be multiple control mechanisms underlying the pairwise expression of keratins. Images PMID:2476664

  1. IL-21 Receptor Expression in Human Tendinopathy

    PubMed Central

    Campbell, Abigail L.; Smith, Nicola C.; Reilly, James H.; Kerr, Shauna C.; Leach, William J.; Fazzi, Umberto G.; Rooney, Brian P.; Murrell, George A. C.; Millar, Neal L.

    2014-01-01

    The pathogenetic mechanisms underlying tendinopathy remain unclear, with much debate as to whether inflammation or degradation has the prominent role. Increasing evidence points toward an early inflammatory infiltrate and associated inflammatory cytokine production in human and animal models of tendon disease. The IL-21/IL-21R axis is a proinflammatory cytokine complex that has been associated with chronic inflammatory diseases including rheumatoid arthritis and inflammatory bowel disease. This project aimed to investigate the role and expression of the cytokine/receptor pair IL-21/IL-21R in human tendinopathy. We found significantly elevated expression of IL-21 receptor message and protein in human tendon samples but found no convincing evidence of the presence of IL-21 at message or protein level. The level of expression of IL-21R message/protein in human tenocytes was significantly upregulated by proinflammatory cytokines (TNFα/IL-1β) in vitro. These findings demonstrate that IL-21R is present in early human tendinopathy mainly expressed by tenocytes and macrophages. Despite a lack of IL-21 expression, these data again suggest that early tendinopathy has an inflammatory/cytokine phenotype, which may provide novel translational targets in the treatment of tendinopathy. PMID:24757284

  2. Age-associated decrease in GDNF and its cognate receptor GFRα-1 protein expression in human skin.

    PubMed

    Adly, Mohamed A; Assaf, Hanan A; Hussein, Mahmoud Rezk Abdelwahed

    2016-06-01

    Glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor (GFRα-1) are expressed in normal human skin. They are involved in murine hair follicle morphogenesis and cycling control. We hypothesize that 'GDNF and GFRα-1 protein expression in human skin undergoes age-associated alterations. To test our hypothesis, the expression of these proteins was examined in human skin specimens obtained from 30 healthy individuals representing three age groups: children (5-18 years), adults (19-60 years) and the elderly (61-81 years). Immunofluorescent and light microscopic immunohistologic analyses were performed using tyramide signal amplification and avidin-biotin complex staining methods respectively. GDNF mRNA expression was examined by RT-PCR analysis. GDNF mRNA and protein as well as GFRα-1 protein expressions were detected in normal human skin. We found significantly reduced epidermal expression of these proteins with ageing. In the epidermis, the expression was strong in the skin of children and declined gradually with ageing, being moderate in adults and weak in the elderly. In children and adults, the expression of both GDNF and GFRα-1 proteins was strongest in the stratum basale and decreased gradually towards the surface layers where it was completely absent in the stratum corneum. In the elderly, GDNF and GFRα-1 protein expression was confined to the stratum basale. In the dermis, both GDNF and GFRα-1 proteins had strong expressions in the fibroblasts, sweat glands, sebaceous glands, hair follicles and blood vessels regardless of the age. Thus there is a decrease in epidermal GDNF and GFRα-1 protein expression in normal human skin with ageing. Our findings suggest that the consequences of this is that GFRα-1-mediated signalling is altered during the ageing process. The clinical and therapeutic ramifications of these observations mandate further investigations. PMID:27346872

  3. c-Rel in Epidermal Homeostasis: A Spotlight on c-Rel in Cell Cycle Regulation.

    PubMed

    Lorenz, Verena N; Schön, Michael P; Seitz, Cornelia S

    2016-06-01

    To maintain proper skin barrier function, epidermal homeostasis requires a subtly governed balance of proliferating and differentiating keratinocytes. While differentiation takes place in the suprabasal layers, proliferation, including mitosis, is usually restricted to the basal layer. Only recently identified as an important regulator of epidermal homeostasis, c-Rel, an NF-κB transcription factor subunit, affects the viability and proliferation of epidermal keratinocytes. In human keratinocytes, decreased expression of c-Rel causes a plethora of dysregulated cellular functions including impaired cell viability, increased apoptosis, and abnormalities during mitosis and cell cycle regulation. On the other hand, c-Rel shows aberrant expression in many epidermal tumors. Here, in the context of its role in different cell types and compared with other NF-κB subunits, we discuss the putative function of c-Rel as a regulator of epidermal homeostasis and mitotic progression. In addition, implications for disease pathophysiology with perturbed c-Rel function and abnormal homeostasis, such as epidermal carcinogenesis, will be discussed. PMID:27032306

  4. Quantitative differences in host cell reactivation of ultraviolet-damaged virus in human skin fibroblasts and epidermal keratinocytes cultured from the same foreskin biopsy

    SciTech Connect

    Tyrrell, R.M.; Pidoux, M.

    1986-06-01

    Repair efficiency of cultured cells may be estimated by measuring the ability of a particular cell type to support virus damaged by an appropriate agent. In this study we have compared the inactivation of ultraviolet (254 nm)-damaged herpes simplex virus in human fibroblast and epidermal keratinocyte cell lines derived from the same foreskin biopsy and found the epithelial cells to be a factor of 3 times less efficient in supporting the damaged virus. The two different cell types show comparable ultraviolet inactivation of clone-forming ability, indicating that the difference is specific to viral host cell reactivation. This study required the development of a quantitative infectious centers assay for the measurement of viral titer in human epithelial cells, a system which may be of more general application in studies of potential human carcinogens.

  5. Enhancement of Recombinant Adeno-Associated Virus Type 2-Mediated Transgene Expression in a Lung Epithelial Cell Line by Inhibition of the Epidermal Growth Factor Receptor

    PubMed Central

    Smith, Andrew D.; Collaco, Roy F.; Trempe, James P.

    2003-01-01

    Recombinant adeno-associated viruses (rAAVs) have attracted considerable interest as gene delivery systems because they show long-term expression in vivo and transduce numerous cell types. Limitations to successful gene transduction from rAAVs have prompted investigations of a variety of treatments to enhance transgene expression from rAAV vectors. Tyrphostin-1, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, dramatically enhances rAAV transgene expression. Elegant studies have demonstrated that a single-strand D-sequence-binding protein (ssDBP) is phosphorylated by EGFR and binds to the D sequence element in the AAV terminal repeat (TR). Binding of the Tyr-phosphorylated ssDBP prevents conversion of single-stranded vector DNA to a double-strand conformation. We observed dramatic increases in transgene expression in lung epithelial cells (IB3) with tyrphostin treatment. Gel shift analysis of ssDBP revealed that its DNA binding characteristics were unchanged after tyrphostin treatment or adenovirus infection. Tyrphostin stimulated rAAV transgene expression to a greater extent than adenovirus coinfection. Southern hybridizations revealed that the vector DNA remained in the single-strand conformation in tyrphostin-treated cells but double-stranded replicative form monomer DNA was most abundant in adenovirus-infected cells. Northern analyses revealed that tyrphostin treatment enhanced mRNA accumulation more than in adenovirus-infected cultures even though replicative form DNA was undetectable. Analysis of the JNK, ERK, and p38K mitogen-activated protein kinase pathways revealed that tyrphostin treatment stimulated the activity of JNK and p38K. Our data suggest that tyrphostin-induced alteration of stress response pathways results in dramatic enhancement of transcription on linear vector DNA templates in the IB3 cell line. These results expand the downstream targets of the EGFR in regulating rAAV transduction. PMID:12743297

  6. Differential expression of epidermal growth factor and transforming growth factor beta isoforms in dog endometrium during different periods of the estrus cycle.

    PubMed

    Bukowska, D; Kempisty, B; Jackowska, M; Woźna, M; Antosik, P; Piotrowska, H; Jaśkowski, J M

    2011-01-01

    Both epidermal growth factor (EGF) and transforming growth factor (TGF) play an important physiological role in the processes of proliferation and differentiation of several different cell types. However, the expression profiles of these factors in domestic bitches endometrium are still poorly recognized. The aim of the present study was to identify and analyze the differential expression of these factors in various stages of the estrus cycle. Endometrial tissue from proestrus (n = 17), estrus (n = 10), day 10 diestrus (n = 15), day 35 diestrus (n = 18) and anestrus (n = 25) was collected soon after ovariohysterectomy. Total RNA was isolated from the endometrium by means of Chomczyński and Sacchi method, treated by DNase I, and reverse-transcribed into cDNA. Quantitative analysis of EGF, TGFbeta1, TGFbeta2, and TGFbeta3 cDNA was performed by real-time quantitative polymerase chain reaction (RT-PCR). EGF expression in canine endometrium was increased in the estrus stage as compared to proestrus (P < 0.05), day 10 diestrus (P < 0.05), day 35 diestrus (P < 0.01) and anestrus (P < 0.001). We also found the differences in EGF expression between day 10 and day 35 of estrus as well as between day 35 of estrus with anestrus (P < 0.05, P < 0.01, respectively). The TGFf1 transcript contents were also higher in estrus as compared to other stages (P < 0.01). The TGFbeta2 and TGFbeta3 in the estrus stage was increased compared to proestrus, day 10 diestrus, day 35 diestrus and anestrus (P < 0.05). We proved that expression of EGF and TGFbeta transcript isoforms is related to the phase of estrus in bitches and therefore may be regulated by specific hormone concentrations during these periods. Our results confirm the hypothesis that these growth factors play a role in the regulation of biochemical changes in the endometrial tissues during the estrus cycle. PMID:21721411

  7. Localization and distribution of neurons that co-express xeroderma pigmentosum-A and epidermal growth factor receptor within Rosenthal's canal.

    PubMed

    Guthrie, O'neil W

    2015-10-01

    Xeroderma pigmentosum-A (XPA) is a C4-type zinc-finger scaffolding protein that regulates the removal of bulky-helix distorting DNA damage products from the genome. Phosphorylation of serine residues within the XPA protein is associated with improved protection of genomic DNA and cell death resistance. Therefore, kinase signaling is one important mechanism for regulating the protective function of XPA. Previous experiments have shown that spiral ganglion neurons (SGNs) may mobilize XPA as a general stress response to chemical and physical ototoxicants. Therapeutic optimization of XPA via kinase signaling could serve as a means to improve DNA repair capacity within neurons following injury. The kinase signaling activity of the epidermal growth factor receptor (EGFR) has been shown in tumor cell lines to increase the repair of DNA damage products that are primarily repaired by XPA. Such observations suggest that EGFR may regulate the protective function of XPA. However, it is not known whether SGNs in particular or neurons in general could co-express XPA and EGFR. In the current study gene and protein expression of XPA and EGFR were determined from cochlear homogenates. Immunofluorescence assays were then employed to localize neurons expressing both EGFR and XPA within the ganglion. This work was then confirmed with double-immunohistochemistry. Rosenthal's canal served as the reference space in these experiments and design-based stereology was employed in first-order stereology quantification of immunoreactive neurons. The results confirmed that a population of SGNs that constitutively express XPA may also express the EGFR. These results provide the basis for future experiments designed to therapeutically manipulate the EGFR in order to regulate XPA activity and restore gene function in neurons following DNA damage. PMID:26493720

  8. Functional cyclic AMP response element in the breast cancer resistance protein (BCRP/ABCG2) promoter modulates epidermal growth factor receptor pathway- or androgen withdrawal-mediated BCRP/ABCG2 transcription in human cancer cells.

    PubMed

    Xie, Yi; Nakanishi, Takeo; Natarajan, Karthika; Safren, Lowell; Hamburger, Anne W; Hussain, Arif; Ross, Douglas D

    2015-03-01

    Phosphorylated cyclic-AMP (cAMP) response element binding protein (p-CREB) is a downstream effector of a variety of important signaling pathways. We investigated whether the human BCRP promoter contains a functional cAMP response element (CRE). 8Br-cAMP, a cAMP analogue, increased the activity of a BCRP promoter reporter construct and BCRP mRNA in human carcinoma cells. Epidermal growth factor receptor (EGFR) pathway activation also led to an increase in p-CREB and in BCRP promoter reporter activity via two major downstream EGFR signaling pathways: the phosphotidylinositol-3-kinase (PI3K)/AKT pathway and the mitogen-activated protein kinase (MAPK) pathway. EGF treatment increased the phosphorylation of EGFR, AKT, ERK and CREB, while simultaneously enhancing BCRP mRNA and functional protein expression. EGF-stimulated CREB phosphorylation and BCRP induction were diminished by inhibition of EGFR, PI3K/AKT or RAS/MAPK signaling. CREB silencing using RNA interference reduced basal levels of BCRP mRNA and diminished the induction of BCRP by EGF. Chromatin immunoprecipitation assays confirmed that a putative CRE site on the BCRP promoter bound p-CREB by a point mutation of the CRE site abolished EGF-induced stimulation of BCRP promoter reporter activity. Furthermore, the CREB co-activator, cAMP-regulated transcriptional co-activator (CRTC2), is involved in CREB-mediated BCRP transcription: androgen depletion of LNCaP human prostate cancer cells increased both CREB phosphorylation and CRTC2 nuclear translocation, and enhanced BCRP expression. Silencing CREB or CRTC2 reduced basal BCRP expression and BCRP induction under androgen-depletion conditions. This novel CRE site plays a central role in mediating BCRP gene expression in several human cancer cell lines following activation of multiple cancer-relevant signaling pathways. PMID:25615818

  9. Autoantibodies to Type VII Collagen Mediate Fcγ-Dependent Neutrophil Activation and Induce Dermal-Epidermal Separation in Cryosections of Human Skin

    PubMed Central

    Sitaru, Cassian; Kromminga, Arno; Hashimoto, Takashi; Bröcker, Eva B.; Zillikens, Detlef

    2002-01-01

    Epidermolysis bullosa acquisita is an autoimmune subepidermal blistering disease associated with autoantibodies to type VII collagen, the major constituent of anchoring fibrils. Previous attempts to demonstrate the blister-inducing potential of autoantibodies to this protein have failed. To address this question, we used an in vitro model involving cryosections of human skin incubated with patients’ autoantibodies and leukocytes from healthy donors. We show that sera from 14 of 16 epidermolysis bullosa acquisita patients, in contrast to sera from healthy controls, induced dermal-epidermal separation in the cryosections. Recruitment and activation of neutrophils at the dermal-epidermal junction was necessary for split induction, whereas mononuclear cells were not required. Importantly, patients’ autoantibodies affinity-purified against a recombinant form of the noncollagenous 1 domain of type VII collagen retained their blister-inducing capacity in a dose-dependent manner, whereas patients’ IgG that was depleted of reactivity to type VII collagen lost this ability. Monoclonal antibody LH7.2 to the noncollagenous 1 domain of type VII collagen also induced subepidermal splits in the cryosections; F(ab′)2 fragments of autoantibodies to type VII collagen were not pathogenic. We demonstrate the capacity of autoantibodies to type VII collagen to trigger an Fcγ-dependent inflammation leading to split formation in cryosections of human skin. PMID:12107115

  10. The desmosomal protein Desmoglein 1 aids recovery of epidermal differentiation after acute ultraviolet light exposure

    PubMed Central

    Johnson, Jodi L.; Koetsier, Jennifer L.; Sirico, Anna; Agidi, Ada T.; Antonini, Dario; Missero, Caterina; Green, Kathleen J.

    2014-01-01

    Epidermal structure is damaged by exposure to ultraviolet (UV) light but the molecular mechanisms governing structural repair are largely unknown. UVB (290-320 nm wavelengths) exposure prior to induction of differentiation reduced expression of differentiation-associated proteins, including Desmoglein 1 (Dsg1), Desmocollin 1 (Dsc1) and Keratins 1 and 10 (K1/K10) in a dose-dependent manner in normal human epidermal keratinocytes (NHEKs). The UVB- induced reduction in both Dsg1 transcript and protein was associated with reduced binding of the p63 transcription factor to previously unreported enhancer regulatory regions of the Dsg1 gene. Since Dsg1 promotes epidermal differentiation in addition to participating in cell-cell adhesion, the role of Dsg1 in aiding differentiation after UVB damage was tested. Compared to controls, depleting Dsg1 via shRNA resulted in further reduction of Dsc1 and K1/K10 expression in monolayer NHEK cultures and in abnormal epidermal architecture in organotypic skin models recovering from UVB exposure. Ectopic expression of Dsg1 in keratinocyte monolayers rescued the UVB-induced differentiation defect. Treatment of UVB-exposed monolayer or organotypic cultures with Trichostatin A, a histone deacetylase inhibitor, partially restored differentiation marker expression, suggesting a potential therapeutic strategy for reversing UV-induced impairment of epidermal differentiation after acute sun exposure. PMID:24594668

  11. Expression and clinical significance of epidermal growth factor receptor and insulin-like growth factor receptor 1 in patients with ampullary adenocarcinoma.

    PubMed

    Xia, Michelle; Overman, Michael J; Rashid, Asif; Chatterjee, Deyali; Wang, Hua; Katz, Matthew H; Fleming, Jason B; Lee, Jeffery E; Varadhachary, Gauri R; Wolff, Robert A; Wang, Huamin

    2015-09-01

    Epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor 1 (IGF-1R) play important roles in cell proliferation, antiapoptosis, angiogenesis, and metastasis and have been used for targeted therapies for patients with advanced colorectal and lung cancers. However, the expression and function of EGFR and IGF-1R in ampullary adenocarcinoma (AA) have not been examined in detail. We examined the expression of EGFR and IGF-1R in 106 AA patients at our institution using tissue microarrays and immunohistochemistry. The results were correlated with the clinicopathological parameters and survival. Overexpression of EGFR and IGF-1R was detected in 18 (17%) and 26 (25%) of AAs, respectively. Patients with EGFR-high tumors had shorter overall survival (mean, 109.8 ± 22.3 months) than those patients whose tumors were EGFR-low in overall study population (mean, 164.2 ± 10.6 months; P = .04). Overexpression of EGFR correlated with poor overall survival in patients with intestinal-type AA (P = .01) but not in those with pancreaticobiliary-type AAs (P = .47). In multivariate analysis, EGFR overexpression was an independent prognostic factor for overall survival (P = .02). In addition, we found that overexpression of IGF-1R correlated with AAs of pancreaticobiliary histology. No additional correlation between the expression of EGFR or IGF-1R and other clinicopathological factors was observed in our patient population. Our study demonstrates that EGFR and IGF-1R appear to be overexpressed in a subset of AAs and that strong membranous expression of EGFR is an independent predictor for overall survival in patients with AA. EGFR and IGF-1R represent potential therapeutic targets for treatment of patient with AAs. PMID:26165226

  12. Heparin-binding epidermal growth factor-like growth factor in hippocampus: modulation of expression by seizures and anti-excitotoxic action.

    PubMed

    Opanashuk, L A; Mark, R J; Porter, J; Damm, D; Mattson, M P; Seroogy, K B

    1999-01-01

    The expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), an EGF receptor ligand, was investigated in rat forebrain under basal conditions and after kainate-induced excitotoxic seizures. In addition, a potential neuroprotective role for HB-EGF was assessed in hippocampal cultures. In situ hybridization analysis of HB-EGF mRNA in developing rat hippocampus revealed its expression in all principle cell layers of hippocampus from birth to postnatal day (P) 7, whereas from P14 through adulthood, expression decreased in the pyramidal cell layer versus the dentate gyrus granule cells. After kainate-induced excitotoxic seizures, levels of HB-EGF mRNA increased markedly in the hippocampus, as well as in several other cortical and limbic forebrain regions. In the hippocampus, HB-EGF mRNA expression increased within 3 hr after kainate treatment, continued to increase until 24 hr, and then decreased; increases occurred in the dentate gyrus granule cells, in the molecular layer of the dentate gyrus, and in and around hippocampal pyramidal CA3 and CA1 neurons. At 48 hr after kainate treatment, HB-EGF mRNA remained elevated in vulnerable brain regions of the hippocampus and amygdaloid complex. Western blot analysis revealed increased levels of HB-EGF protein in the hippocampus after kainate administration, with a peak at 24 hr. Pretreatment of embryonic hippocampal cell cultures with HB-EGF protected neurons against kainate toxicity. The kainate-induced elevation of [Ca2+]i in hippocampal neurons was not altered in cultures pretreated with HB-EGF, suggesting an excitoprotective mechanism different from that of previously characterized excitoprotective growth factors. Taken together, these results suggest that HB-EGF may function as an endogenous neuroprotective agent after seizure-induced neural activity/injury. PMID:9870945

  13. Fibrillin-3 expression in human development

    PubMed Central

    Sabatier, Laetitia; Miosge, Nicolai; Hubmacher, Dirk; Lin, Guoqing; Davis, Elaine C.; Reinhardt, Dieter P.

    2016-01-01

    Fibrillin proteins are the major components of extracellular microfibrils found in many connective tissues. Fibrillin-1 and fibrillin-2 are well studied and mutations in these proteins cause a number of fibrillinopathies including Marfan syndrome and congenital contractural arachnodactyly, respectively. Fibrillin-3 was more recently discovered and is much less well characterized. Fibrillin-1 is expressed throughout life, whereas fibrillin-2 and -3 are thought to be primarily present during development. Here, we report detailed fibrillin-3 expression patterns in early human development. A polyclonal antiserum against a C-terminal recombinant half of human fibrillin-3 was produced in rabbit. Anti-fibrillin-3 antibodies were affinity-purified and antibodies cross-reacting with the other fibrillins were removed by absorption resulting in specific anti-fibrillin-3 antibodies. Immunohistochemical analyses with these purified antibodies demonstrate that fibrillin-3 is temporally expressed in numerous tissues relatively evenly from the 6th to the 12th gestational week. Fibrillin-3 was found spatially expressed in perichondrium, perineurium, perimysium, skin, developing bronchi, glomeruli, pancreas, kidney, heart and testis and at the prospective basement membranes in developing epithelia and endothelia. Double immunohistochemical analyses showed that all fibrillins are globally expressed in the same organs, with a number of differences on the tissue level in cartilage, perichondrium and developing bronchi. These results suggest that fibrillin-3, compared to the other fibrillins, fulfills both overlapping and distinct functions in human development. PMID:20970500

  14. Epidermal growth factor and Ras regulate gene expression in GH4 pituitary cells by separate, antagonistic signal transduction pathways.

    PubMed Central

    Pickett, C A; Gutierrez-Hartmann, A

    1995-01-01

    We have previously demonstrated that epidermal growth factor (EGF) produces activation of the rat prolactin (rPRL) promoter in GH4 neuroendocrine cells via a Ras-independent mechanism. This Ras independence of the EGF response appears to be cell rather than promoter specific. Oncogenic Ras also produces activation of the rPRL promoter when transfected into GH4 cells and requires the sequential activation of Raf kinase, mitogen-activated protein (MAP) kinase, and c-Ets-1/GHF-1 to mediate this response. In these studies, we have investigated the interaction between EGF and Ras in stimulating rPRL promoter activity and the role of Raf and MAP kinases in mediating the EGF response. We have also examined the role of several transcription factors and used various promoter mutants of the rPRL gene in order to better define the trans- and cis-acting components of the EGF response. EGF treatment of GH4 cells inhibits activation of the rPRL promoter produced by transfection of V12Ras from 24- to 4-fold in an EGF dose-dependent manner. This antagonistic effect of EGF and Ras is mutual in that transfection of V12Ras also blocks EGF-induced activation of the rPRL promoter in a Ras dose-dependent manner, from 5.5- to 1.6-fold. Transfection of a plasmid encoding the dominant-negative Raf C4 blocks Ras-induced activation by 66% but fails to inhibit EGF-mediated activation of the rPRL promoter. Similarly, transfection of a construct encoding an inhibitory form of MAP kinase decreases the Ras response by 50% but does not inhibit the EGF response. Previous studies have demonstrated that c-Ets-1 is necessary and that GHF-1 acts synergistically with c-Ets-1 in the Ras response of the rPRL promoter. In contrast, overexpression of neither c-Ets-1 nor GHF-1 enhanced EGF-mediated activation of the rPRL promoter, and dominant-negative forms of these transcription factors failed to inhibit the EGF response. Using 5' deletion and site-specific mutations, we have mapped the EGF response to two

  15. The in situ repair kinetics of epidermal thymine dimers and 6-4 photoproducts in human skin types I and II.

    PubMed

    Young, A R; Chadwick, C A; Harrison, G I; Hawk, J L; Nikaido, O; Potten, C S

    1996-06-01

    We assessed the in situ time-dependent loss of epidermal thymine dimers and 6-4 photoproducts in skin types I and II after exposure to two minimal erythema doses of solar-simulating radiation on previously unexposed buttock skin. Using quantitative image analysis, we evaluated biopsy sections stained with monoclonal antibodies. We then made comparisons, in the same volunteers, with unscheduled DNA synthesis, which is a direct marker of overall excision repair. Removal of thymine dimers was slow (half-life = 33.3 h), with high levels of lesions still present 24 h post-irradiation; some lesions were still present at 7 d. In contrast, removal of 6-4 photoproducts was rapid (half-life = 2.3 h), the decay kinetics of which correlated better with the decline in epidermal unscheduled DNA synthesis (half-life = 7.1 h). These data show that as in mouse, monkey, and in vitro models, the 6-4 photolesion is repaired preferentially in human epidermis in situ. They also raise the possibility that poor thymine dimer repair may be a feature of skin types I and II, who are more prone to skin cancer than are types III and IV. There was an inverse relationship between the onset of erythema and 6-4 photoproduct repair, suggesting that this repair process initiates erythema. PMID:8752675

  16. Genetic and pharmacological analysis identifies a physiological role for the AHR in epidermal differentiation

    PubMed Central

    van den Bogaard, Ellen; Podolsky, Michael; Smits, Jos; Cui, Xiao; John, Christian; Gowda, Krishne; Desai, Dhimant; Amin, Shantu; Schalkwijk, Joost; Perdew, Gary H.

    2015-01-01

    Stimulation of the aryl hydrocarbon receptor (AHR) by xenobiotics is known to affect epidermal differentiation and skin barrier formation. The physiological role of endogenous AHR signaling in keratinocyte differentiation is not known. We used murine and human skin models to address the hypothesis that AHR activation is required for normal keratinocyte differentiation. Using transcriptome analysis of Ahr-/- and Ahr+/+ murine keratinocytes, we found significant enrichment of differentially expressed genes linked to epidermal differentiation. Primary Ahr-/- keratinocytes showed a significant reduction in terminal differentiation gene and protein expression, similar to Ahr+/+ keratinocytes treated with AHR antagonists GNF351 and CH223191, or the selective AHR modulator (SAhRM), SGA360. In vitro keratinocyte differentiation led to increased AHR levels and subsequent nuclear translocation, followed by induced CYP1A1 gene expression. Monolayer cultured primary human keratinocytes treated with AHR antagonists also showed an impaired terminal differentiation program. Inactivation of AHR activity during human skin equivalent development severely impaired epidermal stratification, terminal differentiation protein expression and stratum corneum formation. As disturbed epidermal differentiation is a main feature of many skin diseases, pharmacological agents targeting AHR signaling or future identification of endogenous keratinocyte-derived AHR ligands should be considered as potential new drugs in dermatology. PMID:25602157

  17. Photoacoustic measurement of epidermal melanin

    NASA Astrophysics Data System (ADS)

    Viator, John A.; Svaasand, Lars O.; Aguilar, Guillermo; Choi, Bernard; Nelson, J. Stuart

    2003-06-01

    Most dermatologic laser procedures must consider epidermal melanin, as it is a broadband optical absorber which affects subsurface fluence, effectively limiting the amount of light reaching the dermis and targeted chromophores. An accurate method for quantifying epidermal melanin content would aid clinicians in determining proper light dosage for therapeutic laser procedures. While epidermal melanin content has been quantified non-invasively using optical methods, there is currently no way to determine the melanin distribution in the epidermis. We have developed a photoacoustic probe that uses a Q-switched, frequency doubled Nd:YAG laser operating at 532nm to generate acoustic pulses in skin in vivo. The probe contained a piezoelectric element that detected photoacoustic waves which were then analyzed for epidermal melanin content, using a photoacoustic melanin index (PAMI). We tested 15 human subjects with skin types I--VI using the photoacoustic probe. We also present photoacoustic data for a human subject with vitiligo. Photoacoustic measurement showed melanin in the vitiligo subject was almost completely absent.

  18. Involvement of cysteine-rich protein 61 in the epidermal growth factor-induced migration of human anaplastic thyroid cancer cells.

    PubMed

    Chin, Li-Han; Hsu, Sung-Po; Zhong, Wen-Bin; Liang, Yu-Chih

    2016-05-01

    Anaplastic thyroid cancer (ATC) is among the most aggressive types of malignant cancer. Epidermal growth factor (EGF) plays a crucial role in the pathogenesis of ATC, and patients with thyroid carcinoma typically exhibit increased cysteine-rich protein 61 (Cyr61). In this study, we found that EGF treatment induced cell migration, stress fiber formation, Cyr61 mRNA and protein expressions, and Cyr61 protein secretion in ATC cells. The recombinant Cyr61 protein significantly induced cell migration; however, inhibition of Cyr61 activity by a Cyr61-specific antibody abrogated EGF-induced cell migration. EGF treatment also affected epithelial-to-mesenchymal transition (EMT)-related marker protein expression, as evidenced by an increase in vimentin and a decrease in E-cadherin expression. Inhibition of Cyr61 expression by Cyr61 siRNA decreased cell migration and reversed the EMT-related marker protein expression. EGF treatment increased the phosphorylation of the extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB), and finally activated Cyr61 promoter plasmid activity. Our results suggest that Cyr61 is induced by EGF through the ERK/CREB signal pathway and that it plays a crucial role in the migration and invasion of ATC cells; moreover, Cyr61 might be a therapeutic target for metastatic ATC. © 2015 Wiley Periodicals, Inc. PMID:25773758

  19. High Expression of the Tonoplast Aquaporin ZmTIP1 in Epidermal and Conducting Tissues of Maize1

    PubMed Central

    Barrieu, François; Chaumont, François; Chrispeels, Maarten J.

    1998-01-01

    Aquaporins are integral membrane proteins of the tonoplast and the plasma membrane that facilitate the passage of water through these membranes. Because of their potentially important role in regulating water flow in plants, studies documenting aquaporin gene expression in specialized tissues involved in water and solute transport are important. We used in situ hybridization to examine the expression pattern of the tonoplast aquaporin ZmTIP1 in different organs of maize (Zea mays L.). This tonoplast water channel is highly expressed in the root epidermis, the root endodermis, the small parenchyma cells surrounding mature xylem vessels in the root and the stem, phloem companion cells and a ring of cells around the phloem strand in the stem and the leaf sheath, and the basal endosperm transfer cells in developing kernels. We postulate that the high level of expression of ZmTIP1 in these tissues facilitates rapid flow of water through the tonoplast to permit osmotic equilibration between the cytosol and the vacuolar content, and to permit rapid transcellular water flow through living cells when required. PMID:9701571

  20. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries.

    PubMed

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard

    2004-09-01

    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents. PMID:15518242

  1. Development of Transgenic Minipigs with Expression of Antimorphic Human Cryptochrome 1

    PubMed Central

    Liu, Chunxin; Bolund, Lars; Vajta, Gábor; Dou, Hongwei; Yang, Wenxian; Xu, Ying; Luan, Jing; Wang, Jun; Yang, Huanming; Staunstrup, Nicklas Heine; Du, Yutao

    2013-01-01

    Minipigs have become important biomedical models for human ailments due to similarities in organ anatomy, physiology, and circadian rhythms relative to humans. The homeostasis of circadian rhythms in both central and peripheral tissues is pivotal for numerous biological processes. Hence, biological rhythm disorders may contribute to the onset of cancers and metabolic disorders including obesity and type II diabetes, amongst others. A tight regulation of circadian clock effectors ensures a rhythmic expression profile of output genes which, depending on cell type, constitute about 3–20% of the transcribed mammalian genome. Central to this system is the negative regulator protein Cryptochrome 1 (CRY1) of which the dysfunction or absence has been linked to the pathogenesis of rhythm disorders. In this study, we generated transgenic Bama-minipigs featuring expression of the Cys414-Ala antimorphic human Cryptochrome 1 mutant (hCRY1AP). Using transgenic donor fibroblasts as nuclear donors, the method of handmade cloning (HMC) was used to produce reconstructed embryos, subsequently transferred to surrogate sows. A total of 23 viable piglets were delivered. All were transgenic and seemingly healthy. However, two pigs with high transgene expression succumbed during the first two months. Molecular analyzes in epidermal fibroblasts demonstrated disturbances to the expression profile of core circadian clock genes and elevated expression of the proinflammatory cytokines IL-6 and TNF-α, known to be risk factors in cancer and metabolic disorders. PMID:24146819

  2. Mitogen-activated protein kinase kinase 1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors sensitize reduced glucocorticoid response mediated by TNF{alpha} in human epidermal keratinocytes (HaCaT)

    SciTech Connect

    Onda, Kenji . E-mail: knjond@ps.toyaku.ac.jp; Nagashima, Masahiro; Kawakubo, Yo; Inoue, Shota; Hirano, Toshihiko; Oka, Kitaro

    2006-12-08

    Glucocorticoids (GCs) are essential drugs administered topically or systematically for the treatment of autoimmune skin diseases such as pemphigus. However, a certain proportion of patients does not respond well to GCs. Although studies on the relationship between cytokines and GC insensitivity in local tissues have attracted attention recently, little is known about the underlying mechanism(s) for GC insensitivity in epidermal keratinocytes. Here, we report that tumor necrosis factor (TNF) {alpha} reduces GC-induced transactivation of endogenous genes as well as a reporter plasmid which contains GC responsive element (GRE) in human epidermal keratinocyte cells (HaCaT). The GC insensitivity by TNF{alpha} was not accompanied by changes in mRNA expressions of GR isoforms ({alpha} or {beta}). However, we observed that mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors (PD98059 and U0126) significantly sensitized the GC-induced transactivation of anti-inflammatory genes (glucocorticoid-induced leucine zipper (GILZ) and mitogen-activated protein kinase phosphatase (MKP)-1) and FK506 binding protein (FKBP) 51 gene in the presence of TNF{alpha}. Additionally, we observed that TNF{alpha} reduced prednisolone (PSL)-dependent nuclear translocation of GR, which was restored by pre-treatment of MEK-1 inhibitors. This is the first study demonstrating a role of the MEK-1/ERK cascade in TNF{alpha}-mediated GC insensitivity. Our data suggest that overexpression of TNF{alpha} leads to topical GC insensitivity by reducing GR nuclear translocation in keratinocytes, and our findings also suggest that inhibiting the MEK-1/ERK cascade may offer a therapeutic potential for increasing GC efficacy in epidermis where sufficient inflammatory suppression is required.

  3. Mechanistic Effects of Long-Term Ultraviolet B Irradiation Induce Epidermal and Dermal Changes in Human Skin Xenografts

    PubMed Central

    Hachiya, Akira; Sriwiriyanont, Penkanok; Fujimura, Tsutomu; Ohuchi, Atsushi; Kitahara, Takashi; Takema, Yoshinori; Kitzmiller, William J.; Visscher, Marty O.; Tsuboi, Ryoji; Boissy, Raymond E.

    2009-01-01

    UVB irradiation has been reported to induce photoaging and suppress systemic immune function that could lead to photocarcinogenesis. However, because of the paucity of an UVB-induced photodamaged skin model, precise and temporal mechanism(s) underlying the deleterious effects of long-term UVB exposure on human skin have yet to be delineated. In this study, we established a model using human skin xenografted onto severe combined immunodeficient mice, which were subsequently challenged by repeated UVB irradiation for 6 weeks. Three-dimensional optical image analysis of skin replicas and noninvasive biophysical measurements illustrated a significant increase in skin surface roughness, similar to premature photoaging, and a significant loss of skin elasticity after long-term UVB exposure. Resembling authentically aged skin, UVB-exposed samples exhibited significant increases in epithelial keratins (K6, K16, K17), elastins, and matrix metalloproteinases (MMP-1, MMP-9, MMP-12) as well as degradation of collagens (I, IV, VII). The UVB-induced deterioration of fibrous keratin intermediate filaments was also observed in the stratum corneum. Additionally, similarities in gene expression patterns between our model and chronologically aged skin substantiated the plausible relationship between photodamage and chronological age. Furthermore, severe skin photodamage was observed when neutralizing antibodies against TIMP-1, an endogenous inhibitor of MMPs, were administered during the UVB exposure regimen. Taken together, these findings suggest that our skin xenograft model recapitulates premature photoaged skin and provides a comprehensive tool with which to assess the deleterious effects of UVB irradiation. PMID:19147832

  4. Somatostatin expression in human hair follicles and its potential role in immune privilege.

    PubMed

    Breitkopf, Trisia; Lo, Blanche K K; Leung, Gigi; Wang, Eddy; Yu, Mei; Carr, Nicholas; Zloty, David; Cowan, Bryce; Shapiro, Jerry; McElwee, Kevin J

    2013-07-01

    Immune privilege (IP) is believed to exist in the anagen hair follicle (HF). Studies have shown that downregulation of major histocompatibility complex Class I occurs and immunosuppressive factors are expressed in the HF bulb and bulge. However, demonstration and quantification of functional IP in HF cells are required. We examined the middle (sheath) and lower (bulb) portions of the human HF using quantitative real-time RT-PCR (qPCR), immunohistology, ELISA, in vitro coculture with peripheral blood mononuclear cells (PBMCs), and flow cytometry. We found that HF cells, relative to non-follicular epidermal cells, failed to promote allogeneic PBMC proliferation and CD4(+) and CD8(+) IFNγ production. By qPCR, we found significant downregulation of Class I and Class II HLA alleles in both the bulb and sheath, and upregulation of multiple immunoregulatory genes. It is noteworthy that somatostatin (SST) was significantly upregulated relative to epidermis. By immunohistochemistry, SST was most strongly expressed in the HF outer root sheath, and, by ELISA, cultured sheath cells secreted SST. PBMCs, cultured with stimulatory allogeneic epidermal cells and SST, secreted significantly less IFNγ than controls. Addition of SST antagonists to PBMCs cocultured with allogeneic HF cells increased IFNγ secretion. The data identify SST as a secretory factor potentially contributing to the HF IP repertoire. PMID:23370538

  5. Expression of acyl-CoA synthetase 5 in human epidermis.

    PubMed

    Gaisa, N T; Köster, J; Reinartz, A; Ertmer, K; Ehling, J; Raupach, K; Perez-Bouza, A; Knüchel, R; Gassler, N

    2008-04-01

    The human epidermis is characterized by a constant renewal of keratinocytes embedded in a matrix enriched with lipids. Numerous proteins involved in lipid metabolism are found in human epidermis, especially in keratinocytes. Long-chain acyl-CoA derivatives, which are catalyzed by human ACSL5, are important metabolites in several biochemical pathways, including ceramide de novo synthesis. The aim of the present study was to investigate expression of acyl-CoA synthetase isoform 5 (ACSL5) in human epidermis by an in situ, as well as a molecular approach. We show that ACSL5 mRNA and protein are found in human epidermis, as well as in non-differentiated and differentiated HaCaT cells. Keratinocytes of stratum spinosum are the main source for ACSL5 expression in both meshed facial or abdominal skin and ridged skin of upper or lower extremities including TUNEL-positive cells in upper cellular layers. Single keratinocytes of chronic solar-exposed meshed facial epidermis occasionally display a stronger ACSL5 immunostaining. In conclusion, our study indicates that epidermal ACSL5 expression might be involved in differentiation and the stress response of keratinocytes. PMID:18228202

  6. Histatin-1 Expression in Human Lacrimal Epithelium

    PubMed Central

    Pasha, Zeeshan; Jaboori, Assraa Jassim; Jassim, Sarmad H.; Jain, Sandeep; Aakalu, Vinay K.

    2016-01-01

    Background Study of human lacrimal cell biology is limited by poor access to tissue samples, heterogeneous cell composition of tissue and a lack of established lacrimal epithelial markers. In order to further our understanding of lacrimal cell biology, we sought to find a better marker for human lacrimal epithelial cells, compared to what has been reported in the literature. Methods We utilized human Muller’s muscle conjunctival resection (MMCR) specimens containing accessory lacrimal gland (ALG) and cadaveric main lacrimal gland (MLG) as sources of lacrimal tissue. Candidate markers were sought using human ALG tissue from MMCR specimens, isolated by laser capture microdissection (LCM). Affymetrix® analysis was performed on total RNA isolated from FFPE samples to profile transcription in ALG. MMCR tissue sections were assessed by immunofluorescence using antibodies for histatin-1, lactoferrin, E-cadherin (E-cad) and alpha-smooth muscle actin (ASMA). Reverse transcriptase polymerase chain reaction (RT-PCR) analysis was performed to analyze the expression of histatin-1, E-cad and lactoferrin from cadaveric MLG. Results Histatin-1 is expressed in ALG and MLG, localizes to lacrimal epithelium, and to a greater degree than do other putative lacrimal epithelial markers. Conclusions Histatin-1 is a good marker for human lacrimal epithelium in ALG and MLG and can be used to identify lacrimal cells in future studies. PMID:26824896

  7. Toxic epidermal necrolysis

    PubMed Central

    Hoetzenecker, Wolfram; Mehra, Tarun; Saulite, Ieva; Glatz, Martin; Schmid-Grendelmeier, Peter; Guenova, Emmanuella; Cozzio, Antonio; French, Lars E.

    2016-01-01

    Toxic epidermal necrolysis (TEN) is a rare, life-threatening drug-induced skin disease with a mortality rate of approximately 30%. The clinical hallmark of TEN is a marked skin detachment caused by extensive keratinocyte cell death associated with mucosal involvement. The exact pathogenic mechanism of TEN is still uncertain. Recent advances in this field have led to the identification of several factors that might contribute to the induction of excessive apoptosis of keratinocytes. In addition, specific human leukocyte antigen types seem to be associated with certain drugs and the development of TEN. As well-controlled studies are lacking, patients are treated with various immunomodulators (e.g. intravenous immunoglobulin) in addition to the best supportive care. PMID:27239294

  8. Beta-catenin expression in human cancers.

    PubMed Central

    Takayama, T.; Shiozaki, H.; Shibamoto, S.; Oka, H.; Kimura, Y.; Tamura, S.; Inoue, M.; Monden, T.; Ito, F.; Monden, M.

    1996-01-01

    Cell-cell adhesion in tissue is mainly regulated by homotypic interaction of cadherin molecules, which are anchored to the cytoskeleton via cytoplasmic proteins, including alpha- and beta-catenin. Although we previously demonstrated that alpha-catenin is crucial for cadherin function in vivo, little is known about the role of beta-catenin. We examined the expression of beta-catenin in human carcinoma samples along with normal tissue (esophagus, stomach, and colon) by immunostaining using our antibody for beta-catenin. Normal epithelium strongly expressed beta-catenin. However, beta-catenin expression was frequently reduced in primary tumors of the esophagus (10 of 15, 67%), stomach (9 of 19, 47%), and colon (11 of 22, 50%). From an immunoprecipitation study, we found that beta-catenin forms a complex with E-cadherin not only in the normal epithelium but also in cancerous tissues. In coexpression patterns of E-cadherin and beta-catenin, 43 (77%) of the 56 tumors showed a similar expression of both molecules, whereas the other 13 tumors (23%) showed positive staining for E-cadherin and reduced expression of beta-catenin. These findings suggest that beta-catenin forms a complex with E-cadherin in vivo and down-regulation of beta-catenin expression is associated with malignant transformation. Images Figure 1 Figure 2 Figure 3 PMID:8546224

  9. Integrin alpha1beta1 regulates epidermal growth factor receptor activation by controlling peroxisome proliferator-activated receptor gamma-dependent caveolin-1 expression.

    PubMed

    Chen, Xiwu; Whiting, Carrie; Borza, Corina; Hu, Wen; Mont, Stacey; Bulus, Nada; Zhang, Ming-Zhi; Harris, Raymond C; Zent, Roy; Pozzi, Ambra

    2010-06-01

    Integrin alpha1beta1 negatively regulates the generation of profibrotic reactive oxygen species (ROS) by inhibiting epidermal growth factor receptor (EGFR) activation; however, the mechanism by which it does this is unknown. In this study, we show that caveolin-1 (Cav-1), a scaffolding protein that binds integrins and controls growth factor receptor signaling, participates in integrin alpha1beta1-mediated EGFR activation. Integrin alpha1-null mesangial cells (MCs) have reduced Cav-1 levels, and reexpression of the integrin alpha1 subunit increases Cav-1 levels, decreases EGFR activation, and reduces ROS production. Downregulation of Cav-1 in wild-type MCs increases EGFR phosphorylation and ROS synthesis, while overexpression of Cav-1 in the integrin alpha1-null MCs decreases EGFR-mediated ROS production. We further show that integrin alpha1-null MCs have increased levels of activated extracellular signal-regulated kinase (ERK), which leads to reduced activation of peroxisome proliferator-activated receptor gamma (PPARgamma), a transcription factor that positively regulates Cav-1 expression. Moreover, activation of PPARgamma or inhibition of ERK increases Cav-1 levels in the integrin alpha1-null MCs. Finally, we show that glomeruli of integrin alpha1-null mice have reduced levels of Cav-1 and activated PPARgamma but increased levels of phosphorylated EGFR both at baseline and following injury. Thus, integrin alpha1beta1 negatively regulates EGFR activation by positively controlling Cav-1 levels, and the ERK/PPARgamma axis plays a key role in regulating integrin alpha1beta1-dependent Cav-1 expression and consequent EGFR-mediated ROS production. PMID:20368353

  10. Integrin α1β1 Regulates Epidermal Growth Factor Receptor Activation by Controlling Peroxisome Proliferator-Activated Receptor γ-Dependent Caveolin-1 Expression ▿ # ‖

    PubMed Central

    Chen, Xiwu; Whiting, Carrie; Borza, Corina; Hu, Wen; Mont, Stacey; Bulus, Nada; Zhang, Ming-Zhi; Harris, Raymond C.; Zent, Roy; Pozzi, Ambra

    2010-01-01

    Integrin α1β1 negatively regulates the generation of profibrotic reactive oxygen species (ROS) by inhibiting epidermal growth factor receptor (EGFR) activation; however, the mechanism by which it does this is unknown. In this study, we show that caveolin-1 (Cav-1), a scaffolding protein that binds integrins and controls growth factor receptor signaling, participates in integrin α1β1-mediated EGFR activation. Integrin α1-null mesangial cells (MCs) have reduced Cav-1 levels, and reexpression of the integrin α1 subunit increases Cav-1 levels, decreases EGFR activation, and reduces ROS production. Downregulation of Cav-1 in wild-type MCs increases EGFR phosphorylation and ROS synthesis, while overexpression of Cav-1 in the integrin α1-null MCs decreases EGFR-mediated ROS production. We further show that integrin α1-null MCs have increased levels of activated extracellular signal-regulated kinase (ERK), which leads to reduced activation of peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor that positively regulates Cav-1 expression. Moreover, activation of PPARγ or inhibition of ERK increases Cav-1 levels in the integrin α1-null MCs. Finally, we show that glomeruli of integrin α1-null mice have reduced levels of Cav-1 and activated PPARγ but increased levels of phosphorylated EGFR both at baseline and following injury. Thus, integrin α1β1 negatively regulates EGFR activation by positively controlling Cav-1 levels, and the ERK/PPARγ axis plays a key role in regulating integrin α1β1-dependent Cav-1 expression and consequent EGFR-mediated ROS production. PMID:20368353

  11. Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line

    PubMed Central

    2013-01-01

    Background Epithelial-mesenchymal transition (EMT) is a process implicated in cancer metastasis that involves the conversion of epithelial cells to a more mesenchymal and invasive cell phenotype. In breast cancer cells EMT is associated with altered store-operated calcium influx and changes in calcium signalling mediated by activation of cell surface purinergic receptors. In this study, we investigated whether MDA-MB-468 breast cancer cells induced to undergo EMT exhibit changes in mRNA levels of calcium channels, pumps and exchangers located on intracellular calcium storing organelles, including the Golgi, mitochondria and endoplasmic reticulum (ER). Methods Epidermal growth factor (EGF) was used to induce EMT in MDA-MB-468 breast cancer cells. Serum-deprived cells were treated with EGF (50 ng/mL) for 12 h and gene expression was assessed using quantitative RT-PCR. Results and conclusions These data reveal no significant alterations in mRNA levels of the Golgi calcium pump secretory pathway calcium ATPases (SPCA1 and SPCA2), or the mitochondrial calcium uniporter (MCU) or Na+/Ca2+ exchanger (NCLX). However, EGF-induced EMT was associated with significant alterations in mRNA levels of specific ER calcium channels and pumps, including (sarco)-endoplasmic reticulum calcium ATPases (SERCAs), and inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RYR) calcium channel isoforms. The most prominent change in gene expression between the epithelial and mesenchymal-like states was RYR2, which was enriched 45-fold in EGF-treated MDA-MB-468 cells. These findings indicate that EGF-induced EMT in breast cancer cells may be associated with major alterations in ER calcium homeostasis. PMID:23890218

  12. MAb 806 Enhances the Efficacy of Ionizing Radiation in Glioma Xenografts Expressing the de2-7 Epidermal Growth Factor Receptor

    SciTech Connect

    Johns, Terrance G.; McKay, Michael J.; Cvrljevic, Anna N.; Gan, Hui K.; Taylor, Caitlin; Xu Huiling; Smyth, Fiona E.; Scott, Andrew M.

    2010-10-01

    Purpose: Mutations of the epidermal growth factor receptor (EGFR) are common in glioma. The most frequent mutation, de2-7 EGFR/EGFRvIII, occurs in approximately 40% of high-grade gliomas and confers resistance to ionizing radiation (IR). We have previously shown that mAb 806, a novel EGFR-specific antibody, is able to inhibit the growth of U87MG.{Delta}2-7 glioma xenografts expressing the de2-7 EGFR and may have potential as a therapeutic. Methods and Materials: Nude mice bearing U87MG.{Delta}2-7 xenografts were treated with mAb 806 and/or IR. Comparison of tumor volumes, the effect of treatment on angiogenesis as determined by mean vessel density, and expression changes in prosurvival protein pAkt between treatment groups were undertaken. Results: Treatment of mice bearing U87MG.{Delta}2-7 xenografts with mAb 806 and IR resulted in schedule-dependent radiosensitization. Maximal benefit was obtained when antibody treatment was given before irradiation, with the greatest inhibition of both tumor angiogenesis and tumor growth. Combination treatment mediated radiosensitization by selectively blocking the phosphorylation of the prosurvival protein Akt at serine 473, a process that is independent of DNA-dependent protein kinase catalytic subunit. Conclusions: Our results provide a rationale for the use of mAb 806 in combination with IR for the treatment of glioma and potentially other solid tumors bearing the de2-7 EGFR.

  13. Epidermal growth factor (EGF) withdrawal masks gene expression differences in the study of pituitary adenylate cyclase-activating polypeptide (PACAP) activation of primary neural stem cell proliferation

    PubMed Central

    Sievertzon, Maria; Wirta, Valtteri; Mercer, Alex; Frisén, Jonas; Lundeberg, Joakim

    2005-01-01

    Background The recently discovered adult neural stem cells, which maintain continuous generation of new neuronal and glial cells throughout adulthood, are a promising and expandable source of cells for use in cell replacement therapies within the central nervous system. These cells could either be induced to proliferate and differentiate endogenously, or expanded and differentiated in culture before being transplanted into the damaged site of the brain. In order to achieve these goals effective strategies to isolate, expand and differentiate neural stem cells into the desired specific phenotypes must be developed. However, little is known as yet about the factors and mechanisms influencing these processes. It has recently been reported that pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neural stem cell proliferation both in vivo and in vitro. Results We used cDNA microarrays with the aim of analysing the transcriptional changes underlying PACAP induced proliferation of neural stem cells. The primary neural stem/progenitor cells used were neurospheres, generated from the lateral ventricle wall of the adult mouse brain. The results were compared to both differentiation and proliferation controls, which revealed an unexpected and significant differential expression relating to withdrawal of epidermal growth factor (EGF) from the neurosphere growth medium. The effect of EGF removal was so pronounced that it masked the changes in gene expression patterns produced by the addition of PACAP. Conclusion Experimental models aiming at transcriptional analysis of induced proliferation in primary neural stem cells need to take into consideration the significant effect on transcription caused by removal of EGF. Alternatively, EGF-free culture conditions need to be developed. PMID:16124881

  14. [Efficacy and Safety of Neoadjuvant Chemotherapy Containing Nanoparticle Albumin-Bound Paclitaxel (NabPTX) in Operable Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer].

    PubMed

    Yoshioka, Shoko; Ota, Chika; Moriguchi, Yoshio

    2016-05-01

    The efficacy and safety of nanoparticle albumin-bound paclitaxel (nabPTX)-containing neoadjuvant chemotherapy (NAC) were investigated in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancers. Thirteen HER2-positive patients received NAC containing nabPTX or paclitaxel between June 2008 and December 2014. Of 13 HER2-positive patients, those who received nabPTX-containing NAC showed an 85.7% (6/7) pathological complete response (pCR) rate, whereas those who received paclitaxel-containing NAC showed a pCR rate of 50.0% (3/6). While 5 of 7 patients who received nabPTX-containing NAC developed Grade 3/4 neutropenia, none of them developed febrile neutropenia. Grade 1/2 peripheral neuropathy developed in all 7 patients who received nabPTX-containing NAC. This therapy may be a safe and effective treatment for HER2-positive breast cancer patients. PMID:27210086

  15. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer.

    PubMed

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed. PMID:27468248

  16. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    PubMed Central

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed. PMID:27468248

  17. Antitumor effect of afatinib, as a human epidermal growth factor receptor 2-targeted therapy, in lung cancers harboring HER2 oncogene alterations.

    PubMed

    Suzawa, Ken; Toyooka, Shinichi; Sakaguchi, Masakiyo; Morita, Mizuki; Yamamoto, Hiromasa; Tomida, Shuta; Ohtsuka, Tomoaki; Watanabe, Mototsugu; Hashida, Shinsuke; Maki, Yuho; Soh, Junichi; Asano, Hiroaki; Tsukuda, Kazunori; Miyoshi, Shinichiro

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2) is a member of the HER family of proteins containing four receptor tyrosine kinases. It plays an important role in the pathogenesis of certain human cancers. In non-small-cell lung cancer (NSCLC), HER2 amplification or mutations have been reported. However, little is known about the benefit of HER2-targeted therapy for NSCLCs harboring HER2 alterations. In this study, we investigated the antitumor effect of afatinib, an irreversible epidermal growth factor receptor (EGFR)-HER2 dual inhibitor, in lung cancers harboring HER2 oncogene alterations, including novel HER2 mutations in the transmembrane domain, which we recently identified. Normal bronchial epithelial cells, BEAS-2B, ectopically overexpressing wild-type HER2 or mutants (A775insYVMA, G776VC, G776LC, P780insGSP, V659E, and G660D) showed constitutive autophosphorylation of HER2 and activation of downstream signaling. They were sensitive to afatinib, but insensitive to gefitinib. Furthermore, we examined the antitumor activity of afatinib and gefitinib in several NSCLC cell lines, and investigated the association between their genetic alterations and sensitivity to afatinib treatment. In HER2-altered NSCLC cells (H2170, Calu-3, and H1781), afatinib downregulated the phosphorylation of HER2 and EGFR as well as their downstream signaling, and induced an antiproliferative effect through G1 arrest and apoptotic cell death. In contrast, HER2- or EGFR-non-dependent NSCLC cells were insensitive to afatinib. In addition, these effects were confirmed in vivo by using a xenograft mouse model of HER2-altered lung cancer cells. Our results suggest that afatinib is a therapeutic option as a HER2-targeted therapy for NSCLC harboring HER2 amplification or mutations. PMID:26545934

  18. The role of repair protein Rad51 in synergistic cytotoxicity and mutagenicity induced by epidermal growth factor receptor inhibitor (Gefitinib, Iressa{sup R}) and benzo[a]pyrene in human lung cancer

    SciTech Connect

    Ko, J.-C.; Hong, J.-H.; Wang, L.-H.; Lin, Y.-W.

    2008-05-01

    Rad51 protein is essential for homologous recombination repair of DNA damage, and is over-expressed in chemo- or radioresistant carcinomas. The polycyclic hydrocarbon carcinogen benzo[a]pyrene (B[a]P) affects MAPKs transduction pathways. Gefitinib (Iressa{sup R}, ZD1839) is a selective epidermal growth factor receptor tyrosine kinase inhibitor that blocks growth factor-mediated cell proliferation and ERK1/2 activation. We hypothesized that gefitinib enhances B[a]P-mediated cytotoxicity by decreasing ERK1/2 activation. Exposure of human lung cancer cells to gefitinib decreased B[a]P-elicited ERK1/2 activation and induced Rad51 protein expression. Gefitinib and B[a]P co-treatment decreased Rad51 protein stability by triggering degradation via a 26S proteasome-dependent pathway. Expression of constitutive active MKK1/2 vectors (MKK1/2-CA) rescues the decreased ERK1/2 activity, and restores Rad51 protein level and stability under gefitinib and B[a]P co-treatment. Gefitinib enhances B[a]P-induced growth inhibition, cytotoxicity and mutagenicity. Co-treatment with gefitinib and B[a]P can further inhibit cell growth significantly after depletion of endogenous Rad51 by siRad51 RNA transfection. Enhancement of ERK1/2 activation by MKK1-CA expression decrease B[a]P- and gefitinib-induced cytotoxicity, and B[a]P-induced mutagenicity. Rad51 protein protects lung cancer cells from synergistic cytotoxic and mutagenic effects induced by gefitinib and B[a]P. Suppression of Rad51 protein expression may be a novel lung cancer therapeutic modality to overcome drug resistance to gefitinib.

  19. Military Personnel with Chronic Symptoms Following Blast Traumatic Brain Injury Have Differential Expression of Neuronal Recovery and Epidermal Growth Factor Receptor Genes

    PubMed Central

    Heinzelmann, Morgan; Reddy, Swarnalatha Y.; French, Louis M.; Wang, Dan; Lee, Hyunhwa; Barr, Taura; Baxter, Tristin; Mysliwiec, Vincent; Gill, Jessica

    2014-01-01

    Objective: Approximately one-quarter of military personnel who deployed to combat stations sustained one or more blast-related, closed-head injuries. Blast injuries result from the detonation of an explosive device. The mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI), and place military personnel at high risk for chronic symptoms of post-concussive disorder (PCD), post-traumatic stress disorder (PTSD), and depression are not elucidated. Methods: To investigate the mechanisms of persistent blast-related symptoms, we examined expression profiles of transcripts across the genome to determine the role of gene activity in chronic symptoms following blast-TBI. Active duty military personnel with (1) a medical record of a blast-TBI that occurred during deployment (n = 19) were compared to control participants without TBI (n = 17). Controls were matched to cases on demographic factors including age, gender, and race, and also in diagnoses of sleep disturbance, and symptoms of PTSD and depression. Due to the high number of PCD symptoms in the TBI+ group, we did not match on this variable. Using expression profiles of transcripts in microarray platform in peripheral samples of whole blood, significantly differentially expressed gene lists were generated. Statistical threshold is based on criteria of 1.5 magnitude fold-change (up or down) and p-values with multiple test correction (false discovery rate <0.05). Results: There were 34 transcripts in 29 genes that were differentially regulated in blast-TBI participants compared to controls. Up-regulated genes included epithelial cell transforming sequence and zinc finger proteins, which are necessary for astrocyte differentiation following injury. Tensin-1, which has been implicated in neuronal recovery in pre-clinical TBI models, was down-regulated in blast-TBI participants. Protein ubiquitination genes, such as epidermal growth factor receptor, were also down-regulated and

  20. Cannabinoid-receptor expression in human leukocytes.

    PubMed

    Bouaboula, M; Rinaldi, M; Carayon, P; Carillon, C; Delpech, B; Shire, D; Le Fur, G; Casellas, P

    1993-05-15

    Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS), probably through the cannabinoid receptor, which has recently been cloned in rat and human. While numerous reports have also described effects of cannabinoids on the immune system, the observation of both mRNA and cannabinoid receptor has hitherto been exclusively confined to the brain, a reported detection in the testis being the sole example of its presence at the periphery. Here we report the expression of the cannabinoid receptor on human immune tissues using a highly sensitive polymerase-chain-reaction-based method for mRNA quantification. We show that, although present in a much lower abundance than in brain, cannabinoid receptor transcripts are found in human spleen, tonsils and peripheral blood leukocytes. The distribution pattern displays important variations of the mRNA level for the cannabinoid receptor among the main human blood cell subpopulations. The rank order of mRNA levels in these cells is B cells > natural killer cells > or = polymorphonuclear neutrophils > or = T8 cells > monocytes > T4 cells. Cannabinoid-receptor mRNA, which is also found in monocytic, as well as T and B leukemia cell lines but not in Jurkat cells, presents a great diversity of expression on these cells as well, B-cell lines expressing a much higher level than T-cell lines. The cannabinoid receptor PCR products from leukocytes and brain are identical both in size and sequence suggesting a strong similarity between central and peripheral cannabinoid receptors. The expression of this receptor was demonstrated on membranes of the myelomonocytic U937 cells using the synthetic cannabinoid [3H]CP-55940 as ligand. The Kd determined from Scatchard analysis was 0.1 nM and the Bmax for membranes was 525 fmol/mg protein. The demonstration of cannabinoid-receptor expression at both mRNA and protein levels on human leukocytes provides a molecular basis for cannabinoid action on these cells. PMID

  1. Oxygen deprivation inhibits basal keratinocyte proliferation in a model of human skin and induces regio-specific changes in the distribution of epidermal adherens junction proteins, aquaporin-3, and glycogen

    PubMed Central

    Straseski, Joely A.; Gibson, Angela L.; Thomas-Virnig, Christina L.; Allen-Hoffmann, B. Lynn

    2009-01-01

    It is generally accepted that hypoxia and recovery from oxygen deprivation contribute to the breakdown and ulceration of human skin. The effects of these stresses on proliferation, differentiation and expression of cell-cell adhesion molecules were investigated for the first time in an organotypic model of human skin. Fully stratified tissues were exposed to a time course of oxygen deprivation and subsequent reoxygenation. Regional changes in keratinocyte morphology, glycogen stores and cellular junctions were observed, with more differentiated layers of the epidermis exhibiting the first evidence of oxygen deprivation. Cellular swelling within the granular layer was concurrent with aquaporin-3 depletion. The keratinocyte adherens junction proteins E-cadherin and β-catenin were dramatically decreased in a regio-specific manner throughout the epidermis following oxygen deprivation. In contrast, P-cadherin and the desmosomal proteins desmoplakin and desmoglein-1 were refractory to oxygen deprivation. Relative to normoxic controls, hypoxic tissues exhibited increased mRNA levels of the transcriptional repressor Slug however mRNA levels of the related transcriptional factor Snail were unaffected. All cellular and molecular changes were reversible upon reoxygenation. These results demonstrate that oxygen deprivation and reoxygenation exert differential effects on epidermal adhesion proteins and suggest a novel role for cadherins, β-catenin, and Slug in hypoxia-induced junctional changes occurring in stratified squamous epithelium. PMID:19614926

  2. Cytotoxicity of HBD3 for dendritic cells, normal human epidermal keratinocytes, hTERT keratinocytes, and primary oral gingival epithelial keratinocytes in cell culture conditions.

    PubMed

    Leelakanok, Nattawut; Fischer, Carol L; Bates, Amber M; Guthmiller, Janet M; Johnson, Georgia K; Salem, Aliasger K; Brogden, Kim A; Brogden, Nicole K

    2015-12-01

    Human β-defensin 3 (HBD3) is a prominent host defense peptide. In our recent work, we observed that HBD3 modulates pro-inflammatory agonist-induced chemokine and cytokine responses in human myeloid dendritic cells (DCs), often at 20.0 μM concentrations. Since HBD3 can be cytotoxic in some circumstances, it is necessary to assess its cytotoxicity for DCs, normal human epidermal keratinocytes (NHEKs), human telomerase reverse transcriptase (hTERT) keratinocytes, and primary oral gingival epithelial (GE) keratinocytes in different cell culture conditions. Cells, in serum free media with resazurin and in complete media with 10% fetal bovine serum and resazurin, were incubated with 5, 10, 20, and 40 μM HBD3. Cytotoxicity was determined by measuring metabolic conversion of resazurin to resorufin. The lethal dose 50 (LD50, mean μM±Std Err) values were determined from the median fluorescent intensities of test concentrations compared to live and killed cell controls. The LD50 value range of HBD3 was 18.2-35.9 μM in serum-free media for DCs, NHEKs, hTERT keratinocytes, and GE keratinocytes, and >40.0 μM in complete media. Thus, HBD3 was cytotoxic at higher concentrations, which must be considered in future studies of HBD3-modulated chemokine and cytokine responses in vitro. PMID:26367466

  3. Requirement for neurogenesis to proceed through the division of neuronal progenitors following differentiation of epidermal growth factor and fibroblast growth factor-2-responsive human neural stem cells.

    PubMed

    Ostenfeld, Thor; Svendsen, Clive N

    2004-01-01

    Epidermal growth factor (EGF)- and fibroblast growth factor-2 (FGF-2)-responsive human neural stem cells may provide insight into mechanisms of neural development and have applications in cell-based therapeutics for neurological disease. However, their biology after expansion in vitro is currently poorly understood. Cells grown in either EGF or FGF-2 or a combination of both mitogens displayed characteristically similar levels of transcriptional activation and comparable proliferative profiles with linear cell-cycle kinetics and possessed similar neuronal differentiation capabilities. These data support the view that human neurospheres at later stages of expansion (>10 weeks) are comprised overwhelmingly of a single type of stem cell responsive to both EGF and FGF-2. After mitogen withdrawal and neurosphere plating, bromodeoxyuridine pulse-chase experiments revealed that the stem cells did not undergo differentiation directly into neurons. Instead, most immature neurons arose via the division of emerging progenitor cells in the absence of exogenous EGF or FGF-2. Neurogenesis was abolished by application of high concentrations of either EGF/FGF-2 or the mitotic inhibitor cytosine-b-arabinofuranoside, suggesting that there is an obligatory requirement for at least one round of cell division in the absence of mitogens as a prelude to terminal neuronal differentiation. The differentiation of human neurospheres provides a useful model of human neurogenesis, and the data presented indicate that it proceeds through the division of committed neuronal progenitor cells rather than directly from the neural stem cell. PMID:15342944

  4. Transcription Factor MafB Coordinates Epidermal Keratinocyte Differentiation.

    PubMed

    Miyai, Masashi; Hamada, Michito; Moriguchi, Takashi; Hiruma, Junichiro; Kamitani-Kawamoto, Akiyo; Watanabe, Hajime; Hara-Chikuma, Mariko; Takahashi, Kenzo; Takahashi, Satoru; Kataoka, Kohsuke

    2016-09-01

    Mammalian epidermis is a stratified epithelium composed of distinct layers of keratinocytes. The outermost cornified layer is a primary barrier that consists of a cornified envelope, an insoluble structure assembled by cross-linked scaffold proteins, and a surrounding mixture of lipids. Skin keratinocytes undergo a multistep differentiation process, but the mechanism underlying this process is not fully understood. We demonstrate that the transcription factor MafB is expressed in differentiating keratinocytes in mice and is transcriptionally upregulated upon human keratinocyte differentiation in vitro. In MafB-deficient mice, epidermal differentiation was partially impaired and the cornified layer was thinner than in wild-type mice. On the basis of transcriptional profiling, we detected reduced expression levels of a subset of cornified envelope genes, for example, filaggrin and repetin, in the MafB(-/-) epidermis. By contrast, the expression levels of lipid metabolism-related genes, such as Alox12e and Smpd3, increased. The upregulated genes in the MafB(-/-) epidermis were enriched for putative target genes of the transcription factors Gata3, Grhl3, and Klf4. Immunohistochemical analysis of skin biopsy samples revealed that the expression levels of filaggrin and MafB were significantly reduced in patients with human atopic dermatitis and psoriasis vulgaris. Our results indicate that MafB is a component of the gene expression program that regulates epidermal keratinocyte differentiation. PMID:27208706

  5. A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo.

    PubMed

    Hildebrand, Janosch; Rütze, Martin; Walz, Nicole; Gallinat, Stefan; Wenck, Horst; Deppert, Wolfgang; Grundhoff, Adam; Knott, Anja

    2011-01-01

    Here, we report a comprehensive investigation of changes in microRNA (miRNA) expression profiles on human keratinocyte (HK) differentiation in vitro and in vivo. We have monitored expression patterns of 377 miRNAs during calcium-induced differentiation of primary HKs, and have compared these patterns with miRNA expression profiles of epidermal stem cells, transient amplifying cells, and terminally differentiated HKs from human skin. Apart from the previously described miR-203, we found an additional nine miRNAs (miR-23b, miR-95, miR-210, miR-224, miR-26a, miR-200a, miR-27b, miR-328, and miR-376a) that are associated with HK differentiation in vitro and in vivo. In situ hybridization experiments confirmed miR-23b as a marker of HK differentiation in vivo. Additionally, gene ontology analysis and functional validation of predicted miRNA targets using 3'-untranslated region-luciferase assays suggest that multiple miRNAs that are upregulated on HK differentiation cooperate to regulate gene expression during skin development. Our results thus provide the basis for further analysis of miRNA functions during epidermal differentiation. PMID:20827281

  6. Update on the epidermal differentiation complex.

    PubMed

    Henry, Julie; Toulza, Eve; Hsu, Chiung-Yueh; Pellerin, Laurence; Balica, Stefana; Mazereeuw-Hautier, Juliette; Paul, Carle; Serre, Guy; Jonca, Nathalie; Simon, Michel

    2012-01-01

    On human chromosome 1q21, a 2-Mb region called the epidermal differentiation complex comprises many genes encoding structural and regulatory proteins that are of crucial importance for keratinocyte differentiation and stratum corneum properties. Apart from those for involucrin and loricrin, most of the genes are organized in four families: the genes encoding EF-hand calcium-binding proteins of the S100A family, the genes encoding the small proline rich proteins (SPRRs) and the late cornified envelope (LCE) proteins, two families of cornified cell envelope components, and the genes encoding the S100-fused type proteins (SFTPs). This review focuses on the SPRRs, LCE proteins and SFTPs. It describes their structures, their specific functions and, when known, the mechanisms involved in the regulation of their expression. It also highlights their possible involvement in skin diseases. PMID:22201818

  7. Induction of IL-10 gene expression in human keratinocytes by UVB exposure in vivo and in vitro

    SciTech Connect

    Enk, C.D.; Blauvelt, A.; Katz, S.I.

    1995-05-01

    Numerous studies have demonstrated that ultraviolet B (UVB) irradiation has profound effects on the skin and systemic immune systems. Because many of the effects of UVB result in suppression of contact sensitivity responses and because IL-10 induces a Th2 rather than a Th1 response, we sought to determine whether UVB irradiation induces IL-10 transcription and subsequent protein secretion by human epidermal cells. Skin of nine volunteers was exposed to UVB or sham irradiation, and epidermal cell suspensions were prepared from suction blister roofs 24 h thereafter. mRNA was extracted using oligo dT-coated magnetic beads, and IL-10 cDNA was amplified with a sensitive RT-PCR technique. We found that IL-10 was constitutively expressed by epidermal cells in 5 of 9 volunteers and that IL-10 message was up-regulated by UVB exposure in all experiments. Since epidermis consists of a heterogeneous cell population with distinct cytokine profiles, we determined whether UVB caused enhanced IL-10 transcription and protein secretion in human keratinocyte cultures. In these experiments, IL-10 was constitutively expressed by keratinocytes and UVB up-regulated IL-10 gene expression in a dose-dependent manner 24 h after in vitro irradiation, coinciding with IL-10 protein secretion into the culture supernatants. Taken together, the findings indicate that UVB irradiation induces IL-10 in human keratinocytes and suggest that keratinocyte-derived IL-10 may be an important component of the immunosuppression that results from UVB irradiation. 55 refs., 5 figs.

  8. Transcriptional analysis of human survivin gene expression.

    PubMed Central

    Li, F; Altieri, D C

    1999-01-01

    The preservation of tissue and organ homoeostasis depends on the regulated expression of genes controlling apoptosis (programmed cell death). In this study, we have investigated the basal transcriptional requirements of the survivin gene, an IAP (inhibitor of apoptosis) prominently up-regulated in cancer. Analysis of the 5' flanking region of the human survivin gene revealed the presence of a TATA-less promoter containing a canonical CpG island of approximately 250 nt, three cell cycle dependent elements, one cell cycle homology region and numerous Sp1 sites. PCR-based analysis of human genomic DNA, digested with methylation-sensitive and -insensitive restriction enzymes, indicated that the CpG island was unmethylated in both normal and neoplastic tissues. Primer extension and S1 nuclease mapping of the human survivin gene identified two main transcription start sites at position -72 and within -57/-61 from the initiating ATG. Transfection of cervical carcinoma HeLa cells with truncated or nested survivin promoter-luciferase constructs revealed the presence of both enhancer and repressor sequences and identified a minimal promoter region within the proximal -230 nt of the human survivin gene. Unbiased mutagenesis analysis of the human survivin promoter revealed that targeting the Sp1 sequences at position -171 and -151 abolished basal transcriptional activity by approximately 63-82%. Electrophoretic mobility-shift assay with DNA oligonucleotides confirmed formation of a DNA-protein complex between the survivin Sp1 sequences and HeLa cell extracts in a reaction abolished by mutagenesis of the survivin Sp1 sites. These findings identify the basal transcriptional requirements of survivin gene expression. PMID:10567210

  9. Genetics Home Reference: epidermal nevus

    MedlinePlus

    ... primarily of a specific cell type called a keratinocyte. One group of epidermal nevi, called keratinocytic or nonorganoid epidermal nevi, includes nevi that involve only keratinocytes. Keratinocytic epidermal nevi are typically found on the ...

  10. Involvement of deregulated epiregulin expression in tumorigenesis in vivo through activated Ki-Ras signaling pathway in human colon cancer cells.

    PubMed

    Baba, I; Shirasawa, S; Iwamoto, R; Okumura, K; Tsunoda, T; Nishioka, M; Fukuyama, K; Yamamoto, K; Mekada, E; Sasazuki, T

    2000-12-15

    To identify the genes located downstream of the activated Ki-Ras signaling pathways in human colon cancer cells, a PCR-based cDNA subtraction library was constructed between HCT116 cells and HCT116-derived activated Ki-ras-disrupted cells (HKe3). One of the genes in HCT116 that was evidently up-regulated was epiregulin, a member of the epidermal growth factor family that is expressed in many kinds of human cancer cells. HKe3-stable transfectants expressing activated Ki-Ras regained over-expression of epiregulin. To further elucidate the biochemical structure and significance of epiregulin expression in tumorigenesis, HKe3-stable transfectants expressing epiregulin (e3-pSE cells) were established. Epiregulin existed as highly glycosylated membrane-bound forms, and TPA rapidly induced ectodomain shedding of epiregulin. Furthermore, the conditioned medium of e3-pSE cells showed more DNA synthesis for 32D cells expressing epidermal growth factor receptor (DER) cells than that of HKe3. Although anchorage-independent growth in soft agar was not observed for e3-pSE cells, tumorigenicity in nude mice was observed evidently, and their growth rate was correlated with each amount of exogenous epiregulin expression. These results suggested that activated Ki-Ras will be one of the factors contributing to the overexpression of epiregulin in human colon cancer cells, and that epiregulin will play a critical role in human tumorigenesis in vivo. PMID:11156386

  11. Epidermal growth factor (EGF) antagonizes transforming growth factor (TGF)-beta1-induced collagen lattice contraction by human skin fibroblasts.

    PubMed

    Park, J S; Kim, J Y; Cho, J Y; Kang, J S; Yu, Y H

    2000-12-01

    Wound contraction plays an important role in healing, but in extreme conditions, it may lead to excessive scar formation and pathological wound contracture. To date, the key regulator of excessive contracture is known to be transforming growth factor-beta (TGF-beta1). In this study, we have evaluated epidermal growth factor (EGF) antagonism in fibroblast-populated collagen lattice (FPCL) gel contraction, which has been generally used as an in vitro model thought to mimic wound contraction in vivo. As expected, TGF-beta1 treatment enhanced normal fibroblast-induced collagen gel contraction in a dose-dependent manner. In contrast, EGF did not affect normal gel formation, but significantly antagonized TGF-beta1-induced gel formation (p<0.05 at 100 ng/ml), whereas the other growth factor, platelet-derived growth factor (PDGF), did not altered either normal or TGF-beta1-induced gel contractions. Similarly, EGF treatment, but not PDGF, also significantly suppressed TGF-beta1 release that was autologously elicited by TGF-beta1 treatment (p<0.01 at 100 ng/ml). Therefore, the results suggest that EGF may negatively regulate the role of TGF-beta1 through attenuating autologous release of TGF-beta1. PMID:11145189

  12. Activated Protein C Enhances Human Keratinocyte Barrier Integrity via Sequential Activation of Epidermal Growth Factor Receptor and Tie2*

    PubMed Central

    Xue, Meilang; Chow, Shu-Oi; Dervish, Suat; Chan, Yee-Ka Agnes; Julovi, Sohel M.; Jackson, Christopher J.

    2011-01-01

    Keratinocytes play a critical role in maintaining epidermal barrier function. Activated protein C (APC), a natural anticoagulant with anti-inflammatory and endothelial barrier protective properties, significantly increased the barrier impedance of keratinocyte monolayers, measured by electric cell substrate impedance sensing and FITC-dextran flux. In response to APC, Tie2, a tyrosine kinase receptor, was rapidly activated within 30 min, and relocated to cell-cell contacts. APC also increased junction proteins zona occludens, claudin-1 and VE-cadherin. Inhibition of Tie2 by its peptide inhibitor or small interfering RNA abolished the barrier protective effect of APC. Interestingly, APC did not activate Tie2 through its major ligand, angiopoietin-1, but instead acted by binding to endothelial protein C receptor, cleaving protease-activated receptor-1 and transactivating EGF receptor. Furthermore, when activation of Akt, but not ERK, was inhibited, the barrier protective effect of APC on keratinocytes was abolished. Thus, APC activates Tie2, via a mechanism requiring, in sequential order, the receptors, endothelial protein C receptor, protease-activated receptor-1, and EGF receptor, which selectively enhances the PI3K/Akt signaling to enhance junctional complexes and reduce keratinocyte permeability. PMID:21173154

  13. In situ changes in the relative abundance of human epidermal cytokine messenger RNA levels following exposure to the poison ivy/oak contact allergen urushiol.

    PubMed

    Boehm, K D; Yun, J K; Strohl, K P; Trefzer, U; Häffner, A; Elmets, C A

    1996-06-01

    Abstract: Epidermal keratinocytes in culture have been shown to produce many cytokines, and their proteins have been identified in skin tissue samples. It has therefore been assumed that these cytokines are transcribed in vivo by the epidermis in response to contact allergens. In this report, in situ hybridization was used to detect the messenger RNAs for interleukin-1 alpha (IL-1 alpha), interleukin-1 beta (IL-1 beta) and tumour necrosis factor-alpha (TNF-alpha) in samples of human skin prior to and at various times after application of urushiol, the immunogenic component of poison ivy/oak. In sensitive subjects, IL-1 alpha and TNF-alpha mRNAs showed a progressive increase in transcript levels that paralleled the clinical and histological features of the inflammatory process. The time-course of the IL-1 beta response differed from that of IL-1 alpha and TNF-alpha, in that there was an early (by 6 h after urushiol administration) elevation in IL-1 beta mRNA that occurred before there was evidence of inflammation and had returned to background levels by 72 h when the reaction had reached its peak. In contrast to urushiol-sensitive subjects, urushiol-anergic individuals did not exhibit an increase in IL-1 alpha, IL-1 beta or TNF-alpha mRNA levels. The data provide evidence for an in vivo role for epidermal IL-1 alpha, IL-1 beta and TNF-alpha transcription in the regulation of IL-1 beta and TNF-alpha polypeptide levels in the epidermis in response to this common contact allergen. PMID:8840155

  14. EPR measurements showing that plasma membrane viscosity can vary from 30 to 100 cP in human epidermal cell strains

    NASA Astrophysics Data System (ADS)

    Dunham, W. R.; Sands, R. H.; Klein, S. B.; Duell, E. A.; Rhodes, L. M.; Marcelo, C. L.

    1996-09-01

    A rigorous technique for the measurement of human membrane viscosity by electron paramagnetic resonance (EPR) spectroscopy has been developed by designing a sample preparation procedure to optimize the spin labeling process and using a special (grown in essential fatty acid free medium) epidermal cell strain. The essential fatty acid deficient cell strains (keratinocytes) were also grown in fatty acid supplemented media formulated to alter the fatty acid composition of the phospholipids that form the cell membrane. Fatty acid free bovine serum albumin was used as a carrier for the spin label (16-doxyl stearate methyl ester) at an approximately equimolar ratio. Monolayers grown in T-75 flasks were labeled for 15 min at 4°C with 12 μM bovine serum albumin plus 20 μM spin label. The cells were then washed and transferred (at 4°C) to a flatcell for EPR studies at 37°C. The spectra were computer simulated and the results were interpreted by comparison with a "standard curve" obtained from the EPR spectra of the spin label in oil at multiple temperatures. Arguments are presented for preferring this measurement technique over the more conventional use of order parameters and over the use of some other spin labels. The EPR spectra were completely insensitive to the effects of molecular dioxygen in the growth medium and cytoplasm, but remarkabley sensitive to the fatty acid composition of the cellular phospholipids. Fatty acid modified epidermal cells showed a very strong correlation between membrane fluidity (a three-fold change in the membrane viscosity) and a fatty acid double bond index.

  15. A phase I study of 99mTc-hR3 (DiaCIM), a humanized immunoconjugate directed towards the epidermal growth factor receptor.

    PubMed

    Vallis, K A; Reilly, R M; Chen, P; Oza, A; Hendler, A; Cameron, R; Hershkop, M; Iznaga-Escobar, N; Ramos-Suzarte, M; Keane, P

    2002-12-01

    A phase I trial was conducted to evaluate the safety, tumour and normal tissue localization, pharmacokinetics and radiation dosimetry of Tc-hR3, a humanized monoclonal antibody directed towards the epidermal growth factor receptor, in 12 patients with recurrent or metastatic epithelial malignancies. Patients were injected intravenously with 3.0 mg or 6.0 mg (1010 MBq) of Tc-hR3. Blood and plasma concentrations of radioactivity were measured and a complete 24 h urine collection was obtained. Whole-body images were acquired up to 24 h post-injection and normal organ uptake quantified. Radiation dosimetry was estimated using MIRDose. Safety was evaluated by clinical observation, biochemical/haematological testing and by measuring immune response to Tc-hR3. There were no adverse effects, no changes in biochemical/haematological indices and no immune response to Tc-hR3. Tc-hR3 was rapidly cleared from the blood with a distribution half-life of 10.8+/-3.8 min. The volume of distribution, and clearance, were 180+/-37 ml.kg and 14+/-3 ml.kg.min, respectively. The elimination phase could not be discerned due to increasing blood radioactivity at later times. About 19-24% was excreted in the urine. Normal tissue uptake was mainly in the liver (44-50%), spleen (3-4%) and kidneys (3%). Imaging was positive in one patient with squamous cell carcinoma of the mouth and an involved cervical lymph node. The whole-body radiation dose from Tc-hR3 was 1.34+/-0.02x10 mSv.Bq. We conclude that Tc-hR3 exhibited an excellent safety profile. Future studies to determine the sensitivity and specificity of imaging with Tc-hR3 in a larger group of patients with pre-selection for epidermal growth factor receptor positivity are planned. PMID:12464779

  16. Helium-Neon Laser Irradiation Promotes the Proliferation and Migration of Human Epidermal Stem Cells In Vitro: Proposed Mechanism for Enhanced Wound Re-epithelialization

    PubMed Central

    Liao, Xuan; Xie, Guang-Hui; Cheng, Biao; Li, Sheng-Hong; Xie, Shan; Xiao, Li-Ling; Fu, Xiao-Bing

    2014-01-01

    Abstract Objective: The present study was conducted to investigate the effects of helium-neon (He-Ne) laser irradiation on the proliferation, migration, and differentiation of cultured human epidermal stem cells (ESCs). Background data: A He-Ne laser with a wavelength of 632.8 nm is known to have photobiological effects, and is widely used for accelerating wound healing; however, the cellular mechanisms involved have not been completely understood. Methods: The ESCs were prepared from human foreskin, and irradiated by using He-Ne laser at 632.8 nm with 2 J/cm2. The ESC proliferation, migration, and differentiation were examined by using XTT assay, scratch assay, and flow cytometry technology, respectively. The phosphorylation of extracellular signal-regulated kinases (ERK) was analyzed by using Western blotting. Results: He-Ne laser irradiation markedly promoted cell proliferation and migration accompanied by an increase in the phosphorylation of ERK, but did not significantly influence cell differentiation. Conclusion: Our data indicated that photostimulation with a He-Ne laser resulted in a significant increase in human ESC proliferation and migration in vitro, which might contribute, at least partially, to accelerated wound re-epithelialization by low-level laser therapy. PMID:24661127

  17. Epiprofin orchestrates epidermal keratinocyte proliferation and differentiation

    PubMed Central

    Nakamura, Takashi; Yoshitomi, Yasuo; Sakai, Kiyoshi; Patel, Vyomesh; Fukumoto, Satoshi; Yamada, Yoshihiko

    2014-01-01

    ABSTRACT The basal layer of the epidermis contains stem cells and transit amplifying cells that rapidly proliferate and differentiate further into the upper layers of the epidermis. A number of molecules have been identified as regulators of this process, including p63 (also known as tumor protein 63) and Notch1. However, little is known about the mechanisms that regulate the transitions from stem cell to proliferating or differentiating transit amplifying cell. Here, we demonstrate that epiprofin (Epfn, also known as Sp6) plays crucial distinct roles in these transition stages as a cell cycle regulator and a transcription factor. Epfn knockout mice have a thickened epidermis, in which p63-expressing basal cells form multiple layers owing to the accumulation of premature transit amplifying cells with reduced proliferation and a reduction in the number of differentiating keratinocytes expressing Notch1. We found that low levels of Epfn expression increased the proliferation of human immortalized keratinocyte (HaCaT) cells by increasing EGF responsiveness and superphosphorylation of Rb. By contrast, high levels of Epfn expression promoted cell cycle exit and differentiation, by reducing E2F transactivation and inducing Notch1 expression. Our findings identify multiple novel functions of Epfn in epidermal development. PMID:25344255

  18. Epiprofin orchestrates epidermal keratinocyte proliferation and differentiation.

    PubMed

    Nakamura, Takashi; Yoshitomi, Yasuo; Sakai, Kiyoshi; Patel, Vyomesh; Fukumoto, Satoshi; Yamada, Yoshihiko

    2014-12-15

    The basal layer of the epidermis contains stem cells and transit amplifying cells that rapidly proliferate and differentiate further into the upper layers of the epidermis. A number of molecules have been identified as regulators of this process, including p63 (also known as tumor protein 63) and Notch1. However, little is known about the mechanisms that regulate the transitions from stem cell to proliferating or differentiating transit amplifying cell. Here, we demonstrate that epiprofin (Epfn, also known as Sp6) plays crucial distinct roles in these transition stages as a cell cycle regulator and a transcription factor. Epfn knockout mice have a thickened epidermis, in which p63-expressing basal cells form multiple layers owing to the accumulation of premature transit amplifying cells with reduced proliferation and a reduction in the number of differentiating keratinocytes expressing Notch1. We found that low levels of Epfn expression increased the proliferation of human immortalized keratinocyte (HaCaT) cells by increasing EGF responsiveness and superphosphorylation of Rb. By contrast, high levels of Epfn expression promoted cell cycle exit and differentiation, by reducing E2F transactivation and inducing Notch1 expression. Our findings identify multiple novel functions of Epfn in epidermal development. PMID:25344255

  19. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation.

    PubMed Central

    Suzuki, K; Kusumoto, H; Deyashiki, Y; Nishioka, J; Maruyama, I; Zushi, M; Kawahara, S; Honda, G; Yamamoto, S; Horiguchi, S

    1987-01-01

    We have deduced the entire 575-amino acid sequence of the human thrombomodulin precursor from cDNA clones. The precursor starts with an 18-residue signal peptide domain, followed by the NH2-terminal domain, a domain with six epidermal growth factor-like structures, an O-glycosylation site-rich domain, a 24-residue transmembrane domain and a cytoplasmic domain. Simian COS cells transfected with the expression vector pSV2 containing thrombomodulin cDNA synthesized immunoreactive and functionally active thrombomodulin. Images Fig. 1. Fig. 7. PMID:2820710

  20. Cataloging of the genes expressed in human keratinocytes: analysis of 607 randomly isolated cDNA sequences.

    PubMed

    Konishi, K; Morishima, Y; Ueda, E; Kibe, Y; Nonomura, K; Yamanishi, K; Yasuno, H

    1994-07-29

    The partial nucleotide sequences of 607 cDNAs randomly isolated from a cDNA library of cultured human epidermal keratinocytes were determined by single pass sequencing. Homology search of the sequences to the non-redundant nucleotide databases revealed that 27% of the cDNAs matched registered human-or non-human genes encoding not only keratinocyte specific genes, but also a variety of functional proteins, the expression of which had not been identified in keratinocytes. Non-matching cDNAs covering 49% of the cDNAs were not homologous even to ESTs from other organs, suggesting that these cDNAs include novel genes expressed in the cells. The large scale sequencing of keratinocyte cDNAs provides a useful molecular source for research into biology and diseases of the skin. PMID:8048971

  1. c-Jun promotes whereas JunB inhibits epidermal neoplasia.

    PubMed

    Jin, Jane Y; Ke, Hengning; Hall, Russell P; Zhang, Jennifer Y

    2011-05-01

    Deregulation of the activator protein 1 (AP1) family gene regulators has been implicated in a wide range of diseases, including cancer. In this study we report that c-Jun was activated in human squamous cell carcinoma (SCC) and coexpression of c-Jun with oncogenic Ras was sufficient to transform primary human epidermal cells into malignancy in a regenerated human skin grafting model. In contrast, JunB was not induced in a majority of human SCC cells. Moreover, exogenous expression of JunB inhibited tumorigenesis driven by Ras or spontaneous human SCC cells. Conversely, the dominant-negative JunB mutant (DNJunB) promoted tumorigenesis, which is in contrast to the tumor-suppressor function of the corresponding c-Jun mutant. At the cellular level, JunB induced epidermal cell senescence and slowed cell growth in a cell-autonomous manner. Consistently, coexpression of JunB and Ras induced premature epidermal differentiation concomitant with upregulation of p16 and filaggrin and downregulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4). These findings indicate that JunB and c-Jun differentially regulate cell growth and differentiation and induce opposite effects on epidermal neoplasia.JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article, please go to http://www.nature.com/jid/journalclub. PMID:21289643

  2. Divergent effects of epidermal growth factor and transforming growth factors on a human endometrial carcinoma cell line.

    PubMed

    Korc, M; Haussler, C A; Trookman, N S

    1987-09-15

    Epidermal growth factor (EGF), at concentrations ranging from 0.83 to 4.98 nM, markedly inhibited the proliferation of RL95-2 cells that were seeded at low plating densities (4.7 X 10(3) cells/cm2). Under the same incubation conditions, 16.6 pM EGF enhanced cell proliferation. At high plating densities (2.5 X 10(4) cells/cm2) 0.83 nM EGF also stimulated cell proliferation. Both the inhibitory and stimulatory effects of EGF were mimicked by transforming growth factor-alpha (TGF-alpha). However, the inhibitory action of TGF-alpha was always greater that of EGF. Binding studies with 125I-labeled TGF-alpha indicated that maximal cell surface binding of TGF-alpha occurred at 15 min, whereas maximal internalization occurred at 45 min. Both cell surface and internalized radioactivity declined sharply thereafter. Analysis of radioactivity released into the incubation medium during pulse-chase experiments indicated that RL95-2 cells extensively degraded both TGF-alpha and EGF. The lysosomotropic compound methylamine arrested the generation of low-molecular-weight degradation products of EGF, but not of TGF-alpha. In contrast to EGF and TGF-alpha, transforming growth factor-beta (TGF-beta) inhibited the proliferation of RL95-2 cells that were seeded at either low or high plating densities. Further, transforming growth factor-beta induced the appearance of large cuboidal cells that were readily distinguished from cells treated with either EGF or TGF-alpha. These findings point to complex regulatory actions of growth factors on the proliferation of RL95-2 cells and suggest that the processing of TGF-alpha following EGF receptor activation is distinct from the processing of EGF. PMID:3497713

  3. TSLP expression induced via Toll-like receptor pathways in human keratinocytes.

    PubMed

    Takai, Toshiro; Chen, Xue; Xie, Yang; Vu, Anh Tuan; Le, Tuan Anh; Kinoshita, Hirokazu; Kawasaki, Junko; Kamijo, Seiji; Hara, Mutsuko; Ushio, Hiroko; Baba, Tadashi; Hiramatsu, Keiichi; Ikeda, Shigaku; Ogawa, Hideoki; Okumura, Ko

    2014-01-01

    The skin epidermis and mucosal epithelia (airway, ocular tissues, gut, and so on) are located at the interface between the body and environment and have critical roles in the response to various stimuli. Thymic stromal lymphopoietin (TSLP), a cytokine expressed mainly by epidermal keratinocytes (KCs) and mucosal epithelial cells, is a critical factor linking the innate response at barrier surfaces to Th2-skewed acquired immune response. TSLP is highly expressed in skin lesions of atopic dermatitis patients. Here, we describe on Toll-like receptor (TLR)-mediated induction of TSLP expression in primary cultured human KCs, placing emphasis on experimental methods used in our studies. Double-stranded RNA (TLR3 ligand), flagellin (TLR5 ligand), and diacylated lipopeptide (TLR2-TLR6 ligand) stimulated human KCs to express TSLP and Staphylococcus aureus membranes did so via the TLR2-TLR6 pathway. Atopic cytokine milieu upregulated the TLR-mediated induction of TSLP. Culturing in the absence of glucocorticoid before stimulation enhanced the TSLP expression. Extracellular double-stranded RNA induced TSLP via endosomal acidification- and NF-κB-dependent pathway. Specific measurement of the long TSLP transcript, which contributes to the production of the TSLP protein, rather than total or the short transcript is useful for accurate detection of functional human TSLP gene expression. The results suggest that environment-, infection-, and/or self-derived TLR ligands contribute to the initiation and/or amplification of Th2-type skin inflammation including atopic dermatitis and atopic march through the induction of TSLP expression in KCs and include information helpful for understanding the role of the gene-environment interaction relevant in allergic diseases. PMID:24377934

  4. Metabolic Disposition of Osimertinib in Rats, Dogs, and Humans: Insights into a Drug Designed to Bind Covalently to a Cysteine Residue of Epidermal Growth Factor Receptor.

    PubMed

    Dickinson, Paul A; Cantarini, Mireille V; Collier, Jo; Frewer, Paul; Martin, Scott; Pickup, Kathryn; Ballard, Peter

    2016-08-01

    Preclinical and clinical studies were conducted to determine the metabolism and pharmacokinetics of osimertinib and key metabolites AZ5104 and AZ7550. Osimertinib was designed to covalently bind to epidermal growth factor receptors, allowing it to achieve nanomolar cellular potency (Finlay et al., 2014). Covalent binding was observed in incubations of radiolabeled osimertinib with human and rat hepatocytes, human and rat plasma, and human serum albumin. Osimertinib, AZ5104, and AZ7550 were predominantly metabolized by CYP3A. Seven metabolites were detected in human hepatocytes, also observed in rat or dog hepatocytes at similar or higher levels. After oral administration of radiolabeled osimertinib to rats, drug-related material was widely distributed, with the highest radioactivity concentrations measured at 6 hours postdose in most tissues; radioactivity was detectable in 42% of tissues 60 days postdose. Concentrations of [(14)C]-radioactivity in blood were lower than in most tissues. After the administration of a single oral dose of 20 mg of radiolabeled osimertinib to healthy male volunteers, ∼19% of the dose was recovered by 3 days postdose. At 84 days postdose, mean total radioactivity recovery was 14.2% and 67.8% of the dose in urine and feces. The most abundant metabolite identified in feces was AZ5104 (∼6% of dose). Osimertinib accounted for ∼1% of total radioactivity in the plasma of non-small cell lung cancer patients after 22 days of 80-mg osimertinib once-daily treatment; the most abundant circulatory metabolites were AZ7550 and AZ5104 (<10% of total osimertinib-related material). Osimertinib is extensively distributed and metabolized in humans and is eliminated primarily via the fecal route. PMID:27226351

  5. Critical roles of DMP1 in human epidermal growth factor receptor 2/neu-Arf-p53 signaling and breast cancer development.

    PubMed

    Taneja, Pankaj; Maglic, Dejan; Kai, Fumitake; Sugiyama, Takayuki; Kendig, Robert D; Frazier, Donna P; Willingham, Mark C; Inoue, Kazushi

    2010-11-15

    Human epidermal growth factor receptor 2 (HER2) overexpression stimulates cell growth in p53-mutated cells while it inhibits cell proliferation in those with wild-type p53, but the molecular mechanism is unknown. The Dmp1 promoter was activated by HER2/neu through the phosphatidylinositol-3'-kinase-Akt-NF-κB pathway, which in turn stimulated Arf transcription. Binding of p65 and p52 subunits of NF-κB was shown to the Dmp1 promoter and that of Dmp1 to the Arf promoter on HER2/neu overexpression. Both Dmp1 and p53 were induced in premalignant lesions from mouse mammary tumor virus-neu mice, and mammary tumorigenesis was significantly accelerated in both Dmp1+/- and Dmp1-/- mice. Selective deletion of Dmp1 and/or overexpression of Tbx2/Pokemon was found in >50% of wild-type HER2/neu carcinomas, although the involvement of Arf, Mdm2, or p53 was rare. Tumors from Dmp1+/-, Dmp1-/-, and wild-type neu mice with hemizygous Dmp1 deletion showed significant downregulation of Arf and p21Cip1/WAF1, showing p53 inactivity and more aggressive phenotypes than tumors without Dmp1 deletion. Notably, endogenous hDMP1 mRNA decreased when HER2 was depleted in human breast cancer cells. Our study shows the pivotal roles of Dmp1 in HER2/neu-p53 signaling and breast carcinogenesis. PMID:21062982

  6. Biology of human skin transplanted to the nude mouse: I. Response to agents which modify epidermal proliferation.

    PubMed

    Krueger, G G; Shelby, J

    1981-06-01

    To accept human skin transplanted to the congenitally athymic (nude) mouse as a system to study human skin and its physiologic and pathologic states, it must be demonstrated that skin so maintained retains its function as a biologic unit. We have found that responses of grafted human skin and nude mouse skin to various agents differ. This difference in response has been utilized to assess barrier function and proliferative capacity of human skin grafts. Human skin grafts undergo a proliferative response when 10 ng of the tumor promoter, 12-O-tetradecanoyl phorbol 13-acetate (TPA) is applied. Nudes do not respond to this dose. Increasing the dose to 100 ng of TPA evokes a response in both. However, only in the human skin grafts can this response be blocked with betamethasone valerate (BV). In that human skin grafts do not take on their hosts' responsiveness, and the response of domestic pig skin to these agents before and after grafting is identical, the conclusion is reached that human skin appears to retain its inherent biologic unit function. The data also demonstrate some of the potential of this system to study kinetics of the epidermis of human skin. PMID:7017014

  7. Small-animal PET imaging of human epidermal growth factor receptor positive tumor with a 64Cu labeled affibody protein.

    PubMed

    Miao, Zheng; Ren, Gang; Liu, Hongguang; Jiang, Lei; Cheng, Zhen

    2010-05-19

    Epidermal growth factor receptor (EGFR) has become an attractive target for cancer molecular imaging and therapy. Affibody proteins against EGFR have been reported, and thus, we were interested in evaluating their potential for positron emission tomography (PET) imaging of EGFR positive cancer. An Affibody analogue (Ac-Cys-Z(EGFR:1907)) binding to EGFR was made through conventional solid phase peptide synthesis. The purified protein was site-specifically coupled with the 1,4,7,10-tetraazacyclododecane-1,4,7-tris-aceticacid-10-maleimidethylacetamide (maleimido-mono-amide-DOTA) to produce the bioconjugate, DOTA-Z(EGFR:1907). (64)Cu labeled probe (64)Cu-DOTA-Z(EGFR:1907) displayed a moderate specific activity (5-8 MBq/nmol, 22-35 microCi/microg). Cell uptake assays by pre-incubating without or with 300 times excess unlabeled Ac-Cys-Z(EGFR:1907) showed high EGFR-specific uptake (20% applied activity at 0.5 h) in A431 epidermoid carcinoma cancer cells. The affinity (K(D)) of (64)Cu-DOTA-Z(EGFR:1907) as tested by cell saturation analysis was 20 nM. The serum stability test showed excellent stability of the probe with >95% intact after 4 h of incubation in mouse serum. In vivo small-animal PET imaging showed fast tumor targeting, high tumor accumulation (approximately 10% ID/g at 1 h p.i.), and good tumor-to-normal tissue contrast of (64)Cu-DOTA-Z(EGFR:1907) spiked with a wide dose range of Ac-Cys-Z(EGFR:1907). Bio-distribution studies further demonstrated that the probe had high tumor, blood, liver, and kidney uptakes, while blood radioactivity concentration dropped dramatically at increased spiking doses. Co-injection of the probe with 500 microg of Ac-Cys-Z(EGFR:1907) for blocking significantly reduced the tumor uptake. Thus, (64)Cu-DOTA-Z(EGFR:1907) showed potential as a high tumor contrast EGFR PET imaging reagent. The probe spiked with 50 microg of Ac-Cys-Z(EGFR:1907) improved tumor imaging contrast which may have important clinical applications. PMID:20402512

  8. Penile epidermal inclusion cyst.

    PubMed

    Saini, Pradeep; Mansoor, M N; Jalali, Sanjay; Sharma, Abhishek

    2010-07-01

    We report a case of epidermal inclusion cyst of penis in a five-year-old boy, who had presented to the outpatient department of our hospital. Epidermal inclusion cysts are benign lesions that can develop in any part of the body. However, the finding of an epidermal inclusion cyst in the penis is rare. The child was operated and discharged uneventfully. The objective of reporting this case is to highlight the rare possibility of an inclusion cyst arising from penis as a late complication of circumcision. PMID:20589475

  9. In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland

    PubMed Central

    Slominski, Andrzej T.; Kim, Tae-Kang; Shehabi, Haleem Z.; Tang, Edith; Benson, Heather A. E.; Semak, Igor; Lin, Zongtao; Yates, Charles R.; Wang, Jin; Li, Wei; Tuckey, Robert C.

    2014-01-01

    We investigated the metabolism of vitamin D2 to hydroxyvitamin D2 metabolites ((OH)D2) by human placentas ex-utero, adrenal glands ex-vivo and cultured human epidermal keratinocytes and colonic Caco-2 cells, and identified 20(OH)D2, 17,20(OH)2D2, 1,20(OH)2D2, 25(OH)D2 and 1,25(OH)2D2 as products. Inhibition of product formation by 22R-hydroxycholesterol indicated involvement of CYP11A1 in 20- and 17-hydroxylation of vitamin D2, while use of ketoconazole indicated involvement of CYP27B1 in 1α-hydroxylation of products. Studies with purified human CYP11A1 confirmed the ability of this enzyme to convert vitamin D2 to 20(OH)D2 and 17,20(OH)2D2. In placentas and Caco-2 cells, production of 20(OH)D2 was higher than 25(OH)D2 while in human keratinocytes the production of 20(OH)D2 and 25(OH)D2 were comparable. HaCaT keratinocytes showed high accumulation of 1,20(OH)2D2 relative to 20(OH)D2 indicating substantial CYP27B1 activity. This is the first in vivo evidence for a novel pathway of vitamin D2 metabolism initiated by CYP11A1 and modified by CYP27B1, with the product profile showing tissue- and cell-type specificity. PMID:24382416

  10. In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland.

    PubMed

    Slominski, Andrzej T; Kim, Tae-Kang; Shehabi, Haleem Z; Tang, Edith K Y; Benson, Heather A E; Semak, Igor; Lin, Zongtao; Yates, Charles R; Wang, Jin; Li, Wei; Tuckey, Robert C

    2014-03-01

    We investigated the metabolism of vitamin D2 to hydroxyvitamin D2 metabolites ((OH)D2) by human placentas ex-utero, adrenal glands ex-vivo and cultured human epidermal keratinocytes and colonic Caco-2 cells, and identified 20(OH)D2, 17,20(OH)₂D2, 1,20(OH)₂D2, 25(OH)D2 and 1,25(OH)₂D2 as products. Inhibition of product formation by 22R-hydroxycholesterol indicated involvement of CYP11A1 in 20- and 17-hydroxylation of vitamin D2, while use of ketoconazole indicated involvement of CYP27B1 in 1α-hydroxylation of products. Studies with purified human CYP11A1 confirmed the ability of this enzyme to convert vitamin D2 to 20(OH)D2 and 17,20(OH)₂D2. In placentas and Caco-2 cells, production of 20(OH)D2 was higher than 25(OH)D2 while in human keratinocytes the production of 20(OH)D2 and 25(OH)D2 were comparable. HaCaT keratinocytes showed high accumulation of 1,20(OH)₂D2 relative to 20(OH)D2 indicating substantial CYP27B1 activity. This is the first in vivo evidence for a novel pathway of vitamin D2 metabolism initiated by CYP11A1 and modified by CYP27B1, with the product profile showing tissue- and cell-type specificity. PMID:24382416

  11. Epidermal nevi with aberrant epidermal structure in keratinocytes and melanocytes.

    PubMed

    Oiso, Naoki; Sugawara, Koji; Yonamine, Ayano; Tsuruta, Daisuke; Kawada, Akira

    2015-04-01

    Epidermal nevi are congenital cutaneous hamartomas caused by embryonic somatic mutations. Ultrastructural features of adult epidermal nevi have rarely been investigated. Herein, we report a case involving a Japanese adult who had epidermal nevi with right congenital blindness and a right accessory nipple. The histopathologic and ultrastructural studies showed divergent abnormal epidermal structures in both melanocytes and keratinocytes. Our case indicates the need to further investigate histopathologic, ultrastructural, and genetic associations in adult epidermal nevi. PMID:25657059

  12. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells

    PubMed Central

    2013-01-01

    Background Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression. Methods The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice. Results In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model. Conclusion Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R. PMID:23777562

  13. Effect of JP-8 jet fuel exposure on protein expression in human keratinocyte cells in culture.

    PubMed

    Witzmann, F A; Monteiro-Riviere, N A; Inman, A O; Kimpel, M A; Pedrick, N M; Ringham, H N; Riviere, J E

    2005-12-30

    Dermal exposure to jet fuel is a significant occupational hazard. Previous studies have investigated its absorption and disposition in skin, and the systemic biochemical and immunotoxicological sequelae to exposure. Despite studies of JP-8 jet fuel components in murine, porcine or human keratinocyte cell cultures, proteomic analysis of JP-8 exposure has not been investigated. This study was conducted to examine the effect of JP-8 administration on the human epidermal keratinocyte (HEK) proteome. Using a two-dimensional electrophoretic approach combined with mass spectrometric-based protein identification, we analyzed protein expression in HEK exposed to 0.1% JP-8 in culture medium for 24 h. JP-8 exposure resulted in significant expression differences (p<0.02) in 35 of the 929 proteins matched and analyzed. Approximately, a third of these alterations were increased in protein expression, two-thirds declined with JP-8 exposure. Peptide mass fingerprint identification of effected proteins revealed a variety of functional implications. In general, altered proteins involved endocytotic/exocytotic mechanisms and their cytoskeletal components, cell stress, and those involved in vesicular function. PMID:16019166

  14. Increased hydrophobicity in Malassezia species correlates with increased proinflammatory cytokine expression in human keratinocytes.

    PubMed

    Akaza, Narifumi; Akamatsu, Hirohiko; Takeoka, Shiori; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko

    2012-11-01

    Malassezia cells stimulate cytokine production by keratinocytes, although this ability differs among Malassezia species for unknown reasons. The aim of this study was to clarify the factors determining the ability to induce cytokine production by human keratinocytes in response to Malassezia species. M. furfur NBRC 0656, M. sympodialis CBS 7222, M. dermatis JCM 11348, M. globosa CBS 7966, M. restricta CBS 7877, and three strains each of M. globosa, M. restricta, M. dermatis, M. sympodialis, and M. furfur maintained under various culture conditions were used. Normal human epidermal keratinocytes (NHEKs) (1 × 10(5) cells) and the Malassezia species (1 × 10(6) cells) were co-cultured, and IL-1α, IL-6, and IL-8 mRNA levels were determined. Moreover, the hydrophobicity and β-1,3-glucan expression at the surface of Malassezia cells were analyzed. The ability of Malassezia cells to trigger the mRNA expression of proinflammatory cytokines in NHEKs differed with the species and conditions and was dependent upon the hydrophobicity of Malassezia cells not β-1,3-glucan expression. PMID:22548238

  15. Knockdown of GnT-Va expression inhibits ligand-induced downregulation of the epidermal growth factor receptor and intracellular signaling by inhibiting receptor endocytosis

    PubMed Central

    Guo, Hua-Bei; Johnson, Heather; Randolph, Matthew; Lee, Intaek; Pierce, Michael

    2009-01-01

    Changes in the expression of N-glycan branching glycosyltransferases can alter cell surface receptor functions, involving their levels of cell surface retention, rates of internalization into the endosomal compartment, and subsequent intracellular signaling. To study in detail the regulation of signaling of the EGF receptor (EGFR) by GlcNAcβ(1,6)Man branching, we utilized specific siRNA to selectively knockdown GnT-Va expression in the highly invasive human breast carcinoma line MDA-MB231, which resulted in the attenuation of its invasiveness-related phenotypes. Compared to control cells, ligand-induced downregulation of EGFR was significantly inhibited in GnT-Va-suppressed cells. This effect could be reversed by re-expression of GnT-Va, indicating that changes in ligand-induced receptor downregulation were dependent on GnT-Va activity. Knockdown of GnT-Va had no significant effect on c-Cbl mediated receptor ubiquitination and degradation, but did cause the inhibition of receptor internalization, showing that altered signaling and delayed ligand-induced downregulation of EGFR expression resulted from decreased EGFR endocytosis. Similar results were obtained with HT1080 fibrosarcoma cells treated with GnT-Va siRNA. Inhibited receptor internalization caused by the expression of GnT-Va siRNA appeared to be independent of galectin binding since decreased EGFR internalization in the knockdown cells was not affected by the treatment of the cells with lactose, a galectin inhibitor. Our results show that decreased GnT-Va activity due to siRNA expression in human carcinoma cells inhibits ligand-induced EGFR internalization, consequently resulting in delayed downstream signal transduction and inhibition of the EGF-induced, invasiveness-related phenotypes. PMID:19225046

  16. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  17. Does therapeutic intervention in atopic dermatitis normalize epidermal Notch deficiency?

    PubMed

    Melnik, Bodo C

    2014-10-01

    This viewpoint presents a unifying concept for the treatment of atopic dermatitis (AD) that is based on the improvement of deficient Notch signalling, which appears to represent the fundamental epithelial defect of AD resulting in epidermal and immunological barrier dysfunction. One study of AD patients demonstrated a marked epidermal deficiency of Notch receptors and several mouse models with genetically suppressed Notch signalling exhibit dry skin, signs of scratching, skin barrier abnormalities, increased transepidermal water loss and Th2 cell-mediated immunological changes closely resembling human AD. Notch signalling is critically involved in the differentiation of regulatory T cells, in the feedback inhibition of activated innate immunity, in the repression of activating protein-1 (AP-1), the regulation of late epidermal differentiation associated with filaggrin- and stratum corneum barrier lipid processing, in aquaporin 3- and claudin-1 expression and in keratinocyte-mediated release of thymic stromal lymphopoietin (TSLP), which promotes Th2-driven immune responses with TSLP- and IL-31-mediated stimulation of cutaneous sensory neurons involved in the induction of itch. Translational evidence will be provided that all major therapeutic regimens employed for the treatment of AD such as glucocorticoids, calcineurin inhibitors and UV radiation may converge in the upregulation of impaired Notch signalling, the proposed pathogenic defect of AD. PMID:24889007

  18. [Verrucose epidermal nevus with belated grow and pregnancy. Case report].

    PubMed

    Aguilera Martínez, Verónica; Cervantes Villarreal, Gustavo Enrique; Ramos Garibay, Alberto; Ruiz Mondragón, María Eugenia

    2007-10-01

    Verrucose epidermal nevus is a benign and congenital hyperplasia of the superficial epidermis and annexes. It expresses itself during the firs year of life, grows during childhood and in adolescence reaches its largest size. It can appear everywhere in skin surface. We present a case of late verrucose epidermal nevus with genital onset. Differential diagnosis was done with acuminated condylomas. PMID:18800583

  19. GLUT-3 expression in human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Stuart, C. A.; Wen, G.; Peng, B. H.; Popov, V. L.; Hudnall, S. D.; Campbell, G. A.

    2000-01-01

    Muscle biopsy homogenates contain GLUT-3 mRNA and protein. Before these studies, it was unclear where GLUT-3 was located in muscle tissue. In situ hybridization using a midmolecule probe demonstrated GLUT-3 within all muscle fibers. Fluorescent-tagged antibody reacting with affinity-purified antibody directed at the carboxy-terminus demonstrated GLUT-3 protein in all fibers. Slow-twitch muscle fibers, identified by NADH-tetrazolium reductase staining, possessed more GLUT-3 protein than fast-twitch fibers. Electron microscopy using affinity-purified primary antibody and gold particle-tagged second antibody showed that the majority of GLUT-3 was in association with triads and transverse tubules inside the fiber. Strong GLUT-3 signals were seen in association with the few nerves that traversed muscle sections. Electron microscopic evaluation of human peripheral nerve demonstrated GLUT-3 within the axon, with many of the particles related to mitochondria. GLUT-3 protein was found in myelin but not in Schwann cells. GLUT-1 protein was not present in nerve cells, axons, myelin, or Schwann cells but was seen at the surface of the peripheral nerve in the perineurium. These studies demonstrated that GLUT-3 mRNA and protein are expressed throughout normal human skeletal muscle, but the protein is predominantly found in the triads of slow-twitch muscle fibers.

  20. The amine-containing cutaneous irritant heptylamine inhibits the volume-regulated anion channel and mobilizes intracellular calcium in normal human epidermal keratinocytes.

    PubMed

    Raoux, Matthieu; Colomban, Cécile; Delmas, Patrick; Crest, Marcel

    2007-06-01

    Many amines are skin irritants and cause contact dermatitis. However, little is known about their mechanisms of action in keratinocytes except that they induce the release of the inflammatory mediators cytokines and ATP. Here, we tested whether volume-regulated anion channels (VRACs) in primary cultures of normal human epidermal keratinocytes are modulated by the referenced amine-containing cutaneous irritant heptylamine. Under isotonic conditions, we isolated the VRAC current (I(VRAC)) from other conductances using a high Ca(2+)-buffering internal solution. I(VRAC) ran up after patch rupturing and reached a plateau within 15 min. It was reversibly and dose-dependently inhibited by heptylamine with an IC(50) value of 260 microM. Cell-swelling caused by the application of a hypotonic solution increased 2.7-fold I(VRAC) and reduced the inhibition of VRAC by heptylamine with a dose-response curve shifted approximately 10-fold to the right. In addition, we showed, using cell-attached patch recordings, that adding heptylamine to the bath inhibited VRAC activity. This suggests that heptylamine diffuses into the membrane to inhibit VRAC. Finally, we demonstrated that heptylamine induced Ca(2+)-store depletion and that VRAC inhibition was not caused by the increase in cytosolic Ca(2+). Taken together, these results identify heptylamine as a blocker of VRAC and suggest that Ca(2+)-store depletion may be involved in mechanisms of irritant contact dermatitis caused by heptylamine. PMID:17384225

  1. Ultraviolet B, melanin and mitochondrial DNA: Photo-damage in human epidermal keratinocytes and melanocytes modulated by alpha-melanocyte-stimulating hormone

    PubMed Central

    Böhm, Markus; Hill, Helene Z.

    2016-01-01

    Alpha-melanocyte-stimulating hormone (alpha-MSH) increases melanogenesis and protects from UV-induced DNA damage. However, its effect on mitochondrial DNA (mtDNA) damage is unknown. We have addressed this issue in a pilot study using human epidermal keratinocytes and melanocytes incubated with alpha-MSH and irradiated with UVB. Real-time touchdown PCR was used to quantify total and deleted mtDNA. The deletion detected encompassed the common deletion but was more sensitive to detection. There were 4.4 times more mtDNA copies in keratinocytes than in melanocytes. Irradiation alone did not affect copy numbers. Alpha-MSH slightly increased copy numbers in both cell types in the absence of UVB and caused a similar small decrease in copy number with dose in both cell types. Deleted copies were nearly twice as frequent in keratinocytes as in melanocytes. Alpha-MSH reduced the frequency of deleted copies by half in keratinocytes but not in melanocytes. UVB dose dependently led to an increase in the deleted copy number in alpha-MSH-treated melanocytes. UVB irradiation had little effect on deleted copy number in alpha-MSH-treated keratinocytes. In summary, alpha-MSH enhances mtDNA damage in melanocytes presumably by increased melanogenesis, while α-MSH is protective in keratinocytes, the more so in the absence of irradiation. PMID:27303631

  2. Combined effects of lapatinib and bortezomib in human epidermal receptor 2 (HER2)-overexpressing breast cancer cells and activity of bortezomib against lapatinib-resistant breast cancer cells.

    PubMed

    Ma, Chuandong; Niu, Xiuqing; Luo, Jianmin; Shao, Zhimin; Shen, Kunwei

    2010-10-01

    Lapatinib and bortezomib are highly active against breast cancer cells. Breast cancer patients who initially respond to lapatinib may eventually manifest acquired resistance to this treatment. Thus, the identification of novel agents that may prevent or delay the development of acquired resistance to lapatinib is critical. In the current study, we show that the combination of lapatinib and bortezomib results in a synergistic growth inhibition in human epidermal receptor 2 (HER2)-overexpressing breast cancer cells and that the combination enhances apoptosis of SK-BR-3 cells. Importantly, we found that the combination of lapatinib plus bortezomib more effectively blocked activation of the HER2 pathway in SK-BR-3 cells, compared with monotherapy. In addition, we established a model of acquired resistance to lapatinib by chronically challenging SK-BR-3 breast cancer cells with increasing concentrations of lapatinib. Here, we showed that bortezomib notably induced apoptosis of lapatinib-resistant SK-BR-3 pools and further inhibited HER2 signaling in the resistant cells. Taken together, the current data indicate a synergistic interaction between lapatinib and bortezomib in HER2-overexpressing breast cancer cells and provide the rationale for the clinical evaluation of these two noncross-resistant targeted therapies. The combination of lapatinib and bortezomib may be a potentially novel approach to prevent or delay the onset of acquired resistance to lapatinib in HER2-overxpressing/estrogen receptor (ER)-negative breast cancers. PMID:20701607

  3. Association of Human Epidermal Growth Factor Receptor 2 with Radiotherapy Resistance in Patients with T1N0M0 Breast Cancer

    PubMed Central

    Kim, Hyun-Ah; Kim, Eun-Kyu; Kim, Min-Soo; Yu, Jong-Han; Lee, Mi-Ri; Lee, Hae Kyung; Suh, Young-Jin

    2013-01-01

    Purpose Preclinical studies have shown that human epidermal growth factor receptor 2 (HER2)