Science.gov

Sample records for expressing human epidermal

  1. Differential expression of SKALP/Elafin in human epidermal tumors.

    PubMed Central

    Alkemade, H. A.; Molhuizen, H. O.; van Vlijmen-Willems, I. M.; van Haelst, U. J.; Schalkwijk, J.

    1993-01-01

    Recently we described a new epidermal serine proteinase inhibitor, skin-derived antileukoproteinase (SKALP), also known as elafin. SKALP/elafin was found to be absent in normal human epidermis, but can be induced in vitro and in vivo under hyperproliferative conditions. Here we studied the expression of SKALP/elafin in several types of epidermal tumors (basal cell carcinoma, squamous cell carcinoma, Bowen's disease, actinic keratosis, and keratoacanthoma). Using immunohistochemical staining SKALP/elafin appeared to be differentially expressed in these tumors. Functional measurements of anti-proteinase activity, and Western blotting of tumor extracts confirmed our findings at the histological level. In well differentiated squamous cell carcinoma, SKALP/elafin messenger RNA was demonstrated by non-radioactive in situ hybridization. We conclude that SKALP/elafin is a marker for abnormal or disturbed squamous differentiation. A possible role of SKALP/elafin in the control of tumor cell invasion is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8256855

  2. Transgenic expression of human amphiregulin in mouse skin: inflammatory epidermal hyperplasia and enlarged sebaceous glands

    PubMed Central

    Li, Yong; Stoll, Stefan W.; Sekhon, Sahil; Talsma, Caroline; Camhi, Maya I.; Jones, Jennifer L.; Lambert, Sylviane; Marley, Hue; Rittié, Laure; Grachtchouk, Marina; Fritz, Yi; Ward, Nicole L.; Elder, James T.

    2016-01-01

    To explore the role of amphiregulin in inflammatory epidermal hyperplasia, we overexpressed human AREG (hAREG) in FVB/N mice using a bovine K5 promoter. A construct containing AREG coding sequences flanked by 5′ and 3′ untranslated region sequences (AREG-UTR) led to a >10-fold increase in hAREG expression compared to an otherwise-identical construct containing only the coding region (AREG-CDR). AREG-UTR mice developed tousled, greasy fur as well as elongated nails and thickened, erythematous tail skin. No such phenotype was evident in AREG-CDR mice. Histologically, AREG-UTR mice presented with marked epidermal hyperplasia of tail skin (2.1-fold increase in epidermal thickness with a 9.5-fold increase in Ki-67+ cells) accompanied by significantly increased CD4+ T-cell infiltration. Dorsal skin of AREG-UTR mice manifested lesser but still significant increases in epidermal thickness and keratinocyte hyperplasia. AREG-UTR mice also developed marked and significant sebaceous gland enlargement, with corresponding increases in Ki-67+ cells. To determine the response of AREG-UTR animals to a pro-inflammatory skin challenge, topical imiquimod (IMQ) or vehicle cream was applied to dorsal and tail skin. IMQ increased dorsal skin thickness similarly in both AREG-UTR and wild type mice (1.7- and 2.2-fold vs vehicle, P < 0.001 each), but had no such effect on tail skin. These results confirm that keratinocyte expression of hAREG elicits inflammatory epidermal hyperplasia, and are consistent with prior reports of tail epidermal hyperplasia and increased sebaceous gland size in mice expressing human epigen. PMID:26519132

  3. Expression profiling of human epidermal keratinocyte response following 1-minute JP-8 exposure.

    PubMed

    Chou, Chi-Chung; Yang, Jen-Hung; Chen, San-Duo; Monteiro-Riviere, Nancy A; Li, Han-Ni; Chen, Jeremy J W

    2006-01-01

    The cDNA microarray analysis of 9600 expressed sequence tags was performed to examine the gene expression changes in human epidermal keratinocytes after 1-minute JP-8 exposure; 151 genes were identified as JP-8 responsive and classified into 8 clusters by self organization map. Genes involved in basal transcription and translations were up-regulated, whereas genes related to DNA repair, metabolism, and keratin were mostly down-regulated. Genes encoded for growth factors, apoptosis, signal transduction, and adhesion were also altered. These results indicated that human keratinocyte responds to a single dose of JP-8 insult and revealed several cellular processes previously not associated with jet fuel exposure. PMID:16835149

  4. Chemical synthesis of a gene for human epidermal growth factor urogastrone and its expression in yeast.

    PubMed Central

    Urdea, M S; Merryweather, J P; Mullenbach, G T; Coit, D; Heberlein, U; Valenzuela, P; Barr, P J

    1983-01-01

    We have chemically synthesized and expressed in yeast a gene coding for human epidermal growth factor (urogastrone), a 53-amino-acid polypeptide that has been shown to promote epithelial cell proliferation and to inhibit gastric acid secretion. The synthetic gene, consisting of 170 base pairs, was designed with yeast-preferred codons and assembled by enzymatic ligation of synthetic fragments produced by phosphoramidite chemistry. The DNA synthesis protocol used allows for facile synthesis of oligonucleotides larger than 50 bases. Yeast cells were transformed with plasmids containing the synthetic gene under control of a yeast glyceraldehyde-3-phosphate dehydrogenase gene promoter and were shown to synthesize a biologically active human epidermal growth factor. Images PMID:6369317

  5. Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression

    PubMed Central

    Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean

    2012-01-01

    Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868

  6. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    PubMed

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. PMID:21640721

  7. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells

    PubMed Central

    Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.

    2013-01-01

    Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486

  8. The expression of peripheral benzodiazepine receptors in human skin: the relationship with epidermal cell differentiation.

    PubMed

    Stoebner, P E; Carayon, P; Penarier, G; Fréchin, N; Barnéon, G; Casellas, P; Cano, J P; Meynadier, J; Meunier, L

    1999-06-01

    The peripheral benzodiazepine receptor (PBR) is a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands. PBR is part of a heteromeric receptor complex involved in the formation of mitochondrial permeability transition pores and in the early events of apoptosis. PBR may function as an oxygen-dependent signal generator; recent data indicate that these receptors may preserve the mitochondria of haematopoietic cell lines from damage caused by oxygen radicals. To identify PBRs in human skin, we used a specific monoclonal antibody directed against the C-terminus fragment of the human receptor. PBR immunoreactivity was found in keratinocytes, Langerhans cells, hair follicles and dermal vascular endothelial cells. Interestingly, confocal microscopic examination of skin sections revealed that PBR expression was strongly upregulated in the superficial differentiated layers of the epidermis. Ultrastructurally, PBRs were distributed throughout the cytoplasm but were selectively expressed on the mitochondrial membranes of epidermal cells. The elevated level of PBRs in the spinous layer was not associated with an increased number of mitochondria nor with an increased amount of mRNA as assessed by in situ hybridization on microautoradiographed skin sections. The present work provides, for the first time, evidence of PBR immunoreactivity in human skin. This mitochondrial receptor may modulate apoptosis in the epidermis; its increased expression in differentiated epidermal layers may represent a novel mechanism of natural skin protection against free radical damage generated by ultraviolet exposure. PMID:10354064

  9. Cloning, Expression, and Cost Effective Purification of Authentic Human Epidermal Growth Factor With High Activity

    PubMed Central

    Pouranvari, Sara; Ebrahimi, Firouz; Javadi, Gholamreza; Maddah, Bozorgmehr

    2016-01-01

    Background: Epidermal growth factor (EGF) plays a fundamental role in the healing of wounds relating to skin damage, the cornea, and the gastrointestinal tract. Objectives: The aim of this study is the cloning, expression, and purification of recombinant human EGF (rhEGF), and an assessment of its activity. Materials and Methods: In the present experimental study, a synthetic pET28a (+) -hEGF construct was prepared. In order to ligate hEGF into pET24a (+), the PCR technique was performed, using special primers that possess restriction enzyme sites, which are also located in appropriate sites in pET24a (+). After transferring this construct into E. coli cells, protein expression was performed under standard conditions. Protein solubilization was done by urea. hEGF purification and refolding were carried out using gradient dialysis against the urea. We used RP-HPLC to compare between rhEGF and commercial rhEGF as a control. Finally, an MTT assay was performed to assess the viability of the NIH 3T3 cells treated with various concentrations of rhEGF. Results: Dialysis after urea solubilization caused precipitation of unwanted proteins, resulting in achievement of purified EGF with > 90% purity, without the need for expensive and time-consuming process. The MTT assay results showed that our rhEGF activate significantly higher proliferation of NIH 3T3 cells in comparison to the control (P-values were < 0.0001), in total concentrations and times evaluated Conclusions: Via our purification protocol, a sufficient amount of bioactive recombinant human epidermal growth factor was obtained in just a few affordable steps, with superlative purity. PMID:27247796

  10. Novel protein in human epidermal keratinocytes: regulation of expression during differentiation

    SciTech Connect

    Kartasova, T.; van Muijen, G.N.; van Pelt-Heerschap, H.; van de Putte, P.

    1988-05-01

    Recently, two groups of cDNA clones have been isolated from human epidermal keratinocytes; the clones correspond to genes whose expression is stimulated by exposure of the cells to UV light or treatment with 4-nitroquinoline 1-oxide or 12-O-tetradecanoylphorbol 13-acetate. The proteins predicted by the nucleotide sequence of both groups of cDNAs are small (8 to 10 kilodaltons), are exceptionally rich in proline, glutamine, and cysteine, and contain repeating elements with a common sequence, PK PEPC. These proteins were designated sprI and sprII (small, proline rich). Here we describe the characterization of the sprIa protein, which is encoded by one of the group 1 cDNAs. The expression of this protein during keratinocyte differentiation in vitro and the distribution of the sprIa protein in some human tissues was studied by using a specific rabbit antiserum directed against a synthetic polypeptide corresponding to the 30 amino acids of the C-terminal region of the sprIa gene product. The results indicate that the expression of the sprIa protein is stimulated during keratinocyte differentiation both in vitro and in vivo.

  11. 2,3,7,8-Tetrachlorodibenzo-p-dioxin increases the expression of genes in the human epidermal differentiation complex and accelerates epidermal barrier formation.

    PubMed

    Sutter, Carrie Hayes; Bodreddigari, Sridevi; Campion, Christina; Wible, Ryan S; Sutter, Thomas R

    2011-11-01

    Chloracne is commonly observed in people exposed to dioxins, yet the mechanism of toxicity is not well understood. The pathology of chloracne is characterized by hyperkeratinization of the interfollicular squamous epithelium, hyperproliferation and hyperkeratinization of hair follicle cells as well as a metaplastic response of the ductular sebum secreting sebaceous glands. In vitro studies using normal human epidermal keratinocytes to model interfollicular human epidermis demonstrate a 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated acceleration of differentiation and increase in gene expression of several prodifferentiation genes, including filaggrin (FLG). Here, we demonstrated that the TCDD-activated aryl hydrocarbon receptor (AHR) bound a small fragment of DNA upstream of the transcriptional start sites of the FLG gene, containing one of two candidate xenobiotic response elements (XREs). Reporter assays using the promoter region of FLG containing the two putative XREs indicated that the increase in this messenger RNA (mRNA) was due to TCDD-mediated enhanced transcription, which was lost when both XREs were mutated. As FLG is part of the human epidermal differentiation complex (EDC) found on chromosome 1, we measured mRNAs from an additional 18 EDC genes for their regulation by TCDD. Of these genes, 14 were increased by TCDD. Immunoblot assays demonstrated that the proteins of FLG as well as that of another prodifferentiation gene, small proline rich protein 2, were increased by TCDD. In utero exposure to TCDD accelerated the formation of the epidermal barrier in the developing mouse fetus by approximately 1 day. These results indicate that the epidermal permeability barrier is a functional target of the TCDD-activated AHR. PMID:21835898

  12. Epidermal growth factor receptor expression in primary cultured human colorectal carcinoma cells.

    PubMed Central

    Tong, W. M.; Ellinger, A.; Sheinin, Y.; Cross, H. S.

    1998-01-01

    In situ hybridization on human colon tissue demonstrates that epidermal growth factor receptor (EGFR) mRNA expression is strongly increased during tumour progression. To obtain test systems to evaluate the relevance of growth factor action during carcinogenesis, primary cultures from human colorectal carcinomas were established. EGFR distribution was determined in 2 of the 27 primary cultures and was compared with that in well-defined subclones derived from the Caco-2 cell line, which has the unique property to differentiate spontaneously in vitro in a manner similar to normal enterocytes. The primary carcinoma-derived cells had up to three-fold higher total EGFR levels than the Caco-2 subclones and a basal mitotic rate at least fourfold higher. The EGFR affinity constant is 0.26 nmol l(-1), which is similar to that reported in Caco-2 cells. The proliferation rate of Caco-2 cells is mainly induced by EGF from the basolateral cell surface where the majority of receptors are located, whereas primary cultures are strongly stimulated from the apical side also. This corresponds to a three- to fivefold higher level of EGFR at the apical cell surface. This redistribution of EGFR to apical plasma membranes in advanced colon carcinoma cells suggests that autocrine growth factors in the colon lumen may play a significant role during tumour progression. Images Figure 1 Figure 2 PMID:9667648

  13. H(+)/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport.

    PubMed

    Kudo, Michiko; Katayoshi, Takeshi; Kobayashi-Nakamura, Kumiko; Akagawa, Mitsugu; Tsuji-Naito, Kentaro

    2016-07-01

    Peptide transporter 2 (PEPT2) is a member of the proton-coupled oligopeptide transporter family, which mediates the cellular uptake of oligopeptides and peptide-like drugs. Although PEPT2 is expressed in many tissues, its expression in epidermal keratinocytes remains unclear. We investigated PEPT2 expression profile and functional activity in keratinocytes. We confirmed PEPT2 mRNA expression in three keratinocyte lines (normal human epidermal keratinocytes (NHEKs), immortalized keratinocytes, and malignant keratinocytes) by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. In contrast to PEPT1, PEPT2 expression in the three keratinocytes was similar or higher than that in HepG2 cells, used as PEPT2-positive cells. Immunolocalization analysis using human skin showed epidermal PEPT2 localization. We studied keratinocyte transport function by measuring the oligopeptide content using liquid chromatography/tandem mass spectrometry. Glycylsarcosine uptake in NHEKs was pH-dependent, suggesting that keratinocytes could absorb small peptides in the presence of an inward H(+) gradient. We also performed a skin-permeability test of several oligopeptides using skin substitute, suggesting that di- and tripeptides pass actively through the epidermis. In conclusion, PEPT2 is expressed in keratinocytes and involved in skin oligopeptide uptake. PMID:27216463

  14. Expression of an Exogenous Growth Hormone Gene by Transplantable Human Epidermal Cells

    NASA Astrophysics Data System (ADS)

    Morgan, Jeffrey R.; Barrandon, Yann; Green, Howard; Mulligan, Richard C.

    1987-09-01

    Retrovirus-mediated gene transfer was used to introduce a recombinant human growth hormone gene into cultured human keratinocytes. The transduced keratinocytes secreted biologically active growth hormone into the culture medium. When grafted as an epithelial sheet onto athymic mice, these cultured keratinocytes reconstituted an epidermis that was similar in appearance to that resulting from normal cells, but from which human growth hormone could be extracted. Transduced epidermal cells may prove to be a general vehicle for the delivery of gene products by means of grafting.

  15. Expression of histamine H4 receptor in human epidermal tissues and attenuation of experimental pruritus using H4 receptor antagonist.

    PubMed

    Yamaura, Katsunori; Oda, Manabu; Suwa, Eriko; Suzuki, Masahiko; Sato, Hiromi; Ueno, Koichi

    2009-10-01

    Many medicines exist which can cause pruritus (itching) as "serious adverse events." Many severe pruritic conditions respond poorly to histamine H1 receptor antagonists; there is no generally accepted antipruritic treatment. Recently described histamine H4 receptors are expressed in haematopoietic cells and have been linked to the pathology of allergy and asthma. We previously reported their expression in human dermal fibroblasts; in this study we have investigated H4 receptor expression in human epidermal tissue and found it to be greater in keratinocytes in the epidermal upper layer than in the lower layer. We have also investigated the effect of histamine H4 receptor antagonists on histamine H1 receptor antagonist-resistant pruritus using a mouse model. Scratching behavior was induced by histamine (300 nmol) or substance P (100 nmol) injected intradermally into the rostral part of the back of each mouse. Fexofenadine, a histamine H1 receptor antagonist, reduced scratching induced by histamine but not by substance P, whereas JNJ7777120, a histamine H4 receptor antagonist, significantly reduced both histamine- and substance P-induced scratching. These results suggest that H4 receptor antagonists may be useful for treatment of H1 receptor antagonist-resistant pruritus. PMID:19652466

  16. IgG and IgA with potential microbial-binding activity are expressed by normal human skin epidermal cells.

    PubMed

    Jiang, Dongyang; Ge, Jing; Liao, Qinyuan; Ma, Junfan; Liu, Yang; Huang, Jing; Wang, Chong; Xu, Weiyan; Zheng, Jie; Shao, Wenwei; Lee, Gregory; Qiu, Xiaoyan

    2015-01-01

    The innate immune system of the skin is thought to depend largely on a multi-layered mechanical barrier supplemented by epidermis-derived antimicrobial peptides. To date, there are no reports of antimicrobial antibody secretion by the epidermis. In this study, we report the expression of functional immunoglobulin G (IgG) and immunoglobulin A (IgA), previously thought to be only produced by B cells, in normal human epidermal cells and the human keratinocyte line HaCaT. While B cells express a fully diverse Ig, epidermal cell-expressed IgG or IgA showed one or two conservative VHDJH rearrangements in each individual. These unique VDJ rearrangements in epidermal cells were found neither in the B cell-derived Ig VDJ databases published by others nor in our positive controls. IgG and IgA from epidermal cells of the same individual had different VDJ rearrangement patterns. IgG was found primarily in prickle cells, and IgA was mainly detected in basal cells. Both epidermal cell-derived IgG and IgA showed potential antibody activity by binding pathogens like Staphylococcus aureus, the most common pathogenic skin bacteria, but the microbial-binding profile was different. Our data indicates that normal human epidermal cells spontaneously express IgG and IgA, and we speculate that these Igs participate in skin innate immunity. PMID:25625513

  17. Differential regulation of human Eag1 channel expression by serum and epidermal growth factor in lung and breast cancer cells

    PubMed Central

    Acuña-Macías, Isabel; Vera, Eunice; Vázquez-Sánchez, Alma Yolanda; Mendoza-Garrido, María Eugenia; Camacho, Javier

    2015-01-01

    Oncogenic ether à-go-go-1 (Eag1) potassium channels are overexpressed in most primary human solid tumors. Low oxygen and nutrient/growth factor concentrations play critical roles in tumorigenesis. However, the mechanisms by which tumor cells survive and proliferate under growth factor-depleted conditions remain elusive. Here, we investigated whether serum-deprived conditions and epidermal growth factor (EGF) regulate Eag1 expression in human lung and breast cancer cells. The human cancer cell lines A549 and MCF-7 (from the lungs and breast, respectively) were obtained from the American Type Culture Collection and cultured following the manufacturer’s recommendations. Eag1 gene and protein expression were studied by real-time PCR and immunocytochemistry, respectively. Cell proliferation was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and ERK1/2 phosphorylation was investigated by Western blot. Serum-deprived conditions increased Eag1 mRNA and protein expression in both cell lines. This Eag1 upregulation was prevented by EGF and the ERK1/2 inhibitor U0126 in only lung cancer cells; vascular endothelial growth factor did not prevent Eag1 upregulation. Our results suggest that Eag1 may act as a survival and mitogenic factor under low-serum and nutrient conditions and may be a clinical target during the early stages of tumor development. PMID:26527881

  18. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells.

    PubMed Central

    Sehgal, I; Bailey, J; Hitzemann, K; Pittelkow, M R; Maihle, N J

    1994-01-01

    Amphiregulin is a heparin-binding epidermal growth factor (EGF)-related peptide that binds to the EGF receptor (EGF-R) with high affinity. In this study, we report a role for amphiregulin in androgen-stimulated regulation of prostate cancer cell growth. Androgen is known to enhance EGF-R expression in the androgen-sensitive LNCaP human prostate carcinoma cell line, and it has been suggested that androgenic stimuli may regulate proliferation, in part, through autocrine mechanisms involving the EGF-R. In this study, we demonstrate that LNCaP cells express amphiregulin mRNA and peptide and that this expression is elevated by androgenic stimulation. We also show that ligand-dependent EGF-R stimulation induces amphiregulin expression and that androgenic effects on amphiregulin synthesis are mediated through this EGF-R pathway. Parallel studies using the estrogen-responsive breast carcinoma cell line, MCF-7, suggest that regulation of amphiregulin by estrogen may also be mediated via an EGF-R pathway. In addition, heparin treatment of LNCaP cells inhibits androgen-stimulated cell growth further suggesting that amphiregulin can mediate androgen-stimulated LNCaP proliferation. Together, these results implicate an androgen-regulated autocrine loop composed of amphiregulin and its receptor in prostate cancer cell growth and suggest that the mechanism of steroid hormone regulation of amphiregulin synthesis may occur through androgen upregulation of the EGF-R and subsequent receptor-dependent pathways. Images PMID:8049525

  19. Expression and Prognostic Significance of Human Epidermal Growth Factor Receptors 1 and 3 in Gastric and Esophageal Adenocarcinoma

    PubMed Central

    Hedner, Charlotta; Borg, David; Nodin, Björn; Karnevi, Emelie; Jirström, Karin; Eberhard, Jakob

    2016-01-01

    Background Gastric and esophageal adenocarcinomas are major global cancer burdens. These cancer forms are characterized by a poor prognosis and a modest response to chemo- radio- and targeted treatment. Hence there is an obvious need for further enhanced diagnostic and treatment strategies. The aim of this study was to examine the expression and prognostic impact of human epidermal growth factor receptor 1 (HER1/EGFR) and 3 (HER3), as well as the occurrence of EGFR and KRAS mutations in gastric and esophageal adenocarcinoma. Methods Immunohistochemical expression of EGFR and HER3 was analysed in all primary tumours and a subset of lymph node metastases in a consecutive cohort of 174 patients with adenocarcinoma of the stomach, cardia and esophagus. The anti-HER3 antibody used was validated by siRNA-mediated knockdown, immunohistochemistry and quantitative real-time PCR. EGFR and KRAS mutation status was analysed by pyrosequencing tecchnology. Results and Discussion High EGFR expression was an independent risk factor for shorter overall survival (OS), whereas high HER3 expression was associated with a borderline significant trend towards a longer OS. KRAS mutations were present in only 4% of the tumours and had no prognostic impact. All tumours were EGFR wild-type. These findings contribute to the ongoing efforts to decide on the potential clinical value of different HERs and druggable mutations in gastric and esophageal adenocarcinomas, and attention is drawn to the need for more standardised investigational methods. PMID:26844548

  20. Hydrolyzed Methylhesperidin Induces Antioxidant Enzyme Expression via the Nrf2-ARE Pathway in Normal Human Epidermal Keratinocytes.

    PubMed

    Kuwano, Tetsuya; Watanabe, Manabu; Kagawa, Daiji; Murase, Takatoshi

    2015-09-16

    Methylhesperidin (MHES) is a mixture of methylated derivatives of the citrus flavonoid hesperidin and is used as a food or pharmaceutical additive. Dietary MHES could be hydrolyzed by gut microflora to give aglycons. Therefore, we prepared hydrolyzed methylhesperidin (h-MHES) and assessed its pharmacological activity in human epidermal keratinocytes. h-MHES promoted nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and the expression of cytoprotective genes (e.g., heme oxygenase-1 (HO-1) and glutamate cysteine ligase catalytic subunit (GCLC)). h-MHES also increased intracellular glutathione levels and reduced UVB-induced reactive oxygen species. Moreover, h-MHES increased phosphorylation of p38 mitogen-activated protein kinase (MAPK), and a p38 MAPK inhibitor significantly attenuated h-MHES-induced HO-1 and GCLC expression. Furthermore, when we purified the components of h-MHES, we identified two methoxy-chalcones as novel Nrf2 activators. Our study demonstrates that h-MHES can induce cytoprotective gene expression and reduce oxidative stress via the Nrf2-ARE pathway in keratinocytes, suggesting that MHES may contribute to the suppression of UVB-induced skin damage in vivo. PMID:26313892

  1. NEU1 Sialidase Expressed in Human Airway Epithelia Regulates Epidermal Growth Factor Receptor (EGFR) and MUC1 Protein Signaling*

    PubMed Central

    Lillehoj, Erik P.; Hyun, Sang Won; Feng, Chiguang; Zhang, Lei; Liu, Anguo; Guang, Wei; Nguyen, Chinh; Luzina, Irina G.; Atamas, Sergei P.; Passaniti, Antonino; Twaddell, William S.; Puché, Adam C.; Wang, Lai-Xi; Cross, Alan S.; Goldblum, Simeon E.

    2012-01-01

    Epithelial cells (ECs) lining the airways provide a protective barrier between the external environment and the internal host milieu. These same airway epithelia express receptors that respond to danger signals and initiate repair programs. Because the sialylation state of a receptor can influence its function and is dictated in part by sialidase activity, we asked whether airway epithelia express catalytically active sialidase(s). Human primary small airway and A549 ECs expressed NEU1 sialidase at the mRNA and protein levels, and NEU1 accounted for >70% of EC sialidase activity. Blotting with Maackia amurensis and peanut agglutinin lectins established epidermal growth factor receptor (EGFR) and MUC1 as in vivo substrates for NEU1. NEU1 associated with EGFR and MUC1, and NEU1-EGFR association was regulated by EGF stimulation. NEU1 overexpression diminished EGF-stimulated EGFR Tyr-1068 autophosphorylation by up to 44% but enhanced MUC1-dependent Pseudomonas aeruginosa adhesion by 1.6–1.7-fold and flagellin-stimulated ERK1/2 activation by 1.7–1.9-fold. In contrast, NEU1 depletion increased EGFR activation (1.5-fold) and diminished MUC1-mediated bacterial adhesion (38–56%) and signaling (73%). These data indicate for the first time that human airway epithelia express catalytically active NEU1 sialidase that regulates EGFR- and MUC1-dependent signaling and bacterial adhesion. NEU1 catalytic activity may offer an additional level of regulation over the airway epithelial response to ligands, pathogens, and injurious stimuli. PMID:22247545

  2. Design, expression and evaluation of a novel humanized single chain antibody against epidermal growth factor receptor (EGFR).

    PubMed

    Akbari, Bahman; Farajnia, Safar; Zarghami, Nosratollah; Mahdieh, Nejat; Rahmati, Mohammad; Khosroshahi, Shiva Ahdi; Rahbarnia, Leila

    2016-11-01

    Various strategies have been attempted for targeting of epidermal growth factor receptor (EGFR), as an essential biomarker in a variety of cancers. Several anti-EGFR antibodies including cetuximab are used in clinics for treatment of EGFR-overexpressing colorectal and head and neck cancers but the efficiency of these antibodies is threatened by their large size and chimeric nature. Humanized single chains antibodies (huscFv) are smaller generation of antibodies with lower immunogenicity may overcome these limitations. This article reports production and evaluation of a novel humanized anti-EGFR scFv. The CDRs of cetuximab heavy and light chains were grafted onto human antibody frameworks as framework donors. To maintain the antigen binding affinity of murine antibody, the murine vernier zone residues were retained in framework regions of huscFv. Additionally, two point mutations in CDR-L1 and CDR-L3 and three point mutations in CDR-H2 and CDR-H3 loops of the humanized scFv (huscFv) were introduced to increase affinity of the huscFv to EGFR. Analysis of results demonstrated that the humanness degree of resultant huscFv was increased as 19%. HuscFv was expressed in BL21 (DE3) and affinity purified via Ni-NTA column. The reactivity of huscFv with EGFR was evaluated by ELISA and dot blot techniques. Analysis by ELISA and dot blot showed that the huscFv was able to recognize and react with EGFR. Toxicity analysis by MTT assay indicated an inhibitory effect on growth of EGFR-overexpressing A431 cells. In conclusion, the huscFv produced in this study revealed decreased immunogenicity while retained growth inhibitory effect on EGFR-overexpressing tumor cells. PMID:27298212

  3. Increased epidermal growth factor receptor gene expression by gamma-interferon in a human breast carcinoma cell line.

    PubMed Central

    Hamburger, A. W.; Pinnamaneni, G. D.

    1991-01-01

    The interferons are a group of naturally occurring proteins that inhibit the growth of tumours in vivo and many transformed cell lines in vitro. The mechanisms of action of interferon, however, remain unclear. The IFN induced inhibition of growth of many epithelial cancer cell lines is associated with changes in Epidermal Growth Factor Receptor (EGFR) binding or expression. Therefore, we examined the effect of IFN treatment on the expression of EGFR in a human breast carcinoma cell line, MDA 468. We have found the IFN-gamma inhibited, in a dose dependent fashion, the growth of MDA 468 cells. IFN decreased cell surface binding of 125I-EGF to EGFR by changing receptor number rather than affinity. However, total cellular receptor protein, as measured by immunoprecipitation with monoclonal antibodies, was increased in IFN-treated cells. The half-life of the metabolically labelled receptor was unchanged by treatment with IFN. Increased amounts of EGFR mRNA were observed in MDA 468 cells treated with IFN-gamma for 3 days. The levels of mRNA increased with time in culture, reaching a peak of four times control values after 5 days of treatment. This effect was observable with as little as 10 U ml-1 of IFN-gamma. Treatment of the cells with Actinomycin D to inhibit new RNA synthesis suggested that the stability of EGFR mRNA was not enhanced in IFN-gamma treated cells. The increase in receptor mRNA induced by IFN was not inhibited by cycloheximide. These data suggest IFN-gamma can increase expression of EGFR mRNA and protein in MDA 468 cells. Increased expression of EGFR mRNA and protein by IFN-gamma is associated with inhibition of cell growth. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1906727

  4. The trifunctional antibody ertumaxomab destroys tumor cells that express low levels of human epidermal growth factor receptor 2.

    PubMed

    Jäger, Michael; Schoberth, Alexandra; Ruf, Peter; Hess, Jürgen; Lindhofer, Horst

    2009-05-15

    Human epidermal growth factor receptor 2 (HER2/neu) is an important target for the treatment of the breast cancers in which it is overexpressed. However, no approved anti-HER2/neu therapy is available for the majority of breast cancer patients, who express HER2/neu at low levels (with scores of 1+ or 2+/fluorescence in situ hybridization-negative). The trifunctional antibody ertumaxomab targets HER2/neu, CD3, and activating Fcgamma receptors. In presence of ertumaxomab, tri-cell complexes consisting of tumor cells, T cells, and accessory cells form to cause tumor cell lysis. In a phase I trial with metastatic breast cancer patients, ertumaxomab could be applied safely and resulted in radiographically confirmed clinical responses. In this study, we compare ertumaxomab- and trastuzumab-mediated killing of cancer cell lines that express HER2/neu at low and high levels. Under optimal conditions for trastuzumab-mediated destruction of HER2/neu-overexpressing cells, only ertumaxomab was able to mediate the elimination of tumor cell lines that express HER2/neu at low levels (1+). Ertumaxomab-mediated activity was accompanied by a Th1-based cytokine release, a unique mode of action of trifunctional antibodies. Competitive binding studies with trastuzumab and 520C9 mapped the binding site of ertumaxomab to the extracellular regions II and III of the HER2/neu ectodomain. This site is distinct from the binding site of trastuzumab, so that HER2/neu-expressing tumor cells can be eliminated by ertumaxomab in the presence of high amounts of trastuzumab. The ability of ertumaxomab to induce cytotoxicity against various tumor cell lines, including those with low HER2/neu antigen density, may provide a novel therapeutic option for breast cancer patients who are not eligible for trastuzumab treatment. PMID:19435924

  5. Neurotensin Decreases the Proinflammatory Status of Human Skin Fibroblasts and Increases Epidermal Growth Factor Expression

    PubMed Central

    Miguel Neves, Bruno; Cruz, Maria Teresa; Carvalho, Eugénia

    2014-01-01

    Fibroblasts colonization into injured areas during wound healing (WH) is responsible for skin remodelling and is also involved in the modulation of inflammation, as fibroblasts are immunologically active. Herein, we aimed to determine neurotensin effect on the immunomodulatory profile of fibroblasts, both in homeostatic and inflammatory conditions. Neurotensin mediated responses occurred through NTR1 or NTR3 receptors, while under inflammatory conditions NTR1 expression increase seemed to modulate neurotensin responses. Among different immunomodulatory genes, CCL11, IL-8, and IL-6 were the most expressed genes, while CCL4 and EGF were the less expressed genes. After neurotensin exposure, IL-8 mRNA expression was increased while CCL11 was decreased, suggesting a proinflammatory upregulation and chemoattractant ability downregulation of fibroblasts. Under inflammatory conditions, gene expression was significantly increased. After neurotensin exposure, CCL4 and IL-6 mRNA expression were decreased while CCL11 was increased, suggesting again a decrease in the chemoattractant capacity of fibroblasts and in their proinflammatory status. Furthermore, the expression of EGF, a crucial growth factor for skin cells proliferation and WH, was increased in all conditions. Overall, neurotensin, released by nerve fibers or skin cells, may be involved in the decrease of the chemotaxis and the proinflammatory status in the proliferation and remodelling phases of WH. PMID:25180119

  6. Downregulation of Epidermal Growth Factor Receptor Expression Contributes to α-TEA's Proapoptotic Effects in Human Ovarian Cancer Cell Lines

    PubMed Central

    Shun, Ming-Chieh; Yu, Weiping; Park, Sook-Kyung; Sanders, Bob G.; Kline, Kimberly

    2010-01-01

    RRR-α-tocopherol derivative α-TEA (RRR-α-tocopherol ether-linked acetic acid analog) has been shown to be a potent antitumor agent both in vivo and in vitro. In this study, we investigated the effects of α-TEA on the expression of epidermal growth factor receptor (EGFR) family members, ErbB1, 2 and 3, and the role of ErbB 2 and 3 in α-TEA-induced apoptosis and suppression of Akt, FLIP and survivin in the cisplatin-sensitive (A2780S) and -resistant (A2780/CP70R) human ovarian cancer cell lines. Data show that α-TEA's ability to induced apoptosis was associated with reduced expression of ErbB1 (cisplatin-resistant cells), 2 and 3 (both cell types) and reduced levels of the phosphorylated (active) form of Akt; as well as, reduced levels of FLIP and survivin proteins in both cell types. Ectopic overexpression and siRNA knockdown studies showed that ErbB2, ErbB3, Akt, FLIP and survivin are involved in α-TEA-induce apoptosis and that α-TEA downregulates FLIP and survivin via suppression of pAkt, which is mediated by ErbB2 and ErB3. Thus, α-TEA is a potent pro-apoptotic agent for both cisplatin-sensitive and -resistant ovarian cancer cell lines in cell culture and it produces cell death, at least in part, by downregulation of members of the EGFR family. PMID:20224651

  7. Construction of Yeast Recombinant Expression Vector Containing Human Epidermal Growth Factor (hEGF)

    PubMed Central

    Mohammadian, Jamal; Mansoori-Derakhshan, Sima; Mohammadian, Masood; Shekari-Khaniani, Mahmoud

    2013-01-01

    Purpose: The objective of this study was construction of recombinant hEGF-pPIC9 which may be used for expression of recombinant hEGF in following studies. Methods: EGF cDNA was purchased from Genecopoeia Company and used for PCR amplification. Prior to ligation, the PCR product and pPIC9 vector was digested with EcoRI and XhoI and ligated in pPIC9 vector and subjected to colony PCR screening and sequencing analysis. Results: PCR amplification of EGF cDNA using recombinant hEGF-pPIC9 vector as template was concluded in amplification of 197bp fragment. Construction of recombinant hEGF-pPIC9 of EGf gene was verified by PCR and sequencing. Conclusion: Construction of Recombinant hEGF-pPIC9 was the primary stage for production and expression of EFG in the future study. PMID:24312882

  8. Gene Expression of Normal Human Epidermal Keratinocytes Modulated by Trivalent Arsenicals

    EPA Science Inventory

    Chronic exposure to inorganic arsenic (iAs) is associated with the development of benign and malignant human skin lesions including nonmelanoma skin cancers. The precise arsenical form(s) responsible for this carcinogenic effect are unknown, although trivalent inorganic arsenic (...

  9. Human epidermal growth factor receptor 2 expression in urothelial carcinoma of the renal pelvis: correlation with clinicopathologic parameters.

    PubMed

    Ehsani, Laleh; Osunkoya, Adeboye O

    2014-01-01

    The significance of human epidermal growth factor receptor 2 (HER2) overexpression in breast cancer is well established, and these patients are subsequently treated with Trastuzumab. Although HER2 expression in urothelial carcinoma of the urinary bladder has also been recently characterized, it has not been well studied in urothelial carcinoma of the renal pelvis. We investigated the relationship between HER2 overexpression in urothelial carcinoma of the renal pelvis and clinicopathologic parameters. Forty six cases were identified. HER2 overexpression was present in 34/46 (74%) cases. Mean patient age with HER2 overexpression was 68 years (range: 42-87 years). There was a male predominance with 28/34 (82%) patients. High grade urothelial carcinoma was present in 32/34 (94%) cases and 2/34 (6%) cases had low grade urothelial carcinoma. Pathologic staging was as follows; 9/34 (26%) cases were pTa, 10/34 (29%) cases were pT1, 2/34 (6%) cases were pT2, 12/34 (35%) cases were pT3, and 1/34 (3%) cases was pT4. An inverted growth pattern was present in 23/46 (50%) cases. HER2 overexpression was present in 15/23 (65%) cases of urothelial carcinoma with an inverted growth pattern. Our study showed that HER2 overexpression is more common in male patients with high grade urothelial carcinoma, especially those with an inverted growth pattern. It is highly conceivable that patients with urothelial carcinoma of the renal pelvis may be further stratified based on HER2 overexpression, and may also be potential candidates for Trastuzumab therapy in the neoadjuvant or adjuvant setting. PMID:24966967

  10. p53 protein expression in human breast carcinoma: relationship to expression of epidermal growth factor receptor, c-erbB-2 protein overexpression, and oestrogen receptor.

    PubMed Central

    Poller, D. N.; Hutchings, C. E.; Galea, M.; Bell, J. A.; Nicholson, R. A.; Elston, C. W.; Blamey, R. W.; Ellis, I. O.

    1992-01-01

    The expression of p53 protein, oestrogen receptor protein, epidermal growth factor receptor (EGFR) and overexpression of the c-erbB-2 oncoprotein was examined in a series of 149 primary symptomatic breast carcinomas. Expression of p53 was present in 62 of 146 cases (42.5%) of the invasive carcinoma and one of three cases (33.3%) of ductal carcinoma in situ (DCIS) examined. Statistical associations of tumour oestrogen receptor positivity and lack of p53 protein expression, chi 2 = 19.78 (d.f. = 1), P less than 0.001, positive tumour p53 status and poor tumour grade; chi 2 = 14.1 (d.f. = 2), P less than 0.001, EGFR expression chi 2 = 7.07, (d.f. = 1), P less than 0.01 and tumour c-erbB-2 protein overexpression; chi 2 = 4.61 (d.f. = 1), P = 0.032 were identified. Expression of p53 is rare in invasive lobular carcinoma of classical type (8.3% of cases examined) in contrast to other common types of mammary carcinoma. Non-significant trends of p53 protein expression and increased regional tumour recurrence; chi 2 = 3.20 (d.f. = 1), P = 0.074 and also poorer patient survival; chi 2 = 3.76 (d.f. = 1), P = 0.053 were identified. p53 protein expression is a common event in human breast cancer and is present in both DCIS and invasive mammary carcinoma. Abnormal expression of p53 protein is a feature of both in situ and invasive breast carcinoma, implying that the abnormal p53 protein expression may be implicated in the early stages of mammary carcinoma progression. Images Figure 1 PMID:1355662

  11. Expression, purification, and characterization of recombinant human and murine milk fat globule-epidermal growth factor-factor 8.

    PubMed

    Castellanos, Erick R; Ciferri, Claudio; Phung, Wilson; Sandoval, Wendy; Matsumoto, Marissa L

    2016-08-01

    Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), as its name suggests, is a major glycoprotein component of milk fat globules secreted by the mammary epithelium. Although its role in milk fat production is unclear, MFG-E8 has been shown to act as a bridge linking apoptotic cells to phagocytes for removal of these dying cells. MFG-E8 is capable of bridging these two very different cell types via interactions through both its epidermal growth factor (EGF)-like domain(s) and its lectin-type C domains. The EGF-like domain interacts with αVβ3 and αVβ5 integrins on the surface of phagocytes, whereas the C domains bind phosphatidylserine found on the surface of apoptotic cells. In an attempt to purify full-length, recombinant MFG-E8 expressed in either insect cells or CHO cells, we find that it is highly aggregated. Systematic truncation of the domain architecture of MFG-E8 indicates that the C domains are mainly responsible for the aggregation propensity. Addition of Triton X-100 to the conditioned cell culture media allowed partial recovery of non-aggregated, full-length MFG-E8. A more comprehensive detergent screen identified CHAPS as a stabilizer of MFG-E8 and allowed purification of a significant portion of non-aggregated, full-length protein. The CHAPS-stabilized recombinant MFG-E8 retained its natural ability to bind both αVβ3 and αVβ5 integrins and phosphatidylserine suggesting that it is properly folded and active. Herein we describe an efficient purification method for production of non-aggregated, full-length MFG-E8. PMID:27102803

  12. Sulfation of estradiol in human epidermal keratinocyte.

    PubMed

    Kushida, Akira; Hattori, Kenji; Yamaguchi, Nozomi; Kobayashi, Tetsuyuki; Date, Akira; Tamura, Hiroomi

    2011-01-01

    Epidermis is one of the well-known estrogen target tissues. Information regarding estrogen metabolism in epidermis is still very limited compared to that of estrogen action. In the breast cancer tissue, 17β-estradiol (E(2)) is inactivated by sulfation and the expression level of estrogen sulfotransferase (SULT1E1) is inversely correlated with its malignancy. However, there is little datum about inactivation of estradiol in skin. In order to detect and measure E(2) and its metabolites simultaneously, we established an assay method with radio HPLC. A majority of [(3)H] labeled E(2) was converted to E(2) sulfate in normal human epidermal keratinocyte (NHEK) cells. The estimated activity of sulfotransferase toward E(2) at 20 nM was 0.11±0.01 (pmol/min/mg protein). Significant induction of estrogen sulfotransferase activity was observed in calcium-differentiated NHEK cells (0.58±0.07 (pmol/min/mg protein)). The gene expression of SULT1E1 was fifteen-fold higher in differentiated keratinocyte than in proliferating keratinocyte, whereas that of steroid sulfatase was reduced. These results suggest that E(2) inactivation is primarily mediated by SULT1E1 in keratinocyte and E(2) action is likely suppressed in epidermal differentiation. PMID:21720030

  13. Blister fluid T lymphocytes during toxic epidermal necrolysis are functional cytotoxic cells which express human natural killer (NK) inhibitory receptors

    PubMed Central

    Le Cleach, L; Delaire, S; Boumsell, L; Bagot, M; Bourgault-Villada, I; Bensussan, A; Roujeau, J C

    2000-01-01

    Toxic epidermal necrolysis (TEN) is a rare life-threatening adverse drug reaction characterized by a massive destruction of the epidermis. Immunohistological studies of skin biopsies of TEN showed infiltrates of predominantly CD8+ T lymphocytes even though other authors reported a prominent involvement of cells of the monocyte-macrophage lineage. The aim of this study was to characterize phenotypically and functionally the cells present in the cutaneous blister fluid of four patients with TEN. We first determined that lymphocytes were predominant in blister fluid obtained early, while monocytes/macrophages later became the most important population. We then showed that this lymphocyte population, mainly CD3+CD8+, corresponded to a peculiar cell subset as they expressed cutaneous leucocyte antigen, killer inhibitory receptors KIR/KAR and failed to express CD28 molecule. Functionally, we determined that blister T lymphocytes had a cytotoxic T lymphocyte (CTL)- and NK-like cytotoxicity. The role of this cytotoxic lymphocyte population present at the site of lesions during TEN remains to be understood. PMID:10606987

  14. Expression of epidermal growth factor receptor, p53, Bcl2, vascular endothelial growth factor, cyclooxygenase-2, cyclin D1, human epidermal receptor-2 and Ki-67: Association with clinicopathological profiles and outcomes in gallbladder carcinoma

    PubMed Central

    Doval, Dinesh Chandra; Azam, Saud; Sinha, Rupal; Batra, Ullas; Mehta, Anurag

    2014-01-01

    Background: The present study observed the expression levels of epidermal growth factor receptor (EGFR), p53, Bcl2, vascular endothelial growth factor (VEGF), cyclooxygenase-2 (cox-2), cyclin D1, human epidermal receptor-2 (HER-2) and Ki-67 in gallbladder carcinoma (GBC) and their association with clinicopathological profiles and disease outcomes. Materials and Methods: Fifty consecutive samples of cholecystectomy/biopsies from GB bed (archived formalin fixed paraffin embedded tissue blocks of different stages of GBC) were included, and patient details related to their demographic profile, investigations, tumor profile, treatment, and follow-up were recorded. Immunohistochemistry was performed to study the expression levels. Results: Overexpression of EGFR, p53, Bcl2, VEGF, cox-2, cyclin D1 and HER-2 was observed as 74%, 44%, 8%, 34%, 66%, 64%, and 4%, respectively. Association of Bcl2 overexpression in mucinous morphology (40%, P = 0.045), cox-2 overexpression in early stage (I/II) tumors (87.5%, P = 0.028) and VEGF overexpression in alive patients (47.1%, P = 0.044) was observed. Co-expression of EGFR and p53 were statistically significant (P = 0.033). Ki-67 labeling index was significantly higher in patients in age group <40 years (P = 0.027), and poorly differentiated tumors (P = 0.023). Advanced disease and poorly differentiated tumors showed a significantly poor median survival (P < 0.05). Conclusion: EGFR, cox-2 and cyclin D1 were largely overexpressed. Advanced tumor stages and poorly differentiated tumors are predictors of poor survival. PMID:25225463

  15. Targeted expression of the E6 and E7 oncogenes of human papillomavirus type 16 in the epidermis of transgenic mice elicits generalized epidermal hyperplasia involving autocrine factors.

    PubMed Central

    Auewarakul, P; Gissmann, L; Cid-Arregui, A

    1994-01-01

    The E6 and E7 early genes of human papillomavirus type 16 have been shown in vitro to play a central role in the transforming capability of this virus. To explore their effects on differentiating epithelial cells in vivo, we used a bovine cytokeratin 10 (K10) promoter to target the expression of E6 and E7 to the suprabasal layers of the epidermis of transgenic mice. In two different lines of mice efficiently expressing the transgene, animals displayed generalized epidermal hyperplasia, hyperkeratosis and parakeratosis in the skin and the forestomach, both known to be sites of K10 expression. Northern (RNA) blot analysis revealed high levels of E6 and E7 transcripts, and in situ hybridizations localized these transcripts to the suprabasal strata of epidermis. In vivo labeling of proliferating cells showed two distinct effects of E6 and E7 expression in the epidermis: (i) an increase in the number of growing cells in the undifferentiated basal layer and (ii) abnormal proliferation of differentiated cells in the suprabasal strata. The expression of c-myc in the skin of transgenics was higher than that in control animals. The induction of c-myc transcription by topical application of tetradecanoyl phorbol acetate was prevented by simultaneous treatment with transforming growth factor beta 1 in nontransgenic skin but not in transgenic skin. In addition, transforming growth factor alpha was found to be overexpressed in the suprabasal layers of the transgenic epidermis. These findings suggest that autocrine mechanisms are involved in the development and maintenance of epidermal hyperplasia. Animals of both lines developed papillomas in skin sites exposed to mechanical irritation and wounding, suggesting that secondary events are necessary for progression to neoplasia. Collectively, these results provide new insights into the tumor promoter activities of human papillomavirus type 16 in epithelial cells in vivo. Images PMID:7969162

  16. Epidermal growth factor receptor expression affects the efficacy of the combined application of saponin and a targeted toxin on human cervical carcinoma cells.

    PubMed

    Bachran, Diana; Schneider, Stefanie; Bachran, Christopher; Urban, Romy; Weng, Alexander; Melzig, Matthias F; Hoffmann, Corinna; Kaufmann, Andreas M; Fuchs, Hendrik

    2010-09-01

    Cervical cancer is the second most common cancer in women worldwide. Targeting the epidermal growth factor receptor (EGFR) is a very promising approach since it is overexpressed in about 90% of cervical tumors. Here, we quantified the toxic effect of SE, a targeted toxin consisting of epidermal growth factor (EGF) as targeting moiety and the plant toxin saporin-3, on 3 common human cervical carcinoma cell lines (HeLa, CaSki and SiHa) and recently established lines (PHCC1 and PHCC2) from 2 different individuals. A human melanocytic and a mouse cell line served as negative control. Additionally, we combined SE with saponinum album, a saponin composite from Gypsophila paniculata, which exhibited synergistic properties in previous studies. The cell lines, except for SiHa cells, revealed high sensitivity to SE with 50% cell survival in the range of 5-24.5 nM. The combination with saponin resulted in a remarkable enhancement of cytotoxicity with enhancement factors ranging from 9,000-fold to 2,500,000-fold. The cytotoxicity of SE was clearly target receptor specific since free EGF blocks the effect and saporin-3 alone was considerably less toxic. For all cervical carcinoma cell lines, we evinced a clear correlation between EGFR expression and SE sensitivity. Our data indicate a potential use of targeted toxins for the treatment of cervical cancer. In particular, the combination with saponins is a promising approach since efficacy is drastically improved. PMID:20020492

  17. Expression and Prognostic Significance of Human Epidermal Growth Factor Receptors 1, 2 and 3 in Periampullary Adenocarcinoma

    PubMed Central

    Heby, Margareta; Warfvinge, Carl Fredrik; Nodin, Björn; Eberhard, Jakob; Jirström, Karin

    2016-01-01

    Periampullary adenocarcinoma, including pancreatic cancer, is a heterogeneous group of tumours with dismal prognosis, for which there is an urgent need to identify novel treatment strategies. The human epithelial growth factor receptors EGFR, HER2 and HER3 have been studied in several tumour types, and HER-targeting drugs have a beneficial effect on survival in selected types of cancer. However, these effects have not been evident in pancreatic cancer, and remain unexplored in other types of periampullary cancer. The prognostic impact of HER-expression in these cancers also remains unclear. The aim of this study was therefore to examine the expression and prognostic value of EGFR, HER2 and HER3 in periampullary cancer, with particular reference to histological subtype. To this end, protein expression of EGFR, HER2 and HER3, and HER2 gene amplification was assessed by immunohistochemistry and silver in situ hybridization, respectively, on tissue microarrays with tumours from 175 periampullary adenocarcinomas, with follow-up data on recurrence-free survival (RFS) and overall survival (OS) for up to 5 years. EGFR expression was similar in pancreatobiliary (PB) and intestinal (I) type tumours, but high HER2 and HER3 expression was significantly more common in I-type tumours. In PB-type cases receiving adjuvant gemcitabine, but not in untreated cases, high EGFR expression was significantly associated with a shorter OS and RFS, with a significant treatment interaction in relation to OS (pinteraction = 0.042). In I-type cases, high EGFR expression was associated with a shorter OS and RFS in univariable, but not in multivariable, analysis. High HER3 expression was associated with a prolonged RFS in univariable, but not in multivariable, analysis. Neither HER2 protein expression nor gene amplification was prognostic. The finding of a potential interaction between the expression of EGFR and response to adjuvant chemotherapy in PB-type tumours needs validation, and merits

  18. Epidermal melanin absorption in human skin

    NASA Astrophysics Data System (ADS)

    Norvang Nilsen, Lill T.; Fiskerstrand, Elisanne J.; Nelson, J. Stuart; Berns, Michael W.; Svaasand, Lars O.

    1996-01-01

    The principle of laser induced selective photothermolysis is to induced thermal damage to specific targets in such a manner that the temperature of the surrounding tissue is maintained below the threshold for thermal damage. The selectivity is obtained by selection of a proper wavelength and pulse duration. The technique is presently being used in the clinic for removal of port-wine stains. The presence of melanin in the epidermal layer can represent a limitation to the selectivity. Melanin absorption drops off significantly with increasing wavelength, but is significant in the entire wavelength region where the blood absorption is high. Treatment of port-wine stain in patients with high skin pigmentation may therefore give overheating of the epidermis, resulting in epidermal necrosis. Melanosomal heating is dependent on the energy and duration of the laser pulse. The heating mechanism for time scales less than typically 1 microsecond(s) corresponds to a transient local heating of the individual melanosomes. For larger time scales, heat diffusion out of the melanosomes become of increased importance, and the temperature distribution will reach a local steady state condition after typically 10 microsecond(s) . For even longer pulse duration, heat diffusing from neighboring melanosomes becomes important, and the temperature rise in a time scale from 100 - 500 microsecond(s) is dominated by this mechanism. The epidermal heating during the typical 450 microsecond(s) pulse used for therapy is thus dependent on the average epidermal melanin content rather than on the absorption coefficient of the individual melanosomes. This study will present in vivo measurements of the epidermal melanin absorption of human skin when exposed to short laser pulses (< 0.1 microsecond(s) ) from a Q-switched ruby laser and with long laser pulses (approximately 500 microsecond(s) ) from a free-running ruby laser or a long pulse length flashlamp pumped dye laser. The epidermal melanin

  19. Regulation of the human melanocortin 1 receptor expression in epidermal melanocytes by paracrine and endocrine factors and by ultraviolet radiation.

    PubMed

    Scott, M Cathy; Suzuki, Itaru; Abdel-Malek, Zalfa A

    2002-12-01

    The aim of this study is to investigate the regulation of the human melanocortin 1 receptor (MC1R) expression in cultured normal human melanocytes (NHM) by specific paracrine and endocrine factors, and by ultraviolet radiation (UVR). Treatment of NHM with alpha-melanotropin [alpha-melanocyte stimulating hormone (alpha-MSH)] increased MC1R mRNA level; the response was often more pronounced in NHM with a low (NHM-c) than in NHM with a high melanin content (NHM-b). Endothelin-1 increased MC1R mRNA level in NHM regardless of their melanin content. Basic fibroblast growth factor consistently up regulated MC1R mRNA level in NHM-b but not in NHM-c. Activation of protein kinase C by 12-0-tetradecanoylphorbol-13-acetate slightly increased, while stimulation of adenylate cyclase by forskolin markedly up-regulated the MC1R mRNA level. beta-Estradiol increased, and combined treatment with beta-estradiol and alpha-MSH further elevated, MC1R mRNA level in NHM-c and NHM-b. Testosterone reduced, while progesterone had no effect on, MC1R mRNA level. Agouti signaling protein reduced, and UVR down regulated dose-dependently MC1R mRNA level in NHM-b and NHM-c. This effect was reversed 24 h after irradiation with the lower doses of 7 or 14 mJ/cm2, but not after exposure to a higher, more cytotoxic dose of UVR. We conclude that the MC1R is regulated by paracrine factors, including its own ligands, by specific endocrine sex hormones, and by UVR. Differences in the responses of NHM to some of these factors suggest differential regulation of MC1R gene expression, which may contribute to the variation in constitutive and UV-induced cutaneous pigmentation in humans. PMID:12453185

  20. Improved biological activity of a single chain antibody fragment against human epidermal growth factor receptor 2 (HER2) expressed in the periplasm of Escherichia coli.

    PubMed

    Akbari, Vajihe; Sadeghi, Hamid Mir Mohammad; Jafarian-Dehkordi, Abbas; Abedi, Daryoush; Chou, C Perry

    2015-12-01

    A novel monoclonal antibody against human epidermal growth factor receptor 2 (HER2), i.e., pertuzumab (Perjeta®) developed by Genentech, has been verified to be effective in treating metastatic HER2-overexpressing breast cancer. The fact that the presence of the Fc region of the anti-HER2 is uncritical for growth inhibition of tumor cells suggests the potential biological activity of the associated antibody fragments. In the present study, we report functional expression of anti-HER2his-scFv, a single-chain variable fragment (scFv) derived from pertuzumab, in the periplasm of Escherichia coli and its purification. Biological activity of the soluble scFv produced in this manner was characterized using immunofluorescent staining, immunocytochemistry, flow cytometry and cytotoxicity assay. The effect of anti-HER2his-scFv on HER2 dimerization was also assessed by tyrosine kinase assay. It was observed that the purified scFv had a high specificity and affinity to HER2 receptors expressed on the surface of tumor cells with a selective cytotoxic effect on HER2-overexpressing SK-OV-3 cells. In addition, anti-HER2his-scFv was able to suppress phosphorylation of HER2 in the presence of heregulin. The results suggest that anti-HER2his-scFv can be a potential candidate for various therapeutic and diagnosis applications. PMID:26166178

  1. Spatiotemporal Expression of p63 in Mouse Epidermal Commitment

    PubMed Central

    Zhao, Qian; Liu, Shuang; Zhang, Huishan; Li, Na; Wang, Xinyue; Cao, Yujing; Ning, Lina; Duan, Enkui; Xia, Guoliang

    2015-01-01

    The embryonic surface ectoderm is a simple flat epithelium consisting of cells that express the cytokeratins K8/K18. Before stratification, K5/K14 expression substitutes K8/K18 expression, marking the event called epidermal commitment. Previous studies show that the transcription factor p63 plays an essential role in epidermal commitment. However, detailed expression information of p63 during early epidermal development in mice is still unclear. We systematically studied the expression pattern of p63 in mouse epidermal commitment, together with K8 and K5. We show that p63 expression could be detected as early as E8.5 in mouse embryos preceding epidermal commitment. p63 expression first appears near the newly formed somites and the posterior part of the embryo, further expanding to the whole embryonic surface with particular enrichment in the first branchial arches and the limb buds. ΔNp63 is the major class of isoforms expressed in this period. Relative expression intensity of p63 depends on the embryonic position. In summary, there is a sequential and regular expression pattern of K8, p63 and K5 in mouse epidermal commitment. Our study not only contributes to understanding the early events during epidermal development but also provides a basal tool to study the function of p63 in mammals. PMID:26690418

  2. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    PubMed Central

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Background and objective Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. Materials and methods DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths. Results A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05). Conclusion We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both

  3. Dactylone inhibits epidermal growth factor-induced transformation and phenotype expression of human cancer cells and induces G1-S arrest and apoptosis.

    PubMed

    Fedorov, Sergey N; Shubina, Larisa K; Bode, Ann M; Stonik, Valentin A; Dong, Zigang

    2007-06-15

    The marine natural chamigrane-type sesquiterpenoid, dactylone, is closely related to secondary metabolites of some edible species of red algae. In the present study, the effect of dactylone was tested on the mouse skin epidermal JB6 P+ Cl41 cell line and its stable transfectants as well as on several human tumor cell lines, including lung (H460), colon (HCT-116), and skin melanomas (SK-MEL-5 and SK-MEL-28). This natural product was effective at nontoxic doses as a cancer-preventive agent, which exerted its actions, at least in part, through the inhibition of cyclin D3 and Cdk4 expression and retinoblastoma tumor suppressor protein (Rb) phosphorylation. The inhibition of these cell cycle components was followed by cell cycle arrest at the G1-S transition with subsequent p53-independent apoptosis. Therefore, these data showed that application of dactylone and related compounds may lead to decreased malignant cell transformation and/or decreased tumor cell proliferation. PMID:17575161

  4. Expression of human epidermal growth factor receptor 2 in primary and paired parenchymal recurrent and/or metastatic sites of gastric cancer.

    PubMed

    Shibata, Ryosuke; Nimura, Satoshi; Hashimoto, Tatsuya; Miyake, Toru; Takeno, Shinsuke; Hoshino, Seiichiro; Nabeshima, Kazuki; Yamashita, Yuichi

    2014-09-01

    Human epidermal growth factor receptor 2 (HER2) status has been evaluated at the primary site of gastric cancer when planning trastuzumab therapy against recurrent or metastatic lesions, since tissue sampling is uncommon in recurrent or metastatic lesions. This study retrospectively investigated the concordance of HER2 expression between primary and metastatic/recurrent lesions in order to confirm sensitivity to trastuzumab. The subjects comprised 37 patients with gastric adenocarcinoma who underwent tissue biopsy or surgical resection of the primary sites and 49 paired synchronous or metachronous metastatic sites (excluding lymph nodes) at the Fukuoka University Hospital between January, 1998 and September, 2012. All the samples were evaluated for HER2 status at the invasive front by immunohistochemistry (IHC). The HER2 positivity rate of the primary sites was ~16% and the concordance ratio of the IHC results between primary and paired metastatic sites was ~97%. No discordant cases regarding HER2 status were found among metachronous interventions for metastatic lesions. Only one patient exhibited conversion from a HER2-negative status in all the portions of the primary site to a positive status in a metastatic site. In conclusion, a high concordance ratio for HER2 status was observed between primary and paired metastatic lesions. Thus, employing trastuzumab therapy against metastatic or recurrent gastric cancer based on the HER2 status of the primary lesion appears to be an acceptable approach. PMID:25054041

  5. Clinicopathological and prognostic impact of human epidermal growth factor receptor type 2 (HER2) and hormone receptor expression in uterine papillary serous carcinoma.

    PubMed

    Togami, Shinichi; Sasajima, Yuko; Oi, Takateru; Ishikawa, Mitsuya; Onda, Takashi; Ikeda, Shun-Ichi; Kato, Tomoyasu; Tsuda, Hitoshi; Kasamatsu, Takahiro

    2012-05-01

    Uterine papillary serous carcinoma (UPSC) is a rare and aggressive variant of endometrial carcinoma. Little is known about the pathological and biological features of this tumor. Human epidermal growth factor receptor 2 (HER2) and hormone receptor (HR) expression have an important role in tumor behavior and clinical outcome, but their relevance in UPSC is not clear. In the present study, the immunohistochemical expression of HER2 and HR was assessed in 27 patients with Stage I disease, 13 with Stage II disease, 25 with Stage III disease, and 6 with Stage IV disease. Correlations between HER2 and HR expression and the clinicopathological parameters of UPSC were evaluated using Cox's univariate and multivariate analyses. For all patients, the 5-year recurrence-free survival (RFS) and overall survival (OS) rates were 51% and 66%, respectively; in patients with Stage I, II, III and IV disease, the RFS and OS were 67%/81%, 59%/77%, 43%/54% and 0%/0%, respectively. Of all 71 patients, 14% (10/71) were positive for HER2 and 52% (37/71) were positive for HR. Overexpression of HER2 was correlated with lower OS (P = 0.01), whereas HR overexpression was correlated with higher OS (P = 0.008). In multivariate models, HER2, HR, and histologic subtype were identified as independent prognostic indicators for RFS (P = 0.022, P = 0.018, and P = 0.01, respectively), but HR was the only independent factor associated with OS (P = 0.044). Thus, HER2 and HR are prognostic variables in UPSC, with HR an independent prognostic factor for OS. PMID:22329832

  6. Infection of Keratinocytes with Trichophytum rubrum Induces Epidermal Growth Factor-Dependent RNase 7 and Human Beta-Defensin-3 Expression

    PubMed Central

    Rademacher, Franziska; Schröder, Lena; Brasch, Jochen; Harder, Jürgen

    2014-01-01

    Human keratinocytes are able to express various antimicrobial peptides (AMP) to protect the skin from exaggerated microbial colonization and infection. Recently, in vitro growth-inhibiting activity of the skin-derived AMP psoriasin, RNase 7 and human beta-defensin (hBD)-2 against dermatophytes such as Trichophyton (T.) rubrum have been reported. To evaluate whether keratinocytes are able to respond to T. rubrum infection by an induced expression of AMP we exposed primary keratinocytes to living conidia of T. rubrum. This led to conidia germination and mycelial growth which was paralleled by a strong gene induction of the skin-derived AMP RNase 7 and hBD-3. Gene expression of the AMP psoriasin (S100A7) and hBD-2 were only slightly induced. The T. rubrum-mediated RNase 7 gene induction was accompanied by increased secretion of RNase 7. Parallel treatment of the keratinocytes with T. rubrum and the cytokine combination IL-17A/IFN-γ resulted in synergistic induction of RNase 7 and hBD-3 expression. Since patients receiving therapy by inhibition of the epidermal growth factor receptor (EGFR) more often suffer from dermatophytoses we investigated whether EGFR may be involved in the T. rubrum-mediated RNase 7 and hBD-3 induction. Primary keratinocytes incubated with an EGFR blocking antibody as well as with the EGFR antagonist AG1478 showed a significantly diminished RNase 7 and hBD-3 induction upon exposure of the keratinocytes to T. rubrum indicating that EGFR is involved in the T. rubrum-mediated induction of RNase 7 and hBD-3. The growth of T. rubrum in vitro was inhibited by hBD-3 in a dose-dependent manner suggesting that hBD-3 may contribute to cutaneous innate defense against T. rubrum. Taken together our data indicate that keratinocytes are able to initiate a fast defense response towards T. rubrum by the increased expression of AMP active against T. rubrum. A dysregulation of AMP may contribute to chronic and recurring dermatophytoses. PMID:24747887

  7. Molecular characterization of the body site-specific human epidermal cytokeratin 9: cDNA cloning, amino acid sequence, and tissue specificity of gene expression.

    PubMed

    Langbein, L; Heid, H W; Moll, I; Franke, W W

    1993-12-01

    /plantar epidermis was found positive. By in situ hybridization and immunolocalization we further showed that CK 9 is only expressed in the suprabasal cell layers of this special epidermal tissue. We discuss the molecular properties of CK 9 and its cell type- and body site-specific expression in relation to the special differentiation of palmar/plantar epidermis and to diseases specific for this body site. PMID:7507869

  8. Coregulation of Epidermal Growth Factor Receptor/Human Epidermal Growth Factor Receptor 2 (HER2) Levels and Locations: Quantitative Analysis of HER2 Overexpression Effects

    SciTech Connect

    Hendriks, Bart S.; Opresko, Lee; Wiley, H. S.; Lauffenburger, Douglas A.

    2003-03-01

    Elevated expression of human epidermal growth factor receptor 2 (HER2) is know to alter cell signalilng and behavioral responses implicated in tumor progression. However, multiple diverse mechanisms may be involved in these overall effects, including signaling by HER2 itself, modulation of signalilng by epidermal growth factor receptor (EGFR) and modification of trafficking dynamics for both EGFR and HER2. Continued....

  9. Epidermal Growth Factor Receptor Expression Modulates Antitumor Efficacy of Vandetanib or Cediranib Combined With Radiotherapy in Human Glioblastoma Xenografts

    SciTech Connect

    Wachsberger, Phyllis R.; Lawrence, Yaacov R.; Liu Yi; Daroczi, Borbala; Xu Xia; Dicker, Adam P.

    2012-01-01

    Purpose: The purpose of this study was to determine the ability of radiation therapy (RT) combined with the tyrosine kinase inhibitors (TKI) vandetanib (antiepidermal growth factor receptor [EGFR] plus antivascular endothelial growth factor receptor [anti-VEGFR]) and cediranib (anti-VEGFR) to inhibit glioblastoma multiforme (GBM) growth. A secondary aim was to investigate how this regimen is modulated by tumor EGFR expression. Methods and Materials: Radiosensitivity was assessed by clonogenic cell survival assay. VEGF secretion was quantified by enzyme-linked immunosorbent assay. GBM (U87MG wild-type EGFR [wtEGFR] and U87MG EGFR-null) xenografts were treated with vandetanib, cediranib, and RT, alone or in combinations. Excised tumor sections were stained for proliferative and survival biomarkers. Results: In vitro, U87MG wtEGFR and U87 EGFR-null cells had similar growth kinetics. Neither TKI affected clonogenic cell survival following RT. However, in vivo, exogenous overexpression of wtEGFR decreased tumor doubling time (T2x) in U87MG xenografts (2.70 vs. 4.41 days for U87MG wtEGFR vs. U87MG vector, respectively). In U87MG EGFR-null cells, TKI combined with radiation was no better than radiation therapy alone. In U87MG wtEGFR, RT in combination with vandetanib (but not with cediranib) significantly increased tumor T2x compared with RT alone (T2x, 10.4 days vs. 4.8 days; p < 0.001). In vivo, growth delay correlated with suppression of pAkt, survivin, and Ki67 expression in tumor samples. The presence of EGFR augmented RT-stimulated VEGF release; this effect was inhibited by vandetanib. Conclusions: EGFR expression promoted tumor growth in vivo but not in vitro, suggesting a microenvironmental effect. GBM xenografts expressing EGFR exhibited greater sensitivity to both cediranib and vandetanib than EGFR-null tumors. Hence EGFR status plays a major role in determining a tumor's in vivo response to radiation combined with TKI, supporting a 'personalized' approach to

  10. Effects of Wnt3a on proliferation and differentiation of human epidermal stem cells

    SciTech Connect

    Jia Liwei; Zhou Jiaxi; Peng Sha; Li Juxue; Cao Yujing; Duan Enkui

    2008-04-11

    Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/{beta}-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active {beta}-catenin, two key members of the Wnt/{beta}-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/{beta}-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis.

  11. Cell motion predicts human epidermal stemness

    PubMed Central

    Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki

    2015-01-01

    Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083

  12. Production of human epidermal growth factor using adenoviral based system

    PubMed Central

    Negahdari, Babak; Shahosseini, Zahra; Baniasadi, Vahid

    2016-01-01

    Epidermal growth factor (EGF), a growth factor involved in cell growth and differentiation, is a small polypeptide with molecular weight of approximately 6 kDa known to be present in a number of different mammalian species. Experimental studies in animals and humans have demonstrated that the topical application of EGF accelerates the rate of epidermal regeneration of partial-thickness wounds and second-degree burns. Due to its commercial applications, Human EGF (hEGF) has been cloned in several forms. In the present study, adenoviral based expression system was used to produce biologically active recombinant hEGF. The presence of secreted recombinant hEGF was confirmed by a dot blot and its expression level was determined by enzyme-linked immuno-sorbent assay. Moreover, biological activity of secreted hEGF was evaluated by a proliferation assay performed on A549 cells. For production of hEGF in a secretory form, a chimeric gene coding for the hEGF fused to the signal peptide was expressed using adenoviral based method. This method enables the production of hEGF at the site of interest and moreover it could be used for cell proliferation and differentiation assays in tissue engineering research experiments instead of using commercially available EGF. PMID:27051431

  13. Neu differentiation factor upregulates epidermal migration and integrin expression in excisional wounds.

    PubMed Central

    Danilenko, D M; Ring, B D; Lu, J Z; Tarpley, J E; Chang, D; Liu, N; Wen, D; Pierce, G F

    1995-01-01

    Neu differentiation factor (NDF) is a 44-kD glycoprotein which was isolated from ras-transformed rat fibroblasts and indirectly induces tyrosine phosphorylation of the HER-2/neu receptor via binding to either the HER-3 or HER-4 receptor. NDF contains a receptor binding epidermal growth factor (EGF)-like domain and is a member of the EGF family. There are multiple different isoforms of NDF which arise by alternative splicing of a single gene. To date, in vivo biologic activities have not been demonstrated for any NDF isoform. Since NDF, HER-2/neu, and HER-3 are present in skin, and other EGF family members can influence wound keratinocytes in vivo, we investigated whether NDF would stimulate epidermal migration and proliferation in a rabbit ear model of excisional wound repair. In this model, recombinant human NDF-alpha 2 (rhNDF-alpha 2), applied once at the time of wounding, induced a highly significant increase in both epidermal migration and epidermal thickness at doses ranging from 4 to 40 micrograms/cm2. In contrast, rhNDF-alpha 1, rhNDF-beta 1, and rhNDF-beta 2 had no apparent biologic effects in this model. rhNDF-alpha 2 also induced increased neoepidermal expression of alpha 5 and alpha 6 integrins, two of the earliest integrins to appear during epidermal migration. In addition, rhNDF-alpha 2-treated wounds exhibited increased neoepidermal expression of cytokeratin 10 and filaggrin, both epidermal differentiation markers. NDF alpha isoforms were expressed in dermal fibroblasts of wounded and unwounded skin, while both HER-2/neu and HER-3 were expressed in unwounded epidermis and dermal adnexa. In wounds, HER-2/neu expression was markedly decreased in the wound neoepidermis while neoepidermal HER-3 expression was markedly upregulated. Taken together, these results suggest that endogenous NDF-alpha 2 may function as a paracrine mediator directing initial epidermal migration during cutaneous tissue repair. Images PMID:7860768

  14. Lowered Humidity Produces Human Epidermal Equivalents with Enhanced Barrier Properties

    PubMed Central

    Sun, Richard; Celli, Anna; Crumrine, Debra; Hupe, Melanie; Adame, Lillian C.; Pennypacker, Sally D.; Park, Kyungho; Uchida, Yoshikazu; Feingold, Kenneth R.; Elias, Peter M.; Ilic, Dusko

    2015-01-01

    Multilayered human keratinocyte cultures increasingly are used to model human epidermis. Until now, studies utilizing human epidermal equivalents (HEEs) have been limited because previous preparations do not establish a normal epidermal permeability barrier. In this report, we show that reducing environmental humidity to 50% relative humidity yields HEEs that closely match human postnatal epidermis and have enhanced repair of the permeability barrier. These cultures display low transepidermal water loss and possess a calcium and pH gradient that resembles those seen in human epidermis. These cultures upregulate glucosylceramide synthase and make normal-appearing lipid lamellar bilayers. The epidermal permeability barrier of these cultures can be perturbed, using the identical tools previously described for human skin, and recover in the same time course seen during in vivo barrier recovery. These cultures will be useful for basic and applied studies on epidermal barrier function. PMID:24803151

  15. Characterization of microfluidic human epidermal keratinocyte culture

    PubMed Central

    O’Neill, Adrian T.; Monteiro-Riviere, Nancy A.

    2008-01-01

    Human epidermal keratinocytes (HEK) are skin cells of primary importance in maintaining the body’s defensive barrier and are used in vitro to assess the irritation potential and toxicity of chemical compounds. Microfluidic systems hold promise for high throughput irritant and toxicity assays, but HEK growth kinetics have yet to be characterized within microscale culture chambers. This research demonstrates HEK patterning on microscale patches of Type I collagen within microfluidic channels and maintenance of these cells under constant medium perfusion for 72 h. HEK were shown to maintain 93.0%–99.6% viability at 72 h under medium perfusion ranging from 0.025–0.4 μl min−1. HEK maintained this viability while ∼100% confluent—a level not possible in 96 well plates. Microscale HEK cultures offer the ability to precisely examine the morphology, behavior and viability of individual cells which may open the door to new discoveries in toxicological screening methods and wound healing techniques. PMID:19002858

  16. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    PubMed

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. PMID:27371895

  17. Genome-wide transcriptome analysis of human epidermal melanocytes

    PubMed Central

    Haltaufderhyde, Kirk D.; Oancea, Elena

    2015-01-01

    Because human epidermal melanocytes (HEMs) provide critical protection against skin cancer, sunburn, and photoaging, a genome-wide perspective of gene expression in these cells is vital to understanding human skin physiology. In this study we performed high throughput sequencing of HEMs to obtain a complete data set of transcript sizes, abundances, and splicing. As expected, we found that melanocyte specific genes that function in pigmentation were among the highest expressed genes. We analyzed receptor, ion channel and transcription factor gene families to get a better understanding of the cell signalling pathways used by melanocytes. We also performed a comparative transcriptomic analysis of lightly versus darkly pigmented HEMs and found 16 genes differentially expressed in the two pigmentation phenotypes; of those, only one putative melanosomal transporter (SLC45A2) has known function in pigmentation. In addition, we found 166 genes with splice isoforms expressed exclusively in one pigmentation phenotype, 17 of which are genes involved in signal transduction. Our melanocyte transcriptome study provides a comprehensive view and may help identify novel pigmentation genes and potential pharmacological targets. PMID:25451175

  18. Activation of the human keratinocyte B1 bradykinin receptor induces expression and secretion of metalloproteases 2 and 9 by transactivation of epidermal growth factor receptor.

    PubMed

    Matus, Carola E; Ehrenfeld, Pamela; Pavicic, Francisca; González, Carlos B; Concha, Miguel; Bhoola, Kanti D; Burgos, Rafael A; Figueroa, Carlos D

    2016-09-01

    The B1 bradykinin receptor (BDKRB1) is a component of the kinin cascade localized in the human skin. Some of the effects produced by stimulation of BDKRB1 depend on transactivation of epidermal growth factor receptor (EGFR), but the mechanisms involved in this process have not been clarified yet. The primary purpose of this study was to determine the effect of a BDKRB1 agonist on wound healing in a mouse model and the migration and secretion of metalloproteases 2 and 9 from human HaCaT keratinocytes and delineate the signalling pathways that triggered their secretion. Although stimulation of BDKRB1 induces weak chemotactic migration of keratinocytes and wound closure in an in vitro scratch-wound assay, the BDKRB1 agonist improved wound closure in a mouse model. BDKRB1 stimulation triggers synthesis and secretion of both metalloproteases, effects that depend on the activity of EGFR and subsequent phosphorylation of ERK1/2 and p38 mitogen-activated protein kinases and PI3K/Akt. In the mouse model, immunoreactivity for both gelatinases was concentrated around wound borders. EGFR transactivation by BDKRB1 agonist involves Src kinases family and ADAM17. In addition to extracellular matrix degradation, metalloproteases 2 and 9 regulate cell migration and differentiation, cell functions that are associated with the role of BDKRB1 in keratinocyte differentiation. Considering that BDKRB1 is up-regulated by inflammation and/or by cytokines that are abundant in the inflammatory milieu, more stable BDKRB1 agonists may be of therapeutic value to modulate wound healing. PMID:27093919

  19. COMPARISON OF IN VITRO AND IN VIVO RESPONSES TO ARSENIC: GENE EXPRESSION PROFILING IN NORMAL HUMAN EPIDERMAL KERATINOCYTES AND HYPERKERATOSES FROM ARSENIC-EXPOSED HUMANS

    EPA Science Inventory

    Chronic exposure to arsenic is positively associated with skin, urinary bladder, lung, liver and kidney cancer development in humans. Elucidating the mode of action of arsenic carcinogenesis is a complicated issue as target cells are exposed to different toxic species of arsenic....

  20. Interleukin-4 Downregulation of Involucrin Expression in Human Epidermal Keratinocytes Involves Stat6 Sequestration of the Coactivator CREB-Binding Protein.

    PubMed

    Bao, Lei; Alexander, Jaime B; Zhang, Huayi; Shen, Kui; Chan, Lawrence S

    2016-06-01

    Skin barrier defects play an important role in atopic dermatitis (AD). Involucrin, an important barrier protein suppressed in human AD, is downregulated by interleukin-4 (IL-4). However, the molecular mechanism for IL-4 downregulation of involucrin has not been delineated, and especially how Stat6, a transcriptional activator, represses involucrin expression is unknown. Since Stats usually recruit p300/CBP in the general transcription machinery of their target genes and involucrin expression also involves p300/CBP, we hypothesize that Stat6 activated by IL-4 may sequestrate p300/CBP from the involucrin transcription complex, thus suppressing involucrin expression in keratinocytes. Using IL-4 transgenic mice, an AD mouse model, we find that involucrin expression is similarly downregulated as in human AD. In HaCat cells, the Jak inhibitor and dominant negative studies indicate that the Jaks-Stat6 pathway is involved in IL-4 downregulation of involucrin. Next, we transfected HaCat cells with an involucrin promoter-luciferase construct and then treated them with IL-4. IL-4 greatly suppresses the promoter activity, which is totally abolished by cotransfecting the CREB-binding protein (CBP) expression vector, indicating that IL-4 cannot downregulate involucrin in the presence of excess CBP. Finally, chromatin immunoprecipitation assay demonstrates that IL-4 decreases CBP binding to the involucrin transcription complex. For the first time, we defined a molecular mechanism for IL-4 downregulation of involucrin in keratinocytes, which may play an important role in the pathogenesis of AD. PMID:26918372

  1. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF)

    PubMed Central

    He, Yonghua; Schmidt, Monica A.; Erwin, Christopher; Guo, Jun; Sun, Raphael; Pendarvis, Ken; Warner, Brad W.; Herman, Eliot M.

    2016-01-01

    Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother’s breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N’ terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform. PMID:27314851

  2. Attribution to Heterogeneous Risk Factors for Breast Cancer Subtypes Based on Hormone Receptor and Human Epidermal Growth Factor 2 Receptor Expression in Korea.

    PubMed

    Park, Boyoung; Choi, Ji-Yeob; Sung, Ho Kyung; Ahn, Choonghyun; Hwang, Yunji; Jang, Jieun; Lee, Juyeon; Kim, Heewon; Shin, Hai-Rim; Park, Sohee; Han, Wonshik; Noh, Dong-Young; Yoo, Keun-Young; Kang, Daehee; Park, Sue K

    2016-04-01

    We conducted a heterogeneous risk assessment of breast cancer based on the hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) calculating the risks and population-based attributable fractions (PAFs) for modifiable and nonmodifiable factors.Using matched case-control study design from the Seoul Breast Cancer Study and the national prevalence of exposure, the risks and PAFs for modifiable and nonmodifiable factors were estimated for total breast cancers and subtypes.The attribution to modifiable factors was different for each subtype (luminal A, PAF = 61.4% [95% confidence interval, CI = 54.3%-69.8%]; luminal B, 21.4% [95% CI = 18.6-24.9%]; HER2-overexpression, 59.4% [95% CI = 47.8%-74.3%], and triple negative tumors [TNs], 27.1% [95% CI = 22.9%-32.4%)], and the attribution to the modifiable factors for the luminal A and HER2-overexpression subtypes was higher than that of the luminal B and TN subtypes (P heterogeneity ≤ 0.001). The contribution of modifiable reproductive factors to luminal A type in premenopausal women was higher than that of the other subtypes (18.2% for luminal A; 3.1%, 8.1%, and -3.1% for luminal B, HER2-overexpression, and TN subtypes, respectively; P heterogeneity ≤ 0.001). Physical activity had the highest impact preventing 32.6% of luminal A, 14.5% of luminal B, 38.0% of HER2-overexpression, and 26.9% of TN subtypes (P heterogeneity = 0.014). Total reproductive factors were also heterogeneously attributed to each breast cancer subtype (luminal A, 65.4%; luminal B, 24.1%; HER2-overexpression, 57.9%, and TN subtypes, -3.1%; P heterogeneity ≤ 0.001).Each pathological subtype of breast cancer by HRs and HER2 status may be associated with heterogeneous risk factors and their attributable risk, suggesting a different etiology. The luminal B and TN subtypes seemed to be less preventable despite intervention for alleged risk factors, even though physical activity had a high preventable

  3. Neoplastic transformation of immortalized human epidermal keratinocytes by ionizing radiation

    SciTech Connect

    Thraves, P.; Salehi, Z.; Dritschilo, A.; Rhim, J.S. )

    1990-02-01

    Efforts to investigate the progression of events that cause human cells to become neoplastic in response to ionizing radiation have been aided by the development of tissue culture systems of epithelial cells. In the present study, nontumorigenic human epidermal keratinocytes immortalized by adenovirus type 12 and simian virus 40 have been transformed by exposure to x-ray irradiation. Such transformants showed morphological alterations, formed colonies in soft agar, and induced carcinomas when transplanted into nude mice, whereas primary human epidermal keratinocytes exposed to radiation in this manner failed to show any evidence of transformation. These findings demonstrate the malignant transformation of human primary epithelial cells in culture by the combined action of a DNA tumor virus and radiation, indicating a multistep process for radiation-induced neoplastic conversion. This in vitro system may be useful as a tool for dissecting the process of radiation-induced neoplastic transformation of human epithelial cells and for detecting previously unreported human oncogenes.

  4. Epidermal growth factor receptor (EGFR) antisense transfection reduces the expression of EGFR and suppresses the malignant phenotype of a human ovarian cancer cell line.

    PubMed

    Brader, K R; Wolf, J K; Chakrabarty, S; Price, J E

    1998-01-01

    An EGFR-expressing clone of the human ovarian cancer line 2774 was transfected with an antisense construct of EGFR to test how suppression of this gene modulates the malignant phenotype. Transfected clones were screened for EGFR expression by Western blot and FACS analysis. Anchorage-independent growth was used to assess the effect of reduced EGFR on the malignant behavior of the cells. Several transfected clones with decreased EGFR (40-50% reduction) were identified. A correlation was noted between reduced EGFR and decreased anchorage-independent growth, with the transfected clones losing the ability to grow in agarose and responsiveness to exogenous EGF. These results suggest that EGFR may be an important factor in the malignant behavior of this ovarian cancer cell line. PMID:9683849

  5. Low expression of the E3 Ubiquitin Ligase CBL Confers Chemoresistance in Human Pancreatic Cancer and is Targeted by Epidermal Growth Factor Receptor Inhibition

    PubMed Central

    Kadera, Brian E.; Toste, Paul A.; Wu, Nanping; Li, Luyi; Nguyen, Andrew H.; Dawson, David W.; Donahue, Timothy R.

    2014-01-01

    Purpose Expression of CBL, an ubiquitin ligase, is decreased in 60% of human pancreatic ductal adenocarcinomas (PDACs) and is associated with shorter overall survival. We sought to determine how low CBL directly contributes to clinically more aggressive PDAC. Experimental Design Human PDACs were stained for CBL, pEGFR, and EGFR. CBL-low was modeled in PDAC cells (Panc-1, L3.6pl, AsPC-1) via transient transfection (siRNA) or stable knockdown (shRNA). Cell viability and apoptosis were measured by MTT assays and FACS. Immunoblot and a phospho-receptor tyrosine kinase (pRTK) array were used to probe signal transduction. NOD-scid-IL2Rγnull mice were subcutaneously implanted with PDAC or PDACCBL-low cells on opposite flanks and treated with gemcitabine ± erlotinib for ≥4 weeks. Results There was an inverse correlation between CBL and pEGFR protein expression in 12 of 15 tumors. CBL knockdown increased PDAC resistance to gemcitabine and 5-FU by upregulating pEGFR (Y1068), pERK, and pAKT. A pRTK array of PDACCBL-low cells revealed additional activated tyrosine kinases but all to a much lower magnitude than EGFR. Increased chemoresistance from low CBL was abrogated by the EGFR inhibitor erlotinib both in vitro and in vivo. Erlotinib + gemcitabine treated PDACCBL-low cells exhibited greater apoptosis by cleaved PARP, Caspase 3 and Annexin V/PI. Conclusions Low CBL causes chemoresistance in PDAC via stress-induced EGFR activation that can be effectively abrogated by EGFR inhibition. These results suggest that dysregulation of ubiquitination is a key mechanism of EGFR hyperactivation in PDAC and that low CBL may define PDAC tumors likely to respond to erlotinib treatment. PMID:25348515

  6. The distribution of saponins in vivo affects their synergy with chimeric toxins against tumours expressing human epidermal growth factor receptors in mice

    PubMed Central

    Bachran, C; Weng, A; Bachran, D; Riese, SB; Schellmann, N; Melzig, MF; Fuchs, H

    2010-01-01

    Background and purpose: Certain saponins synergize with antitumour drugs to enhance their efficacy, but the mechanisms underlying this synergy in vivo are not well studied. Here, we describe the distribution of Saponinum album (Spn) from Gypsophila paniculata L. in mice after subcutaneous injection. Experimental approach: The [3H]-labelled Spn used for in vivo experiments was biologically active, as it still increased the cytotoxicity of a chimeric toxin in vitro. Distribution of [3H]-Spn was measured in BALB/c mice, with or without subcutaneous tumours in the flank. Labelled Spn was subcutaneously injected in the neck, and samples of organs, blood, urine and tumour tissue were analysed for radioactivity, 5–240 min after the injection. Key results: The majority of [3H]-Spn distributed within 10 min throughout the entire animal, with high levels of radioactivity in the urine by 30 min. No preferential accumulation in tumour tissue or other organs was observed. In tumour-bearing mice, using a sequential combination of Spn (given first) and a chimeric toxin against the epidermal growth factor receptor, ErbB1, we tested two different pretreatment times for Spn. There was high antitumour efficacy (66% inhibition of tumour growth) after 60 min pre treatment with Spn, but no significant inhibition after 10 min pre treatment with Spn. Conclusions and implications: [3H]-Spn was rapidly cleared from the mice after s.c. injection, and antitumour synergy with chimeric toxins was correlated with the removal of excess Spn from tissues. Disposition of Spn in vivo may critically determine antitumour synergy with chimeric toxins. PMID:20015087

  7. Changes in epidermal growth factor receptor expression and response to ligand associated with acquired tamoxifen resistance or oestrogen independence in the ZR-75-1 human breast cancer cell line.

    PubMed Central

    Long, B.; McKibben, B. M.; Lynch, M.; van den Berg, H. W.

    1992-01-01

    We have examined the expression of receptors for epidermal growth factor (EGFR) by the ZR-75-1 human breast cancer cell line and tamoxifen resistant (ZR-75-9al 8 microM) and oestrogen independent/tamoxifen sensitive (ZR-PR-LT) variants. The parent line expressed a single class of high affinity binding sites (4,340 +/- 460 receptors/cell; Kd 0.23 +/- 0.04 nM). ZR-75-9al 8 microM cells, routinely maintained in medium containing 8 microM tamoxifen, were negative for oestrogen receptor (ER) and progesterone receptor (PGR) and expressed a markedly increased number of EGFR (14,723 +/- 2116 receptors/cell). Receptor affinity was unchanged. Time dependent reversal of the tamoxifen resistant phenotype was accompanied by a return to ER and PGR positivity and a fall in EGFR numbers to parent cell levels. In contrast ZR-PR-LT cells had a greatly reduced EGFR content (803 +/- 161 receptors/cell) accompanying elevated PGR numbers. Pre-treatment of these cells with suramin or mild acid stripping failed to expose receptors which may have been occupied by endogenously produced ligand. Increased proliferation of ZR-75-1 cells treated with EGFR (0.01-10 ng ml-1) was only observed in serum-free medium lacking insulin and oestradiol. Under these conditions untreated cells failed to proliferate. Both variant lines continued to proliferate in serum free medium in the absence or presence of insulin and oestradiol but failed to respond to exogenous EGF. PMID:1616857

  8. The biology of human epidermal growth factor receptor 2.

    PubMed

    Sundaresan, S; Penuel, E; Sliwkowski, M X

    1999-09-01

    Our understanding of the normal signaling mechanisms and functions of human epidermal growth factor receptor 2 (HER2) and other members of the HER family, namely epidermal growth factor receptor, HER3, and HER4, is growing rapidly. Activation of these receptors results in a diverse array of signals through the formation of homodimeric and heterodimeric receptor complexes; HER2 is the preferred dimerization partner for the other HERs. These oligomeric receptor complexes activate distinct signaling pathways, such as the Ras-MAPK and PI3-kinase pathways. These, in turn, affect various cellular processes. Recent gene deletion experiments in mice point to an important role for HER2 in cardiac and neural development, and evidence from other studies indicates that HER2 is involved in normal breast growth and development. Thus, HER2 is a key component of a complex signaling network that plays a critical role in the regulation of tissue development, growth, and differentiation. PMID:11122793

  9. Expression profiles of cortisol-inactivating enzyme, 11β-hydroxysteroid dehydrogenase-2, in human epidermal tumors and its role in keratinocyte proliferation.

    PubMed

    Terao, Mika; Itoi, Saori; Murota, Hiroyuki; Katayama, Ichiro

    2013-02-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) catalyzes the interconversion between hormonally active cortisol and inactive cortisone within cells. There are two isozymes: 11β-HSD1 activates cortisol from cortisone and 11β-HSD2 inactivates cortisol to cortisone. 11β-HSD1 was recently discovered in skin, and we subsequently found that the enzyme negatively regulates keratinocyte proliferation. We verified 11β-HSD1 and 11β-HSD2 expression in benign and malignant skin tumors and investigated the role of 11β-HSD in skin tumor pathogenesis. Randomly selected formalin-fixed sections of skin lesions of seborrheic keratosis (SK), squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) were stained with 11β-HSD1 and 11β-HSD2 antibodies, and 11β-HSD expression was also evaluated in murine epidermis in which hyperproliferation was induced by 12-O-tetradecanoylphorbol-13 acetate (TPA). We observed that 11β-HSD1 expression was decreased in all SK, SCC, and BCC lesions compared with unaffected skin. Conversely, 11β-HSD2 expression was increased in SK and BCC but not in SCC. Overexpression of 11β-HSD2 in keratinocytes increased cell proliferation. In the murine model, 11β-HSD1 expression was decreased in TPA-treated hyperproliferative skin. Our findings suggest that 11β-HSD1 expression is decreased in keratinocyte proliferative conditions, and 11β-HSD2 expression is increased in basal cell proliferating conditions, such as BCC and SK. Assessing 11β-HSD1 and 11β-HSD2 expression could be a useful tool for diagnosing and characterizing skin tumors. PMID:23362866

  10. Delphinidin, a dietary antioxidant, induces human epidermal keratinocyte differentiation but not apoptosis: studies in submerged and three-dimensional epidermal equivalent models.

    PubMed

    Chamcheu, Jean Christopher; Afaq, Farrukh; Syed, Deeba N; Siddiqui, Imtiaz A; Adhami, Vaqar M; Khan, Naghma; Singh, Sohinderjit; Boylan, Brendan T; Wood, Gary S; Mukhtar, Hasan

    2013-05-01

    Delphinidin (Del), [3,5,7,3'-,4'-,5'-hexahydroxyflavylium], an anthocyanidin and a potent antioxidant abundantly found in pigmented fruits and vegetables exhibits proapoptotic effects in many cancer cells. Here, we determined the effect of Del on growth, apoptosis and differentiation of normal human epidermal keratinocytes (NHEKs) in vitro in submerged cultures and examined its effects in a three-dimensional (3D) epidermal equivalent (EE) model that permits complete differentiation reminiscent of in vivo skin. Treatment of NHEKs with Del (10-40 μm; 24-48 h) significantly enhanced keratinocyte differentiation. In Del-treated cells, there was marked increase in human involucrin (hINV) promoter activity with simultaneous increase in the mRNA and protein expressions of involucrin and other epidermal differentiation markers including procaspase-14 and transglutaminase-1 (TGM1), but without any effect on TGM2. Del treatment of NHEKs was associated with minimal decrease in cell viability, which was not associated with apoptosis as evident by lack of modulation of caspases, apoptosis-related proteins including Bcl-2 family of proteins and poly(ADP-ribose) polymerase cleavage. To establish the in vivo relevance of our observations in submerged cultures, we then validated these effects in a 3D EE model, where Del was found to significantly enhance cornification and increase the protein expression of cornification markers including caspase-14 and keratin 1. For the first time, we show that Del induces epidermal differentiation using an experimental system that closely mimics in vivo human skin. These observations suggest that Del could be a useful agent for dermatoses associated with epidermal barrier defects including aberrant keratinization, hyperproliferation or inflammation observed in skin diseases like psoriasis and ichthyoses. PMID:23614741

  11. Delphinidin, a dietary antioxidant, induces human epidermal keratinocyte differentiation but not apoptosis: studies in submerged and three-dimensional epidermal equivalent models

    PubMed Central

    Chamcheu, Jean Christopher; Afaq, Farrukh; Syed, Deeba N.; Siddiqui, Imtiaz A.; Adhami, Vaqar M.; Khan, Naghma; Singh, Sohinderjit; Boylan, Brendan T.; Wood, Gary S.; Mukhtar, Hasan

    2013-01-01

    Delphinidin (Del), [3,5,7,3′-,4′-,5′-hexahydroxyflavylium], an anthocyanidin and a potent antioxidant abundantly found in pigmented fruits and vegetables exhibits proapoptotic effects in many cancer cells. Here, we determined the effect of Del on growth, apoptosis and differentiation of normal human epidermal keratinocytes (NHEKs) in vitro in submerged cultures and examined its effects in a three-dimensional (3D) epidermal equivalent (EE) model that permits complete differentiation reminiscent of in vivo skin. Treatment of NHEKs with Del (10–40 μm; 24–48 h) significantly enhanced keratinocyte differentiation. In Del-treated cells, there was marked increase in human involucrin (hINV) promoter activity with simultaneous increase in the mRNA and protein expressions of involucrin and other epidermal differentiation markers including procaspase-14 and transglutaminase-1 (TGM1), but without any effect on TGM2. Del treatment of NHEKs was associated with minimal decrease in cell viability, which was not associated with apoptosis as evident by lack of modulation of caspases, apoptosis-related proteins including Bcl-2 family of proteins and poly(ADP-ribose) polymerase cleavage. To establish the in vivo relevance of our observations in submerged cultures, we then validated these effects in a 3D EE model, where Del was found to significantly enhance cornification and increase the protein expression of cornification markers including caspase-14 and keratin 1. For the first time, we show that Del induces epidermal differentiation using an experimental system that closely mimics in vivo human skin. These observations suggest that Del could be a useful agent for dermatoses associated with epidermal barrier defects including aberrant keratinization, hyperproliferation or inflammation observed in skin diseases like psoriasis and ichthyoses. PMID:23614741

  12. Neuropilin 1 expression correlates with differentiation status of epidermal cells and cutaneous squamous cell carcinomas.

    PubMed

    Shahrabi-Farahani, Shokoufeh; Wang, Lili; Zwaans, Bernadette M M; Santana, Jeans M; Shimizu, Akio; Takashima, Seiji; Kreuter, Michael; Coultas, Leigh; D'Amore, Patricia A; Arbeit, Jeffrey M; Akslen, Lars A; Bielenberg, Diane R

    2014-07-01

    Neuropilins (NRPs) are cell surface receptors for vascular endothelial growth factor (VEGF) and SEMA3 (class 3 semaphorin) family members. The role of NRPs in neurons and endothelial cells has been investigated, but the expression and role of NRPs in epithelial cells is much less clear. Herein, the expression and localization of NRP1 was investigated in human and mouse skin and squamous cell carcinomas (SCCs). Results indicated that NRP1 mRNA and protein was expressed in the suprabasal epithelial layers of the skin sections. NRP1 staining did not overlap with that of keratin 14 (K14) or proliferating cell nuclear antigen, but did co-localize with staining for keratin 1, indicating that differentiated keratinocytes express NRP1. Similar to the expression of NRP1, VEGF-A was expressed in suprabasal epithelial cells, whereas Nrp2 and VEGFR2 were not detectable in the epidermis. The expression of NRP1 correlated with a high degree of differentiation in human SCC specimens, human SCC xenografts, and mouse K14-HPV16 transgenic SCC. UVB irradiation of mouse skin induced Nrp1 upregulation. In vitro, Nrp1 was upregulated in primary keratinocytes in response to differentiating media or epidermal growth factor-family growth factors. In conclusion, the expression of NRP1 is regulated in the skin and is selectively produced in differentiated epithelial cells. NRP1 may function as a reservoir to sequester VEGF ligand within the epithelial compartment, thereby modulating its bioactivity. PMID:24791743

  13. Esterase Activity and Intracellular Localization in Reconstructed Human Epidermal Cultured Skin Models

    PubMed Central

    Katayanagi, Mishina; Hashimoto, Fumie

    2015-01-01

    Background Reconstructed human epidermal culture skin models have been developed for cosmetic and pharmaceutical research. Objective This study evaluated the total and carboxyl esterase activities (i.e., Km and Vmax, respectively) and localization in two reconstructed human epidermal culture skin models (LabCyte EPI-MODEL [Japan Tissue Engineering] and EpiDerm [MatTek/Kurabo]). The usefulness of the reconstruction cultured epidermis was also verified by comparison with human and rat epidermis. Methods Homogenized epidermal samples were fractioned by centrifugation. p-nitrophenyl acetate and 4-methylumbelliferyl acetate were used as substrates of total esterase and carboxyl esterase, respectively. Results Total and carboxyl esterase activities were present in the reconstructed human epidermal culture skin models and were localized in the cytosol. Moreover, the activities and localization were the same as those in human and rat epidermis. Conclusion LabCyte EPI-MODEL and EpiDerm are potentially useful for esterase activity prediction in human epidermis. PMID:26082583

  14. Corrective transduction of human epidermal stem cells in laminin-5-dependent junctional epidermolysis bullosa.

    PubMed

    Dellambra, E; Vailly, J; Pellegrini, G; Bondanza, S; Golisano, O; Macchia, C; Zambruno, G; Meneguzzi, G; De Luca, M

    1998-06-10

    Laminin-5 is composed of three distinct polypeptides, alpha3, beta3, and gamma2, which are encoded by three different genes, LAMA3, LAMB3, and LAMC2, respectively. We have isolated epidermal keratinocytes from a patient presenting with a lethal form of junctional epidermolysis bullosa characterized by a homozygous mutation of the LAMB3 gene, which led to complete absence of the beta3 polypeptide. In vitro, beta3-null keratinocytes were unable to synthesize laminin-5 and to assemble hemidesmosomes, maintained the impairment of their adhesive properties, and displayed a decrease of their colony-forming ability. A retroviral construct expressing a human beta3 cDNA was used to transduce primary beta3-null keratinocytes. Clonogenic beta3-null keratinocytes were transduced with an efficiency of 100%. Beta3-transduced keratinocytes were able to synthesize and secrete mature heterotrimeric laminin-5. Gene correction fully restored the keratinocyte adhesion machinery, including the capacity of proper hemidesmosomal assembly, and prevented the loss of the colony-forming ability, suggesting a direct link between adhesion to laminin-5 and keratinocyte proliferative capacity. Clonal analysis demonstrated that holoclones expressed the transgene permanently, suggesting stable correction of epidermal stem cells. Because cultured keratinocytes are used routinely to make autologous grafts for patients suffering from large skin or mucosal defects, the full phenotypic reversion of primary human epidermal stem cells defective for a structural protein opens new perspectives in the long-term treatment of genodermatoses. PMID:9650620

  15. In vitro human epidermal penetration of 1-bromopropane.

    PubMed

    Frasch, H Frederick; Dotson, G Scott; Barbero, Ana M

    2011-01-01

    1-Bromopropane (1-BP; CAS number 106-94-5), also known as n-propyl bromide, is a halogenated short-chain alkane used as an organic solvent with numerous commercial and industrial applications, including garment dry cleaning and vapor degreasing of metals. The purpose of this study was to determine the dermal absorption characteristics and corrosivity of 1-BP. Heat-separated human epidermal membranes were mounted on static diffusion cells. Different exposure scenarios were studied (infinite dose, finite dose, and transient exposure) using neat 1-BP and saturated aqueous solution as donor. Steady-state fluxes for infinite-dose neat 1-BP exposure averaged 625 to 960 μg cm(-2) h(-1). The finite-dose (10 μl/cm(2) = 13.5 mg/cm(2)) unoccluded donor resulted in penetration of <0.2% of the applied dose (22 μg/cm(2)). A 10-min transient exposure to infinite dose resulted in total penetration of 179 μg/cm(2). Steady-state 1-BP fluxes from neat application of a commercial dry cleaning solvent were similar (441 to 722 μg cm(-2) h(-1)). The permeability coefficient of 1-BP in water vehicle was 0.257 ± 0.141 cm/h. The absorption potential of 1-BP following dermal exposure is dependent upon the type and duration of exposure. Donor losses due to evaporation were approximately 500-fold greater than dermal absorption flux; evaporation flux was 420 mg cm(-2) h(-1). 1-BP is cytotoxic but not corrosive, based on results from a cultured reconstructed human epidermal model (EpiDerm Skin Corrosivity Test). PMID:21830855

  16. Imaging sulfur mustard lesions in human epidermal tissues and keratinocytes by confocal and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert; Madren-Whalley, Janna S.

    2002-06-01

    Topical exposure to sulfur mustard (HD), a known theat agent, produces persistent and debilitating cutaneous blisters. The blisters occur at the dermal-epidermal junction following a dose-dependent latent period of 8-24 h, however, the primary lesions causing vesication remain uncertain. Immunofluorescent images reveal that a 5-min exposure to 400 (mu) M HD disrupts molecules that are also disrupted by epidermolysis bullosa-type blistering diseases of the skin. Using keratinocyte cultures and fluorochomes conjugated to two different keratin-14 (K14) antibodies (clones CKB1 and LL002), results have shown a statistically significant (p<0.1) 1-h decrease of 29.2% in expression of the CKB1 epitope, a nearly complete loss of CKB1 expression within 2 h, and progressive cytoskeletal (K14) collapse without loss in expression of the LL002 epitope. With human epidermal tissues, multi-photon images of (alpha) 6 integrin and laminin 5 showed disruptive changes in the cell-surface organization and integrity of these adhesion molecules. At 1 H postexposure, analyses showed a statistically significant (p<0.1) decrease of 27.3% in (alpha) 6 integrin emissions, and a 32% decrease in laminin 5 volume. Multi-photon imaging indicates that molecules essential for epidermal-dermal attachment are early targets in the alkylating events leading to HD-induced vesication.

  17. Mucin1 expression in focal epidermal dysplasia of actinic keratosis

    PubMed Central

    Carrillo, Luz Marina; Rojas, Héctor; Ramírez, Richard; Reyes, Oscar; Suárez, Ambar; Ortega, Fabiana

    2015-01-01

    Background Actinic keratoses (AKs) are generally considered as premalignant skin lesions that can progress into squamous cell carcinoma (SCC) in situ and invasive SCC. However, its progression to SCC is still matter of debate. A transmembrane glycoprotein that contributes to the progression of certain premalignant and malignant lesions is mucin1 (MUC1). Nevertheless, their functions in the skin lesions are not yet fully clear. Therefore, the aim of this study is to ascertain whether MUC1 is present in the focal epidermal dysplasia of AK. Methods Fourteen skin biopsies from patients diagnosed with AK were selected. They were classified according to the degree of dysplasia in keratinocyte intraepidermal neoplasia (KIN) I, KIN II, and KIN III. In five biopsies the three degrees were present, in two biopsies both KIN I and KIN II, in four biopsies only KIN I, and in three biopsies only KIN III. The presence of MUC1 was assessed by immunofluorescence staining using confocal laser scanning microscopy. Results Immunostaining revealed that MUC1 was present over the entire cell surface of only a few atypical basal keratinocytes confined to the lower third of the epidermis (KIN I). While in KIN II where atypical keratinocytes occupy the lower two thirds, MUC1 was localized at the apical surface of some atypical keratinocytes and over the entire cell surface of some of them. Interestingly, in KIN III where the atypical keratinocytes extend throughout the full thickness, MUC1 was localized at the apical surface and over the entire cell surface of many of these cells. Conversely, MUC1 expression was not detected in the epidermis of normal skin. Conclusions Our findings suggest that the expression of MUC1 in AK would be induced by alteration of keratinocyte stratification and differentiation and associated to the degree of dysplasia rather than the thickness of the epidermis. PMID:26605291

  18. Dynamic and Physical Clustering of Gene Expression during Epidermal Barrier Formation in Differentiating Keratinocytes

    PubMed Central

    Copley, Richard; Taylor, Martin S.; Hayden, Patrick J.; Stolper, Gina; Mott, Richard; Hein, Jotun; Moffatt, Miriam F.; Cookson, William O. C. M.

    2009-01-01

    The mammalian epidermis is a continually renewing structure that provides the interface between the organism and an innately hostile environment. The keratinocyte is its principal cell. Keratinocyte proteins form a physical epithelial barrier, protect against microbial damage, and prepare immune responses to danger. Epithelial immunity is disordered in many common diseases and disordered epithelial differentiation underlies many cancers. In order to identify the genes that mediate epithelial development we used a tissue model of the skin derived from primary human keratinocytes. We measured global gene expression in triplicate at five times over the ten days that the keratinocytes took to fully differentiate. We identified 1282 gene transcripts that significantly changed during differentiation (false discovery rate <0.01%). We robustly grouped these transcripts by K-means clustering into modules with distinct temporal expression patterns, shared regulatory motifs, and biological functions. We found a striking cluster of late expressed genes that form the structural and innate immune defences of the epithelial barrier. Gene Ontology analyses showed that undifferentiated keratinocytes were characterised by genes for motility and the adaptive immune response. We systematically identified calcium-binding genes, which may operate with the epidermal calcium gradient to control keratinocyte division during skin repair. The results provide multiple novel insights into keratinocyte biology, in particular providing a comprehensive list of known and previously unrecognised major components of the epidermal barrier. The findings provide a reference for subsequent understanding of how the barrier functions in health and disease. PMID:19888454

  19. Prognostic impact of KI67, p53, human epithelial growth factor receptor 2, topoisomerase IIalpha, epidermal growth factor receptor, and nm23 expression of ovarian carcinomas and disseminated tumor cells in the bone marrow.

    PubMed

    Schindlbeck, C; Hantschmann, P; Zerzer, M; Jahns, B; Rjosk, D; Janni, W; Rack, B; Sommer, H; Friese, K

    2007-01-01

    Examination of tumor biological factors for prognostic and predictive indicators is not part of routine testing in ovarian cancer. As in other tumors, the detection of hematogenous tumor spread could help to estimate the risk of metastatic disease. We examined the expression of p53, KI67, topoisomerase IIalpha (Top IIa), epidermal growth factor receptor (EGFR), human epithelial growth factor receptor 2 (HER2) and nm23 in tumor tissues from 90 patients with ovarian cancer. All underwent bone marrow (BM) aspiration and screening for disseminated tumor cells in the bone marrow (DTC-BM) at primary diagnosis. BM aspiration, cytospin preparation, and immunocytochemical staining with the anticytokeratin antibody (A45-B/B3) were done following a standardized protocol. The expression of p53, KI67, Top IIa, EGFR, HER2, and nm23 was evaluated by immunohistochemistry on paraffin-embedded tissue samples and classified by percentage of stained cells or immunoreactive score (IRS). The prognostic impact of the individual factors together with standard histologic parameters was calculated by univariate and multivariate analyses. Expression rates for HER2 (2+/3+: 34.5%), KI67 (median 30%), p53 (median IRS 5), and Top IIa (median IRS 4) were relatively high, whereas nm23 (median IRS 2) and EGFR (IRS 0: 61%) showed weak staining. In 21/90 patients (23.3%), DTC-BM (>/=1/2 x 10(6) cells) could be detected. The presence of DTC-BM was inversely related to nodal status (P = .015) but not to the other factors examined. Tumor stage (P = .02), lymph node involvement (P = .003), grade (P = .046), postoperative tumor residue (P < .001), peritoneal seeding (P = .02), and KI67 (P = .046) significantly correlated with overall survival (OS) after a median observation time of 28 months (2-105). The finding of ascites was borderline significant (P = .050). The presence of DTC-BM (P = .04) and KI67 positivity (P = .02) predicted reduced distant disease-free survival. By multivariate analysis

  20. p53 Acts as a Co-Repressor to Regulate Keratin 14 Expression during Epidermal Cell Differentiation

    PubMed Central

    Chao, Chung-Faye; Lu, Mei-Hua; Lin, Hwang-Chi; Chiou, Shih-Hwa; Tao, Pao-Luh; Chen, Jang-Yi

    2012-01-01

    During epidermal cell differentiation, keratin 14 (K14) expression is down-regulated, p53 expression varies, and the expression of the p53 target genes, p21 and 14-3-3σ, increases. These trends suggest that the relative transcriptional activity of p53 is increased during epidermal cell differentiation. To determine the relationship between K14 and p53, we constructed K14 promoters of various sizes and found that wild-type p53 could repress the promoter activity of all of the K14 promoter constructs in H1299 cells. K14-p160 contains an SP1 binding site mutation that prevents p53 from repressing K14 expression. Using a DNA affinity precipitation assay, we confirmed that p53 forms a complex with SP1 at the SP1 binding site between nucleotides -48 and -43 on the K14 promoter. Thus, our data indicate that p53 acts as a co-repressor to down-regulate K14 expression by binding to SP1. Next, we used a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced epidermal cell differentiation model to examine the inhibition of K14 expression caused by increased p53 activity. Human ovarian teratocarcinoma C9 cells were treated with TPA to induce differentiation. Over-expression of the dominant negative p53 mutant ΔTAp53, which inhibits p53 activity, prevented the TPA-induced K14 down-regulation in C9 cells. Furthermore, treatment of normal primary human foreskin keratinocytes (PHFK) with the p53 inhibitor pifithrin-α (PFT-α) showed that the inhibition of p53 activity relieves K14 repression during epidermal cell differentiation. Finally, we found that TPA induces the phosphorylation of p53 at residue 378, which enhances the affinity of p53 to bind to Sp1 and repress K14 expression. PMID:22911849

  1. Modulation of epidermal growth factor receptors by human alpha interferon.

    PubMed Central

    Zoon, K C; Karasaki, Y; zur Nedden, D L; Hu, R Q; Arnheiter, H

    1986-01-01

    Treatment of Madin-Darby bovine kidney (MDBK) cells with human interferon (IFN)-alpha 2 at 37 degrees C results in a dose-dependent inhibition of cell growth and a reduction of the subsequent binding of 125I-labeled epidermal growth factor (EGF) at 4 degrees C. Human IFN-beta and -gamma, which exhibit little antiviral and antiproliferative activities on MDBK cells, have little effect on cell growth or the binding of 125I-labeled EGF to these cells. The binding of EGF is decreased after exposure to IFN-alpha for greater than 8 hr. Scatchard analyses of the EGF binding data indicate that a 20-hr exposure period results in a decrease in the apparent number of cell-surface EGF receptors and a reduction in the affinity of EGF for its receptor. The rate of internalization of EGF by MDBK cells does not appear to be affected by IFN treatment. PMID:3095830

  2. Modulation of epidermal growth factor receptors by human alpha interferon.

    PubMed

    Zoon, K C; Karasaki, Y; zur Nedden, D L; Hu, R Q; Arnheiter, H

    1986-11-01

    Treatment of Madin-Darby bovine kidney (MDBK) cells with human interferon (IFN)-alpha 2 at 37 degrees C results in a dose-dependent inhibition of cell growth and a reduction of the subsequent binding of 125I-labeled epidermal growth factor (EGF) at 4 degrees C. Human IFN-beta and -gamma, which exhibit little antiviral and antiproliferative activities on MDBK cells, have little effect on cell growth or the binding of 125I-labeled EGF to these cells. The binding of EGF is decreased after exposure to IFN-alpha for greater than 8 hr. Scatchard analyses of the EGF binding data indicate that a 20-hr exposure period results in a decrease in the apparent number of cell-surface EGF receptors and a reduction in the affinity of EGF for its receptor. The rate of internalization of EGF by MDBK cells does not appear to be affected by IFN treatment. PMID:3095830

  3. EFFECT OF PARACETAMOL ON MELANIZATION PROCESS IN HUMAN EPIDERMAL MELANOCYTES.

    PubMed

    Wrześniok, Dorota; Oprzondek, Martyna; Hechmann, Anna; Beberok, Artur; Otreba, Michał; Buszman, Ewa

    2016-01-01

    Paracetamol (acetaminophen) is commonly used as a drug of choice for treatment of pain and fever. Unlike non-steroidal anti-inflammatory drugs (NSAIDs) it does not cause gastrointestinal damage or untoward cardiorenal effects, however cutaneous adverse effects have been reported. It is known that paracetamol binds to melanin biopolymers, but the relation between the affinity of this drug to melanin and its toxicity is not documented. The aim of this work was to examine the impact of paracetamol on melanogenesis in cultured human normal epidermal melanocytes (HEMn-DP). The effect of paracetamol on cell viability was determined by WST-1 assay, melanin content and tyrosinase activity were measured spectrophotometrically. It has been demonstrated that paracetamol induced concentration-dependent loss in melanocytes viability. The value of EC50 was found to be - 20.0 mM. The analyzed drug inhibited melanin biosynthesis in a concentration-dependent manner by decreasing the melanin content as well as the tyrosinase activity. The demonstrated inhibitory effect of paracetamol on melanization process in normal epidermal melanocytes in vitro may explain the potential role of melanin biopolymer in the mechanisms of undesirable side effects of this drug in vivo, as a result of its accumulation in pigmented tissues. PMID:27476283

  4. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    SciTech Connect

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-04-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.

  5. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    SciTech Connect

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-08-26

    Highlights: {yields} Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. {yields} The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. {yields} Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  6. BRCA1 regulation of epidermal growth factor receptor (EGFR) expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function.

    PubMed

    Kumaraswamy, E; Wendt, K L; Augustine, L A; Stecklein, S R; Sibala, E C; Li, D; Gunewardena, S; Jensen, R A

    2015-08-13

    Breast cancer 1 (BRCA1)-associated breast cancers are mostly basal-like high-grade ductal carcinomas that frequently overexpress epidermal growth factor receptor (EGFR). Aberrant EGFR expression is correlated with disease progression, resistance to radiation and chemotherapy, and poor clinical prognosis. Although BRCA1 is involved in multiple cellular processes, its functional role in EGFR regulation remains enigmatic. Here, we report a previously unrecognized posttranscriptional mechanism by which BRCA1 regulates EGFR expression through the induction of miR-146a. We demonstrate that EGFR expression correlates negatively with BRCA1, whereas miR-146a levels increase with BRCA1. We show that BRCA1 binds to MIR146A promoter and activates transcription, which in turn attenuates EGFR expression. Knockdown of miR-146a in BRCA1-overexpressing cells negated this effect and suppressed its ability to inhibit proliferation and transformation. In archived triple-negative breast cancer samples, we show a strong positive correlation between BRCA1 and miR-146a expression. We also show that low expression of miR-146a strongly predicts positive lymph node status and is associated with distinctively poor overall survival of patients. Together, these observations provide an insight into a novel BRCA1miR-146aEGFR paradigm by which BRCA1 carries out an aspect of tumor suppressor function that is potentially amenable to therapeutic intervention. PMID:25417703

  7. Kinetics of growth and differentiation of cultured human epidermal keratinocytes

    SciTech Connect

    Albers, K.M.

    1985-01-01

    A study was made of the interrelationship between replication and differentiation in cultures of human epidermal keratinocytes. Measures of both parameters were made using newly developed methods to quantify the rate at which keratinocytes replicate and the rate at which they withdraw from the cell cycle. Keratinocyte replication was measured by determining the cell doubling time, labeling index, and cell cycle duration. Cell cycle length was measured using a double label assay that determines the length of time between two successive phases of DNA synthesis. The first DNA synthesis phase was marked by labeling keratinocytes with /sup 14/C-thymidine. At the next round of DNA synthesis, cells were labeled with bromodeoxyuridine, a heavy analog of thymidine. The cell cycle length is given by the time required for the /sup 14/C-labeled DNA to become double labeled. To measure keratinocyte differentiation, the rate at which cells withdraw from the cell cycle was determined. To measure withdrawal, the percentage of cells labeled by a pulse of /sup 14/C-thymidine that failed to undergo a second cycle of DNA synthesis, as measured by bromodeoxyuridine incorporation, was determined. Cells which failed to undergo a second cycle of synthesis were considered to have differentiated and withdrawn from the cell cycle.

  8. Effects of soap-water wash on human epidermal penetration.

    PubMed

    Zhu, Hanjiang; Jung, Eui-Chang; Phuong, Christina; Hui, Xiaoying; Maibach, Howard

    2016-08-01

    Skin decontamination is a primary interventional method used to decrease dermal absorption of hazardous contaminants, including chemical warfare agents, pesticides and industrial pollutants. Soap and water wash, the most common and readily available decontamination system, may enhance percutaneous absorption through the "wash-in effect." To understand better the effect of soap-water wash on percutaneous penetration, and provide insight to improving skin decontamination methods, in vitro human epidermal penetration rates of four C(14) -labeled model chemicals (hydroquinone, clonidine, benzoic acid and paraoxon) were assayed using flow-through diffusion cells. Stratum corneum (SC) absorption rates of these chemicals at various hydration levels (0-295% of the dry SC weights) were determined and compared with the results of the epidermal penetration study to clarify the effect of SC hydration on skin permeability. Results showed accelerated penetration curves of benzoic acid and paraoxon after surface wash at 30 min postdosing. Thirty minutes after washing (60 min postdosing), penetration rates of hydroquinone and benzoic acid decreased due to reduced amounts of chemical on the skin surface and in the SC. At the end of the experiment (90 min postdosing), a soap-water wash resulted in lower hydroquinone penetration, greater paraoxon penetration and similar levels of benzoic acid and clonidine penetration compared to penetration levels in the non-wash groups. The observed wash-in effect agrees with the enhancement effect of SC hydration on the SC chemical absorption rate. These results suggest SC hydration derived from surface wash to be one cause of the wash-in effect. Further, the occurrence of a wash-in effect is dependent on chemical identity and elapsed time between exposure and onset of decontamination. By reducing chemical residue quantity on skin surface and in the SC reservoir, the soap-water wash may decrease the total quantity of chemical absorbed in the

  9. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function

    PubMed Central

    Duchnik, Ewa; Maleszka, Romuald; Marchlewicz, Mariola

    2016-01-01

    The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part – stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function. PMID:26985171

  10. Nifedipine prevents sodium caprate-induced barrier dysfunction in human epidermal keratinocyte cultures.

    PubMed

    Uchino, Yoshihiro; Matsumoto, Junichi; Watanabe, Takuya; Hamabashiri, Masato; Tsuchiya, Takashi; Kimura, Ikuya; Yamauchi, Atsushi; Kataoka, Yasufumi

    2015-01-01

    Tight junctions (TJs) of the epidermis play an important role in maintaining the epidermal barrier. TJ breakdown is associated with skin problems, such as wrinkles and transepidermal water loss (TEWL). Clinical studies have reported that topical nifedipine is effective in reducing the depth of wrinkles and improving TEWL. However, it remains unknown whether nifedipine influences the TJ function in the epidermis. In the present study, we investigated the effect of nifedipine on epidermal barrier dysfunction in normal human epidermal keratinocytes (NHEKs) treated with sodium caprate (C10), a TJ inhibitor. Nifedipine reversed the C10-decreased transepithelial electrical resistance values as a measure of disruption of the epidermal barrier. Immunocytochemical observations revealed that nifedipine improved the C10-induced irregular arrangement of claudin-1, a key protein in TJs. Taken together, these findings suggest that nifedipine prevents epidermal barrier dysfunction, at least in part, by reconstituting the irregular claudin-1 localization at TJs in C10-treated NHEKs. PMID:26027835

  11. Loss of epidermal MMP-14 expression interferes with angiogenesis but not with re-epithelialization.

    PubMed

    Zigrino, Paola; Ayachi, Ouissam; Schild, Alexander; Kaltenberg, Jennifer; Zamek, Jan; Nischt, Roswitha; Koch, Manuel; Mauch, Cornelia

    2012-10-01

    Synthesis and activation of matrix metalloproteinases during wound healing are important for remodeling the extracellular matrix and modulating various cellular functions. The membrane-type 1 matrix metalloproteinase (MMP-14) has been shown to play a key role during these processes. To analyze the function of epidermal-derived MMP-14 during skin repair we generated mice lacking MMP-14 expression in the epidermis (MMP-14(ep-/-)). These mice displayed overall normal skin morphology and epidermal differentiation patterns. Wound repair in MMP-14(ep-/-) followed the same kinetics as in wild type mice (MMP-14(ep+/+)), and infiltration of neutrophils, leukocytes, and macrophages into the wound site was comparable. Microscopic analysis showed no altered re-epithelialization in the absence of epidermal MMP-14. Furthermore, epidermal differentiation at the end of the repair process and scar formation was normal. However, at day 14 post wounding, sustained angiogenesis was observed in MMP-14(ep-/-) mice in contrast to control mice. Interestingly, decreased levels of endostatin were detected in wound lysates of MMP-14(ep-/-) mice as well as in cultured keratinocytes. Taken together, these data indicate that MMP-14 expression in keratinocytes is dispensable for skin homeostasis and repair, but plays a crucial role in the epidermal-dermal crosstalk leading to modulation of vessel density. PMID:22717126

  12. Epidermal Merkel cells in psoriatic lesions: immunohistochemical investigations on neuroendocrine antigen expression.

    PubMed

    Wollina, U; Mahrle, G

    1992-05-01

    Biopsy specimens from lesional psoriatic skin and from normal controls were investigated by immunohistochemistry for the presence of epidermal Merkel cells (MC). MC were defined as epidermal cells expressing simple-type keratins, i.e. nos. 8, 18, and 19. A significant number of MC could be found at the bottom of the rete ridges of psoriatic lesions (about 19.6 MC per square mm skin surface area) and of normal skin (about 14.0 MC per square mm surface area). In contrast to normal skin, MC of psoriatic lesions were positive for synaptophysin (21.7% of simple-type keratin positive epidermal cells, i.e. MC), pancreatic polypeptide (14.8%), somatostatin (7.0%), and chromogranin A (less than 3%). The immunostaining was rather faint though significantly different from normal skin. The findings suggest that in psoriasis, epidermal MC show variations of the expression of neuropeptides compared to normal skin. Since some of the neuropeptides are thought to be involved in hyperproliferation and/or skin immunology, our findings might suggest a functional activity of epidermal MC in psoriatic lesions different from normal controls. PMID:1498093

  13. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene.

    PubMed Central

    Plowman, G D; Whitney, G S; Neubauer, M G; Green, J M; McDonald, V L; Todaro, G J; Shoyab, M

    1990-01-01

    Epidermal growth factor (EGF), transforming growth factor alpha (TGF-alpha), and amphiregulin are structurally and functionally related growth regulatory proteins. These secreted polypeptides all bind to the 170-kDa cell-surface EGF receptor, activating its intrinsic kinase activity. However, amphiregulin exhibits different activities than EGF and TGF-alpha in a number of biological assays. Amphiregulin only partially competes with EGF for binding EGF receptor, and amphiregulin does not induce anchorage-independent growth of normal rat kidney cells (NRK) in the presence of TGF-beta. Amphiregulin also appears to abrogate the stimulatory effect of TGF-alpha on the growth of several aggressive epithelial carcinomas that overexpress EGF receptor. These findings suggest that amphiregulin may interact with a separate receptor in certain cell types. Here we report the cloning of another member of the human EGF receptor (HER) family of receptor tyrosine kinases, which we have named "HER3/ERRB3." The cDNA was isolated from a human carcinoma cell line, and its 6-kilobase transcript was identified in various human tissues. We have generated peptide-specific antisera that recognizes the 160-kDa HER3 protein when transiently expressed in COS cells. These reagents will allow us to determine whether HER3 binds amphiregulin or other growth regulatory proteins and what role HER3 protein plays in the regulation of cell growth. Images PMID:2164210

  14. An in vitro skin irritation test (SIT) using the EpiDerm reconstructed human epidermal (RHE) model.

    PubMed

    Kandárová, Helena; Hayden, Patrick; Klausner, Mitchell; Kubilus, Joseph; Sheasgreen, John

    2009-01-01

    The EpiDerm Skin Irritation test (EpiDerm SIT) was developed and validated for in vitro skin irritation testing of chemicals, including cosmetic and pharmaceutical ingredients. The EpiDerm SIT utilizes the 3D in vitro reconstructed human epidermal (RHE) model EpiDerm. The procedure described in this protocol allows for discrimination between irritants of GHS category 2 and non-irritants. The test is performed over the course of a 4 day time period, consisting of pre-incubation, 60 minute exposure, 42 hour post-incubation and MTT viability assay. After tissue receipt and overnight pre-incubation (Day 0), tissues are topically exposed to the test chemicals (Day 1), which can be liquid, semisolid, solid or waxy. Three tissues are used for each test chemical, as well as for the positive control (5% aq. SDS solution), and a negative control (DPBS). Chemical exposure lasts for 60 minutes, 35 min of which the tissues are kept in an incubator at 37 degrees C. The test substances are then removed from the tissue surface by an extensive washing procedure. The tissue inserts are blotted and transferred to fresh medium. After a 24 hr incubation period (Day 2), the medium is exchanged. The medium can be saved for further analysis of cytokines or other endpoints of interest. After the medium exchange, tissues are incubated for an additional 18 hours. At the end of the entire 42 h post-incubation (day 3), the tissues are transferred into yellow MTT solution and incubated for 3 hours. The resultant purple-blue formazan salt, formed mainly by mitochondrial metabolism, is extracted for 2 hours using isopropanol. The optical density of the extracted formazan is determined using a spectrophotometer. A chemical is classified as an irritant if the tissue viability relative to the negative control treated tissues is reduced below 50%. This procedure can be used as full replacement of the in vivo rabbit skin irritation test for hazard identification and labeling of chemicals in line with

  15. Large-scale identification of human genes implicated in epidermal barrier function

    PubMed Central

    Toulza, Eve; Mattiuzzo, Nicolas R; Galliano, Marie-Florence; Jonca, Nathalie; Dossat, Carole; Jacob, Daniel; de Daruvar, Antoine; Wincker, Patrick; Serre, Guy; Guerrin, Marina

    2007-01-01

    Background During epidermal differentiation, keratinocytes progressing through the suprabasal layers undergo complex and tightly regulated biochemical modifications leading to cornification and desquamation. The last living cells, the granular keratinocytes (GKs), produce almost all of the proteins and lipids required for the protective barrier function before their programmed cell death gives rise to corneocytes. We present here the first analysis of the transcriptome of human GKs, purified from healthy epidermis by an original approach. Results Using the ORESTES method, 22,585 expressed sequence tags (ESTs) were produced that matched 3,387 genes. Despite normalization provided by this method (mean 4.6 ORESTES per gene), some highly transcribed genes, including that encoding dermokine, were overrepresented. About 330 expressed genes displayed less than 100 ESTs in UniGene clusters and are most likely to be specific for GKs and potentially involved in barrier function. This hypothesis was tested by comparing the relative expression of 73 genes in the basal and granular layers of epidermis by quantitative RT-PCR. Among these, 33 were identified as new, highly specific markers of GKs, including those encoding a protease, protease inhibitors and proteins involved in lipid metabolism and transport. We identified filaggrin 2 (also called ifapsoriasin), a poorly characterized member of the epidermal differentiation complex, as well as three new lipase genes clustered with paralogous genes on chromosome 10q23.31. A new gene of unknown function, C1orf81, is specifically disrupted in the human genome by a frameshift mutation. Conclusion These data increase the present knowledge of genes responsible for the formation of the skin barrier and suggest new candidates for genodermatoses of unknown origin. PMID:17562024

  16. NOVEL NON-CALCEMIC SECOSTEROIDS THAT ARE PRODUCED BY HUMAN EPIDERMAL KERATINOCYTES PROTECT AGAINST SOLAR RADIATION

    PubMed Central

    Slominski, Andrzej T.; Janjetovic, Zorica; Kim, Tae-Kang; Wasilewski, Piotr; Rosas, Sofia; Hanna, Sherie; Sayre, Robert M.; Dowdy, John C.; Li, Wei; Tuckey, Robert C.

    2015-01-01

    CYP11A1 hydroxylates the side chain of vitamin D3 (D3) in a sequential fashion [D3→20S(OH)D3→20,23(OH)2D3→ 17,20,23(OH)3D3], in an alternative to the classical pathway of activation [D3→25(OH)D3→1,25(OH)2D3]. The products/intermediates of the pathway can be further modified by the action of CYP27B1. The CYP11A1-derived products are biologically active with functions determined by the lineage of the target cells. This pathway can operate in epidermal keratinocytes. To further define the role of these novel secosteroids we tested them for protective effects against UVB-induced damage in human epidermal keratinocytes, melanocytes and HaCaT keratinocytes, cultured in vitro. The secosteroids attenuated ROS, H2O2 and NO production by UVB-irradiated keratinocytes and melanocytes, with an efficacy similar to 1,25(OH)2D3, while 25(OH)D3 had lower efficacy. These attenuations were also seen to some extent for the 20(OH)D3 precursor, 20S-hydroxy-7-dehydrocholesterol. These effects were accompanied by upregulation of genes encoding enzymes responsible for defence against oxidative stress. Using immunofluorescent staining we observed that the secosteroids reduced the generation cyclobutane pyrimidine dimers in response to UVB and enhanced expression of p53 phosphorylated at Ser-15, but not at Ser-46. Additional evidence for protection against DNA damage in cells exposed to UVB and treated with secosteroids was provided by the Comet assay where DNA fragmentation was markedly reduced by 20(OH)D3 and 20,23(OH)2D3. In conclusion, novel secosteroids that can be produced by the action of CYP11A1 in epidermal keratinocytes have protective effects against UVB radiation. PMID:25617667

  17. Epidermal expression of the truncated prelamin A causing Hutchinson–Gilford progeria syndrome: effects on keratinocytes, hair and skin

    PubMed Central

    Wang, Yuexia; Panteleyev, Andrey A.; Owens, David M.; Djabali, Karima; Stewart, Colin L.; Worman, Howard J.

    2008-01-01

    Hutchinson–Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by point mutation in LMNA encoding A-type nuclear lamins. The mutations in LMNA activate a cryptic splice donor site, resulting in expression of a truncated, prenylated prelamin A called progerin. Expression of progerin leads to alterations in nuclear morphology, which may underlie pathology in HGPS. We generated transgenic mice expressing progerin in epidermis under control of a keratin 14 promoter. The mice had severe abnormalities in morphology of skin keratinocyte nuclei, including nuclear envelope lobulation and decreased nuclear circularity not present in transgenic mice expressing wild-type human lamin A. Primary keratinocytes isolated from these mice had a higher frequency of nuclei with abnormal shape compared to those from transgenic mice expressing wild-type human lamin A. Treatment with a farnesyltransferase inhibitor significantly improved nuclear shape abnormalities and induced the formation of intranuclear foci in the primary keratinocytes expressing progerin. Similarly, spontaneous immortalization of progerin-expressing cultured keratinocytes selected for cells with normal nuclear morphology. Despite morphological alterations in keratinocyte nuclei, mice expressing progerin in epidermis had normal hair grown and wound healing. Hair and skin thickness were normal even after crossing to Lmna null mice to reduce or eliminate expression of normal A-type lamins. Although progerin induces significant alterations in keratinocyte nuclear morphology that are reversed by inhibition of farnesyltransferasae, epidermal expression does not lead to alopecia or other skin abnormalities typically seen in human subjects with HGPS. PMID:18442998

  18. Epidermal expression of the truncated prelamin A causing Hutchinson-Gilford progeria syndrome: effects on keratinocytes, hair and skin.

    PubMed

    Wang, Yuexia; Panteleyev, Andrey A; Owens, David M; Djabali, Karima; Stewart, Colin L; Worman, Howard J

    2008-08-01

    Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by point mutation in LMNA encoding A-type nuclear lamins. The mutations in LMNA activate a cryptic splice donor site, resulting in expression of a truncated, prenylated prelamin A called progerin. Expression of progerin leads to alterations in nuclear morphology, which may underlie pathology in HGPS. We generated transgenic mice expressing progerin in epidermis under control of a keratin 14 promoter. The mice had severe abnormalities in morphology of skin keratinocyte nuclei, including nuclear envelope lobulation and decreased nuclear circularity not present in transgenic mice expressing wild-type human lamin A. Primary keratinocytes isolated from these mice had a higher frequency of nuclei with abnormal shape compared to those from transgenic mice expressing wild-type human lamin A. Treatment with a farnesyltransferase inhibitor significantly improved nuclear shape abnormalities and induced the formation of intranuclear foci in the primary keratinocytes expressing progerin. Similarly, spontaneous immortalization of progerin-expressing cultured keratinocytes selected for cells with normal nuclear morphology. Despite morphological alterations in keratinocyte nuclei, mice expressing progerin in epidermis had normal hair grown and wound healing. Hair and skin thickness were normal even after crossing to Lmna null mice to reduce or eliminate expression of normal A-type lamins. Although progerin induces significant alterations in keratinocyte nuclear morphology that are reversed by inhibition of farnesyltransferasae, epidermal expression does not lead to alopecia or other skin abnormalities typically seen in human subjects with HGPS. PMID:18442998

  19. S100A7 (psoriasin) inhibits human epidermal differentiation by enhanced IL-6 secretion through IκB/NF-κB signalling.

    PubMed

    Son, Eui Dong; Kim, Hyoung-June; Kim, Kyu Han; Bin, Bum Ho; Bae, Il-Hong; Lim, Kyung-Min; Yu, Seok Jong; Cho, Eun-Gyung; Lee, Tae Ryong

    2016-08-01

    Psoriasin (S100A7), a member of the S100 protein family, is a well-known antimicrobial peptide and a signalling molecule which regulates cellular function and is highly expressed in hyperproliferative skin conditions such as atopic dermatitis (AD) and psoriasis with disrupted skin barrier function. However, its role in epidermal differentiation remains unknown. We examined the effect of S100A7 on epidermal differentiation in normal human keratinocytes (NHKs) and on a reconstituted human epidermis model. When NHKs were exposed to disruptive stimuli such as Staphylococcus aureus, ultraviolet irradiation and retinoic acid, the secretion of S100A7 into the culture medium increased and the expression of epidermal differentiation markers decreased. Treatment of NHKs with S100A7 significantly inhibited epidermal differentiation by reducing the expression of keratin 1, keratin 10, involucrin and loricrin and by increasing the expression of abnormal differentiation markers (keratin 6 and keratin 16). We verified that the MyD88-IκB/NF-κB signal cascade was activated via RAGE after S100A7 treatment, resulting in the upregulation of interleukin-6. Finally, we confirmed that S100A7 is a negative regulator of epidermal differentiation using a reconstituted human epidermis model. This study suggests that S100A7-related signalling molecules could be potent targets for recovering skin barrier function in AD and psoriasis where S100A7 is accumulated excessively. PMID:27060579

  20. Transient Expression of P-type ATPases in Tobacco Epidermal Cells.

    PubMed

    Poulsen, Lisbeth R; Palmgren, Michael G; López-Marqués, Rosa L

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellular space between leaf epidermal cells, which results in DNA transfer from the bacteria to the plant and expression of the corresponding proteins. By injecting mixes of Agrobacterium strains, this system offers the possibility to co-express a number of target proteins simultaneously, thus allowing for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits. PMID:26695049

  1. Construction of an immunotoxin by linking a monoclonal antibody against the human epidermal growth factor receptor and a hemolytic toxin.

    PubMed

    Avila, Ana D; Calderón, Carlos F; Pérez, Rita M; Pons, Carmen; Pereda, Celia M; Ortiz, Ana R

    2007-01-01

    Hybrid molecules obtained through conjugation of monoclonal antibodies and toxins constitute an approach under exploration to generate potential agents for the treatment of cancer and other diseases. A frequently employed toxic component in the construction of such immunotoxins is ricin, a plant toxin which inhibits protein synthesis at ribosomal level and so requires to be internalized by the cell. A hemolytic toxin isolated from the sea anemone Stichodactyla helianthus, which is active at the cell membrane level, was linked through a disulfide bond to the anti-epidermal growth factor receptor monoclonal antibody ior egf/r3. The resulting immunotoxin did not exhibit hemolytic activity except under reducing conditions. It was toxic for H125 cells that express the human epidermal growth factor receptor, but non-toxic for U1906 cells that do not express this receptor. PMID:18064354

  2. Mechanical Stretch on Human Skin Equivalents Increases the Epidermal Thickness and Develops the Basement Membrane

    PubMed Central

    Tokuyama, Eijiro; Nagai, Yusuke; Takahashi, Ken; Kimata, Yoshihiro; Naruse, Keiji

    2015-01-01

    All previous reports concerning the effect of stretch on cultured skin cells dealt with experiments on epidermal keratinocytes or dermal fibroblasts alone. The aim of the present study was to develop a system that allows application of stretch stimuli to human skin equivalents (HSEs), prepared by coculturing of these two types of cells. In addition, this study aimed to analyze the effect of a stretch on keratinization of the epidermis and on the basement membrane. HSEs were prepared in a gutter-like structure created with a porous silicone sheet in a silicone chamber. After 5-day stimulation with stretching, HSEs were analyzed histologically and immunohistologically. Stretch-stimulated HSEs had a thicker epidermal layer and expressed significantly greater levels of laminin 5 and collagen IV/VII in the basal layer compared with HSEs not subjected to stretch stimulation. Transmission electron microscopy revealed that the structure of the basement membrane was more developed in HSEs subjected to stretching. Our model may be relevant for extrapolating the effect of a stretch on the skin in a state similar to an in vivo system. This experimental system may be useful for analysis of the effects of stretch stimuli on skin properties and wound healing and is also expected to be applicable to an in vitro model of a hypertrophic scar in the future. PMID:26528823

  3. Sensitivity of human granulosa cell tumor cells to epidermal growth factor receptor inhibition.

    PubMed

    Andersson, Noora; Anttonen, Mikko; Färkkilä, Anniina; Pihlajoki, Marjut; Bützow, Ralf; Unkila-Kallio, Leila; Heikinheimo, Markku

    2014-04-01

    Epidermal growth factor receptor (EGFR) is implicated in the progression of many human cancers, but its significance in ovarian granulosa cell tumor (GCT) pathobiology remains poorly understood. We assessed the EGFR gene copy number, surveyed the mRNA and protein expression patterns of EGFR in 90 adult GCTs, and assessed the in vitro sensitivity of GCT cells to EGFR inhibition. Low-level amplification of EGFR gene was observed in five GCTs and high-level amplification in one sample. EGFR mRNA was robustly expressed in GCTs. Most tumors expressed both unphosphorylated and phosphorylated EGFR protein, but the protein expression did not correlate with clinical parameters, including the risk of recurrence. Small-molecule EGFR inhibitors reduced the EGF-induced activation of EGFR and its downstream signaling molecules at nanomolar doses, but cell viability was reduced, and caspase-3/7 was activated in GCT cells only at micromolar doses. Based on the present results, EGFR is active and abundantly expressed in the majority of GCTs, but probably has only minor contribution to GCT cell growth. Given the high doses of EGFR inhibitors required to reduce GCT cell viability in vitro, they are not likely to be effective for GCT treatment as single agents; they should rather be tested as part of combination therapies for these malignancies. PMID:24463098

  4. Human Papilloma Viral DNA Replicates as a Stable Episome in Cultured Epidermal Keratinocytes

    NASA Astrophysics Data System (ADS)

    Laporta, Robert F.; Taichman, Lorne B.

    1982-06-01

    Human papilloma virus (HPV) is poorly understood because systems for its growth in tissue culture have not been developed. We report here that cultured human epidermal keratinocytes could be infected with HPV from plantar warts and that the viral DNA persisted and replicated as a stable episome. There were 50-200 copies of viral DNA per cell and there was no evidence to indicate integration of viral DNA into the cellular genome. There was also no evidence to suggest that viral DNA underwent productive replication. We conclude that cultured human epidermal keratinocytes may be a model for the study of certain aspects of HPV biology.

  5. Human epidermal neural crest stem cells as a source of Schwann cells

    PubMed Central

    Sakaue, Motoharu; Sieber-Blum, Maya

    2015-01-01

    We show that highly pure populations of human Schwann cells can be derived rapidly and in a straightforward way, without the need for genetic manipulation, from human epidermal neural crest stem cells [hEPI-NCSC(s)] present in the bulge of hair follicles. These human Schwann cells promise to be a useful tool for cell-based therapies, disease modelling and drug discovery. Schwann cells are glia that support axons of peripheral nerves and are direct descendants of the embryonic neural crest. Peripheral nerves are damaged in various conditions, including through trauma or tumour-related surgery, and Schwann cells are required for their repair and regeneration. Schwann cells also promise to be useful for treating spinal cord injuries. Ex vivo expansion of hEPI-NCSC isolated from hair bulge explants, manipulating the WNT, sonic hedgehog and TGFβ signalling pathways, and exposure of the cells to pertinent growth factors led to the expression of the Schwann cell markers SOX10, KROX20 (EGR2), p75NTR (NGFR), MBP and S100B by day 4 in virtually all cells, and maturation was completed by 2 weeks of differentiation. Gene expression profiling demonstrated expression of transcripts for neurotrophic and angiogenic factors, as well as JUN, all of which are essential for nerve regeneration. Co-culture of hEPI-NCSC-derived human Schwann cells with rodent dorsal root ganglia showed interaction of the Schwann cells with axons, providing evidence of Schwann cell functionality. We conclude that hEPI-NCSCs are a biologically relevant source for generating large and highly pure populations of human Schwann cells. PMID:26251357

  6. Upregulated RIP3 Expression Potentiates MLKL Phosphorylation-Mediated Programmed Necrosis in Toxic Epidermal Necrolysis.

    PubMed

    Kim, Sue Kyung; Kim, Woo-Jung; Yoon, Jung-Ho; Ji, Jae-Hoon; Morgan, Michael J; Cho, Hyeseong; Kim, You Chan; Kim, You-Sun

    2015-08-01

    Toxic epidermal necrolysis (TEN) is a severe adverse drug reaction involving extensive keratinocyte death in the epidermis. Histologically, the skin from TEN patients exhibits separation at the dermo-epidermal junction and accompanying necrosis of epidermal keratinocytes. Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is an essential part of the cellular machinery that executes "programmed", or "regulated", necrosis and has a key role in spontaneous cell death and inflammation in keratinocytes under certain conditions. Here we show that RIP3 expression is highly upregulated in skin sections from TEN patients and may therefore contribute to the pathological damage in TEN through activation of programmed necrotic cell death. The expression level of mixed lineage kinase domain-like protein (MLKL), a key downstream component of RIP3, was not significantly different in skin lesions of TEN. However, elevated MLKL phosphorylation was observed in the skin from TEN patients, indicating the presence of RIP3-dependent programmed necrosis. Importantly, in an in vitro model of TEN, dabrafenib, an inhibitor of RIP3, prevented RIP3-mediated MLKL phosphorylation and decreased cell death. Results from this study suggest that the high expression of RIP3 in keratinocytes from TEN patients potentiates MLKL phosphorylation/activation and necrotic cell death. Thus, RIP3 represents a potential target for treatment of TEN. PMID:25748555

  7. Intracrine sex steroid synthesis and signaling in human epidermal keratinocytes and dermal fibroblasts.

    PubMed

    Pomari, Elena; Dalla Valle, Luisa; Pertile, Paolo; Colombo, Lorenzo; Thornton, M Julie

    2015-02-01

    Peripheral intracrine sex steroid synthesis from adrenal precursors dehydroepiandrosterone (DHEA) and DHEA-sulfate has evolved in humans. We sought to establish if there are differences in intracrine, paracrine, and endocrine regulation of sex steroids by primary cultures of human skin epidermal keratinocytes and dermal fibroblasts. Microarray analysis identified multifunctional genes modulated by steroids, quantitative RT-PCR (qRT-PCR) mRNA expression, enzymatic assay aromatase activity, scratch assay cell migration, immunocytochemistry α-smooth muscle actin (α-SMA), and collagen gel fibroblast contraction. All steroidogenic components were present, although only keratinocytes expressed the organic anion organic anion transporter protein (OATP) 2B1 transporter. Both expressed the G-protein-coupled estrogen receptor (GPER1). Steroids modulated multifunctional genes, up-regulating genes important in repair and aging [angiopoietin-like 4 (ANGPTL4), chemokine (C-X-C motif) ligand 1 (CXCL1), lamin B1 (LMNB1), and thioredoxin interacting protein (TXNIP)]. DHEA-sulfate (DHEA-S), DHEA, and 17β-estradiol stimulated keratinocyte and fibroblast migration at early (4 h) and late (24-48 h) time points, suggesting involvement of genomic and nongenomic signaling. Migration was blocked by aromatase and steroid sulfatase (STS) inhibitors confirming intracrine synthesis to estrogen. Testosterone had little effect, implying it is not an intermediate. Steroids stimulated fibroblast contraction but not α-SMA expression. Mechanical wounding reduced fibroblast aromatase activity but increased keratinocyte activity, amplifying the bioavailability of intracellular estrogen. Cultured fibroblasts and keratinocytes provide a biologically relevant model system to investigate the complex pathways of sex steroid intracrinology in human skin. PMID:25392269

  8. Parabens and Human Epidermal Growth Factor Receptor Ligand Cross-Talk in Breast Cancer Cells

    PubMed Central

    Pan, Shawn; Yuan, Chaoshen; Tagmount, Abderrahmane; Rudel, Ruthann A.; Ackerman, Janet M.; Yaswen, Paul; Vulpe, Chris D.; Leitman, Dale C.

    2015-01-01

    Background: Xenoestrogens are synthetic compounds that mimic endogenous estrogens by binding to and activating estrogen receptors. Exposure to estrogens and to some xenoestrogens has been associated with cell proliferation and an increased risk of breast cancer. Despite evidence of estrogenicity, parabens are among the most widely used xenoestrogens in cosmetics and personal-care products and are generally considered safe. However, previous cell-based studies with parabens do not take into account the signaling cross-talk between estrogen receptor α (ERα) and the human epidermal growth factor receptor (HER) family. Objectives: We investigated the hypothesis that the potency of parabens can be increased with HER ligands, such as heregulin (HRG). Methods: The effects of HER ligands on paraben activation of c-Myc expression and cell proliferation were determined by real-time polymerase chain reaction, Western blots, flow cytometry, and chromatin immunoprecipitation assays in ERα- and HER2-positive human BT-474 breast cancer cells. Results: Butylparaben (BP) and HRG produced a synergistic increase in c-Myc mRNA and protein levels in BT-474 cells. Estrogen receptor antagonists blocked the synergistic increase in c-Myc protein levels. The combination of BP and HRG also stimulated proliferation of BT-474 cells compared with the effects of BP alone. HRG decreased the dose required for BP-mediated stimulation of c-Myc mRNA expression and cell proliferation. HRG caused the phosphorylation of serine 167 in ERα. BP and HRG produced a synergistic increase in ERα recruitment to the c-Myc gene. Conclusion: Our results show that HER ligands enhanced the potency of BP to stimulate oncogene expression and breast cancer cell proliferation in vitro via ERα, suggesting that parabens might be active at exposure levels not previously considered toxicologically relevant from studies testing their effects in isolation. Citation: Pan S, Yuan C, Tagmount A, Rudel RA, Ackerman JM

  9. Dedifferentiation of human epidermal melanocytes into melanoblasts in vitro.

    PubMed

    Zhao, Zhiguo; Jin, Cheng; Ding, Keyun; Ge, Xiaopeng; Dai, Lllan

    2012-07-01

    Melanoblasts (MB) are also called melanocyte (MC) precursor cells. In recent years, people have successfully cultivated human and mouse MB. Previous studies have shown that EDN3 induces cultivated bird MC to re-differentiate into double potential progenitor cells of MB. However, no study has reported whether in vitro cultivated human MC can be dedifferentiated. Our research on MC that were purified and cultivated in vitro found that adding 10 nm endothelin 1 (EDN1) (ET-1) to the MC medium without phorbol 12-myristate 13-acetate (PMA) induced a few MC to dedifferentiate and become a new type of cell. This new cell type was separated, purified, cloned and identified using multiple approaches. The results show that 88.7%, 8.69% and 2.5% of this new cell type were cells in the G(0) -G(1) , G(2) -M and S stages, respectively. The new cell type did not exhibit an apparent apoptotic peak, and its apoptotic rate was 0.09%. Stage I melanosomes were observed in the cytoplasm and were negative for the DOPA reaction. The cell surface antigen expression was positive for tyrosinase-related protein 2, negative or positive for c-kit and negative for S-100 and HMB45, showing that these cells were dedifferentiated MB of MC. Our findings provided evidence for atavism of mature human MC under certain conditions. PMID:22540983

  10. Zinc oxide nanoparticles-induced epigenetic change and G2/M arrest are associated with apoptosis in human epidermal keratinocytes.

    PubMed

    Gao, Fei; Ma, Ningjie; Zhou, Hong; Wang, Qing; Zhang, Hao; Wang, Pu; Hou, Haoli; Wen, Huan; Li, Lijia

    2016-01-01

    As an engineered nanomaterial, zinc oxide nanoparticles (ZnO NPs) are used frequently in biological applications and can make contact with human skin. Here, we systematically investigated the effects of ZnO NPs on non-tumorigenic human epidermal keratinocytes, which were used as a test model for this in vitro study, at the epigenetic and molecular levels. Our results showed that ZnO NPs induced cell cycle arrest at the G2/M checkpoint before the viability of human epidermal keratinocytes was reduced, which was associated with the chromatin changes at the epigenetic level, including increased methylation of histone H3K9 and decreased acetylation of histone H4K5 accompanied by chromatin condensation at 24 hours. The mRNA expression of the methyltransferase genes G9a and GLP was also increased upon treatment with ZnO NPs, and the acetyltransferase genes GCN5, P300, and CBP were downregulated. Reactive oxygen species were found to be more abundant after treatment with ZnO NPs for 6 hours, and DNA damage was observed at 24 hours. Transmission electron microscopy and flow cytometry confirmed that ZnO NPs were absorbed into the cell when they were added to the medium. Apoptotic human epidermal keratinocytes were detected, and the expression of the proapoptotic genes Bax, Noxa, and Puma increased significantly, while the expression of the antiapoptotic gene Bcl-xl decreased 24 hours after exposure to ZnO NPs. These findings suggest that the ZnO NPs induced cell cycle arrest at G2/M, which was associated with epigenetic changes and accompanied by p53-Bax mitochondrial pathway-mediated apoptosis. PMID:27570453

  11. Zinc oxide nanoparticles-induced epigenetic change and G2/M arrest are associated with apoptosis in human epidermal keratinocytes

    PubMed Central

    Gao, Fei; Ma, Ningjie; Zhou, Hong; Wang, Qing; Zhang, Hao; Wang, Pu; Hou, Haoli; Wen, Huan; Li, Lijia

    2016-01-01

    As an engineered nanomaterial, zinc oxide nanoparticles (ZnO NPs) are used frequently in biological applications and can make contact with human skin. Here, we systematically investigated the effects of ZnO NPs on non-tumorigenic human epidermal keratinocytes, which were used as a test model for this in vitro study, at the epigenetic and molecular levels. Our results showed that ZnO NPs induced cell cycle arrest at the G2/M checkpoint before the viability of human epidermal keratinocytes was reduced, which was associated with the chromatin changes at the epigenetic level, including increased methylation of histone H3K9 and decreased acetylation of histone H4K5 accompanied by chromatin condensation at 24 hours. The mRNA expression of the methyltransferase genes G9a and GLP was also increased upon treatment with ZnO NPs, and the acetyltransferase genes GCN5, P300, and CBP were downregulated. Reactive oxygen species were found to be more abundant after treatment with ZnO NPs for 6 hours, and DNA damage was observed at 24 hours. Transmission electron microscopy and flow cytometry confirmed that ZnO NPs were absorbed into the cell when they were added to the medium. Apoptotic human epidermal keratinocytes were detected, and the expression of the proapoptotic genes Bax, Noxa, and Puma increased significantly, while the expression of the antiapoptotic gene Bcl-xl decreased 24 hours after exposure to ZnO NPs. These findings suggest that the ZnO NPs induced cell cycle arrest at G2/M, which was associated with epigenetic changes and accompanied by p53-Bax mitochondrial pathway-mediated apoptosis. PMID:27570453

  12. Growth of melanocytes in human epidermal cell cultures

    SciTech Connect

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C. )

    1990-08-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient.

  13. Sequential cultivation of human epidermal keratinocytes and dermal mesenchymal like stromal cells in vitro.

    PubMed

    Mahabal, Shyam; Konala, Vijay Bhaskar Reddy; Mamidi, Murali Krishna; Kanafi, Mohammad Mahboob; Mishra, Suniti; Shankar, Krupa; Pal, Rajarshi; Bhonde, Ramesh

    2016-08-01

    Human skin has continuous self-renewal potential throughout adult life and serves as first line of defence. Its cellular components such as human epidermal keratinocytes (HEKs) and dermal mesenchymal stromal cells (DMSCs) are valuable resources for wound healing applications and cell based therapies. Here we show a simple, scalable and cost-effective method for sequential isolation and propagation of HEKs and DMSCs under defined culture conditions. Human skin biopsy samples obtained surgically were cut into fine pieces and cultured employing explant technique. Plated skin samples attached and showed outgrowth of HEKs. Gross microscopic examination displayed polygonal cells with a granular cytoplasm and H&E staining revealed archetypal HEK morphology. RT-PCR and immunocytochemistry authenticated the presence of key HEK markers including trans-membrane protein epithelial cadherin (E-cadherin), keratins and cytokeratin. After collection of HEKs by trypsin-EDTA treatment, mother explants were left intact and cultured further. Interestingly, we observed the appearance of another cell type with fibroblastic or stromal morphology which were able to grow up to 15 passages in vitro. Growth pattern, expression of cytoskeletal protein vimentin, surface proteins such as CD44, CD73, CD90, CD166 and mesodermal differentiation potential into osteocytes, adipocytes and chondrocytes confirmed their bonafide mesenchymal stem cell like status. These findings albeit preliminary may open up significant opportunities for novel applications in wound healing. PMID:25698160

  14. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces.

    PubMed

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui

    2015-06-30

    A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4×10(6)cellsmL(-1) with a detection limit of 40cellsmL(-1) was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35×10(5) with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening. PMID:26041531

  15. SNAI2 controls the undifferentiated state of human epidermal progenitor cells.

    PubMed

    Mistry, Devendra S; Chen, Yifang; Wang, Ying; Zhang, Kang; Sen, George L

    2014-12-01

    The transcription factor, SNAI2, is an inducer of the epithelial to mesenchymal transition (EMT) which mediates cell migration during development and tumor invasion. SNAI2 can also promote the generation of mammary epithelial stem cells from differentiated luminal cells when overexpressed. How SNAI2 regulates these critical and diverse functions is unclear. Here, we show that the levels of SNAI2 expression are important for epidermal cell fate decisions. The expression of SNAI2 was found to be enriched in the basal layer of the interfollicular epidermis where progenitor cells reside and extinguished upon differentiation. Loss of SNAI2 resulted in premature differentiation whereas gain of SNAI2 expression inhibited differentiation. SNAI2 controls the differentiation status of epidermal progenitor cells by binding to and repressing the expression of differentiation genes with increased binding leading to further transcriptional silencing. Thus, the levels of SNAI2 binding to genomic targets determine the differentiation status of epithelial cells with increased levels triggering EMT and dedifferentiation, moderate (physiological) levels promoting epidermal progenitor function, and low levels leading to epidermal differentiation. PMID:25100569

  16. Increased epidermal cell proliferation in normal human skin in vivo following local administration of interferon-gamma.

    PubMed Central

    Barker, J. N.; Goodlad, J. R.; Ross, E. L.; Yu, C. C.; Groves, R. W.; MacDonald, D. M.

    1993-01-01

    Recombinant human interferon-gamma was administered intradermally (10 micrograms in 0.1 ml) to healthy adult human volunteers from day 1 to day 3, and epidermal cell proliferation was measured on whole skin biopsies at day 6. Three independent parameters were assessed, namely, a) epidermal keratin-16 expression, b) keratinocyte proliferating cell nuclear antigen expression, and c) keratinocyte silver nucleolar organizer region counts. Significantly increased scores for each parameter were observed after interferon-gamma injection (P < 0.01 in each case) compared to site-matched controls. Keratin-16 expression was confined to suprabasal epidermis, whereas proliferating cell nuclear antigen and silver nucleolar organizer region counts were particularly elevated in the basal epidermis. Taken together with previous findings, these studies indicate both proinflammatory and growth regulatory roles for interferon-gamma in human skin. These data are likely to be of particular importance to pathophysiological mechanisms of psoriasis and related cutaneous inflammatory diseases. Images Figure 1 Figure 2 Figure 3 PMID:7682760

  17. Novel non-calcemic secosteroids that are produced by human epidermal keratinocytes protect against solar radiation.

    PubMed

    Slominski, Andrzej T; Janjetovic, Zorica; Kim, Tae-Kang; Wasilewski, Piotr; Rosas, Sofia; Hanna, Sherie; Sayre, Robert M; Dowdy, John C; Li, Wei; Tuckey, Robert C

    2015-04-01

    CYP11A1 hydroxylates the side chain of vitamin D3 (D3) in a sequential fashion [D3→20S(OH)D3→20,23(OH)2D3→17,20,23(OH)3D3], in an alternative to the classical pathway of activation [D3→25(OH)D3→1,25(OH)2D3]. The products/intermediates of the pathway can be further modified by the action of CYP27B1. The CYP11A1-derived products are biologically active with functions determined by the lineage of the target cells. This pathway can operate in epidermal keratinocytes. To further define the role of these novel secosteroids we tested them for protective effects against UVB-induced damage in human epidermal keratinocytes, melanocytes and HaCaT keratinocytes, cultured in vitro. The secosteroids attenuated ROS, H2O2 and NO production by UVB-irradiated keratinocytes and melanocytes, with an efficacy similar to 1,25(OH)2D3, while 25(OH)D3 had lower efficacy. These attenuations were also seen to some extent for the 20(OH)D3 precursor, 20S-hydroxy-7-dehydrocholesterol. These effects were accompanied by upregulation of genes encoding enzymes responsible for defense against oxidative stress. Using immunofluorescent staining we observed that the secosteroids reduced the generation cyclobutane pyrimidine dimers in response to UVB and enhanced expression of p53 phosphorylated at Ser-15, but not at Ser-46. Additional evidence for protection against DNA damage in cells exposed to UVB and treated with secosteroids was provided by the Comet assay where DNA fragmentation was markedly reduced by 20(OH)D3 and 20,23(OH)2D3. In conclusion, novel secosteroids that can be produced by the action of CYP11A1 in epidermal keratinocytes have protective effects against UVB radiation. This article is part of a special issue entitled '17th Vitamin D Workshop'. PMID:25617667

  18. Conditional epidermal expression of TGFβ1 blocks neonatal lethality but causes a reversible hyperplasia and alopecia

    PubMed Central

    Liu, Xin; Alexander, Valarie; Vijayachandra, Kinnimulki; Bhogte, Ervind; Diamond, Ilysa; Glick, Adam

    2001-01-01

    To study the role of transforming growth factor type β1 (TGFβ1) in epidermal growth control and disease, we have generated a conditional expression system by using the bovine keratin 5 promoter to drive expression of the tetracycline-regulated transactivators tTA and rTA, and a constitutively active mutant of TGFβ1 linked to the tetO target sequence for the transactivator. This model allows for induction or suppression of exogenous TGFβ1 with oral doxycycline. Maximal expression of TGFβ1 during gestation caused embryonic lethality, whereas partial suppression allowed full-term development with neonatal lethality characterized by runting, epidermal hypoproliferation, and blocked hair follicle growth. With complete suppression, phenotypically normal double transgenic (DT) mice were born. Acute induction of TGFβ1 in the epidermis of adult mice inhibited basal and follicular keratinocyte proliferation and reentry of telogen hair follicles into anagen. However, chronic expression of TGFβ1 in adult DTs caused severe alopecia characterized by epidermal and follicular hyperproliferation, apoptosis, as well as dermal fibrosis and inflammation. Readministration of doxycycline to tTA DT mice caused hair regrowth within 14 days. The mRNA and protein for Smad7, an inhibitor of TGFβ signaling, were up-regulated in the epidermis and hair follicles of alopecic skin and rapidly induced in rTA mice in parallel with the TGFβ1 transgene, suggesting that the hyperproliferative phenotype may result in part from development of a sustained negative feedback loop. Thus, this conditional expression system provides an important model for understanding the role of TGFβ1 during development, in normal skin biology, and in disease. PMID:11481479

  19. Prevention of UVB Radiation-induced Epidermal Damage by Expression of Heat Shock Protein 70*

    PubMed Central

    Matsuda, Minoru; Hoshino, Tatsuya; Yamashita, Yasuhiro; Tanaka, Ken-ichiro; Maji, Daisuke; Sato, Keizo; Adachi, Hiroaki; Sobue, Gen; Ihn, Hironobu; Funasaka, Yoko; Mizushima, Tohru

    2010-01-01

    Irradiation with UV light, especially UVB, causes epidermal damage via the induction of apoptosis, inflammatory responses, and DNA damage. Various stressors, including UV light, induce heat shock proteins (HSPs) and the induction, particularly that of HSP70, provides cellular resistance to such stressors. The anti-inflammatory activity of HSP70, such as its inhibition of nuclear factor kappa B (NF-κB), was recently revealed. These in vitro results suggest that HSP70 protects against UVB-induced epidermal damage. Here we tested this idea by using transgenic mice expressing HSP70 and cultured keratinocytes. Irradiation of wild-type mice with UVB caused epidermal damage such as induction of apoptosis, which was suppressed in transgenic mice expressing HSP70. UVB-induced apoptosis in cultured keratinocytes was suppressed by overexpression of HSP70. Irradiation of wild-type mice with UVB decreased the cutaneous level of IκB-α (an inhibitor of NF-κB) and increased the infiltration of leukocytes and levels of pro-inflammatory cytokines and chemokines in the epidermis. These inflammatory responses were suppressed in transgenic mice expressing HSP70. In vitro, the overexpression of HSP70 suppressed the expression of pro-inflammatory cytokines and chemokines and increased the level of IκB-α in keratinocytes irradiated with UVB. UVB induced an increase in cutaneous levels of cyclobutane pyrimidine dimers and 8-hydroxy-2′-deoxyguanosine, both of which were suppressed in transgenic mice expressing HSP70. This study provides genetic evidence that HSP70 protects the epidermis from UVB-induced radiation damage. The findings here also suggest that the protective action of HSP70 is mediated by anti-apoptotic, anti-inflammatory, and anti-DNA damage effects. PMID:20018843

  20. Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes

    EPA Science Inventory

    Toxicity Assessment of Six Titanium Dioxide Nanoparticles in Human Epidermal Keratinocytes Nanoparticle uptake in cells may be an important determinant of their potential cytotoxic and inflammatory effects. Six commercial TiO2 NP (A=Alfa Aesar,10nm, A*=Alfa Aesar 32nm, B=P25 27...

  1. Dysregulated function of normal human epidermal keratinocytes in the absence of filaggrin.

    PubMed

    Dang, Ningning; Ma, Xiaoli; Meng, Xianguang; An, Liguo; Pang, Shuguang

    2016-09-01

    The aim of the present study was to investigate the impact of filaggrin knockdown on the function of normal human epidermal keratinocytes (NHEKs). Filaggrin expression levels in NHEKs were knocked down by lentivirus (LV) encoding small hairpin RNA (shRNA), with control cells infected with nonsense shRNA or not infected. Cell migration and invasion were assayed using Transwell inserts, cell adhesion and proliferation by the Cell Counting kit‑8 assay, and apoptosis and cell cycle progression by flow cytometry. shRNA efficiently suppressed expression of filaggrin protein. The LV group had significantly decreased cell migration, adhesion and proliferation, and increased apoptosis compared with the control groups (P=0.027). In addition, the proportion of cells in G1 and G2 phases were significantly increased in the LV group compared with control groups (P=0.018). The results of the present study demonstrate that filaggrin knockdown inhibits NHEK migration, adhesion and proliferation, promotes apoptosis and disturbs cell cycle progression. PMID:27485743

  2. Dysregulated function of normal human epidermal keratinocytes in the absence of filaggrin

    PubMed Central

    Dang, Ningning; Ma, Xiaoli; Meng, Xianguang; An, Liguo; Pang, Shuguang

    2016-01-01

    The aim of the present study was to investigate the impact of filaggrin knockdown on the function of normal human epidermal keratinocytes (NHEKs). Filaggrin expression levels in NHEKs were knocked down by lentivirus (LV) encoding small hairpin RNA (shRNA), with control cells infected with nonsense shRNA or not infected. Cell migration and invasion were assayed using Transwell inserts, cell adhesion and proliferation by the Cell Counting kit-8 assay, and apoptosis and cell cycle progression by flow cytometry. shRNA efficiently suppressed expression of filaggrin protein. The LV group had significantly decreased cell migration, adhesion and proliferation, and increased apoptosis compared with the control groups (P=0.027). In addition, the proportion of cells in G1 and G2 phases were significantly increased in the LV group compared with control groups (P=0.018). The results of the present study demonstrate that filaggrin knockdown inhibits NHEK migration, adhesion and proliferation, promotes apoptosis and disturbs cell cycle progression. PMID:27485743

  3. Barrier Requirements as the Evolutionary “Driver” of Epidermal Pigmentation in Humans

    PubMed Central

    ELIAS, PETER M.; MENON, GOPINATHAN; WETZEL, BRUCE K.; WILLIAMS, JOHN (JACK) W.

    2011-01-01

    Current explanations for the development of epidermal pigmentation during human evolution are not tenable as stand-alone hypotheses. Accordingly, we assessed instead whether xeric- and UV-B-induced stress to the epidermal permeability barrier, critical to survival in a terrestrial environment, could have “driven” the development of epidermal pigmentation. (1) Megadroughts prevailed in central Africa when hominids expanded into open savannahs [≈1.5–0.8 million years ago], resulting in sustained exposure to both extreme aridity and erythemogenic UV-B, correlating with genetic evidence that pigment developed ≈1.2 million years ago. (2) Pigmented skin is endowed with enhanced permeability barrier function, stratum corneum integrity/cohesion, and a reduced susceptibility to infections. The enhanced function of pigmented skin can be attributed to the lower pH of the outer epidermis, likely due to the persistence of (more-acidic) melanosomes into the outer epidermis, as well as the conservation of genes associated with eumelanin synthesis and melanosome acidification (e.g., TYR, OCA2 [p protein], SLC24A5, SLC45A2, MATP) in pigmented populations. Five keratinocyte-derived signals (stem cell factor⇒KIT; FOXn1⇒FGF2; IL-1α, NGF, and p53) are potential candidates to have stimulated the sequential development of epidermal pigmentation in response to stress to the barrier. We summarize evidence here that epidermal interfollicular pigmentation in early hominids likely evolved in response to stress to the permeability barrier. PMID:20209486

  4. Intra-epidermal nerve fibres in human skin: back to the roots.

    PubMed

    Abels, Christoph

    2014-04-01

    Regarding the existence and the role of intra-epidermal nerve fibres, the literature is ambiguous. However, performing a literature search, a landmark paper turned up that even many dermatologists seem to have forgotten, or may not even know at all. This paper is entitled 'The innervation of human epidermis' written by Arthur and Shelley (J Invest Dermatol, 32, 1959, 397). The full text is available via http://www.nature.com/jid/journal/v32/n3/pdf/jid195969a.pdf. The authors present data on intra-epidermal nerves at 16 representative body areas. The existence of intra-epidermal nerve fibres is undisputable and does not only explain clinical symptoms but may even provide a promising target for drug development. PMID:24450967

  5. Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice.

    PubMed

    Aberg, Karin M; Radek, Katherine A; Choi, Eung-Ho; Kim, Dong-Kun; Demerjian, Marianne; Hupe, Melanie; Kerbleski, Joseph; Gallo, Richard L; Ganz, Tomas; Mauro, Theodora; Feingold, Kenneth R; Elias, Peter M

    2007-11-01

    The skin is the first line of defense against microbial infection, and psychological stress (PS) has been shown to have adverse effects on cutaneous barrier function. Here we show that PS increased the severity of group A Streptococcus pyogenes (GAS) cutaneous skin infection in mice; this was accompanied by increased production of endogenous glucocorticoids (GCs), which inhibited epidermal lipid synthesis and decreased lamellar body (LB) secretion. LBs encapsulate antimicrobial peptides (AMPs), and PS or systemic or topical GC administration downregulated epidermal expression of murine AMPs cathelin-related AMP and beta-defensin 3. Pharmacological blockade of the stress hormone corticotrophin-releasing factor or of peripheral GC action, as well as topical administration of physiologic lipids, normalized epidermal AMP levels and delivery to LBs and decreased the severity of GAS infection during PS. Our results show that PS decreases the levels of 2 key AMPs in the epidermis and their delivery into LBs and that this is attributable to increased endogenous GC production. These data suggest that GC blockade and/or topical lipid administration could normalize cutaneous antimicrobial defense during PS or GC increase. We believe this to be the first mechanistic link between PS and increased susceptibility to infection by microbial pathogens. PMID:17975669

  6. Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice

    PubMed Central

    Aberg, Karin M.; Radek, Katherine A.; Choi, Eung-Ho; Kim, Dong-Kun; Demerjian, Marianne; Hupe, Melanie; Kerbleski, Joseph; Gallo, Richard L.; Ganz, Tomas; Mauro, Theodora; Feingold, Kenneth R.; Elias, Peter M.

    2007-01-01

    The skin is the first line of defense against microbial infection, and psychological stress (PS) has been shown to have adverse effects on cutaneous barrier function. Here we show that PS increased the severity of group A Streptococcus pyogenes (GAS) cutaneous skin infection in mice; this was accompanied by increased production of endogenous glucocorticoids (GCs), which inhibited epidermal lipid synthesis and decreased lamellar body (LB) secretion. LBs encapsulate antimicrobial peptides (AMPs), and PS or systemic or topical GC administration downregulated epidermal expression of murine AMPs cathelin-related AMP and β-defensin 3. Pharmacological blockade of the stress hormone corticotrophin-releasing factor or of peripheral GC action, as well as topical administration of physiologic lipids, normalized epidermal AMP levels and delivery to LBs and decreased the severity of GAS infection during PS. Our results show that PS decreases the levels of 2 key AMPs in the epidermis and their delivery into LBs and that this is attributable to increased endogenous GC production. These data suggest that GC blockade and/or topical lipid administration could normalize cutaneous antimicrobial defense during PS or GC increase. We believe this to be the first mechanistic link between PS and increased susceptibility to infection by microbial pathogens. PMID:17975669

  7. Markedly diminished epidermal keratinocyte expression of intercellular adhesion molecule-1 (ICAM-1) in Sezary syndrome

    SciTech Connect

    Nickoloff, B.J.; Griffiths, E.M.; Baadsgaard, O.; Voorhees, J.J.; Hanson, C.A.; Cooper, K.D. )

    1989-04-21

    In mucosis fungoides the malignant T cells express lymphocyte function-associated antigen-1, which allows them to bind to epidermal keratinocytes expressing the gamma interferon-inducible intercellular adhesion molecule-1. In this report, a patient with leukemic-stage mucosis fungoides (Sezary syndrome) had widespread erythematous dermal infiltrates containing malignant T cells, but without any epidermotropism. The authors discovered that the T cells expressed normal amounts of functional lymphocyte function-associated antigen-1, but the keratinocytes did not express significant levels of intercellular adhesion molecule-1, which was probably due to the inability of the malignant T cells to produce gamma interferon. These results support the concept that the inability of malignant T cells to enter the epidermis may contribute to emergence of more clinically aggressive T-cell clones that are no longer confined to the skin, but infiltrate the blood, lymph nodes, and viscera, as is seen in Sezary syndrome.

  8. A composite enhancer regulates p63 gene expression in epidermal morphogenesis and in keratinocyte differentiation by multiple mechanisms

    PubMed Central

    Antonini, Dario; Sirico, Anna; Aberdam, Edith; Ambrosio, Raffaele; Campanile, Carmen; Fagoonee, Sharmila; Altruda, Fiorella; Aberdam, Daniel; Brissette, Janice L.; Missero, Caterina

    2015-01-01

    p63 is a crucial regulator of epidermal development, but its transcriptional control has remained elusive. Here, we report the identification of a long-range enhancer (p63LRE) that is composed of two evolutionary conserved modules (C38 and C40), acting in concert to control tissue- and layer-specific expression of the p63 gene. Both modules are in an open and active chromatin state in human and mouse keratinocytes and in embryonic epidermis, and are strongly bound by p63. p63LRE activity is dependent on p63 expression in embryonic skin, and also in the commitment of human induced pluripotent stem cells toward an epithelial cell fate. A search for other transcription factors involved in p63LRE regulation revealed that the CAAT enhancer binding proteins Cebpa and Cebpb and the POU domain-containing protein Pou3f1 repress p63 expression during keratinocyte differentiation by binding the p63LRE enhancer. Collectively, our data indicate that p63LRE is composed of additive and partly redundant enhancer modules that act to direct robust p63 expression selectively in the basal layer of the epidermis. PMID:25567987

  9. Genome-wide p63-regulated gene expression in differentiating epidermal keratinocytes

    PubMed Central

    Oti, Martin; Kouwenhoven, Evelyn N.; Zhou, Huiqing

    2015-01-01

    The transcription factor p63 is a key regulator in epidermal keratinocyte proliferation and differentiation. However, the role of p63 in gene regulation during these processes is not well understood. To investigate this, we recently generated genome-wide profiles of gene expression, p63 binding sites and active regulatory regions with the H3K27ac histone mark (Kouwenhoven et al., 2015). We showed that only a subset of p63 binding sites are active in keratinocytes, and that differentiation-associated gene expression dynamics correlate with the activity of p63 binding sites rather than with their occurrence per se. Here we describe in detail the generation and processing of the ChIP-seq and RNA-seq datasets used in this study. These data sets are deposited in the Gene Expression Omnibus (GEO) repository under the accession number GSE59827. PMID:26484246

  10. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed Central

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-01-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8105469

  11. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    SciTech Connect

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-05-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.

  12. Induction of proteins and mRNAs after uv irradiation of human epidermal keratinocytes

    SciTech Connect

    Kartasova, T.; Ponec, M.; van de Putte, P.

    1988-02-01

    uv sensitivity of cultured human epidermal keratinocytes was analyzed at different growth conditions and compared with the sensitivity of dermal fibroblasts derived from the same skin specimen. No significant differences in survival curves were found between these two cell types, although keratinocytes grown under standard conditions were slightly more resistant to uv irradiation than fibroblasts. The extracellular concentration of calcium appeared to be critical not only in the regulation of keratinocyte proliferation and differentiation, but also in the uv sensitivity of these cells: keratinocytes grown under conditions which favor cell proliferation (low calcium concentration) are more resistant to uv irradiation than those grown under conditions favoring differentiation (high calcium concentration). Two-dimensional protein gel electrophoresis was used to detect a possible effect of uv irradiation on the accumulation of specific mRNAs in the cytoplasm and/or on the synthesis of specific proteins. Proteins were pulse labeled in vivo with (/sup 35/S)methionine or synthesized in vitro in rabbit reticulocyte lysates on mRNA isolated from keratinocytes that were irradiated with different uv doses at different periods of time prior to isolation. Alterations in expression were demonstrated for several proteins in both in vivo and in vitro experiments.

  13. System theoretical investigation of human epidermal growth factor receptor-mediated signalling

    SciTech Connect

    Zhang, Yi; Shankaran, Harish; Opresko, Lee; Resat, Haluk

    2008-09-01

    The partitioning of biological networks into coupled functional modules is gaining increasing attention in the biological sciences. This approach has the advantage that predicting a system level response does not require a mechanistic description of the internal dynamics of each module. Identification of the input-output characteristics of the network modules and the connectivity between the modules provide the necessary quantitative representation of system dynamics. However, determination of the input-output relationships of the modules is not trivial; it requires the controlled perturbation of module inputs and systematic analysis of experimental data. In this report, we apply a system theoretical analysis approach to derive the causal input-output relationships of the functional module for the human epidermal growth factor receptor (HER) mediated Erk and Akt signaling pathways. Using a library of cell lines expressing varying levels of EGFR and HER2, we show that a transfer function-based representation can be successfully applied to quantitatively characterize information transfer in this system.

  14. Distribution of apoptosis-mediating Fas antigen in human skin and effects of anti-Fas monoclonal antibody on human epidermal keratinocyte and squamous cell carcinoma cell lines.

    PubMed

    Oishi, M; Maeda, K; Sugiyama, S

    1994-01-01

    Fast antigen is a cell surface protein that mediates apoptosis. Using immunohistological, flow cytometry and electron microscopic analyses, we investigated the expression of Fas antigen on various skin tissues, and on cultured SV40-transformed human epidermal keratinocyte cell line KJD and human skin squamous cell carcinoma cell line HSC. The Fas antigen was widely distributed in skin components such as the keratinocytes in the lower portion of the epidermis, epidermal dendritic cells, endothelial cells, fibroblasts, apocrine glands, eccrine sweat glands, sebaceous glands, some normal melanocytes and infiltrating lymphoid cells. It was also strongly expressed on the keratinocytes of lichenoid eruptions seen in lupus erythematosus and lichen planus, and on the spongiotic or acanthotic epidermis seen in chronic eczema, adult T-cell leukaemia/lymphoma (ATLL) and atopic dermatitis. Its expression was closely correlated with lymphoid infiltrating cells and it was strongly expressed in lymphoid neoplastic cells, particularly ATLL cells, and fibroblasts seen in dermatofibroma. However, the antigen was not detected on basal cell epithelioma cells, some malignant melanomas or any junctional naevi. The cell lines KJD and HSC strongly expressed the Fas antigen, and crosslinking of the Fas antigen by an anti-Fas monoclonal antibody induced apoptosis of these cell lines. These results indicate that the apoptosis-mediating Fas antigen may play an important role in normal skin turnover and cell differentiation, in immune regulation of skin tumours, and in the pathogenesis of various skin diseases. PMID:7529480

  15. The Mitogenic Potential of Heparin-Binding Epidermal Growth Factor in the Human Endometrium Is Mediated by the Epidermal Growth Factor Receptor and Is Modulated by Tumor Necrosis Factor-α

    PubMed Central

    CHOBOTOVA, KATYA; MUCHMORE, MARY-ELIZABETH; CARVER, JANET; YOO, HYUNG-J; MANEK, SANJIV; GULLICK, WILLIAM J.; BARLOW, DAVID H.; MARDON, HELEN J.

    2006-01-01

    Heparin-binding epidermal growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family, is implicated in a variety of biological processes, including reproduction. Previous studies describe increased levels of HB-EGF in the human endometrium during the midsecretory stage of the menstrual cycle, suggesting a function for HB-EGF in implantation of the human blastocyst. Here we have investigated the expression and function of the soluble and transmembrane forms of HB-EGF in the human endometrium. We show that the expression of the transmembrane form of HB-EGF in the human endometrium is modulated according to the stage of the menstrual cycle. We present data demonstrating that both the soluble and transmembrane forms of HB-EGF induce DNA synthesis in human endometrial stromal cells. Furthermore, TNFα has a cooperative effect on HB-EGF, EGF, TGFα, and betacellulin-induced DNA synthesis in stromal cells, suggesting roles for the EGF family and TNFα in regeneration and maturation of human endometrium. Induction of DNA synthesis by HB-EGF and its modulation by TNFα in endometrial stromal cells are mediated by the EGF receptor and not the HB-EGF receptor ErbB4. Our data suggest key functions for HB-EGF, TNFα, and the EGF receptor in endometrial maturation, via autocrine/paracrine and juxtacrine pathways, in preparation for embryo implantation. PMID:12466384

  16. Improvement of epidermal differentiation and barrier function in reconstructed human skin after grafting onto athymic nude mice.

    PubMed

    Higounenc, I; Démarchez, M; Régnier, M; Schmidt, R; Ponec, M; Shroot, B

    1994-01-01

    To determine whether epidermis reconstructed in vitro at the air-liquid interface on de-epidermized dermis has the capacity to normalize the expression of differentiation-specific markers, its lipid composition and stratum corneum barrier properties, human skin equivalents were transplanted onto athymic nude mice and investigated at different stages ranging from 1 to 4 months after grafting. Indirect immunofluorescence with species- or non-species-specific antibodies revealed that as early as 1 month after transplantation keratinization, and involucrin, loricrin and transglutaminase patterns were normalized. Human melanocytes were observed in the basal layer of the pigmented graft. As revealed by high-performance thin-layer chromatography and transmission electron microscopy after ruthenium tetroxide fixation, the lipid profile and the intracellular lamellar organization were similar to those found in natural epidermis. Transepidermal water loss measurements and penetration studies showed that the barrier properties of the reconstructed epidermis after transplantation were comparable to those of normal human skin. PMID:8154923

  17. Expression and activation of erbB-2 and epidermal growth factor receptor in lung adenocarcinomas.

    PubMed Central

    Rachwal, W. J.; Bongiorno, P. F.; Orringer, M. B.; Whyte, R. I.; Ethier, S. P.; Beer, D. G.

    1995-01-01

    ErbB-2 and EGFR (epidermal growth factor receptor) are expressed in lung adenocarcinomas and associated with a poor prognosis. Immunocytochemical analysis revealed erbB-2 and EGFR coexperession as a characteristic feature of most lung adenocarcinomas, and at levels of receptor expression present in bronchial epithelial cells. In primary lung tumours and cell lines, erbB-2 detected using Western blot analysis demonstrated low-level phosphotyrosine staining of the 185 kDa band, as compared with breast cancer cell lines. A549 and A427 lung adenocarcinoma cells treated with neu differentiation factor (NDF) showed increased erbB-2 phosphotyrosine staining, but to a much lesser extent than breast cancer cells. The lung cells were examined for expression of the potential autocrine growth factors NDF and transforming growth factor alpha (TGF-alpha) by Northern blot analysis. Both NDF and TFG-alpha mRNA were abundantly expressed in the A549 cells. NDF mRNA was highest during active cell proliferation and decreased in confluent cells or after treatment with the growth-inhibitory steroid dexamethasone. Primary tumours and cell lines expressed EGFR, showing higher basal level phosphotyrosine staining than erbB-2. Treatment with NDF and EGF (epidermal growth factor) stimulated cell growth, and in A549 cells the presence of both factors provided an additive increase in cell growth. The growth stimulus that ligand-activated erbB-2 and EGFR provides to lung adenocarcinoma cells may establish a background of continued cell proliferation over which other critical transforming events may occur. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7599067

  18. Epidermal elafin expression is an indicator of poor prognosis in cutaneous graft-versus-host disease.

    PubMed

    Brüggen, Marie-Charlotte; Petzelbauer, Peter; Greinix, Hildegard; Contassot, Emmanuel; Jankovic, Dragana; French, Lars; Socié, Gérard; Rabitsch, Werner; Kuzmina, Zoya; Kalhs, Peter; Knobler, Robert; Stingl, Georg; Stary, Georg

    2015-04-01

    Graft-versus-host disease (GVHD) remains a common and potentially life-threatening complication of allogeneic hematopoietic stem cell transplantation. In the skin, GVHD can present in an acute (aGVHD), chronic lichenoid (clGVHD), or chronic sclerotic form (csGVHD). Measuring peripheral blood levels of the keratinocyte-derived protease inhibitor elafin has recently emerged as a promising tool for the diagnosis of cutaneous aGVHD. We evaluated whether the analysis of elafin expression in skin would allow distinguishing aGVHD from drug hypersensitivity rashes (DHR) and whether cutaneous elafin expression would correlate with disease severity or altered prognosis of aGVHD and clGVHD/csGVHD. Skin biopsies from aGVHD (n=22), clGVHD (n=15), csGVHD (n=7), and DHR (n=10) patients were collected and epidermal elafin expression and its association with diverse clinical/histological parameters were analyzed. Acute GVHD and DHR displayed varying degrees of elafin expression. No elafin was detectable in csGVHD, whereas the molecule was increased in clGVHD as compared with aGVHD. Elafin-high aGVHD/clGVHD lesions presented with epidermal thickening and were associated with poor prognosis-i.e., decreased overall survival in aGVHD and corticosteroid resistance in clGVHD. Although cutaneous elafin does not seem to discriminate aGVHD from DHR lesions, our study strongly suggests an association between cutaneous elafin expression and poor prognosis for patients with cutaneous GVHD. PMID:25405322

  19. Epidermal changes in human skin following irradiation with either UVB or UVA

    SciTech Connect

    Pearse, A.D.; Gaskell, S.A.; Marks, R.

    1987-01-01

    We have demonstrated previously that following UVB irradiation to normal volunteers there is an increase in epidermal and stratum corneum thickness and an increase in the thymidine autoradiographic labeling index. These changes are coupled with alterations in epidermal glucose-6-phosphate dehydrogenase and succinic dehydrogenase activities, despite the absence of erythema clinically. The use of a sunscreen did not completely prevent these changes. In this study, we have examined the effects of repeated irradiation of human skin with either UVB or UVA alone in order to compare the changes produced in the epidermis and to ascertain whether UVA irradiation could cause these. Irradiation with either UVB or UVA alone was found to increase the mean epidermal thickness, the mean stratum corneum thickness, and mean keratinocyte height significantly. Glucose-6-phosphate dehydrogenase activity was significantly increased throughout the epidermis, and succinic dehydrogenase activity was significantly decreased. The autoradiographic labeling index was significantly increased following UVB irradiation but not following UVA irradiation. These results demonstrate that UVA alone can have a direct effect on epidermal morphology and metabolism, suggesting that protection of skin from UV radiation should include adequate protection from UVA.

  20. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer.

    PubMed Central

    Bartlett, J. M.; Langdon, S. P.; Simpson, B. J.; Stewart, M.; Katsaros, D.; Sismondi, P.; Love, S.; Scott, W. N.; Williams, A. R.; Lessells, A. M.; Macleod, K. G.; Smyth, J. F.; Miller, W. R.

    1996-01-01

    The expression of mRNA for the epidermal growth factor (EGF) receptor, EGF and transforming growth factor alpha (TGF-alpha) was determined in 76 malignant, six borderline and 15 benign primary ovarian tumours using the reverse transcriptase-polymerase chain reaction and related to clinical and pathological parameters. Of the malignant tumours, 70% (53/76) expressed EGF receptor mRNA, 31% (23/75) expressed EGF mRNA and 35% (26/75) expressed TGF-alpha mRNA. For the borderline tumours, four of six (67%) expressed EGF receptor mRNA, 1/6 (17%) expressed TGF-alpha mRNA and none expressed EGF mRNA. Finally, 33% (5/15) of the benign tumours expressed EGF receptor mRNA, whereas 40% (6/15) expressed EGF mRNA and 7% (1/15) expressed TGF-alpha mRNA. The presence of the EGF receptor in malignant tumours was associated with that of TGF-alpha (P = 0.0015) but not with EGF (P = 1.00), whereas there was no relationship between the presence of EGF and TGF-alpha (P = 1.00). EGF receptor mRNA expression was significantly and positively associated with serous histology (P = 0.006) but not with stage or grade. Neither EGF nor TGF-alpha showed any link with histological subtype or stage. The survival of patients with malignant tumours possessing EGF receptor mRNA was significantly reduced compared with that of patients whose tumours were negative (P = 0.030 for all malignant tumours; P = 0.007 for malignant epithelial tumours only). In contrast, neither the expression of TGF-alpha nor EGF was related to survival. These data suggest that the presence of EGF receptor mRNA is associated with poor prognosis in primary ovarian cancer. Images Figure 1 PMID:8562334

  1. Cyclin D2 Overexpression in Transgenic Mice Induces Thymic and Epidermal Hyperplasia whereas Cyclin D3 Expression Results Only in Epidermal Hyperplasia

    PubMed Central

    Rodriguez-Puebla, Marcelo L.; LaCava, Margaret; Miliani de Marval, Paula L.; Jorcano, Jose L.; Richie, Ellen R.; Conti, Claudio J.

    2000-01-01

    In a previous report, we described the effects of cyclin D1 expression in epithelial tissues of transgenic mice. To study the involvement of D-type cyclins (D1, D2, and D3) in epithelial growth and differentiation and their putative role as oncogenes in skin, transgenic mice were developed which carry cyclin D2 or D3 genes driven by a keratin 5 promoter. As expected, both transgenic lines showed expression of these proteins in most of the squamous tissues analyzed. Epidermal proliferation increased in transgenic animals and basal cell hyperplasia was observed. All of the animals also had a minor thickening of the epidermis. The pattern of expression of keratin 1 and keratin 5 indicated that epidermal differentiation was not affected. Transgenic K5D2 mice developed mild thymic hyperplasia that reversed at 4 months of age. On the other hand, high expression of cyclin D3 in the thymus did not produce hyperplasia. This model provides in vivo evidence of the action of cyclin D2 and cyclin D3 as mediators of proliferation in squamous epithelial cells. A direct comparison among the three D-type cyclin transgenic mice suggests that cyclin D1 and cyclin D2 have similar roles in epithelial thymus cells. However, overexpression of each D-type cyclin produces a distinct phenotype in thymic epithelial cells. PMID:10980142

  2. Immunohistochemical localization of the epidermal growth factor receptor in normal human tissues.

    PubMed

    Damjanov, I; Mildner, B; Knowles, B B

    1986-11-01

    A monoclonal antibody recognizing an epitope of the external domain of the human epidermal growth factor (EGF) receptor was used to localize this protein in selected normal human tissues. Two patterns of reactivity were recognized: strong linear or granular cell surface staining, and granular cytoplasmic staining. In one tissue, the endometrium, a change in the reaction pattern associated with changes in hormonal stimulation was observed. In some tissues such as epididymis and skin, the antibody showed surface reactivity with cells considered to represent part of the proliferating cell compartment, whereas in liver, pancreas, and prostate, all cells were reactive with the antibody, though the predominant reactivity was localized in the cytoplasm. The differential distribution of the epidermal growth factor receptor to specific cell types and cellular compartments may signify adaptations that permit growth factor responsiveness in a milieu of available ligand. PMID:3534450

  3. Successful human epidermal growth receptor 2-targeted therapy beyond disease progression for extramammary Paget's disease.

    PubMed

    Watanabe, Satomi; Takeda, Masayuki; Takahama, Takayuki; Iwasa, Tsutomu; Tsurutani, Junji; Tanizaki, Junko; Shimizu, Toshio; Sakai, Kazuko; Wada, Yoshitaka; Isogai, Noritaka; Nishio, Kazuto; Nakagawa, Kazuhiko

    2016-06-01

    Extramammary Paget's disease is a malignant intraepithelial carcinoma, which constitutes less than 1 % of all vulvar malignancies. Surgical resection is the first treatment of choice and standard chemotherapy has not been established for advanced or recurrent disease. Experimental and clinical studies have identified human epidermal growth receptor 2 as a potential therapeutic target. A 63-year-old male was referred for recurrent extramammary Paget's disease after surgery. Human epidermal growth receptor 2 was shown to be overexpressed and amplified by immunohistochemical analysis and fluorescence in situ hybridization analysis, respectively. After two cycles of trastuzumab monotherapy, all lymph node metastases decreased in size. However, he experienced recurrence in the lymph nodes during the seven courses of trastuzumab. As a subsequent treatment, trastuzumab was administered in combination with docetaxel and pertuzumab; clinical response was sustained for 12 months without significant adverse events. PMID:26856856

  4. Hesperetin induces melanin production in adult human epidermal melanocytes.

    PubMed

    Usach, Iris; Taléns-Visconti, Raquel; Magraner-Pardo, Lorena; Peris, José-Esteban

    2015-06-01

    One of the major sources of flavonoids for humans are citrus fruits, hesperidin being the predominant flavonoid. Hesperetin (HSP), the aglycon of hesperidin, has been reported to provide health benefits such as antioxidant, anti-inflammatory and anticarcinogenic effects. However, the effect of HSP on skin pigmentation is not clear. Some authors have found that HSP induces melanogenesis in murine B16-F10 melanoma cells, which, if extrapolated to in vivo conditions, might protect skin against photodamage. Since the effect of HSP on normal melanocytes could be different to that observed on melanoma cells, the described effect of HSP on murine melanoma cells has been compared to the effect obtained using normal human melanocytes. HSP concentrations of 25 and 50 µM induced melanin synthesis and tyrosinase activity in human melanocytes in a concentration-dependent manner. Compared to control melanocytes, 25 µM HSP increased melanin production and tyrosinase activity 1.4-fold (p < 0.01) and 1.1-fold (p < 0.01), respectively, and the corresponding increases in the case of 50 µM HSP were 1.9-fold (p < 0.001) and 1.3-fold (p < 0.001). Therefore, HSP could be considered a valuable photoprotective substance if its capacity to increase melanin production in human melanocyte cultures could be reproduced on human skin. PMID:25765751

  5. Over-expression of hedgehog signaling is associated with epidermal tumor formation in vitamin D receptor null mice

    PubMed Central

    Teichert, Arnaud; Elalieh, Hashem; Elias, Peter; Welsh, JoEllen; Bikle, Daniel D.

    2011-01-01

    The vitamin D receptor (VDR) ligand, 1,25(OH)2D3, reduces proliferation and enhances differentiation and thus has been investigated for a role in preventing or treating cancer. Mice deficient for the VDR display a hyperproliferative response in the hair follicle and epidermis and decreased epidermal differentiation. Unlike their wild type littermates, when treated with 7,12 dimethylbenzanthracene (DMBA) or UVB, they develop skin tumors, including some characteristic of over-expression of the hedgehog (Hh) pathway. Both the epidermis and utricles of the VDR null animals over-express elements of the Hh pathway [Sonic Hedgehog (Shh, 2.02 fold), Patched1 1.58 fold, Smoothened 3.54 fold, Gli1 1.17 fold, and Gli2 1.66 fold]. This over-expression occurs at an age (11 weeks) where epidermal hyperproliferation is most visible and is spatially controlled in the epidermis. DMBA or UVB induced tumors in the VDR null mice also over-express elements of this pathway. Moreover, 1,25(OH)2D3 down-regulates the expression of some members of the Hh pathway in an epidermal explants culture system, suggesting a direct regulation by 1,25(OH)2D3. Our results suggest that increased expression of Shh in the keratinocytes of the VDR null animal activates the Hh pathway, predisposing the skin to the development of both malignant and benign epidermal neoplasms. PMID:21814234

  6. Biafine applied on human epidermal wounds is chemotactic for macrophages and increases the IL-1/IL-6 ratio.

    PubMed

    Coulomb, B; Friteau, L; Dubertret, L

    1997-01-01

    Using a model of pure epidermal wounds in normal human volunteers, we have studied the effects of Biafine emulsion firstly on inflammatory cell migration, vascular permeability and cytokine release during the first 24 h, and secondly on epidermal wound healing by measuring transepidermal water loss from day 1 to day 7. Under these conditions, Biafine does not improve epidermal healing, in contrast to what is observed with bleeding dermoepidermal wounds. Our results suggest that the effects of Biafine are essentially at the dermis level. The analysis of epidermal wound exudates leads to the same conclusion. As a matter of fact, we demonstrated that Biafine is chemotactic for macrophages and increases the IL-1/IL-6 ratio, chiefly by reducing the secretion of IL-6. This study permits to progressively clarify the mode of action of Biafine, that seems to be located at the level of granulation tissue formation and not at the epidermal level. PMID:9449167

  7. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    PubMed

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  8. Epigallocatechin-3-gallate attenuates the AIM2-induced secretion of IL-1β in human epidermal keratinocytes.

    PubMed

    Yun, Mihee; Seo, Gimoon; Lee, Ji-Young; Chae, Gue Tae; Lee, Seong-Beom

    2015-11-27

    The pro-inflammatory cytokine interleukin-1β (IL-1β) plays a central role in the pathogenesis of psoriasis. Keratinocytes are a major source of IL-1β and express absent in melanoma 2 (AIM2). AIM2 recognizes a double-stranded DNA and initiates the IL-1β-processing of inflammasome. The AIM2 inflammasome is a cytosolic multiprotein complex composed of AIM2, an apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and pro-caspase-1. Epigallocatechin-3-Gallate (EGCG), a major polyphenolic component of green tea, has anti-inflammatory properties. In the current study, we investigated the issue of whether or how EGCG suppresses AIM2 inflammasome in human epidermal keratinocytes, neonatal (HEKn). Treatment with EGCG, before or after IFN-γ priming, attenuated poly(dA:dT)-induced IL-1β secretion in HEKn cells. Pre-treatment with EGCG reduced the level of IFN-γ-induced priming signal via the down-regulation of pro-IL-1β and pro-capspase-1 in HEKn cells. Furthermore, treatment with EGCG attenuated poly(dA:dT)-induced ASC oligomerization and caspase-1 activation in IFN-γ-primed HEKn cells. These results suggest that EGCG attenuates AIM2-induced IL-1β secretion by suppressing both IFN-γ-mediated priming and poly(dA:dT)-induced ASC oligomerization of inflammasomes in human epidermal keratinocytes. PMID:26494301

  9. Photoprotective effects of oxyresveratrol and Kuwanon O on DNA damage induced by UVA in human epidermal keratinocytes.

    PubMed

    Hu, Shuting; Chen, Feng; Wang, Mingfu

    2015-03-16

    Ultraviolet A not only plays a major part in photoaging and skin tanning but also induces genetic damage and mutation in the epidermal basal layer of human skin. The photoprotective effect of oxyresveratrol and kuwanon O, two phenolic compounds from the root extract of Morus australis, in human primary epidermal keratinocytes was investigated in this study. Both of them were nontoxic to cells at a concentration less than 10 and 0.5 μM, respectively. After pretreatment at the concentrations of 5 and 10 μM, oxyresveratrol increased cell viability, exhibited significant suppressions on UVA- or H2O2-induced cellular ROS. UVA-enhanced nitrotyrosine was also reduced by post-treatment with oxyresveratrol at theses concentrations. Kuwanon O presented similar inhibitions on cellular ROS and nitrotyrosine with lower concentrations (0.25 and 0.5 μM), but there is no significant protection on cell survival after UVA irradiation. Their photoprotective effects also involved the enhanced repair of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and cyclobutane pyrimidine dimers (CPDs) as mediated by the augment of p53 expression after UVA radiation. PMID:25588103

  10. Mechanism of interleukin-1α transcriptional regulation of S100A9 in a human epidermal keratinocyte cell line

    PubMed Central

    Bando, Mika; Zou, Xianqiong; Hiroshima, Yuka; Kataoka, Masatoshi; Ross, Karen F; Shinohara, Yasuo; Nagata, Toshihiko; Herzberg, Mark C; Kido, Jun-ichi

    2013-01-01

    S100A9 is a calcium-binding protein and subunit of antimicrobial calprotectin complex (S100A8/A9). Produced by neutrophils, monocytes/ macrophages and keratinocytes, S100A9 expression increases in response to inflammation. For example, IL-1α produced by epithelial cells acts autonomously on the same cells to induce expression of S100A8/A9 and cellular differentiation. Whereas it is well known that IL-1α and members of the IL-10 family of cytokines upregulate S100A8 and S100A9 in several cell lineages, the pathway and mechanism of IL-1α-dependent transcriptional control of S100A9 in epithelial cells is not established. Modeled using human epidermal keratinocytes (HaCaT cells), IL-1α stimulated phosphorylation of p38 MAPK and induced S100A9 expression, which was blocked by IL-1 receptor antagonist, RNAi suppression of p38, or a p38 MAPK inhibitor. Transcription of S100A9 in HaCaT cells depended on nucleotides -94 to -53 in the upstream promoter region, based upon use of deletion constructs and luciferase reporter activity. Within the responsive promoter region, IL-1α increased the binding activity of CCAAT/enhancer binding protein β (C/EBPβ). Mutated C/EBPβ binding sequences or C/EBPβ-specific siRNA inhibited the S100A9 transcriptional response. Hence, IL-1α is strongly suggested to increase S100A9 expression in a human epidermal keratinocyte cell line by signaling through the IL-1 receptor and p38 MAPK, increasing C/EBPβ-dependent transcriptional activity. PMID:23563247

  11. Epidermal growth factor receptor expression in different subtypes of oral lichenoid disease

    PubMed Central

    Cortés-Ramírez, Dionisio A.; Rodríguez-Tojo, María J.; Coca-Meneses, Juan C.; Marichalar-Mendia, Xabier

    2014-01-01

    The oral lichenoid disease (OLD) includes different chronic inflammatory processes such as oral lichen planus (OLP) and oral lichenoid lesions (OLL), both entities with controversial diagnosis and malignant potential. Epidermal growth factor receptor (EFGR) is an important oral carcinogenesis biomarker and overexpressed in several oral potentially malignant disorders. Objectives: To analyze the EGFR expression in the OLD to find differences between OLP and OLL, and to correlate it with the main clinical and pathological features. Material and Methods: Forty-four OLD cases were studied and classified according to their clinical (Group C1: only papular lesions / Group C2: papular and other lesions) and histopathological features (Group HT: OLP-typical / Group HC: OLP-compatible) based in previous published criteria. Standard immunohistochemical identification of EGFR protein was performed. Comparative and descriptive statistical analyses were performed. Results: Thirty-five cases (79.5%) showed EGFR overexpression without significant differences between clinical and histopathological groups (p<0.05). Histological groups showed significant differences in the EGFR expression pattern (p=0.016). Conlusions: All OLD samples showed high EGFR expression. The type of clinical lesion was not related with EGFR expression; however, there are differences in the EGFR expression pattern between histological groups that may be related with a different biological profile and malignant risk. Key words:Oral lichenoid disease, oral lichen planus, oral lichenoid lesion, oral carcinogenesis, EGFR. PMID:24880441

  12. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells

    PubMed Central

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future. PMID:27362942

  13. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications

    PubMed Central

    Iqbal, Nida; Iqbal, Naveed

    2014-01-01

    Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Dimerization of the receptor results in the autophosphorylation of tyrosine residues within the cytoplasmic domain of the receptors and initiates a variety of signaling pathways leading to cell proliferation and tumorigenesis. Amplification or overexpression of HER2 occurs in approximately 15–30% of breast cancers and 10–30% of gastric/gastroesophageal cancers and serves as a prognostic and predictive biomarker. HER2 overexpression has also been seen in other cancers like ovary, endometrium, bladder, lung, colon, and head and neck. The introduction of HER2 directed therapies has dramatically influenced the outcome of patients with HER2 positive breast and gastric/gastroesophageal cancers; however, the results have been proved disappointing in other HER2 overexpressing cancers. This review discusses the role of HER2 in various cancers and therapeutic modalities available targeting HER2. PMID:25276427

  14. Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation.

    PubMed

    Cavazza, Alessia; Miccio, Annarita; Romano, Oriana; Petiti, Luca; Malagoli Tagliazucchi, Guidantonio; Peano, Clelia; Severgnini, Marco; Rizzi, Ermanno; De Bellis, Gianluca; Bicciato, Silvio; Mavilio, Fulvio

    2016-04-12

    Human skin is maintained by the differentiation and maturation of interfollicular stem and progenitors cells. We used DeepCAGE, genome-wide profiling of histone modifications and retroviral integration analysis, to map transcripts, promoters, enhancers, and super-enhancers (SEs) in prospectively isolated keratinocytes and transit-amplifying progenitors, and retrospectively defined keratinocyte stem cells. We show that >95% of the active promoters are in common and differentially regulated in progenitors and differentiated keratinocytes, while approximately half of the enhancers and SEs are stage specific and account for most of the epigenetic changes occurring during differentiation. Transcription factor (TF) motif identification and correlation with TF binding site maps allowed the identification of TF circuitries acting on enhancers and SEs during differentiation. Overall, our study provides a broad, genome-wide description of chromatin dynamics and differential enhancer and promoter usage during epithelial differentiation, and describes a novel approach to identify active regulatory elements in rare stem cell populations. PMID:27050947

  15. Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation

    PubMed Central

    Cavazza, Alessia; Miccio, Annarita; Romano, Oriana; Petiti, Luca; Malagoli Tagliazucchi, Guidantonio; Peano, Clelia; Severgnini, Marco; Rizzi, Ermanno; De Bellis, Gianluca; Bicciato, Silvio; Mavilio, Fulvio

    2016-01-01

    Summary Human skin is maintained by the differentiation and maturation of interfollicular stem and progenitors cells. We used DeepCAGE, genome-wide profiling of histone modifications and retroviral integration analysis, to map transcripts, promoters, enhancers, and super-enhancers (SEs) in prospectively isolated keratinocytes and transit-amplifying progenitors, and retrospectively defined keratinocyte stem cells. We show that >95% of the active promoters are in common and differentially regulated in progenitors and differentiated keratinocytes, while approximately half of the enhancers and SEs are stage specific and account for most of the epigenetic changes occurring during differentiation. Transcription factor (TF) motif identification and correlation with TF binding site maps allowed the identification of TF circuitries acting on enhancers and SEs during differentiation. Overall, our study provides a broad, genome-wide description of chromatin dynamics and differential enhancer and promoter usage during epithelial differentiation, and describes a novel approach to identify active regulatory elements in rare stem cell populations. PMID:27050947

  16. In vivo modulation of epidermal growth factor receptor phosphorylation in mice expressing different gangliosides.

    PubMed

    Daniotti, Jose L; Crespo, Pilar M; Yamashita, Tadashi

    2006-12-01

    We studied in this work the in vivo phosphorylation of the epidermal growth factor receptor (EGFr) in skin from knockout mice lacking different ganglioside glycosyltransferases. Results show an enhancement of EGFr phosphorylation, after EGF stimulation, in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice as compared with wild-type and Sial-T1 knockout mice. Qualitative analysis of ganglioside composition in mice skin suggest that the increase of EGFr phosphorylation observed in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice in response to EGF might not be primary attributed to the expression of GD3 or a-series gangliosides in mice skin. These studies provide, for the first time, an approach for studying the molecular mechanisms involved in the in vivo regulation of EGFr function by gangliosides. PMID:16817235

  17. The peanut lectin-binding glycoproteins of human epidermal keratinocytes

    SciTech Connect

    Morrison, A.I. ); Keeble, S.; Watt, F.M. )

    1988-08-01

    The peanut lectin (PNA) is known to bind more strongly to keratinocytes that are undergoing terminal differentiation than to proliferating keratinocytes. In order to investigate the significance of this change in cell-surface carbohydrate authors have identified the PNA-binding glycoproteins of cultured human keratinocytes and antibodies against them. Two heavily glycosylated bands of 110 and 250 kDa were resolved by PAGE of ({sup 14}C)galactose- or ({sup 14}C)mannose- and ({sup 14}C)glucosamine-labeled cell extracts eluted with galactose from PNA affinity columns. The higher molecular weight band was also detected on PNA blots of unlabeled cell extracts transferred to nitrocellulose. Both bands were sensitive to pronase digestion, but only the 250-kDa band was digested with trypsin. A rabbit antiserum that we prepared (anti-PNA-gp) immunoprecipitated both bands from cell extracts. In contrast to PNA, anti-PNA-gp bound equally to proliferating and terminally differentiating cells, indicating that some epitope(s) of the PNA-binding glycoproteins is present on the cell surface prior to terminal differentiation. When keratinocytes grown as a monolayer in low-calcium medium were switched to medium containing 2 mM calcium ions in order to induce desmosome formation and stratification, there was a dramatic redistribution of the PNA-binding glycoproteins, which became concentrated at the boundaries between cells. This may suggest a role for the glycoproteins in cell-cell interactions during stratification.

  18. Expression of paired-like homeodomain transcription factor 2c (PITX2c) in epidermal keratinocytes

    SciTech Connect

    Shi, Ge; Sohn, Kyung-Cheol; Choi, Tae-Young; Choi, Dae-Kyoung; Lee, Sang-Sin; Ou, Bai-sheng; Kim, Sooil; Lee, Young Ho; Yoon, Tae-Jin; Kim, Seong-Jin; Lee, Young; Seo, Young-Joon; Lee, Jeung-Hoon; Kim, Chang Deok

    2010-11-15

    Paired-like homeodomain transcription factor 2 (PITX2) has been implicated as one of the genes responsible for Rieger syndrome. It has been also shown to play a central role during development. In this study, we investigated the functional role of PITX2 in keratinocyte differentiation. RT-PCR analysis showed that PITX2c isoform was predominantly expressed in a differentiation-dependent manner. Consistent with, immunohistochemical staining showed that PITX2 expression was increased in the upper layer of epidermis. When PITX2c was overexpressed in cultured keratinocytes by a recombinant adenovirus, the differentiation markers such as involucrin and loricrin were significantly increased at both mRNA and protein levels. In addition, PITX2c overexpression led to the decrease of cell growth, concomitantly with the upregulation of cell cycle-related genes p21. To investigate the effect of PITX2c in vivo, we microinjected PITX2c expression vector into zebrafish embryo. Interestingly, overexpression of PITX2c in zebrafish embryo led to the formation of horn-like structure and thickening of epidermis, together with the increase of keratin 8 (K8) expression. These results suggest that PITX2c has a role in proliferation and differentiation of epidermal keratinocytes.

  19. Dermal Contributions to Human Interfollicular Epidermal Architecture and Self-Renewal

    PubMed Central

    Lawlor, Kynan T.; Kaur, Pritinder

    2015-01-01

    The human interfollicular epidermis is renewed throughout life by populations of proliferating basal keratinocytes. Though interfollicular keratinocyte stem cells have been identified, it is not known how self-renewal in this compartment is spatially organized. At the epidermal-dermal junction, keratinocytes sit atop a heterogeneous mix of dermal cells that may regulate keratinocyte self-renewal by influencing local tissue architecture and signalling microenvironments. Focusing on the rete ridges and complementary dermal papillae in human skin, we review the identity and organisation of abundant dermal cells types and present evidence for interactions between the dermal microenvironment and the interfollicular keratinocytes. PMID:26602926

  20. First in human nanotechnology doxorubicin delivery system to target epidermal growth factor receptors in recurrent glioblastoma.

    PubMed

    Whittle, James R; Lickliter, Jason D; Gan, Hui K; Scott, Andrew M; Simes, John; Solomon, Benjamin J; MacDiarmid, Jennifer A; Brahmbhatt, Himanshu; Rosenthal, Mark A

    2015-12-01

    There are limited treatment options for patients with recurrent glioblastoma (GBM). The EnGeneIC delivery vehicle (EDV) is a novel nanocellular (minicell) compound which packages theoretically effective concentrations of chemotherapeutic drugs that are designed to target tumors via minicell-surface attached bispecific proteins (EnGeneIC, Lane Cove West, NSW, Australia). Epidermal growth factor receptor (EGFR) is overexpressed in 40-50% of patients with GBM and is a promising target for new therapeutics. (V)EDVDox contains doxorubicin (Dox) within the minicells and targets EGFR through Vectibix (V; Amgen Biologicals, Thousand Oaks, CA, USA). We conducted a first in human Phase I study of (V)EDVDox in adults with recurrent GBM expressing EGFR on immunohistochemistry, following standard therapy including radiation and temozolomide, to establish a safe maximum tolerated dose and determine a recommended Phase II dose (RPTD). (V)EDVDox was administered weekly in an 8week cycle, with dose escalation in successive cohorts of patients using a standard 3+3 design. In total, 14 patients were treated at three dose levels, and the RPTD was identified as 5×10(9)(V)EDVDox. Overall (V)EDVDox was well tolerated, with no dose limiting toxicity and no withdrawals from the study due to adverse events. The most common adverse events were nausea, fever, and chills or rigors, experienced in seven, five and five patients, respectively. Transient uncomplicated hypophosphatemia was seen in seven patients and was not dose-related. Our results demonstrate that (V)EDVDox, up to a dose of 5×10(9)(V)EDVDox weekly, is well tolerated in patients with recurrent GBM. PMID:26279503

  1. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  2. Epidermal Cells Expressing Putative Cell Markers in Nonglabrous Skin Existing in Direct Proximity with the Distal End of the Arrector Pili Muscle

    PubMed Central

    Rufaut, N. W.; Jones, L.; Sinclair, R.

    2016-01-01

    Inconsistent with the view that epidermal stem cells reside randomly spread along the basal layer of the epidermal rete ridges, we found that epidermal cells expressing stem cell markers in nonglabrous skin exist in direct connection with the distal end of the arrector pili muscle. The epidermal cells that express stem cell markers consist of a subpopulation of basal keratinocytes located in a niche at the lowermost portion of the rete ridges at the distal arrector pili muscle attachment site. Keratinocytes in the epidermal stem cell niche express K15, MCSP, and α6 integrin. α5 integrin marks the distal end of the APM colocalized with basal keratinocytes expressing stem cell markers located in a well-protected and nourished environment at the lowermost point of the epidermis; these cells are hypothesized to participate directly in epidermal renewal and homeostasis and also indirectly in wound healing through communication with the hair follicle bulge epithelial stem cell population through the APM. Our findings, plus a reevaluation of the literature, support the hierarchical model of interfollicular epidermal stem cell units of Fitzpatrick. This new view provides insights into epidermal control and the possible involvement of epidermal stem cells in nonmelanoma skin carcinogenesis. PMID:27375744

  3. Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields.

    PubMed

    Collard, J-F; Hinsenkamp, M

    2015-05-01

    We observed on different tissues and organisms a biological response after exposure to pulsed low frequency and low amplitude electric or electromagnetic fields but the precise mechanism of cell response remains unknown. The aim of this publication is to understand, using bioinformatics, the biological relevance of processes involved in the modification of gene expression. The list of genes analyzed was obtained after microarray protocol realized on cultures of human epidermal explants growing on deepidermized human skin exposed to a pulsed low frequency electric field. The directed acyclic graph on a WebGestalt Gene Ontology module shows six categories under the biological process root: "biological regulation", "cellular process", "cell proliferation", "death", "metabolic process" and "response to stimulus". Enriched derived categories are coherent with the type of in vitro culture, the stimulation protocol or with the previous results showing a decrease of cell proliferation and an increase of differentiation. The Kegg module on WebGestalt has highlighted "cell cycle" and "p53 signaling pathway" as significantly involved. The Kegg website brings out interactions between FoxO, MAPK, JNK, p53, p38, PI3K/Akt, Wnt, mTor or NF-KappaB. Some genes expressed by the stimulation are known to have an exclusive function on these pathways. Analyses performed with Pathway Studio linked cell proliferation, cell differentiation, apoptosis, cell cycle, mitosis, cell death etc. with our microarrays results. Medline citation generated by the software and the fold change variation confirms a diminution of the proliferation, activation of the differentiation and a less well-defined role of apoptosis or wound healing. Wnt and DKK functional classes, DKK1, MACF1, ATF3, MME, TXNRD1, and BMP-2 genes proposed in previous publications after a manual analysis are also highlighted with other genes after Pathway Studio automatic procedure. Finally, an analysis conducted on a list of genes

  4. Targeting of epidermal growth factor receptor (EGFR)-expressing tumor cells with sterically stabilized affibody liposomes (SAL).

    PubMed

    Beuttler, Julia; Rothdiener, Miriam; Müller, Dafne; Frejd, Fredrik Y; Kontermann, Roland E

    2009-06-01

    Affibody molecules are small and stable antigen-binding molecules derived from the B domain of protein A. We applied a bivalent, high-affinity epidermal growth factor receptor (EGFR)-specific affibody molecule for the generation of targeted PEGylated liposomes. These sterically stabilized affibody liposomes (SAL) were produced by chemical coupling of the cysteine-modified affibody molecule to maleimide-PEG(2000)-DSPE and subsequent insertion into PEGylated liposomes. These SAL showed strong and selective binding to EGFR-expressing tumor cell lines. Binding was dependent on the amount of inserted affibody molecule-lipid conjugates and could be blocked by soluble EGF. Approximately 30% of binding activity was still retained after 6 days of incubation in human plasma at 37 degrees C. Binding of SAL to cells led to efficient internalization of the liposomes. Using mitoxantrone-loaded liposomes, we observed for SAL, compared to untargeted liposomes, an enhanced cytotoxicity toward EGFR-expressing cells. In summary, we show that SAL can be easily prepared from affibody molecules and thus may be suitable for the development of carrier systems for targeted delivery of drugs. PMID:19435362

  5. Dysregulation of epidermal growth factor receptor expression in premalignant lesions during head and neck tumorigenesis.

    PubMed

    Shin, D M; Ro, J Y; Hong, W K; Hittelman, W N

    1994-06-15

    The development of head and neck cancer, believed to result from field cancerization and a multistep process of tumorigenesis, is often associated with an accumulation of genotypic and phenotypic alterations. The phenotypic changes could be the result of dysregulation of growth control genes such as epidermal growth factor receptor (EGFR). With the goal of identifying a potential biomarker of the multistep process of tumorigensis, we studied specimens of 36 head and neck squamous cell carcinomas from 5 different sites that contained normal epithelia and/or premalignant lesions adjacent to the tumors. Almost all of the individuals from whom these specimens were obtained had been exposed to first-hand smoking and/or alcohol consumption. Using a monoclonal anti-EGFR antibody for immunohistochemical analysis on paraffin-embedded sections with attached 886 cells for internal control, the levels of EGFR expression were assessed by image analysis. The relative staining intensity of EGFR in normal epithelia adjacent to tumors was 2-fold higher than that in normal control epithelium (P = 0.021), suggesting that, even in histologically normal epithelium, EGFR was already up-regulated in tissues surrounding tumors. These findings supported the theory of field cancerization in head and neck tumorigenesis. As tissue progressed from normal tissue adjacent to tumor to hyperplasia and to dysplasia, EGFR expression remained elevated. However, in the step from dysplasia to squamous cell carcinoma, EGFR expression was further and dramatically up-regulated (P = 0.01). Therefore, these results indicate that EGFR dysregulation happens in two steps, the moderate up-regulation of EGFR expression in normal epithelium adjacent to tumor and the further up-regulation of EGFR expression in the change from dysplasia to squamous cell carcinoma. In summary, the studies presented here indicate that EGFR dysregulation might be a useful marker for identifying individuals at risk of tumor development

  6. Transgenic Expression of Cyclin-Dependent Kinase 4 Results in Epidermal Hyperplasia, Hypertrophy, and Severe Dermal Fibrosis

    PubMed Central

    Miliani de Marval, Paula L.; Gimenez-Conti, Irma B.; LaCava, Margaret; Martinez, Luis A.; Conti, Claudio J.; Rodriguez-Puebla, Marcelo L.

    2001-01-01

    In a previous report we have described the effects of expression of D-type cyclins in epithelial tissues of transgenic mice. To study the involvement of the D-type cyclin partner cyclin-dependent kinase 4 (CDK4) in epithelial growth and differentiation, transgenic mice were generated carrying the CDK4 gene under the control of a keratin 5 promoter. As expected, transgenic mice showed expression of CDK4 in the epidermal basal-cell layer. Epidermal proliferation increased dramatically and basal cell hyperplasia and hypertrophy were observed. The hyperproliferative phenotype of these transgenic mice was independent of D-type cyclin expression because no overexpression of these proteins was detected. CDK4 and CDK2 kinase activities increased in transgenic animals and were associated with elevated binding of p27Kip1 to CDK4. Expression of CDK4 in the epidermis results in an increased spinous layer compared with normal epidermis, and a mild hyperkeratosis in the cornified layer. In addition to epidermal changes, severe dermal fibrosis was observed and part of the subcutaneous adipose tissue was replaced by connective tissue. Also, abnormal expression of keratin 6 associated with the hyperproliferative phenotype was observed in transgenic epidermis. This model provides in vivo evidence for the role of CDK4 as a mediator of proliferation in epithelial cells independent of D-type cyclin expression. PMID:11438484

  7. Benzoyl peroxide interferes with metabolic co-operation between cultured human epidermal keratinocytes

    SciTech Connect

    Lawrence, N.J.; Parkinson, E.K.; Emmerson, A.

    1984-03-01

    The ability of benzoyl peroxide to inhibit metabolic co-operation in rodent cell cultures may be relevant to its recently reported tumour promoting activity in mouse epidermis. We show here that non-toxic doses of this compound reduce metabolic co-operation between human epidermal keratinocytes to approximately 30% of that found in controls. The doses of benzoyl peroxide used did not affect keratinocyte morphology or their rate of attachment to the culture substratum. These results could be important as benzoyl peroxide is widely used in industry.

  8. Toxic epidermal necrolysis caused by fluconazole in a patient with human immunodeficiency virus infection.

    PubMed

    George, Jacob; Sharma, Arun; Dixit, Ramakant; Chhabra, Naveen; Sharma, Smita

    2012-07-01

    Stevens-Johnson syndrome and toxic epidermal necrolysis (TEN) are rare but serious dermatologic disorders. These grave conditions present as medical emergency, requiring prompt diagnosis and management. These are often drug induced and various groups of drugs, such as sulfa drugs, NSAIDS, etc., have been implicated as to cause TEN. Fluconazole is a commonly used drug with mild side effects. TEN caused by fluconazole is rare, and till now only few cases have been reported in the literature. We present a case of TEN in a human immunodeficiency virus infected man following fluconazole therapy in view of its rare occurrence. PMID:23129968

  9. Transient expression of minimum linear gene cassettes in onion epidermal cells via direct transformation.

    PubMed

    Cheng, Yun-Qing; Yang, Jun; Xu, Feng-Ping; An, Li-Jia; Liu, Jian-Feng; Chen, Zhi-Wen

    2009-12-01

    A new method without any special devices for direct transformation of linear gene cassettes was developed. Its feasibility was verified through 5'-fluorescent dye (fluorescein isothiocyanate, FITC)-labeled fluorescent tracing and transient expression of a gus reporter gene. Minimal linear gene cassettes, containing necessary regulation elements and a gus reporter gene, was prepared by polymerase chain reaction and dissolved in transformation buffer solution to 100 ng/mL. The basic transformation solution used was Murashige and Skoog basal salt mixture (MS) liquid medium. Hypertonic pretreatment of explants and transformation cofactors, including Ca(2+), surfactant assistants, Agrobacterium LBA4404 cell culture on transformation efficiency were evaluated. Prior to the incubation of the explants and target linear cassette in each designed transformation solution for 3 h, the onion low epidermal explants were pre-cultured in darkness at 27 degrees C for 48 h and then transferred to MS solid media for 72 h. FITC-labeled linear DNA was used to trace the delivery of DNA entry into the cell and the nuclei. By GUS staining and flow-cytometry-mediated fluorescent detection, a significant increase of the ratios of fluorescent nuclei as well as expression of the gus reporter gene was observed by each designed transformation solution. This potent and feasible method showed prospective applications in plant transgenic research. PMID:19255730

  10. Epidermal growth factor receptor mutation in combination with expression of MIG6 alters gefitinib sensitivity

    PubMed Central

    2011-01-01

    Background Epidermal growth factor receptor (EGFR) signaling plays an important role in the regulation of cell proliferation, survival, metastasis, and invasion in various tumors. Earlier studies showed that the EGFR is frequently overexpressed in non-small-cell lung cancer (NSCLC) and EGFR mutations at specific amino acid residues in the kinase domain induce altered responsiveness to gefitinib, a small molecule EGFR tyrosine kinase inhibitor. However, the mechanism underlying the drug response modulated by EGFR mutation is still largely unknown. To elucidate drug response in EGFR signal transduction pathway in which complex dynamics of multiple molecules involved, a systematic approach is necessary. In this paper, we performed experimental and computational analyses to clarify the underlying mechanism of EGFR signaling and cell-specific gefitinib responsiveness in three H1299-derived NSCLC cell lines; H1299 wild type (H1299WT), H1299 with an overexpressed wild type EGFR (H1299EGFR-WT), and H1299 with an overexpressed mutant EGFR L858R (H1299L858R; gefitinib sensitive mutant). Results We predicted and experimentally verified that Mig6, which is a known negative regulator of EGFR and specifically expressed in H1299L858R cells, synergized with gefitinib to suppress cellular growth. Computational analyses indicated that this inhibitory effect is amplified at the phosphorylation/dephosphorylation steps of MEK and ERK. Conclusions Thus, we showed that L858R receptor mutation in combination with expression of its negative regulator, Mig6, alters signaling outcomes and results in variable drug sensitivity. PMID:21333004

  11. ImmunoPET and biodistribution with human epidermal growth factor receptor 3 targeting antibody 89Zr-RG7116

    PubMed Central

    Terwisscha van Scheltinga, Anton GT; Lub-de Hooge, Marjolijn N; Abiraj, Keelara; Schröder, Carolien P; Pot, Linda; Bossenmaier, Birgit; Thomas, Marlene; Hölzlwimmer, Gabriele; Friess, Thomas; Kosterink, Jos GW; de Vries, Elisabeth GE

    2014-01-01

    The humanized monoclonal antibody with high affinity for the human epidermal growth factor receptor (HER) 3, RG7116, is a glycoengineered, IgG1 class antibody. By labeling RG7116 with zirconium-89 (89Zr) we aimed to visualize in vivo HER3 expression and study the biodistribution of this antibody in human tumor-bearing mice. Biodistribution of 89Zr-RG7116 was studied in subcutaneously xenografted FaDu tumor cells (HER3-positive). Dose-dependency of 89Zr-RG7116 organ distribution and specific tumor uptake was assessed by administering doses ranging from 0.05 to 10 mg/kg RG7116 to SCID/Beige mice. Biodistribution was analyzed at 24 and 144 h after injection. MicroPET imaging was performed at 1, 3, and 6 days after injection of 1.0 mg/kg 89Zr-RG7116 in the FaDu, H441, QG-56 and Calu-1 xenografts with varying HER3 expression. The excised tumors were analyzed for HER3 expression. Biodistribution analyses showed a dose- and time-dependent 89Zr-RG7116 tumor uptake in FaDu tumors. The highest tumor uptake of 89Zr-RG7116 was observed in the 0.05 mg/kg dose group with 27.5%ID/g at 144 h after tracer injection. MicroPET imaging revealed specific tumor uptake of 89Zr-RG7116 in FaDu and H441 models with an increase in tumor uptake over time. Biodistribution data was consistent with the microPET findings in FaDu, H441, QG56 and Calu-1 xenografts, which correlated with HER3 expression levels. In conclusion, 89Zr-RG7116 specifically accumulates in HER3 expressing tumors. PET imaging with this tracer provides real-time non-invasive information about RG7116 distribution, tumor targeting and tumor HER3 expression levels. PMID:24870719

  12. Isolation of genes predominantly expressed in guard cells and epidermal cells of Nicotiana glauca.

    PubMed

    Smart, L B; Cameron, K D; Bennett, A B

    2000-04-01

    Guard cells are specialized and metabolically active cells which arise during the differentiation of the epidermis. Using Nicotiana glauca epidermal peels as a source of purified guard cells, we have constructed a cDNA library from guard cell RNA. In order to isolate genes that are predominantly expressed in guard cells, we performed a differential screen of this library, comparing the hybridization of a radiolabeled cDNA probe synthesized from guard cell RNA to that from a mesophyll cell cDNA probe. Sixteen clones were isolated based on their greater level of hybridization with the guard cell probe. Of these, eight had high homology to lipid transfer protein (LTP), two were similar to glycine-rich protein (GRP), and one displayed high homology to proline-rich proteins from Arabidopsis thaliana (AtPRP2, AtPRP4) and from potato guard cells (GPP). Northern analysis confirmed that one or more NgLTP genes, NgGRP1, and NgGPP1 are all differentially expressed, with highest levels in guard cells, and low or undetectable levels in mesophyll cells and in roots. In addition, all are induced to some degree in drought-stressed guard cells. NgLTP and NgGRP1 expression was localized by in situ hybridization to the guard cells and pavement cells in the epidermis. NgGRP1 expression was also detected in cells of the vasculature. Genomic Southern analysis indicated that LTP is encoded by a family of highly similar genes in N. glauca. This work has identified members of a subset of epidermis- and guard cell-predominant genes, whose protein products are likely to contribute to the unique properties acquired by guard cells and pavement cells during differentiation. PMID:10890533

  13. UV radiation induces CXCL5 expression in human skin.

    PubMed

    Reichert, Olga; Kolbe, Ludger; Terstegen, Lara; Staeb, Franz; Wenck, Horst; Schmelz, Martin; Genth, Harald; Kaever, Volkhard; Roggenkamp, Dennis; Neufang, Gitta

    2015-04-01

    CXCL5 has recently been identified as a mediator of UVB-induced pain in rodents. To compare and to extend previous knowledge of cutaneous CXCL5 regulation, we performed a comprehensive study on the effects of UV radiation on CXCL5 regulation in human skin. Our results show a dose-dependent increase in CXCL5 protein in human skin after UV radiation. CXCL5 can be released by different cell types in the skin. We presumed that, in addition to immune cells, non-immune skin cells also contribute to UV-induced increase in CXCL5 protein. Analysis of monocultured dermal fibroblasts and keratinocytes revealed that only fibroblasts but not keratinocytes displayed up regulated CXCL5 levels after UV stimulation. Whereas UV treatment of human skin equivalents, induced epidermal CXCL5 mRNA and protein expression. Up regulation of epidermal CXCL5 was independent of keratinocyte differentiation and keratinocyte-keratinocyte interactions in epidermal layers. Our findings provide first evidence on the release of CXCL5 in UV-radiated human skin and the essential role of fibroblast-keratinocyte interaction in the regulation of epidermal CXCL5. PMID:25690483

  14. Antiestrogen fulvestrant enhances the antiproliferative effects of epidermal growth factor receptor inhibitors in human non-small cell lung cancer

    PubMed Central

    Garon, Edward B.; Pietras, Richard J.; Finn, Richard S.; Kamranpour, Naeimeh; Pitts, Sharon; Márquez-Garbán, Diana C.; Desai, Amrita J.; Dering, Judy; Hosmer, Wylie; von Euw, Erika M.; Dubinett, Steven M.; Slamon, Dennis J.

    2012-01-01

    Introduction Estrogen receptor (ER) signaling and its interaction with epidermal growth factor receptor (EGFR) is a potential therapeutic target in non-small cell lung cancer (NSCLC). To explore cross-communication between ER and EGFR, we have correlated ER pathway gene and protein expression profiles and examined effects of antiestrogens with or without EGFR inhibitors in preclinical models of human NSCLC. Methods We evaluated 54 NSCLC cell lines for growth inhibition with EGFR inhibitors, antiestrogen treatment or the combination. Each line was evaluated for baseline ER pathway protein expression. The majority were also evaluated for baseline ER pathway gene expression. Human NSCLC xenografts were evaluated for effects of inhibition of each pathway either individually or in combination. Results The specific antiestrogen fulvestrant has modest single agent activity in vitro, but in many lines fulvestrant adds to effects of EGFR inhibitors, including synergy in the EGFR mutant, erlotinib-resistant H1975 line. ERα, ERβ, progesterone receptor (PR)-A, PR-B and aromatase proteins are expressed in all lines to varying degrees, with trends towards lower aromatase in more sensitive cell lines. Sensitivity to fulvestrant correlates with greater baseline ERα gene expression. Tumor stability is achieved in human tumor xenografts with either fulvestrant or EGFR inhibitors, but tumors regress significantly when both pathways are inhibited. Conclusions These data provide a rationale for further investigation of the antitumor activity of combined therapy with antiestrogen and anti-EGFR agents in the clinic. Future work should also evaluate dual ER and EGFR inhibition in the setting of secondary resistance to EGFR inhibition. PMID:23399957

  15. Involvement of Toll-like receptor 2 and epidermal growth factor receptor signaling in epithelial expression of airway remodeling factors.

    PubMed

    Homma, Tetsuya; Kato, Atsushi; Sakashita, Masafumi; Norton, James E; Suh, Lydia A; Carter, Roderick G; Schleimer, Robert P

    2015-04-01

    Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti-TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2-dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti-TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α-dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis. PMID:25180535

  16. Involvement of Toll-Like Receptor 2 and Epidermal Growth Factor Receptor Signaling in Epithelial Expression of Airway Remodeling Factors

    PubMed Central

    Kato, Atsushi; Sakashita, Masafumi; Norton, James E.; Suh, Lydia A.; Carter, Roderick G.; Schleimer, Robert P.

    2015-01-01

    Staphylococcus aureus (SA) colonization and infection is common, and may promote allergic or inflammatory airway diseases, such as asthma, cystic fibrosis, and chronic rhinosinusitis by interacting with airway epithelial cells. Airway epithelial cells not only comprise a physical barrier, but also play key roles in immune, inflammatory, repair, and remodeling responses upon encounters with pathogens. To elucidate the impact of SA on epithelial-mediated remodeling of allergic airways, we tested the hypothesis that SA can enhance the remodeling process. Normal human bronchial epithelial (NHBE) cells were stimulated with heat-killed SA (HKSA) or transforming growth factor (TGF) α. Cell extracts were collected to measure mRNA (real-time RT-PCR) and signaling molecules (Western blot); supernatants were collected to measure protein (ELISA) after 24 hours of stimulation. Epidermal growth factor receptor (EGFR) signaling inhibition experiments were performed using a specific EGFR kinase inhibitor (AG1478) and TGF-α was blocked with an anti–TGF-α antibody. HKSA induced both mRNA and protein for TGF-α and matrix metalloproteinase (MMP) 1 from NHBE cells by a Toll-like receptor 2–dependent mechanism. Recombinant human TGF-α also induced mRNA and protein for MMP-1 from NHBE cells; anti–TGF-α antibody inhibited HKSA-induced MMP-1, suggesting that endogenous TGF-α mediates the MMP-1 induction by HKSA. HKSA-induced MMP-1 expression was suppressed when a specific EGFR kinase inhibitor was added, suggesting that EGFR signaling was mediating the HKSA-induced MMP-1 release. Exposure or colonization by SA in the airway may enhance the remodeling of tissue through a TGF-α–dependent induction of MMP-1 expression, and may thereby promote remodeling in airway diseases in which SA is implicated, such as asthma and chronic rhinosinusitis. PMID:25180535

  17. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification;Epidermal growth factor receptor; Radiotherapy; Squamous cell carcinoma; Biomarker; Local tumor control

    SciTech Connect

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-07-15

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  18. Regenerative and reparative effects of human chorion-derived stem cell conditioned medium on photo-aged epidermal cells.

    PubMed

    Li, Qiankun; Chen, Yan; Ma, Kui; Zhao, Along; Zhang, Cuiping; Fu, Xiaobing

    2016-04-17

    Epidermal cells are an important regenerative source for skin wound healing. Aged epidermal cells have a low ability to renew themselves and repair skin injury. Ultraviolet (UV) radiation, particularly UVB, can cause photo-aging of the skin by suppressing the viability of human epidermal cells. A chorion-derived stem cell conditioned medium (CDSC-CNM) is thought to have regenerative properties. This study aimed to determine the regenerative effects of CDSC-CNM on UVB-induced photo-aged epidermal cells. Epidermal cells were passaged four times and irradiated with quantitative UVB, and non-irradiated cells served as a control group. Cells were then treated with different concentrations of CDSC-CNM. Compared to the non-irradiated group, the proliferation rates and migration rates of UVB-induced photo-aged epidermal cells significantly decreased (p < 0.05) with increasing intracellular radical oxygen species (ROS) generation and DNA damage. After treatment with CDSC-CNM, photo-aged epidermal cells significantly improved their viability, and their ROS generation and DNA damage decreased. The secretory factors in CDSC-CNM, including epidermal growth factor (EGF), transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-8 and the related signaling pathway protein levels, increased compared to the control medium (CM). The potential regenerative and reparative effects of CDSC-CNM indicate that it may be a candidate material for the treatment of prematurely aged skin. The functions of the secretory factors and the mechanisms of CDSC-CNM therapy deserve further attention. PMID:27097375

  19. [The effect of low temperatures on the viability of human epidermal keratinocytes found at different stages of differentiation].

    PubMed

    Raĭdan, M; Shubin, N A; Blinova, M I; Prokhorov, G G; Pinaev, G P

    2011-01-01

    The aim of this study was a comparative analysis to the degree of stability of human epidermal cells found at different stages of differentiation to low temperatures. The effect of different subzero temperatures of liquid nitrogen vapor on keratinocytes found both in human skin fragments and as isolated cells extracted from skin fragments has been studied. The degree of stability of epidermal cells low temperatures was evaluated by their ability to form a multilayer stratum in culture; hence this phenomenon explains the survival of a sufficient amount of proliferative cells after exposure to subzero temperatures. Quantitative analysis of the ratio of epidermal stem, transitory and differentiated cells in a population of viable cells before and after exposure to low temperatures were determined using antibodies corresponding to their different stages of differentiation. The results of this research show that the stability of human epidermal cells to low temperature differs depending on their stage of differentiation both in situ and in vitro. Epidermal stem cells and transitory cells are more stable than differentiated cells. PMID:21473115

  20. Epidermal differentiation complex (locus 1q21) gene expression in head and neck cancer and normal mucosa.

    PubMed

    Tyszkiewicz, Tomasz; Jarzab, Michal; Szymczyk, Cezary; Kowal, Monika; Krajewska, Jolanta; Jaworska, Magdalena; Fraczek, Marcin; Krajewska, Anna; Hadas, Ewa; Swierniak, Michal; Markowski, Jaroslaw; Lange, Dariusz; Poltorak, Stanislaw; Wiench, Malgorzata; Krecicki, Tomasz; Jarzab, Jerzy; Maciejewski, Adam

    2014-01-01

    Epidermal differentiation complex (EDC) comprises a number of genes associated with human skin diseases including psoriasis, atopic dermatitis and hyperkeratosis. These genes have also been linked to numerous cancers, among them skin, gastric, colorectal, lung, ovarian and renal carcinomas. The involvement of EDC components encoding S100 proteins, small proline-rich proteins (SPRRs) and other genes in the tumorigenesis of head and neck squamous cell cancer (HNSCC) has been previously suggested. The aim of the study was to systematically analyze the expression of EDC components on the transcript level in HNSCC. Tissue specimens from 93 patients with HNC of oral cavity and 87 samples from adjacent or distant grossly normal oral mucosawere analyzed. 48 samples (24 tumor and 24 corresponding surrounding tissue) were hybridized to Affymetrix GeneChip Human 1.0 ST Arrays. For validation by quantitative real-time PCR (QPCR) the total RNA from all180 samples collected in the study was analyzed with Real-Time PCR system and fluorescent amplicon specific-probes. Additional set of samples from 14 patients with laryngeal carcinoma previously obtained by HG-U133 Plus 2.0 microarray was also included in the analyses. The expression of analyzed EDC genes was heterogeneous. Two transcripts (S100A1 and S100A4) were significantly down-regulated in oral cancer when compared to normal mucosa (0.69 and 0.36-fold change, respectively), showing an opposite pattern of expression to the remaining S100 genes. Significant up-regulation in tumors was found for S100A11, S100A7, LCE3D, S100A3 and S100A2 genes. The increased expression of S100A7 was subsequently validated by QPCR, confirming significant differences. The remaining EDC genes, including all encoding SPRR molecules, did not show any differences between oral cancer and normal mucosa. The observed differences were also assessed in the independent set of laryngeal cancer samples, confirming the role of S100A3 and LCE3D transcripts in

  1. New Whitening Constituents from Taiwan-Native Pyracantha koidzumii: Structures and Tyrosinase Inhibitory Analysis in Human Epidermal Melanocytes

    PubMed Central

    Lin, Rong-Dih; Chen, Mei-Chuan; Liu, Yan-Ling; Lin, Yi-Tzu; Lu, Mei-Kuang; Hsu, Feng-Lin; Lee, Mei-Hsien

    2015-01-01

    Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata) Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9) and 3,4-dihydroxy-5-methoxybiphenyl-2ʹ-O-β-d-glucopyranoside (13), as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver–Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics. PMID:26633381

  2. Cloning of human epidermal growth factor as a bacterial secretory protein, its properties and mutagenesis

    SciTech Connect

    Engler, D.A.; Matsunami, R.K.; Campion, S.R.; Foote, R.S.; Mural, R.J.; Larimer, F.W.; Stevens, A.; Niyogi, S.K.

    1987-05-01

    A chimeric gene, containing the DNA coding for the human epidermal growth factor (EGF) and that for the signal peptide of E. coli alkaline phosphatase, was constructed by the annealing and subsequent ligation of appropriate DNA oligonucleotides synthesized in an automated DNA synthesizer. The gene was then cloned into a bacterial plasmid under the transcriptional control of the E. coli trp-lac (tac) promoter, and then transformed into E. coli. Following induction with isopropylthiogalactoside, the secretion of EGF into the E. coli periplasmic space and some into the growth medium was confirmed by its specific binding to the EGF receptor and stimulation of the EGF receptor tyrosine kinase activity. The size and physicochemical properties of the purified protein mimicked those of authentic human EGF. Studies of structure/function relationships by specific alterations of targeted amino acid residues in the EGF molecule have been initiated by utilizing site-directed mutagenesis.

  3. Parotid gland is the main source of human salivary epidermal growth factor

    SciTech Connect

    Thesleff, I.; Viinikka, L.; Saxen, L.; Lehtonen, E.; Perheentupa, J.

    1988-01-01

    To clarify the production of human epidermal growth factor (EGF) by different salivary glands, the authors measured its concentration by radioimmunoassay separately in whole saliva, in parotid gland (PG) saliva and in mixed submandibular (SMG) and sublingual gland (SLG) saliva. Also, they studied the presence of EGF in PG and SMG by immunohistochemistry. The mean concentrations of EDG in PG saliva was higher than in whole saliva, which in turn was higher than in mixed SMG + SLG saliva. No sex difference existed in any salivary gland EGF. Immunohistochemistry revealed EGF in the acinar cells of both PG and SMG, buy only in PG there were prominent EDG deposits in luminal spaces. Their data suggest that EDG is produced by both PG and SMG, but that more of it is secreted from the PG. This result is new and challenges the general view that human salivary EDG is mainly from SMG.

  4. Discovery of Novel Human Epidermal Growth Factor Receptor-2 Inhibitors by Structure-based Virtual Screening

    PubMed Central

    Shi, Zheng; Yu, Tian; Sun, Rong; Wang, Shan; Chen, Xiao-Qian; Cheng, Li-Jia; Liu, Rong

    2016-01-01

    Background: Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Objective: Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. Materials and Methods: In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential “new use” drugs. Results: Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. Conclusion: Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study. SUMMARY A series of elegant bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations were took advantage to identify human epidermal growth factor receptor-2 (HER2) inhibitors. Molecular docking recognized top 10 candidate compounds, which showed spectrum affinity to HER2. Further, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) in candidate compounds were identified as potential “new use” drugs against HER2-targeted anti-breast cancer therapeutics. Abbreviations used: HER2: Human epidermal growth factor receptor-2

  5. Cytogenetic evaluation of human glial tumors: correlation of overexpression of epidermal growth factor receptor (EGFB) with abnormalities of chromosome 7

    SciTech Connect

    Bell, C.W.

    1987-01-01

    Chromosome banding analysis of human glial tumors were performed using G- and Q-banding techniques in an attempt to establish recurring sites of chromosome change. Results revealed a nonrandom karyotypic profile including aneuploidy and considerable variation in chromosome number (range 40 ..-->.. 200). All tumors examined displayed numerical abnormalities, with the most common numeric change being a gain of chromosome 7. An attempt was then made to correlate the observed chromosome 7 changes with activation of the cellular proto-oncogene c-erb-B, whose produce is the epidermal growth factor receptor (EGFR). Six human glial tumors were analyzed for /sup 125/I-EGF binding, EGFR gene copy number, EGFR gene rearrangement, mRNA expression, and karyotypic profile. Saturation analysis at 4/sup 0/C revealed significant numbers of EGFR's in all 6 tumors. Southern blotting analysis utilizing cDNA probes for the EGFR failed to demonstrate significant amplification or structural rearrangement of the EFGR gene. The results suggest that overexpression of the EGFR may be related to an alternative mechanism, other than gene amplification and elevated mRNA levels, such as the regulation of receptor biosynthesis and degradation. In summary, findings indicate that alterations of chromosome 7 are the most prevalent chromosomal change in human glial tumors, and that these alterations may lead to overexpression of the protooncogene c-erb-B.

  6. Expression and localization of epidermal growth factor, transforming growth factor-α and epidermal growth factor receptor in the canine testis

    PubMed Central

    TAMADA, Hiromichi; TAKEMOTO, Kohei; TOMINAGA, Masato; KAWATE, Noritoshi; TAKAHASHI, Masahiro; HATOYA, Shingo; MATSUYAMA, Satoshi; INABA, Toshio; SAWADA, Tsutomu

    2015-01-01

    Gene expression of epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and EGF receptor (EGF-R) and the localization of the corresponding proteins in the canine testis were studied. Levels of mRNA expressions were determined by semiquantitative reverse transcription polymerase chain reaction in the testes of the peripubertal (4–6 months), young adult (3–4 years), advanced adult (7–8 years) and senescent (11–16 years) groups. The EGF-R mRNA level in the testes of the peripubertal group was significantly higher than those in the other groups, whereas there was no difference in EGF and TGF-α mRNA levels among groups. Immunohistochemical stainings for EGF, TGF-α and EGF-R in the testis revealed that immunoreactivity in the seminiferous epithelium and Sertoli cell was weak and nonspecific for the stage of spermatogenesis, and distinct staining was found in Leydig cells. These results suggest that the EGF family of growth factors may be involved in testicular maturation and function in the dog. PMID:26498203

  7. [Neoadjuvant treatment in human epidermal growth factor receptor 2-positive breast cancer].

    PubMed

    Liu, Yinhua; Liu, Shiwei; Zhang, Hong; Xu, Ling; Li, Ting; Duan, Xuening

    2015-12-01

    Breast cancer is the most prevalent malignancy among females worldwide. Human epidermal growth factor receptor 2 (HER2)-positive breast cancer represents a subtype with aggressive behavior, poor response to treatment and unfavorable prognosis. Anti-HER2-based neoadjuvant treatment has improved clinical outcomes of patients with HER2-positive disease. Pathological complete response (pCR) after neoadjuvant treatment indicates a favorable prognosis. With the development of HER2-targeted therapy and neoadjuvant treatment, numerous studies focus on the predictive factors of pCR or therapeutic resistance of anti-HER2 therapy. Identification of novel predictive factors in HER2-positive breast cancer, such as tumor-infiltrating lymphocytes, will be helpful for clinical decision. PMID:26850663

  8. Epidermal surface antigen (MS17S1) is highly conserved between mouse and human.

    PubMed

    Cho, Y J; Chema, D; Moskow, J J; Cho, M; Schroeder, W T; Overbeek, P; Buchberg, A M; Duvic, M

    1995-05-20

    A mouse monoclonal antibody ECS-1 raised to human keratinocytes detects a 35-kDa epidermal surface antigen (ESA) and causes keratinocyte dissociation in vitro. ECS-1 stains skin of 16-day mouse embryo and 8- to 9-week human fetus. Mouse Esa cDNA encodes a 379-amino-acid protein that is 99.2% identical to the human, differing at only 3 amino acids. The gene (M17S1) was mapped to mouse chromosome 11, high-lighting the conserved linkage synteny existing between human chromosome 17 and mouse chromosome 11. Although the nude locus has been mapped to the same region of chromosome 11, no abnormalities in protein, mRNA, or cDNA or genomic sequences were detected in nude mice. However, both nude and control mice were found to have a second Esa mRNA transcript that conserves amino acid sequence and molecular weight. The mouse and human 5' and 3' untranslated sequences are conserved. Similar RNA folding patterns of the 5' untranslated region are predicted despite a 91-bp insertion in the mouse. These data suggest that both the function and the regulation of ESA protein are of importance and that Esa (M17S1) is not the nude locus gene. PMID:7557989

  9. Epidermal surface antigen (MS17S1) is highly conserved between mouse and human

    SciTech Connect

    Cho, Y.J.; Chema, D.; Cho, M.

    1995-05-20

    A mouse monoclonal antibody ECS-1 raised to human keratinocytes detects a 35-kDa epidermal surface antigen (ESA) and causes keratinocyte dissociation in vitro. ECS-1 stains skin of 16-day mouse embryo and 8- to 9-week human fetus. Mouse Esa cDNA encodes a 379-amino-acid protein that is 99.2% identical to the human, differing at only 3 amino acids. The gene (M17S1) was mapped to mouse chromosome 11, highlighting the conserved linkage synteny existing between human chromosome 17 and mouse chromosome 11. Although the nude locus has been mapped to the same region of chromosome 11, no abnormalities in protein, mRNA, or cDNA or genomic sequences were detected in nude mice. However, both nude and control mice were found to have a second Esa mRNA transcript that conserves amino acid sequence and molecular weight. The mouse and human 5{prime} and 3{prime} untranslated sequences are conserved. Similar RNA folding patterns of the 5{prime} untranslated region are predicted despite a 91-bp insertion in the mouse. These data suggest that both the function and the regulation of ESA protein are of importance and that Esa (M17S1) is not the nude locus gene. 42 refs., 7 figs., 3 tabs.

  10. Effect of recombinant human epidermal growth factor against cutaneous scar formation in murine full-thickness wound healing.

    PubMed

    Kim, Young Seok; Lew, Dae Hyun; Tark, Kwan Chul; Rah, Dong Kyun; Hong, Joon Pio

    2010-04-01

    A visible cutaneous scar develops from the excess formation of immature collagen in response to an inflammatory reaction. This study examined the role of epidermal growth factor (EGF) in the formation of cutaneous scars. Twenty Crl:CD-1 (ICR) mice were used and 2 full-thickness skin wounds were made on the dorsum of each mouse. One of the wounds was treated with recombinant human EGF by local application and the other was treated with saline for control until complete healing was achieved. The EGF-treated group's wounds healed faster than the control group's. The width of the scar was smaller by 30% and the area was smaller by 26% in the EGF-treated group. Inflammatory cell numbers were significantly lower in the EGF-treated group. The expression of transforming growth factor (TGF)-beta(1) in the EGF-treated group was increased. It was observed that the amount of collagen in the EGF-treated group was larger than the control group. In the EGF-treated group, the visible external scars were less noticeable than that in the control group. These results suggest that EGF can reduce cutaneous scars by suppressing inflammatory reactions, decreasing expression of TGF-beta(1), and mediating the formation of collagen. PMID:20358003

  11. Activation of c-fos gene expression by a kinase-deficient epidermal growth factor receptor.

    PubMed Central

    Eldredge, E R; Korf, G M; Christensen, T A; Connolly, D C; Getz, M J; Maihle, N J

    1994-01-01

    The intrinsic tyrosine kinase activity of the epidermal growth factor receptor (EGFR) has been shown to be responsible for many of the pleiotropic intracellular effects resulting from ligand stimulation [W.S. Chen, C.S. Lazar, M. Poenie, R.Y. Tsien, G.N. Gill, and M.G. Rosenfeld, Nature (London) 328:820-823, 1987; A.M. Honegger, D. Szapary, A. Schmidt, R. Lyall, E. Van Obberghen, T.J. Dull, A. Ulrich, and J. Schlessinger, Mol. Cell. Biol. 7:4568-4571, 1987]. Recently, however, it has been shown that addition of ligand to cells expressing kinase-defective EGFR mutants can result in the phosphorylation of mitogen-activated protein kinase (R. Campos-González and J.R. Glenney, Jr., J. Biol. Chem. 267:14535-14538, 1992; E. Selva, D.L. Raden, and R.J. Davis, J. Biol. Chem. 268:2250-2254, 1993), as well as stimulation of DNA synthesis (K.J. Coker, J.V. Staros, and C.A. Guyer, Proc. Natl. Acad. Sci. USA 91:6967-6971, 1994). Moreover, mitogen-activated protein kinase has been shown to phosphorylate the transcription factor p62TCF in vitro, leading to enhanced ternary complex formation between p62TCF, p67SRF, and the c-fos serum response element (SRE) [H. Gille, A.D. Sharrocks, and P.E. Shaw, Nature (London) 358:414-417, 1992]. On the basis of these observations, we have investigated the possibility that the intrinsic tyrosine kinase activity of the EGFR may not be necessary for transcriptional activation mediated via p62TCF. Here, we demonstrate that a kinase-defective EGFR mutant can signal ligand-induced expression of c-fos protein and that a significant component of this induction appears to be mediated at the transcriptional level. Investigation of transcriptional activation mediated by the c-fos SRE shows that this response is impaired by mutations in the SRE which eliminate binding of p62(TCF). These data indicate that information inherent in the structure of the EGFR can be accessed by ligand stimulation independent of the receptor's catalytic kinase function

  12. Regulation of human epidermal stem cell proliferation and senescence requires polycomb- dependent and -independent functions of Cbx4.

    PubMed

    Luis, Nuno Miguel; Morey, Lluis; Mejetta, Stefania; Pascual, Gloria; Janich, Peggy; Kuebler, Bernd; Cozutto, Luca; Roma, Guglielmo; Nascimento, Elisabete; Frye, Michaela; Di Croce, Luciano; Benitah, Salvador Aznar

    2011-09-01

    Human epidermal stem cells transit from a slow cycling to an actively proliferating state to contribute to homeostasis. Both stem cell states differ in their cell cycle profiles but must remain guarded from differentiation and senescence. Here we show that Cbx4, a Polycomb Repressive Complex 1 (PRC1)-associated protein, maintains human epidermal stem cells as slow-cycling and undifferentiated, while protecting them from senescence. Interestingly, abrogating the polycomb activity of Cbx4 impairs its antisenescent function without affecting stem cell differentiation, indicating that differentiation and senescence are independent processes in human epidermis. Conversely, Cbx4 inhibits stem cell activation and differentiation through its SUMO ligase activity. Global transcriptome and chromatin occupancy analyses indicate that Cbx4 regulates modulators of epidermal homeostasis and represses factors such as Ezh2, Dnmt1, and Bmi1 to prevent the active stem cell state. Our results suggest that distinct Polycomb complexes balance epidermal stem cell dormancy and activation, while continually preventing senescence and differentiation. PMID:21885019

  13. Cigarette Smoke Induces Human Epidermal Receptor 2-Dependent Changes in Epithelial Permeability.

    PubMed

    Mishra, Rangnath; Foster, Daniel; Vasu, Vihas T; Thaikoottathil, Jyoti V; Kosmider, Beata; Chu, Hong Wei; Bowler, Russell P; Finigan, James H

    2016-06-01

    The airway epithelium constitutes a protective barrier against inhaled insults, such as viruses, bacteria, and toxic fumes, including cigarette smoke (CS). Maintenance of bronchial epithelial integrity is central for airway health, and defective epithelial barrier function contributes to the pathogenesis of CS-mediated diseases, such as chronic obstructive pulmonary disease. Although CS has been shown to increase epithelial permeability, current understanding of the mechanisms involved in CS-induced epithelial barrier disruption remains incomplete. We have previously identified that the receptor tyrosine kinase human epidermal receptor (HER) 2 growth factor is activated by the ligand neuregulin-1 and increases epithelial permeability in models of inflammatory acute lung injury. We hypothesized that CS activates HER2 and that CS-mediated changes in barrier function would be HER2 dependent in airway epithelial cells. We determined that HER2 was activated in whole lung, as well as isolated epithelial cells, from smokers, and that acute CS exposure resulted in HER2 activation in cultured bronchial epithelial cells. Mechanistic studies determined that CS-mediated HER2 activation is independent of neuregulin-1 but required upstream activation of the epidermal growth factor receptor. HER2 was required for CS-induced epithelial permeability as knockdown of HER2 blocked increases in permeability after CS. CS caused an increase in IL-6 production by epithelial cells that was dependent on HER2-mediated extracellular signal-regulated kinases (Erk) activation. Finally, blockade of IL-6 attenuated CS-induced epithelial permeability. Our data indicate that CS activates pulmonary epithelial HER2 and that HER2 is a central mediator of CS-induced epithelial barrier dysfunction. PMID:26600084

  14. Improved tumor-to-organ ratios of a novel 67Ga-human epidermal growth factor radionuclide conjugate with preadministered antiepidermal growth factor receptor affibody molecules.

    PubMed

    Sandström, Karl; Haylock, Anna-Karin; Velikyan, Irina; Spiegelberg, Diana; Kareem, Heewa; Tolmachev, Vladimir; Lundqvist, Hans; Nestor, Marika

    2011-10-01

    The overexpression of the epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinoma (HNSCC) is associated with poor prognosis. Targeted nuclear imaging of the EGFR expression could improve the diagnostics in patients with HNSCC. However, the high expression of EGFR in normal organs may conceal the tumor uptake and therefore limit the use. This study assesses the biodistribution of a novel human epidermal growth factor (hEGF) radionuclide conjugate after preinjection with anti-EGFR affibody molecules. hEGF was conjugated with p-SCN-Bn-NOTA and labeled with (67)Ga. The biodistribution of [(67)Ga]Ga-NOTA-Bn-NCS-hEGF in nude mice with EGFR-expressing xenografts was evaluated either alone or 45 minutes after preinjection with one of the anti-EGFR affibody molecules Z(EGFR:1907), (Z(EGFR:1907))(2), or (Z(EGFR:955))(2). The novel radioimmunoconjugate, [(67)Ga]Ga-NOTA-Bn-NCS-hEGF, demonstrated high stability in vitro and specific binding to hEGF in vitro and in vivo. Preinjection with anti-EGFR affibody molecules improved the tumor-to-organ ratio in the liver, salivary glands, and colon. Overall, the dimeric high-affinity affibody molecule (Z(EGFR:1907))(2) exhibited the best results. These findings show that preblocking with an anti-EGFR affibody molecule is a promising tool that could improve the outcome of radionuclide-based imaging of EGFR-expressing tumors. PMID:21834651

  15. The expression of epidermal growth factor receptors and their ligands (epidermal growth factor, neuregulin, amphiregulin) in the bitch uterus during the estrus cycle.

    PubMed

    Sağsöz, Hakan; Liman, Narin; Saruhan, Berna Güney; Küçükaslan, İbrahim

    2014-06-30

    In order to study the possible role of EGFR receptors in the bitch reproductive process, we have analyzed the expression pattern and localization of EGFR receptors and some of their ligands epidermal growth factor (EGF), neuregulin (NRG), amphiregulin (AREG), in the uterus during the estrus cycle using immunohistochemistry. The immunostaining for receptors and ligands of EGFR/ligand system was confined to membrane and cytoplasm of the target cells. Variations were observed, not only at the different stages of the estrous cycle, but also in the different tissue compartments of the uterus. However, it was detected that the immunostainings for NRG and AREG in the different cells do not show important differences at stages of the estrus cycle. In the luminal epithelium, strong immunostaining for ErbB1/HER1, ErbB2/HER2, ErbB4/HER4 and EGF was found at estrus. In the glandular epithelium, strong immunostaining for ErbB4/HER4 was observed at diestrus, while strong immunostaining for EGF was detected in both of estrus and diestrus. ErbB3/HER3 immunoreactivity in the stromal cells was higher at diestrus and anestrus, while ErbB4/HER4 immunoreactivity was lower at anestrus. In the myometrium, the highest levels of immunoreactivity of ErbB2/HER2 were found at estrus, while ErbB3/HER3 immunoreactivity was higher at anestrus. EGF immunoreactivity was lower at anestrus compared to other stage of cycle. Altered EGFR/ligand system expression during the estrus cycle suggests this growth factor system is a potent regulator of proliferation and differentiation events during preparation for implantation of bitch uterus. PMID:24813021

  16. Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidermal growth factor (EGF) receptor (EGFR) is the founding member of the ErbB family of growth factor receptors that modulate a complex network of intracellular signaling pathways controlling growth, proliferation and differentiation. Selenoprotein W (SEPW1) is a diet-regulated, highly conserved...

  17. Anticancer activity of pristimerin in epidermal growth factor receptor 2-positive SKBR3 human breast cancer cells.

    PubMed

    Lee, Jin Sun; Yoon, In Sang; Lee, Myung Sun; Cha, Eun Young; Thuong, Phuong Thien; Diep, Trinh Thi; Kim, Je Ryong

    2013-01-01

    Pristimerin is a naturally occurring triterpenoid that causes cytotoxicity in several cancer cell lines. However, the mechanism of action for the cytotoxic effect of pristimerin has not been unexplored. The purpose of this study was to investigate the effect of pristimerin on cytotoxicity using the epidermal growth factor receptor 2 (HER2)-positive SKBR3 human breast cancer cell line. Pristimerin inhibited proliferation in dose- and time-dependent manners in cells. We found it to be effective for suppressing HER2 protein and mRNA expression. Fatty acid synthase (FASN) expression and FASN activity were downregulated by pristimerin. Adding of exogenous palmitate, the end product of de novo fatty acid synthesis, reduced the proliferation activity of pristimerin. The changes in HER2 and FASN expression induced by pristimerin altered the levels of Akt and mitogen-activated protein kinase (MAPK) phosphorylation (Erk1/2, p38, and c-Jun N-terminal kinase (JNK)). Pristimerin lowered the levels of phosphorylated mammalian target of rapamycin (mTOR) and its downstream targets such as phosphoprotein 70 ribosomal protein S6 kinase and 4E binding protein1. Pristimerin inhibited migration and invasion of cells, and co-treatment with the mTOR inhibitor rapamycin additionally suppressed these activities. Pristimerin-induced apoptosis was evaluated using Western blotting for caspase-3, -8, -9, and poly (ADP-ribose) polymerase expression and flow cytometric analysis for propidium iodide labeling. These results suggest that pristimerin is a novel HER2-downregulated compound that is able to decrease fatty acid synthase and modulate the Akt, MAPK, and mTOR signaling pathways to influence metastasis and apoptosis. Pristimerin may be further evaluated as a chemotherapeutic agent for HER2-positive breast cancers. PMID:23370361

  18. Decorin gene expression and its regulation in human keratinocytes

    SciTech Connect

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico; Kuri-Harcuch, Walid

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  19. Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase.

    PubMed

    Wang, Y; Shao, L; Shi, S; Harris, R J; Spellman, M W; Stanley, P; Haltiwanger, R S

    2001-10-26

    The O-fucose modification is found on epidermal growth factor-like repeats of a number of cell surface and secreted proteins. O-Fucose glycans play important roles in ligand-induced receptor signaling. For example, elongation of O-fucose on Notch by the beta1,3-N-acetylglucosaminyltransferase Fringe modulates the ability of Notch to respond to its ligands. The enzyme that adds O-fucose to epidermal growth factor-like repeats, GDP-fucose protein O-fucosyltransferase (O-FucT-1), was purified previously from Chinese hamster ovary (CHO) cells. Here we report the isolation of a cDNA that encodes human O-FucT-1. A probe deduced from N-terminal sequence analysis of purified CHO O-FucT-1 was used to screen a human heart cDNA library and expressed sequence tag and genomic data bases. The cDNA contains an open reading frame encoding a protein of 388 amino acids with a predicted N-terminal transmembrane sequence typical of a type II membrane orientation. Likewise, the mouse homolog obtained from an expressed sequence tag and 5'-rapid amplification of cDNA ends of a mouse liver cDNA library encodes a type II transmembrane protein of 393 amino acids with 90.4% identity to human O-FucT-1. Homologs were also found in Drosophila and Caenorhabditis elegans with 41.2 and 29.4% identity to human O-FucT-1, respectively. The human gene (POFUT1) is on chromosome 20 between PLAGL2 and KIF3B, near the centromere at 20p11. The mouse gene (Pofut1) maps near Plagl2 on a homologous region of mouse chromosome 2. POFUT1 gene transcripts were expressed in all tissues examined, consistent with the widespread localization of the modification. Expression of a soluble form of human O-FucT-1 in insect cells yielded a protein of the predicted molecular weight with O-FucT-1 kinetic and enzymatic properties similar to those of O-FucT-1 purified from CHO cells. The identification of the gene encoding protein O-fucosyltransferase I now makes possible mutational strategies to examine the functions of the

  20. Label-free and dynamic evaluation of cell-surface epidermal growth factor receptor expression via an electrochemiluminescence cytosensor.

    PubMed

    Qiu, Youyi; Wen, Qingqing; Zhang, Lin; Yang, Peihui

    2016-04-01

    A label-free electrochemiluminescence (ECL) cytosensor was developed for dynamically evaluating of epidermal growth factor receptor (EGFR) expression on MCF-7 cancer cells based on the specific recognition of epidermal growth factor (EGF) with its receptor (EGFR). EGF-cytosensor was fabricated by in-situ electro-polymerization of polyaniline as substrate, using CdS quantum dots (CdS QDs) as ECL probe and gold nanoparticles (AuNPs) as a carrier for loading of EGF. AuNPs and CdS QDs were jointly attached on polyaniline surface to provide a sensitive and stable sensing interface, as well as a simple and label-free mode for ECL assay. Electron microscopy, atomic force microscopy (AFM) and electrochemical methods were employed to characterize the multilayer construction process of the sensing interface. The proposed EGF-cytosensor exhibited excellent analytical performance for MCF-7 cancer cells, ranging from 12 to 1.2 × 10(6) cells mL(-1), with a low detection limit of 12 cells mL(-1). Also, it was successfully applied in evaluating EGFR expression of cells surface, which was stimulated by some inhibitors or activator, and the results were confirmed by using flow cytometry and laser scanning confocal microscopy analysis. The proposed ECL cytosensor has potential applications in monitoring the dynamic variation of receptor molecules expression on cell surfaces in response to external stimulation by drugs and screening anti-cancer therapeutic agents. PMID:26838410

  1. Development of a new in vitro skin sensitization assay (Epidermal Sensitization Assay; EpiSensA) using reconstructed human epidermis.

    PubMed

    Saito, Kazutoshi; Nukada, Yuko; Takenouchi, Osamu; Miyazawa, Masaaki; Sakaguchi, Hitoshi; Nishiyama, Naohiro

    2013-12-01

    Recent changes in regulatory requirements and social views on animal testing have accelerated the development of reliable alternative tests for predicting skin sensitizing potential of chemicals. In this study, we aimed to develop a new in vitro skin sensitization assay using reconstructed human epidermis, RhE model, which is expected to have broader applicability domain rather than existing in vitro assays. Microarray analysis revealed that the expression of five genes (ATF3, DNAJB4, GCLM, HSPA6 and HSPH1) related to cellular stress response were significantly up-regulated in RhE model after 6h treatment with representative skin sensitizers, 1-fluoro-2,4-dinitrobenzene and oxazolone, but not a non-sensitizer, benzalkonium chloride. The predictive performance of five genes was examined with eight skin sensitizers (e.g., cinnamic aldehyde), four non-sensitizers (e.g., sodium lauryl sulfate) and four pre-/pro-haptens (e.g., p-phenylenediamine, isoeugenol). When the positive criteria were set to obtain the highest accuracy with the animal testing (LLNA), ATF3, DNAJB4 and GCLM exhibited a high predictive accuracy (100%, 93.8% and 87.5%, respectively). All tested pre-/pro-haptens were correctly predicted by both ATF3 and DNAJB4. These results suggested that the RhE-based assay, termed epidermal sensitization assay (EpiSensA), could be an useful skin sensitization assay with a broad applicability domain including pre-/pro-haptens. PMID:23999411

  2. Regulation of human papillomavirus type 16 DNA replication by E2, glucocorticoid hormone and epidermal growth factor.

    PubMed

    Piccini, A; Storey, A; Romanos, M; Banks, L

    1997-08-01

    The E1 and E2 proteins are the only human papillomavirus (HPV) proteins required for transient replication of plasmids containing the viral origin. The E2 gene products play key roles in both viral transcription and replication. In this study we have analysed in further detail the nature of the association between E1 and E2 using a series of E2 proteins mutated in conserved regions of the N-terminal domain. These proteins were tested for their ability to activate transcription and to stimulate viral DNA replication. Several of these mutants revealed that the two functions of E2 can be separated, and that they define three widely spaced regions of the N-terminal domain which are important for DNA replication, two of which retain E1-binding activity. This suggests that E2 may have a role in viral DNA replication other than simply localizing E1 to the origin of replication. Additional important elements for regulating viral gene expression have been shown to be glucocorticoid hormones and epidermal growth factor (EGF). We show here that they may also be involved in regulating viral DNA replication. Our studies show that the addition of glucocorticoid hormone significantly stimulates viral DNA replication. In contrast, addition of EGF results in modest repression of viral DNA replication. These results have important implications for the pathogenesis of HPV infection and suggest that the relative levels of E2, glucocorticoid hormone and EGF may significantly affect the outcome of an HPV infection. PMID:9266995

  3. Effects of Asterias amurensis-derived Sphingoid Bases on the de novo Ceramide Synthesis in Cultured Normal Human Epidermal Keratinocytes.

    PubMed

    Mikami, Daisuke; Sakai, Shota; Sasaki, Shigefumi; Igarashi, Yasuyuki

    2016-08-01

    Asterias amurensis starfish provide several bioactive species in addition to being fishery waste. Glucosyl ceramides (GlcCers) were extracted from the viscera of these starfish and were isolated by silica gel column chromatography. Degraded GlcCers generated A. amurensis sphingoid bases (ASBs) that mainly consisted of the triene-type bases d18:3 and 9-methyl-d18:3. The effect of these bases on ceramide synthesis and content were analyzed using normal human epidermal keratinocytes (NHEKs). The bases significantly enhanced the de novo ceramide synthesis and gene expression in NHEKs for proteins, such as serine-palmitoyltransferase and ceramide synthase. Total ceramide, GlcCer, and sphingomyelin contents increased dramatically upon ASB treatment. In particular, GlcCer bearing very-long-chain fatty acids (≥C28) exhibited a significant content increase. These ASB-induced enhancements on de novo ceramide synthesis were only observed in undifferentiated NHEKs. This stimulation of the de novo sphingolipid synthesis may improve skin barrier functions. PMID:27430385

  4. Neutrophil extracellular trap formation is increased in psoriasis and induces human β-defensin-2 production in epidermal keratinocytes.

    PubMed

    Hu, Stephen Chu-Sung; Yu, Hsin-Su; Yen, Feng-Lin; Lin, Chi-Ling; Chen, Gwo-Shing; Lan, Cheng-Che E

    2016-01-01

    Neutrophil extracellular traps (NETs) have been implicated in the development of certain immune-mediated diseases, but their role in psoriasis has not been clearly defined. Human β-defensin-2 (HBD-2) is an important antimicrobial peptide overexpressed in psoriasis epidermis. We evaluated whether the amount of NETs is increased in psoriasis and determined the effect of NETs on HBD-2 production in epidermal keratinocytes. Using fluorescent microscopy, we found that patients with psoriasis (n = 48) had higher amount of NETotic cells in their peripheral blood compared to healthy controls (n = 48) and patients with eczema (n = 35). Psoriasis sera showed increased ability to induce NET formation in control neutrophils but normal NET degradation ability. The amount of NETs in the peripheral blood correlated with psoriasis disease severity. NETosis was also observed in the majority (18 of 20) of psoriasis skin specimens. Furthermore, NETs induced HBD-2 mRNA and protein production in keratinocytes, and immunohistochemical analysis confirmed strong expression of HBD-2 in psoriasis lesional skin. In summary, NET formation is increased in peripheral blood and lesional skin of psoriasis patients and correlates with disease severity. Additionally, NET-induced HBD-2 production may provide a novel mechanism for the decreased susceptibility of psoriasis plaques to microbial infections. PMID:27493143

  5. Growth and differentiation in cultured human thyroid cells: effects of epidermal growth factor and thyrotropin.

    PubMed

    Errick, J E; Ing, K W; Eggo, M C; Burrow, G N

    1986-01-01

    Human thyroid cells were grown and subcultured in vitro to examine their responses to known hormones and growth factors, and to serum. The cells were obtained from surgical specimens and were either neoplastic or nonneoplastic. The effects of culture conditions on cell growth were measured by changes in cell numbers and by stimulation of [3H]thymidine incorporation. The results showed that serum (0.5%) was essential for cell proliferation, and that a mixture of insulin (10 micrograms/ml), transferrin (5 micrograms/ml), hydrocortisone (10 micrograms/ml), somatostatin (10 ng/ml), and glycyl-histidyl-lysine (10 ng/ml) enhanced the effect of serum. Maximum growth of the cells was obtained when epidermal growth factor was present at 10(-9) M. Differentiation was measured by production of thyroglobulin, which was found to be stimulated by thyrotropin. This system provides a means to study the hormonal control of growth and differentiation in human thyroid cells. PMID:3511027

  6. Long-wave ultraviolet light induces phospholipase activation in cultured human epidermal keratinocytes

    SciTech Connect

    Hanson, D.; DeLeo, V. )

    1990-08-01

    Long wave ultraviolet radiation (UVA) has been shown to play an important role in the overall response of skin to solar radiation, including sunburn, tanning, premature aging, and non-melanoma skin cancer. UVA induction of inflammation in human skin is thought to be mediated by membrane lipid derived products. In order to investigate the mechanism of this response we examined the effect of UVA on phospholipid metabolism of human epidermal keratinocytes in culture. Keratinocytes were grown in serum free low calcium medium. The cells were prelabeled with (3H) arachidonic acid or (3H) choline and irradiated with UVA (Honle 2002-Hg vapor lamp). Identification and quantitation of specific membrane phospholipid-derived components was achieved using high-performance liquid chromatography, paper chromatography, and radioimmunoassay. UVA resulted in a linear dose dependent release of (3H) arachidonic acid into medium between 1 and 20 joule/cm2. This response was inhibited in an oxygen-reduced environment. The radiolabel released was predominantly free arachidonate and cyclooxygenase metabolites. Cyclooxygenase metabolites prostaglandin E2 and prostacyclin derivative, 6-keto-prostaglandin F1a, were stimulated following UVA irradiation, but the lipoxygenase metabolite, leukotriene B was not detected. Maximal release was measured immediately after irradiation and changed little over 24 h post-irradiation. UVA stimulated an increase of (3H) choline metabolites glycerophosphorylcholine and phosphorylcholine in media extracts suggesting UVA activation of phospholipase C and phospholipase A2 or diacylglyceride lipase.

  7. Effects of silver nanoparticles on human dermal fibroblasts and epidermal keratinocytes.

    PubMed

    Galandáková, A; Franková, J; Ambrožová, N; Habartová, K; Pivodová, V; Zálešák, B; Šafářová, K; Smékalová, M; Ulrichová, J

    2016-09-01

    Biomedical application of silver nanoparticles (AgNPs) has been rapidly increasing. Owing to their strong antimicrobial activity, AgNPs are used in dermatology in the treatment of wounds and burns. However, recent evidence for their cytotoxicity gives rise to safety concerns. This study was undertaken as a part of an ongoing programme in our laboratory to develop a topical agent for wound healing. Here, we investigated the potential toxicity of AgNPs using normal human dermal fibroblasts (NHDF) and normal human epidermal keratinocytes (NHEK) with the aim of comparing the effects of AgNPs and ionic silver (Ag-I). Besides the effect of AgNPs and Ag-I on cell viability, the inflammatory response and DNA damage in AgNPs and Ag-I-treated cells were examined. The results showed that Ag-I were significantly more toxic than AgNPs both on NHDF and NHEK. Non-cytotoxic concentrations of AgNPs and Ag-I did not induce DNA strand breaks and did not affect inflammatory markers, except for a transient increase in interleukin 6 levels in Ag-I-treated NHDF. The results showed that AgNPs are more suitable for the intended application as a topical agent for wound healing up to the concentration 25 µg/mL. PMID:26500221

  8. Inhibitory effects of tetrandrine on epidermal growth factor-induced invasion and migration in HT29 human colorectal adenocarcinoma cells.

    PubMed

    Horng, Chi-Ting; Yang, Jai-Sing; Chiang, Jo-Hua; Lu, Chi-Cheng; Lee, Chiu-Fang; Chiang, Ni-Na; Chen, Fu-An

    2016-01-01

    Tetrandrine has been shown to reduce cancer cell proliferation and to inhibit metastatic effects in multiple cancer models in vitro and in vivo. However, the effects of tetrandrine on the underlying mechanism of HT29 human colorectal adenocarcinoma cell metastasis remain to be fully elucidated. The aim of the present study was focused on tetrandrine‑treated HT29 cells following epidermal growth factor (EGF) treatment, and Transwell, gelatin zymography, gene expression and immunoblotting assays were performed to investigate metastatic effects in vitro. Tetrandrine was observed to dose‑dependently inhibit EGF‑induced HT29 cell invasion and migration, however, no effect on cell viability occurred following exposure to tetradrine between 0.5 and 2 µM. Tetrandrine treatment inhibited the enzymatic activity of matrix metalloprotease (MMP)‑2 and MMP‑9 in a concentration‑dependent manner. The present study also found a reduction in the mRNA expression levels of MMP‑2 and MMP‑9 in the tetrandrine‑treated HT29 cells. Tetrandrine also suppressed the phosphorylation of EGF receptor (EGFR) and its downstream pathway, including phosphoinositide‑dependent kinase 1, phosphatidylinositol 3‑kinase and phosphorylated AKT, suppressing the gene expression of MMP‑2 and MMP‑9. Furthermore, tetrandrine triggered mitogen‑activated protein kinase signaling through the suppressing the activation of phosphorylated extracellular signal‑regulated protein kinase. These data suggested that targeting EGFR signaling and its downstream molecules contributed to the inhibition of EGF‑induced HT29 cell metastasis caused by tetrandrine, eventually leading to a reduction in the mRNA and gelatinase activities of MMP-2 and MMP-9, respectively. PMID:26648313

  9. Reactive oxygen species promotes cellular senescence in normal human epidermal keratinocytes through epigenetic regulation of p16(INK4a.).

    PubMed

    Sasaki, Mina; Kajiya, Hiroshi; Ozeki, Satoru; Okabe, Koji; Ikebe, Tetsuro

    2014-09-26

    Reactive oxygen species (ROS) can cause severe damage to DNA, proteins and lipids in normal cells, contributing to carcinogenesis and various pathological conditions. While cellular senescence arrests the early phase of cell cycle without any detectable telomere loss or dysfunction. ROS is reported to contribute to induction of cellular senescence, as evidence by its premature onset upon treatment with antioxidants or inhibitors of cellular oxidant scavengers. Although cellular senescence is known to be implicated in tumor suppression, it remains unknown whether ROS initially contributed to be cellular senescence in normal human epidermal keratinocytes (NHEK) and their malignant counterparts. To clarify whether ROS induce cellular senescence in NHEKs, we examined the effect of hydrogen peroxide (H2O2) on the expression of cellular senescence-associated molecules in NHEKs, compared to in squamous carcinoma cells (SCCs). Hydrogen peroxide increased the number of cells positive in senescence associated-β-galactosidase (SA-β-Gal) activity in NHEKs, but not SCCs. The expression of cyclin-dependent kinase (CDK) inhibitors, especially p16(INK4a) was upregulated in NHEKs treated with H2O2. Interestingly, H2O2 suppressed the methylation of p16(INK4a), promoter region in NHEKs, but not in SCCs. Hydrogen peroxide also suppressed the expression of phosphorylated Rb and CDK4, resulting in arrest in G0/G1 phase in NHEKs, but not SCCs. Our results indicate that the ROS-induced cellular senescence in NHEKs was caused by the upregulation p16(INK4a) through demethylation in its promoter region, which is not detected in SCCs, suggesting that ROS-induced cellular senescence contributes to tumor suppression of NHEKs. PMID:25181340

  10. Human epidermal growth factor receptor-2 overexpression and amplification in metastatic and recurrent high grade or type 2 endometrial carcinomas

    PubMed Central

    Kato, Rina; Hasegawa, Kiyoshi; Ishii, Risa; Owaki, Akiko; Torii, Yutaka; Oe, Shuko; Hirasawa, Hiroshi; Kobayashi, Yoichi; Udagawa, Yasuhiro

    2013-01-01

    Introduction Human epidermal growth factor receptor (HER)-2 overexpression or gene amplification is more common in high-grade or type 2 endometrial carcinomas. We assessed the discordance of HER-2 expression between primary and metastatic or recurrent endometrial carcinomas. Materials and methods Thirty-six primary, along with 14 metastatic and five recurrent tumors (matched to primaries), pathologically confirmed as high-grade or type 2 endometrial carcinomas, were submitted for immunohistochemistry (IHC) for HER-2. Fluorescence in situ hybridization was performed when the tumors showed HER-2 overexpression (≥2+ IHC score). The results of the IHC and fluorescence in situ hybridization assays were compared between the primary and metastatic or recurrent tumors. The relationships between HER-2 expression and clinicopathological factors or prognosis were investigated. Results HER-2 overexpression and HER-2 amplification (a ratio of HER-2 copies to chromosome 17 [CEP17] copies ≥2.2) were detected in 33.3% (twelve of 36 patients) and 5.6% (two of 36 patients) of primary tumors, respectively. HER-2 overexpression was not associated with clinicopathological factors or prognosis. In 19 tumor specimens obtained from metastatic or recurrent tumors, HER-2 overexpression and HER-2 amplification were detected in 57.9% (eleven patients) and 15.8% (three patients), respectively. HER-2 overexpression tended to predict a worse prognosis. Conclusion HER-2 expression in metastatic or recurrent tumors was more frequent than in matched primary high-grade or type 2 endometrial carcinomas. Trastuzumab in combination with cytotoxic chemotherapy may represent an alternative therapeutic option for these tumors. PMID:23950654

  11. Differential cytokine modulation of the genes LAMA3, LAMB3, and LAMC2, encoding the constitutive polypeptides, alpha 3, beta 3, and gamma 2, of human laminin 5 in epidermal keratinocytes.

    PubMed

    Korang, K; Christiano, A M; Uitto, J; Mauviel, A

    1995-07-24

    Laminin 5, an anchoring filament protein previously known as nicein/kalinin/epiligrin, consists of three polypeptide chains, alpha 3, beta 3, and gamma 2, encoded by the genes LAMA3, LAMB3, and LAMC2, respectively. The expression of laminin 5 was detected by Northern hybridization with specific cDNA probes in various epidermal keratinocyte cultures, whereas no expression of any of the three genes could be detected in foreskin fibroblast cultures. Transforming growth factor-beta (TGF-beta) enhanced LAMA3, LAMB3, and LAMC2 gene expression in human epidermal keratinocytes, as well as in HaCaT and Balb/K cells in culture, although the extent of enhancement was greater for LAMA3 and LAMC2 genes than for LAMB3. Interestingly, tumor necrosis factor-alpha, (TNF-alpha) alone did not alter the expression of LAMB3 and LAMC2 genes in human epidermal keratinocytes, whereas it inhibited the expression of LAMA3. These results suggest that the expression of the three genes encoding the laminin 5 subunits is not coordinately regulated by the cytokines tested. PMID:7635220

  12. Changes of epidermal cell morphology and keratin expression induced by inhibitors of protein kinase C.

    PubMed

    Hegemann, L; Wevers, A; Bonnekoh, B; Mahrle, G

    1992-03-01

    Several lines of evidence show protein kinase C as being involved in various regulatory processes in keratinocyte biology, e.g. proliferation and differentiation. In the present study, we investigated the effects of three different inhibitors of protein kinase C, staurosporine, CP 46'665-1, and tiflucarbine, on cell morphology and keratin expression in a non-tumorigenic human keratinocyte cell line (HaCaT cells). Staurosporine, being the most potent inhibitor of protein kinase C activity in vitro, and CP 46'665-1 induced morphological transformation to a fibroblast-like cell shape. In contrast, no changes in cell morphology were observed after exposure to tiflucarbine. The investigation of keratin expression in HaCaT cells grown in the presence of the different compounds revealed the following changes: After 72 h of cultivation, keratins 8 and 18 were still expressed in treated cells, whereas expression of keratin 13 was decreased as compared to control cells. Immunoblotting to detect vimentin demonstrated its absence in treated and control cells. Since tiflucarbine is known as a dual protein kinase C/calmodulin inhibitor whereas staurosporine and CP 46'665-1 do not antagonize calmodulin function, it might be possible that not only protein kinase C but also calmodulin is involved in the process leading to the morphological changes. PMID:1376142

  13. Epidermal Growth Factor Receptor and PTEN Modulate Tissue Factor Expression in Glioblastoma through JunD/Activator Protein-1 Transcriptional Activity

    PubMed Central

    Rong, Yuan; Belozerov, Vladimir E.; Tucker-Burden, Carol; Chen, Gang; Durden, Donald L.; Olson, Jeffrey J.; Van Meir, Erwin G.; Mackman, Nigel; Brat, Daniel J.

    2009-01-01

    Hypoxia and necrosis are fundamental features of glioblastoma (GBM) and their emergence is critical for the rapid biological progression of this fatal tumor; yet, underlying mechanisms are poorly understood. We have suggested that vaso-occlusion following intravascular thrombosis could initiate or propagate hypoxia and necrosis in GBM. Tissue factor (TF), the main cellular initiator of coagulation, is overexpressed in GBMs and likely favors a thrombotic microenvironment. Epidermal growth factor receptor (EGFR) amplification and PTEN loss are two common genetic alterations seen in GBM but not in lower-grade astrocytomas that could be responsible for TF up-regulation. The most frequent EGFR mutation in GBM involves deletion of exons 2 to 7, resulting in the expression of a constitutively active receptor, EGFRvIII. Here, we show that overexpression of EGFR or EGFRvIII in human glioma cells causes increased basal TF expression and that stimulation of EGFR by its ligand, EGF, leads to a marked dose-dependent up-regulation of TF. In all cases, increased TF expression led to accelerated plasma coagulation in vitro. EGFR-mediated TF expression depended most strongly on activator protein-1 (AP-1) transcriptional activity and was associated with c-Jun NH2-terminal kinase (JNK) and JunD activation. Restoration of PTEN expression in PTEN-deficient GBM cells diminished EGFR-induced TF expression by inhibiting JunD/AP-1 transcriptional activity. PTEN mediated this effect by antagonizing phosphatidylinositol 3-kinase activity, which in turn attenuated both Akt and JNK activities. These mechanisms are likely at work in vivo, as EGFR expression was highly correlated with TF expression in human high-grade astrocytoma specimens. PMID:19276385

  14. Expression of Vascular Endothelial Growth Factor (VEGF) and Epidermal Growth Factor Receptor (EGFR) in Patients With Serous Ovarian Carcinoma and Their Clinical Significance

    PubMed Central

    Ranjbar, Reza; Nejatollahi, Foroogh; Nedaei Ahmadi, Ahmad Sina; Hafezi, Hossein; Safaie, Akbar

    2015-01-01

    Background: Vascular endothelial growth factor (VEGF) has an essential role in tumor metastasis by inducing the construction of abnormal blood vessels. Epidermal growth factor receptor (EGFR) is involved in different parts of cancer growth such as tumor initiation, angiogenesis and metastasis. Objectives: The aim of this study was to evaluate the expression of VEGF and EGFR in ovarian cancer in southern Iran and to assess the correlation between expression of these two markers and patients’ age, tumor stage, and grade. Patients and Methods: In this cross-sectional study, 50 paraffin blocks of serous ovarian adenocarcinomas and 50 paraffin-embedded specimens from control individuals operated for reasons other than malignancy were immunohistochemically stained using anti-human VEGF and EGFR antibodies. Results: A significant difference in the frequency of positive expression of VEGF was observed in ovarian cancer patients (25.0%) compared with the control group (8.0%) (P = 0.023). A significant difference between EGFR expression in patients (56.8%) and controls (24.0%) was also obtained (P = 0.001). No significant correlation between VEGF and EGFR expression and patients’ age, tumor grade and stage were detected (P > 0.05). Conclusions: The significant increase in both VEGF and EGFR in the patients with ovarian cancer compared to healthy individuals could have prognostic value. Identifying these markers may be useful for chemopreventive and chemotherapeutic strategies for patients with serous ovarian cancer. PMID:26478789

  15. Epoc-1: a POU-domain gene expressed in murine epidermal basal cells and thymic stromal cells.

    PubMed

    Yukawa, K; Yasui, T; Yamamoto, A; Shiku, H; Kishimoto, T; Kikutani, H

    1993-11-15

    POU-domain transcription factors are known as developmental regulators which control organ development and cell phenotypes. In order to clarify the roles of POU-domain transcription factors in cell differentiation, we cloned a novel POU family gene, Epoc-1, from a murine thymus cDNA library. The amino acid (aa) sequence of the POU-specific domain of Epoc-1 is almost identical to those of Oct-1 and Oct-2. However, within the POU-homeodomain, 13 out of 60 aa differ between Epoc-1 and Oct-2. Recombinant Epoc-1 products were found to bind specifically to the octamer sequence. Epoc-1 was found to be expressed in skin, thymus, stomach and testis. In situ hybridization experiments and RNase protection assays indicated that Epoc-1 is expressed in the epidermal basal cells of the skin, which contain stem cells unipotent for keratinocyte differentiation and in thymic stromal elements. These results suggest that Epoc-1 might be one of the developmental regulators which controls epidermal development and thymic organogenesis. PMID:8224904

  16. Epidermal growth factor-induced stimulation of proliferation and gene expression changes in the hypotrichous ciliate, Stylonychia lemnae.

    PubMed

    Mu, Weijie; Wang, Qi; Bourland, William A; Jiang, Chuanqi; Yuan, Dongxia; Pan, Xuming; Miao, Wei; Chen, Ying; Xiong, Jie

    2016-10-30

    Epidermal growth factor (EGF) induces proliferation of epidermal and epithelial tissues in mammals. However, the effect of EGF on the single-celled eukaryotes is not well characterized, especially in the protists. Ciliates, an important group of protists, are well characterized as both pollution indicators and model organisms for research. Stylonychia lemnae, is one of the most common free-living ciliates, widely distributed in ponds, rivers and marshes. Here, we report the role of EGF on cell proliferation stimulation in S. lemnae. The growth curve of S. lemnae was established, and the stimulation effect of EGF on the proliferation of S. lemnae was investigated. Based on the results, potential EGF receptors were identified in S. lemnae according to the conserved domains and gene expression. Differential gene expression revealed that EGF-induced genes in other organisms (e.g. antioxidant) also up-regulated in S. lemnae cells at propagation stages. In addition, our results showed that EGF could up-regulate the signal transduction-related processes in the decline stage of S. lemnae cells, indicating its potential function in apoptosis inhibition. In summary, this study reports findings of the first investigation of EGF effects in hypotrich ciliates, and establishes an additional system for the study of the molecular mechanisms of EGF actions in eukaryotic cell division and proliferation. PMID:27506312

  17. Luteinizing hormone/human chorionic gonadotrophin receptors in various epidermal structures.

    PubMed

    Venencie, P Y; Méduri, G; Pissard, S; Jolivet, A; Loosfelt, H; Milgrom, E; Misrahi, M

    1999-09-01

    Two different monoclonal antibodies recognizing different epitopes were used to study the localization of luteinizing hormone/human chorionic gonadotrophin (LH/hCG) receptors in human skin. Immunolabelling was observed only in the epidermis and derived structures but not in the dermis. The basal, spinal and granular layers were stained, whereas no receptors were detected in the non-nucleated horny cells. In the growing (anagen) hair, immunostaining was found in the inner root sheath below the level of the sebaceous glands and in the outer root sheath above this level. In the resting (telogen) hair, only the latter staining was observed. In the sebaceous glands, only the thin cells close to the walls of the ducts were immunolabelled. In the eccrine sweat glands, the external clear cells were stained in the secretory portion of the gland, whereas only the cells close to the lumen were labelled in the ducts. The distribution of LH/hCG receptors was compared with that of steroidogenic enzymes (side chain cleavage cytochrome P450, adrenodoxin, 3-beta-hydroxy-5-ene steroid dehydrogenase Delta5-Delta4 isomerase, 17-hydroxylase cytochrome P450 and cytochrome P450 aromatase). Only partial overlaps were observed. The presence of LH receptor mRNA in the skin was confirmed by reverse transcription-polymerase chain reaction. Monoclonal antibodies raised against the human follicle-stimulating hormone receptor failed to detect the latter in the epidermal structures and in the dermis. The role of LH and hCG in skin modifications occurring during pregnancy and after the menopause is unknown. These hormones may possibly act by regulating steroidogenic enzymes or by modulating cell growth and differentiation. PMID:10583046

  18. Recombinant Human Epidermal Growth Factor Accelerates Recovery of Mouse Small Intestinal Mucosa After Radiation Damage

    SciTech Connect

    Lee, Kang Kyoo; Jo, Hyang Jeong; Hong, Joon Pio; Lee, Sang-wook Sohn, Jung Sook; Moon, Soo Young; Yang, Sei Hoon; Shim, Hyeok; Lee, Sang Ho; Ryu, Seung-Hee; Moon, Sun Rock

    2008-07-15

    Purpose: To determine whether systemically administered recombinant human epidermal growth factor (rhEGF) accelerates the recovery of mouse small intestinal mucosa after irradiation. Methods and Materials: A mouse mucosal damage model was established by administering radiation to male BALB/c mice with a single dose of 15 Gy applied to the abdomen. After irradiation, rhEGF was administered subcutaneously at various doses (0.04, 0.2, 1.0, and 5.0 mg/kg/day) eight times at 2- to 3-day intervals. The evaluation methods included histologic changes of small intestinal mucosa, change in body weight, frequency of diarrhea, and survival rate. Results: The recovery of small intestinal mucosa after irradiation was significantly improved in the mice treated with a high dose of rhEGF. In the mice that underwent irradiation without rhEGF treatment, intestinal mucosal ulceration, mucosal layer damage, and severe inflammation occurred. The regeneration of villi was noticeable in mice treated with more than 0.2 mg/kg rhEGF, and the villi recovered fully in mice given more than 1 mg/kg rhEGF. The frequency of diarrhea persisting for more than 3 days was significantly greater in the radiation control group than in the rhEGF-treated groups. Conclusions: Systemic administration of rhEGF accelerates recovery from mucosal damage induced by irradiation. We suggest that rhEGF treatment shows promise for the reduction of small intestinal damage after irradiation.

  19. Synergistic Skin Penetration Enhancer and Nanoemulsion Formulations Promote the Human Epidermal Permeation of Caffeine and Naproxen.

    PubMed

    Abd, Eman; Namjoshi, Sarika; Mohammed, Yousuf H; Roberts, Michael S; Grice, Jeffrey E

    2016-01-01

    We examined the extent of skin permeation enhancement of the hydrophilic drug caffeine and lipophilic drug naproxen applied in nanoemulsions incorporating skin penetration enhancers. Infinite doses of fully characterized oil-in-water nanoemulsions containing the skin penetration enhancers oleic acid or eucalyptol as oil phases and caffeine (3%) or naproxen (2%) were applied to human epidermal membranes in Franz diffusion cells, along with aqueous control solutions. Caffeine and naproxen fluxes were determined over 8 h. Solute solubility in the formulations and in the stratum corneum (SC), as well as the uptake of product components into the SC were measured. The nanoemulsions significantly enhanced the skin penetration of caffeine and naproxen, compared to aqueous control solutions. Caffeine maximum flux enhancement was associated with a synergistic increase in both caffeine SC solubility and skin diffusivity, whereas a formulation-increased solubility in the SC was the dominant determinant for increased naproxen fluxes. Enhancements in SC solubility were related to the uptake of the formulation excipients containing the active compounds into the SC. Enhanced skin penetration in these systems is largely driven by uptake of formulation excipients containing the active compounds into the SC with impacts on SC solubility and diffusivity. PMID:26554868

  20. Oak ellagitannins suppress the phosphorylation of the epidermal growth factor receptor in human colon carcinoma cells.

    PubMed

    Fridrich, Diana; Glabasnia, Arne; Fritz, Jessica; Esselen, Melanie; Pahlke, Gudrun; Hofmann, Thomas; Marko, Doris

    2008-05-14

    The ellagitannins castalagin and vescalagin, and the C-glycosides grandinin and roburin E as well as ellagic acid were found to potently inhibit the growth of human colon carcinoma cells (HT29) in vitro. In a cell-free system these compounds were identified as potent inhibitors of the protein tyrosine kinase activity of the epidermal growth factor receptor (EGFR) with IC 50 values in the low nanomolar range. To address the question of whether the interference with the activity of the isolated EGFR also plays a role within intact cells, effects on the phosphorylation status of the EGFR, as a measure for its activity, were determined in HT29 cells. As exemplified for castalagin and grandinin, both the nonglycosylated and the glycosylated ellagitannins effectively suppressed EGFR phosphorylation, but only at concentrations > or =10 microM, thus, in a concentration range where growth inhibition was observed. These results indicate that the suppression of EGFR-mediated signaling might contribute to the growth inhibitory effects of these compounds present in oak-matured wines and spirits such as whiskey. In contrast, despite substantial growth inhibitory properties, ellagic acid did not significantly affect EGFR phosphorylation in HT29 cells up to 100 microM. PMID:18419129

  1. Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment

    PubMed Central

    Koo, Taeryool

    2016-01-01

    Overexpression of human epidermal growth factor receptor 2 (HER2) is found in about 20% of breast cancer patients. With treatment using trastuzumab, an anti-HER2 monoclonal antibody, systemic control is improved. Nonetheless, the incidence of brain metastasis does not be improved, rather seems to be increased in HER2-positive breast cancer. The mainstay treatment for brain metastases is radiotherapy. According to the number of metastatic lesions and performance status of patients, radiosurgery or whole brain radiotherapy can be performed. The concurrent use of a radiosensitizer further improves intracranial control. Due to its large molecular weight, trastuzumab has a limited ability to cross the blood-brain barrier. However, small tyrosine kinase inhibitors such as lapatinib, has been noted to be a promising agent that can be used as a radiosensitizer to affect HER2-positive breast cancer. This review will outline general management of brain metastases and will focus on preclinical findings regarding the radiosensitizing effect of small molecule HER2 targeting agents. PMID:27104161

  2. Pertuzumab in human epidermal growth-factor receptor 2-positive breast cancer: clinical and economic considerations

    PubMed Central

    Lamond, Nathan WD; Younis, Tallal

    2014-01-01

    In the absence of specific therapy, the 15%–20% of breast cancers demonstrating human epidermal growth-factor receptor 2 (HER2) protein overexpression and/or gene amplification are characterized by a more aggressive phenotype and poorer prognosis compared to their HER2-negative counterparts. Trastuzumab (Herceptin), the first anti-HER2-targeted therapy, has been associated with improved survival outcomes in HER2-positive breast cancer. However, many patients with early stage disease continue to relapse, and metastatic disease remains incurable. In order to further improve these outcomes, several novel HER2-targeted agents have recently been developed. Pertuzumab (Perjeta), a monoclonal antibody against the HER2 dimerization domain, has also been associated with improved patient outcomes in clinical trials, and has recently been approved in combination with chemotherapy and trastuzumab for neoadjuvant therapy of early stage, HER2-positive breast cancer and first-line treatment of metastatic disease. This review briefly summarizes pertuzumab’s clinical development as well as the published evidence supporting its use, and highlights some of the currently unanswered questions that will influence pertuzumab’s incorporation into clinical practice. PMID:24876795

  3. Influence of free residual chlorine on cultured human epidermal keratinocytes from normal skin and hypertrophic scars.

    PubMed

    Matsumoto, Y; Mori, H; Hayakawa, A; Ohashi, M

    1995-07-01

    In Japan, public health regulations state that the water in rinsing pools used before swimming should contain 50-100 mg/l of chlorine. We examined the influence of chlorination at high concentrations in rinsing pools on the skin using cultured human epidermal keratinocytes from normal skin and hypertrophic scars. Chlorination of cell culture for 15 min with 200 mg/l of free residual chlorine proved cytotoxic to both types of keratinocytes as did 100 mg/l of free residual chlorine for 1 or 3 consecutive days. Keratinocytes from hypertrophic scars, when cultivated in 100 mg/l of free residual chlorine, were more vulnerable to chlorine than those from normal skin. Cell characteristics of cultured keratinocytes from hypertrophic scars may be somewhat different from those of normal skin. The phenomena observed in this experimental model of the skin suggest that people exposed to chlorine in rinsing pools at concentrations in excess of 200 mg/l for about 15 min before swimming are at risk of developing cutaneous disorders, especially at sites of injury, e.g. scars. PMID:7577833

  4. Sulfur mustard induces the formation of keratin aggregates in human epidermal keratinocytes.

    PubMed

    Dillman, James F; McGary, Kriston L; Schlager, John J

    2003-12-01

    The vesicant sulfur mustard is an alkylating agent that has the capacity to cross-link biological molecules. We are interested in identifying specific proteins that are altered upon sulfur mustard exposure. Keratins are particularly important for the structural integrity of skin, and several genetically inherited blistering diseases have been linked to mutations in keratin 5 and keratin 14. We examined whether sulfur mustard exposure alters keratin biochemistry in cultured human epidermal keratinocytes. Western blotting with specific monoclonal antibodies revealed the formation of stable high-molecular-weight "aggregates" containing keratin 14 and/or keratin 5. These aggregates begin to form within 15 min after sulfur mustard exposure. These aggregates display a complex gel electrophoresis pattern between approximately 100 and approximately 200 kDa. Purification and analysis of these aggregates by one- and two-dimensional gel electrophoresis and mass spectrometry confirmed the presence of keratin 14 and keratin 5 and indicate that at least some of the aggregates are composed of keratin 14-keratin 14, keratin 14-keratin 5, or keratin 5-keratin 5 dimers. These studies demonstrate that sulfur mustard induces keratin aggregation in keratinocytes and support further investigation into the role of keratin aggregation in sulfur mustard-induced vesication. PMID:14644625

  5. The prognostic significance of tumor epidermal growth factor receptor (EGFR) expression change after neoadjuvant chemoradiation in patients with rectal adenocarcinoma

    PubMed Central

    Dvořák, Josef; Urbanec, Marek; Bluml, Antonin; Čermáková, Eva; Bartoš, Jiří; Petera, Jiří

    2015-01-01

    Aim of the study The aim of this retrospective study was to determine the prognostic impact of epidermal growth factor receptor (EGFR) expression changes during neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Material and methods Fifty patients with locally advanced rectal cancer were evaluated. All the patients were administered the total dose of 44 Gy. Capecitabine has been concomitantly administered in the dose 825 mg/m2 in two daily oral administrations. Surgery was indicated 4–8 weeks from the chemoradiotherapy completion. Epidermal growth factor receptor expression in the pretreatment biopsies and in the resected specimens was assessed with immunohistochemistry. Results All of 50 patients received radiotherapy without interruption up to the total planned dose. In 30 patients sphincter-saving surgery was performed, 20 patients underwent amputation of the rectum. Downstaging was described in 30 patients. Four patients have had complete pathologic remission. Twenty-six patients have had partial remission, the disease was stable in 15 patients. Progression was reported in 5 patients. The median disease-free survival was 64.9 months, median overall survival was 76.4 months. Increased EGFR expression was found in 12 patients (26.1%). A statistically significantly shorter overall survival (p < 0.0001) and disease-free survival (p < 0.0001) was found in patients with increased expression of EGFR compared with patients where no increase in the expression of EGFR during neoadjuvant chemoradiotherapy was observed. Conclusions The overexpression of EGFR during neoadjuvant chemoradiotherapy for locally advanced rectal adenokarcinoma associated with significant shorter overall survival and disease free survival. PMID:26199571

  6. The antimicrobial heterodimer S100A8/S100A9 (calprotectin) is upregulated by bacterial flagellin in human epidermal keratinocytes.

    PubMed

    Abtin, Arby; Eckhart, Leopold; Gläser, Regine; Gmeiner, Ramona; Mildner, Michael; Tschachler, Erwin

    2010-10-01

    Antimicrobial peptides (AMPs) have a central role in the innate immune system of the skin. Epidermal keratinocytes (KCs) express numerous such peptides either constitutively or in response to exposure to microbial compounds. Here, we investigated the regulation of S100A8 (calgranulin A) and S100A9 (calgranulin B), which form an antimicrobial heterodimeric complex also known as calprotectin, in KCs. Culture supernatants of gram-negative bacteria, but not of gram-positive bacteria nor of the yeast Candida albicans, triggered the expression of S100A8 and S100A9. To identify pathogen-associated molecular patterns (PAMPs) responsible for the upregulation of S100A8 and S100A9, KCs were stimulated with ligands for Toll-like receptors (TLRs). Quantitative real-time PCR (qRT-PCR) analysis revealed that the TLR5 ligand flagellin increased the mRNA expression of both S100A8 and S100A9. Supernatant from wild-type (WT) Escherichia coli, but not from a flagellin-deficient E. coli strain (ΔFliC), induced S100A8 and S100A9 protein production in KCs. Moreover, small interfering RNA-mediated knockdown of TLR5 expression suppressed the ability of KCs to upregulate S100A8 and S100A9 mRNA expression in response to E. coli supernatant. Like in cell culture, stimulation of human skin explants with E. coli induced the expression of S100A8 and S100A9. Our data suggest that bacterial flagellin induces the upregulation of S100A8/S100A9 via a TLR5-dependent mechanism in epidermal KCs. PMID:20555353

  7. Deposition of bioactive human epidermal growth factor in the egg white of transgenic hens using an oviduct-specific minisynthetic promoter.

    PubMed

    Park, Tae Sub; Lee, Hyo Gun; Moon, Jong Kook; Lee, Hong Jo; Yoon, Jong Won; Yun, Bit Na Rae; Kang, Sang-Chul; Kim, Jiho; Kim, Hyunil; Han, Jae Yong; Han, Beom Ku

    2015-06-01

    Currently, transgenic animals have found a wide range of industrial applications and are invaluable in various fields of basic research. Notably, deposition of transgene-encoded proteins in the egg white (EW) of hens affords optimal production of genetically engineered biomaterials. In the present study, we developed a minisynthetic promoter modulating transgene transcription specifically in the hen's oviduct, and assayed the bioactivity of human epidermal growth factor (hEGF) driven by that promoter, after partial purification of epidermal growth factor (EGF) from transgenic hen eggs. Our minisynthetic promoter driving expression of chicken codon-optimized human epidermal growth factor (cEGF) features 2 consecutive estrogen response elements of the ovalbumin (OV) promoter, ligated with a 3.0 kb OV promoter region carrying OV regulatory elements, and a 5'-UTR. Subsequently, a 3'-UTR carrying the poly-A tail sequence of the OV gene was added after incorporation of the cEGF transgene. Finally, we partially purified cEGF from transgenic hen eggs and evaluated the biofunctional activities thereof in vitro and in vivo. In the in vitro assay, EW-derived hEGF exhibited a proliferative effect on HeLa cells similar to that of commercial hEGF. In the in vivo assay, compared to the nontreated control, transgenic hen egg-derived EGF afforded slightly higher levels of re-epithelialization (via fibroplasia) and neovascularization of wounded skin of miniature pigs than did the commercial material. In conclusion, transgenic hens may be used to produce genetically engineered bioactive biomaterials driven by an oviduct-specific minisynthetic promoter. PMID:25690652

  8. Simultaneous suppression of epidermal growth factor receptor and c-erbB-2 reverses aneuploidy and malignant phenotype of a human ovarian carcinoma cell line.

    PubMed

    Pack, Svetlana D; Alper, Ozgül M; Stromberg, Kurt; Augustus, Meena; Ozdemirli, Metin; Miermont, Anne M; Klus, Greg; Rusin, Marek; Slack, Rebecca; Hacker, Neville F; Ried, Thomas; Szallasi, Zoltan; Alper, Ozge

    2004-02-01

    Coexpression of epidermal growth factor receptor (EGFR) and c-erbB-2 in 47-68% of ovarian cancer cells indicate their strong association with tumor formation. We examined the effects of simultaneous antisense- or immunosuppression of EGFR and c-erbB-2 expression on the invasive phenotype, aneuploidy, and genotype of cultured human ovarian carcinoma cells (NIH:OVCAR-8). We report here that suppression of both EGFR and c-erbB-2 results in regression of aneuploidy and genomic imbalances in NIH:OVCAR-8 cells, restores a more normal phenotype, and results in a more normal gene expression profile. Combined with cytogenetic analysis, our data demonstrate that the regression of aneuploidy is due to the selective apoptosis of double antisense transfected cells with highly abnormal karyotype. PMID:14871800

  9. Response to Therapy and Outcomes in Oropharyngeal Cancer Are Associated With Biomarkers Including Human Papillomavirus, Epidermal Growth Factor Receptor, Gender, and Smoking

    SciTech Connect

    Kumar, Bhavna; Cordell, Kitrina G.; Lee, Julia S.; Prince, Mark E.; Tran, Huong H.; Wolf, Gregory T.; Urba, Susan G.; Worden, Francis P.; Chepeha, Douglas B.; Teknos, Theodoros N.; Eisbruch, Avraham; Tsien, Christina I.; Taylor, Jeremy; D'Silva, Nisha J.; Yang, Kun; Kurnit, David M.; Bradford, Carol R.

    2007-10-01

    Induction chemotherapy and concurrent chemoradiation for responders or immediate surgery for non-responders is an effective treatment strategy head and neck squamous cell carcinoma (HNSCC) of the larynx and oropharynx. Biomarkers that predict outcome would be valuable in selecting patients for therapy. In this study, the presence and titer of high risk human papilloma virus (HPV) and expression of epidermal growth factor receptor (EGFR) in pre-treatment biopsies, as well as smoking and gender were examined in oropharynx cancer patients enrolled in an organ sparing trial. HPV16 copy number was positively associated with response to therapy and with overall and disease specific survival, whereas EGFR expression, current or former smoking behavior, and female gender (in this cohort) were associated with poor response and poor survival in multivariate analysis. Smoking cessation and strategies to target EGFR may be useful adjuncts for therapy to improve outcome in the cases with the poorest biomarker profile.

  10. Intracellular modification of /sup 125/I-labeled epidermal growth factor by normal human foreskin fibroblasts

    SciTech Connect

    Schaudies, R.P.; Savage, C.R. Jr.

    1986-02-01

    Intracellular processing of /sup 125/I-labeled epidermal growth factor (EGF) in normal human foreskin fibroblasts was examined after incubation with saturating concentrations of (/sup 125/I)EGF. This report describes the column chromatographic separation of multiple processed forms of EGF generated by human foreskin fibroblasts and their structural characterization. More than 95% of the cell-bound (/sup 125/I)EGF was converted into multiple forms, which were separated into four distinct peaks of radioactivity using columns of Bio-Gel P-150 equilibrated with 0.2% sodium dodecyl sulfate. These were designated peaks 1-4. Cellular generation of these four peaks was dependent on culture conditions. Differences in absolute and relative amounts of peaks 1-4 were observed as a function of time of incubation at 37 C. In addition, chromatographic profiles of cell-associated /sup 125/I varied in relation to cell density. The radioactivity in peak 1 comigrated with /sup 125/I-labeled native EGF on nondenaturing polyacrylamide gels (pH 9.5), whereas peaks 2 and 3 exhibited more rapid electrophoretic mobilities. Electrophoretic mobilities of the radioactivity in peaks 2 and 3 were indistinguishable from those of chemically prepared derivatives of (/sup 125/I)EGF which were lacking either one or six amino acid residues from the carboxyterminus, respectively. The EGF receptor bound the radioactive material in peak 2 with an affinity equal to or greater than that of EGF; however, the radioactivity in peak 3 was bound to a much lesser extent. The radiolabel in both peaks 2 and 3 was greater than 95% precipitable by antiserum to native EGF. The labeled material in peak 4 was composed of (/sup 125/I)monoiodotyrosine, /sup 125/I-, and an unidentified peptide. None of the radiolabeled compounds in peak 4 interacted with the EGF receptor or with antiserum to native EGF.

  11. Inhibition of jet fuel aliphatic hydrocarbon induced toxicity in human epidermal keratinocytes.

    PubMed

    Inman, A O; Monteiro-Riviere, N A; Riviere, J E

    2008-05-01

    Jet propellant (JP)-8, the primary jet fuel used by the U.S. military, consists of hydrocarbon-rich kerosene base commercial jet fuel (Jet-A) plus additives DC1-4A, Stadis 450 and diethylene glycol monomethyl ether. Human epidermal keratinocytes (HEK) were exposed to JP-8, aliphatic hydrocarbon (HC) fuel S-8 and aliphatic HC pentadecane (penta), tetradecane (tetra), tridecane (tri) and undecane (un) for 5 min. Additional studies were conducted with signal transduction pathway blockers parthenolide (P; 3.0 microm), isohelenin (I; 3.0 microm), SB 203580 (SB; 13.3 microm), substance P (SP; 3.0 microm) and recombinant human IL-10 (rHIL-10; 10 ng ml(-1)). In the absence of inhibitors, JP-8 and to a lesser extent un and S-8, had the greatest toxic effect on cell viability and inflammation suggesting, as least in vitro, that synthetic S-8 fuel is less irritating than the currently used JP-8. Each inhibitor significantly (P < 0.05) decreased HEK viability. DMSO, the vehicle for P, I and SB, had a minimal effect on viability. Overall, IL-8 production was suppressed at least 30% after treatment with each inhibitor. Normalizing data relative to control indicate which inhibitors suppress HC-mediated IL-8 to control levels. P was the most effective inhibitor of IL-8 release; IL-8 was significantly decreased after exposure to un, tri, tetra and penta but significantly increased after JP-8 exposure compared with controls. Inhibitors were not effective in suppressing IL-8 release in JP-8 exposures to control levels. This study shows that inhibiting NF-kappa B, which appears to play a role in cytokine production in HC-exposed HEK in vitro, may reduce the inflammatory effect of HC in vivo. PMID:17966119

  12. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor

    SciTech Connect

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung; Kim, Eun-Sun; Jeong, Tae Cheon; Chun, Young-Jin; Lee, Ai-Young; Noh, Minsoo

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. - Highlights: • Pro-inflammatory cytokines induced VEGF production in normal human

  13. Expression of transforming growth factor alpha and epidermal growth factor receptor in rat lung neoplasms induced by plutonium-239

    SciTech Connect

    Stegelmeier, B.L.; Gillett, N.A.; Hahn, F.F.; Kelly, G.; Rebar, A.H.

    1994-11-01

    Ninety-two rat lung proliferative lesions and neoplasms induced by inhaled {sup 239}PuO{sub 2} were evaluated for aberrant expression of transforming growth factor alpha (TGF-{alpha}) and epidermal growth factor receptor (EGFR). Expression of TGF-{alpha} protein, measured by immunohistochemistry, was higher in 94% of the squamous cell carcinomas and 87% of the foci of alveolar epithelial squamous metaplasia than that exhibited by the normal-appearing, adjacent lung parenchyma. In contrast, only 20% of adenocarcinomas and foci of epithelial hyperplasia expressed elevated levels of TGF-{alpha}. Many neoplasms expressing TGF-{alpha} also expressed excessive levels of EGFR mRNA. Southern and DNA slot blot analyses showed that the elevated EGFR expression was not due to amplification of the EGFR gene. These data suggest that increased amounts of TGF-{alpha} were early alterations in the progression of plutonium-induced squamous cell carcinoma, and these increases may occur in parallel with overexpression of the receptor for this growth factor. Together, these alterations create a potential autocrine loop for sustaining clonal expansion of cells initiated by high-LET radiation. 44 refs., 4 figs., 1 tab.

  14. Withaferin A abolishes the stem cell factor-stimulated pigmentation of human epidermal equivalents by interrupting the auto-phosphorylation of c-KIT in human melanocytes.

    PubMed

    Terazawa, Shuko; Nakajima, Hiroaki; Fukasawa, Katsunori; Imokawa, Genji

    2015-01-01

    We characterized the mechanism(s) underlying the abrogating effect of withaferin A (WFA) on the stem cell factor (SCF)-stimulated pigmentation of human epidermal equivalents (HEEs). Increased gene and protein expression levels of tyrosinase, tyrosinase-related protein1, dopachrome tautomerase, PMEL17, c-KIT and their targeted transcription factor, microphthalmia-associated transcription factor (MITF) were significantly reversed at days 7 and 10, respectively, by treatment with WFA. In WFA-treated normal human melanocytes (NHMs), there was a marked deficiency in the SCF-stimulated series of phosphorylations of c-KIT, Shc, Raf-1, MEK, ERK, MITF and CREB. Treatment with dithiothreitol (DTT) distinctly abolished the suppressive effect of WFA on the SCF-stimulated phosphorylation of c-KIT in NHMs. On the other hand, even after incubation at 4 °C for 2 h with 5 nM SCF, followed by the removal of unbound SCF by washing and then raising the temperature to 37 °C to start the signaling reaction, c-KIT was distinctly phosphorylated to a similar extent by incubation for 15 min with SCF only or with SCF + WFA. These findings indicate that WFA attenuates the SCF-induced activation of c-KIT in NHMs by interrupting the auto-phosphorylation of c-KIT through DTT-suppressible Michael addition thioalkylation reactions without interrupting the binding of SCF to the c-KIT receptor. PMID:25376854

  15. In vivo toxicity, pharmacokinetics, and anticancer activity of Genistein linked to recombinant human epidermal growth factor.

    PubMed

    Uckun, F M; Narla, R K; Zeren, T; Yanishevski, Y; Myers, D E; Waurzyniak, B; Ek, O; Schneider, E; Messinger, Y; Chelstrom, L M; Gunther, R; Evans, W

    1998-05-01

    Epidermal growth factor receptor (EGFR)-associated protein tyrosine kinase (PTK) complexes have vital anti-apoptotic functions in human breast cancer cells. We have shown previously that targeting the naturally occurring PTK inhibitor genistein to the EGFR-associated PTK complexes using the EGF-Genistein (Gen) conjugate triggers rapid apoptotic cell death in human breast cancer cells and abrogates their in vitro clonogenic growth. In the present study, we examined the in vivo toxicity profile, pharmacokinetics, and anticancer activity of EGF-Gen. No toxicities were observed in mice treated with EGF-Gen at dose levels as high as 40 mg/kg administered i.p. as a single dose or 140 mg/kg administered i.p. over 28 consecutive days. EGF-Gen significantly improved tumor-free survival in a severe combined immune deficiency (SCID) mouse xenograft model of human breast cancer, when it was administered 24 h after inoculation of tumor cells. At 100 microg/kg/day x 10 days (1 mg/kg total dose), which is >100-fold less than the highest tested and nontoxic cumulative dose (ie., 140 mg/kg) in mice, EGF-Gen was more effective than cyclophosphamide (50 mg/kg/day x 2 days), Adriamycin (2.5 mg/kg x 1 day), or methotrexate (0.5 mg/kg x 1 day), the most widely used standard chemotherapeutic drugs for breast cancer, and resulted in 60% long-term tumor-free survival. Furthermore, treating SCID mice with established s.c. human breast cancer xenografts of 0.5-cm diameter with EGF-Gen at this dose level resulted in disappearance of the tumors in two of five mice and >50% shrinkage in three of five mice within 10 days, whereas all of the control tumors in five PBS-treated mice as well as five mice treated with unconjugated Gen (1 mg/kg/day x 10 days) showed >200% increase in diameter during the same observation period. EGF-Gen treatment reduced the growth rate of breast cancer xenografts of 1.0-cm diameter, but unlike with tumors of 0.5-cm diameter, it failed to cause shrinkage or

  16. Dynamic changes in nicotinamide pyridine dinucleotide content in normal human epidermal keratinocytes and their effect on retinoic acid biosynthesis

    SciTech Connect

    Pinkas-Sarafova, Adriana . E-mail: apinkassaraf@notes.cc.sunysb.edu; Markova, N.G. . E-mail: nmarkova@notes.cc.sunysb.edu; Simon, M. . E-mail: marsimon@notes.cc.sunysb.edu

    2005-10-21

    The function of many enzymes that regulate metabolism and transcription depends critically on the nicotinamide pyridine dinucleotides. To understand the role of NAD(P)(H) in physiology and pathophysiology, it is imperative to estimate both their amount and ratios in a given cell type. In human epidermis and in cultured epidermal keratinocytes, we found that the total dinucleotide content is in the low millimolar range. The dinucleotide pattern changes during proliferation and maturation of keratinocytes in culture. Differences in the concentrations of NAD(P)(H) of 1.5- to 12-fold were observed. This resulted in alteration of the NAD(P)H/NAD(P) ratio, which could impact the differential regulation of both transcriptional and metabolic processes. In support of this notion, we provide evidence that the two-step oxidation of retinol to retinoic acid, a nuclear hormone critical for epidermal homeostasis, can be regulated by the relative physiological amounts of the pyridine dinucleotides.

  17. Genomic expression during human myelopoiesis

    PubMed Central

    Ferrari, Francesco; Bortoluzzi, Stefania; Coppe, Alessandro; Basso, Dario; Bicciato, Silvio; Zini, Roberta; Gemelli, Claudia; Danieli, Gian Antonio; Ferrari, Sergio

    2007-01-01

    Background Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where multipotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. Results Gene expression data from 24 experiments for 8 different cell types of the human myelopoietic lineage were used to generate an integrated myelopoiesis dataset of 9,425 genes, each reliably associated to a unique genomic position and chromosomal coordinate. Lists of genes constitutively expressed or silent during myelopoiesis and of genes differentially expressed in commitment phase of myelopoiesis were first identified using a classical data analysis procedure. Then, the genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. This approach allowed identifying specific chromosomal regions significantly highly or weakly expressed, and clusters of differentially expressed genes and of transcripts related to specific functional modules. Conclusion The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions. PMID:17683550

  18. Japanese Cedar (Cryptomeria japonica) pollen allergen induces elevation of intracellular calcium in human keratinocytes and impairs epidermal barrier function of human skin ex vivo.

    PubMed

    Kumamoto, Junichi; Tsutsumi, Moe; Goto, Makiko; Nagayama, Masaharu; Denda, Mitsuhiro

    2016-01-01

    Cry j1 is the major peptide allergen of Japanese cedar (Sugi), Cryptomeria japonica. Since some allergens disrupt epidermal permeability barrier homeostasis, we hypothesized that Cry j1 might have a similar effect. Intracellular calcium level in cultured human keratinocytes was measured with a ratiometric fluorescent probe, Fura-2 AM. Application of Cry j1 significantly increased the intracellular calcium level of keratinocytes, and this increase was inhibited by trypsin inhibitor or a protease-activated receptor 2 (PAR-2) antagonist. We found that Cry j1 itself did not show protease activity, but application of Cry j1 to cultured keratinocytes induced a rapid (within 30 s) and transient increase of protease activity in the medium. This transient increase was blocked by trypsin inhibitor or PAR-2 antagonist. The effect of Cry j1 on transepidermal water loss (TEWL) of cultured human skin was measured in the presence and absence of a trypsin inhibitor and PAR-2 antagonist. Cry j1 significantly impaired the barrier function of human skin ex vivo, and this action was blocked by co-application of trypsin inhibitor or PAR-2 antagonist. Our results suggested that interaction of Cry j1 with epidermal keratinocytes leads to the activation of PAR-2, which induces elevation of intracellular calcium and disruption of barrier function. Blocking the interaction of Cry j1 with epidermal keratinocytes might ameliorate allergic reaction and prevent disruption of epidermal permeability barrier homeostasis. PMID:26498292

  19. An epidermal stem cells niche microenvironment created by engineered human amniotic membrane.

    PubMed

    Ji, Shi-zhao; Xiao, Shi-chu; Luo, Peng-fei; Huang, Guo-feng; Wang, Guang-yi; Zhu, Shi-hui; Wu, Min-juan; Xia, Zhao-fan

    2011-11-01

    How to amplify epidermal stem cells (ESCs) rapidly is a challenging crux in skin tissue engineering research. The present study describes the preparation of 3D micronized (300-600 μm) amniotic membrane (mAM) by means of repeated freeze-thawing cycles to deplete cell components and homogenized with a macrohomogenizer in liquid nitrogen. This newly prepared mAM not only possessed the characteristics of a microcarrier but completely retained the basement membrane structure and abundant active substances such as NGF, HGF, KGF, bFGF, TGF-β1 and EGF in the AM matrix. The result showed that mAM combined with rotary cell culture system (RCCS) was able to amplify ESCs quickly. The relative cell viability at day 7 and 14 was significantly higher than that of the conventional 2D plate culture (326 ± 28% and 535 ± 47% versus 232 ± 21% and 307 ± 32%, P < 0.05). In addition, the new method was able to prevent cell differentiation effectively and retain the characteristics of stem cells. When mAM loaded with ESCs (ESC-mAM) was further transplanted to full-thickness skin defects in nude mice, ESCs survived well and formed a new epidermis. Four weeks after transplantation, papilla-like structures were observed, and collagen fibers were well and regularly arranged in the newly formed dermal layer. In conclusion, the mAM as a novel natural microcarrier possesses an intact basement membrane structure and bioactivities. It not only provides the microenvironment similar to the stem cell niche within the human body favorable for ex vivo culture and amplification of ESCs but can be used as the dermal scaffold in constructing a skin substitute containing ESCs for the repair of full-thickness skin defects. PMID:21803416

  20. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes.

    PubMed

    Zhang, Leshuai W; Yu, William W; Colvin, Vicki L; Monteiro-Riviere, Nancy A

    2008-04-15

    Quantum dots nanoparticles have novel optical properties for biomedical applications and electronics, but little is known about their skin permeability and interaction with cells. QD621 are nail-shaped nanoparticles that contain a cadmium/selenide core with a cadmium sulfide shell coated with polyethylene glycol (PEG) and are soluble in water. QD were topically applied to porcine skin flow-through diffusion cells to assess penetration at 1 microM, 2 microM and 10 microM for 24 h. QD were also studied in human epidermal keratinocytes (HEK) to determine cellular uptake, cytotoxicity and inflammatory potential. Confocal microscopy depicted the penetration of QD621 through the uppermost stratum corneum (SC) layers of the epidermis and fluorescence was found primarily in the SC and near hair follicles. QD were found in the intercellular lipid bilayers of the SC by transmission electron microscopy (TEM). Inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis for cadmium (Cd) and fluorescence for QD both did not detect Cd nor fluorescence signal in the perfusate at any time point or concentration. In HEK, viability decreased significantly (p<0.05) from 1.25 nM to 10 nM after 24 h and 48 h. There was a significant increase in IL-6 at 1.25 nM to 10 nM, while IL-8 increased from 2.5 nM to 10 nM after 24 h and 48 h. TEM of HEK treated with 10 nM of QD621 at 24 h depicted QD in cytoplasmic vacuoles and at the periphery of the cell membranes. These results indicate that porcine skin penetration of QD621 is minimal and limited primarily to the outer SC layers, yet if the skin were damaged allowing direct QD exposure to skin or keratinocytes, an inflammatory response could be initiated. PMID:18261754

  1. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes

    SciTech Connect

    Zhang, Leshuai W.; Yu, William W.; Colvin, Vicki L.; Monteiro-Riviere, Nancy A.

    2008-04-15

    Quantum dots nanoparticles have novel optical properties for biomedical applications and electronics, but little is known about their skin permeability and interaction with cells. QD621 are nail-shaped nanoparticles that contain a cadmium/selenide core with a cadmium sulfide shell coated with polyethylene glycol (PEG) and are soluble in water. QD were topically applied to porcine skin flow-through diffusion cells to assess penetration at 1 {mu}M, 2 {mu}M and 10 {mu}M for 24 h. QD were also studied in human epidermal keratinocytes (HEK) to determine cellular uptake, cytotoxicity and inflammatory potential. Confocal microscopy depicted the penetration of QD621 through the uppermost stratum corneum (SC) layers of the epidermis and fluorescence was found primarily in the SC and near hair follicles. QD were found in the intercellular lipid bilayers of the SC by transmission electron microscopy (TEM). Inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis for cadmium (Cd) and fluorescence for QD both did not detect Cd nor fluorescence signal in the perfusate at any time point or concentration. In HEK, viability decreased significantly (p < 0.05) from 1.25 nM to 10nM after 24 h and 48 h. There was a significant increase in IL-6 at 1.25 nM to 10 nM, while IL-8 increased from 2.5nM to 10nM after 24 h and 48 h. TEM of HEK treated with 10 nM of QD621 at 24 h depicted QD in cytoplasmic vacuoles and at the periphery of the cell membranes. These results indicate that porcine skin penetration of QD621 is minimal and limited primarily to the outer SC layers, yet if the skin were damaged allowing direct QD exposure to skin or keratinocytes, an inflammatory response could be initiated.

  2. Lapatinib plus capecitabine resolved human epidermal growth factor receptor 2-positive brain metastases.

    PubMed

    Glück, Stefan; Castrellon, Aurelio

    2009-01-01

    Brain metastases affect 25%-30% of women with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer and are associated with a high burden of disease and poor prognosis. A 55-year-old woman presented with HER2-positive, hormone receptor-positive, locally advanced infiltrating ductal carcinoma. She received 4 cycles of neoadjuvant docetaxel (75 mg/m) plus trastuzumab (6 mg/kg) on a 21-day cycle, resulting in complete pathologic response at the time of surgery. Trastuzumab (6 mg/kg every 21 days) plus anastrozole (1 mg/d) was continued for 1 year. Two years later, the patient progressed with pulmonary nodules and a large pleural effusion. Computed tomography and positron emission tomography revealed multiple lesions in the liver and thoracic spine but no evidence of brain metastases. The patient received weekly trastuzumab (2 mg/kg), paclitaxel (80 mg/m), and carboplatin (area under the curve 2) for 6 months; her symptoms resolved and her disease stabilized. Seven months later, she developed diplopia and gait difficulties, and magnetic resonance imaging revealed multiple brain lesions. Whole-brain radiotherapy (30 Gy in 10 fractions) was delivered with excellent clinical results. The patient remained progression free without symptoms for approximately 3 months. When she developed central nervous system symptoms, she was treated with lapatinib (1250 mg/d continuously) plus capecitabine (2000 mg/m given on days 1-14 of a 21-day cycle). Four months later, a brain computed tomography performed shortly before her death from progressive systemic disease revealed near complete resolution of brain metastases. Lapatinib plus capecitabine seems to have clinical activity in HER2-positive brain metastases. PMID:19287304

  3. Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer

    PubMed Central

    Wolff, Antonio C.; Hammond, M. Elizabeth H.; Hicks, David G.; Dowsett, Mitch; McShane, Lisa M.; Allison, Kimberly H.; Allred, Donald C.; Bartlett, John M.S.; Bilous, Michael; Fitzgibbons, Patrick; Hanna, Wedad; Jenkins, Robert B.; Mangu, Pamela B.; Paik, Soonmyung; Perez, Edith A.; Press, Michael F.; Spears, Patricia A.; Vance, Gail H.; Viale, Giuseppe; Hayes, Daniel F.

    2014-01-01

    Purpose To update the American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guideline recommendations for human epidermal growth factor receptor 2 (HER2) testing in breast cancer to improve the accuracy of HER2 testing and its utility as a predictive marker in invasive breast cancer. Methods ASCO/CAP convened an Update Committee that included coauthors of the 2007 guideline to conduct a systematic literature review and update recommendations for optimal HER2 testing. Results The Update Committee identified criteria and areas requiring clarification to improve the accuracy of HER2 testing by immunohistochemistry (IHC) or in situ hybridization (ISH). The guideline was reviewed and approved by both organizations. Recommendations The Update Committee recommends that HER2 status (HER2 negative or positive) be determined in all patients with invasive (early stage or recurrence) breast cancer on the basis of one or more HER2 test results (negative, equivocal, or positive). Testing criteria define HER2-positive status when (on observing within an area of tumor that amounts to >10% of contiguous and homogeneous tumor cells) there is evidence of protein overexpression (IHC) or gene amplification (HER2 copy number or HER2/CEP17 ratio by ISH based on counting at least 20 cells within the area). If results are equivocal (revised criteria), reflex testing should be performed using an alternative assay (IHC or ISH). Repeat testing should be considered if results seem discordant with other histopathologic findings. Laboratories should demonstrate high concordance with a validated HER2 test on a sufficiently large and representative set of specimens. Testing must be performed in a laboratory accredited by CAP or another accrediting entity. The Update Committee urges providers and health systems to cooperate to ensure the highest quality testing. PMID:24099077

  4. UVB radiation induces an increase in intracellular zinc in human epidermal keratinocytes.

    PubMed

    Stork, Christian J; Martorano, Lisa M; Li, Yang V

    2010-10-01

    Ultraviolet (UV) radiation is known to cause oxidative stress, inflammation, DNA damage and apoptotic cell death; however, many details of these malign mechanism have yet to be elucidated. In this study, the exposure of adult human epidermal keratinocytes (HEKa) with UVB (>100 mJ/cm(2)) resulted in the significant increase of intracellular zinc that was released from its storage and was detected by fluorescent zinc indicators. Toxicity testing revealed that UVB-induced zinc release in HEKa is associated with HEKa cell death. Cells that showed elevated intracellular zinc fluorescence upon UVB exposure were also stained by propidium iodide (PI), a traditional viability indicator whose fluorescent signal is as a result of its intercalating with DNA fragments and is unaffected by zinc concentration, showing significant colocalization [Pearson's correlation coefficients r=0.956 (n=6)]. The cytotoxicity of zinc was also determined by an MTT assay after applying the exogenous zinc (ZnCl2) along with its ionophore pyrithione (20 microM) into HEKa culture medium. A significant reduction in cell viability as a function of both zinc concentration and exposure time was observed. The treatments of 1, 10 and 100 microM ZnCl2 with pyrithione demonstrated 2.3, 60 and 84% cell deaths, respectively (control 0.5%) after 30 min. ZnCl2 (100 microM) was also found to induce complete HEKa death after 1 h. Thus, the present study demonstrates that UVB irradiation-induced increased zinc is detrimental to HEKa viability, and zinc may be a necessary step in UVB-induced cell death signaling pathways. PMID:20818483

  5. Epidermal Growth Factor Receptor Expression As Prognostic Marker in Patients With Anal Carcinoma Treated With Concurrent Chemoradiation Therapy

    SciTech Connect

    Fraunholz, Ingeborg; Falk, Stefan

    2013-08-01

    Purpose: To investigate the prognostic value of epidermal growth factor receptor (EGFR) expression in pretreatment tumor biopsy specimens of patients with anal cancer treated with concurrent 5-fluorouracil and mitomycin C-based chemoradiation therapy (CRT). Methods and Materials: Immunohistochemical staining for EGFR was performed in pretreatment biopsy specimens of 103 patients with anal carcinoma. EGFR expression was correlated with clinical and histopathologic characteristics and with clinical endpoints, including local failure-free survival (LFFS), colostomy-free survival (CFS), distant metastases-free survival (DMFS), cancer-specific survival (CSS), and overall survival (OS). Results: EGFR staining intensity was absent in 3%, weak in 23%, intermediate in 36% and intense in 38% of the patients. In univariate analysis, the level of EGFR staining was significantly correlated with CSS (absent/weak vs intermediate/intense expression: 5-year CSS, 70% vs 86%, P=.03). As a trend, this was also observed for DMFS (70% vs 86%, P=.06) and LFFS (70% vs 87%, P=.16). In multivariate analysis, N stage, tumor differentiation, and patients’ sex were independent prognostic factors for CSS, whereas EGFR expression only reached borderline significance (hazard ratio 2.75; P=.08). Conclusion: Our results suggest that elevated levels of pretreatment EGFR expression could be correlated with favorable clinical outcome in anal cancer patients treated with CRT. Further studies are warranted to elucidate how EGFR is involved in the response to CRT.

  6. Targeted delivery of polyamidoamine-paclitaxel conjugate functionalized with anti-human epidermal growth factor receptor 2 trastuzumab

    PubMed Central

    Ma, Pengkai; Zhang, Xuemei; Ni, Ling; Li, Jinming; Zhang, Fengpu; Wang, Zheng; Lian, Shengnan; Sun, Kaoxiang

    2015-01-01

    Background Antibody-dendrimer conjugates have the potential to improve the targeting and release of chemotherapeutic drugs at the tumor site while reducing adverse side effects caused by drug accumulation in healthy tissues. In this study, trastuzumab (TMAB), which binds to human epidermal growth factor receptor 2 (HER2), was used as a targeting agent in a TMAB-polyamidoamine (PAMAM) conjugate carrying paclitaxel (PTX) specifically to cells overexpressing HER2. Methods TMAB was covalently linked to a PAMAM dendrimer via bifunctional polyethylene glycol (PEG). PTX was conjugated to PAMAM using succinic anhydride as a cross-linker, yielding TMAB-PEG-PAMAM-PTX. Dynamic light scattering and transmission electron microscopy were used to characterize the conjugates. The cellular uptake and in vivo biodistribution were studied by fluorescence microscopy, flow cytometry, and Carestream In Vivo FX, respectively. Results Nuclear magnetic resonance spectroscopy demonstrated that PEG, PTX, fluorescein isothiocyanate, and cyanine7 were conjugated to PAMAM. Ultraviolet-visible spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that TMAB was conjugated to PEG-PAMAM. Dynamic light scattering and transmission electron microscopy measurements revealed that the different conjugates ranged in size between 10 and 35 nm and had a spherical shape. In vitro cellular uptake demonstrated that the TMAB-conjugated PAMAM was taken up by HER2-overexpressing BT474 cells more efficiently than MCF-7 cells that expressed lower levels of HER2. Co-localization experiments indicated that TMAB-conjugated PAMAM was located in the cytoplasm. The in vitro cytotoxicity of TMAB-conjugated PAMAM was lower than free PTX due to the slow release of PTX from the conjugate. In vivo targeting further demonstrated that TMAB-conjugated PAMAM accumulated in the BT474 tumor model more efficiently than non-conjugated PAMAM. Conclusion TMAB can serve as an effective targeting agent

  7. Malignant Peripheral Nerve Sheath Tumor Invasion Requires Aberrantly Expressed Epidermal Growth Factor (EGF) Receptors and is Variably Enhanced by Multiple EGF Family Ligands

    PubMed Central

    Byer, Stephanie J.; Brossier, Nicole M.; Peavler, Lafe T.; Eckert, Jenell M.; Watkins, Stacey; Roth, Kevin A.; Carroll, Steven L.

    2013-01-01

    Aberrant epidermal growth factor receptor (EGFR) expression promotes the pathogenesis of malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy associated with neurofibromatosis type 1, but the mechanisms by which EGFR expression promotes MPNST pathogenesis are poorly understood. We hypothesized that inappropriately expressed EGFRs promote MPNST invasion and found that these kinases are concentrated in MPNST invadopodia in vitro. EGFR knockdown inhibited the migration of unstimulated MPNST cells in vitro and exogenous EGF further enhanced MPNST migration in a substrate-specific manner, promoting migration on laminin and, to a lesser extent, collagen. Thus, in this setting, EGF acts as a chemotactic factor. We also found that the 7 known EGFR ligands (EGF, betacellulin, epiregulin, heparin-binding EGF, transforming growth factor α [TGFα], amphiregulin, and epigen) variably enhanced MPNST migration in a concentration-dependent manner, with TGFα being particularly potent. With the exception of epigen, these factors similarly promoted the migration of non-neoplastic Schwann cells. Although transcripts encoding all 7 EGFR ligands were detected in human MPNST cells and tumor tissues, only TGFα was consistently overexpressed and was found to colocalize with EGFR in situ. These data indicate that constitutive EGFR activation, potentially driven by autocrine or paracrine TGFα signaling, promotes the aggressive invasive behavior characteristic of MPNSTs. PMID:23399900

  8. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    SciTech Connect

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-02-15

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure.

  9. Analysis of gene expression dynamics revealed delayed and abnormal epidermal repair process in aged compared to young skin.

    PubMed

    Sextius, Peggy; Marionnet, Claire; Tacheau, Charlotte; Bon, François-Xavier; Bastien, Philippe; Mauviel, Alain; Bernard, Bruno A; Bernerd, Françoise; Dubertret, Louis

    2015-05-01

    With aging, epidermal homeostasis and barrier function are disrupted. In a previous study, we analyzed the transcriptomic response of young skin epidermis after stratum corneum removal, and obtained a global kinetic view of the molecular processes involved in barrier function recovery. In the present study, the same analysis was performed in aged skin in order to better understand the defects which occur with aging. Thirty healthy male volunteers (67 ± 4 years old) were involved. Tape-strippings were carried out on the inner face of one forearm, the other unstripped forearm serving as control. At 2, 6, 18, 30 and 72 h after stripping, TEWL measurements were taken, and epidermis samples were collected. Total RNA was extracted and analyzed using DermArray(®) cDNA microarrays. The results highlighted that barrier function recovery and overall kinetics of gene expression were delayed following stripping in aged skin. Indeed, the TEWL measurements showed that barrier recovery in the young group appeared to be dramatically significant during the overall kinetics, while there were no significant evolution in the aged group until 30 h. Moreover, gene expression analysis revealed that the number of modulated genes following tape stripping increased as a function of time and reached a peak at 6 h after tape stripping in young skin, while it was at 30 h in aged skin, showing that cellular activity linked to the repair process may be engaged earlier in young epidermis than in aged epidermis. A total of 370 genes were modulated in the young group. In the aged group, 382 genes were modulated, whose 184 were also modulated in the young group. Only eight genes that were modulated in both groups were significantly differently modulated. The characterization of these genes into 15 functional families helped to draw a scenario for the aging process affecting epidermal repair capacity. PMID:25740152

  10. Effect of atmospheric fine particles on epidermal growth factor receptor mRNA expression in mouse skin tissue.

    PubMed

    Han, X; Liang, W L; Zhang, Y; Sun, L D; Liang, W Y

    2016-01-01

    We investigated the effect of atmospheric fine particles on epidermal growth factor receptor (Egfr) mRNA expression in mouse skin tissue and explored the effect of atmospheric fine particles on skin aging. Forty female BALB/c mice were randomly divided into four groups (each comprising 10 mice) as follows: a saline control group and low-, medium-, and high-dose atmospheric fine particle groups (1.6, 8.0, and 40.0 mg/kg, respectively) (fine particles were defined as those with a diameter of £2.5 mm, i.e., PM2.5). Each dose group was exposed to intratracheal instillation for 3 days. Twenty-four hours after the last exposure, real-time quantitative polymerase chain reaction was used to detect the expression of Egfr mRNA in the skin tissue of each mouse. The expression levels of Egfr mRNA in the medium- and high-dose PM2.5 groups were significantly higher (P < 0.05) than that in the control group, and were positively correlated with the dose. Medium and high concentrations of PM2.5 can induce the expression of Egfr mRNA and promote skin aging. PMID:27050971