Science.gov

Sample records for expressing murine cd40

  1. Construction of recombinant eukaryotic expression plasmid containing murine CD40 ligand gene and its expression in H22 cells

    PubMed Central

    Jiang, Yong-Fang; He, Yan; Gong, Guo-Zhong; Chen, Jun; Yang, Chun-Yan; Xu, Yun

    2005-01-01

    AIM: To construct a recombinant murine CD40 ligand (mCD40L) eukaryotic expression vector for gene therapy and target therapy of hepatocellular carcinoma (HCC). METHODS: mCD40L cDNA was synthesized by RT-PCR with the specific primers and directly cloned into T vector to generate middle recombinant. After digestion with restriction endonuclease, the target fragment was subcloned into the multi-clone sites of the eukaryotic vector. The constructed vector was verified by enzyme digestion and sequencing, and the product expressed was detected by RT-PCR and immunofluorescence methods. RESULTS: The full-length mCD40L-cDNA was successfully cloned into the eukaryotic vector through electrophoresis, and mCD40L gene was integrated into the genome of infected H22 cells by RT-PCR. Murine CD40L antigen molecule was observed in the plasma of mCD40L-H22 by indirect immuno-fluorescence staining. CONCLUSION: The recombined mCD40L eukaryotic expression vector can be expressed in H22 cell line. It provides experimental data for gene therapy and target therapy of hepatocellular carcinoma. PMID:15633212

  2. Separate cis-trans Pathways Post-transcriptionally Regulate Murine CD154 (CD40 Ligand) Expression

    PubMed Central

    Hamilton, B. JoNell; Wang, Xiao-Wei; Collins, Jane; Bloch, Donald; Bergeron, Alan; Henry, Brian; Terry, Benjamin M.; Zan, Moe; Mouland, Andrew J.; Rigby, William F. C.

    2008-01-01

    We report a role for CA repeats in the 3′-untranslated region (3′-UTR) in regulating CD154 expression. Human CD154 is encoded by an unstable mRNA; this instability is conferred in cis by a portion of its 3′-UTR that includes a polypyrimidine-rich region and CA dinucleotide repeat. We demonstrate similar instability activity with the murine CD154 3′-UTR. This instability element mapped solely to a conserved 100-base CU-rich region alone, which we call a CU-rich response element. Surprisingly, the CA dinucleotide-rich region also regulated reporter expression but at the level of translation. This activity was associated with poly(A) tail shortening and regulated by heterogeneous nuclear ribonucleoprotein L levels. We conclude that the CD154 3′-UTR contains dual cis-acting elements, one of which defines a novel function for exonic CA dinucleotide repeats. These findings suggest a mechanism for the association of 3′-UTR CA-rich response element polymorphisms with CD154 overexpression and the subsequent risk of autoimmune disease. PMID:18640985

  3. CD40 expression in Wehi-164 cell line

    PubMed Central

    Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-01-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body’s defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system. PMID:20496113

  4. Involvement of microglial CD40 in murine retrovirus-induced peripheral neuropathy.

    PubMed

    Cao, Ling; Butler, M Brady

    2013-08-15

    B6 mice infected with LP-BM5 develop severe immunodeficiency (termed murine acquired immunodeficiency syndrome (MAIDS)) and peripheral neuropathy. To determine whether microglial CD40 is involved in LP-BM5-induced peripheral neuropathy, B6-CD40 knockout (KO) mice and B6-CD40 KO mice adoptively transferred either total leukocytes or B cells were examined for behavioral sensitivity, tissue viral loads, cytokine responses, and the development of MAIDS. All three CD40 KO groups developed MAIDS, the severity of which was correlated with peripheral cytokine responses. CD40 KO mice displayed significantly reduced mechanical hypersensitivity post-infection compared to wild-type mice regardless of cell transfer. These findings support microglial CD40 involvement in LP-BM5-induced peripheral neuropathy. PMID:23726765

  5. Involvement of mitogen-activated protein kinases and NF{kappa}B in LPS-induced CD40 expression on human monocytic cells

    SciTech Connect

    Wu Weidong | Alexis, Neil E. |; Chen Xian |; Bromberg, Philip A. |; Peden, David B. ||

    2008-04-15

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NF{kappa}B were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NF{kappa}B activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NF{kappa}B activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NF{kappa}B activation, and CD40 expression. Moreover, blockage of MAPK and NF{kappa}B activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NF{kappa}B.

  6. CD40 antigen is expressed by endothelial cells and tumor cells in Kaposi's sarcoma.

    PubMed Central

    Pammer, J.; Plettenberg, A.; Weninger, W.; Diller, B.; Mildner, M.; Uthman, A.; Issing, W.; Stürzl, M.; Tschachler, E.

    1996-01-01

    The CD40 antigen is a member of the tumor necrosis factor receptor/nerve growth factor receptor superfamily and is involved in cell proliferation, differentiation, and survival. Using different monoclonal antibodies, we found CD40 expression by immunohistochemistry on CD31- and CD34-positive Kaposi's sarcoma spindle cells in all tumors of 18 HIV-1 seropositive and 4 HIV-1 seronegative patients. Western blot analysis of tumor lysates detected a 48- to 50-kd glycoprotein corresponding to the CD40 antigen expressed by B lymphocytes. CD40 expression was also detectable in one of four cultures of spindle cells derived from Kaposi sarcoma tissue. Treatment of the CD40-positive spindle cells but not of the CD40-negative ones with interferon-gamma up-regulated CD40 surface expression. Besides on Kaposi sarcoma tumor cells, CD40 was distinctly present on vascular endothelial cells in areas within and adjacent to the tumors and in benign inflammatory lesions such as granulation tissue of HIV-1-negative patients. In contrast, CD34-negative endothelia of thin walled vessels, most likely lymphatics, were predominantly CD40 negative. Only faint or no CD40 expression was found on endothelial cells in normal skin. We conclude from our data that expression of the CD40 antigen by endothelial cells is up-regulated during tissue inflammation. As signaling through CD40 is able to increase cell survival, expression of CD40 by Kaposi sarcoma tumor cells might play an important role in the pathogenesis of this neoplasm. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:8623911

  7. Critical role of microglial CD40 in the maintenance of mechanical hypersensitivity in a murine model of neuropathic pain.

    PubMed

    Cao, Ling; Palmer, Christopher D; Malon, Jennifer T; De Leo, Joyce A

    2009-12-01

    We recently demonstrated a contributing role of spinal cord infiltrating CD4+ T lymphocytes in the maintenance of mechanical hypersensitivity in a rodent model of neuropathic pain, spinal nerve L5 transection (L5Tx). It has been demonstrated that microglia play a role in the etiology of pain states. We hypothesized that infiltrating CD4+ T lymphocytes communicate with microglia via a CD40-CD154 interaction. Here, we investigated the role of CD40 in the development of mechanical hypersensitivity post-L5Tx. CD40 KO mice displayed significantly decreased mechanical sensitivity compared with WT mice starting from day 5 post-L5Tx. Using bone marrow chimeric mice, we further identified a pro-nociceptive role of CNS microglial CD40 rather than the peripheral leukocytic CD40. Flow cytometric analysis determined a significant increase of CD40+ microglia in the ipsilateral side of lumbar spinal cord post-L5Tx. Further, spinal cord proinflammatory cytokine (IL-1beta, IL-6, IL-12, and TNF-alpha) profiling demonstrated an induction of IL-6 in both WT and CD40 KO mice post-L5Tx prior to the increase of microglial CD40 expression, indicating a CD40-independent induction of IL-6 following L5Tx. These data establish a novel role of microglial CD40 in the maintenance of nerve injury-induced behavioral hypersensitivity, a behavioral sign of neuropathic pain. PMID:19750482

  8. T Lymphocytes Induce Endothelial Cell Matrix Metalloproteinase Expression by a CD40L-Dependent Mechanism

    PubMed Central

    Mach, François; Schönbeck, Uwe; Fabunmi, Rosalind P.; Murphy, Curran; Atkinson, Elizabeth; Bonnefoy, Jean-Yves; Graber, Pierre; Libby, Peter

    1999-01-01

    Neovascularization frequently accompanies chronic immune responses characterized by T cell infiltration and activation. Angiogenesis requires endothelial cells (ECs) to penetrate extracellular matrix, a process that involves matrix metalloproteinases (MMPs). We report here that activated human T cells mediate contact-dependent expression of MMPs in ECs through CD40/CD40 ligand signaling. Ligation of CD40 on ECs induced de novo expression of gelatinase B (MMP-9), increased interstitial collagenase (MMP-1) and stromelysin (MMP-3), and activated gelatinase A (MMP-2). Recombinant human CD40L induced expression of MMPs by human vascular ECs to a greater extent than did maximally effective concentrations of interleukin-1β or tumor necrosis factor-α. Moreover, activation of human vascular ECs through CD40 induced tube formation in a three-dimensional fibrin matrix gel assay, an effect antagonized by a MMP inhibitor. These results demonstrated that activation of ECs by interaction with T cells induced synthesis and release of MMPs and promoted an angiogenic function of ECs via CD40L-CD40 signaling. As vascular cells at the sites of chronic inflammation, such as atherosclerotic plaques, express CD40 and its ligand, our findings suggest that ligation of CD40 on ECs can mediate aspects of vascular remodeling and neovessel formation during atherogenesis and other chronic immune reactions. PMID:9916937

  9. Enhancing Antitumor Efficacy of Chimeric Antigen Receptor T Cells Through Constitutive CD40L Expression

    PubMed Central

    Curran, Kevin J; Seinstra, Beatrijs A; Nikhamin, Yan; Yeh, Raymond; Usachenko, Yelena; van Leeuwen, Dayenne G; Purdon, Terence; Pegram, Hollie J; Brentjens, Renier J

    2015-01-01

    Adoptive cell therapy with genetically modified T cells expressing a chimeric antigen receptor (CAR) is a promising therapy for patients with B-cell acute lymphoblastic leukemia. However, CAR-modified T cells (CAR T cells) have mostly failed in patients with solid tumors or low-grade B-cell malignancies including chronic lymphocytic leukemia with bulky lymph node involvement. Herein, we enhance the antitumor efficacy of CAR T cells through the constitutive expression of CD40 ligand (CD40L, CD154). T cells genetically modified to constitutively express CD40L (CD40L-modified T cells) demonstrated increased proliferation and secretion of proinflammatory TH1 cytokines. Further, CD40L-modified T cells augmented the immunogenicity of CD40+ tumor cells by the upregulated surface expression of costimulatory molecules (CD80 and CD86), adhesion molecules (CD54, CD58, and CD70), human leukocyte antigen (HLA) molecules (Class I and HLA-DR), and the Fas-death receptor (CD95). Additionally, CD40L-modified T cells induced maturation and secretion of the proinflammatory cytokine interleukin-12 by monocyte-derived dendritic cells. Finally, tumor-targeted CD19-specific CAR/CD40L T cells exhibited increased cytotoxicity against CD40+ tumors and extended the survival of tumor-bearing mice in a xenotransplant model of CD19+ systemic lymphoma. This preclinical data supports the clinical application of CAR T cells additionally modified to constitutively express CD40L with anticipated enhanced antitumor efficacy. PMID:25582824

  10. ThPOK represses CXXC5, which induces methylation of histone H3 lysine 9 in Cd40lg promoter by association with SUV39H1: implications in repression of CD40L expression in CD8+ cytotoxic T cells.

    PubMed

    Tsuchiya, Yukako; Naito, Taku; Tenno, Mari; Maruyama, Mitsuo; Koseki, Haruhiko; Taniuchi, Ichiro; Naoe, Yoshinori

    2016-08-01

    CD40 ligand is induced in CD4(+) Th cells upon TCR stimulation and provides an activating signal to B cells, making CD40 ligand an important molecule for Th cell function. However, the detailed molecular mechanisms, whereby CD40 ligand becomes expressed on the cell surface in T cells remain unclear. Here, we showed that CD40 ligand expression in CD8(+) cytotoxic T cells was suppressed by combined epigenetic regulations in the promoter region of the Cd40lg gene, such as the methylation of CpG dinucleotides, histone H3 lysine 9, histone H3 lysine 27, and histone H4 lysine 20. As the transcription factor Th-inducing pox virus and zinc finger/Kruppel-like factor (encoded by the Zbtb7b gene) is critical in Th cell development, we focused on the role of Th-inducing pox virus and zinc finger/Kruppel-like factor in CD40 ligand expression. We found that CD40 ligand expression is moderately induced by retroviral Thpok transduction into CD8(+) cytotoxic T cells, which was accompanied by a reduction of histone H3 lysine 9 methylation and histone H3 lysine 27 methylation in the promoter region of the Cd40lg gene. Th-inducing pox virus and zinc finger/Kruppel-like factor directly inhibited the expression of murine CXXC5, a CXXC-type zinc finger protein that induced histone H3 lysine 9 methylation, in part, through an interaction with the histone-lysine N-methyltransferase SUV39H1. In addition, to inhibit CD40 ligand induction in activated CD4(+) T cells by the CXXC5 transgene, our findings indicate that CXXC5 was one of the key molecules contributing to repressing CD40 ligand expression in CD8(+) cytotoxic T cells. PMID:26896487

  11. Tumor Necrosis Factor alpha (TNF{alpha}) regulates CD40 expression through SMAR1 phosphorylation

    SciTech Connect

    Singh, Kamini; Sinha, Surajit; Malonia, Sunil Kumar; Chattopadhyay, Samit

    2010-01-08

    CD40 plays an important role in mediating inflammatory response and is mainly induced by JAK/STAT phosphorylation cascade. TNF{alpha} is the key cytokine that activates CD40 during inflammation and tumorigenesis. We have earlier shown that SMAR1 can repress the transcription of Cyclin D1 promoter by forming a HDAC1 dependent repressor complex. In this study, we show that SMAR1 regulates the transcription of NF-{kappa}B target gene CD40. SMAR1 recruits HDAC1 and forms a repressor complex on CD40 promoter and keeps its basal transcription in check. Further, we show that TNF{alpha} stimulation induces SMAR1 phosphorylation at Ser-347 and promotes its cytoplasmic translocation, thus releasing its negative effect. Concomitantly, TNF{alpha} induced phosphorylation of STAT1 at Tyr-701 by JAK1 facilitates its nuclear translocation and activation of CD40 through p300 recruitment and core Histone-3 acetylation. Thus, TNF{alpha} mediated regulation of CD40 expression occurs by dual phosphorylation of SMAR1 and STAT1.

  12. CD40L expression permits CD8+ T cells to execute immunologic helper functions

    PubMed Central

    Stark, Regina; Matzmohr, Nadine; Meier, Sarah; Durlanik, Sibel; Schulz, Axel R.; Stervbo, Ulrik; Jürchott, Karsten; Gebhardt, Friedemann; Heine, Guido; Reuter, Morgan A.; Betts, Michael R.; Busch, Dirk

    2013-01-01

    CD8+ T cells play an essential role in immunity against intracellular pathogens, with cytotoxicity being considered their major effector mechanism. However, we here demonstrate that a major part of central and effector memory CD8+ T cells expresses CD40L, one key molecule for CD4+ T-cell–mediated help. CD40L+ CD8+ T cells are detectable among human antigen-specific immune responses, including pathogens such as influenza and yellow fever virus. CD40L+ CD8+ T cells display potent helper functions in vitro and in vivo, such as activation of antigen-presenting cells, and exhibit a cytokine expression signature similar to CD4+ T cells and unrelated to cytotoxic CD8+ T cells. The broad occurrence of CD40L+ CD8+ T cells in cellular immunity implicates that helper functions are not only executed by major histocompatibility complex (MHC) class II–restricted CD4+ helper T cells but are also a common feature of MHC class I–restricted CD8+ T cell responses. Due to their versatile functional capacities, human CD40L+ CD8+ T cells are promising candidate cells for immune therapies, particularly when CD4+ T-cell help or pathogen-associated molecular pattern signals are limited. PMID:23719298

  13. T lymphocytes induce endothelial cell matrix metalloproteinase expression by a CD40L-dependent mechanism: implications for tubule formation.

    PubMed

    Mach, F; Schönbeck, U; Fabunmi, R P; Murphy, C; Atkinson, E; Bonnefoy, J Y; Graber, P; Libby, P

    1999-01-01

    Neovascularization frequently accompanies chronic immune responses characterized by T cell infiltration and activation. Angiogenesis requires endothelial cells (ECs) to penetrate extracellular matrix, a process that involves matrix metalloproteinases (MMPs). We report here that activated human T cells mediate contact-dependent expression of MMPs in ECs through CD40/CD40 ligand signaling. Ligation of CD40 on ECs induced de novo expression of gelatinase B (MMP-9), increased interstitial collagenase (MMP-1) and stromelysin (MMP-3), and activated gelatinase A (MMP-2). Recombinant human CD40L induced expression of MMPs by human vascular ECs to a greater extent than did maximally effective concentrations of interleukin-1beta or tumor necrosis factor-alpha. Moreover, activation of human vascular ECs through CD40 induced tube formation in a three-dimensional fibrin matrix gel assay, an effect antagonized by a MMP inhibitor. These results demonstrated that activation of ECs by interaction with T cells induced synthesis and release of MMPs and promoted an angiogenic function of ECs via CD40L-CD40 signaling. As vascular cells at the sites of chronic inflammation, such as atherosclerotic plaques, express CD40 and its ligand, our findings suggest that ligation of CD40 on ECs can mediate aspects of vascular remodeling and neovessel formation during atherogenesis and other chronic immune reactions. PMID:9916937

  14. INVOLVEMENT OF TOLL-LIKE RECEPTOR 4 AND MAPK PATHWAYS IN LPS-INDUCED CD40 EXPRESSION IN MONOCYTIC CELLS

    EPA Science Inventory

    CD40 is a co-stimulatory surface molecule actively expressed on mature dendritic cells (DC). Recent studies suggest that endotoxin (LPS) inhalation induces DC maturation in the airways of healthy volunteers. To characterize the effect of LPS on CD40 expression and underlying mech...

  15. Induced PD-L1 expression mediates acquired resistance to agonistic anti-CD40 treatment.

    PubMed

    Zippelius, Alfred; Schreiner, Jens; Herzig, Petra; Müller, Philipp

    2015-03-01

    CD40 stimulation on antigen-presenting cells (APC) allows direct activation of CD8(+) cytotoxic T cells, independent of CD4⁺ T-cell help. Agonistic anti-CD40 antibodies have been demonstrated to induce beneficial antitumor T-cell responses in mouse models of cancer and early clinical trials. We report here that anti-CD40 treatment induces programmed death ligand-1 (PD-L1) upregulation on tumor-infiltrating monocytes and macrophages, which was strictly dependent on T cells and IFNγ. PD-L1 expression could be counteracted by coadministration of antibodies blocking the PD-1 (programmed death-1)/PD-L1 axis as shown for T cells from tumor models and human donors. The combined treatment was highly synergistic and induced complete tumor rejection in about 50% of mice bearing MC-38 colon and EMT-6 breast tumors. Mechanistically, this was reflected by a strong increase of IFNγ and granzyme-B production in intratumoral CD8⁺ T cells. Concomitant CTLA-4 blockade further improved rejection of established tumors in mice. This study uncovers a novel mechanism of acquired resistance upon agonistic CD40 stimulation and proposes that the concomitant blockade of the PD-1/PD-L1 axis is a viable therapeutic strategy to optimize clinical outcomes. PMID:25623164

  16. Latent virus infection upregulates CD40 expression facilitating enhanced autoimmunity in a model of multiple sclerosis

    PubMed Central

    Casiraghi, Costanza; Citlali Márquez, Ana; Shanina, Iryna; Steven Horwitz, Marc

    2015-01-01

    Epstein-Barr virus (EBV) has been identified as a putative environmental trigger of multiple sclerosis (MS) by multiple groups working worldwide. Previously, we reported that when experimental autoimmune encephalomyelitis (EAE) was induced in mice latently infected with murine γ-herpesvirus 68 (γHV-68), the murine homolog to EBV, a disease more reminiscent of MS developed. Specifically, MS-like lesions developed in the brain that included equal numbers of IFN-γ producing CD4+ and CD8+ T cells and demyelination, none of which is observed in MOG induced EAE. Herein, we demonstrate that this enhanced disease was dependent on the γHV-68 latent life cycle and was associated with STAT1 and CD40 upregulation on uninfected dendritic cells. Importantly, we also show that, during viral latency, the frequency of regulatory T cells is reduced via a CD40 dependent mechanism and this contributes towards a strong T helper 1 response that resolves in severe EAE disease pathology. Latent γ-herpesvirus infection established a long-lasting impact that enhances subsequent adaptive autoimmune responses. PMID:26356194

  17. A Role for CD40 Expression on CD8+ T Cells in the Generation of CD8+ T Cell Memory

    NASA Astrophysics Data System (ADS)

    Bourgeois, Christine; Rocha, Benedita; Tanchot, Corinne

    2002-09-01

    The delivery of CD4 help to CD8+ T cell responses requires interactions between CD40 and CD40 ligand and is thought to occur through antigen-presenting cell (APC) activation. Here we show that generation of memory CD8+ T cells displaying an enhanced capacity for cell division and cytokine secretion required CD4 help but not CD40 expression by the APCs. Activated CD4+ and CD8+ T cells expressed CD40; and in the absence of this protein, CD8+ T cells were unable to differentiate into memory cells or receive CD4 help. These results suggest that, like B cells, CD8+ T cells receive CD4 help directly through CD40 and that this interaction is fundamental for CD8+ T cell memory generation.

  18. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway

    PubMed Central

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-01-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4+ T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. PMID:25492061

  19. The CD40-CD40L Pathway Contributes to the Proinflammatory Function of Intestinal Epithelial Cells in Inflammatory Bowel Disease

    PubMed Central

    Borcherding, Frauke; Nitschke, Martin; Hundorfean, Gheorghe; Rupp, Jan; von Smolinski, Dorthe; Bieber, Katja; van Kooten, Cees; Lehnert, Hendrik; Fellermann, Klaus; Büning, Jürgen

    2010-01-01

    In inflammatory bowel diseases (IBD), intestinal epithelial cells (IECs) are involved in the outbalanced immune responses toward luminal antigens. However, the signals responsible for this proinflammatory capacity of IECs in IBD remain unclear. The CD40/CD40L interaction activates various pathways in immune and nonimmune cells related to inflammation and was shown to be critical for the development of IBD. Here we demonstrate CD40 expression within IECs during active IBD. Endoscopically obtained biopsies taken from Crohn’s disease (n = 112) and ulcerative colitis patients (n = 67) consistently showed immunofluorescence staining for CD40 in IECs of inflamed ileal or colonic mucosa. In noninvolved mucosa during active disease, tissue obtained during Crohn’s disease or ulcerative colitis in remission and biopsies from healthy controls (n = 38) IECs almost entirely lacked CD40 staining. Flow cytometry and RT-PCR analysis using different intestinal epithelial cell lines (HT29, SW480, and T84) showed IFN-γ to effectively induce CD40 in IECs. Cells were virtually unresponsive to LPS or whole E. coli regarding CD40 expression. In addition, a moderate induction of CD40 was found in response to TNF-α, which exerted synergistical effects with IFN-γ. CD40 ligation by CD40L-transfected murine fibroblasts or soluble CD40L increased the secretion of IL-8 in IFN-γ pretreated HT29 cells. Our findings provide evidence for the epithelial expression and modulation of CD40 in IBD-affected mucosa and indicate its involvement in the proinflammatory function of IECs. PMID:20133813

  20. The MS Risk Allele of CD40 Is Associated with Reduced Cell-Membrane Bound Expression in Antigen Presenting Cells: Implications for Gene Function

    PubMed Central

    Field, Judith; Shahijanian, Fernando; Schibeci, Stephen; Johnson, Laura; Gresle, Melissa; Laverick, Louise; Parnell, Grant; Stewart, Graeme; McKay, Fiona; Kilpatrick, Trevor; Butzkueven, Helmut; Booth, David

    2015-01-01

    Human genetic and animal studies have implicated the costimulatory molecule CD40 in the development of multiple sclerosis (MS). We investigated the cell specific gene and protein expression variation controlled by the CD40 genetic variant(s) associated with MS, i.e. the T-allele at rs1883832. Previously we had shown that the risk allele is expressed at a lower level in whole blood, especially in people with MS. Here, we have defined the immune cell subsets responsible for genotype and disease effects on CD40 expression at the mRNA and protein level. In cell subsets in which CD40 is most highly expressed, B lymphocytes and dendritic cells, the MS-associated risk variant is associated with reduced CD40 cell-surface protein expression. In monocytes and dendritic cells, the risk allele additionally reduces the ratio of expression of full-length versus truncated CD40 mRNA, the latter encoding secreted CD40. We additionally show that MS patients, regardless of genotype, express significantly lower levels of CD40 cell-surface protein compared to unaffected controls in B lymphocytes. Thus, both genotype-dependent and independent down-regulation of cell-surface CD40 is a feature of MS. Lower expression of a co-stimulator of T cell activation, CD40, is therefore associated with increased MS risk despite the same CD40 variant being associated with reduced risk of other inflammatory autoimmune diseases. Our results highlight the complexity and likely individuality of autoimmune pathogenesis, and could be consistent with antiviral and/or immunoregulatory functions of CD40 playing an important role in protection from MS. PMID:26068105

  1. CD40 promotes MHC class II expression on adipose tissue macrophages and regulates adipose tissue CD4+ T cells with obesity.

    PubMed

    Morris, David L; Oatmen, Kelsie E; Mergian, Taleen A; Cho, Kae Won; DelProposto, Jennifer L; Singer, Kanakadurga; Evans-Molina, Carmella; O'Rourke, Robert W; Lumeng, Carey N

    2016-06-01

    Obesity activates both innate and adaptive immune responses in adipose tissue, but the mechanisms critical for regulating these responses remain unknown. CD40/CD40L signaling provides bidirectional costimulatory signals between antigen-presenting cells and CD4(+) T cells, and CD40L expression is increased in obese humans. Therefore, we examined the contribution of CD40 to the progression of obesity-induced inflammation in mice. CD40 was highly expressed on adipose tissue macrophages in mice, and CD40/CD40L signaling promoted the expression of antigen-presenting cell markers in adipose tissue macrophages. When fed a high fat diet, Cd40-deficient mice had reduced accumulation of conventional CD4(+) T cells (Tconv: CD3(+)CD4(+)Foxp3(-)) in visceral fat compared with wild-type mice. By contrast, the number of regulatory CD4(+) T cells (Treg: CD3(+)CD4(+)Foxp3(+)) in lean and obese fat was similar between wild-type and knockout mice. Adipose tissue macrophage content and inflammatory gene expression in fat did not differ between obese wild-type and knockout mice; however, major histocompatibility complex class II and CD86 expression on adipose tissue macrophages was reduced in visceral fat from knockout mice. Similar results were observed in chimeric mice with hematopoietic Cd40-deficiency. Nonetheless, neither whole body nor hematopoietic disruption of CD40 ameliorated obesity-induced insulin resistance in mice. In human adipose tissue, CD40 expression was positively correlated with CD80 and CD86 expression in obese patients with type 2 diabetes. These findings indicate that CD40 signaling in adipose tissue macrophages regulates major histocompatibility complex class II and CD86 expression to control the expansion of CD4(+) T cells; however, this is largely dispensable for the development of obesity-induced inflammation and insulin resistance in mice. PMID:26658005

  2. PU.1 Expression in T Follicular Helper Cells Limits CD40L-Dependent Germinal Center B Cell Development.

    PubMed

    Awe, Olufolakemi; Hufford, Matthew M; Wu, Hao; Pham, Duy; Chang, Hua-Chen; Jabeen, Rukhsana; Dent, Alexander L; Kaplan, Mark H

    2015-10-15

    PU.1 is an ETS family transcription factor that is important for the development of multiple hematopoietic cell lineages. Previous work demonstrated a critical role for PU.1 in promoting Th9 development and in limiting Th2 cytokine production. Whether PU.1 has functions in other Th lineages is not clear. In this study, we examined the effects of ectopic expression of PU.1 in CD4(+) T cells and observed decreased expression of genes involved with the function of T follicular helper (Tfh) cells, including Il21 and Tnfsf5 (encoding CD40L). T cells from conditional mutant mice that lack expression of PU.1 in T cells (Sfpi1(lck-/-)) demonstrated increased production of CD40L and IL-21 in vitro. Following adjuvant-dependent or adjuvant-independent immunization, we observed that Sfpi1(lck-/-) mice had increased numbers of Tfh cells, increased germinal center B cells (GCB cells), and increased Ab production in vivo. This correlated with increased expression of IL-21 and CD40L in Tfh cells from Sfpi1(lck-/-) mice compared with control mice. Finally, although blockade of IL-21 did not affect GCB cells in Sfpi1(lck-/-) mice, anti-CD40L treatment of immunized Sfpi1(lck-/-) mice decreased GCB cell numbers and Ag-specific Ig concentrations. Together, these data indicate an inhibitory role for PU.1 in the function of Tfh cells, germinal centers, and Tfh-dependent humoral immunity. PMID:26363052

  3. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome.

    PubMed

    Hubbard, Nicholas; Hagin, David; Sommer, Karen; Song, Yumei; Khan, Iram; Clough, Courtnee; Ochs, Hans D; Rawlings, David J; Scharenberg, Andrew M; Torgerson, Troy R

    2016-05-26

    Loss of CD40 ligand (CD40L) expression or function results in X-linked hyper-immunoglobulin (Ig)M syndrome (X-HIGM), characterized by recurrent infections due to impaired immunoglobulin class-switching and somatic hypermutation. Previous attempts using retroviral gene transfer to correct murine CD40L expression restored immune function; however, treated mice developed lymphoproliferative disease, likely due to viral-promoter-dependent constitutive CD40L expression. These observations highlight the importance of preserving endogenous gene regulation in order to safely correct this disorder. Here, we report efficient, on-target, homology-directed repair (HDR) editing of the CD40LG locus in primary human T cells using a combination of a transcription activator-like effector nuclease-induced double-strand break and a donor template delivered by recombinant adeno-associated virus. HDR-mediated insertion of a coding sequence (green fluorescent protein or CD40L) upstream of the translation start site within exon 1 allowed transgene expression to be regulated by endogenous CD40LG promoter/enhancer elements. Additionally, inclusion of the CD40LG 3'-untranslated region in the transgene preserved posttranscriptional regulation. Expression kinetics of the transgene paralleled that of endogenous CD40L in unedited T cells, both at rest and in response to T-cell stimulation. The use of this method to edit X-HIGM patient T cells restored normal expression of CD40L and CD40-murine IgG Fc fusion protein (CD40-muIg) binding, and rescued IgG class switching of naive B cells in vitro. These results demonstrate the feasibility of engineered nuclease-directed gene repair to restore endogenously regulated CD40L, and the potential for its use in T-cell therapy for X-HIGM syndrome. PMID:26903548

  4. Expression of CD40 is a positive prognostic factor of diffuse large B-cell lymphoma treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone)

    PubMed Central

    Song, Guoqi; Ni, Huiyun; Zou, Linqing; Wang, Shukui; Tian, Fuliang; Liu, Hong; Cho, William C

    2016-01-01

    Objectives The objective of this study was to investigate the expression level of CD40 and its role in the prognosis of patients with diffuse large B-cell lymphoma (DLBCL) who were treated with rituximab-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). Design and methods The immunohistochemical expressions of CD40 in 186 well-characterized DLBCL patients were evaluated by tissue microarrays, thereby revealing the relationship of the molecule CD40 with known tumor, patient-related variables, and survival rates. Results The results showed that CD40 expressions were not statistically different between the germinal center B-cell-like (GCB) type and the non-GCB type. We also analyzed the relationships of CD40 expression with overall survival (OS) and progression-free survival (PFS) in DLBCL patients who were uniformly treated with R-CHOP. A low expression of CD40 compared to high expression is related to poor OS and PFS. Conclusion Our findings indicate that the CD40 level at onset acts as an independent prognostic predictor of DLBCL patients treated with R-CHOP. PMID:27382316

  5. Combination anti-CD137 and anti-CD40 antibody therapy in murine myc-driven hematological cancers.

    PubMed

    Westwood, Jennifer A; Matthews, Geoffrey M; Shortt, Jake; Faulkner, David; Pegram, Hollie J; Duong, Connie P M; Chesi, Marta; Bergsagel, P Leif; Sharp, Leslie L; Huhn, Richard D; Darcy, Phillip K; Johnstone, Ricky W; Kershaw, Michael H

    2014-08-01

    In order to stimulate antigen presentation and T cell activity against cancer, we treated three different tumor models in mice with the monoclonal antibodies anti-CD40 plus anti-CD137 (BiMab). In a subcutaneous transplantable MC38 colon cancer model, there was significant enhancement in the survival of mice following BiMab treatment. Anti-CD40 has shown considerable success against lymphoma in previous studies by other investigators, and we also showed in this study that, in a model of Eμ-Myc lymphoma, there was a statistically significant enhancement of survival of mice following BiMab treatment. Following the success of the BiMab treatment in the previous two models, we wished to determine if it would be successful in a mouse model of multiple myeloma. Firstly, we tested a transplantable model of disease in which multiple myeloma cells derived from Vk*MYC mice were injected intravenously. A minor proportion of anti-CD137 and BiMab treated mice experienced prolongation of life beyond 250 days. Then we tested the therapy in a spontaneously occurring multiple myeloma model, in Vk*MYC transgenic mice. The majority of mice treated survived longer than control mice, although statistical significance was not demonstrated. PMID:24934848

  6. Cloning and high level expression of the biologically active extracellular domain of Macaca mulatta CD40 in Pichia pastoris.

    PubMed

    Zhu, Shengyun; Wan, Lin; Yang, Hao; Cheng, Jingqiu; Lu, Xiaofeng

    2016-03-01

    The CD40-mediated immune response contributes to a wide variety of chronic inflammatory diseases. CD40 antagonists have potential as novel therapies for immune disorders. However, the CD40 pathway has not been well characterized in the rhesus monkey Macaca mulatta, which is a valuable animal model for human immune disease. An 834 bp transcript was cloned from peripheral blood mononuclear cells (PBMCs) of rhesus monkey using specific primers designed according to the predicted sequence of M. mulatta CD40 (mmCD40) in GenBank. Sequence analysis demonstrated that mmCD40 is highly homologous to human CD40 (hCD40), with an amino acid sequence identity of 94%. Genes encoding the extracellular domain of mmCD40 and the Fc fragment of the hIgG1 were inserted into a pPIC9K plasmid to produce mmCD40Ig by Pichia pastoris. Approximately 15-20 mg of the mmCD40Ig protein with ∼90% purity could be recovered from 1 L of culture. The purified mmCD40Ig protein can form dimers and can specifically bind CD40L-positive cells. Additionally, the mmCD40Ig protein can bind hCD40L protein in phosphate buffered saline and form a stable combination in a size-exclusion chromatography assay using a Superdex 200 column. Moreover, mmCD40Ig is as efficient as M. mulatta CTLA4Ig (mmCTLA4Ig) to suppress Con A-stimulated lymphocyte proliferation. Additionally, mmCD40Ig only showed mild immunosuppressive activity in a one-way mixed lymphocyte reaction (MLR) system. These results suggest that mmCD40Ig secreted by P. pastoris was productive and functional, and it could be used as a tool for pathogenesis and therapies for chronic inflammatory diseases in a M. mulatta model. PMID:26586612

  7. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture?

    PubMed

    Schönbeck, U; Mach, F; Sukhova, G K; Murphy, C; Bonnefoy, J Y; Fabunmi, R P; Libby, P

    1997-09-01

    Physical disruption of an atheromatous lesion often underlies acute coronary syndromes. Matrix-degrading enzymes, eg, matrix metalloproteinases (MMPs), may cause loss in mechanical integrity of plaque tissue that favors rupture. T lymphocytes accumulate at sites where atheromata rupture, but the mechanisms by which these immune cells may contribute to plaque destabilization are unknown. This study tested the hypothesis that the T-lymphocyte surface molecule CD40 ligand (CD40L), recently localized in atherosclerotic plaques, regulates the expression of MMPs in human vascular smooth muscle cells (SMCs), the most numerous cell type in arteries. We report here that stimulated human T lymphocytes induced the expression of the matrix-degrading enzymes, ie, interstitial collagenase (MMP-1), stromelysin (MMP-3), gelatinase B (MMP-9), and activated gelatinase A (MMP-2), in human vascular SMCs by cell contact via CD40 ligation, as demonstrated by Western blot analysis, zymography, and antibody neutralization. Recombinant human CD40L (rCD40L) induced de novo synthesis of MMP-1, MMP-3, and MMP-9 on vascular SMCs and stimulated the expression of these enzymes to a greater extent than did maximally effective concentrations of tumor necrosis factor-alpha or interleukin-1beta, established agonists of MMP expression. Interferon gamma, another T-lymphocyte- derived cytokine, inhibited the induction of MMPs by rCD40L. Immunohistochemical analysis of human coronary atheromata colocalized MMP-1 and MMP-3 with CD40-positive SMCs. These results demonstrated that CD40 ligand, expressed on T lymphocytes, promoted the expression of matrix-degrading enzymes in vascular SMCs and thus established a new pathway of immune-modulated destabilization in human atheromata. PMID:9285647

  8. Modulation of neuronal differentiation by CD40 isoforms

    SciTech Connect

    Hou Huayu; Obregon, Demian; Lou, Deyan; Ehrhart, Jared; Fernandez, Frank; Silver, Archie; Tan Jun

    2008-05-02

    Neuron differentiation is a complex process involving various cell-cell interactions, and multiple signaling pathways. We showed previously that CD40 is expressed and functional on mouse and human neurons. In neurons, ligation of CD40 protects against serum withdrawal-induced injury and plays a role in survival and differentiation. CD40 deficient mice display neuron dysfunction, aberrant neuron morphologic changes, and associated gross brain abnormalities. Previous studies by Tone and colleagues suggested that five isoforms of CD40 exist with two predominant isoforms expressed in humans: signal-transducible CD40 type I and a C-terminal truncated, non-signal-transducible CD40 type II. We hypothesized that differential expression of CD40 isoform type I and type II in neurons may modulate neuron differentiation. Results show that adult wild-type, and CD40{sup -/-} deficient mice predominantly express CD40 type I and II isoforms. Whereas adult wild-type mice express mostly CD40 type I in cerebral tissues at relatively high levels, in age and gender-matched CD40{sup -/-} mice CD40 type I expression was almost completely absent; suggesting a predominance of the non-signal-transducible CD40 type II isoform. Younger, 1 day old wild-type mice displayed less CD40 type I, and more CD40 type II, as well as, greater expression of soluble CD40 (CD40L/CD40 signal inhibitor), compared with 1 month old mice. Neuron-like N2a cells express CD40 type I and type II isoforms while in an undifferentiated state, however once induced to differentiate, CD40 type I predominates. Further, differentiated N2a cells treated with CD40 ligand express high levels of neuron specific nuclear protein (NeuN); an effect reduced by anti-CD40 type I siRNA, but not by control (non-targeting) siRNA. Altogether these data suggest that CD40 isoforms may act in a temporal fashion to modulate neuron differentiation during brain development. Thus, modulation of neuronal CD40 isoforms and CD40 signaling may

  9. Locally delivered CD40 agonist antibody accumulates in secondary lymphoid organs and eradicates experimental disseminated bladder cancer.

    PubMed

    Sandin, Linda C; Orlova, Anna; Gustafsson, Erika; Ellmark, Peter; Tolmachev, Vladimir; Tötterman, Thomas H; Mangsbo, Sara M

    2014-01-01

    Immunotherapy with intratumoral injection of adenoviral vectors expressing CD40L has yielded positive results in experimental and clinical bladder cancer. We therefore hypothesized that anti-CD40 antibody would be effective in this setting. Agonistic CD40 antibodies were developed as vaccine adjuvants but have later been used as treatment of advanced solid tumors and hematologic cancers. Systemic anti-CD40 therapy has been associated with immune-related adverse events, such as cytokine release syndrome and liver toxicity, and local delivery is an attractive approach that could reduce toxicity. Herein, we compared local and systemic anti-CD40 antibody delivery to evaluate efficacy, toxicity, and biodistribution in the experimental MB49 bladder cancer model. Antitumor effects were confirmed in the B16 model. In terms of antitumor efficacy, local anti-CD40 antibody stimulation was superior to systemic therapy at an equivalent dose and CD8 T cells were crucial for tumor growth inhibition. Both administration routes were dependent on host CD40 expression for therapeutic efficacy. In vivo biodistribution studies revealed CD40-specific antibody accumulation in the tumor-draining lymph nodes and the spleen, most likely reflecting organs with frequent target antigen-expressing immune cells. Systemic administration led to higher antibody concentrations in the liver and blood compared with local delivery, and was associated with elevated levels of serum haptoglobin. Despite the lack of a slow-release system, local anti-CD40 therapy was dependent on tumor antigen at the injection site for clearance of distant tumors. To summarize, local low-dose administration of anti-CD40 antibody mediates antitumor effects in murine models with reduced toxicity and may represent an attractive treatment alternative in the clinic. PMID:24778163

  10. Agreement of skin test with IL-4 production and CD40L expression by T cells upon immunotherapy of subjects with systemic reactions to Hymenoptera stings.

    PubMed

    Urra, José M; Cabrera, Carmen M; Alfaya, Teresa; Feo-Brito, Francisco

    2016-02-01

    Venom immunotherapy is the only curative intervention for subjects with Hymenoptera venom allergy who suffering systemic reactions upon bee or wasp stings. Venom immunotherapy can restore normal immunity against venom allergens, as well as providing to allergic subjects a lifetime tolerance against venoms. Nevertheless, it is necessary using safety assays to monitoring the development of tolerance in the VIT protocols to avoid fatal anaphylactic reactions. The purpose of this study was to assess the modifications in several markers of tolerance induction in subjects with Hymenoptera venom allergy undergoing immunotherapy. The studies were performed at baseline time and after six month of VIT. Intradermal skin tests, basophil activation tests, specific IgE levels; and the T-cell markers (IL-4 and IFN-γ producing cells; and expression of the surface activation markers CD40L and CTLA-4) were assayed. At six month of immunotherapy all parameters studied had significant alterations. All decreased, except the IFN-γ producing cells. In addition, modifications in intradermal skin test showed a significant correlation with both, CD40L expression on CD4 T lymphocytes (p=0.043) and IL-4 producing T lymphocytes (p=0.012). Neither basophil activation test nor serum levels of sIgE demonstrated any correlation with the immunological parameters studied nor among them. These results suggest that both IL-4 production and CD40L expression could be two good indicators of the beneficial effects of venom immunotherapy which translate into skin tests. PMID:26774053

  11. Changes of soluble CD40 ligand in the progression of acute myocardial infarction associate to endothelial nitric oxide synthase polymorphisms and vascular endothelial growth factor but not to platelet CD62P expression.

    PubMed

    Napoleão, Patrícia; Monteiro, Maria do Céu; Cabral, Luís B P; Criado, Maria Begoña; Ramos, Catarina; Selas, Mafalda; Viegas-Crespo, Ana Maria; Saldanha, Carlota; Carmo, Miguel Mota; Ferreira, Rui Cruz; Pinheiro, Teresa

    2015-12-01

    Reported in vitro data implicated soluble CD40 ligand (sCD40L) in endothelial dysfunction and angiogenesis. However, whether sCD40L could exert that influence in endothelial dysfunction and angiogenesis after injury in acute myocardial infarction (AMI) patients remains unclear. In the present study, we evaluated the association of sCD40L with markers of platelet activation, endothelial, and vascular function during a recovery period early after AMI. To achieve this goal, the time changes of soluble, platelet-bound, and microparticle-bound CD40L levels over 1 month were assessed in AMI patients and correlated with endothelial nitric oxide synthase (eNOS) polymorphisms, vascular endothelial growth factor (VEGF) concentrations, and platelet expression of P-selectin (CD62P). The association of soluble form, platelet-bound, and microparticle-bound CD40L with CD62P expression on platelets, a marker of platelet activation, was also assessed to evaluate the role of CD40L in the thrombosis, whereas the association with eNOS and VEGF was to evaluate the role of CD40L in vascular dysfunction. This work shows for the first time that time changes of sCD40L over 1 month after myocardial infarct onset were associated with G894T eNOS polymorphism and with the VEGF concentrations, but not to the platelet CD62P expression. These results indicate that, in terms of AMI pathophysiology, the sCD40L cannot be consider just as being involved in thrombosis and inflammation but also as having a relevant role in vascular and endothelial dysfunction. PMID:26279254

  12. BAFF upregulates CD28/B7 and CD40/CD154 expression and promotes mouse T and B cell interaction in vitro via BAFF receptor

    PubMed Central

    Zhang, Feng; Song, Shan-shan; Shu, Jin-ling; Li, Ying; Wu, Yu-jing; Wang, Qing-tong; Chen, Jing-yu; Chang, Yan; Wu, Hua-xun; Zhang, Ling-ling; Wei, Wei

    2016-01-01

    Aim: B cell-activating factor belonging to the TNF family (BAFF) is a member of TNF family and required for peripheral B cell survival and homeostasis. BAFF has been shown to promote the proliferation of T and B cells. In this study we examined whether and how BAFF mediated the interaction between mouse T and B cells in vitro. Methods: BAFF-stimulated B or T cells were co-cultured with T or B cells. The interactions between T and B cells were analyzed by measuring the expression of co-stimulatory molecules (CD28/CD80 or CD40/CD154), the proliferation and secretion of T and B cells and other factors. Two siRNAs against the transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and BAFF receptor (BAFF-R) were used to identify the receptors responsible for the actions of BAFF. Results: BAFF-stimulated B cells significantly promoted the proliferation and activity of co-cultured T cells, and increased the percentages of CD4+CD28+ and CD4+CD154+ T cells. Similarly, BAFF-stimulated T cells significantly promoted the proliferation and activity of co-cultured B cells, and increased CD19+CD80+ and CD19+CD40+B cell subpopulations. BAFF-R siRNA-silenced B cells showed significantly lower expression of CD40 and CD80 than the control B cells. When the BAFF-R siRNA-silenced B cells were stimulated with BAFF, then co-cultured with T cells, the expression of CD28 and CD154 on T cells was not increased. TACI siRNA-silenced B cells exhibited higher expression of CD40 and CD80 than the control B cells. When the TACI siRNA-silenced B cells were stimulated with BAFF, then co-cultured with T cells, the expression of CD28 and CD154 on T cells was significantly increased. Conclusion: BAFF upregulates CD28/B7 and CD40/CD154 expression, and promotes the interactions between T and B cells in a BAFF-R-dependent manner. PMID:27180986

  13. MicroRNA-155 Mediates Augmented CD40 Expression in Bone Marrow Derived Plasmacytoid Dendritic Cells in Symptomatic Lupus-Prone NZB/W F1 Mice

    PubMed Central

    Yan, Sheng; Yim, Lok Yan; Tam, Rachel Chun Yee; Chan, Albert; Lu, Liwei; Lau, Chak Sing; Chan, Vera Sau-Fong

    2016-01-01

    Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease characterized by hyperactivated immune responses to self-antigens and persistent systemic inflammation. Previously, we reported abnormalities in circulating and bone marrow (BM)-derived plasmacytoid dendritic cells (pDCs) from SLE patients. Here, we aim to seek for potential regulators that mediate functional aberrations of pDCs in SLE. BM-derived pDCs from NZB/W F1 mice before and after the disease onset were compared for toll-like receptor (TLR) induced responses and microRNA profile changes. While pDCs derived from symptomatic mice were phenotypically comparable to pre-symptomatic ones, functionally they exhibited hypersensitivity to TLR7 but not TLR9 stimulation, as represented by the elevated upregulation of CD40, CD86 and MHC class II molecules upon R837 stimulation. Upregulated induction of miR-155 in symptomatic pDCs following TLR7 stimulation was observed. Transfection of miR-155 mimics in pre-symptomatic pDCs induced an augmented expression of Cd40, which is consistent with the increased CD40 expression in symptomatic pDCs. Overall, our results provide evidence for miR-155-mediated regulation in pDC functional abnormalities in SLE. Findings from this study contribute to a better understanding of SLE pathogenesis and ignite future interests in evaluating the molecular regulation in autoimmunity. PMID:27509492

  14. Analysis of the association between CD40 and CD40 ligand polymorphisms and systemic sclerosis

    PubMed Central

    2012-01-01

    Introduction The aim of the present study was to investigate the possible role of CD40 and CD40 ligand (CD40LG) genes in the susceptibility and phenotype expression of systemic sclerosis (SSc). Methods In total, 2,670 SSc patients and 3,245 healthy individuals from four European populations (Spain, Germany, The Netherlands, and Italy) were included in the study. Five single-nucleotide polymorphisms (SNPs) of CD40 (rs1883832, rs4810485, rs1535045) and CD40LG (rs3092952, rs3092920) were genotyped by using a predesigned TaqMan allele-discrimination assay technology. Meta-analysis was assessed to determine whether an association exists between the genetic variants and SSc or its main clinical subtypes. Results No evidence of association between CD40 and CD40LG genes variants and susceptibility to SSc was observed. Similarly, no significant statistical differences were observed when SSc patients were stratified by the clinical subtypes, the serologic features, and pulmonary fibrosis. Conclusions Our results do not suggest an important role of CD40 and CD40LG gene polymorphisms in the susceptibility to or clinical expression of SSc. PMID:22731751

  15. Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells

    PubMed Central

    Amin, Hiren P.; Czank, Charles; Raheem, Saki; Zhang, Qingzhi; Botting, Nigel P.; Cassidy, Aedín

    2015-01-01

    Scope In vitro and in vivo studies suggest that dietary anthocyanins modulate cardiovascular disease risk; however, given anthocyanins extensive metabolism, it is likely that their degradation products and conjugated metabolites are responsible for this reported bioactivity. Methods and results Human vascular endothelial cells were stimulated with either oxidized LDL (oxLDL) or cluster of differentiation 40 ligand (CD40L) and cotreated with cyanidin‐3‐glucoside and 11 of its recently identified metabolites, at 0.1, 1, and 10 μM concentrations. Protein and gene expression of IL‐6 and VCAM‐1 was quantified by ELISA and RT‐qPCR. In oxLDL‐stimulated cells the parent anthocyanin had no effect on IL‐6 production, whereas numerous anthocyanin metabolites significantly reduced IL‐6 protein levels; phase II conjugates of protocatechuic acid produced the greatest effects (>75% reduction, p ≤ 0.05). In CD40L‐stimulated cells the anthocyanin and its phase II metabolites reduced IL‐6 protein production, where protocatechuic acid‐4‐sulfate induced the greatest reduction (>96% reduction, p ≤ 0.03). Similarly, the anthocyanin and its metabolites reduced VCAM‐1 protein production, with ferulic acid producing the greatest effect (>65% reduction, p ≤ 0.04). Conclusion These novel data provide evidence to suggest that anthocyanin metabolites are bioactive at physiologically relevant concentrations and have the potential to modulate cardiovascular disease progression by altering the expression of inflammatory mediators. PMID:25787755

  16. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ{sup 9}-tetrahydrocannabinol in human CD4{sup +} T cells

    SciTech Connect

    Ngaotepprutaram, Thitirat; Kaplan, Barbara L.F.; Kaminski, Norbert E.

    2013-11-15

    We have previously reported that Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4{sup +} T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ{sup 9}-THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ{sup 9}-THC attenuated CD40L expression in human CD4{sup +} T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ{sup 9}-THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ{sup 9}-THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ{sup 9}-THC suppresses human T cell function. - Highlights: • Δ{sup 9}-THC attenuated CD40L expression in activated human CD4+ T cells. • Δ{sup 9}-THC suppressed DNA-binding activity of NFAT and NFκB. • Δ{sup 9}-THC impaired elevation of intracellular Ca2+. • Δ{sup 9}-THC did not affect phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β.

  17. Prostaglandin E2-EP4 signaling persistently amplifies CD40-mediated induction of IL-23 p19 expression through canonical and non-canonical NF-κB pathways

    PubMed Central

    Ma, Xiaojun; Aoki, Tomohiro; Narumiya, Shuh

    2016-01-01

    While there is mounting evidence that interleukin (IL)-23-IL-17 axis plays a critical role in the pathogenesis of various autoimmune diseases, much remains to be elucidated on how IL-23 is induced in the pathological processes. IL-23 is a heterodimer composed of p19 and p40, the latter being shared with IL-12. We previously reported that prostaglandin (PG) E2 promotes CD40-mediated induction of Il23a (p19) expression through its E receptor subtype 4 (EP4) receptor in splenic dendritic cells (DCs). Here, we have analyzed signaling pathways regulating Il23a induction in the cross talk between EP4 and CD40 in bone marrow-derived DCs. We found that PGE2 synergistically induced Il23a transcription with CD40 signaling. An EP4 agonist, but not agonists of EP1, EP2, or EP3, reproduced this action. Stimulation of CD40 with an agonist antibody evoked biphasic induction of Il23a expression, with the early phase peaking at 1 h and the late phase peaking at 12 h and lasting up to 36 h after stimulation, whereas induction by lipopolysaccharide or tumor necrosis factor-α was transient. The early phase induction by CD40 stimulation was absent in DCs derived from Nfkb1-deficient mice, and the late phase induction was eliminated by RNA interference of nuclear factor-kappa B (NF-κB) p100 subunit. Further, cAMP response element-binding protein (CREB) depletion completely eliminated the induction of Il23a by CD40 stimulation. The addition of the EP4 agonist amplified the induction in both phases through the cAMP-protein kinase A (PKA) pathway. These results suggest that Il23a expression in DCs is synergistically triggered by the PG E2-EP4-cAMP-PKA pathway and canonical/non-canonical NF-κB pathways and CREB activated by CD40 stimulation. PMID:26189370

  18. Linking Innate and Adaptive Immunity: Human Vγ9Vδ2 T Cells Enhance CD40 Expression and HMGB-1 Secretion

    PubMed Central

    Kalyan, Shirin; Chow, Anthony W.

    2009-01-01

    γδ T cells play an important role in regulating the immune response to stress stimuli; however, the mean by which these innate lymphocytes fulfill this function remains poorly defined. The main subset of human peripheral blood γδ T cells responds to nonpeptidic antigens, such as isopentylpyrophosphate (IPP), a metabolite in the mevalonate pathway for both eukaryote and prokaryote cells. IPP-primed γδ T cells significantly augment the inflammatory response mediated by monocytes and αβ T cells to TSST-1, the staphylococcal superantigen that is the major causative agent of toxic shock syndrome. Here we show that the small pool of activated peripheral γδ T cells induces an early upregulation of CD40 on monocytes and the local release of High Mobility Group Box-1 (HMGB-1), the molecule designated as the late mediator of systemic inflammation. This finding provides a new basis for how γδ T cells may serve as influential modulators of both endogenous and exogenous stress stimuli. PMID:19841752

  19. Multifunctional CD40L: pro- and anti-neoplastic activity.

    PubMed

    Korniluk, Aleksandra; Kemona, Halina; Dymicka-Piekarska, Violetta

    2014-10-01

    The CD40 ligand is a type I transmembrane protein that belongs to a tumor necrosis factor (TNF) superfamily. It is present not only on the surface of activated CD4+ T cells, B cells, blood platelets, monocytes, and natural killer (NK) cells but also on cancer cells. The receptor for ligand is constitutively expressed on cells, TNF family protein: CD40. The role of the CD40/CD40L pathway in the induction of body immunity, in inflammation, or in hemostasis has been well documented, whereas its involvement in neoplastic disease is still under investigation. CD40L ligand may potentiate apoptosis of tumor cells by activation of nuclear factor-κB (NF-κB), AP-1, CD95, or caspase-depended pathways and stimulate host immunity to defend against cancer. Although CD40L has a major contribution to anti-cancer activity, many reports point at its ambivalent nature. CD40L enhance release of strongly pro-angiogenic factor, vascular endothelial growth factor (VEGF), and activator of coagulation, TF, the level of which is correlated with tumor metastasis. CD40L involvement in the inhibition of tumor progression has led to the emergence of not only therapy using recombinant forms of the ligand and vaccines in the treatment of cancer but also therapy consisting of inhibiting platelets-main source of CD40L. This article is a review of studies on the ambivalent role of CD40L in neoplastic diseases. PMID:25117071

  20. CD40 Blockade Combines with CTLA4Ig and Sirolimus To Produce Mixed Chimerism in an MHC-defined Rhesus Macaque Transplant Model

    PubMed Central

    Page, Andrew; Srinivasan, Swetha; Singh, Karnail; Russell, Maria; Hamby, Kelly; Deane, Taylor; Sen, Sharon; Stempora, Linda; Leopardi, Frank; Price, Andrew A.; Strobert, Elizabeth; Reimann, Keith A.; Kirk, Allan D.; Larsen, Christian P.; Kean, Leslie S.

    2011-01-01

    In murine models, T-cell costimulation blockade of the CD28:B7 and CD154:CD40 pathways synergistically promotes immune tolerance after transplantation. While CD28 blockade has been successfully translated to the clinic, translation of blockade of the CD154:CD40 pathway has been less successful, in large part due to thromboembolic complications associated with anti-CD154 antibodies. Translation of CD40 blockade has also been slow, in part due to the fact that synergy between CD40 blockade and CD28 blockade had not yet been demonstrated in either primate models or humans. Here we show that a novel, non-depleting CD40 monoclonal antibody, 3A8, can combine with combined CTLA4Ig and sirolimus in a well-established primate bone marrow chimerism-induction model. Prolonged engraftment required the presence of all three agents during maintenance therapy, and resulted in graft acceptance for the duration of immunosuppressive treatment, with rejection resulting upon immunosuppression withdrawal. Flow cytometric analysis revealed that upregulation of CD95 expression on both CD4+ and CD8+ T-cells correlated with rejection, suggesting that CD95 may be a robust biomarker of graft loss. These results are the first to demonstrate prolonged chimerism in primates treated with CD28/mTOR blockade and non-depletional CD40 blockade, and support further investigation of combined costimulation blockade targeting the CD28 and CD40 pathways. PMID:21929643

  1. NORE1A induction by membrane-bound CD40L (mCD40L) contributes to CD40L-induced cell death and G1 growth arrest in p21-mediated mechanism

    PubMed Central

    Elmetwali, T; Salman, A; Palmer, D H

    2016-01-01

    Membrane-bound CD40L (mCD40L) but not soluble CD40L (sCD40L) has been implicated in direct cell death induction and apoptosis in CD40-expressing carcinomas. In this study, we show that mCD40L but not sCD40L induces NORE1A/Rassf5 expression in an NFκB-dependant mechanism. NORE1A expression appeared to contribute to mCD40L-induced cell death and enhance cell transition from G1 to S phase of the cell cycle in a p21-dependent mechanism. The upregulation of p21 protein was attributed to NORE1A expression, since NORE1A inhibition resulted in p21 downregulation. p21 upregulation was concomitant with lower p53 expression in the cytoplasmic fraction with no detectable increase at the nuclear p53 level. Moreover, mCD40L-induced cell death mediated by NORE1A expression appeared to be independent of mCD40L-induced cell death mediated by sustained JNK activation since NORE1A inhibition did not affect JNK phosphorylation and vice versa. The presented data allow better understanding of the mechanism by which mCD40L induces cell death which could be exploited in the clinical development of CD40-targeted anti-cancer therapies. PMID:26986513

  2. NORE1A induction by membrane-bound CD40L (mCD40L) contributes to CD40L-induced cell death and G1 growth arrest in p21-mediated mechanism.

    PubMed

    Elmetwali, T; Salman, A; Palmer, D H

    2016-01-01

    Membrane-bound CD40L (mCD40L) but not soluble CD40L (sCD40L) has been implicated in direct cell death induction and apoptosis in CD40-expressing carcinomas. In this study, we show that mCD40L but not sCD40L induces NORE1A/Rassf5 expression in an NFκB-dependant mechanism. NORE1A expression appeared to contribute to mCD40L-induced cell death and enhance cell transition from G1 to S phase of the cell cycle in a p21-dependent mechanism. The upregulation of p21 protein was attributed to NORE1A expression, since NORE1A inhibition resulted in p21 downregulation. p21 upregulation was concomitant with lower p53 expression in the cytoplasmic fraction with no detectable increase at the nuclear p53 level. Moreover, mCD40L-induced cell death mediated by NORE1A expression appeared to be independent of mCD40L-induced cell death mediated by sustained JNK activation since NORE1A inhibition did not affect JNK phosphorylation and vice versa. The presented data allow better understanding of the mechanism by which mCD40L induces cell death which could be exploited in the clinical development of CD40-targeted anti-cancer therapies. PMID:26986513

  3. CD40 ligand immunotherapy in cancer: an efficient approach.

    PubMed

    Kuwashima, N; Kageyama, S; Eto, Y; Urashima, M

    2001-01-01

    Cancer cells do not elicit a clinically sufficient anti-tumor immune response that results in tumor rejection. Recently, many investigators have been trying to enhance anti-tumor immunity and encouraging results have been reported. This review will discuss current anti-cancer immunotherapy; interleukin-2 therapy, tumor vaccine secreting Granulocyte macrophage-colony stimulating factor, dendritic cells fused with tumor cells, and CD40 ligand immunotherapy. Moreover, we introduce our two kinds of CD40 ligand immuno-genetherapy; (1) oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium (published in BLOOD 2000), (2) cancer vaccine transfected with CD40 ligand ex vivo for neuroblastoma (unpublished). Both approaches resulted in a high degree of protection against the tumor progression and they are simple and safe in the murine system. PMID:11911421

  4. CD40L expressed from the canarypox vector, ALVAC, can boost immunogenicity of HIV-1 canarypox vaccine in mice and enhance the in-vitro expansion of viral specific CD8+ T cell memory responses from HIV-1-infected and HIV-1-uninfected individuals

    PubMed Central

    Liu, Jun; Yu, Qigui; Stone, Geoffrey W.; Yue, Feng Yun; Ngai, Nicholas; Jones, R. Brad; Kornbluth, Richard S.; Ostrowski, Mario A.

    2011-01-01

    Summary Human immunodeficiency virus-1 (HIV-1) canarypox vaccines are safe but poorly immunogenic. CD40 ligand (CD40L), a member of the tumor necrosis factor superfamily (TNFSF), is a pivotal co-stimulatory molecule for immune responses. To explore whether CD40L can be used as an adjuvant for HIV-1 canarypox vaccine, we constructed recombinant canarypox viruses expressing CD40L. Co-immunization of mice with CD40L expressing canarypox and the canarypox vaccine expressing HIV-1 proteins, vCP1452, augmented HIV-1 specific cytotoxic T lymphocyte (CTL) responses in terms of frequency, polyfunctionality and interleukin (IL)-7 receptor α chain (IL-7Rα, CD127) expression. In addition, CD40L expressed from canarypox virus could significantly augment CD4+ T cell responses against HIV-1 in mice. CD40L expressed from canarypox virus matured human monocyte-derived dendritic cells (MDDCs) in a tumor necrosis factor α (TNF-α) independent manner, which underwent less apoptosis, and could expand ex vivo Epstein-Barr virus (EBV)-specific CTL responses from healthy human individuals and ex vivo HIV-1-specific CTL responses from HIV-1-infected individuals in the presence or absence of CD4+ T cells. Taken together, our results suggest that CD40L incorporation into poxvirus vectors could be used as a strategy to enhance their immunogenicity. PMID:18562053

  5. Increased CD40+ fibrocytes in patients with idiopathic orbital inflammation

    PubMed Central

    Lee, Brian J; Atkins, Stephen; Ginter, Anna; Elner, Victor M; Nelson, Christine C; Douglas, Raymond S

    2014-01-01

    Objective To investigate the phenotypic and functional characteristics of peripheral and tissue-infiltrating stem cells, called fibrocytes in patients with idiopathic orbital inflammation (IOI). Methods Seven patients with IOI were studied. In the three patients requiring orbital biopsy, fibrocytes were identified in orbital tissue from patients with IOI compared to healthy controls using immunohistochemistry. Fibrocytes from the peripheral blood of all seven patients and controls were quantified and phenotyped by flow cytometry and immunofluorescence for expression of CD34, alpha smooth muscle actin, CD40 and Collagen 1. Quantitation of CD40-mediated IL-6 production was measured using ELISA. Results Orbital biopsy specimens from patients with IOI demonstrate tissue infiltration by fibrocytes (n=3). Fibrocytes are present in the peripheral blood of IOI patients (n= 7) but are scarce in healthy donors (n=19). Fibrocytes from IOI patients express substantial levels of CD40 and ligation of CD40 increases IL-6 expression. Conclusions Fibrocytes are present in the peripheral blood and orbital tissues of patients with IOI and constitutively express CD40 and express IL-6 in response to ligation. This site-specific predilection of CD34+ fibrocytes to sites of orbital inflammation and fibrosis may suggest a role in IOI. Moreover CD40-mediated activation cytokine production may contribute to the proinflammatory and profibrotic features of IOI and may provide a mechanism for future targeted therapy. PMID:25098443

  6. The importance of sCD40 and sCD40L concentration in patients with chronic HCV infection and HIV co-infection.

    PubMed

    Lapiński, Tadeusz Wojciech; Pogorzelska, Joanna; Grzeszczuk, Anna; Swiderska, Magdalena; Kowalczuk, Oksana; Nikliński, Jacek; Flisiak, Robert

    2014-01-01

    CD40 receptor is activated by ligand CD40L (CD154) which is synthesized in inflammation by NK cells, monocytes and lymphocytes B. TRAF proteins are activated in cells by CD40 stimulation and next they stimulate different enzymatic pathways. High concentrations of CD40L stimulate CD40, and consequently STAT enzyme system inhibits the expression ofnonstructural proteins ofHCV NS3 and NS5A and E2 core in infected human hepatocytes. PURPOSE. The aim of the study was to evaluate the concentration of soluble components of the complex: sCD40 and sCD40L in the serum of patients infected with HCV and HCV/HIV-1 co-infected. The effect ofHCV genotype, HIV and HCV viral load and rs12979860 polymorphism on serum sCD40 and sCD40L was established among the patients. The influence of the number of CD3+, CD4+ and CD8+ on the concentrations of sCD40 and sCD40L was evaluated in the HIV-1 infected group MATERIALS AND METHODS. Serum concentrations of sCD40 and sCD40L were determined using ELISA in 68 HCV infected patients including 39 HCV monoinfected and 29 HCV/HIV-1 co-infected. RESULTS. Serum concentration of sCD40 and sCD40L was significantly higher in HCV and HCV/HIV coinfected patients compared to healthy subjects (25.7 and 23.2 v. 8.5 pg/ml and 12.7 and 7.3 v. 0.79 ng/ml). The concentration of sCD40L in patients with genotype CC rs12979860 was significantly higher compared to patients with Non-CC genotypes (11.8 v. 7.6 ng/ml, p < 0.018). CONCLUSIONS. High levels of sCD40 and sCD40L were detected among patients with chronic HCV and HCV/ HIV-1 infection The high concentration of sCD40L correlates with CC rs12979860 genotype. PMID:25004625

  7. Immune activation during the implantation phase causes preeclampsia-like symptoms via the CD40-CD40 ligand pathway in pregnant mice.

    PubMed

    Matsubara, Keiichi; Matsubara, Yuko; Mori, Miki; Uchikura, Yuka; Hamada, Katsuyuki; Fujioka, Toru; Hashimoto, Hisashi; Matsumoto, Takashi

    2016-06-01

    The CD40 ligand (CD40L) is expressed by T cells and has a critical role in immune system regulation. Interventions targeting CD40L interactions following embryo implantation represent an approach to preventing preeclampsia (PE). To better understand the role of CD40L in PE, we developed a PE mouse model in which we examined how CD40L-induced immune activation affects embryo implantation. Blastocysts were incubated with CD40L-expressing adenovirus and then were transferred into the uterine horns of pseudopregnant ICR mice. Histology, biochemistry and flow cytometry experiments were performed to examine the characteristics of the mouse model. In early pregnancy, decidualization and spiral artery remodeling were reduced in CD40L-transfected mice (CD40L mice) compared with control mice. Hematoxylin-eosin (HE) staining revealed hemorrhaging and excess fibrin deposition at the labyrinth layer-junctional zone interface of the placenta, and PAS staining demonstrated prominent focal and segmental sclerosis with collapsed glomerular capillaries in the kidneys of the CD40L mice. Flow cytometry data showed that interferon-γ production derived from CD4(+) T cells was elevated in the splenic cells of CD40L mice. Blood pressure (measured by the tail-cuff method) and urine albumin concentrations were significantly increased in CD40L mice compared with control mice. Furthermore, the plasma concentrations of soluble Flt-1 and soluble endoglin were increased in CD40L mice, as occurs in human patients with PE. Thus, CD40L-induced T-helper cell type 1 differentiation during embryo implantation may have a critical role in the pathogenesis of a PE-like presentation in a novel mouse model of PE. PMID:26763855

  8. The role of CD40 and CD40L in bone mineral density and in osteoporosis risk: A genetic and functional study.

    PubMed

    Panach, Layla; Pineda, Begoña; Mifsut, Damián; Tarín, Juan J; Cano, Antonio; García-Pérez, Miguel Ángel

    2016-02-01

    Compelling data are revealing that the CD40/CD40L system is involved in bone metabolism. Furthermore, we have previously demonstrated that polymorphisms in both genes are associated with bone phenotypes. The aim of this study is to further characterize this association and to identify the causal functional mechanism. We conducted an association study of BMD with 15 SNPs in CD40/CD40L genes in a population of 779 women. In addition, we assessed the functionality of this association through the study of the allele-dependent expression of CD40 and CD40L in peripheral blood leukocytes (PBLs) and in human osteoblasts (OBs) obtained from bone explants by qPCR and by sequencing. When an allelic imbalance (AI) was detected, studies on allele-dependent in vitro transcription rate and on CpG methylation in the gene promoter were also performed. Our results confirm the genetic association between SNP rs116535 (T>C) of CD40L gene with LS-BMD. Regarding CD40 gene, two SNPs showed nominal P-values<0.05 for FN- and LS-BMD (Z-scores), although the association was not significant after correcting for multiple testing. Homozygous TT women for SNP rs1883832 (C>T) of CD40 gene showed a trend to have lower levels of OPG (Q-value=0.059), especially when women of BMD-quartile ends were selected (P<0.05). Regarding functionality, we detected an AI for rs1883832 with the C allele the most expressed in OBs and in PBLs. Since the rs116535 of CD40L gene did not show AI, it was not further analyzed. Finally, we described a differential methylation of CpGs in the CD40 promoter among women of high in comparison to low BMD. Our results suggest that the CD40/CD40L system plays a role in regulating BMD. Effectively, our data suggest that a decreased production of OPG could be the cause of the lower BMD observed in TT women for rs1883832 of the CD40 gene and that the degree of methylation of CpGs in the CD40 promoter could contribute to the acquisition of BMD. One possibility that deserves further

  9. High serum levels of soluble CD40-L in patients with undifferentiated nasopharyngeal carcinoma: pathogenic and clinical relevance

    PubMed Central

    Caggiari, Laura; Guidoboni, Massimo; Vaccher, Emanuela; Barzan, Luigi; Franchin, Giovanni; Gloghini, Annunziata; Martorelli, Debora; Zancai, Paola; Bortolin, Maria Teresa; Mazzucato, Mario; Serraino, Diego; Carbone, Antonino; De Paoli, Paolo; Dolcetti, Riccardo

    2007-01-01

    Background Engagement of CD40 promotes survival of undifferentiated nasopharyngeal carcinoma (UNPC) cells and similar effects are induced by the EBV oncoprotein LMP-1 that is expressed in a fraction of cases. Considering that CD40 may be activated also by the soluble isoform of CD40L (sCD40L), we investigated the serum levels of sCD40L in a series of 61 UNPC patients from Italy, a non-endemic area for this disease. Results At diagnosis, serum samples of UNPC patients contained significantly higher levels of sCD40L than age-matched healthy controls (p < 0.001). High levels of sCD40L (i.e., >18 ng/ml) were more frequently found in patients <40 years of age (p = 0.03) and with distant metastases at presentation (p = 0.03). Serum levels of sCD40L were inversely associated with the expression of the EBV oncoprotein LMP-1 (p = 0.03), which mimics a constitutively activated CD40. The amount of sCD40L decreased in a fraction of patients treated with local radiotherapy alone. Moreover, CD40L+ lymphoid cells admixed to neoplastic UNPC cells were detected in cases with high serum levels of sCD40L, suggesting that sCD40L is probably produced within the tumor mass. Conclusion sCD40L may contribute to CD40 activation in UNPC cells, particularly of LMP-1-negative cases, further supporting the crucial role of CD40 signalling in the pathogenesis of UNPC. sCD40L levels may be useful to identify UNPC patients with occult distant metastases at presentation. PMID:17331231

  10. Protein Kinase C beta Mediates CD40 Ligand-Induced Adhesion of Monocytes to Endothelial Cells

    PubMed Central

    Wu, Zeyu; Zhao, Gang; Peng, Lin; Du, Jialin; Wang, Sanming; Huang, Yijie; Ou, Jinrui; Jian, Zhixiang

    2013-01-01

    Accumulating evidence supports the early involvement of monocyte/macrophage recruitment to activated endothelial cells by leukocyte adhesion molecules during atherogenesis. CD40 and its ligand CD40L are highly expressed in vascular endothelial cells, but its impact on monocyte adhesion and the related molecular mechanisms are not fully understood. The present study was designed to evaluate the direct effect of CD40L on monocytic cell adhesion and gain mechanistic insight into the signaling coupling CD40L function to the proinflammatory response. Exposure of cultured human aortic endothelial cells (HAECs) to clinically relevant concentrations of CD40L (20 to 80 ng/mL) dose-dependently increased human monocytic THP-1 cells to adhere to them under static condition. CD40L treatment induced the expression of vascular cell adhesion molecule-1 (VCAM-1) mRNA and protein expression in HAECs. Furthermore, exposure of HAECs to CD40L robustly increased the activation of protein kinase C beta (PKCβ) in ECs. A selective inhibitor of PKCβ prevented the rise in VCAM-1 and THP-1 cell adhesion to ECs. Moreover, stimulation of ECs to CD40L induced nuclear factor-κB (NF-κB) activation. PKCβ inhibition abolished CD40L-induced NF-κB activation, and NF-κB inhibition reduced expression of VCAM-1, each resulting in reduced THP-1 cell adhesion. Our findings provide the evidence that CD40L increases VCAM-1 expression in ECs by activating PKCβ and NF-κB, suggesting a novel mechanism for EC activation. Finally, administration of CD40L resulted in PKCβ activation, increased VCAM-1 expression and activated monocytes adhesiveness to HAECs, processes attenuated by PKCβ inhibitor. Therefore, CD40L may contribute directly to atherogenesis by activating ECs and recruiting monocytes to them. PMID:24039784

  11. IL-33 promotes MHC class II expression in murine mast cells

    PubMed Central

    Ito, Tomonobu; Egusa, Chizu; Maeda, Tatsuo; Numata, Takafumi; Nakano, Nobuhiro; Nishiyama, Chiharu; Tsuboi, Ryoji

    2015-01-01

    Mast cells (MCs), recognized as tissue-resident cells of hematopoietic origin, are involved in cellular and pathological manifestations of allergic disorders including atopic dermatitis. IL-33, a member of the IL-1 cytokine family, activates Th2-type immune responses, and promotes the degranulation and maturation of MCs. However, it is uncertain whether IL-33 treatment induces mature mast cells to acquire the characteristics of the monocyte-dendritic cell lineage.We investigated the effect of IL-33 on the MHC class II expression and function of murine mast cells. IL-33-treated mature murine bone marrow-derived mast cells (BMMCs) were analyzed by FACS, real-time PCR, chromatin immunoprecipitation (ChIP) assay, and Western blotting. The morphology and degranulation activity of BMMCs and T-cell activation by BMMCs were also examined. BMMCs treated with IL-33 for 10 days induced cell surface expression of the MHC class II protein, whereas the expression of FcεRI and c-kit was not affected by IL-33. The expression of CIITA, driven from pIII and pIV, was up-regulated in IL-33-treated BMMCs. The amount of PU.1 mRNA and protein significantly increased in IL-33-treated BMMCs. The ChIP assay showed PU.1 binding to CIITA pIII, and enhanced histone acetylation due to IL-33 treatment. Syngeneic T cells were activated by co-culture with IL-33-treated BMMCs, although the expression of the co-stimulatory molecules, CD40, CD80, CD86, and PDL-1, was not detected. Mast cells express MHC class II after prolonged exposure to IL-33, probably due to enhanced recruitment of PU.1 to CIITA pIII, resulting in transactivation of CIITA and MHC class II. IL-33 is an important cytokine in allergic disorders. Mast cells have the ability to express MHC class II after prolonged exposure to IL-33 in a murine model. IL-33 holds a key to understanding the etiology of atopic dermatitis. PMID:26417437

  12. IL-33 promotes MHC class II expression in murine mast cells.

    PubMed

    Ito, Tomonobu; Egusa, Chizu; Maeda, Tatsuo; Numata, Takafumi; Nakano, Nobuhiro; Nishiyama, Chiharu; Tsuboi, Ryoji

    2015-09-01

    Mast cells (MCs), recognized as tissue-resident cells of hematopoietic origin, are involved in cellular and pathological manifestations of allergic disorders including atopic dermatitis. IL-33, a member of the IL-1 cytokine family, activates Th2-type immune responses, and promotes the degranulation and maturation of MCs. However, it is uncertain whether IL-33 treatment induces mature mast cells to acquire the characteristics of the monocyte-dendritic cell lineage.We investigated the effect of IL-33 on the MHC class II expression and function of murine mast cells. IL-33-treated mature murine bone marrow-derived mast cells (BMMCs) were analyzed by FACS, real-time PCR, chromatin immunoprecipitation (ChIP) assay, and Western blotting. The morphology and degranulation activity of BMMCs and T-cell activation by BMMCs were also examined. BMMCs treated with IL-33 for 10 days induced cell surface expression of the MHC class II protein, whereas the expression of FcεRI and c-kit was not affected by IL-33. The expression of CIITA, driven from pIII and pIV, was up-regulated in IL-33-treated BMMCs. The amount of PU.1 mRNA and protein significantly increased in IL-33-treated BMMCs. The ChIP assay showed PU.1 binding to CIITA pIII, and enhanced histone acetylation due to IL-33 treatment. Syngeneic T cells were activated by co-culture with IL-33-treated BMMCs, although the expression of the co-stimulatory molecules, CD40, CD80, CD86, and PDL-1, was not detected. Mast cells express MHC class II after prolonged exposure to IL-33, probably due to enhanced recruitment of PU.1 to CIITA pIII, resulting in transactivation of CIITA and MHC class II. IL-33 is an important cytokine in allergic disorders. Mast cells have the ability to express MHC class II after prolonged exposure to IL-33 in a murine model. IL-33 holds a key to understanding the etiology of atopic dermatitis. PMID:26417437

  13. CD40 is required for protective immunity against liver stage Plasmodium infection1

    PubMed Central

    Murray, Sara A; Mohar, Isaac; Miller, Jessica L; Brempelis, Katherine J; Vaughan, Ashley M; Kappe, Stefan HI; Crispe, Ian N

    2015-01-01

    The co-stimulatory molecule CD40 enhances immunity through several distinct roles in T cell activation and T cell interaction with other immune cells. In a mouse model of immunity to liver stage Plasmodium infection, CD40 was critical for the full maturation of liver dendritic cells, accumulation of CD8+ T cells in the liver, and protective immunity induced by immunization with the P. yoelii fabb/f- genetically attenuated parasite. Using mixed adoptive transfers of polyclonal wild type (WT) and CD40-deficient (CD40−/−) CD8+ T cells into WT and CD40−/− hosts, we evaluated the contributions to CD8+ T cell immunity of CD40 expressed on host tissues including antigen-presenting cells (APC), compared to CD40 expressed on the CD8+ T cells themselves. Most of the effects of CD40 could be accounted for by expression in the T cells’ environment, including the accumulation of large numbers of CD8+ T cells in the livers of immunized mice. Thus, protective immunity generated during immunization with fabb/f- was largely dependent on effective APC licensing via CD40 signaling. PMID:25646303

  14. CD40L induces inflammation and adipogenesis in adipose cells--a potential link between metabolic and cardiovascular disease.

    PubMed

    Missiou, Anna; Wolf, Dennis; Platzer, Isabel; Ernst, Sandra; Walter, Carina; Rudolf, Philipp; Zirlik, Katja; Köstlin, Natascha; Willecke, Florian K; Münkel, Christian; Schönbeck, Uwe; Libby, Peter; Bode, Christoph; Varo, Nerea; Zirlik, Andreas

    2010-04-01

    CD40L figures prominently in atherogenesis. Recent data demonstrate elevated levels of sCD40L in the serum of patients with the metabolic syndrome (MS). This study investigated the role of CD40L in pro-inflammatory gene expression and cellular differentiation in adipose tissue to obtain insight into mechanisms linking the MS with atherosclerosis. Human adipocytes and preadipocytes expressed CD40 but not CD40L. Stimulation with recombinant CD40L or membranes over-expressing CD40L induced a time- and dose-dependent expression of IL-6, MCP-1, IL-8, and PAI-1. Supernatants of CD40L-stimulated adipose cells activated endothelial cells, suggesting a systemic functional relevance of our findings. Neutralising antibodies against CD40L attenuated these effects substantially. Signalling studies revealed the involvement of mitogen-activated protein kinases and NFkB. Furthermore, stimulation with CD40L resulted in enhanced activation of C/EBPa and PPARg and promoted adipogenesis of preadipose cells in the presence and absence of standard adipogenic conditions. Finally, patients suffering from the metabolic syndrome with high levels of sCD40L also displayed high levels of IL-6, in line with the concept that CD40L may induce the expression of inflammatory cytokines in vivo in this population. Our data reveal potent metabolic functions of CD40L aside from its known pivotal pro-inflammatory role within plaques. Our data suggest that CD40L may mediate risk at the interface of metabolic and atherothrombotic disease. PMID:20174757

  15. Cloning and expression analysis of murine phospholipase D1.

    PubMed Central

    Colley, W C; Altshuller, Y M; Sue-Ling, C K; Copeland, N G; Gilbert, D J; Jenkins, N A; Branch, K D; Tsirka, S E; Bollag, R J; Bollag, W B; Frohman, M A

    1997-01-01

    Activation of phosphatidylcholine-specific phospholipase D(PLD) occurs as part of the complex signal-transduction cascade initiated by agonist stimulation of tyrosine kinase and G-protein-coupled receptors. A variety of mammalian PLD activities have been described, and cDNAs for two PLDs recently reported (human PLD1 and murine PLD2). We describe here the cloning and chromosomal localization of murine PLD1. Northern-blot hybridization and RNase protection analyses were used to examine the expression of murine PLD1 and PLD2 ina variety of cell lines and tissues. PLD1 and PLD2 were expressed in all RNA samples examined, although the absolute expression of each isoform varied, as well as the ratio of PLD1 to PLD2. Moreover, in situ hybridization of adult brain and murine embryo sections revealed high levels of expression of individual PLDs in some cell types and no detectable expression in others. Thus the two PLDs probably carry out distinct roles in restricted subsets of cells rather than ubiquitous roles in all cells. PMID:9307024

  16. Genetic Adjuvantation of Recombinant MVA with CD40L Potentiates CD8 T Cell Mediated Immunity

    PubMed Central

    Lauterbach, Henning; Pätzold, Juliane; Kassub, Ronny; Bathke, Barbara; Brinkmann, Kay; Chaplin, Paul; Suter, Mark; Hochrein, Hubertus

    2013-01-01

    Modified vaccinia Ankara (MVA) is a safe and promising viral vaccine vector that is currently investigated in several clinical and pre-clinical trials. In contrast to inactivated or sub-unit vaccines, MVA is able to induce strong humoral as well as cellular immune responses. In order to further improve its CD8 T cell inducing capacity, we genetically adjuvanted MVA with the coding sequence of murine CD40L, a member of the tumor necrosis factor superfamily. Immunization of mice with this new vector led to strongly enhanced primary and memory CD8 T cell responses. Concordant with the enhanced CD8 T cell response, we could detect stronger activation of dendritic cells and higher systemic levels of innate cytokines (including IL-12p70) early after immunization. Interestingly, acquisition of memory characteristics (i.e., IL-7R expression) was accelerated after immunization with MVA-CD40L in comparison to non-adjuvanted MVA. Furthermore, the generated cytotoxic T-lymphocytes (CTLs) also showed improved functionality as demonstrated by intracellular cytokine staining and in vivo killing activity. Importantly, the superior CTL response after a single MVA-CD40L immunization was able to protect B cell deficient mice against a fatal infection with ectromelia virus. Taken together, we show that genetic adjuvantation of MVA can change strength, quality, and functionality of innate and adaptive immune responses. These data should facilitate a rational vaccine design with a focus on rapid induction of large numbers of CD8 T cells able to protect against specific diseases. PMID:23986761

  17. Expression and modulation of IL-1 alpha in murine keratinocytes

    SciTech Connect

    Ansel, J.C.; Luger, T.A.; Lowry, D.; Perry, P.; Roop, D.R.; Mountz, J.D.

    1988-04-01

    Murine and human keratinocytes produce an IL-1-like factor that appears to be similar if not identical to monocyte-derived IL-1. IL-1 may be an important mediator in cutaneous inflammatory responses, however, little is currently known concerning factors that may modulate IL-1 expression in keratinocytes. To address this issue we examined the effect of LPS, UV, and the cell differentiation state on murine keratinocyte IL-1 mRNA expression. Our results indicated that as with the murine P388D1 monocyte cell line, PAM 212 keratinocytes constitutively express abundant amounts of IL-1 alpha mRNA. On exposure to LPS (100 micrograms/ml) for 8 h there was more than 10 times the increase in PAM 212 IL-1 alpha mRNA which was accompanied by a sixfold increase in supernatant IL-1 activity. Similarly UV irradiation had a significant effect on keratinocyte IL-1 alpha expression. High dose UV (300 mJ/cm2) inhibited PAM 212 IL-1 alpha expression at 4, 8, 24, 48 h post-UV whereas a lower dose of UV (100 mJ/cm2) inhibited UV at 4 and 8 h post-UV, but induced IL-1 expression at 24 and 48 h post-UV. The expression of IL-1 alpha varied with the differentiation state of the keratinocytes. Freshly removed newborn murine keratinocytes were found to constitutively express IL-1 alpha mRNA. Keratinocytes grown in low (Ca2+) tissue culture media (0.05 mM) for 6 days, functionally and phenotypically become undifferentiated and express increased quantities of IL-1 alpha mRNA, whereas cells grown in high (Ca2+) media (1.2 mM) for 6 days become terminally differentiated and IL-1 expression ceased. Keratinocytes cultured for 3 days in low (Ca2+) conditions expressed an intermediate level of IL-1 alpha. In contrast, little or no IL-1 beta mRNA was detected in either the PAM 212 cells or newborn murine keratinocytes.

  18. Constitutive CD40 Signaling Calibrates Differentiation Outcomes in Responding B Cells via Multiple Molecular Pathways.

    PubMed

    Basu, Srijani; Kaw, Sheetal; D'Souza, Lucas; Vaidya, Tushar; Bal, Vineeta; Rath, Satyajit; George, Anna

    2016-08-01

    CD40 signaling during B cell activation is known to inhibit terminal differentiation and promote memory generation. Blimp-1 is essential for efficient plasma cell (PC) generation, and although CD40 signaling is known to inhibit Blimp-1 induction during B cell activation, the mechanisms involved have been unclear. We report that CD40 signaling induces miR-125b that targets Blimp-1 transcripts, and increases amounts of the ubiquitin ligase Hrd1 that targets BLIMP-1 protein for proteasomal degradation. CD40 signaling also inhibits the early unfolded protein response (UPR) of activated B cells that precedes the induction of terminal differentiation, and Hrd1 feeds into this pathway by targeting the core UPR component IRE-1α. Strikingly, CD40 signaling in the absence of BCR- or TLR-ligation also repressed Blimp-1 transcripts, suggesting that noncognate ligation of CD40 via T-B interactions may repress Blimp-1 in vivo. In support of this, we find that naive B cells purified from CD40-CD154 interaction-deficient mice express higher amounts of Blimp-1 and lower amounts of microRNAs and Hrd1. Higher basal amounts of Blimp-1 in naive CD40(-/-) B cells correlate with an increased tendency of the cells to undergo terminal differentiation upon LPS stimulation. Conversely, a 24-h exposure to CD40 ligation during LPS stimulation of wild-type B cells is sufficient to inhibit PC generation. The data show that CD40-mediated inhibition of PC generation is via engagement of multiple pathways that involve repression of Blimp-1 and inhibition of the UPR that prepares cells to become professional secretors. They also show that constitutive CD40 signaling in vivo involving bystander T-B interactions can calibrate B cell differentiation outcomes. PMID:27342845

  19. Thymic medullary epithelium and thymocyte self tolerance require cooperation between CD28-CD80/86 and CD40-CD40L costimulatory pathways

    PubMed Central

    Williams, Joy A.; Zhang, Jingjing; Jeon, Hyein; Nitta, Takeshi; Ohigashi, Izumi; Klug, David; Kruhlak, Michael J.; Choudhury, Baishakhi; Sharrow, Susan O.; Granger, Larry; Adams, Anthony; Eckhaus, Michael A.; Jenkinson, S. Rhiannon; Richie, Ellen R.; Gress, Ronald E.; Takahama, Yousuke; Hodes, Richard J.

    2014-01-01

    A critical process during thymic development of the T cell repertoire is the induction of self-tolerance. Tolerance in developing T cells is highly dependent on medullary thymic epithelial cells (mTEC) and mTEC development in turn requires signals from mature single positive (SP) thymocytes, a bidirectional relationship termed thymus crosstalk. We show that CD28-CD80/86 and CD40-CD40L costimulatory interactions, which mediate negative selection and self-tolerance, upregulate expression of LTα, LTβ and RANK in the thymus and are necessary for medullary development. Combined absence of CD28-CD80/86 and CD40-CD40L results in profound deficiency in mTEC development comparable to that observed in the absence of SP thymocytes. This requirement for costimulatory signaling is maintained even in a TCR transgenic model of high affinity TCR-ligand interactions. CD4 thymocytes maturing in the altered thymic epithelial environment of CD40/CD80/86 KO mice are highly autoreactive in vitro and are lethal in congenic adoptive transfer in vivo, demonstrating a critical role for these costimulatory pathways in self-tolerance as well as thymic epithelial development. These findings demonstrate that cooperativity between CD28-CD80/86 and CD40-CD40L pathways is required for normal medullary epithelium and for maintenance of self-tolerance in thymocyte development. PMID:24337745

  20. Soluble CD40 ligand induces β3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling

    PubMed Central

    Prasad, K. S. Srinivasa; Andre, Patrick; He, Ming; Bao, Ming; Manganello, Jeanne; Phillips, David R.

    2003-01-01

    We earlier reported that the soluble form of the CD40 ligand (sCD40L), is involved in thrombosis by stabilizing platelet thrombi. In this article, we have determined the mechanism by which this protein affects platelet biology. Addition of sCD40L to washed platelets was found to activate the receptor function of αIIbβ3 as measured by the induction of fibrinogen binding and the formation of platelet microparticles. Mutation in the KGD sequence (D117E) of sCD40L, the αIIbβ3-binding domain in the N terminus of the protein resulted in a loss of the platelet-stimulatory activity of this protein. Integrilin, a αIIbβ3 antagonist, but not an antibody to CD40 that blocked the ligand-binding activity, inhibited these platelet-stimulatory events. CD40-/- platelets bound fibrinogen and formed microparticles similar to WT platelets, again indicating that CD40 is not involved in sCD40L-induced platelet activation. Exposure of platelets to sCD40L, but not D117E-sCD40L-coated surfaces, induced platelet thrombi formation under arterial shear rate. sCD40L-induced platelet stimulation resulted in the phosphorylation of tyrosine-759 in the cytoplasmic domain of β3. Platelets from the diYF mouse strain, expressing β3 in which both cytoplasmic tyrosines are mutated to phenylalanine, were defective in sCD40L-induced platelet stimulation. These data indicate that sCD40L is a primary platelet agonist and that platelet stimulation is induced by the binding of the KGD domain of sCD40L to αIIbβ3, triggering outside-in signaling by tyrosine phosphorylation of β3. PMID:14519852

  1. Levels of human platelet-derived soluble CD40 ligand depend on haplotypes of CD40LG-CD40-ITGA2

    PubMed Central

    Aloui, Chaker; Prigent, Antoine; Tariket, Sofiane; Sut, Caroline; Fagan, Jocelyne; Cognasse, Fabrice; Chakroun, Tahar; Garraud, Olivier; Laradi, Sandrine

    2016-01-01

    Increased circulating soluble CD40 ligand (sCD40L) is commonly associated with inflammatory disorders. We aimed to investigate whether gene polymorphisms in CD40LG, CD40 and ITGA2 are associated with a propensity to secrete sCD40L; thus, we examined this issue at the level of human platelets, the principal source of sCD40L. We performed single polymorphism and haplotype analyses to test for the effect of twelve polymorphisms across the CD40LG, CD40 and ITGA2 genes in blood donors. ITGA2 presented a positive association with rs1126643, with a significant modification in sCD40L secretion (carriers of C allele, P = 0.02), unlike the investigated CD40LG and CD40 polymorphisms. One CD40LG haplotype (TGGC) showing rs975379 (C/T), rs3092952 (A/G), rs3092933 (A/G) and rs3092929 (A/C) was associated with increased sCD40L levels (1.906 μg/L (95% CI: 1.060 to 2.751); P = 0.000009). The sCD40L level was associated with the inter-chromosomal CD40LG/CD40/ITGA2 haplotype (ATC), displaying rs3092952 (A/G), rs1883832 (C/T) and rs1126643 (C/T), with increased sCD40L levels (P = 0.0135). Our results help to decipher the genetic role of CD40LG, CD40 and ITGA2 with regard to sCD40L levels found in platelet components. Given the crucial role of sCD40L, this haplotype study in a transfusion model may be helpful to further determine the role of haplotypes in inflammatory clinical settings. PMID:27094978

  2. Construction of the HBV S-ecdCD40L fusion gene and effects of HBV S-ecdCD40L modification on function of dendritic cells.

    PubMed

    Wu, J-M; Lin, X-F; Huang, Z-M; Wu, J S

    2011-10-01

    We examined the effect of dendritic cells engineered to express an HBV S antigen CD40L fusion gene (HBV S-ecdCD40L). The DNA of HBV S gene and the cDNA of the extracellular domain of human CD40 ligand were linked by cloning. Peripheral blood mononuclear cells (PBMC) from healthy adults were incubated and induced into dendritic cells (DC) in presence of granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-4(IL-4). The DCs were transfected the novel construct, and the impact of the expressed clone assessed. We find that, compared with control groups, modification of DCs with HBV S-ecdCD40L fusion gene resulted in the activation of DCs with upregulated expression of immunologically important cell surface molecules (CD80, CD86 and HLA-DR) and proinflammatory cytokines (IL-12). The DCs modified with HBV S-ecdCD40L are able to stimulate enhanced allogeneic T-cell proliferation in vitro. Thus, the fusion gene HBV S-ecdCD40L can promote DC's activation and enhance its function and may prove to be the foundation for a new type of hepatitis B vaccine. PMID:21914064

  3. Rhipicephalus microplus salivary gland molecules induce differential CD86 expression in murine macrophages

    PubMed Central

    2010-01-01

    Background Tick parasitism is a major impediment for cattle production in many parts of the world. The southern cattle tick, Rhipicephalus (Boophilus) microplus, is an obligate hematophagous parasite of domestic and wild animals that serves as vector of infectious agents lethal to cattle. Tick saliva contains molecules evolved to modulate host innate and adaptive immune responses which facilitates blood feeding and pathogen transmission. Tick feeding promotes CD4 T cell polarization to a Th2 profile usually accompanied by down-regulation of Th1 cytokines through as yet undefined mechanisms. Co-stimulatory molecules on antigen presenting cells are central to development of T cell responses including Th1 and Th2 responses. Tick induced changes to antigen presenting cell signal transduction pathways are largely unknown. Here we document the ability of R. microplus salivary gland extracts (SGE) to effect differential CD86 expression. Results We examined changes in co-stimulatory molecule expression in murine RAW 264.7 cells in response to R. microplus SGE exposure in the presence of the toll-like receptor 4 (TLR4) ligand, LPS. After 24 hrs, CD86, but not CD80, was preferentially up-regulated on mouse macrophage RAW 264.7 cells when treated with SGE and then LPS, but not SGE alone. CD80 and CD40 expression was increased with LPS, but the addition of SGE did not alter expression. Higher concentrations of SGE were less effective at increasing CD86 RNA expression. The addition of mitogen or extracellular kinase (MEK) inhibitor, PD98059, significantly reduced the ability for SGE to induce CD86 expression, indicating activation of MEK is necessary for SGE induced up-regulation. Conclusions Molecules in SGE of R. microplus have a concentration-dependent effect on differential up-regulation of CD86 in a macrophage cell line activated by the TLR4 ligand, LPS. This CD86 up-regulation is at least partially dependent on the ERK1/2 pathway and may serve to promote Th2 polarization

  4. Functional expression of murine multidrug resistance in Xenopus laevis oocytes

    SciTech Connect

    Castillo, G.; Vera, J.C.; Rosen, O.M. ); Yang, Chiaping Huang; Horwitz, S.B. )

    1990-06-01

    The development of multidrug resistance (MDR) is associated with the overproduction of a plasma membrane glycoprotein, P glycoprotein. Here the authors report the functional expression of a member of the murine MDR family of proteins and show that Xenopus oocytes injected with RNA encoding the mouse mdr1b P glycoprotein develop a MDR-like phenotype. Immunological analysis indicated that oocytes injected with the mdr1b RNA synthesized a protein with the size and immunological characteristics of the mouse mdr1b P glycoprotein. These oocytes exhibited a decreased accumulation of ({sup 3}H)vinblastine and showed an increased capacity to extrude the drug compared to control oocytes not expressing the P glycoprotein. In addition, competition experiments indicated that verapamil, vincristine, daunomycin, and quinidine, but not colchicine, can overcome the rapid drug efflux conferred by the expression of the mouse P glycoprotein.

  5. Expression of murine Fc receptors for IgG.

    PubMed

    Schreiber, R E; Buku, A; Unkeless, J C

    1990-06-15

    There are two distinct genes that encode murine low affinity Fc gamma RII, murine Fc gamma RII alpha, and murine Fc gamma RII beta, which are transcribed in specific cell lineages. Fc gamma RII alpha transcripts are present in macrophages, NK cells, and mesangial cells; Fc gamma RII beta transcripts are expressed in Fc gamma R-bearing B cells, T cells, and macrophages. We have devised a sandwich ELISA to quantify the expression of Fc gamma RII alpha protein. The ELISA is specific for Fc gamma RII alpha, and does not detect the closely related Fc gamma RII beta protein. Upon stimulation with IFN-gamma the Fc gamma RII beta- macrophage cell line J774a expressed a twelvefold enhanced level of Fc gamma RII alpha protein. Peritoneal macrophages synthesized varying amounts of Fc gamma RII alpha. High levels of Fc gamma RII alpha were observed in resident and thioglycollate-elicited peritoneal macrophages, but no Fc gamma RII alpha was detected in Bacillus Calmette Guérin-elicited macrophages. J774a cells stimulated with rIL-6 bound approximately twice as much anti-Fc gamma RII mAb 2.4G2 IgG as did unstimulated controls. However, the Fc gamma RII alpha-specific ELISA showed no change in the amount of Fc gamma RII alpha expressed. A probe encompassing the extracellular coding sequence of Fc gamma RII beta hybridized to two distinct transcripts that were elevated in rIL-6-stimulated J774a cells. One of these transcripts had the same mobility in electrophoresis as Fc gamma RII alpha mRNA and hybridized to an Fc gamma RII alpha-specific probe, whereas the other transcript was larger and did not hybridize to probes specific for either Fc gamma RII alpha or Fc gamma RII beta. Moreover, we confirmed, with an Fc gamma RII beta-specific probe, that J774a cells do not make Fc gamma RII beta mRNA. Thus, the larger transcript appears to encode a novel Fc gamma RII. We suggest that the increased level of binding of the anti-Fc gamma RII mAb 2.4G2 to rIL-6-induced cells represents

  6. Analytical workflow profiling gene expression in murine macrophages

    PubMed Central

    Nixon, Scott E.; González-Peña, Dianelys; Lawson, Marcus A.; McCusker, Robert H.; Hernandez, Alvaro G.; O’Connor, Jason C.; Dantzer, Robert; Kelley, Keith W.

    2015-01-01

    Comprehensive and simultaneous analysis of all genes in a biological sample is a capability of RNA-Seq technology. Analysis of the entire transcriptome benefits from summarization of genes at the functional level. As a cellular response of interest not previously explored with RNA-Seq, peritoneal macrophages from mice under two conditions (control and immunologically challenged) were analyzed for gene expression differences. Quantification of individual transcripts modeled RNA-Seq read distribution and uncertainty (using a Beta Negative Binomial distribution), then tested for differential transcript expression (False Discovery Rate-adjusted p-value < 0.05). Enrichment of functional categories utilized the list of differentially expressed genes. A total of 2079 differentially expressed transcripts representing 1884 genes were detected. Enrichment of 92 categories from Gene Ontology Biological Processes and Molecular Functions, and KEGG pathways were grouped into 6 clusters. Clusters included defense and inflammatory response (Enrichment Score = 11.24) and ribosomal activity (Enrichment Score = 17.89). Our work provides a context to the fine detail of individual gene expression differences in murine peritoneal macrophages during immunological challenge with high throughput RNA-Seq. PMID:25708305

  7. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression

    PubMed Central

    Azuma, Junya; Wong, Ronald J.; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B.; Deng, Alicia C.; Spin, Joshua M.; Stevenson, David K.; Dalman, Ronald L.; Tsao, Philip S.

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease. PMID:26894432

  8. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression.

    PubMed

    Azuma, Junya; Wong, Ronald J; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B; Deng, Alicia C; Spin, Joshua M; Stevenson, David K; Dalman, Ronald L; Tsao, Philip S

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease. PMID:26894432

  9. Soluble CD40 ligand induces endothelial dysfunction in human and porcine coronary artery endothelial cells.

    PubMed

    Chen, Changyi; Chai, Hong; Wang, Xinwen; Jiang, Jun; Jamaluddin, Md Saha; Liao, Dan; Zhang, Yuqing; Wang, Hao; Bharadwaj, Uddalak; Zhang, Sheng; Li, Min; Lin, Peter; Yao, Qizhi

    2008-10-15

    The purpose of this study was to determine the effects and mechanisms of sCD40L on endothelial dysfunction in both human coronary artery endothelial cells (HCAECs) and porcine coronary artery rings. HCAECs treated with sCD40L showed significant reductions of endothelial nitric oxide synthase (eNOS) mRNA and protein levels, eNOS mRNA stability, eNOS enzyme activity, and cellular NO levels, whereas superoxide anion (O(2)(-)) production was significantly increased. sCD40L enhanced eNOS mRNA 3'UTR binding to cytoplasmic molecules and induced a unique expression pattern of 95 microRNAs. sCD40L significantly decreased mitochondrial membrane potential, and catalase and SOD activities, whereas it increased NADPH oxidase (NOX) activity. sCD40L increased phosphorylation of MAPKs p38 and ERK1/2 as well as IkappaBalpha and enhanced NF-kappaB nuclear translocation. In porcine coronary arteries, sCD40L significantly decreased endothelium-dependent vasorelaxation and eNOS mRNA levels, whereas it increased O(2)(-) levels. Antioxidant seleno-l-methionine; chemical inhibitors of p38, ERK1/2, and mitochondrial complex II; as well as dominant negative mutant forms of IkappaBalpha and NOX4 effectively blocked sCD40L-induced eNOS down-regulation in HCAECs. Thus, sCD40L reduces eNOS levels, whereas it increases oxidative stress through the unique molecular mechanisms involving eNOS mRNA stability, 3'UTR-binding molecules, microRNAs, mitochondrial function, ROS-related enzymes, p38, ERK1/2, and NF-kappaB signal pathways in endothelial cells. PMID:18658029

  10. Gene expression of lactobacilli in murine forestomach biofilms

    PubMed Central

    Schwab, Clarissa; Tveit, Alexander Tøsdal; Schleper, Christa; Urich, Tim

    2014-01-01

    Lactobacilli populate the gastro-intestinal tract of vertebrates, and are used in food fermentations and as probiotics. Lactobacilli are also major constituents of stable biofilms in the forestomach of rodents. In order to investigate the lifestyle of these biofilm lactobacilli in C57BL/6 mice, we applied metatranscriptomics to analyse gene expression (assessed by mRNA) and community composition (assessed by rRNA). Lactobacillales were the major biofilm inhabitants (62–82% of rRNA reads), followed by Clostridiales (8–31% of rRNA reads). To identify mRNA transcripts specific for the forestomach, we compared forestomach and hindgut metatranscriptomes. Gene expression of the biofilm microbiota was characterized by high abundance of transcripts related to glucose and maltose utilization, peptide degradation, and amino acid transport, indicating their major catabolic and anabolic pathways. The microbiota transcribed genes encoding pathways enhancing oxidative stress (glutathione synthesis) and acid tolerance. Various pathways, including metabolite formation (urea degradation, arginine pathway, γ-aminobutyrate) and cell wall modification (DltA, cyclopropane-fatty-acyl-phospholipid synthase), contributed to acid tolerance, as judged from the transcript profile. In addition, the biofilm microbiota expressed numerous genes encoding extracellular proteins involved in adhesion and/or biofilm formation (e.g. MucBP, glycosyl hydrolase families 68 and 70). This study shed light on the lifestyle and specific adaptations of lactobacilli in the murine forestomach that might also be relevant for lactobacilli biofilms in other vertebrates, including humans. PMID:24702817

  11. The antileukemia activity of a human anti-CD40 antagonist antibody, HCD122, on human chronic lymphocytic leukemia cells

    PubMed Central

    Klabunde, Sha; Lin, Karen; Georgakis, Georgios V.; Cherukuri, Anu; Holash, Jocelyn; Goldbeck, Cheryl; Xu, Xiaomei; Kadel, Edward E.; Lee, Sang Hoon; Aukerman, Sharon Lea; Jallal, Bahija; Aziz, Natasha; Weng, Wen-Kai; Wierda, William; O'Brien, Susan; Younes, Anas

    2008-01-01

    B-cell chronic lymphocytic leukemia (B-CLL) is a lymphoproliferative disorder characterized by the surface expression of CD20, CD5 antigens, as well as the receptor CD40. Activation of CD40 by its ligand (CD40L) induces proliferation and rescues the cells from spontaneous and chemotherapy-induced apoptosis. CD40 activation also induces secretion of cytokines, such as IL-6, IL-10, TNF-α, IL-8, and GM-CSF, which are involved in tumor cell survival, migration, and interaction with cells in the tumor microenvironment. Here we demonstrate that in primary B-CLL tumor cells, the novel antagonist anti-CD40 monoclonal antibody, HCD122, inhibits CD40L-induced activation of signaling pathways, proliferation and survival, and secretion of cytokines. Furthermore, HCD122 is also a potent mediator of antibody-dependent cellular cytotoxicity (ADCC), lysing B-CLL cells more efficiently than rituximab in vitro, despite a significantly higher number of cell surface CD20 binding sites compared with CD40. Unlike rituximab, however, HCD122 (formerly CHIR-12.12) does not internalize upon binding to the cells. Our data suggest that HCD122 may inhibit B-CLL growth by blocking CD40 signaling and by ADCC-mediated cell lysis. PMID:18497318

  12. CD40 AND THE IMUNE RESPONSE TO PARASITIC INFECTIONS

    PubMed Central

    Subauste, Carlos S.

    2009-01-01

    The interaction between CD40 and CD154 regulates many aspects of cellular and humoral immunity. The CD40 — CD154 pathway is important for resistance against a variety of parasites. Studies done with these pathogens have provided important insight into the various mechanisms by which this pathway enhances host protection, mechanisms by which pathogens subvert CD40 signaling, conditions in which the CD40 — CD154 pathway promotes disease and on modulation of this pathway for immunotherapy. PMID:19616968

  13. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells.

    PubMed

    Marigo, Ilaria; Zilio, Serena; Desantis, Giacomo; Mlecnik, Bernhard; Agnellini, Andrielly H R; Ugel, Stefano; Sasso, Maria Stella; Qualls, Joseph E; Kratochvill, Franz; Zanovello, Paola; Molon, Barbara; Ries, Carola H; Runza, Valeria; Hoves, Sabine; Bilocq, Amélie M; Bindea, Gabriela; Mazza, Emilia M C; Bicciato, Silvio; Galon, Jérôme; Murray, Peter J; Bronte, Vincenzo

    2016-09-12

    Effective cancer immunotherapy requires overcoming immunosuppressive tumor microenvironments. We found that local nitric oxide (NO) production by tumor-infiltrating myeloid cells is important for adoptively transferred CD8(+) cytotoxic T cells to destroy tumors. These myeloid cells are phenotypically similar to inducible nitric oxide synthase (NOS2)- and tumor necrosis factor (TNF)-producing dendritic cells (DC), or Tip-DCs. Depletion of immunosuppressive, colony stimulating factor 1 receptor (CSF-1R)-dependent arginase 1(+) myeloid cells enhanced NO-dependent tumor killing. Tumor elimination via NOS2 required the CD40-CD40L pathway. We also uncovered a strong correlation between survival of colorectal cancer patients and NOS2, CD40, and TNF expression in their tumors. Our results identify a network of pro-tumor factors that can be targeted to boost cancer immunotherapies. PMID:27622331

  14. CD40 Activation Rescues Antiviral CD8+ T Cells from PD-1-Mediated Exhaustion

    PubMed Central

    Isogawa, Masanori; Chung, Josan; Murata, Yasuhiro; Kakimi, Kazuhiro; Chisari, Francis V.

    2013-01-01

    The intrahepatic immune environment is normally biased towards tolerance. Nonetheless, effective antiviral immune responses can be induced against hepatotropic pathogens. To examine the immunological basis of this paradox we studied the ability of hepatocellularly expressed hepatitis B virus (HBV) to activate immunologically naïve HBV-specific CD8+ T cell receptor (TCR) transgenic T cells after adoptive transfer to HBV transgenic mice. Intrahepatic priming triggered vigorous in situ T cell proliferation but failed to induce interferon gamma production or cytolytic effector function. In contrast, the same T cells differentiated into cytolytic effector T cells in HBV transgenic mice if Programmed Death 1 (PD-1) expression was genetically ablated, suggesting that intrahepatic antigen presentation per se triggers negative regulatory signals that prevent the functional differentiation of naïve CD8+ T cells. Surprisingly, coadministration of an agonistic anti-CD40 antibody (αCD40) inhibited PD-1 induction and restored T cell effector function, thereby inhibiting viral gene expression and causing a necroinflammatory liver disease. Importantly, the depletion of myeloid dendritic cells (mDCs) strongly diminished the αCD40 mediated functional differentiation of HBV-specific CD8+ T cells, suggesting that activation of mDCs was responsible for the functional differentiation of HBV-specific CD8+ T cells in αCD40 treated animals. These results demonstrate that antigen-specific, PD-1-mediated CD8+ T cell exhaustion can be rescued by CD40-mediated mDC-activation. PMID:23853599

  15. Expression of profibrotic genes in the murine remnant kidney model

    PubMed Central

    Yang, Binxia; Vohra, Pawan; Janardhanan, Rajiv; Misra, Khamal D.; Misra, Sanjay

    2011-01-01

    PURPOSE To test the hypothesis that there is increased expression of several profibrotic genes including matrix metalloproteinase–2 (MMP-2), and -9 (MMP-9), and its inhibitors (TIMP-1 and TIMP-2), a disintegrin and metalloproteinase with thrombospondin motif -1 (ADAMTS-1), and fibroblast specific protein-1 (FSP-1) in a murine remnant kidney (RK) model. MATERIALS AND METHODS CKD was created in ten C57BL/6 male mice (20-25 g) by performing a right nephrectomy and ligation of the upper pole of the left kidney (RK). Animals were sacrificed at 42 and 56 days later. Real time polymerase chain reaction (RT-PCR) for MMP-2, MMP-9, TIMP-1, TIMP-2, ADAMTS-1, and FSP-1 was performed in the RK. Histologic evaluation of the RK was performed using Ki-67, α-smooth muscle cell actin (α-SMA), hematoxylin and eosin, and Masson’s trichrome staining. Kidney function was assessed using serum BUN and creatinine. RESULTS The mean serum BUN and creatinine levels at day 42 and 56 were significantly higher than baseline (P <0 .05). By day 42, the mean expression of MMP-2, MMP-9, TIMP-1, ADAMTS-1, and FSP-1 was significantly higher in the RK when compared to normal kidney (P<0.05) and by day 56, only FSP-1 expression increased significantly higher (P<0.05). There was increased fibrosis by Masson’s trichrome, increased Ki-67, with increased α-SMA staining in the RK when compared to normal kidneys. CONCLUSIONS In the RK, there was increased fibrosis with increased α -SMA and Ki-67 staining with significantly increased expression of MMP-2, MMP-9, TIMP-1, ADAMTS-1, and FSP-1. PMID:22030458

  16. T cell-B cell thymic cross-talk: Maintenance and function of thymic B cells requires cognate CD40-CD40L interaction

    PubMed Central

    Fujihara, Chiharu; Williams, Joy A.; Watanabe, Masashi; Jeon, Hyein; Sharrow, Susan O.; Hodes, Richard J.

    2014-01-01

    Thymic development requires bidirectional interaction or cross-talk between developing T cells and thymic stromal cells, a relationship that has been best characterized for the interaction between thymocytes and thymic epithelial cells (TECs). We have characterized here the requirement for similar cross-talk in the maintenance and function of thymic B cells, another population that plays a role in selection of developing thymic T cells. We found that maintenance of thymic B cells is strongly dependent upon the presence of mature single positive (SP) thymocytes and on the interactions of these T cells with specific antigen ligand. Maintenance of thymic B cell number is strongly dependent upon B cell-autonomous expression of CD40, but not MHCII, indicating that direct engagement of CD40 on thymic B cells is necessary to support their maintenance and proliferation. Thymic B cells can mediate negative selection of superantigen-specific self-reactive SP thymocytes, and we show that CD40 expression on B cells is critical for this negative selection. Cross-talk with thymic T cells is thus required to support the thymic B cell population through a pathway that requires cell-autonomous expression of CD40, and that reciprocally functions in negative selection of autoreactive T cells. PMID:25344473

  17. Histone deacetylase expression patterns in developing murine optic nerve

    PubMed Central

    2014-01-01

    Background Histone deacetylases (HDACs) play important roles in glial cell development and in disease states within multiple regions of the central nervous system. However, little is known about HDAC expression or function within the optic nerve. As a first step in understanding the role of HDACs in optic nerve, this study examines the spatio-temporal expression patterns of methylated histone 3 (K9), acetylated histone 3 (K18), and HDACs 1–6 and 8–11 in the developing murine optic nerve head. Results Using RT-qPCR, western blot and immunofluorescence, three stages were analyzed: embryonic day 16 (E16), when astrocyte precursors are found in the optic stalk, postnatal day 5 (P5), when immature astrocytes and oligodendrocytes are found throughout the optic nerve, and P30, when optic nerve astrocytes and oligodendrocytes are mature. Acetylated and methylated histone H3 immunoreactivity was co-localized in the nuclei of most SOX2 positive glia within the optic nerve head and adjacent optic nerve at all developmental stages. HDACs 1–11 were expressed in the optic nerve glial cells at all three stages of optic nerve development in the mouse, but showed temporal differences in overall levels and subcellular localization. HDACs 1 and 2 were predominantly nuclear throughout optic nerve development and glial cell maturation. HDACs 3, 5, 6, 8, and 11 were predominantly cytoplasmic, but showed nuclear localization in at least one stage of optic nerve development. HDACs 4, 9 and10 were predominantly cytoplasmic, with little to no nuclear expression at any time during the developmental stages examined. Conclusions Our results showing that HDACs 1, 2, 3, 5, 6, 8, and 11 were each localized to the nuclei of SOX2 positive glia at some stages of optic nerve development and maturation and extend previous reports of HDAC expression in the aging optic nerve. These HDACs are candidates for further research to understand how chromatin remodeling through acetylation, deacetylation

  18. Rosuvastatin Attenuates CD40L-Induced Downregulation of Extracellular Matrix Production in Human Aortic Smooth Muscle Cells via TRAF6-JNK-NF-κB Pathway

    PubMed Central

    Wang, Xiao-Lin; Zhou, Yuan-Li; Sun, Wei; Li, Li

    2016-01-01

    CD40L and statins exhibit pro-inflammatory and anti-inflammatory effects, respectively. They are both pleiotropic and can regulate extracellular matrix (ECM) degeneration in an atherosclerotic plaque. Statins can decrease both the CD40 expression and the resulting inflammation. However, the effects of CD40L and stains on atherosclerotic plaque ECM production and the underlying mechanisms are not well established. Moreover, prolyl-4-hydroxylase α1 (P4Hα1) is involved in collagen synthesis but its correlations with CD40L and statins are unknown. In the present study, CD40L suppressed P4Hα1 expression in human aortic smooth muscle cells (HASMCs) in a dose- and time-dependent manner, with insignificant changes in MMP2 expression and negative enzymatic activity of MMP9. CD40L increased TRAF6 expression, JNK phosphorylation, NF-κB nuclear translocation as well as DNA binding. Furthermore, silencing TRAF6, JNK or NF-κB genes abolished CD40L-induced suppression of P4Hα1. Lower NF-κB nuclear import rates were observed when JNK or TRAF6 silenced HASMCs were stimulated with CD40L compared to HASMCs with active JNK or TRAF6. Together, these results indicate that CD40L suppresses P4Hα1 expression in HASMCs by activating the TRAF6-JNK- NF-κB pathway. We also found that rosuvastatin inhibits CD40L-induced activation of the TRAF6-JNK- NF-κB pathway, thereby significantly rescuing the CD40L stimulated P4Hα1 inhibition. The results from this study will help find potential targets for stabilizing vulnerable atherosclerotic plaques. PMID:27120457

  19. Murine somatic cell nuclear transfer using reprogrammed donor cells expressing male germ cell-specific genes.

    PubMed

    Kang, Hoin; Park, Jong Im; Roh, Sangho

    2016-01-01

    In vivo-matured mouse oocytes were enucleated, and a single murine embryonic fibroblast (control or reprogrammed by introducing extracts from murine testis tissue, which showed expression of male germ cell-specific genes) was injected into the cytoplasm of the oocytes. The rate of blastocyst development and expression levels of Oct-4, Eomes and Cdx-2 were not significantly different in both experimental groups. However, the expression levels of Nanog, Sox9 and Glut-1 were significantly increased when reprogrammed cells were used as donor nuclei. Increased expression of Nanog can be supportive of complete reprogramming of somatic cell nuclear transfer murine embryos. The present study suggested that donor cells expressing male germ cell-specific genes can be reconstructed and can develop into embryos with normal high expression of developmentally essential genes. PMID:26369430

  20. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    PubMed Central

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  1. Organization of the human CD40L gene: Implications for molecular defects in X chromosome-linked hyper-IgM syndrome and prenatal diagnosis

    SciTech Connect

    Villa, A.; Macchi, P.P.; Strina, D.; Frattini, A.; Lucchini, F.; Patrosso, C.M.; Vezzoni, P.; Notarangelo, L.D.; Giliani, S.; Mantuano, E.

    1994-03-15

    Recently, CD40L has been identified as the gene responsible for X chromosome-linked hyper-IgM syndrome (HIGM1). CD40L on activated T cells from HIGM1 patients fails to bind B-cell CD40 molecules, and subsequent analysis of CD40L transcripts by reverse transcription PCR demonstrated coding region mutations in these patients. This approach, however, is of limited use for prenatal diagnosis of HIGM1 in the early-gestation fetus. In this report, the authors have defined the genomic structure of the CD40L gene, which is composed of five exons and four intervening introns. With this information, the authors have defined at the genomic level the CD40L coding region. These different deletions arose from three distinct mechanisms, including (i) a splice donor mutation with exon skipping, (ii) a splice acceptor mutation with utilization of a cryptic splice site, and (iii) a deletion/insertion event with the creation of a new splice acceptor site. In addition, they have performed prenatal evaluation of an 11-week-old fetus at risk for HIGM1. CD40L genomic clones provide a starting point for further studies of the genetic elements that control CD40L expression. Knowledge of the CD40L gene structure will prove useful for the identification of additional mutations in HIGM1 and for performing genetic counseling about this disease. 54 refs., 4 figs., 1 tab.

  2. Inhibition of B-cell death does not restore T-cell-dependent immune responses in CD40-deficient mice

    PubMed Central

    Merino, Jesús; Díez, Miguel A; Muñiz, María; Buelta, Luis; Núñez, Gabriel; López-Hoyos, Marcos; Merino, Ramón

    2003-01-01

    Signalling through CD40 is essential for the development of immunoglobulin G (IgG) antibody responses, germinal centres and B-cell memory against T-dependent antigens. In addition, engagement of CD40 in B cells promotes cell survival by inducing the expression of anti-apoptotic members of the bcl-2 family of cell-death regulators. In the present study we analysed whether T-dependent immune responses can be developed in mice deficient in CD40 if the anti-apoptotic activity mediated by the engagement of CD40 in B cells is compensated by the constitutive over-expression of anti-apoptotic genes of the bcl-2 family. We showed that the over-expression of either hbcl-2 or hbcl-xL transgenes in B cells is not sufficient to restore IgG antibody responses and germinal centre formation in CD40-deficient mice. These results indicate that CD40 functions, other than those mediated through survival, are required for the establishment of T-dependent B-cell responses. PMID:12871216

  3. Human Genetics in Rheumatoid Arthritis Guides a High-Throughput Drug Screen of the CD40 Signaling Pathway

    PubMed Central

    Li, Gang; Diogo, Dorothée; Wu, Di; Spoonamore, Jim; Dancik, Vlado; Franke, Lude; Kurreeman, Fina; Rossin, Elizabeth J.; Duclos, Grant; Hartland, Cathy; Zhou, Xuezhong; Li, Kejie; Liu, Jun; De Jager, Philip L.; Siminovitch, Katherine A.; Zhernakova, Alexandra; Raychaudhuri, Soumya; Bowes, John; Eyre, Steve; Padyukov, Leonid; Gregersen, Peter K.; Worthington, Jane; Gupta, Namrata; Clemons, Paul A.; Stahl, Eli; Tolliday, Nicola; Plenge, Robert M.

    2013-01-01

    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10−9). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10−9), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA–approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in

  4. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway.

    PubMed

    Li, Gang; Diogo, Dorothée; Wu, Di; Spoonamore, Jim; Dancik, Vlado; Franke, Lude; Kurreeman, Fina; Rossin, Elizabeth J; Duclos, Grant; Hartland, Cathy; Zhou, Xuezhong; Li, Kejie; Liu, Jun; De Jager, Philip L; Siminovitch, Katherine A; Zhernakova, Alexandra; Raychaudhuri, Soumya; Bowes, John; Eyre, Steve; Padyukov, Leonid; Gregersen, Peter K; Worthington, Jane; Gupta, Namrata; Clemons, Paul A; Stahl, Eli; Tolliday, Nicola; Plenge, Robert M

    2013-05-01

    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10(-9)). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10(-9)), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA-approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in

  5. Manipulations of cholinesterase gene expression modulate murine megakaryocytopoiesis in vitro.

    PubMed Central

    Patinkin, D; Seidman, S; Eckstein, F; Benseler, F; Zakut, H; Soreq, H

    1990-01-01

    Megakaryocytopoiesis was selectively inhibited in cultured murine bone marrow cells by a 15-mer oligodeoxynucleotide complementary to the initiator AUG region in butyrylcholinesterase mRNA. Furthermore, conditioned medium from Xenopus oocytes producing recombinant butyrylcholinesterase stimulated megakaryocytopoiesis. These observations implicate butyrylcholinesterase in megakaryocytopoiesis and suggest application of oligodeoxynucleotides for modulating bone marrow development. Images PMID:2233731

  6. Class II-targeted antigen is superior to CD40-targeted antigen at stimulating humoral responses in vivo.

    PubMed

    Frleta, D; Demian, D; Wade, W F

    2001-02-01

    We examined the efficacy of using monoclonal antibodies to target antigen (avidin) to different surface molecules expressed on antigen presenting cells (APC). In particular, we targeted CD40 to test whether the "adjuvant" properties of CD40 signaling combined with targeted antigen would result in enhanced serologic responses. We targeted avidin to class II as a positive control and to CD11c as a negative control. These surface proteins represent an ensemble of surface molecules that signal upon ligation and that are expressed on professional APC, in particular dendritic cells (DC). We observed that targeting class II molecules on APC was superior to targeting CD40, or CD11c. However, CD40 and CD11c could function as targets for antigen bound monoclonal antibodies under certain conditions. Interestingly, inclusion of anti-CD40 mAb with the targeting anti-class II-targeted antigens negatively affects humoral response, suggesting that CD40 signaling under certain conditions may suppress processing and/or presentation of targeted antigen. PMID:11360928

  7. Vaccination with a Fusion Protein That Introduces HIV-1 Gag Antigen into a Multitrimer CD40L Construct Results in Enhanced CD8+ T Cell Responses and Protection from Viral Challenge by Vaccinia-Gag

    PubMed Central

    Gupta, Sachin; Termini, James M.; Raffa, Francesca N.; Williams, Cindi-Ann; Kornbluth, Richard S.

    2014-01-01

    CD40 ligand (CD40L, CD154) is a membrane protein that is important for the activation of dendritic cells (DCs) and DC-induced CD8+ T cell responses. To be active, CD40L must cluster CD40 receptors on responding cells. To produce a soluble form of CD40L that clusters CD40 receptors necessitates the use of a multitrimer construct. With this in mind, a tripartite fusion protein was made from surfactant protein D (SPD), HIV-1 Gag as a test antigen, and CD40L, where SPD serves as a scaffold for the multitrimer protein complex. This SPD-Gag-CD40L protein activated CD40-bearing cells and bone marrow-derived DCs in vitro. Compared to a plasmid for Gag antigen alone (pGag), DNA vaccination of mice with pSPD-Gag-CD40L induced an increased number of Gag-specific CD8+ T cells with increased avidity for major histocompatibility complex class I-restricted Gag peptide and improved vaccine-induced protection from challenge by vaccinia-Gag virus. The importance of the multitrimeric nature of the complex was shown using a plasmid lacking the N terminus of SPD that produced a single trimer fusion protein. This plasmid, pTrimer-Gag-CD40L, was only weakly active on CD40-bearing cells and did not elicit strong CD8+ T cell responses or improve protection from vaccinia-Gag challenge. An adenovirus 5 (Ad5) vaccine incorporating SPD-Gag-CD40L was much stronger than Ad5 expressing Gag alone (Ad5-Gag) and induced complete protection (i.e., sterilizing immunity) from vaccinia-Gag challenge. Overall, these results show the potential of a new vaccine design in which antigen is introduced into a construct that expresses a multitrimer soluble form of CD40L, leading to strongly protective CD8+ T cell responses. PMID:24227853

  8. Galectin-9 controls CD40 signaling through a Tim-3 independent mechanism and redirects the cytokine profile of pathogenic T cells in autoimmunity.

    PubMed

    Vaitaitis, Gisela M; Wagner, David H

    2012-01-01

    While it has long been understood that CD40 plays a critical role in the etiology of autoimmunity, glycobiology is emerging as an important contributor. CD40 signaling is also gaining further interest in transplantation and cancer therapies. Work on CD40 signaling has focused on signaling outcomes and blocking of its ligand, CD154, while little is known about the actual receptor itself and its control. We demonstrated that CD40 is in fact several receptors occurring as constellations of differentially glycosylated forms of the protein that can sometimes form hybrid receptors with other proteins. An enticing area of autoimmunity is differential glycosylation of immune molecules leading to altered signaling. Galectins interact with carbohydrates on proteins to effect such signaling alterations. Studying autoimmune prone NOD and non-autoimmune BALB/c mice, here we reveal that in-vivo CD40 signals alter the glycosylation status of non-autoimmune derived CD4 T cells to resemble that of autoimmune derived CD4 T cells. Galectin-9 interacts with CD40 and, at higher concentrations, prevents CD40 induced proliferative responses of CD4(lo)CD40(+) effector T cells and induces cell death through a Tim-3 independent mechanism. Interestingly, galectin-9, at lower concentrations, alters the surface expression of CD3, CD4, and TCR, regulating access to those molecules and thereby redirects the inflammatory cytokine phenotype and CD3 induced proliferation of autoimmune CD4(lo)CD40(+) T cells. Understanding the dynamics of the CD40 receptor(s) and the impact of glycosylation status in immunity will gain insight into how to maintain useful CD40 signals while shutting down detrimental ones. PMID:22685601

  9. Characterisation of the TNF superfamily members CD40L and BAFF in the small-spotted catshark (Scyliorhinus canicula).

    PubMed

    Li, Ronggai; Redmond, Anthony K; Wang, Tiehui; Bird, Steve; Dooley, Helen; Secombes, Chris J

    2015-11-01

    The tumour necrosis factor superfamily (TNFSF) members CD40L and BAFF play critical roles in mammalian B cell survival, proliferation and maturation, however little is known about these key cytokines in the oldest jawed vertebrates, the cartilaginous fishes. Here we report the cloning of CD40L and BAFF orthologues (designated ScCD40L and ScBAFF) in the small-spotted catshark (Scyliorhinus canicula). As predicted both proteins are type II membrane-bound proteins with a TNF homology domain in their extracellular region and both are highly expressed in shark immune tissues. ScCD40L transcript levels correlate with those of TCRα and transcription of both genes is modulated in peripheral blood leukocytes following in vitro stimulation. Although a putative CD40L orthologue was identified in the elephant shark genome the work herein is the first molecular characterisation and transcriptional analysis of CD40L in a cartilaginous fish. ScBAFF was also cloned and its transcription characterised in an attempt to resolve the discrepancies observed between spiny dogfish BAFF and bamboo shark BAFF in previously published studies. PMID:26386192

  10. CD40 ligand and interferon-γ induce an antimicrobial response against Mycobacterium tuberculosis in human monocytes

    PubMed Central

    Klug-Micu, Georgiana M; Stenger, Steffen; Sommer, Andrea; Liu, Philip T; Krutzik, Stephan R; Modlin, Robert L; Fabri, Mario

    2013-01-01

    The ability of T cells to activate antimicrobial pathways in infected macrophages is essential to host defence against many intracellular pathogens. Here, we compared the ability of two T-cell-mediated mechanisms to trigger antimicrobial responses against Mycobacterium tuberculosis in humans, CD40 activation and the release of interferon-γ (IFN-γ). Given that IFN-γ activates a vitamin D-dependent antimicrobial response, we focused on induction of the key components of this pathway. We show that activation of human monocytes via CD40 ligand (CD40L) and IFN-γ, alone, and in combination, induces the CYP27b1-hydroxylase, responsible for the conversion of 25-hydroxyvitamin D (25D) to the bioactive 1,25-dihydroxyvitamin D (1,25D), and the vitamin D receptor (VDR). The activation of the vitamin D pathway by CD40L and IFN-γ results in up-regulated expression of the antimicrobial peptides, cathelicidin and DEFB4, as well as induction of autophagy. Finally, activation of monocytes via CD40L and IFN-γ results in an antimicrobial activity against intracellular M. tuberculosis. Our data suggest that at least two parallel T-cell-mediated mechanisms, CD40L and IFN-γ, activate the vitamin D-dependent antimicrobial pathway and trigger antimicrobial activity against intracellular M. tuberculosis, thereby contributing to human host defence against intracellular infection. PMID:23289765

  11. The Serum Levels of the Soluble Factors sCD40L and CXCL1 Are Not Indicative of Endometriosis

    PubMed Central

    Pateisky, Petra; Pils, Dietmar; Kuessel, Lorenz; Szabo, Ladislaus; Walch, Katharina; Obwegeser, Reinhard; Wenzl, René; Yotova, Iveta

    2016-01-01

    Endometriosis is a benign but troublesome gynecological condition, characterized by endometrial-like tissue outside the uterine cavity. Lately, the discovery and validation of noninvasive diagnostic biomarkers for endometriosis is one of the main priorities in the field. As the disease elicits a chronic inflammatory reaction, we focused our interest on two factors well known to be involved in inflammation and neoplastic processes, namely, soluble CD40 Ligand and CXCL1, and asked whether differences in the serum levels of sCD40L and CXCL1 in endometriosis patients versus controls can serve as noninvasive disease markers. A total of n = 60 women were included in the study, 31 endometriosis patients and 29 controls, and the serum levels of sCD40L and CXCL1 were measured by enzyme-linked immunosorbent assay. Overall, there were no statistically significant differences in the levels of expression of both sCD40L and CXCL1 between patients and controls. This study adds useful clinical data showing that the serum levels of the soluble factors sCD40L and CXCL1 are not associated with endometriosis and are not suitable as biomarkers for disease diagnosis. However, we found a trend toward lower levels of sCD40L in the deep infiltrating endometriosis subgroup making it a potentially interesting target worth further investigation. PMID:27190986

  12. CD40-induced growth inhibition in epithelial cells is mimicked by Epstein-Barr Virus-encoded LMP1: involvement of TRAF3 as a common mediator.

    PubMed

    Eliopoulos, A G; Dawson, C W; Mosialos, G; Floettmann, J E; Rowe, M; Armitage, R J; Dawson, J; Zapata, J M; Kerr, D J; Wakelam, M J; Reed, J C; Kieff, E; Young, L S

    1996-11-21

    CD40, a member of the tumour necrosis factor receptor family, is expressed on the surface of B lymphocytes where its ligation provides a potent survival signal. CD40 is also expressed in basal epithelial cells and in a number of different carcinomas where its function remains unknown. We observed that contrary to the studies in normal B cells, CD40 ligation in carcinoma cell lines and in normal primary epithelial cells resulted in growth inhibition and enhanced susceptibility to apoptosis induced by anti-neoplastic drugs, TNF-alpha, Fas and ceramide. This effect was also observed in CD40-transfected Rat-1 fibroblasts. The expression of Bcl-2 did not affect growth inhibition induced by CD40 ligation in epithelial cells but the Epstein - Barr Virus-encoded latent membrane protein 1 (LMP1) blocked the effect. Whilst transient expression of LMP-1 resulted in the inhibition of epithelial cell growth, this effect was not observed with a LMP1 mutant lacking the binding domain for TRAF3, a protein which may mediate signal transduction by interacting with the cytoplasmic domains of both CD40 and LMP1. Transient expression of TRAF3 also inhibited epithelial cell growth, whilst expression of a dominant-negative TRAF3 partially blocked the inhibitory effect of CD40 ligation and of transient LMP1 expression. These results suggest that CD40 regulates epithelial cell growth in a manner mimicked by LMP1 and implicate TRAF3 as a common mediator in the transduction of the growth inhibitory signals generated via the CD40 and LMP1 pathways. PMID:8950992

  13. Behavior of a cloned murine interferon alpha/beta receptor expressed in homospecific or heterospecific background.

    PubMed Central

    Uzé, G; Lutfalla, G; Bandu, M T; Proudhon, D; Mogensen, K E

    1992-01-01

    A murine interferon (IFN) alpha/beta receptor was cloned from the IFN-sensitive L1210 cell line on the basis of its homology with the human receptor. A combination of methods that includes the screening of random-primed and oligo(dT)-primed cDNA libraries and polymerase chain reactions with a single-side specificity was used. At the amino acid level, the murine IFN-alpha/beta shows 46% identity with its human counterpart. Both human WISH cells presenting a low sensitivity to mouse IFN and a murine L1210 mutant subline that does not express the receptor have been stably transfected with the murine IFN-alpha/beta receptor. Whereas transfected human cells became sensitive to a limited number of mouse IFN-alpha/beta subtypes, the transfected murine L1210 mutant was found to be fully complemented and became sensitive to all mouse IFN-alpha/beta subtypes tested, including those that were not active on transfected human cells. These results strongly suggest that the receptor described here is implicated in the mediation of the activities of all murine IFN-alpha/beta subtypes. Images PMID:1533935

  14. Interferon-alpha inhibits murine macrophage transforming growth factor-beta mRNA expression.

    PubMed

    Dhanani, S; Huang, M; Wang, J; Dubinett, S M

    1994-06-01

    Transforming growth factor-beta (TGF-beta), a multifunctional polypeptide is produced by a wide variety of cells and regulates a broad array of physiological and pathological functions. TGF-beta appears to play a central role in pulmonary fibrosis and may contribute to tumor-associated immunosuppression. Alveolar macrophages are a rich source of TGF-beta and are intimately involved in lung inflammation. We therefore chose to study TGF-beta regulation in murine alveolar macrophages as well as an immortalized peritoneal macrophage cell line (IC-21). Murine macrophages were incubated with cytokines to evaluate their role in regulating TGF-beta mRNA expression. We conclude that IFN-alpha downregulates TGF-beta mRNA expression in murine macrophages. PMID:8088926

  15. Transformation of the tumour microenvironment by a CD40 agonist antibody correlates with improved responses to PD-L1 blockade in a mouse orthotopic pancreatic tumour model

    PubMed Central

    Mullins, Stefanie; Sulikowski, Michal G.; Martin, Philip; Brown, Lee; Lewis, Arthur; Davies, Gareth; Morrow, Michelle; Wilkinson, Robert W.

    2016-01-01

    Despite the availability of recently developed chemotherapy regimens, survival times for pancreatic cancer patients remain poor. These patients also respond poorly to immune checkpoint blockade therapies (anti-CTLA-4, anti-PD-L1, anti-PD-1), which suggests the presence of additional immunosuppressive mechanisms in the pancreatic tumour microenvironment (TME). CD40 agonist antibodies (αCD40) promote antigen presenting cell (APC) maturation and enhance macrophage tumouricidal activity, and may therefore alter the pancreatic TME to increase sensitivity to immune checkpoint blockade. Here, we test whether αCD40 transforms the TME in a mouse syngeneic orthotopic model of pancreatic cancer, to increase sensitivity to PD-L1 blockade. We found that whilst mice bearing orthotopic Pan02 tumours responded poorly to PD-L1 blockade, αCD40 improved overall survival. αCD40 transformed the TME, upregulating Th1 chemokines, increasing cytotoxic T cell infiltration and promoting formation of an immune cell-rich capsule separating the tumour from the normal pancreas. Furthermore, αCD40 drove systemic APC maturation, memory T cell expansion, and upregulated tumour and systemic PD-L1 expression. Combining αCD40 with PD-L1 blockade enhanced anti-tumour immunity and improved overall survival versus either monotherapy. These data provide further support for the potential of combining αCD40 with immune checkpoint blockade to promote anti-tumour immunity in pancreatic cancer. PMID:26918344

  16. Immunogenicity and protective efficacy of an Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and chicken CD40 ligand.

    PubMed

    Yin, Guangwen; Lin, Qian; Qiu, Jianhan; Qin, Mei; Tang, Xinming; Suo, Xun; Huang, Zhijian; Liu, Xianyong

    2015-05-30

    The CD40 ligand (CD40L) has shown potential as a powerful immunological adjuvant in various studies. Here, the efficacy of a chimeric subunit vaccine, consisting of Eimeria tenella immune mapped protein 1 (EtIMP1) and chicken CD40L, was evaluated against E. tenella infection. The recombinant EtIMP1-CD40L was purified from E. coli over-expressing this protein. Chickens were vaccinated with EtIMP1-CD40L without adjuvant or EtIMP1 with Freund's adjuvant. Immunization of chickens with EtIMP1-CD40L fusion protein resulted in stronger IFN-γ secretion and IgA response than that with only recombinant EtIMP1 with Freund's adjuvant. The clinical effect (cecal lesions, body weights gain, and oocysts shedding) of the EtIMP1-CD40L without adjuvant was also better than that of the EtIMP1 with adjuvant, as evidenced by the difference between the two groups in the oocyst output of E. tenella-challenged chickens. The results suggest that the EtIMP1-CD40L fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. PMID:25840621

  17. Transcriptional and posttranscriptional mechanisms regulate murine thymidine kinase gene expression in serum-stimulated cells.

    PubMed Central

    Lieberman, H B; Lin, P F; Yeh, D B; Ruddle, F H

    1988-01-01

    We previously isolated and characterized the structure of murine thymidine kinase (tk) genomic and cDNA sequences to begin a study designed to identify regions of the tk gene important for regulated expression during the transition of cells from G0 to a proliferating state. In this report, we describe the stable transfection of the cloned gene into L-M(TK-) cells and show that both thymidine kinase (TK) enzyme activity and DNA synthesis increase in parallel when transfectants in G0 arrest are stimulated by serum. To define promoter and regulatory regions more precisely, we have constructed a series of tk minigenes and have examined their expression in stable transfectants after serum stimulation. We have identified a 291-base-pair DNA fragment at the 5' end of the tk gene that has promoter function, and we have determined its sequence. In addition, we have found that DNA sequences which mediate serum-induced expression of TK are transcribed, since expression of the murine tk cDNA, fused to a promoter from either the murine tk gene, the simian virus 40 early region, or the herpes simplex virus tk gene, is stimulated by serum. Our constructs also reveal that the murine tk polyadenylation signal is not required for regulation, nor is most of the 3' untranslated region. RNA dot blot analysis indicates that murine cytoplasmic tk mRNA levels always parallel TK enzyme activity. Nuclear runon transcription assays show less than a 2-fold increase in transcription from the cloned tk gene in serum-stimulated transfectants, but an 11-fold increase in mouse L929 cells, which are inherently TK+. These results taken together suggest that the murine tk gene is controlled in serum-stimulated cells by a transcriptional mechanism influenced by DNA sequences that flank tk and also by a posttranscriptional system linked to gene sequences that are transcribed. Images PMID:3244356

  18. Viral Engineering of Chimeric Antigen Receptor Expression on Murine and Human T Lymphocytes.

    PubMed

    Hammill, Joanne A; Afsahi, Arya; Bramson, Jonathan L; Helsen, Christopher W

    2016-01-01

    The adoptive transfer of a bolus of tumor-specific T lymphocytes into cancer patients is a promising therapeutic strategy. In one approach, tumor specificity is conferred upon T cells via engineering expression of exogenous receptors, such as chimeric antigen receptors (CARs). Here, we describe the generation and production of both murine and human CAR-engineered T lymphocytes using retroviruses. PMID:27581020

  19. Enhanced Soluble Serum CD40L and Serum P-Selectin Levels in Primary Aldosteronism.

    PubMed

    Petramala, L; Iacobellis, G; Carnevale, R; Marinelli, C; Zinnamosca, L; Concistrè, A; Galassi, M; Iannucci, G; Lucia, P; Pignatelli, P; Ciardi, A; Violi, F; De Toma, G; Letizia, C

    2016-07-01

    Primary aldosteronism (PA) is one of the most frequent forms of secondary hypertension, associated with atherosclerosis and higher risk of cardiovascular events. Platelets play a key role in the atherosclerotic process. The aim of the study was to evaluate the platelet activation by measuring serum levels of soluble CD40L (sCD40L) and P-selectin (sP-selectin) in consecutive PA patients [subgroup: aldosterone-secreting adrenal adenoma (APA) and bilateral adrenal hyperplasia (IHA)], matched with essential hypertensive (EH) patients. The subgroup of APA patients was revaluated 6-months after unilateral adrenalectomy. In all PA group, we measured higher serum levels of both sP-selectin (14.29±9.33 pg/ml) and sCD40L (9.53±4.2 ng/ml) compared to EH patients (9.39±5.3 pg/ml and 3.54±0.94 ng/ml, respectively; p<0.001). After removal of APA, PA patients showed significant reduction of blood pressure (BP) values, plasma aldosterone (PAC) levels and ARR-ratio, associated with a significant reduction of sP-selectin (16.74±8.9 pg/ml vs. 8.1±3.8 pg/ml; p<0.01) and sCD40L (8.6±1 ng/ml vs. 5.24±0.94 ng/ml; p<0.001). In PA patients, we found a significant correlation between sP-selectin and sCD40L with PAC (r=0.52, p<0.01; r=0.50, p<0.01, respectively); this correlation was stronger in APA patients (r=0.54; p<0.01 r=0.63; p<0.01, respectively). Our results showed that PA is related to platelet activation, expressed as higher plasma values of sCD40L and sP-selectin values. Surgical treatment and consequent normalization of aldosterone secretion was associated with significant reduction of sCD40L and sP-selectin values in APA patients. PMID:27101095

  20. Murine model of otitis media with effusion: immunohistochemical demonstration of IL-1 alpha antigen expression.

    PubMed

    Johnson, M D; Contrino, A; Contrino, J; Maxwell, K; Leonard, G; Kreutzer, D

    1994-09-01

    Recent studies have suggested that cytokines likely play a central role in the formation and maintenance of otitis media with effusion (OME). Currently, there is no immunologically defined animal model for the study of cytokines as they contribute to the formation of OME. In the present study, a murine model of OME, using eustachian tube blockage via an external surgical approach, was developed. The murine model temporal bone histology appears to mimic the histology found in chronic otitis media with effusion in humans. Additionally, using this murine model, interleukin-1 alpha (IL-1 alpha) expression was detected in the middle ear using standard immunohistochemical techniques. IL-1 alpha seemed localized to the epithelial lining of the middle ear as well as 5% to 10% of inflammatory cells. This model should provide the necessary tool to further study the immunologic aspects of OME. PMID:8072363

  1. Lack of XBP-1 Impedes Murine Cytomegalovirus Gene Expression

    PubMed Central

    Drori, Adi; Messerle, Martin; Brune, Wolfram; Tirosh, Boaz

    2014-01-01

    The unfolded protein response (UPR) is an endoplasmic reticulum (ER)-to-nucleus signaling cascade induced in response to ER stress. The UPR aims at restoring homeostasis, but can also induce apoptosis if stress persists. Infection by human and murine cytomegaloviruses (CMVs) provokes ER stress and induces the UPR. However, both CMVs manipulate the UPR to promote its prosurvival activity and delay apoptosis. The underlying mechanisms remain largely unknown. Recently, we demonstrated that MCMV and HCMV encode a late protein to target IRE1 for degradation. However, the importance of its downstream effector, X Box binding protein 1 (XBP-1), has not been directly studied. Here we show that deletion of XBP-1 prior to or early after infection confers a transient delay in viral propagation in fibroblasts that can be overcome by increasing the viral dose. A similar phenotype was demonstrated in peritoneal macrophages. In vivo, acute infection by MCMV is reduced in the absence of XBP-1. Our data indicate that removal of XBP-1 confers a kinetic delay in early stages of MCMV infection and suggest that the late targeting of IRE1 is aimed at inhibiting activities other than the splicing of XBP-1 mRNA. PMID:25333725

  2. Different expression patterns of TRP genes in murine B and T lymphocytes

    SciTech Connect

    Inada, Hitoshi; Iida, Tohko; Tominaga, Makoto . E-mail: tominaga@nips.ac.jp

    2006-11-24

    A prolonged increase in the intracellular calcium concentration ([Ca{sup 2+}]{sub i}) is essential for lymphocyte activation that includes cell proliferation and differentiation. This increase in [Ca{sup 2+}]{sub i} results from Ca{sup 2+} release from the intracellular store and the subsequent Ca{sup 2+} influx from the extracellular environment via calcium channels located on the plasma membrane. Although transient receptor potential (TRP) channels have been reported to play important roles in the [Ca{sup 2+}]{sub i} increase in lymphocytes, the function of these channels in lymphocyte activation remains unknown. Here, we report the comprehensive expression profile of TRP channel gene families including TRPC, TRPV, and TRPM in the murine immune system. RT-PCR analysis revealed different expression patterns of the TRP channel genes in B and T lymphocytes isolated from the spleen. Therefore, our results provide an appropriate reference of TRP gene expression in murine lymphocytes.

  3. Cloning and expression of murine enzymes involved in the salvage pathway of GDP-L-fucose.

    PubMed

    Niittymäki, Jaana; Mattila, Pirkko; Roos, Christophe; Huopaniemi, Laura; Sjöblom, Solveig; Renkonen, Risto

    2004-01-01

    In the salvage pathway of GDP-L-fucose, free cytosolic fucose is phosphorylated by L-fucokinase to form L-fucose-L-phosphate, which is then further converted to GDP-L-fucose in the reaction catalyzed by GDP-L-fucose pyrophosphorylase. We report here the cloning and expression of murine L-fucokinase and GDP-L-fucose pyrophosphorylase. Murine L-fucokinase is expressed as two transcripts of 3057 and 3270 base pairs, encoding proteins of 1019 and 1090 amino acids with predicted molecular masses of 111 kDa and 120 kDa respectively. Only the longer splice variant of L-fucokinase was enzymatically active when expressed in COS-7 cells. Murine GDP-L-fucose pyrophosphorylase has an open reading frame of 1773 base pairs encoding a protein of 591 amino acids with a predicted molecular mass of 65.5 kDa. GDP-L-fucose, the reaction product of GDP-L-pyrophosphorylase, was identified by HPLC and MALDI-TOF MS analysis. The tissue distribution of murine L-fucokinase and GDP-L-fucose pyrophosphorylase was investigated by quantitative real time PCR, which revealed high expression of L-fucokinase and GDP-L-fucose pyrophosphorylase in various tissues. The wide expression of both enzymes can also be observed from the large amount of data collected from a number of expressed sequence tag libraries, which indicate that not only the de novo pathway alone, but also the salvage pathway, could have a significant role in the synthesis of GDP-L-fucose in the cytosol. PMID:14686921

  4. Differential gene expression in the murine gastric fundus lacking interstitial cells of Cajal

    PubMed Central

    Daigo, Yataro; Takayama, Ichiro; Ponder, Bruce AJ; Caldas, Carlos; Ward, Sean M; Sanders, Kenton M; Fujino, Masayuki A

    2003-01-01

    Background The muscle layers of murine gastric fundus have no interstitial cells of Cajal at the level of the myenteric plexus and only possess intramuscular interstitial cells and this tissue does not generate electric slow waves. The absence of intramuscular interstitial cells in W/WV mutants provides a unique opportunity to study the molecular changes that are associated with the loss of these intercalating cells. Method The gene expression profile of the gastric fundus of wild type and W/WV mice was assayed by murine microarray analysis displaying a total of 8734 elements. Queried genes from the microarray analysis were confirmed by semi-quantitative reverse transcription-polymerase chain reaction. Results Twenty-one genes were differentially expressed in wild type and W/WV mice. Eleven transcripts had 2.0–2.5 fold higher mRNA expression in W/WV gastric fundus when compared to wild type tissues. Ten transcripts had 2.1–3.9 fold lower expression in W/WV mutants in comparison with wild type animals. None of these genes have ever been implicated in any bowel motility function. Conclusions These data provides evidence that several important genes have significantly changed in the murine fundus of W/WV mutants that lack intramuscular interstitial cells of Cajal and have reduced enteric motor neurotransmission. PMID:12795813

  5. Expression, purification and biochemical characterization of recombinant murine secretory component: a novel tool in mucosal immunology.

    PubMed Central

    Crottet, P; Cottet, S; Corthésy, B

    1999-01-01

    Reconstitution of secretory IgA (S-IgA) by the association in vitro of secretory component (SC) and polymeric IgA (pIgA) obtained from hybridomas is a valuable tool in the study of the structure-function relationship in this particular class of antibody. Although dimeric IgA (dIgA) can be obtained and purified from hybridoma clones, SC remains tedious to isolate in sufficient amounts from colostral milk. Several murine models for the study of mucosal immunity are available, which could potentially benefit from the use of cognate IgA antibodies in various molecular forms, including dIgA and S-IgA. We report here on the establishment of two expression systems allowing the production of milligram amounts of pure recombinant murine SC (rmSC) with preserved murine pIgA-binding capability. The first system relies on the use of recombinant vaccinia virus to prompt infected HeLa cells to express the murine SC protein, whereas the second system is based on a stably transfected cell clone exhibiting murine glycosylation. The second source of rmSC will permit the study of the role of its sugar moieties in pathogen-host interactions, and the evaluation of its function in passive protection without risking adverse immune responses. The extensive biochemical characterization conducted in this study demonstrates that rmSC is a dependable and convenient alternative to the natural product, and indicates that the J chain is dispensable in the recognition of pIgA and SC in vitro, whereas it is required for proper pIgA-polymeric Ig receptor interaction in vivo. PMID:10393086

  6. Intraepithelial lymphocytes express junctional molecules in murine small intestine

    SciTech Connect

    Inagaki-Ohara, Kyoko . E-mail: INAGAKI@med.miyazaki-u.ac.jp; Sawaguchi, Akira; Suganuma, Tatsuo; Matsuzaki, Goro; Nawa, Yukifumi

    2005-06-17

    Intestinal intraepithelial lymphocytes (IEL) that reside at basolateral site regulate the proliferation and differentiation of epithelial cells (EC) for providing a first line of host defense in intestine. However, it remains unknown how IEL interact and communicate with EC. Here, we show that IEL express junctional molecules like EC. We identified mRNA expression of the junctional molecules in IEL such as zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM) (tight junction), {beta}-catenin and E-cadherin (adherens junction), and connexin26 (gap junction). IEL constitutively expressed occludin and E-cadherin at protein level, while other T cells in the thymus, spleen, liver, mesenteric lymph node, and Peyer's patches did not. {gamma}{delta} IEL showed higher level of these expressions than {alpha}{beta} IEL. The expression of occludin was augmented by anti-CD3 Ab stimulation. These results suggest the possibility of a novel role of IEL concerning epithelial barrier and communication between IEL and EC.

  7. Eukaryotic expression, purification, crystallization and preliminary X-ray analysis of murine Manic Fringe

    SciTech Connect

    Jinek, Martin; Conti, Elena

    2006-08-01

    The catalytic domain of the murine glycosyltransferase Manic Fringe was expressed in insect cells. Removal by site-directed mutagenesis of two N-glycosylation sites present in the protein was essential to obtain crystals that diffracted to 1.8 Å resolution. Fringe proteins are Golgi-resident β1,3-N-acetylglucosaminyltransferases that regulate development in metazoa through glycosylation of the Notch receptor and its ligands. The catalytic domain of murine Manic Fringe was expressed in the baculovirus/insect-cell system as a secreted protein. Mass-spectrometric analysis of the purified protein indicated the presence of two N-linked glycans. Abolishing the glycosylation sites by site-directed mutagenesis was necessary in order to obtain orthorhombic crystals that diffracted to 1.8 Å resolution. For phasing, a highly redundant data set was collected using a crystal soaked with halide salts.

  8. Expression of indoleamine 2,3-dioxygenase in a murine model of Aspergillus fumigatus keratitis

    PubMed Central

    Jiang, Nan; Zhao, Gui-Qiu; Lin, Jing; Hu, Li-Ting; Che, Cheng-Ye; Li, Cui; Wang, Qian; Xu, Qiang; Zhang, Jie; Peng, Xu-Dong

    2016-01-01

    AIM To observe the presence and expression of indoleamine 2,3-dioxygenase (IDO) during the corneal immunity to Aspergillus fumigatus (A. fumigatus) in the murine models. METHODS The murine model of fungal keratitis was established by smearing with colonies of A. fumigatus after scraping central epithelium of cornea and covering with contact lenses in C57BL/6 mice. The mice were randomly divided into control group, sham group and A. fumigatus keratitis group. The cornea was monitored daily using a slit lamp and recorded disease score after infection. Corneal lesion was detected by immunofluorescence staining. IDO mRNA and protein were also detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. RESULTS The disease score and slit lamp photography indicated that disease severity was consistent with corneal inflammation in the murine models, and the disease scores in A. fumigatus keratitis group were obviously higher than those in the sham group. By immunofluorescence staining, IDO was mainly localized in corneal epithelium and stroma in the murine corneal tissues with A. fumigatus keratitis. Compared with the sham group, IDO mRNA expression was significantly enhanced in corneal epithelium infected by A. fumigatus. Furthermore, IDO protein expression detected by Western blot was in accord with transcript levels of IDO mRNA measured by qRT-PCR. IDO protein expression was enhanced after A. fumigatus infection compared with the sham group. CONCLUSION IDO is detected in corneal epithelium and stroma locally, which indicates IDO takes part in the pathogenesis of A. fumigatus keratitis and plays a key role in immune regulation at the early stage. PMID:27162718

  9. Pim-1 kinase expression during murine mammary development

    SciTech Connect

    Gapter, Leslie A.; Magnuson, Nancy S.; Ng, Ka-yun; Hosick, Howard L. . E-mail: hosick@wsu.edu

    2006-07-07

    Pim-1 kinase phosphorylates substrates whose activities are linked to proliferation, survival, differentiation, and apoptosis. Although pim-1 is induced by hormones and cytokines, the hormonal control and contribution of Pim-1 to mammary gland development have not been evaluated. We examined Pim-1 expression in mammary cell lines, investigated whether Pim-1 levels could be altered in breast epithelia by mammogenic hormones, and evaluated Pim-1 expression during mammary development. We found that Pim-1 was elevated in most mammary carcinoma cell lines and progesterone increased Pim-1 protein to some extent in non-tumorigenic mammary epithelia. Pim-1 expression in situ was consistent with the documented profile of progesterone activity in mouse mammary glands. Pim-1 nuclear localization correlated with cytoplasmic distribution for its substrate, p21{sup CIP/Waf1}, and we found that Pim-1 and p21 associate in vitro. Our results suggest that Pim-1 expression may be regulated by progesterone during mammary development and Pim-1 associates with p21 in mammary epithelial cells.

  10. Differential expression of murine adult hemoglobins in early ontogeny

    SciTech Connect

    Wawrzyniak, C.J.; Lewis, S.E.; Popp, R.A.

    1985-01-01

    A hemoglobin mutation is described that permits study of the expression of the two adult ..beta..-globin genes throughout fetal and postnatal development. Mice with a mutation at the Hbb/sup s/, ..beta..-globin locus, were used to study the relative levels of ..beta..-s2major and ..beta..-sminor globins specified by the mutant Hbb/sup s2/ haplotype during development. At 11.5 days of gestation ..beta..-sminor comprised over 80% and ..beta..-s2major under 20% of the adult beta-globin. The relative level of ..beta..-sminor decreased through fetal development; at birth ..beta..-sminor represented 33.7% of the ..beta..-globin. The adult values of 71.0% ..beta..-s2major and 29.0% ..beta..-sminor globin are expressed in mice six days after birth. Because the two ..beta..-globin genes are expressed in mice of the Hbb/sup 2s/ haplotype, both the ..beta..-smajor and ..beta..-sminor genes must be expressed in mice of the Hbb/sup s/ haplotype. Expression of the ..beta..-sminor gene is elevated to 35.6% in Hbb/sup s2/ mice that have been bled repeatedly. Thus, the 5' ..beta..-s2major and 3' ..beta..-sminor genes of the Hbb/sup s2/ haplotype and, presumably the 5' ..beta..-smajor and 3' ..beta..-sminor genes of the Hbb/sup s/ haplotype, are regulated independently and are homologous to the 5' ..beta..-dmajor and 3' ..beta..-dminor genes of the Hbb/sup d/ haplotype. Mice of the Hbb/sup s2/ haplotype are better than mice of the Hbb/sup d/ haplotytpe for studying the mechanisms of hemoglobin switching because the Hbb/sup s2/ each of the three embryonic and two adult hemoglobins can be separated by electrophoresis. 17 refs., 3 figs.

  11. CD40 in coronary artery disease: a matter of macrophages?

    PubMed

    Jansen, Matthijs F; Hollander, Maurits R; van Royen, Niels; Horrevoets, Anton J; Lutgens, Esther

    2016-07-01

    Coronary artery disease (CAD), also known as ischemic heart disease (IHD), is the leading cause of mortality in the western world, with developing countries showing a similar trend. With the increased understanding of the role of the immune system and inflammation in coronary artery disease, it was shown that macrophages play a major role in this disease. Costimulatory molecules are important regulators of inflammation, and especially, the CD40L-CD40 axis is of importance in the pathogenesis of cardiovascular disease. Although it was shown that CD40 can mediate macrophage function, its exact role in macrophage biology has not gained much attention in cardiovascular disease. Therefore, the goal of this review is to give an overview on the role of macrophage-specific CD40 in cardiovascular disease, with a focus on coronary artery disease. We will discuss the function of CD40 on the macrophage and its (proposed) role in the reduction of atherosclerosis, the reduction of neointima formation, and the stimulation of arteriogenesis. PMID:27146510

  12. Molecular basis for CD40 signaling mediated by TRAF3

    PubMed Central

    Ni, Chao-Zhou; Welsh, Kate; Leo, Eugen; Chiou, Chu-kuan; Wu, Hao; Reed, John C.; Ely, Kathryn R.

    2000-01-01

    Tumor necrosis factor receptors (TNFR) are single transmembrane-spanning glycoproteins that bind cytokines and trigger multiple signal transduction pathways. Many of these TNFRs rely on interactions with TRAF proteins that bind to the intracellular domain of the receptors. CD40 is a member of the TNFR family that binds to several different TRAF proteins. We have determined the crystal structure of a 20-residue fragment from the cytoplasmic domain of CD40 in complex with the TRAF domain of TRAF3. The CD40 fragment binds as a hairpin loop across the surface of the TRAF domain. Residues shown by mutagenesis and deletion analysis to be critical for TRAF3 binding are involved either in direct contact with TRAF3 or in intramolecular interactions that stabilize the hairpin. Comparison of the interactions of CD40 with TRAF3 vs. TRAF2 suggests that CD40 may assume different conformations when bound to different TRAF family members. This molecular adaptation may influence binding affinity and specific cellular triggers. PMID:10984535

  13. Expression of decorin throughout the murine hair follicle cycle: hair cycle dependence and anagen phase prolongation.

    PubMed

    Jing, Jing; Wu, Xian-Jie; Li, Yun-Ling; Cai, Sui-Qing; Zheng, Min; Lu, Zhong-Fa

    2014-07-01

    Decorin is a prototypical member of the small leucine-rich proteoglycan (SLRP) family, which is involved in numerous biological processes. The role of decorin, as a representative SLRP, in hair follicle morphogenesis has not been elucidated. We present our initial findings on decorin expression patterns during induced murine hair follicle (HF) cycles. It was found that decorin expression is exclusively restricted to the epidermis, outer root sheath and sebaceous glands during the anagen phase, which correlates with the upregulation of decorin mRNA and protein expression in depilated murine dorsal skin. Furthermore, we used a functional approach to investigate the effects of recombinant human decorin (rhDecorin) via cutaneous injection into HFs at various murine hair cycle stages. The local injection of rhDecorin (100 μg/ml) into the hypodermis of depilated C57BL/6 mice at anagen delayed catagen progression. In contrast, rhDecorin injection during the telogen phase caused the premature onset of anagen, as demonstrated by the assessment of the following parameters: (i) hair shaft length, (ii) follicular bulbar diameter, (iii) hair follicle cycling score and (iv) follicular phase percentage. Taken together, our results suggest that decorin may modulate follicular cycling and morphogenesis. In addition, this study also provides insight into the molecular control mechanisms governing hair follicular epithelial-mesenchymal interactions. PMID:24816226

  14. Tumor Necrosis Factor-α/CD40 Ligand-Engineered Mesenchymal Stem Cells Greatly Enhanced the Antitumor Immune Response and Lifespan in Mice

    PubMed Central

    Daneshmandi, Saeed; Menaa, Farid

    2014-01-01

    Abstract The interaction between mesenchymal stem cells (MSCs) and dendritic cells (DCs) affects T cell development and function. Further, the chemotactic capacity of MSCs, their interaction with the tumor microenvironment, and the intervention of immune-stimulatory molecules suggest possible exploitation of tumor necrosis factor-α (TNF-α) and CD40 ligand (CD40L) to genetically modify MSCs for enhanced cancer therapy. Both DCs and MSCs were isolated from BALB/c mice. DCs were then cocultured with MSCs transduced with TNF-α and/or CD40L [(TNF-α/CD40L)-MSCs]. Major DCs' maturation markers, DC and T cell cytokines such as interleukin-4, -6, -10, -12, TNF-α, tumor growth factor-β, as well as T cell proliferation, were assessed. Meantime, a BALB/c mouse breast tumor model was inducted by injecting 4T1 cells subcutaneously. Mice (n=10) in each well-defined test groups (n=13) were cotreated with DCs and/or (TNF-α/CD40L)-MSCs. The controls included untreated, empty vector-MSC, DC-lipopolysaccharide, and immature DC mouse groups. Eventually, cytokine levels from murine splenocytes, as well as tumor volume and survival of mice, were assessed. Compared with the corresponding controls, both in vitro and in vivo analyses showed induction of T helper 1 (Th1) as well as suppression of Th2 and Treg responses in test groups, which led to a valuable antitumor immune response. Further, the longest mouse survival was observed in mouse groups that were administered with DCs plus (TNF-α/CD40L)-MSCs. In our experimental setting, the present pioneered study demonstrates that concomitant genetic modification of MSCs with TNF-α and CD40L optimized the antitumor immunity response in the presence of DCs, meantime increasing the mouse lifespan. PMID:24372569

  15. Murine Hematopoietic Stem cells and Progenitors Express Adrenergic Receptors

    PubMed Central

    Muthu, Kuzhali; Iyer, Sivaraman; He, L-K.; Szilagyi, Andrea; Gamelli, Richard L; Shankar, Ravi; Jones, Stephen B

    2007-01-01

    Association between the nervous and immune system is well documented. Immune cells originate within the bone marrow that is innervated. Thermal injury induces adrenergic stimulation, augments monocytopoiesis and alters the β-adrenergic receptor (AR) profile of bone marrow monocyte committed progenitors. This provides an impetus to study AR expression in hematopoietic progenitors along myeloid lineage. Using FACS analysis and confocal microscopy, we report the expression of α1-, α2- and β2- AR in enriched populations of ER-MP20+ and ER-MP12+ myeloid progenitors, CD117+ and CD34+ multi-potential progenitors and more importantly pluripotent stem cells suggesting a plausible role for catecholamine in hematopoietic development. PMID:17428548

  16. Changing expression and subcellular distribution of karyopherins during murine oogenesis.

    PubMed

    Mihalas, Bettina P; Western, Patrick S; Loveland, Kate L; McLaughlin, Eileen A; Holt, Janet E

    2015-12-01

    Mammalian oocyte growth and development is driven by a strict program of gene expression that relies on the timely presence of transcriptional regulators via nuclear pores. By targeting specific cargos for nucleo-cytoplasmic transport, karyopherin (KPN) proteins are key to the relocation of essential transcription factors and chromatin-remodelling factors into and out of the nucleus. Using multiple complementary techniques, here we establish that KPNA genes and proteins are dynamically expressed and relocalised throughout mouse oogenesis and folliculogenesis. Of the KPNAs examined (Kpna1, Kpna2, Kpna3, Kpna4, Kpna6, Kpna7, Kpnb1, Ipo5 and Xpo1), all were expressed in the embryonic ovary with up-regulation of protein levels concomitant with meiotic entry for KPNA2, accompanied by the redistribution of the cellular localisation of KPNA2 and XPO1. In contrast, postnatal folliculogenesis revealed significant up-regulation of Kpna1, Kpna2, Kpna4, Kpna6 and Ipo5 and down-regulation of Kpnb1, Kpna7 and Xpo1 at the primordial to primary follicle transition. KPNAs exhibited different localisation patterns in both oocytes and granulosa cells during folliculogenesis, with three KPNAs--KPNA1, KPNA2 and IPO5--displaying marked enrichment in the nucleus by antral follicle stage. Remarkably, varied subcellular expression profiles were also identified in isolated pre-ovulatory oocytes with KPNAs KPNA2, KPNB1 and IPO5 detected in the cytoplasm and at the nuclear rim and XPO1 in cytoplasmic aggregates. Intriguingly, meiotic spindle staining was also observed for KPNB1 and XPO1 in meiosis II eggs, implying roles for KPNAs outside of nucleo-cytoplasmic transport. Thus, we propose that KPNAs, by targeting specific cargoes, are likely to be key regulators of oocyte development. PMID:26399853

  17. 1.8 Astroms Structure of Murine GITR Ligand Dimer Expressed in Drosophila Melanogaster S2 Cells

    SciTech Connect

    Chattopadhyay, K.; Ramagopal, U; Nathenson, S; Almo, S

    2009-01-01

    Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure, murine GITRL demonstrated a unique 'strand-exchanged' dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with the murine GITRL costimulatory system. In this present work, the 1.8 {angstrom} resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical 'strand-exchanged' dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL.

  18. Involvement of calcitonin gene-related peptide and CCL2 production in CD40-mediated behavioral hypersensitivity in a model of neuropathic pain

    PubMed Central

    MALON, JENNIFER T.; MADDULA, SWATHI; BELL, HARMONY; CAO, LING

    2014-01-01

    The neuropeptide calcitonin gene-related peptide (CGRP) is known to play a pro-nociceptive role after peripheral nerve injury upon its release from primary afferent neurons in preclinical models of neuropathic pain. We previously demonstrated a critical role for spinal cord microglial CD40 in the development of spinal nerve L5 transection (L5Tx)-induced mechanical hypersensitivity. Herein, we investigated whether CGRP is involved in the CD40-mediated behavioral hypersensitivity. First, L5Tx was found to significantly induce CGRP expression in wild-type (WT) mice up to 14 days post-L5Tx. This increase in CGRP expression was reduced in CD40 knockout (KO) mice at day 14 post-L5Tx. Intrathecal injection of the CGRP antagonist CGRP8–37 significantly blocked L5Tx-induced mechanical hypersensitivity. In vitro, CGRP induced glial IL-6 and CCL2 production, and CD40 stimulation added to the effects of CGRP in neonatal glia. Further, there was decreased CCL2 production in CD40 KO mice compared to WT mice 21 days post-L5Tx. However, CGRP8–37 did not significantly affect spinal cord CCL2 production following L5Tx in WT mice. Altogether, these data suggest that CD40 contributes to the maintenance of behavioral hypersensitivity following peripheral nerve injury in part through two distinct pathways, the enhancement of CGRP expression and spinal cord CCL2 production. PMID:22377050

  19. CD40-TRAF Signaling Upregulates CX3CL1 and TNF-α in Human Aortic Endothelial Cells but Not in Retinal Endothelial Cells

    PubMed Central

    Greene, Jennifer A.; Portillo, Jose-Andres C.; Lopez Corcino, Yalitza; Subauste, Carlos S.

    2015-01-01

    CD40, CX3CL1 and TNF-α promote atheroma and neointima formation. CD40 and TNF-α are also central to the development of diabetic retinopathy while CX3CL1 may play a role in the pathogenesis of this retinopathy. The purpose of this study was to examine whether CD40 ligation increases CX3CL1 and TNF-α protein expression in human endothelial cells from the aorta and retina. CD154 (CD40 ligand) upregulated membrane-bound and soluble CX3CL1 in human aortic endothelial cells. CD154 triggered TNF-α production by human aortic endothelial cells. TNF Receptor Associated Factors (TRAF) are key mediators of CD40 signaling. Compared to human aortic endothelial cells that express wt CD40, cells that express CD40 with a mutation that prevents TRAF2,3 recruitment, or CD40 with a mutation that prevents TRAF6 recruitment exhibited a profound inhibition of CD154-driven upregulation of membrane bound and soluble CX3CL1 as well as of TNF-α secretion. While both CD154 and TNF-α upregulated CX3CL1 in human aortic endothelial cells, these stimuli could act independently of each other. In contrast to human aortic endothelial cells, human retinal endothelial cells did not increase membrane bound or soluble CX3CL1 expression or secrete TNF-α in response to CD154 even though CD40 ligation upregulated ICAM-1 and CCL2 in these cells. Moreover, TNF-α did not upregulate CX3CL1 in retinal endothelial cells. In conclusion, CD40 ligation increases CX3CL1 protein levels and induces TNF-α production in endothelial cells. However, endothelial cells are heterogeneous in regards to these responses. Human aortic but not retinal endothelial cells upregulated CX3CL1 and TNF-α in response to CD40 ligation, as well as upregulated CX3CL1 in response to TNF-α. These dissimilarities may contribute to differences in regulation of inflammation in large vessels versus the retina. PMID:26710229

  20. Gene expression analysis in the compartments of the murine uterus.

    PubMed

    Rosario, Gracy Xavier; Cheng, Jr-Gang; Stewart, Colin L

    2016-01-01

    Embryo implantation, a key critical feature of mammalian pregnancy, involves co-ordinate interplay between an incoming blastocyst and a receptive uterus. Aberrations in signaling cascades during this process result in pregnancy loss in mammals, including women. Analysis of the complete uterus at any given point either during preparation for implantation or during and after embryo attachment and invasion makes it difficult to assign specific signaling mechanism to the individual cellular compartments of the uterus. Here, we describe methods for the specific isolation of the luminal epithelium (LE) and subsequent analysis of gene expression/signaling pathways during embryo attachment. We further describe the analysis of RNA and proteins by specific techniques of quantitative PCR (qPCR), immunostaining and Western blotting of uterine tissues. These methods can be applied to the other cellular compartments of the uterus and embryo invasion and endometrial development. These techniques will be beneficial to investigators for delineating the mechanisms involved during embryo attachment and female reproduction as well as providing a means to studying highly dynamic changes in gene expression in tissues. PMID:26651425

  1. Hyperimmunoglobulin syndrome due to CD40 deficiency: Possibly the first case from India

    PubMed Central

    Mishra, A; Italia, K; Gupta, M; Desai, M; Madkaikar, M

    2015-01-01

    Hyperimmunoglobulin M (HIGM) type 3 due to CD40 deficiency is a very rare syndrome. Only 16 cases have been reported thus far. The clinical presentation is very variable. We present the first case of this rare disorder from India. The case is of a two-and-a-half-year-old female, with a history of repeated episodes of skin infections and diarrhea since birth. Laboratory evaluation revealed elevated absolute lymphocyte count and an absolute neutrophil count (ANC) of 1026/mm3. The lymphocyte subset analysis showed normal absolute counts of Natural Killer (NK) cells and elevated absolute counts of T-cells (CD4 and CD8) and B-cells. The serum immunoglobulin estimation showed low levels of IgG, IgA, IgE and an elevated level of IgM. The CD154 analysis was normal and expression of CD40 was absent on the B-cells. Molecular analysis showed a novel mutation, with deletion of 3bp (AAG) [p.Glu107GlyfsX84] in the homozygous state, in the CD40 gene. Thus the patient was diagnosed as HIGM type 3. The parents were screened and counseled regarding prenatal diagnosis at the time of next pregnancy. PMID:25511220

  2. Spatial and temporal expression of histone demethylase, Kdm2a, during murine molar development.

    PubMed

    Yi, Q; Cao, Y; Liu, O S; Lu, Y Q; Wang, J S; Wang, S L; Yao, R; Fan, Z P

    2016-01-01

    The histone demethylase, lysine (K)-specific demethylase 2A (Kdm2a), is highly conserved and expressed ubiquitously. Kdm2a can regulate cell proliferation and osteo/dentinogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells (MSCs) derived from dental tissue. We used quantitative real-time RT-PCR analysis and immunohistochemistry to detect Kdm2a expression during development of the murine molar at embryonic days E12, E14, E16 and E17 and postnatal days P3 and P14. Immunohistochemistry results showed no positive staining of Kdm2a at E12. At E14, Kdm2a was expressed weakly in the inner enamel epithelium, stellate reticulum cells and dental sac. At E16, Kdm2a was expressed mainly in the inner and outer enamel epithelium, stratum intermedium and dental sac, but weaker staining was found in cervical loop and dental papilla cells adjacent to the basement membrane. At E17, the strongest Kdm2a staining was detected in the ameloblasts and stronger Kdm2a staining also was detected in the stratum intermedium, outer enamel epithelium and dental papilla cells compared to the expression at E16. Postnatally, we found that Kdm2a was localized in secretory and mature ameloblasts and odontoblasts, and dentin was unstained. Real-time RT-PCR showed that Kdm2a mRNA levels in murine germ cells increased from E12 to E14 and from E14 to E16; no significant change occurred at E16, E17 or P3, then the levels decreased at P14 compared to P3. Kdm2a expression may be closely related to cell proliferation, to ameloblast and odontoblast differentiation and to the secretion of extracellular enamel and dentin during murine tooth development. PMID:26720400

  3. Integrating Murine Gene Expression Studies to Understand Obstructive Lung Disease Due to Chronic Inhaled Endotoxin

    PubMed Central

    Lai, Peggy S.; Hofmann, Oliver; Baron, Rebecca M.; Cernadas, Manuela; Meng, Quanxin Ryan; Bresler, Herbert S.; Brass, David M.; Yang, Ivana V.; Schwartz, David A.; Christiani, David C.; Hide, Winston

    2013-01-01

    Rationale Endotoxin is a near ubiquitous environmental exposure that that has been associated with both asthma and chronic obstructive pulmonary disease (COPD). These obstructive lung diseases have a complex pathophysiology, making them difficult to study comprehensively in the context of endotoxin. Genome-wide gene expression studies have been used to identify a molecular snapshot of the response to environmental exposures. Identification of differentially expressed genes shared across all published murine models of chronic inhaled endotoxin will provide insight into the biology underlying endotoxin-associated lung disease. Methods We identified three published murine models with gene expression profiling after repeated low-dose inhaled endotoxin. All array data from these experiments were re-analyzed, annotated consistently, and tested for shared genes found to be differentially expressed. Additional functional comparison was conducted by testing for significant enrichment of differentially expressed genes in known pathways. The importance of this gene signature in smoking-related lung disease was assessed using hierarchical clustering in an independent experiment where mice were exposed to endotoxin, smoke, and endotoxin plus smoke. Results A 101-gene signature was detected in three murine models, more than expected by chance. The three model systems exhibit additional similarity beyond shared genes when compared at the pathway level, with increasing enrichment of inflammatory pathways associated with longer duration of endotoxin exposure. Genes and pathways important in both asthma and COPD were shared across all endotoxin models. Mice exposed to endotoxin, smoke, and smoke plus endotoxin were accurately classified with the endotoxin gene signature. Conclusions Despite the differences in laboratory, duration of exposure, and strain of mouse used in three experimental models of chronic inhaled endotoxin, surprising similarities in gene expression were observed

  4. Microarray Based Gene Expression Analysis of Murine Brown and Subcutaneous Adipose Tissue: Significance with Human

    PubMed Central

    Boparai, Ravneet K.; Kondepudi, Kanthi Kiran; Mantri, Shrikant; Bishnoi, Mahendra

    2015-01-01

    Background Two types of adipose tissues, white (WAT) and brown (BAT) are found in mammals. Increasingly novel strategies are being proposed for the treatment of obesity and its associated complications by altering amount and/or activity of BAT using mouse models. Methodology/Principle Findings The present study was designed to: (a) investigate the differential expression of genes in LACA mice subcutaneous WAT (sWAT) and BAT using mouse DNA microarray, (b) to compare mouse differential gene expression with previously published human data; to understand any inter- species differences between the two and (c) to make a comparative assessment with C57BL/6 mouse strain. In mouse microarray studies, over 7003, 1176 and 401 probe sets showed more than two-fold, five-fold and ten-fold change respectively in differential expression between murine BAT and WAT. Microarray data was validated using quantitative RT-PCR of key genes showing high expression in BAT (Fabp3, Ucp1, Slc27a1) and sWAT (Ms4a1, H2-Ob, Bank1) or showing relatively low expression in BAT (Pgk1, Cox6b1) and sWAT (Slc20a1, Cd74). Multi-omic pathway analysis was employed to understand possible links between the organisms. When murine two fold data was compared with published human BAT and sWAT data, 90 genes showed parallel differential expression in both mouse and human. Out of these 90 genes, 46 showed same pattern of differential expression whereas the pattern was opposite for the remaining 44 genes. Based on our microarray results and its comparison with human data, we were able to identify genes (targets) (a) which can be studied in mouse model systems to extrapolate results to human (b) where caution should be exercised before extrapolation of murine data to human. Conclusion Our study provides evidence for inter species (mouse vs human) differences in differential gene expression between sWAT and BAT. Critical understanding of this data may help in development of novel ways to engineer one form of adipose

  5. Expression and localization of GPR91 and GPR99 in murine organs.

    PubMed

    Diehl, Julia; Gries, Barbara; Pfeil, Uwe; Goldenberg, Anna; Mermer, Petra; Kummer, Wolfgang; Paddenberg, Renate

    2016-05-01

    Energy substrates and metabolic intermediates are proven ligands of a growing number of G-protein coupled receptors. In 2004, GPR91 and GPR99 were identified as receptors for the citric acid cycle intermediates, succinate and α-ketoglutarate, respectively. GPR91 seems to act as a first responder to local stress and GPR99 participates in the regulation of the acid-base balance through an intrarenal paracrine mechanism. However, a systematic analysis of the distribution of both receptors in mouse organs is still missing. The aim of this study was to examine the expression of GPR91 and GPR99 in a large number of different murine organs both at mRNA and protein level. Whereas GPR91 mRNA was detectable in almost all organs, GPR99 mRNA was mainly expressed in neuronal tissues. Widespread expression of GPR91 was also detected at the protein level by western blotting and immunohistochemistry. In addition to neuronal cells, GPR99 protein was found in renal intercalated cells and epididymal narrow cells. Double-labeling immunohistochemistry demonstrated the colocalization of GPR99 with the B1 subunit isoform of vacuolar H(+)-ATPases which is expressed only by a very limited number of cell types. In summary, our detailed expression analysis of GPR91 and GPR99 in murine tissues will allow a more directed search for additional functions of both receptors. PMID:26590824

  6. Lymphocytes and not IFNγ mediate expression of iNOS by intestinal epithelium in murine cryptosporidiosis

    PubMed Central

    Nordone, S.K.; Gookin, J.L.

    2013-01-01

    We hypothesized that unrecognized differences in epithelial expression of inducible nitric oxide synthase (iNOS), resulting from engineered immunodeficiency, could explain the contradictory findings of prior studies regarding the importance of nitric oxide (NO) in murine models of C. parvum infection. Severe combined immunodeficient mice (SCID) failed to constitutively or inducibly express epithelial iNOS or increase NO synthesis in response to C. parvum infection. In contrast, mice lacking IFNγ alone induced both epithelial iNOS expression and NO synthesis in response to infection. Accordingly, lymphocytes mediate epithelial expression of iNOS and NO synthesis independent of IFNγ in response to C. parvum infection. These findings in large part explain the contradictory conclusions of prior studies regarding the role of iNOS in C. parvum infection. PMID:20352449

  7. MicroRNA-145 regulates platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration by targeting CD40

    PubMed Central

    Li, Yumei; Huang, Jiangnan; Jiang, Zhiyuan; Zhong, Yuanli; Xia, Mingjie; Wang, Hui; Jiao, Yang

    2016-01-01

    The objective of this study is to investigate the expression of microRNA (miR)-145 in human aortic vascular smooth muscle cells (VSMCs) and the effect of miR-145 in the biological behavior and expression of CD40 in VSMCs. Cells were treated with either miR-145 or miR-145 inhibitor. Cell proliferation was analyzed by a colony formation assay and a methyl thiazolyl tetrazolium assay. Cell migration and invasion were assessed using a transwell assay, an invasion assay, and a wound healing assay. A luciferase reporter assay was used to detect the interaction between miR-145 and CD40. Expression of α-SMA, calponin, osteopontin (OPN), epiregulin, activator protein-1 (AP-1) and CD40 was measured using real-time RT-PCR for mRNA levels and Western blotting for protein levels. Overexpression of miR-145 significantly inhibited VSMC proliferation, invasion and migration. Furthermore, OPN, epiregulin, AP-1 and CD40 expression at the mRNA and protein levels was down-regulated by overexpression of miR-145. However, α-SMA and calponin expression at the mRNA and protein levels was up-regulated by overexpression of miR-145. In addition, the luciferase reporter assay showed that CD40 may be a direct target gene of miR-145 in VSMC initiation and development. Moreover, these data demonstrate that the up-regulation of CD40 is critical for miR-145-mediated inhibitory effects on platelet-derived growth factor-induced cell proliferation and migration in human VSMCs. In summary, CD40, a direct target of miR-145, reverses the inhibitory effects of miR-145. These results suggest that the specific modulation of miR-145 in human VSMCs may be an attractive approach for the treatment of proliferative vascular diseases. PMID:27186305

  8. An autologous in situ tumor vaccination approach for hepatocellular carcinoma. 2. Tumor-specific immunity and cure after radio-inducible suicide gene therapy and systemic CD40-ligand and Flt3-ligand gene therapy in an orthotopic tumor model.

    PubMed

    Kawashita, Yujo; Deb, Niloy J; Garg, Madhur K; Kabarriti, Rafi; Fan, Zuoheng; Alfieri, Alan A; Roy-Chowdhury, Jayanta; Guha, Chandan

    2014-08-01

    Diffuse hepatocellular carcinoma (HCC) is a lethal disease that radiation therapy (RT) currently has a limited role in treating because of the potential for developing fatal radiation-induced liver disease. However, recently diffuse HCC, "radio-inducible suicide gene therapy" has been shown to enhance local tumor control and residual microscopic disease within the liver for diffuse HCC, by using a combination of chemoactivation and molecular radiosensitization. We have demonstrated that the addition of recombinant adenovirus-expressing human Flt3 ligand (Adeno-Flt3L) after radio-inducible suicide gene therapy induced a Th1-biased, immune response and enhanced tumor control in an ectopic model of HCC. We hypothesized that sequential administration of recombinant adenovirus-expressing CD40L (Adeno-CD40L) could further potentiate the efficacy of our trimodal therapy with RT + HSV-TK + Adeno-Flt3L. We examined our hypothesis in an orthotopic model of diffuse HCC using BNL1ME A.7R.1 (BNL) cells in Balb/c mice. BNL murine hepatoma cells (5 × 10(4)) transfected with an expression vector of HSV-TK under the control of a radiation-inducible promoter were injected intraportally into BALB/cJ mice. Fourteen days after the HCC injection, mice were treated with a 25 Gy dose of radiation to the whole liver, followed by ganciclovir (GCV) treatment and systemic adenoviral cytokine gene therapy (Flt3L or CD40L or both). Untreated mice died in 27 ± 4 days. Radiation therapy alone had a marginal effect on survival (median = 35 ± 7 days) and the addition of HSV-TK/GCV gene therapy improved the median survival to 47 ± 6 days. However, the addition of Adeno-Flt3L to radiation therapy and HSV-TK/GCV therapy significantly (P = 0.0005) increased survival to a median of 63 ± 20 days with 44% (7/16) of the animals still alive 116 days after tumor implantation. The curative effect of Flt3L was completely abolished when using immunodeficient nude mice or mice depleted for CD4, CD8 and

  9. Lipopolysaccharide modulation of dendritic cells is insufficient to mature dendritic cells to generate CTLs from naive polyclonal CD8+ T cells in vitro, whereas CD40 ligation is essential.

    PubMed

    Kelleher, M; Beverley, P C

    2001-12-01

    Many cytotoxic CD8+ T cell responses are dependent on the interactions between CD40 ligand on the helper CD4+ T cell and CD40 on the APC. Although CD40 triggering of dendritic cells (DC) has been shown to mature the DC by increasing the level of expression of costimulatory molecules and inducing IL-12 secretion, the precise mechanisms by which CD40-CD40 ligand interactions allow DC to drive CTL responses remain unknown. We have used an in vitro model in which naive polyclonal CD8+ T cells can be activated by bone marrow-derived DC to investigate factor(s) that are responsible for this CD40-dependent generation of CTLs. DC modulated with agonistic anti-CD40 mAb (aCD40) are able to generate Ag-specific CTL responses while DC modulated with the microbial stimulus LPS alone do not. We compared the Ag-presenting capacity, levels of costimulatory molecules, and release of cytokines and chemokines of DC modulated with aCD40 to that of DC modulated by LPS. None of the factors assayed account for the unique capacity of anti-CD40-matured DC to drive CTL but this model provides a simplified system for further investigation. Although we attempted to use an LPS-free system for these studies, we are unable to rule out the possibility that very low levels of endotoxin (<20 pg/ml) may synergize with CD40 ligation in the generation of CTLs. PMID:11714787

  10. Targeting the HA2 subunit of influenza A virus hemagglutinin via CD40L provides universal protection against diverse subtypes.

    PubMed

    Fan, X; Hashem, A M; Chen, Z; Li, C; Doyle, T; Zhang, Y; Yi, Y; Farnsworth, A; Xu, K; Li, Z; He, R; Li, X; Wang, J

    2015-01-01

    The influenza viral hemagglutinin (HA) is comprised of two subunits. Current influenza vaccine predominantly induces neutralizing antibodies (Abs) against the HA1 subunit, which is constantly evolving in unpredictable fashion. The other subunit, HA2, however, is highly conserved but largely shielded by the HA head domain. Thus, enhancing immune response against HA2 could potentially elicit broadly inhibitory Abs. We generated a recombinant adenovirus (rAd) encoding secreted fusion protein, consisting of codon-optimized HA2 subunit of influenza A/California/7/2009(H1N1) virus fused to a trimerized form of murine CD40L, and determined its ability of inducing protective immunity upon intranasal administration. We found that mice immunized with this recombinant viral vaccine were completely protected against lethal challenge with divergent influenza A virus subtypes including H1N1, H3N2, and H9N2. Codon-optimization of HA2 as well as the use of CD40L as a targeting ligand/molecular adjuvant were indispensable to enhance HA2-specific mucosal IgA and serum IgG levels. Moreover, induction of HA2-specific T-cell responses was dependent on CD40L, as rAd secreting HA2 subunit without CD40L failed to induce any significant levels of T-cell cytokines. Finally, sera obtained from immunized mice were capable of inhibiting 13 subtypes of influenza A viruses in vitro. These results provide proof of concept for a prototype HA2-based universal influenza vaccine. PMID:25052763

  11. Dynamic variation in allele-specific gene expression of Paraoxonase-1 in murine and human tissues

    PubMed Central

    Parker-Katiraee, Layla; Bousiaki, Eleni; Monk, David; Moore, Gudrun E.; Nakabayashi, Kazuhiko; Scherer, Stephen W.

    2008-01-01

    Differential allelic expression has been shown to be common in mice, humans and maize, and variability in the expression of polymorphic alleles has been associated with human disease. Here, we describe the differential expression pattern of Paraoxonase-1, a gene involved in lipid metabolism and implicated in the formation of atherosclerotic lesions. We measured the expression of the murine Paraoxonase-1 gene (Pon1) in livers at different stages of embryonic development using F1 hybrid crosses and quantified the transcriptional level of both parental alleles. Using human foetal tissues, we analysed the expression of the human orthologue (PON1) and found monoallelic or preferential allelic expression in 6/7 and 4/4 samples from liver and pancreas, respectively. We observed that Pon1 does not show a parent-of-origin preference in its allelic expression, but has dramatic variations in allele-specific expression occurring throughout development. This study has important repercussions in the analysis of haplotypes at disease loci, since it implies that the expression of polymorphic alleles can be unequal and dynamic. PMID:18678600

  12. Bacterial Colonization and the Expression of Inducible Nitric Oxide Synthase in Murine Wounds

    PubMed Central

    Mahoney, Eric; Reichner, Jonathan; Robinson Bostom, Leslie; Mastrofrancesco, Balduino; Henry, William; Albina, Jorge

    2002-01-01

    The expression of inducible nitric oxide synthase (iNOS) in two different murine wound models was investigated. Animals were subjected to either full-thickness linear skin incision with subcutaneous implantation of sterile polyvinyl alcohol sponges, or to 1.5 × 1.5-cm dorsal skin excision. Reverse transcriptase-polymerase chain reaction detected iNOS mRNA in all cell samples retrieved from the sponges. Immunoblotting of lysates of inflammatory cells harvested from the sponges failed to detect iNOS protein, and immunohistochemistry of the incisional wound was mildly positive. Inflammatory cells of excisional wounds stained strongly positive for iNOS. Cutaneous wounds were found to be colonized with Staphylococcus aureus. The detection of iNOS in cells from sponges inoculated in vivo with heat-killed bacteria and the reduction of immunohistochemical signal for iNOS in excisional wounds of animals treated with antibiotics support a role of bacteria in the induction of iNOS in wounds. The expression of iNOS in excisional wounds requires interferon-γ and functional lymphocytes because interferon-γ knockout and SCID-Beige mice exhibited attenuated iNOS staining in excisional wounds. The expression of iNOS in the inflammatory cells of murine wounds is a response to bacterial colonization and not part of the normal repair process elicited by sterile tissue injury. PMID:12466130

  13. c-kit mRNA expression in human and murine hematopoietic cell lines.

    PubMed

    André, C; d'Auriol, L; Lacombe, C; Gisselbrecht, S; Galibert, F

    1989-08-01

    The c-kit proto-oncogene belongs to the tyrosine kinase receptor family. Although its ligand is still unknown, there is increasing evidence to suggest its involvement in hematopoiesis. In order to detect lineage or differentiation related specificity, we have studied c-kit mRNA expression in both human and murine hematopoietic organs and cell lines. We show that c-kit mRNA expression is found at early stages of erythroid and myeloid differentiation. There is however, no evidence of c-kit expression in the lymphoid lineage. Our results suggest a possible role for c-kit as a receptor in the early stages of the erythroid/myeloid differentiation. PMID:2474787

  14. 1.8 Å structure of murine GITR ligand dimer expressed in Drosophila melanogaster S2 cells

    SciTech Connect

    Chattopadhyay, Kausik; Ramagopal, Udupi A.; Nathenson, Stanley G.; Almo, Steven C.

    2009-05-01

    1.8 Å X-ray crystal structure of mouse GITRL expressed in D. melanogaster S2 cells shows an identical ‘strand-exchanged’ dimeric assembly similar to that observed previously for the E. coli-expressed protein. Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure, murine GITRL demonstrated a unique ‘strand-exchanged’ dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with the murine GITRL costimulatory system. In this present work, the 1.8 Å resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical ‘strand-exchanged’ dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL.

  15. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    SciTech Connect

    Hachem, Ahmed; Yacoub, Daniel; Zaid, Younes; Mourad, Walid; Merhi, Yahye

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Given that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo

  16. Bifidobacterium bifidum actively changes the gene expression profile induced by Lactobacillus acidophilus in murine dendritic cells.

    PubMed

    Weiss, Gudrun; Rasmussen, Simon; Nielsen Fink, Lisbeth; Jarmer, Hanne; Nøhr Nielsen, Birgit; Frøkiaer, Hanne

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-beta, other virus defence genes, and cytokine and chemokine genes related to the innate and the adaptive immune response. By contrast, B. bifidum Z9 up-regulated genes encoding cytokines and chemokines related to the innate immune response. Moreover, B. bifidum Z9 inhibited the expression of the Th1-promoting genes induced by L. acidophilus NCFM and had an additive effect on genes of the innate immune response and Th2 skewing genes. The gene encoding Jun dimerization protein 2 (JDP2), a transcription factor regulating the activation of JNK, was one of the few genes only induced by B. bifidum Z9. Neutralization of IFN-beta abrogated L. acidophilus NCFM-induced expression of Th1-skewing genes, and blocking of the JNK pathway completely inhibited the expression of IFN-beta. Our results indicate that B. bifidum Z9 actively inhibits the expression of genes related to the adaptive immune system in murine dendritic cells and that JPD2 via blocking of IFN-beta plays a central role in this regulatory mechanism. PMID:20548777

  17. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type-1 immunity

    PubMed Central

    Zaccard, Colleen R.; Watkins, Simon C.; Kalinski, Pawel; Fecek, Ronald J.; Yates, Aarika L.; Salter, Russell D.; Ayyavoo, Velpandi; Rinaldo, Charles R.; Mailliard, Robbie B.

    2014-01-01

    The ability of dendritic cells (DC) to mediate CD4+ T cell help for cellular immunity is guided by instructive signals received during DC maturation, and the resulting pattern of DC responsiveness to the Th signal, CD40L. Furthermore, the professional transfer of antigenic information from migratory DC to lymph node-residing DC is critical for the effective induction of cellular immune responses. Here we report that, in addition to their enhanced IL-12p70 producing capacity, human DC matured in the presence of inflammatory mediators of type-1 immunity (DC1) are uniquely programmed to form networks of tunneling nanotube-like structures in response to CD40L-expressing Th cells or recombinant CD40L. This immunologic process of DC ‘reticulation’ facilitates intercellular trafficking of endosome-associated vesicles and Ag, but also pathogens such HIV-1, and is regulated by the opposing roles of IFN-γ and IL-4. The initiation of DC reticulation represents a novel helper function of CD40L and a superior mechanism of intercellular communication possessed by DC1, as well as a target for exploitation by pathogens to enhance direct cell-to-cell spread. PMID:25548234

  18. BCL11B expression in intramembranous osteogenesis during murine craniofacial suture development

    PubMed Central

    Holmes, Greg; van Bakel, Harm; Zhou, Xueyan; Losic, Bojan; Jabs, Ethylin Wang

    2014-01-01

    Sutures, where neighboring craniofacial bones are separated by undifferentiated mesenchyme, are major growth sites during craniofacial development. Pathologic fusion of bones within sutures occurs in a wide variety of craniosynostosis conditions and can result in dysmorphic craniofacial growth and secondary neurologic deficits. Our knowledge of the genes involved in suture formation is poor. Here we describe the novel expression pattern of the BCL11B transcription factor protein during murine embryonic craniofacial bone formation. We examined BCL11B protein expression at E14.5, E16.5, and E18.5 in 14 major craniofacial sutures of C57BL/6J mice. We found BCL11B expression to be associated with all intramembranous craniofacial bones examined. The most striking aspects of BCL11B expression were its high levels in suture mesenchyme and increasingly complementary expression with RUNX2 in differentiating osteoblasts during development. BCL11B was also expressed in mesenchyme at the non-sutural edges of intramembranous bones. No expression was seen in osteoblasts involved in endochondral ossification of the cartilaginous cranial base. BCL11B is expressed to potentially regulate the transition of mesenchymal differentiation and suture formation within craniofacial intramembranous bone. PMID:25511173

  19. ZAP inhibits murine gammaherpesvirus 68 ORF64 expression and is antagonized by RTA.

    PubMed

    Xuan, Yifang; Gong, Danyang; Qi, Jing; Han, Chuanhui; Deng, Hongyu; Gao, Guangxia

    2013-03-01

    Zinc finger antiviral protein (ZAP) is an interferon-inducible host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1 and Ebola virus. ZAP functions as a dimer formed through intermolecular interactions of its N-terminal tails. ZAP binds directly to specific viral mRNAs and inhibits their expression by repressing translation and/or promoting degradation of the target mRNA. ZAP is not a universal antiviral factor, since some viruses grow normally in ZAP-expressing cells. It is not fully understood what determines whether a virus is susceptible to ZAP. We explored the interaction between ZAP and murine gammaherpesvirus 68 (MHV-68), whose life cycle has latent and lytic phases. We previously reported that ZAP inhibits the expression of M2, which is expressed mainly in the latent phase, and regulates MHV-68 latency in cultured cells. Here, we report that ZAP inhibits the expression of ORF64, a tegument protein that is expressed in the lytic phase and is essential for lytic replication. MHV-68 infection induced ZAP expression. However, ZAP did not inhibit lytic replication of MHV-68. We provide evidence showing that the antiviral activity of ZAP is antagonized by MHV-68 RTA, a critical viral transactivator expressed in the lytic phase. We further show that RTA inhibits the antiviral activity of ZAP by disrupting the N-terminal intermolecular interaction of ZAP. Our results provide an example of how a virus can escape ZAP-mediated immunity. PMID:23255809

  20. Lipid rafts regulate cellular CD40 receptor localization in vascular endothelial cells

    SciTech Connect

    Xia Min; Wang Qing; Zhu Huilian; Ma Jing; Hou Mengjun; Tang Zhihong; Li Juanjuan; Ling Wenhua

    2007-09-28

    Cholesterol enriched lipid rafts are considered to function as platforms involved in the regulation of membrane receptor signaling complex through the clustering of signaling molecules. In this study, we tested whether these specialized membrane microdomains affect CD40 localization in vitro and in vivo. Here, we provide evidence that upon CD40 ligand stimulation, endogenous and exogenous CD40 receptor is rapidly mobilized into lipid rafts compared with unstimulated HAECs. Efficient binding between CD40L and CD40 receptor also increases amounts of CD40 protein levels in lipid rafts. Deficiency of intracellular conserved C terminus of the CD40 cytoplasmic tail impairs CD40 partitioning in raft. Raft disorganization after methyl-{beta}-cyclodextrin treatment diminishes CD40 localization into rafts. In vivo studies show that elevation of circulating cholesterol in high-cholesterol fed rabbits increases the cholesterol content and CD40 receptor localization in lipid rafts. These findings identify a physiological role for membrane lipid rafts as a critical regulator of CD40-mediated signal transduction and raise the possibility that certain pathologic conditions may be treated by altering CD40 signaling with drugs affecting its raft localization.

  1. Multiple regions within the promoter of the murine Ifnar-2 gene confer basal and inducible expression.

    PubMed Central

    Hardy, Matthew P; Hertzog, Paul J; Owczarek, Catherine M

    2002-01-01

    The (murine) type I interferon (IFN) receptor, muIfnar-2, is expressed ubiquitously, and exists as both transmembrane and soluble forms. In the present study we show that the gene encoding muIfnar-2 spans approx. 33 kb on mouse chromosome 16, and consists of nine exons and eight introns. The three mRNA splice variants resulting in one transmembrane (muIfnar-2c) and two soluble (muIfnar-2a/2a') mRNA isoforms are generated by alternative RNA processing of the muIfnar-2 gene. Treatment of a range of murine cell lines with a combination of type I and II IFN showed that the muIfnar-2a and -2c mRNA isoforms were up-regulated independently of each other in L929 fibroblasts and hepa-1c1c7 hepatoma cells, but not in M1 myeloid leukaemia cells. Analysis of the 5' flanking region of muIfnar-2 using promoter-luciferase reporter constructs defined three regulatory regions: a region proximal to exon 1, conferring high basal expression, a distal region conferring inducible expression, and a negative regulatory region between the two. These data represent the first promoter analysis of a type I IFN receptor and, taken together with our previous data demonstrating high expression levels and dual biological functions for muIfnar-2a protein, suggests that the regulation of muIfnar-2 isoform expression may be an important way of modulating type I IFN responses. PMID:11939908

  2. Constitutive expression of murine c-FLIPR causes autoimmunity in aged mice.

    PubMed

    Ewald, F; Annemann, M; Pils, M C; Plaza-Sirvent, C; Neff, F; Erck, C; Reinhold, D; Schmitz, I

    2014-01-01

    Death receptor-mediated apoptosis is a key mechanism for the control of immune responses and dysregulation of this pathway may lead to autoimmunity. Cellular FLICE-inhibitory proteins (c-FLIPs) are known as inhibitors of death receptor-mediated apoptosis. The only short murine c-FLIP splice variant is c-FLIPRaji (c-FLIPR). To investigate the functional role of c-FLIPR in the immune system, we used the vavFLIPR mouse model constitutively expressing murine c-FLIPR in all hematopoietic compartments. Lymphocytes from these mice are protected against CD95-mediated apoptosis and activation-induced cell death. Young vavFLIPR mice display normal lymphocyte compartments, but the lymphocyte populations alter with age. We identified reduced levels of T cells and slightly higher levels of B cells in 1-year-old vavFLIPR mice compared with wild-type (WT) littermates. Moreover, both B and T cells from aged vavFLIPR animals show activated phenotypes. Sera from 1-year-old WT and transgenic animals were analysed for anti-nuclear antibodies. Notably, elevated titres of these autoantibodies were detected in vavFLIPR sera. Furthermore, tissue damage in kidneys and lungs from aged vavFLIPR animals was observed, indicating that vavFLIPR mice develop a systemic lupus erythematosus-like phenotype with age. Taken together, these data suggest that c-FLIPR is an important modulator of apoptosis and enforced expression leads to autoimmunity. PMID:24722293

  3. Plasma Prostaglandin E2 Levels Correlated with the Prevention of Intravenous Immunoglobulin Resistance and Coronary Artery Lesions Formation via CD40L in Kawasaki Disease

    PubMed Central

    Kuo, Ho-Chang; Wang, Chih-Lu; Yang, Kuender D.; Lo, Mao-Hung; Hsieh, Kai-Sheng; Li, Sung-Chou

    2016-01-01

    Background A form of systemic vasculitis, Kawasaki disease (KD) occurs most frequently in children under the age of five years old. Previous studies have found that Prostaglandin E2 (PGE2) correlates with KD, although the related mechanisms are still unknown. CD40L may also be a marker of vasculitis in KD, so this study focuses on PGE2 and CD40L expression in KD. Materials and Methods This study consisted of a total of 144 KD patients, whose intravenous immunoglobulin (IVIG)/coronary arterial lesion (CAL) formation resistance was evaluated. PGE2 levels were evaluated in vitro to study the effect of CD40L on CD4+ T lymphocytes. Results PGE2 levels significantly increased after IVIG treatment (p<0.05), especially in patients who responded to initial IVIG treatment (p = 0.004) and for patients without CAL formation (p = 0.016). Furthermore, an in vitro study revealed that IVIG acted as a trigger for PGE2 expression in the acute-stage mononuclear cells of KD patients. According to our findings, both IVIG and PGE2 can impede surface CD40L expressions on CD4+ T lymphocytes (p<0.05). Conclusions The results of this study are among the first to find that plasma PGE2 is correlated with the prevention of IVIG resistance and CAL formation through CD40L in KD. PMID:27525421

  4. A T cell controlled molecular pathway regulating the IgH locus: CD40-mediated activation of the IgH 3' enhancer.

    PubMed Central

    Grant, P A; Andersson, T; Neurath, M F; Arulampalam, V; Bauch, A; Müller, R; Reth, M; Pettersson, S

    1996-01-01

    Immunoglobulin heavy chain (IgH) class switch recombination and regulation of IgH expression levels are processes suggested to be controlled by the IgH 3' enhancer. Here we demonstrate that CD40 or IgM receptor stimulation of primary B cells results in transactivation of this enhancer. 4-Hydroxy-3-nitrophenylacetyl (NIP)-BSA induction of a K46 B cell line expressing a chimeric NIP-specific CD40 single chain receptor results in a ligand receptor-dependent response of a 3' enhancer ETS/AP-1 minimal promoter construct. Gel retardation analysis and genomic footprinting experiments reveal that CD40 or IgM induction recruits NFAB (nuclear factors of activated B cells) to the ETS/AP-1 motif. While IgM signalling recruits c-Fos, JunB and Elf-1 (NFAB-I), only JunB and Elf-1 were observed following CD40 signalling (NFAB-II). CD40 signalling, however, induces a Fos family-related partner for JunB, which may account for the transcriptional activity observed by NFAB-II in K46 cells. We propose a model whereby CD40 and IgM receptor-mediated signalling converge in the process of 3' enhancer activation in B lymphocytes. Our data provide a putative molecular explanation as to why CD40L-deficient mice, and possibly patients with hyper-IgM syndrome, are unable to undergo T cell-dependent class switch recombination but respond properly upon lipopolysaccharide-induced switch recombination. Images PMID:8978695

  5. The Expression of Tubb2b Undergoes a Developmental Transition in Murine Cortical Neurons.

    PubMed

    Breuss, Martin; Morandell, Jasmin; Nimpf, Simon; Gstrein, Thomas; Lauwers, Mattias; Hochstoeger, Tobias; Braun, Andreas; Chan, Kelvin; Sánchez Guajardo, Edmundo R; Zhang, Lijuan; Suplata, Marek; Heinze, Katrin G; Elsayad, Kareem; Keays, David A

    2015-10-15

    The development of the mammalian brain requires the generation, migration, and differentiation of neurons, cellular processes that are dependent on a dynamic microtubule cytoskeleton. Mutations in tubulin genes, which encode for the structural subunits of microtubules, cause detrimental neurological disorders known as the tubulinopathies. The disease spectra associated with different tubulin genes are overlapping but distinct, an observation believed to reflect functional specification of this multigene family. Perturbation of the β-tubulin TUBB2B is known to cause polymicrogyria, pachygyria, microcephaly, and axon guidance defects. Here we provide a detailed analysis of the expression pattern of its murine homolog Tubb2b. The generation and characterization of BAC-transgenic eGFP reporter mouse lines has revealed that it is highly expressed in progenitors and postmitotic neurons during cortical development. This contrasts with the 8-week-old cortex, in which Tubb2b expression is restricted to macroglia, and expression is almost completely absent in mature neurons. This developmental transition in neurons is mirrored in the adult hippocampus and the cerebellum but is not a universal feature of Tubb2b; its expression persists in a population of postmitotic neurons in the 8-week-old retina. We propose that the dynamic spatial and temporal expression of Tubb2b reflects specific functional requirements of the microtubule cytoskeleton. PMID:26105993

  6. Impact of CD40 ligand, B cells, and mast cells in peanut-induced anaphylactic responses.

    PubMed

    Sun, Jiangfeng; Arias, Katherine; Alvarez, David; Fattouh, Ramzi; Walker, Tina; Goncharova, Susanna; Kim, Bobae; Waserman, Susan; Reed, Jennifer; Coyle, Anthony J; Jordana, Manel

    2007-11-15

    The effector immune mechanisms underlying peanut-induced anaphylaxis remain to be fully elucidated. We investigated the relative contribution of Igs, mast cells (MCs), and FcepsilonRI in the elicitation of anaphylaxis in a murine model. Assessment of peanut hypersensitivity reactions was performed clinically and biologically. Our data show that wild-type (WT; C57BL/6 strain) mice consistently developed severe anaphylaxis (median clinical score: 3.5/5), an approximately 8 degrees C drop in core body temperature, and significantly increased plasma levels of histamine and leukotrienes. CD40 ligand- and B cell-deficient mice presented evidence of allergic sensitization as demonstrated by production of Th2-associated cytokines by splenocytes and a late-phase inflammatory response that were both indistinguishable to those detected in WT mice. However, CD40 ligand- and B cell-deficient mice did not exhibit any evidence of anaphylaxis. Our data also show that MC-deficient (Kit(W)/Kit(W-v)) mice did not suffer, unlike their littermate controls, anaphylactic reactions despite the fact that serum levels of peanut-specific Igs were similarly elevated. Finally, FcepsilonRI-deficient mice experienced anaphylactic responses although to a significantly lesser degree than those observed in WT mice. Thus, these data demonstrate that the presence of peanut-specific Abs along with functional MCs comprise a necessary and sufficient condition for the elicitation of peanut-induced anaphylaxis. That the absence of FcepsilonRI prevented the development of anaphylaxis only partially insinuates the contribution of an IgE-independent pathway, and suggests that strategies to impair MC degranulation may be necessary to improve the efficacy of anti-IgE therapy. PMID:17982059

  7. CD40 dependent exacerbation of immune mediated hepatitis by hepatic CD11b+ Gr-1+ myeloid derived suppressor cells in tumor bearing mice

    PubMed Central

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M.; Wiltrout, Robert H.; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A.; Manns, Michael P.; Wang, Ena; Marincola, Francesco M.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immunosuppressive CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) accumulate in the livers of tumor-bearing mice. We studied hepatic MDSC in two murine models of immune mediated hepatitis. Unexpectedly, treatment of tumor bearing mice with Concanavalin A or α-Galactosylceramide resulted in increased ALT and AST serum levels in comparison to tumor free mice. Adoptive transfer of hepatic MDSC into naïve mice exacerbated Concanavalin A induced liver damage. Hepatic CD11b+Gr-1+ cells revealed a polarized pro-inflammatory gene signature after Concanavalin A treatment. An interferon gamma- dependent up-regulation of CD40 on hepatic CD11b+Gr-1+ cells along with an up-regulation of CD80, CD86, and CD1d after Concanavalin A treatment was observed. Concanavalin A treatment resulted in a loss of suppressor function by tumor-induced CD11b+Gr-1+ MDSC as well as enhanced reactive oxygen species-mediated hepatotoxicity. CD40 knockdown in hepatic MDSC led to increased arginase activity upon Concanavalin A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40−/− tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased reactive oxygen species production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSC act as pro-inflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. PMID:25616156

  8. CD40 Ligand Deficient C57BL/6 Mouse Is a Potential Surrogate Model of Human X-Linked Hyper IgM (X-HIGM) Syndrome for Characterizing Immune Responses against Pathogens

    PubMed Central

    Lopez-Saucedo, Catalina; Bernal-Reynaga, Rodolfo; Zayas-Jahuey, Jesus; Galindo-Gomez, Silvia; Shibayama, Mineko; Garcia-Galvez, Carlos; Estrada-Parra, Sergio; Estrada-Garcia, Teresa

    2015-01-01

    Individuals with X-HIGM syndrome fail to express functional CD40 ligand; consequently they cannot mount effective protective antibody responses against pathogenic bacteria. We evaluated, compared, and characterized the humoral immune response of wild type (WT) and C57-CD40L deficient (C57-CD40L−/−) mice infected with Citrobacter rodentium. Basal serum isotype levels were similar for IgM and IgG3 among mice, while total IgG and IgG2b concentrations were significantly lower in C57-CD40L−/− mice compared with WT. Essentially IgG1 and IgG2c levels were detectable only in WT mice. C57-CD40L−/− animals, orally inoculated with 2 × 109 CFU, presented several clinical manifestations since the second week of infection and eventually died. In contrast at this time point no clinical manifestations were observed among C57-CD40L−/− mice infected with 1 × 107 CFU. Infection was subclinical in WT mice inoculated with either bacterial dose. The serum samples from infected mice (1 × 107 CFU), collected at day 14 after infection, had similar C. rodentium-specific IgM titres. Although C57-CD40L−/− animals had lower IgG and IgG2b titres than WT mice, C57-CD40L−/− mice sera displayed complement-mediated bactericidal activity against C. rodentium. C. rodentium-infected C57-CD40L−/− mice are capable of producing antibodies that are protective. C57-CD40L−/− mouse is a useful surrogate model of X-HIGM syndrome for studying immune responses elicited against pathogens. PMID:26064940

  9. Functional Antagonism of Human CD40 Achieved by Targeting a Unique Species-Specific Epitope.

    PubMed

    Yamniuk, Aaron P; Suri, Anish; Krystek, Stanley R; Tamura, James; Ramamurthy, Vidhyashankar; Kuhn, Robert; Carroll, Karen; Fleener, Catherine; Ryseck, Rolf; Cheng, Lin; An, Yongmi; Drew, Philip; Grant, Steven; Suchard, Suzanne J; Nadler, Steven G; Bryson, James W; Sheriff, Steven

    2016-07-17

    Current clinical anti-CD40 biologic agents include both antagonist molecules for the treatment of autoimmune diseases and agonist molecules for immuno-oncology, yet the relationship between CD40 epitope and these opposing biological outcomes is not well defined. This report describes the identification of potent antagonist domain antibodies (dAbs) that bind to a novel human CD40-specific epitope that is divergent in the CD40 of nonhuman primates. A similarly selected anti-cynomolgus CD40 dAb recognizing the homologous epitope is also a potent antagonist. Mutagenesis, biochemical, and X-ray crystallography studies demonstrate that the epitope is distinct from that of CD40 agonists. Both the human-specific and cynomolgus-specific molecules remain pure antagonists even when formatted as bivalent Fc-fusion proteins, making this an attractive therapeutic format for targeting hCD40 in autoimmune indications. PMID:27216500

  10. CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells.

    PubMed

    Jain, Shweta; Chodisetti, Sathi Babu; Agrewala, Javed N

    2011-01-01

    Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB) cells, by involving TLR-2 and CD40--molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID), signifying class switch recombination (CSR). Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response. PMID:21674065

  11. Patterns of gene expression among murine models of hemorrhagic shock/trauma and sepsis.

    PubMed

    Mira, Juan C; Szpila, Benjamin E; Nacionales, Dina C; Lopez, Maria-Cecilia; Gentile, Lori F; Mathias, Brittany J; Vanzant, Erin L; Ungaro, Ricardo; Holden, David; Rosenthal, Martin D; Rincon, Jaimar; Verdugo, Patrick T; Larson, Shawn D; Moore, Frederick A; Brakenridge, Scott C; Mohr, Alicia M; Baker, Henry V; Moldawer, Lyle L; Efron, Philip A

    2016-02-01

    Controversy remains whether the leukocyte genomic response to trauma or sepsis is dependent upon the initiating stimulus. Previous work illustrated poor correlations between historical models of murine trauma and sepsis (i.e., trauma-hemorrhage and lipopolysaccharide injection, respectively). The aim of this study is to examine the early genomic response in improved murine models of sepsis [cecal ligation and puncture (CLP)] and trauma [polytrauma (PT)] with and without pneumonia (PT+Pp). Groups of naïve, CLP, PT, and PT+Pp mice were killed at 2 h, 1 or 3 days. Total leukocytes were isolated for genome-wide expression analysis, and genes that were found to differ from control (false discovery rate adjusted P < 0.001) were assessed for fold-change differences. Spearman correlations were also performed. For all time points combined (CLP, PT, PT+Pp), there were 10,426 total genes that were found to significantly differ from naïve controls. At 2 h, the transcriptomic changes between CLP and PT showed a positive correlation (rs) of 0.446 (P < 0.0001) but were less positive thereafter. Correlations were significantly improved when we limited the analysis to common genes whose expression differed by a 1.5 fold-change. Both pathway and upstream analyses revealed the activation of genes known to be associated with pathogen-associated and damage-associated molecular pattern signaling, and early activation patterns of expression were very similar between polytrauma and sepsis at the earliest time points. This study demonstrates that the early leukocyte genomic response to sepsis and trauma are very similar in mice. PMID:26578697

  12. Purified murine granulocyte/macrophage progenitor cells express a high-affinity receptor for recombinant murine granulocyte/macrophage colony-stimulating factor

    SciTech Connect

    Williams, D.E.; Bicknell, D.C.; Park, L.S.; Straneva, J.E.; Cooper, S.; Broxmeyer, H.E.

    1988-01-01

    Purified recombinant murine granulocyte/macrophage colony-stimulating factor (GM-CSF) was labeled with /sup 125/I and used to examine the GM-CSF receptor on unfractionated normal murine bone marrow cells, casein-induced peritoneal exudate cells, and highly purified murine granulocyte/macrophage progenitor cells (CFU-GM). CFU-GM were isolated from cyclophosphamide-treated mice by Ficoll-Hypaque density centrifugation followed by counterflow centrifugal elutriation. The resulting population had a cloning efficiency of 62-99% in cultures containing conditioned medium from pokeweed mitogen-stimulated spleen cells and 55-86% in the presence of a plateau concentration of purified recombinant murine GM-CSF. Equilibrium binding studies with /sup 125/I-labeled GM-CSF showed that normal bone marrow cells, casein-induced peritoneal exudate cells, and purified CFU-GM had a single class of high-affinity receptor. Affinity crosslinking studies demonstrated that /sup 125/I-labeled GM-CSF bound specifically to two species of M/sub r/ 180,000 and 70,000 on CFU-GM, normal bone marrow cells, and peritoneal exudate cells. The M/sub r/ 70,000 species is thought to be a proteolytic fragment of the intact M/sub r/ 180,000 receptor. The present studies indicate that the GM-CSF receptor expressed on CFU-GM and mature myeloid cells are structurally similar. In addition, the number of GM-CSF receptors on CFU-GM is twice the average number of receptors on casein-induced mature myeloid cells, suggesting that receptor number may decrease as CFU-GM mature.

  13. Regulation of mineralocorticoid receptor expression during neuronal differentiation of murine embryonic stem cells

    PubMed Central

    Munier, Mathilde; Meduri, Geri; Viengchareun, Say; Leclerc, Phillipe; Le Menuet, Damien; Lombès, Marc

    2010-01-01

    Mineralocorticoid receptor (MR) plays a critical role in brain function. However, the regulatory mechanisms controlling neuronal MR expression that constitutes a key element of the hormonal response are currently unknown. Two alternative P1 and P2 promoters drive human MR gene transcription. To examine promoter activities and their regulation during neuronal differentiation and in mature neurons, we generated stably transfected recombinant murine embryonic stem (ES) cell lines, namely P1-GFP and P2-GFP, in which each promoter drove the expression of the reporter gene Green Fluorescent Protein (GFP). An optimized protocol, using embryoid bodies and retinoic acid, permitted to obtain a reproducible neuronal differentiation as revealed by the decrease in phosphatase alkaline activity, the concomitant appearance of morphological changes (neurites) and the increase in the expression of neuronal markers (nestin, β-tubulin III, MAP2) as demonstrated by immunocytochemistry and qPCR. Using these cell-based models, we showed that MR expression increased by 5-fold during neuronal differentiation, MR being preferentially if not exclusively expressed in mature neurons. Although the P2 promoter was always weaker than the P1 promoter during neuronal differentiation, their activities increased by 7- and 5-fold, respectively and correlated with MR expression. Finally, while progesterone and dexamethasone were ineffective, aldosterone stimulated both P1 and P2 activity and MR expression, an effect that was abrogated by knockdown of MR by siRNA. Concluding, we provide evidence for a tight transcriptional control of MR expression during neuronal differentiation. Given the neuroprotective and antiapoptotic role proposed for MR, the neuronal differentiation of ES cell lines opens potential therapeutic perspectives in neurological and psychiatric diseases. PMID:20207834

  14. Expression of the Murine Duchenne Muscular Dystrophy Gene in Muscle and Brain

    NASA Astrophysics Data System (ADS)

    Chamberlain, Jeffrey S.; Pearlman, Joel A.; Muzny, Donna M.; Gibbs, Richard A.; Ranier, Joel E.; Reeves, Alice A.; Caskey, C. Thomas

    1988-03-01

    Complementary DNA clones were isolated that represent the 5' terminal 2.5 kilobases of the murine Duchenne muscular dystrophy (Dmd) messenger RNA (mRNA). Mouse Dmd mRNA was detectable in skeletal and cardiac muscle and at a level approximately 90 percent lower in brain. Dmd mRNA is also present, but at much lower than normal levels, in both the muscle and brain of three different strains of dystrophic mdx mice. The identification of Dmd mRNA in brain raises the possibility of a relation between human Duchenne muscular dystrophy (DMD) gene expression and the mental retardation found in some DMD males. These results also provide evidence that the mdx mutations are allelic variants of mouse Dmd gene mutations.

  15. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    SciTech Connect

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.

  16. ICAM-1–expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia

    PubMed Central

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R.; Hordijk, Peter L.; Hogg, Nancy

    2016-01-01

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1–deficient mice were defective in these effector functions. Mechanistically, ICAM-1–mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. PMID:26647392

  17. ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia.

    PubMed

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R; Hordijk, Peter L; Hogg, Nancy; Nourshargh, Sussan

    2016-02-18

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. PMID:26647392

  18. Dynamic Expression of BCL6 in Murine Conventional Dendritic Cells during In Vivo Development and Activation

    PubMed Central

    Zhang, Ting-ting; Liu, Dong; Calabro, Samuele; Eisenbarth, Stephanie C.; Cattoretti, Giorgio; Haberman, Ann M.

    2014-01-01

    The transcriptional repressor BCL6 plays an essential role in the development of germinal center B cells and follicular helper T cells. However, much less is known about the expression and function of BCL6 in other cell types. Here we report that during murine dendritic cell (DC) ontogeny in vivo, BCL6 is not expressed in bone marrow hematopoietic stem cells, common DC precursors and committed precursors of conventional DCs (pre-cDCs), but is elevated in peripheral pre-cDCs. BCL6 protein levels rise as pre-cDCs differentiate into cDCs in secondary lymphoid organs. Elevated protein levels of Bcl6 are observed in all cDC subsets, with CD8α+ cDCs displaying the greatest levels. Co-staining of Ki-67 revealed BCL6hi cDCs to be more proliferative than BCL6lo cDCs. After adjuvant inoculation, BCL6 levels are significantly reduced in the CD11cint MHC class IIhi CD86hi cDCs. Activation-induced BCL6 reduction correlated with reduced proliferation. A LPS injection study further confirmed that, in response to microbial stimuli, BCL6 levels are dynamically regulated during the maturation of CD11cint MHC class IIhi splenic cDCs. This reduction of BCL6 levels in cDCs does not occur after LPS injection in MyD88−/− TRIF−/− mice. Thus, regulation of Bcl6 protein levels is dynamic in murine cDCs during development, maturation and activation in vivo. PMID:24979752

  19. Dynamic expression of BCL6 in murine conventional dendritic cells during in vivo development and activation.

    PubMed

    Zhang, Ting-ting; Liu, Dong; Calabro, Samuele; Eisenbarth, Stephanie C; Cattoretti, Giorgio; Haberman, Ann M

    2014-01-01

    The transcriptional repressor BCL6 plays an essential role in the development of germinal center B cells and follicular helper T cells. However, much less is known about the expression and function of BCL6 in other cell types. Here we report that during murine dendritic cell (DC) ontogeny in vivo, BCL6 is not expressed in bone marrow hematopoietic stem cells, common DC precursors and committed precursors of conventional DCs (pre-cDCs), but is elevated in peripheral pre-cDCs. BCL6 protein levels rise as pre-cDCs differentiate into cDCs in secondary lymphoid organs. Elevated protein levels of Bcl6 are observed in all cDC subsets, with CD8α+ cDCs displaying the greatest levels. Co-staining of Ki-67 revealed BCL6hi cDCs to be more proliferative than BCL6lo cDCs. After adjuvant inoculation, BCL6 levels are significantly reduced in the CD11cint MHC class IIhi CD86hi cDCs. Activation-induced BCL6 reduction correlated with reduced proliferation. A LPS injection study further confirmed that, in response to microbial stimuli, BCL6 levels are dynamically regulated during the maturation of CD11cint MHC class IIhi splenic cDCs. This reduction of BCL6 levels in cDCs does not occur after LPS injection in MyD88-/- TRIF-/- mice. Thus, regulation of Bcl6 protein levels is dynamic in murine cDCs during development, maturation and activation in vivo. PMID:24979752

  20. Transfusion of murine RBCs expressing the human KEL glycoprotein induces clinically significant alloantibodies

    PubMed Central

    Stowell, Sean R.; Girard-Pierce, Kathryn R.; Smith, Nicole H.; Henry, Kate L.; Arthur, C. Maridith; Zimring, James C.; Hendrickson, Jeanne E.

    2013-01-01

    Background Red blood cell (RBC) alloantibodies to non-self antigens may develop following transfusion or pregnancy, leading to morbidity and mortality in the form of hemolytic transfusion reactions or hemolytic disease of the newborn. A better understanding of the mechanisms of RBC alloantibody induction, or strategies to mitigate the consequences of such antibodies, may ultimately improve transfusion safety. However, such studies are inherently difficult in humans. Study Design and Methods We recently generated transgenic mice with RBC specific expression of the human KEL glycoprotein, with the KEL2 or KEL1 antigens. Herein, we investigate recipient alloimmune responses to transfused RBCs in this system. Results Transfusion of RBCs from KEL2 donors into wild type recipients (lacking the human KEL protein but expressing the murine KEL orthologue) resulted in dose dependent anti-KEL glycoprotein IgM and IgG antibody responses, enhanced by recipient inflammation with poly (I:C). Boostable responses were evident upon repeat transfusion, with morbid appearing alloimmunized recipients experiencing rapid clearance of transfused KEL2 but not control RBCs. Although KEL1 RBCs were also immunogenic following transfusion into wild type recipients, transfusion of KEL1 RBCs into KEL2 recipients or vice versa failed to lead to detectable anti-KEL1 or anti-KEL2 responses. Conclusions This murine model, with reproducible and clinically significant KEL glycoprotein alloantibody responses, provides a platform for future mechanistic studies of RBC alloantibody induction and consequences. Long term translational goals of these studies include improving transfusion safety for at risk patients. PMID:23621760

  1. Hypoxia Inducible Factor 1 Alpha Is Expressed in Germ Cells throughout the Murine Life Cycle

    PubMed Central

    Gardner, Lauren H.; Mathews, Juanita; Yamazaki, Yuki; Allsopp, Richard C.

    2016-01-01

    Pluripotent stem cells of the early embryo, and germ line cells, are essential to ensure uncompromised development to adulthood as well as species propagation, respectively. Recently, the transcription factor hypoxia inducible factor 1 alpha (Hif1α) has been shown to have important roles in embryonic stem cells; in particular, regulation of conversion to glycolytic metabolism and, as we have shown, maintenance of functional levels of telomerase. In the present study, we sought to assess whether Hif1α was also expressed in the primitive cells of the murine embryo. We observed expression of Hif1α in pre-implantation embryos, specifically the 2-cell stage, morula, and blastocyst. Robust Hif1α expression was also observed in male and female primordial germ cells. We subsequently assessed whether Hif1α was expressed in adult male and female germ cells. In the testis, Hif1α was robustly expressed in spermatogonial cells, in both juvenile (6-week old) and adult (3-month old) males. In the ovaries, Hif1α was expressed in mature oocytes from adult females, as assessed both in situ and in individual oocytes flushed from super-ovulated females. Analysis of Hif1α transcript levels indicates a mechanism of regulation during early development that involves stockpiling of Hif1α protein in mature oocytes, presumably to provide protection from hypoxic stress until the gene is re-activated at the blastocyst stage. Together, these observations show that Hif1α is expressed throughout the life-cycle, including both the male and female germ line, and point to an important role for Hif1α in early progenitor cells. PMID:27148974

  2. Expression and function of a novel variant of estrogen receptor-α36 in murine airways.

    PubMed

    Jia, Shuping; Zhang, Xintian; He, David Z Z; Segal, Manav; Berro, Abdo; Gerson, Trevor; Wang, Zhaoyi; Casale, Thomas B

    2011-11-01

    Evidence suggests that estrogen signaling is involved in sex differences in the prevalence rates and control of asthma, but the expression patterns of estrogen receptor variants and estrogen function in the lung are not well established. We investigated the expression of major estrogen receptor variants occurring naturally and after the development of allergen-induced airway hyperreactivity in a murine model of allergic asthma, along with the role of estrogen signaling in small-airway ciliary motion and smooth muscle contraction. Female BALB/c mice were sensitized with ovalbumin, and estrogen receptor expression patterns were examined by immunofluorescence and Western blot analysis. Time-lapse video and photodiode-based displacement measurement systems were used to assess the effects of estrogen signaling on airway ciliary beat frequency and smooth muscle contraction. We found that a novel variant of estrogen receptor (ER)-α, ER-α36, is expressed in airway epithelial and smooth muscle cells. ER-α36 was predominately localized on the plasma membranes of airway cells. After sensitization to allergen, the expression levels of ER-α36 increased significantly (P < 0.01), whereas the expression of ER-β and ER-α66 did not significantly change. Estrogen treatment in vitro resulted in a rapid increase in airway cilia motion in a dose-dependent fashion, but did not exert any effect on airway smooth muscle contraction. We speculate that the up-regulation of estrogen receptor expression associated with allergen-induced airway hyperresponsiveness may constitute a protective mechanism to facilitate the clearance of mucus. The identification and localization of specific estrogen receptor subtypes in the lung could lead to newer therapeutic avenues aimed at addressing sex differences of asthma susceptibility. PMID:21642591

  3. Cytofluorimetric evaluation of N-glycolylated GM3 ganglioside expression on murine leukocytes.

    PubMed

    Miranda, A; de León, J; Roque-Navarro, L; Fernández, L E

    2011-06-30

    Gangliosides are considered relevant components of lipid rafts at the plasma membrane. Antigen encounter, immunological synapse assembly and signal transduction modify lipid raft composition and distribution on immune system cells. On the contrary of other gangliosides, differential expression of the N-glycolylated variant of GM3 (NGcGM3) on murine leukocytes has received limited attention. In particular, whether cell activation modulates the expression of NGcGM3 on lymphoid and myeloid cells is still unexplored. Availability of the NGcGM3 specific 14F7 MAb allows us to characterize by cytofluorimetric assays the presence of this molecule on resting and activated immune system cells. On T cells, preferential expression of NGcGM3 was detected on CD4(+) single positive thymocytes, peripheral CD4(+) lymphocytes and natural occurring regulatory T cells. In comparison with peritoneal B1 cells, reduced expression of NGcGM3 was observed in peritoneal B2 and splenic B cell subpopulations. Of note, activation of CD4(+) and NK 1.1(+) cells abrogated NGcGM3 expression while LPS-maturated DC increased the ganglioside level at the plasma membrane. Modifications on the presence of NGcGM3 mediated by cell activation did not influence the expression of the N-acetylated variant of GM3 (NAcGM3). In addition to extend previous descriptions of NGcGM3 expression on immunity cell subpopulations, this work highlights the opposite effect of cellular activation over NGcGM3 levels on lymphoid and myeloid cellular series. Obtained results complement the evaluation of a tumor-specific, non-human sialic acid containing ganglioside that has been considered an attractive target for cancer immunotherapy. PMID:21324343

  4. Increased concentrations of soluble vascular cell adhesion molecule-1 and soluble CD40L in subjects with metabolic syndrome.

    PubMed

    Palomo, Iván G; Jaramillo, Julio C; Alarcón, Marcelo L; Gutiérrez, César L; Moore-Carrasco, Rodrigo; Segovia, Fabián M; Leiva, Elba M; Mujica, Verónica E; Icaza, Gloria; Dí, Nora S

    2009-01-01

    Metabolic syndrome (MS) is associated with a high incidence rate of cardiovascular disease. It is characterized by abdominal obesity, elevated blood pressure, atherogenic dyslipidemia [high LDL-c (low density lipoprotein cholesterol) and low HDL-c (high density lipoprotein cholesterol)] and insulin resistance or glucose intolerance. In the context of MS, alterations in the plasmatic levels of some soluble forms of cell adhesion molecules can appear, e.g., soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin) and soluble CD40L (sCD40L). The objective of this study was to compare the serum levels of sVCAM-1, sE-selectin and sCD40L in MS and non-MS groups and to associate these molecules with the diagnostic criteria of MS. A total of 185 non-smokers between 45 and 64 years of age were included. Of these, 93 corresponded to the MS group and the remaining 92 to a non-MS group (according to modified ATP III criteria). The serum concentration of sVCAM-1, sE-selectin and sCD40L was determined by commercial solid phase ELISA. The results were expressed as a median and interquartile range. The MS group showed high levels of sVCAM-1 (558.9 ng/ml; 481.3-667.6 ng/ml) compared with the non-MS group (405.2 ng/ml; 361.0-470.5 ng/ml) (p<0.0001). As well, the median level of sCD40L (3.0 ng/ml; 2.1l-11.7 ng/ml) was significantly higher in the MS group than that in the non-MS group (2.6 ng/ml; 2.3-3.4 ng/ml) (p=0.0061). sE-selectin levels did not differ significantly between the groups: 73.9 ng/ml (58.3-87.0 ng/ml) and 68.5 ng/ml (51.6-97.5 ng/ml) in the MS and non-MS group, respectively. In conclusion, the serum levels of sVCAM-1 and sCD40L, but not sE-selectin, were significantly higher in patients with MS than in subjects that did not present MS. MS may therefore increase the expression of cell adhesion molecules, probably through endothelial activation. PMID:21475854

  5. [Construction of human growth hormone lentiviral vector and its expression in murine skeletal myoblasts].

    PubMed

    Liu, Xiang-Yang; Lu, Yong-Xin; Xu, Yu-Lan; Li, Xiao-Qing; Liu, Juan; Li, Ai-Hua; Luo, Ping; Wan, Jian-Ping

    2006-03-01

    The aim of this study is to construct a lentiviral vector encoding human growth hormone, and to achieve the long, efficient and stable expression in murine skeletal myoblasts. Primary skeletal myoblasts were isolated from Sprague-Dawley rats and cultured by enzymatic digestion. We tested them by Desmin immunohistochemistry stains and found their viability was up to 94% by Trypan blue. Human growth hormone (hGH) cDNA was subcloned into expression vector pLenti6/V5-D-TOPO to construct recombinant pLenti6/V5-hGH. The pLenti6/V5-hGH and the contructed pLenti6/V5-EGFP were transfected into murine skeletal myoblasts by the Lipofectamin 2000. Through counting by the Confocal Laser Scanning Microscope, we identified the transfection efficency. We added the blasticidin to the 6-well plate with lids and obtained stable myoblasts expressing hGH. The concentration of human growth hormone (hGH) in cell culture medium was detected by Radioimmunoassay (RIA). Polymerase Chain Reaction (PCR) and DNA sequence showed hGH cDNA had been correctly inserted into pLenti6/V5-D-TOPO vector. Bright green fluorescence of the transfected cells could be observed under the Confocal Laser Scanning Microscope after 24 h transfection with pLenti6/V5-EGFP plasmids, and the transfection rate reached 40%. The difference was distinct (P < 0.01) between the pLenti6/V5- hGH groups and control groups in the secretive level of human growth hormone. After 8 weeks, the expression of human growth hormone was still stable. Then, we validated the biological characterization of the rhGH by the enzyme-link immunosorbent assay (ELISA) of the Insulin-like growth factor I (IGF-1). These results demonstrate we have successfully constructed the recombinant pLenti6/V5-hGH plasmids and accomplished rhGH long, efficient and stable expression ectopic in skeletal muscle myoblasts. PMID:16607951

  6. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    SciTech Connect

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D. )

    1991-05-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymic epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.

  7. Human Dendritic Cells Activated by TSLP and CD40L Induce Proallergic Cytotoxic T Cells

    PubMed Central

    Gilliet, Michel; Soumelis, Vassili; Watanabe, Norihiko; Hanabuchi, Shino; Antonenko, Svetlana; de Waal-Malefyt, Rene; Liu, Yong-Jun

    2003-01-01

    Human thymic stromal lymphopoietin (TSLP) is a novel epithelial cell–derived cytokine, which induces dendritic cell (DC)-mediated CD4+ T cell responses with a proallergic phenotype. Although the participation of CD8+ T cells in allergic inflammation is well documented, their functional properties as well as the pathways leading to their generation remain poorly understood. Here, we show that TSLP-activated CD11c+ DCs potently activate and expand naive CD8+ T cells, and induce their differentiation into interleukin (IL)-5 and IL-13–producing effectors exhibiting poor cytolytic activity. Additional CD40L triggering of TSLP-activated DCs induced CD8+ T cells with potent cytolytic activity, producing large amounts of interferon (IFN)-γ, while retaining their capacity to produce IL-5 and IL-13. These data further support the role of TSLP as initial trigger of allergic T cell responses and suggest that CD40L-expressing cells may act in combination with TSLP to amplify and sustain pro-allergic responses and cause tissue damage by promoting the generation of IFN-γ–producing cytotoxic effectors. PMID:12707303

  8. Murine branched chain alpha-ketoacid dehydrogenase kinase; cDNA cloning, tissue distribution, and temporal expression during embryonic development.

    PubMed

    Doering, C B; Coursey, C; Spangler, W; Danner, D J

    1998-06-01

    These studies were designed to demonstrate the structural and functional similarity of murine branched chain alpha-ketoacid dehydrogenase and its regulation by the complex-specific kinase. Nucleotide sequence and deduced amino acid sequence for the kinase cDNA demonstrate a highly conserved coding sequence between mouse and human. Tissue-specific expression in adult mice parallels that reported in other mammals. Kinase expression in female liver is influenced by circadian rhythm. Of special interest is the fluctuating expression of this kinase during embryonic development against the continuing increase in the catalytic subunits of this mitochondrial complex during development. The need for regulation of the branched chain alpha-ketoacid dehydrogenase complex by kinase expression during embryogenesis is not understood. However, the similarity of murine branched chain alpha-ketoacid dehydrogenase and its kinase to the human enzyme supports the use of this animal as a model for the human system. PMID:9611264

  9. Efficient expression of protein coding genes from the murine U1 small nuclear RNA promoters.

    PubMed Central

    Bartlett, J S; Sethna, M; Ramamurthy, L; Gowen, S A; Samulski, R J; Marzluff, W F

    1996-01-01

    Few promoters are active at high levels in all cells. Of these, the majority encode structural RNAs transcribed by RNA polymerases I or III and are not accessible for the expression of proteins. An exception are the small nuclear RNAs (snRNAs) transcribed by RNA polymerase II. Although snRNA biosynthesis is unique and thought not to be compatible with synthesis of functional mRNA, we have tested these promoters for their ability to express functional mRNAs. We have used the murine U1a and U1b snRNA gene promoters to express the Escherichia coli lacZ gene and the human alpha-globin gene from either episomal or integrated templates by transfection, or infection into a variety of mammalian cell types. Equivalent expression of beta-galactosidase was obtained from < 250 nucleotides of 5'-flanking sequence containing the complete promoter of either U1 snRNA gene or from the 750-nt cytomegalovirus promoter and enhancer regions. The mRNA was accurately initiated at the U1 start site, efficiently spliced and polyadenylylated, and localized to polyribosomes. Recombinant adenovirus containing the U1b-lacZ chimeric gene transduced and expressed beta-galactosidase efficiently in human 293 cells and airway epithelial cells in culture. Viral vectors containing U1 snRNA promoters may be an attractive alternative to vectors containing viral promoters for persistent high-level expression of therapeutic genes or proteins. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8799116

  10. Pax-3, a novel murine DNA binding protein expressed during early neurogenesis.

    PubMed Central

    Goulding, M D; Chalepakis, G; Deutsch, U; Erselius, J R; Gruss, P

    1991-01-01

    We describe the isolation and characterization of Pax-3, a novel murine paired box gene expressed exclusively during embryogenesis. Pax-3 encodes a 479 amino acid protein with an Mr of 56 kd containing both a paired domain and a paired-type homeodomain. The Pax-3 protein is a DNA binding protein that specifically recognizes the e5 sequence present upstream of the Drosophila even-skipped gene. Pax-3 transcripts are first detected in 8.5 day mouse embryos where they are restricted to the dorsal part of the neuroepithelium and to the adjacent segmented dermomyotome. During early neurogenesis, Pax-3 expression is limited to mitotic cells in the ventricular zone of the developing spinal cord and to distinct regions in the hindbrain, midbrain and diencephalon. In 10-12 day embryos, expression of Pax-3 is also seen in neural crest cells of the developing spinal ganglia, the craniofacial mesectoderm and in limb mesenchyme of 10 and 11 day embryos. Images PMID:2022185

  11. Carbonic anhydrase IV (CAR4) is expressed on IL-5 activated murine eosinophils

    PubMed Central

    Wen, Ting; Mingler, Melissa K.; Wahl, Benjamin; Khorki, M. Eyad; Pabst, Oliver; Zimmermann, Nives; Rothenberg, Marc E.

    2014-01-01

    Eosinophilia and its cellular activation are hallmark features of asthma, as well as other allergic/TH2 disorders, yet there are few, if any, reliable surface markers of eosinophil activation. We have employed a FACS-based genome-wide screening system to identify transcriptional alterations in murine lung eosinophils recruited and activated by pulmonary allergen exposure. Using a relatively stringent screen with false-positive correction, we identified 82 candidate genes that could serve as eosinophil activation markers and/or pathogenic effector markers in asthma. Carbonic anhydrase IV (Car4) was a top dysregulated gene with 36-fold induction in allergen-elicited pulmonary eosinophils, which was validated by quantitative PCR, IHC and by flow cytometry. Eosinophil CAR4 expression was kinetically regulated by IL-5 but not IL-13. IL-5 was both necessary and sufficient for induction of eosinophil CAR4. While CAR4-deficient mice did not have a defect in eosinophil recruitment to the lung nor a change in eosinophil pH-buffering capacity, allergen-challenged chimeric mice that contained Car4−/− hematopoietic cells aberrantly expressed a series of genes enriched in biological processes involved in epithelial differentiation, keratinization, and anion exchange. In conclusion, we have determined that eosinophils express CAR4 following IL-5 or allergen exposure, and that CAR4 is involved in regulating the lung transcriptome associated with allergic airway inflammation; as such, CAR4 has potential value for diagnosing and monitoring eosinophilic responses. PMID:24808371

  12. Demethylation and expression of murine mammary tumor proviruses in mouse thymoma cell lines.

    PubMed Central

    Mermod, J J; Bourgeois, S; Defer, N; Crépin, M

    1983-01-01

    Murine mammary tumor virus (MMTV) expression is analyzed in a T-lymphoid cell line (T1M1) sensitive to the killing effect of glucocorticoids and in two of its variants, one resistant (T1M1r) and one supersensitive (T1M1ss) to glucocorticoid-induced lymphocytolysis. In the T1M1 line, MMTV is expressed and induced approximately 10-fold by short treatment with dexamethasone. Southern blot analyses of restriction enzyme digests of DNA from T1M1 cells reveal three proviruses similar to those of normal C57BL mouse tissue. In the T1M1ss line, which has retained functional glucocorticoid receptors, MMTV mRNA is inducible by glucocorticoids, while induction is reduced in the T1M1r line defective in glucocorticoid receptors. Moreover, the T1M1r line expresses a strikingly elevated basal level of MMTV mRNA in the absence of hormone. No rearrangements or superinfection have occurred in the variants, but all the regions containing 5'-long terminal repeats are demethylated in the T1M1r variant although other sites of the provirus remain methylated. Because this variant was selected by prolonged treatment with dexamethasone, these observations raise the possibility that the continuous transcription of MMTV that occurred during this selection can result in glucocorticoid-induced demethylation of long-terminal-repeat sequences. Images PMID:6296860

  13. In vivo expression of adenovirus-mediated lacZ gene in murine nasal mucosa.

    PubMed

    Arimoto, Yukiko; Nagata, Hiroshi; Isegawa, Naohisa; Kumahara, Keiichiro; Isoyama, Kyoko; Konno, Akiyoshi; Shirasawa, Hiroshi

    2002-09-01

    Adenovirus is a good tool for transferring exogenous genes into various organs because the virus has a wide spectrum of infection. In this report, we demonstrate that a recombinant adenovirus, Ax1CAlacZ, can transfer an exogenous lacZ gene into murine nasal mucosa in vivo. The efficiency of the exogenous gene expression varied for different cell types and was improved by optimizing the method of administration. In the olfactory region, the olfactory epithelia, sustentacular cells and olfactory nerve efficiently expressed lacZ gene transferred by Ax1CAlacZ using either of two administration methods, dripping or injecting. In contrast, in the respiratory region, the respiratory epithelia but not the subepithelial tissues expressed lacZ gene transferred by Ax1CAlacZ, and the efficiency of the gene transfer, which was low when the virus was administered by nasal drops, was improved when the virus was administered by injection. Our study demonstrated that gene transfer mediated by adenovirus is more efficient in the olfactory epithelia than in the respiratory epithelia, and may be applicable to nasal or paranasal diseases such as olfactory epithelial disturbances. PMID:12403125

  14. Retinoic acid inhibits the proliferative response induced by CD40 activation and interleukin-4 in mantle cell lymphoma.

    PubMed

    Guidoboni, Massimo; Zancai, Paola; Cariati, Roberta; Rizzo, Silvana; Dal Col, Jessica; Pavan, Alessandro; Gloghini, Annunziata; Spina, Michele; Cuneo, Antonio; Pomponi, Fabrizio; Bononi, Antonio; Doglioni, Claudio; Maestro, Roberta; Carbone, Antonino; Boiocchi, Mauro; Dolcetti, Riccardo

    2005-01-15

    Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin's lymphoma with poor response to therapy and unfavorable prognosis. Here, we show that retinoic acid (RA) isomers significantly inhibit the proliferation of both primary MCL cultures (n = 7) and established cell lines (Granta 519 and SP-53) as shown by [(3)H]thymidine uptake and carboxyfluorescein diacetate succinimidyl ester labeling coupled with cyclin D1 staining. RA induces cell accumulation in G(0)-G(1) together with a marked up-regulation of p27(Kip1) by inhibiting ubiquitination and proteasome-dependent degradation of the protein. The p21(Cip1) inhibitor was also up-regulated by RA in Granta 519 cells, whereas the expression of cyclin D1 is unaffected. Most of RA-induced p27(Kip1) was bound to cyclin D1/cyclin-dependent kinase 4 complexes, probably contributing to the decreased cyclin-dependent kinase 4 kinase activity and pRb hypophosphorylation observed in RA-treated cells. Experiments with receptor-selective ligands indicate that RA receptor alpha cooperates with retinoid X receptors in mediating RA-dependent MCL cell growth inhibition. Notably, RA isomers, and particularly 9-cis-RA, also inhibited the growth-promoting effect induced in primary MCL cells by CD40 activation alone or in combination with interleukin-4. Immunohistochemical analysis showed that significant numbers of CD40L-expressing lymphoid cells are present in lymph node biopsies of MCL patients. These results therefore further strengthen the possibility that triggering of CD40 by infiltrating CD40L+ cells may continuously promote the growth of MCL cells in vivo. On these grounds, our findings that RA inhibits basal MCL proliferation as well as MCL growth-promoting effects exerted by microenvironmental factors make these compounds highly attractive in terms of potential clinical efficacy in this setting. PMID:15695403

  15. Induction of IL-12 Production in Human Peripheral Monocytes by Trypanosoma cruzi Is Mediated by Glycosylphosphatidylinositol-Anchored Mucin-Like Glycoproteins and Potentiated by IFN-γ and CD40-CD40L Interactions

    PubMed Central

    Abel, Lúcia Cristina Jamli; Ferreira, Ludmila Rodrigues Pinto; Cunha Navarro, Isabela; Baron, Monique Andrade; Kalil, Jorge; Gazzinelli, Ricardo Tostes; Rizzo, Luiz Vicente; Cunha-Neto, Edecio

    2014-01-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is characterized by immunopathology driven by IFN-γ secreting Th1-like T cells. T. cruzi has a thick coat of mucin-like glycoproteins covering its surface, which plays an important role in parasite invasion and host immunomodulation. It has been extensively described that T. cruzi or its products—like GPI anchors isolated from GPI-anchored mucins from the trypomastigote life cycle stage (tGPI-mucins)—are potent inducers of proinflammatory responses (i.e., cytokines and NO production) by IFN-γ primed murine macrophages. However, little is known about whether T. cruzi or GPI-mucins exert a similar action in human cells. We therefore decided to further investigate the in vitro cytokine production profile from human mononuclear cells from uninfected donors exposed to T. cruzi as well as tGPI-mucins. We observed that both living T. cruzi trypomastigotes and tGPI-mucins are potent inducers of IL-12 by human peripheral blood monocytes and this effect depends on CD40-CD40L interaction and IFN-γ. Our findings suggest that the polarized T1-type cytokine profile seen in T. cruzi infected patients might be a long-term effect of IL-12 production induced by lifelong exposure to T. cruzi tGPI-mucins. PMID:25120285

  16. Gene expression profile of androgen modulated genes in the murine fetal developing lung

    PubMed Central

    2010-01-01

    Background Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood. Methods To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17) and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens. Results Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment. Conclusion Our results show clearly that there is a real delay in lung maturation between male and female in this period

  17. Murine and Human Spermatids Are Characterized by Numerous, Newly Synthesized and Differentially Expressed Transcription Factors and Bromodomain-Containing Proteins.

    PubMed

    Klaus, Elisabeth Sabine; Gonzalez, Nicola Helena; Bergmann, Martin; Bartkuhn, Marek; Weidner, Wolfgang; Kliesch, Sabine; Rathke, Christina

    2016-07-01

    Much of spermatid differentiation takes place in the absence of active transcription, but in the early phase, large amounts of mRNA are synthesized, translationally repressed, and stored. Most nucleosomal histones are then degraded, and chromatin is repackaged by protamines. For both transcription and the histone-to-protamine transition in differentiating spermatids, chromatin must be opened. This raises the question of whether two different processes exist. It is conceivable that for initiation of the histone-to-protamine transition, the already accessible, actively transcribed chromatin regions are utilized or vice versa. We analyzed the enrichment of different canonical TATA-box-binding, protein-associated factors and their variants in murine spermatids, diverse bromodomain-containing proteins, and components of the Polycomb repressive complexes PRC1 and PRC2 using quantitative PCR. We compared the enrichment of corresponding proteins in human and murine spermatids and analyzed the time frame of postmeiotic transcription and expression of histones, transition proteins, and protamines in human and murine spermatids using immunohistology. We correlated the expression of different transcription factors and bromodomain-containing proteins and the pattern of acetylated histones to active transcription and to the histone-to-protamine transition in both human and murine spermatids. Our findings suggest that differentiating spermatids use both common and specific features to open chromatin first for transcription and subsequently for histone-to-protamine transition. PMID:27170439

  18. Expression of mink cell focus-forming murine leukemia virus-related transcripts in AKR mice

    SciTech Connect

    Khan, A.S.; Laigret, F.; Rodi, C.P.

    1987-03-01

    The authors used a synthetic 16-base-pair mink cell focus-forming (MCF) env-specific oligomer as radiolabeled probe to study MCF murine leukemia virus (MuLV)-related transcripts in brain, kidney, liver, spleen, and thymus tissues of AKR mice ranging from 5 weeks to 6 months (mo) of age. Tissue-specific expression of poly(A)/sup +/ RNAs was seen. In addition, all the tissues tested contained 3.0-kb messages. The transcription of these MCF-related mRNAs was independent of the presence of ecotropic and xenotropic MuLVs. In general, expression of the MCF env-related transcripts appeared to peak at 2 mo of age; these messages were barely detectable in brain, kidney, liver, and spleen tissues after 2 mo and in thymus tissue after 4 mo of age. All of the subgenomic MCF env-related mRNAs appeared to contain the 190-base-pair cellular DNA insert, characteristic of the long terminal repeats associated with endogenous MCF env-related proviruses. No genomic-size (8.4-kb) transcripts corresponding to endogenous MCF-related proviruses were detected. An 8.4-kb MCF env-related mRNA was first seen at 3 mo of age, exclusively in thymus tissue. This species most likely represents the first appearance of a recombinant MCF-related MuLV genome. The transcripts which were detected in thymus tissue might be involved in the generation of leukemogenic MCF viruses.

  19. B7-H3 protein expression in a murine model of osteosarcoma

    PubMed Central

    ZHAO, JIA-LI; CHEN, FENG-LI; ZHOU, QUAN; PAN, WEI; WANG, XIN-HONG; XU, JIN; ZHANG, SHAO-XIAN; NI, LI; YANG, HUI-LIN

    2016-01-01

    Osteosarcoma is an aggressive type of bone tumor that commonly occurs in pediatric age groups. The complete molecular mechanisms behind osteosarcoma formation and progression require elucidation. B7-H3 is a protein of the B7 family that acts as a co-stimulatory molecule with a significant role in adaptive immune responses. The link between B7-H3 expression and its role in different types of cancer remains unclear. B7-H3 protein exhibits different functional roles in in vivo and in vitro conditions that remain controversial. In the present study, a murine model of osteosarcoma was successfully established using a modified protocol so as to easily obtain a low grade and metastatic form of osteosarcoma tissue without complication. Histological data showed that a less organized and highly proliferative mass of cells was observed in the osteosarcoma tissue. A higher expression level of B7-H3 protein was also observed at each advanced stage of osteosarcoma, which indicated the contributory role of the protein in the development of the primary and metastatic forms of osteosarcoma. Immunohistochemistry was performed, which showed that the overexpression of B7-H3 protein in the metastatic form of osteosarcoma may be associated with its migration and invasion. PMID:27347155

  20. PRENATAL EXPOSURE TO ENVIRONMENTAL TOBACCO SMOKE ALTERS GENE EXPRESSION IN THE DEVELOPING MURINE HIPPOCAMPUS

    PubMed Central

    Mukhopadhyay, Partha; Horn, Kristin H.; Greene, Robert M.; Pisano, M. Michele

    2010-01-01

    Background Little is known about the effects of passive smoke exposures on the developing brain. Objective The purpose of the current study was to identify changes in gene expression in the murine hippocampus as a consequence of in utero exposure to sidestream cigarette smoke (an experimental equivalent of environmental tobacco smoke (ETS)) at exposure levels that do not result in fetal growth inhibition. Methods A whole body smoke inhalation exposure system was utilized to deliver ETS to pregnant C57BL/6J mice for six hours/day from gestational days 6–17 (gd 6–17) [for microarray] or gd 6–18.5 [for fetal phenotyping]. Results There were no significant effects of ETS exposure on fetal phenotype. However, 61 “expressed” genes in the gd 18.5 fetal hippocampus were differentially regulated (up- or down-regulated by 1.5 fold or greater) by maternal exposure to ETS. Of these 61 genes, 25 genes were upregulated while 36 genes were downregulated. A systems biology approach, including computational methodologies, identified cellular response pathways, and biological themes, underlying altered fetal programming of the embryonic hippocampus by in utero cigarette smoke exposure. Conclusions Results from the present study suggest that even in the absence of effects on fetal growth, prenatal smoke exposure can alter gene expression during the “early” period of hippocampal growth and may result in abnormal hippocampal morphology, connectivity, and function. PMID:19969065

  1. Human glioblastoma-associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples.

    PubMed

    Szulzewsky, Frank; Arora, Sonali; de Witte, Lot; Ulas, Thomas; Markovic, Darko; Schultze, Joachim L; Holland, Eric C; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-08-01

    Glioblastoma (GBM) is the most aggressive brain tumor in adults. It is strongly infiltrated by microglia and peripheral monocytes that support tumor growth. In the present study we used RNA sequencing to compare the expression profile of CD11b(+) human glioblastoma-associated microglia/monocytes (hGAMs) to CD11b(+) microglia isolated from non-tumor samples. Hierarchical clustering and principal component analysis showed a clear separation of the two sample groups and we identified 334 significantly regulated genes in hGAMs. In comparison to human control microglia hGAMs upregulated genes associated with mitotic cell cycle, cell migration, cell adhesion, and extracellular matrix organization. We validated the expression of several genes associated with extracellular matrix organization in samples of human control microglia, hGAMs, and the hGAMs-depleted fraction via qPCR. The comparison to murine GAMs (mGAMs) showed that both cell populations share a significant fraction of upregulated transcripts compared with their respective controls. These genes were mostly related to mitotic cell cycle. However, in contrast to murine cells, human GAMs did not upregulate genes associated to immune activation. Comparison of human and murine GAMs expression data to several data sets of in vitro-activated human macrophages and murine microglia showed that, in contrast to mGAMs, hGAMs share a smaller overlap to these data sets in general and in particular to cells activated by proinflammatory stimulation with LPS + INFγ or TNFα. Our findings provide new insights into the biology of human glioblastoma-associated microglia/monocytes and give detailed information about the validity of murine experimental models. GLIA 2016 GLIA 2016;64:1416-1436. PMID:27312099

  2. Dual Transgene Expression in Murine Cerebellar Purkinje Neurons by Viral Transduction In Vivo

    PubMed Central

    Bosch, Marie K.; Nerbonne, Jeanne M.; Ornitz, David M.

    2014-01-01

    Viral-vector mediated gene transfer to cerebellar Purkinje neurons in vivo is a promising avenue for gene therapy of cerebellar ataxias and for genetic manipulation in functional studies of animal models of cerebellar disease. Here, we report the results of experiments designed to identify efficient methods for viral transduction of adult murine Purkinje neurons in vivo. For these analyses, several lentiviral and an adeno-associated virus (AAV), serotype 1, vector with various promoter combinations were generated and compared for in situ transduction efficiency, assayed by fluorescent reporter protein expression in Purkinje neurons. Additional experiments were also conducted to identify the optimal experimental strategy for co-expression of two proteins in individual Purkinje neurons. Of the viruses tested, AAV1 with a CAG promoter exhibited the highest specificity for Purkinje neurons. To deliver two proteins to the same Purkinje neuron, several methods were tested, including: an internal ribosome entry site (IRES), a 2A sequence, a dual promoter vector, and co-injection of two viruses. Efficient expression of both proteins in the same Purkinje neuron was only achieved by co-injecting two AAV1-CAG viruses. We found that use of an AAV1-CAG virus outperformed similar lentivirus vectors and that co-injection of two AAV1-CAG viruses could be used to efficiently deliver two proteins to the same Purkinje neuron in adult mice. AAV1 with a CAG promoter is highly efficient and selective at transducing adult cerebellar Purkinje neurons and two AAV-CAG viruses can be used to efficiently express two proteins in the same neuron in vivo. PMID:25093726

  3. A comparison of two distinct murine macrophage gene expression profiles in response to Leishmania amazonensis infection

    PubMed Central

    2012-01-01

    Background The experimental murine model of leishmaniasis has been widely used to characterize the immune response against Leishmania. CBA mice develop severe lesions, while C57BL/6 present small chronic lesions under L. amazonensis infection. Employing a transcriptomic approach combined with biological network analysis, the gene expression profiles of C57BL/6 and CBA macrophages, before and after L. amazonensis infection in vitro, were compared. These strains were selected due to their different degrees of susceptibility to this parasite. Results The genes expressed by C57BL/6 and CBA macrophages, before and after infection, differ greatly, both with respect to absolute number as well as cell function. Uninfected C57BL/6 macrophages express genes involved in the deactivation pathway of macrophages at lower levels, while genes related to the activation of the host immune inflammatory response, including apoptosis and phagocytosis, have elevated expression levels. Several genes that participate in the apoptosis process were also observed to be up-regulated in C57BL/6 macrophages infected with L. amazonensis, which is very likely related to the capacity of these cells to control parasite infection. By contrast, genes involved in lipid metabolism were found to be up-regulated in CBA macrophages in response to infection, which supports the notion that L. amazonensis probably modulates parasitophorous vacuoles in order to survive and multiply in host cells. Conclusion The transcriptomic profiles of C57BL/6 macrophages, before and after infection, were shown to be involved in the macrophage pathway of activation, which may aid in the control of L. amazonensis infection, in contrast to the profiles of CBA cells. PMID:22321871

  4. Life spanning murine gene expression profiles in relation to chronological and pathological aging in multiple organs.

    PubMed

    Jonker, Martijs J; Melis, Joost P M; Kuiper, Raoul V; van der Hoeven, Tessa V; Wackers, Paul F K; Robinson, Joke; van der Horst, Gijsbertus T J; Dollé, Martijn E T; Vijg, Jan; Breit, Timo M; Hoeijmakers, Jan H J; van Steeg, Harry

    2013-10-01

    Aging and age-related pathology is a result of a still incompletely understood intricate web of molecular and cellular processes. We present a C57BL/6J female mice in vivo aging study of five organs (liver, kidney, spleen, lung, and brain), in which we compare genome-wide gene expression profiles during chronological aging with pathological changes throughout the entire murine life span (13, 26, 52, 78, 104, and 130 weeks). Relating gene expression changes to chronological aging revealed many differentially expressed genes (DEGs), and altered gene sets (AGSs) were found in most organs, indicative of intraorgan generic aging processes. However, only ≤ 1% of these DEGs are found in all organs. For each organ, at least one of 18 tested pathological parameters showed a good age-predictive value, albeit with much inter- and intraindividual (organ) variation. Relating gene expression changes to pathology-related aging revealed correlated genes and gene sets, which made it possible to characterize the difference between biological and chronological aging. In liver, kidney, and brain, a limited number of overlapping pathology-related AGSs were found. Immune responses appeared to be common, yet the changes were specific in most organs. Furthermore, changes were observed in energy homeostasis, reactive oxygen species, cell cycle, cell motility, and DNA damage. Comparison of chronological and pathology-related AGSs revealed substantial overlap and interesting differences. For example, the presence of immune processes in liver pathology-related AGSs that were not detected in chronological aging. The many cellular processes that are only found employing aging-related pathology could provide important new insights into the progress of aging. PMID:23795901

  5. Complexity of murine cardiomyocyte miRNA biogenesis, sequence variant expression and function.

    PubMed

    Humphreys, David T; Hynes, Carly J; Patel, Hardip R; Wei, Grace H; Cannon, Leah; Fatkin, Diane; Suter, Catherine M; Clancy, Jennifer L; Preiss, Thomas

    2012-01-01

    microRNAs (miRNAs) are critical to heart development and disease. Emerging research indicates that regulated precursor processing can give rise to an unexpected diversity of miRNA variants. We subjected small RNA from murine HL-1 cardiomyocyte cells to next generation sequencing to investigate the relevance of such diversity to cardiac biology. ∼40 million tags were mapped to known miRNA hairpin sequences as deposited in miRBase version 16, calling 403 generic miRNAs as appreciably expressed. Hairpin arm bias broadly agreed with miRBase annotation, although 44 miR* were unexpectedly abundant (>20% of tags); conversely, 33 -5p/-3p annotated hairpins were asymmetrically expressed. Overall, variability was infrequent at the 5' start but common at the 3' end of miRNAs (5.2% and 52.3% of tags, respectively). Nevertheless, 105 miRNAs showed marked 5' isomiR expression (>20% of tags). Among these was miR-133a, a miRNA with important cardiac functions, and we demonstrated differential mRNA targeting by two of its prevalent 5' isomiRs. Analyses of miRNA termini and base-pairing patterns around Drosha and Dicer cleavage regions confirmed the known bias towards uridine at the 5' most position of miRNAs, as well as supporting the thermodynamic asymmetry rule for miRNA strand selection and a role for local structural distortions in fine tuning miRNA processing. We further recorded appreciable expression of 5 novel miR*, 38 extreme variants and 8 antisense miRNAs. Analysis of genome-mapped tags revealed 147 novel candidate miRNAs. In summary, we revealed pronounced sequence diversity among cardiomyocyte miRNAs, knowledge of which will underpin future research into the mechanisms involved in miRNA biogenesis and, importantly, cardiac function, disease and therapy. PMID:22319597

  6. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells

    PubMed Central

    Mason, Mike J; Fan, Guoping; Plath, Kathrin; Zhou, Qing; Horvath, Steve

    2009-01-01

    Background Recent work has revealed that a core group of transcription factors (TFs) regulates the key characteristics of embryonic stem (ES) cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we investigated the use of unsigned and signed network analysis to identify pluripotency and differentiation related genes. Results We show that signed networks provide a better systems level understanding of the regulatory mechanisms of ES cells than unsigned networks, using two independent murine ES cell expression data sets. Specifically, using signed weighted gene co-expression network analysis (WGCNA), we found a pluripotency module and a differentiation module, which are not identified in unsigned networks. We confirmed the importance of these modules by incorporating genome-wide TF binding data for key ES cell regulators. Interestingly, we find that the pluripotency module is enriched with genes related to DNA damage repair and mitochondrial function in addition to transcriptional regulation. Using a connectivity measure of module membership, we not only identify known regulators of ES cells but also show that Mrpl15, Msh6, Nrf1, Nup133, Ppif, Rbpj, Sh3gl2, and Zfp39, among other genes, have important roles in maintaining ES cell pluripotency and self-renewal. We also report highly significant relationships between module membership and epigenetic modifications (histone modifications and promoter CpG methylation status), which are known to play a role in controlling gene expression during ES cell self-renewal and differentiation. Conclusion Our systems biologic re-analysis of gene expression, transcription factor binding, epigenetic and gene ontology data provides a novel integrative view of ES cell biology. PMID:19619308

  7. Expression of the Wilms' tumor gene WT1 in the murine urogenital system.

    PubMed

    Pelletier, J; Schalling, M; Buckler, A J; Rogers, A; Haber, D A; Housman, D

    1991-08-01

    The Wilms' tumor gene WT1 is a recessive oncogene that encodes a putative transcription factor implicated in nephrogenesis during kidney development. In this report we analyze expression of WT1 in the murine urogenital system. WT1 is expressed in non-germ-cell components of the testis and ovaries in both young and adult mice. In situ mRNA hybridization studies demonstrate that WT1 is expressed in the granulosa and epithelial cells of ovaries, the Sertoli cells of the testis, and in the uterine wall. In addition to the 3.1-kb WT1 transcript detected by Northern blotting of RNA from kidney, uterus, and gonads, there is an approximately 2.5-kb WT1-related mRNA species in testis. The levels of WT1 mRNA in the gonads are among the highest observed, surpassing amounts detected in the embryonic kidney. During development, these levels are differentially regulated, depending on the sexual differentiation of the gonad. Expression of WT1 mRNA in the female reproductive system does not fluctuate significantly from days 4 to 40 postpartum. In contrast, WT1 mRNA levels in the tesis increase steadily after birth, reaching their highest expression levels at day 8 postpartum and decreasing slightly as the animal matures. Expression of WT1 in the gonads is detectable as early as 12.5 days postcoitum (p.c.). As an initial step toward exploring the tissue-specific expression of WT1, DNA elements upstream of WT1 were cloned and sequenced. Three putative transcription initiation sites, utilized in testis, ovaries, and uterus, were mapped by S1 nuclease protection assays. The sequences surrounding these sites have a high G + C content, and typical upstream CCAAT and TATAA boxes are not present. These studies allowed us to identify the translation initiation site for WT1 protein synthesis. We have also used an epitope-tagging protocol to demonstrate that WT1 is a nuclear protein, consistent with its role as a transcription factor. Our results demonstrate regulation of WT1 expression

  8. Molecular Diagnostic Challenges and Complex Management of Consecutive Twin Pregnancies in a Family with CD40 Ligand Deficiency.

    PubMed

    Török, O; Tóth, B; Erdős, M; Csorba, G; Gyimesi, E; Balogh, I; Tóth, Z; Maródi, L

    2012-02-01

    X-linked hyper-IgM syndrome (XHIGM) is a primary immunodeficiency disorder (PID) caused by mutation in the gene encoding the CD40 ligand (CD40L) expressed on activated T cells. Prenatal genotyping in carriers with twin pregnancies is more challenging than in women with singleton pregnancies. In addition, women with twin pregnancies may decide on selective termination for which the risk of loss of the healthy foetus may exceed 7%. We report here on a family affected by XHIGM. Diagnosis of the disease was made in a male patient as late as 33 years of age. After family screening, the sister of the proband conceived male twins in two consecutive pregnancies. In the first pregnancy, one of the male foetuses was hemizygous for the c.521A>G (Q174R) mutation in the CD40L gene. In the second pregnancy, ultrasound scan showed one foetus to have exencephaly and karyotyping revealed this foetus to have trisomy 18. Several options were discussed, but the parents decided on selective termination in both pregnancies. The interventions were successful in both cases, and the mother now has two healthy sons. This report demonstrates the way in which advanced technologies in molecular medicine and obstetric interventions may assist families with decisions about possible selective termination in case of life-threatening molecular or chromosomal disorders. Diagnosis of CD40L deficiency at the age of 33 years in the proband was striking and indicated that PIDs are still neglected as disease entities in the evaluation of patients with recurrent severe infectious diseases. PMID:21958324

  9. Irradiation-induced localization of IL-12-expressing mesenchymal stem cells to enhance the curative effect in murine metastatic hepatoma.

    PubMed

    Jeong, Keun-Yeong; Lee, Eun-Jung; Kim, Su Jin; Yang, Seung-Hyun; Sung, Young Chul; Seong, Jinsil

    2015-08-01

    Irradiation in conjunction with gene therapy is considered for efficient cancer treatment. Mesenchymal stem cells (MSCs), due to their irradiation-promotable tumor tropism, are ideal delivery vehicles for gene therapy. In this study, we investigated whether treatment with radiation and interleukin (IL)-12-expressing MSCs (MSCs/IL-12) exerts improved antitumor effects on murine metastatic hepatoma. HCa-I and Hepa 1-6 cells were utilized to generate heterotopic murine hepatoma models. Tumor-bearing mice were treated with irradiation or MSCs/IL-12 alone, or a combination. Monocyte chemoattractant protein-1 (MCP-1/CCL2) expression was assessed in irradiated hepatoma tissues to confirm a chemotactic effect. Combination treatment strategies were established and their therapeutic efficacies were evaluated by monitoring tumor growth, metastasis and survival rate. IL-12 expression was assessed and the apoptotic activity and immunological alterations in the tumor microenvironment were examined. MCP-1/CCL2 expression and localization of MSCs/IL-12 increased in the irradiated murine hepatoma cells. The antitumor effects, including suppression of pulmonary metastasis and survival rate improvements, were increased by the combination treatment with irradiation and MSCs/IL-12. IL-12 expression was increased in tumor cells, causing proliferation of cluster of differentiation 8(+) T-lymphocytes and natural killer cells. The apoptotic activity increased, indicating that the cytotoxicity of immune cells was involved in the antitumor effect of the combined treatment. Treatment with irradiation and MSCs/IL-12 showed effectiveness in treating murine metastatic hepatoma. IL-12-induced proliferation of immune cells played an important role in apoptosis of tumor cells. Our results suggest that treatment with irradiation and MSCs/IL-12 may be a useful strategy for enhancing antitumor activity in metastatic hepatoma. PMID:25639194

  10. Global microRNA expression is essential for murine mast cell development in vivo

    PubMed Central

    Oh, Sun Young; Brandal, Stephanie; Kapur, Reuben; Zhu, Zhou; Takemoto, Clifford M.

    2014-01-01

    microRNAs (miRNAs) are small, non-coding RNAs that have been shown to play a critical role in normal physiology and disease, such as hematopoietic development and cancer. However, their role in mast cell function and development is poorly understood. The major objective of this study was to determine how global miRNA expression affects mast cell physiology. The RNase III endonuclease, Dicer, is required for the processing of pre-miRNAs into mature miRNAs. To investigate the effect of global miRNA depletion on mast cells in vivo, we generated a mast cell-specific knock out of Dicer in mice. Transgenic mice (Mcpt5-Cre) that express Cre selectively in connective tissue mast cells were crossed with mice carrying the floxed conditional Dicer allele (Dicer fl/fl). Mcpt5-Cre x Dicer fl/fl mice with homozygous Dicer gene deletion in mast cells were found to have a profound mast cell deficiency with near complete loss of peritoneal, gastrointestinal, and skin mast cells. We examined the in vivo functional consequence of mast cell-specific Dicer deletion using an IgE-dependent passive systemic anaphylaxis (PSA) murine model. IgE sensitized wild type Mcpt5-Cre x Dicer +/+ and heterozygous Mcpt5-Cre x Dicer fl/+ mice show marked hypothermia with antigen; however, homozygous Mcpt5-Cre x Dicer fl/fl mice were completely unresponsive to antigen challenge. These studies suggest a critical role for Dicer and miRNA expression for establishment of tissue compartments of functional mast cells in vivo. PMID:25201754

  11. Post-transcriptional regulation of E2A proteins via lipopolysaccharide and CD40 signaling.

    PubMed

    Meyer, K B; Mufti, D A

    2000-02-01

    The transcription factor E2A plays a crucial role in B cell development, the control of immunoglobulin gene rearrangement and expression. Here we report that in primary mouse B cells lipopolysaccharide (LPS) is able to induce the level of E2A protein by over 50-fold in days of culture. In contrast, CD40 signaling is insufficient to cause an E2A increase and can in fact prevent the LPS-mediated induction of E2A. These results suggest that E2A induction requires both proliferation and differentiation. We find that E2A protein induction is regulated post-transcriptionally since E2A mRNA is not induced by LPS. We have thus identified an important additional layer of regulation affecting the activity of E2A transcription factors. PMID:10671233

  12. Inhibin betaB expression in murine adipose tissue and its regulation by leptin, insulin and dexamethasone.

    PubMed

    Hoggard, N; Cruickshank, M; Moar, K M; Barrett, P; Bashir, S; Miller, J D B

    2009-10-01

    Inhibin betaB (INHBB; coding for the activin betaB subunit) has previously been identified in both human and rodent adipose tissue and using Taqman real-time PCR with specific primers we confirm the expression of INHBB mRNA in rodent adipose tissue. Expression of INHBB in murine epididymal adipose tissue was higher than in any of the other tissues studied and appears to be regulated by changes in energy balance and leptin. It was increased fourfold in the epididymal fat depot of ob/ob mice compared with the same fat depot in lean mice. The i.p. administration of leptin in obese ob/ob mice decreases the expression of INHBB. In human adipose tissue, INHBB is reduced by weight loss. In keeping with this, we demonstrate that INHBB expression in murine adipose tissue is decreased in fasting and increased upon refeeding. We show that INHBB is expressed in both the mature adipocyte and the stromal vascular fraction of adipose tissue. INHBB increases with the differentiation of pre-adipocytes into mature adipocytes in the 3T3-L1 cell line. In differentiated 3T3-L1 adipocytes, where receptors to activin have been previously reported, insulin increases the expression of INHBB, while dexamethasone decreases the expression of INHBB when compared with untreated control cells. Taken together, these results suggest that the regulation of INHBB expression in adipose tissue may play a physiological role in energy balance or the insulin insensitivity associated with obesity. PMID:19491194

  13. Murine Cytomegalovirus Influences Foxj1 Expression, Ciliogenesis, and Mucus Plugging in Mice with Allergic Airway Disease

    PubMed Central

    Wu, Carol A.; Peluso, John J.; Shanley, John D.; Puddington, Lynn; Thrall, Roger S.

    2008-01-01

    We have followed throughout time the development of allergic airway disease (AAD) in both uninfected mice and mice infected intranasally with murine cytomegalovirus (MCMV). Histological evaluation of lung tissue from uninfected mice with AAD demonstrated mucus plugging after 14 and 21 days of ovalbumin-aerosol challenge, with resolution of mucus plugging occurring by 42 days. In MCMV/AAD mice, mucus plugging was observed after 7 days of ovalbumin-aerosol challenge and remained present at 42 days. The level of interleukin-13 in bronchoalveolar lavage fluid from MCMV/AAD mice was decreased compared with AAD mice and was accompanied by increased levels of interferon-γ. Levels of Muc5A/C, Muc5B, or Muc2 mucin mRNA in the lungs of MCMV/AAD mice were not elevated compared with AAD mice. MCMV was able to infect the airway epithelium, resulting in decreased expression of Foxj1, a transcription factor critical for ciliogenesis, and a loss of ciliated epithelial cells. In addition, an increase in the number of epithelial cells staining positive for periodic acid-Schiff was observed in MCMV/AAD airways. Together, these findings suggest that MCMV infection of the airway epithelium enhances goblet cell metaplasia and diminishes efficient mucociliary clearance in mice with AAD, resulting in increased mucus plugging. PMID:18258850

  14. Proinflammatory Cytokine Gene Expression by Murine Macrophages in Response to Brugia malayi Wolbachia Surface Protein

    PubMed Central

    Porksakorn, Chantima; Nuchprayoon, Surang; Park, Kiwon; Scott, Alan L.

    2007-01-01

    Wolbachia, an endosymbiotic bacterium found in most species of filarial parasites, is thought to play a significant role in inducing innate inflammatory responses in lymphatic filariasis patients. However, the Wolbachia-derived molecules that are recognized by the innate immune system have not yet been identified. In this study, we exposed the murine macrophage cell line RAW 264.7 to a recombinant form of the major Wolbachia surface protein (rWSP) to determine if WSP is capable of innately inducing cytokine transcription. Interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF) mRNAs were all upregulated by the rWSP stimulation in a dose-dependant manner. TNF transcription peaked at 3 hours, whereas IL-1β and IL-6 transcription peaked at 6 hours post-rWSP exposure. The levels of innate cytokine expression induced by a high-dose (9.0 μg/mL) rWSP in the RAW 264.7 cells were comparable to the levels induced by 0.1 μg/mL E. coli-derived lipopolysaccharides. Pretreatment of the rWSP with proteinase-K drastically reduced IL-1β, IL-6, and TNF transcription. However, the proinflammatory response was not inhibited by polymyxin B treatment. These results strongly suggest that the major Wolbachia surface protein molecule WSP is an important inducer of innate immune responses during filarial infections. PMID:17641731

  15. Expression of murine leukemia viruses in the highly lymphomatous BXH-2 recombinant inbred mouse strain.

    PubMed Central

    Bedigian, H G; Taylor, B A; Meier, H

    1981-01-01

    Among 12 recombinant inbred strains of mice derived from crossing two strains, C57BL/6J and C3H/HeJ, which have a low incidence of neoplastic disease, one strain (BXH-2) has been found to have a high incidence of lymphoma, of non-T-cell origin, at an early age. The BXH-2 strain carries the Fv-1b allele and spontaneously expresses a B-tropic murine leukemia virus beginning at as early as 10 days of gestation and continuing throughout their life. No significant differences in ecotropic virus titers were observed at any age tested (16 to 17 days of gestation through 7 months), whereas xenotropic virus was first detected in lymphoid tissues of 2-month-old mice and virus titers increased with age. Dual tropic virus(es), which induced cytopathic changes on mink lung cells, was isolated from BXH-2 lymphomatous tissues. Unlike AKR mink lung focus-forming virus (N-tropic recombinant), BXH-2 dual tropic virus is B tropic and induces cytopathic changes in mouse fibroblast cultures as well. The BXH-2 mouse provides a model system for studying the role of replication-competent viruses in spontaneously occurring leukemias of non-T-cell lineage and neurological disease. Images PMID:6268848

  16. Cloning of murine interferon gamma receptor cDNA: expression in human cells mediates high-affinity binding but is not sufficient to confer sensitivity to murine interferon gamma.

    PubMed Central

    Hemmi, S; Peghini, P; Metzler, M; Merlin, G; Dembic, Z; Aguet, M

    1989-01-01

    A full-length cDNA encoding the murine interferon gamma (IFN-gamma) receptor was isolated from a lambda gt11 library using a human IFN-gamma receptor cDNA probe. The deduced amino acid sequence of the murine IFN-gamma receptor shows approximately 53% homology to its human counterpart but no homology to other known proteins. Murine IFN-gamma receptor cDNA was expressed in human HEp-2 cells, which do not bind murine IFN-gamma and are insensitive to its action. Transfectants displayed the same binding properties as mouse cells. The biological responsiveness of such transfectants to various biological effects of both human and murine IFN-gamma was investigated, including modulation of major histocompatibility complex class I and class II antigen expression, inhibition of cell growth, and antiviral activity. Like parental HEp-2 cells, these transfectants responded only to human, but not to murine, IFN-gamma. Inversely, mouse L929 cells transfected with human IFN-gamma receptor cDNA were insensitive to human IFN-gamma. These results confirm and extend previous findings, suggesting that species-specific cofactors are needed for IFN-gamma-mediated signal transduction. Images PMID:2532365

  17. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells.

    PubMed

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-11-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces. PMID:21985363

  18. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells

    PubMed Central

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-01-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces. PMID:21985363

  19. Luteinizing hormone induces mouse vas deferens protein expression in the murine ovary.

    PubMed

    Brockstedt, E; Peters-Kottig, M; Badock, V; Hegele-Hartung, C; Lessl, M

    2000-07-01

    The aim of our study was to isolate and identify novel proteins that are involved in the process of ovulation. To achieve this goal we used the technique of proteome analysis. Comparison of ovary protein patterns, obtained by high resolution two-dimensional gel electrophoresis from recombinant FSH (rFSH)- and rFSH + human CG (hCG)-treated mice, showed significant differences in protein spot positions and intensities. Subsequent analysis of one of these proteins was performed by mass spectrometry, resulting in the identification of the mouse vas deferens protein (MVDP). MVDP, which was absent in the two-dimensional gel electrophoresis protein pattern of rFSH-primed mice and appeared 3 h after the hCG surge, is a member of the aldo-keto reductase superfamily and was originally identified in the mouse vas deferens. This is the first study describing MVDP expression and regulation by LH in the ovary. Northern blot analysis of female mice tissues showed that mvdp messenger RNA (mRNA) was only present in adrenal glands and in hCG-treated ovaries. In situ hybridization studies localized the mvdp mRNA unequivocally to ovarian thecal and interstitial cells with an expression profile starting already 1.5 h, and decreasing 24 h, after LH treatment. In the adrenal glands, mvdp mRNA was not regulated by LH and localized in the cells of the zona fasciculata. In murine adrenocortical cells, a recent study proposed a detoxifying role of MVDP. MVDP might fulfill the same function in the ovary; however, because of its strong and early transcriptional induction by LH, it is also possible that MVDP catalyses another important step during the cascade of events occurring at the time of ovulation. PMID:10875260

  20. STAT3 and SOCS3 Expression Patterns During Murine Placenta Development

    PubMed Central

    San Martin, S.; Fitzgerald, J.S.; Weber, M.; Párraga, M.; Sáez, T.; Zorn, T.M.; Markert, U.R.

    2013-01-01

    Signal transducers and activators of transcription 3 (STAT3) has been identified as an important signal transducer in the invasive phenotype of the trophoblasts cells in in vitro studies. However, the in situ distribution and patterns of expression of this molecule in trophoblast cells during the development of the placenta are still under-elucidated. Mice uteri of gestational ages between 7 and 14 days of pregnancy (dop) were fixed in methacarn and processed with immunoperoxidase techniques for detection of STAT3 and its phosphorylation at serine (p-ser727) residues, as well as the suppressor of cytokine signaling 3 (SOCS3) expression. STAT3 was observed at 7 through 9 dop in both the antimesometrial and mesometrial deciduas, while continued immunoreactivity between 10 and 13 dop was seen only in the mesometrial decidua. In the placenta, STAT3 was detected in the cytotrophoblast cells of labyrinth and giant trophoblast cells between 10 and 14 dop. Immunoreactivity for STAT3 was also seen in trophoblast cells surrounding the maternal blood vessels. On days 10 and 11 of pregnancy, p-ser727 was detectable in the mesometrial decidua and in giant trophoblasts, while during 12-14 dop in the spongiotrophoblast region. In addition, SOCS3 was immunodetected in maternal and placental tissues, principally in the giant trophoblast cells during the whole period of the study. The present in situ study shows the distribution of STAT3, its serine activation and SOCS3 in different maternal and fetal compartments during murine placental development, thus further supporting the idea that they play a role during physiological placentation in mice. PMID:23807298

  1. Therapeutic expression of hairpins targeting apolipoprotein B100 induces phenotypic and transcriptome changes in murine liver

    PubMed Central

    Maczuga, P; Verheij, J; van der Loos, C; van Logtenstein, R; Hooijer, G; Martier, R; Borel, F; Lubelski, J; Koornneef, A; Blits, B; van Deventer, S; Petry, H; Konstantinova, P

    2014-01-01

    Constitutive expression of short hairpin RNAs (shRNAs) may cause cellular toxicity in vivo and using microRNA (miRNA) scaffolds can circumvent this problem. Previously, we have shown that embedding small interfering RNA sequences targeting apolipoprotein B100 (ApoB) in shRNA (shApoB) or miRNA (miApoB) scaffolds resulted in differential processing and long-term efficacy in vivo. Here we show that adeno-associated virus (AAV)-shApoB- or AAV-miApoB-mediated ApoB knockdown induced differential liver morphology and transcriptome expression changes. Our analyses indicate that ApoB knockdown with both shApoB and miApoB resulted in alterations of genes involved in lipid metabolism. In addition, in AAV-shApoB-injected animals, genes involved in immune system activation or cell growth and death were affected, which was associated with increased hepatocyte proliferation. Subsequently, in AAV-miApoB-injected animals, changes of genes involved in oxidoreductase activity, oxidative phosphorylation and nucleic bases biosynthetic processes were observed. Our results demonstrate that long-term knockdown of ApoB in vivo by shApoB or miApoB induces several transcriptome changes in murine liver. The increased hepatocyte profileration by AAV-shRNA may have severe long-term effects indicating that AAV-mediated RNA interference therapy using artificial miRNA may be a safer approach for familial hypercholesterolemia therapy. PMID:24152580

  2. [Regulatory B cells activated by CpG-ODN combined with anti-CD40 monoclonal antibody inhibit CD4(+)T cell proliferation].

    PubMed

    Wang, Keng; Tao, Lei; Su, Jianbing; Zhang, Yueyang; Zou, Binhua; Wang, Yiyuan; Li, Xiaojuan

    2016-09-01

    Objective To observe the immunosuppressive function of regulatory B cells (Bregs) in vitro after activated by CpG oligodeoxynucleotide (CpG-ODN) and anti-CD40 mAb. Methods Mice splenic CD5(+)CD1d(high)B cells and CD5(-)CD1d(low)B cells were sorted by flow cytometry. These B cells were first stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours, and then co-cultured with purified CD4(+)T cells. The interleukin 10 (IL-10) expression in the activated Bregs and other B cell subset, as well as the proliferation and interferon γ (IFN-γ) expression in the CD4(+) T cells activated by anti-CD3 mAb plus anti-CD28 mAb were determined by flow cytometry. Results CD5(+)CD1d(high) B cells activated by CpG-ODN plus anti-CD40 mAb blocked the up-regulated CD4(+)T proliferation and significantly reduced the IFN-γ level. At the same time, activated CD5(-)CD1d(low)B cells showed no inhibitory effect on CD4(+)T cells. Further study revealed that IL-10 expression in the CD5(+)CD1d(high) B cells were much higher than that in the CD5(-)CD1d(low)B cells after stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours. Conclusion CD5(+)CD1d(high) B cells activated by CpG-ODN combined with anti-CD40 mAb have immune inhibitory effects on CD4(+)T cell activation in vitro , which possibly due to IL-10 secretion. PMID:27609568

  3. Differential gene expression in the murine thymus assayed by quantitative hybridization of arrayed cDNA clones

    SciTech Connect

    Nguyen, C.; Rocha, D.; Granjeaud, S.

    1995-09-01

    High-throughput measurement of hybridization signatures obtained using complex probes prepared from poly(A){sup +} RNA and high-density cDNA colony filters is described. The performance of the system, elimination of artifacts, and verification of the validity of the data are discussed. cDNAs corresponding to sequences present at levels of approximately 0.01% in the complex probe can be detected. Good correlation is observed between expression profiles determined by this method and by Northern blotting. The method is applied to a preliminary investigation of differential expression in three cell types present in the murine thymus. 41 refs., 3 figs., 1 tab.

  4. Timing and expression of the angiopoietin-1-Tie-2 pathway in murine lung development and congenital diaphragmatic hernia.

    PubMed

    Grzenda, Adrienne; Shannon, John; Fisher, Jason; Arkovitz, Marc S

    2013-01-01

    Congenital diaphragmatic hernia (CDH) is one of the most common congenital abnormalities. Children born with CDH suffer a number of co-morbidities, the most serious of which is respiratory insufficiency from a combination of alveolar hypoplasia and pulmonary vascular hypertension. All children born with CDH display some degree of pulmonary hypertension, the severity of which has been correlated with mortality. The molecular mechanisms responsible for the development of pulmonary hypertension in CDH remain poorly understood. Angiopoitein-1 (Ang-1), a central mediator in angiogenesis, participates in the vascular development of many tissues, including the lung. Although previous studies have demonstrated that Ang-1 might play an important role in the development of familial pulmonary hypertension, the role of Ang-1 in the development of the pulmonary hypertension associated with CDH is poorly understood. The aim of this study was to examine the role of the Ang-1 pathway in a murine model of CDH. Here, we report that Ang-1 appears important in normal murine lung development, and have established its tissue-level expression and localization patterns at key time-points. Additionally, our data from a nitrofen and bisdiamine-induced murine model of CDH suggests that altered expression patterns of Ang-1, its receptor Tie-2 and one of its transcription factors (epithelium-specific Ets transcription factor 1) might be responsible for development of the pulmonary vasculopathy seen in the setting of CDH. PMID:22917924

  5. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    NASA Astrophysics Data System (ADS)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  6. Integrated Expression Profiles of mRNA and miRNA in Polarized Primary Murine Microglia

    PubMed Central

    Freilich, Robert W.; Woodbury, Maya E.; Ikezu, Tsuneya

    2013-01-01

    Neuroinflammation contributes to many neurologic disorders including Alzheimer’s disease, multiple sclerosis, and stroke. Microglia is brain resident myeloid cells and have emerged as a key driver of the neuroinflammatory responses. MicroRNAs (miRNAs) provide a novel layer of gene regulation and play a critical role in regulating the inflammatory response of peripheral macrophages. However, little is known about the miRNA in inflammatory activation of microglia. To elucidate the role that miRNAs have on microglial phenotypes under classical (M1) or alternative (M2) activation under lipopolysaccharide (‘M1’-skewing) and interleukin-4 (‘M2a’-skewing) stimulation conditions, we performed microarray expression profiling and bioinformatics analysis of both mRNA and miRNA using primary cultured murine microglia. miR-689, miR-124, and miR-155 were the most strongly associated miRNAs predicted to mediate pro-inflammatory pathways and M1-like activation phenotype. miR-155, the most strongly up-regulated miRNA, regulates the signal transducer and activator of transcription 3 signaling pathway enabling the late phase response to M1-skewing stimulation. Reduced expression in miR-689 and miR-124 are associated with dis-inhibition of many canonical inflammatory pathways. miR-124, miR-711, miR-145 are the strongly associated miRNAs predicted to mediate anti-inflammatory pathways and M2-like activation phenotype. Reductions in miR-711 and miR-124 may regulate inflammatory signaling pathways and peroxisome proliferator-activated receptor-gamma pathway. miR-145 potentially regulate peripheral monocyte/macrophage differentiation and faciliate the M2-skewing phenotype. Overall, through combined miRNA and mRNA expression profiling and bioinformatics analysis we have identified six miRNAs and their putative roles in M1 and M2-skewing of microglial activation through different signaling pathways. PMID:24244499

  7. Structural organization, expression, and functional characterization of the murine cytomegalovirus immediate-early gene 3.

    PubMed Central

    Messerle, M; Bühler, B; Keil, G M; Koszinowski, U H

    1992-01-01

    We have previously defined ie3 as a coding region located downstream of the ie1 gene which gives rise to a 2.75-kb immediate-early (IE) transcript. Here we describe the structural organization of the ie3 gene, the amino acid sequence of the gene product, and some of the functional properties of the protein. The 2.75-kb ie3 mRNA is generated by splicing and is composed of four exons. The first three exons, of 300, 111, and 191 nucleotides (nt), are shared with the ie1 mRNA and are spliced to exon 5, which is located downstream of the fourth exon used by the ie1 mRNA. Exon 5 starts 28 nt downstream of the 3' end of the ie1 mRNA and has a length of 1,701 nt. The IE3 protein contains 611 amino acids, the first 99 of which are shared with the ie1 product pp89. The IE3 protein expressed at IE times has a relative mobility of 88 kDa in gels, and a mobility shift to 90 kDa during the early phase is indicative of posttranslational modification. Sequence comparison reveals significant homology of the exon 5-encoded amino acid sequence with the respective sequence of UL 122, a component of the IE1-IE2 complex of human cytomegalovirus (HCMV). This homology is also apparent at the functional level. The IE3 protein is a strong transcriptional activator of the murine cytomegalovirus (MCMV) e1 promoter and shows an autoregulatory function by repression of the MCMV ie1/ie3 promoter. The high degree of conservation between the MCMV ie3 and HCMV IE2 genes and their products with regard to gene structure, amino acid sequence, and protein functions suggests that these genes play a comparable role in the transcriptional control of the two cytomegaloviruses. Images PMID:1309246

  8. HCELL Expression on Murine MSC Licenses Pancreatotropism and Confers Durable Reversal of Autoimmune Diabetes in NOD Mice

    PubMed Central

    Abdi, Reza; Moore, Robert; Sakai, Shinobu; Donnelly, Conor B.; Mounayar, Marwan; Sackstein, Robert

    2015-01-01

    Type 1 diabetes (T1D) is an immune-mediated disease resulting in destruction of insulin-producing pancreatic beta cells. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties, garnering increasing attention as cellular therapy for T1D and other immunologic diseases. However, MSCs generally lack homing molecules, hindering their colonization at inflammatory sites following intravenous (IV) administration. Here we analyzed whether enforced E-selectin ligand expression on murine MSCs could impact their effect in reversing hyperglycemia in non-obese diabetic (NOD) mice. Though murine MSCs natively do not express the E-selectin binding determinant sialyl Lewisx (sLex), we found that fucosyltransferase-mediated α(1,3)-exofucosylation of murine MSCs resulted in sLex display uniquely on cell surface CD44 thereby creating HCELL, the E-selectin-binding glycoform of CD44. Following IV infusion into diabetic NOD mice, allogeneic HCELL+ MSCs showed 3-fold greater peri-islet infiltrates compared to buffer-treated (i.e., HCELL−) MSCs, with distribution in proximity to E-selectin-expressing microvessels. Exofucosylation had no effect on MSC immunosuppressive capacity in in vitro assays, however, though engraftment was temporary for both HCELL+ and HCELL− MSCs, administration of HCELL+ MSCs resulted in durable reversal of hyperglycemia, whereas only transient reversal was observed following administration of HCELL− MSCs. Notably, exofucosylation of MSCs generated from CD44−/− mice induced prominent membrane expression of sLex, but IV administration of these MSCs into hyperglycemic NOD mice showed no enhanced pancreatotropism or reversal of hyperglycemia. These findings provide evidence that glycan engineering to enforce HCELL expression boosts trafficking of infused MSCs to pancreatic islets of NOD mice and substantially improves their efficacy in reversing autoimmune diabetes. PMID:25641589

  9. Expression of intronic miRNAs and their host gene Igf2 in a murine unilateral ureteral obstruction model

    PubMed Central

    Li, N.Q.; Yang, J.; Cui, L.; Ma, N.; Zhang, L.; Hao, L.R.

    2015-01-01

    The objective of this study was to determine the expression of miR-483 and miR-483* and the relationship among them, their host gene (Igf2), and other cytokines in a murine model of renal fibrosis. The extent of renal fibrosis was visualized using Masson staining, and fibrosis was scored 3 days and 1 and 2 weeks after unilateral ureteral obstruction (UUO). Expression of miR-483, miR-483* and various cytokine mRNAs was detected by real-time polymerase chain reaction (PCR). Expression of miR-483 and miR-483* was significantly upregulated in the UUO model, particularly miR-483 expression was the greatest 2 weeks after surgery. Additionally, miR-483 and miR-483* expression negatively correlated with Bmp7 expression and positively correlated with Igf2, Tgfβ, Hgf, and Ctgf expression, as determined by Pearson's correlation analysis. Hgf expression significantly increased at 1 and 2 weeks after the surgery compared to the control group. This study showed that miR-483 and miR-483* expression was upregulated in a murine UUO model. These data suggest that miR-483 and miR-483* play a role in renal fibrosis and that miR-483* may interact with miR-483 in renal fibrosis. Thus, these miRNAs may play a role in the pathogenesis of renal fibrosis and coexpression of their host gene Igf2. PMID:25831208

  10. Expression of surfactant proteins SP-A and SP-D in murine decidua and immunomodulatory effects on decidual macrophages.

    PubMed

    Madhukaran, Shanmuga Priyaa; Koippallil Gopalakrishnan, Aghila Rani; Pandit, Hrishikesh; Marri, Eswari Dodagatta-; Kouser, Lubna; Jamil, Kaiser; Alhamlan, Fatimah S; Kishore, Uday; Madan, Taruna

    2016-02-01

    Surfactant proteins SP-A and SP-D are pattern recognition innate immune molecules that belong to the C-type lectin family. In lungs, they play an important role in the clearance of pathogens and control of inflammation. SP-A and SP-D are also expressed in the female reproductive tract where they play an important role in pregnancy and parturition. However, the role of SP-A and SP-D expressed at the feto-maternal interface (decidua) remains unclear. Here, we have examined the expression of SP-A and SP-D in the murine decidua at 17.5 (pre-parturition) and 19.5dpc (near parturition) and their effect on lipopolysaccharide (LPS)-treated decidual macrophages. SP-A and SP-D were localized to stromal cells in the murine decidua at 17.5 and 19.5dpc in addition to cells lining the maternal spiral artery. Purified pre-parturition decidual cells were challenged with LPS with and without SP-A or SP-D, and expression of F4/80 and TNF-α were measured by flow cytometry. On their own, SP-A or SP-D did not affect the percentage of F4/80 positive cells while they suppressed the percentage of TNF-α positive cells. However, simultaneous addition of SP-A or SP-D, together with LPS, reduced TNF-α secreting F4/80 positive cells. It is likely that exogenous administration of SP-A and SP-D in decidua can potentially control infection and inflammation mediators during spontaneous term labor and infection-induced preterm labor. Thus, the presence of SP-A and SP-D in the murine decidua is likely to play a protective role against intrauterine infection during pregnancy. PMID:26421960

  11. CD40 Signaling to the Rescue: A CD8 Exhaustion Perspective in Chronic Infectious Diseases

    PubMed Central

    Bhadra, Rajarshi; Cobb, Dustin A.; Khan, Imtiaz A.

    2013-01-01

    Chronic infectious diseases such as HIV, HBV, and HCV, among others, cause severe morbidity and mortality globally. Progressive decline in CD8 functionality, survival, and proliferative potential—a phenomenon referred to as CD8 exhaustion—is believed to be responsible for poor pathogen control in chronic infectious diseases. While the role of negative inhibitory receptors such as PD-1 in augmenting CD8 exhaustion has been extensively studied, the role of positive costimulatory receptors remains poorly understood. In this review, we discuss how one such costimulatory pathway, CD40CD40L, regulates CD8 dysfunction and rescue. While the significance of this pathway has been extensively investigated in models of autoimmunity, acute infectious diseases, and tumor models, the role played by CD40CD40L in regulating CD8 exhaustion in chronic infectious diseases is just beginning to be understood. Considering that monotherapy with blocking antibodies targeting inhibitory PD-1-PD-L1 pathway is only partially effective at ameliorating CD8 exhaustion and that humanized CD40 agonist antibodies are currently available, a better understanding of the role of the CD40CD40L pathway in chronic infectious diseases will pave the way for the development of more robust immunotherapeutic and prophylactic vaccination strategies. PMID:23971530

  12. Recent developments in StemBase: a tool to study gene expression in human and murine stem cells

    PubMed Central

    Sandie, Reatha; Palidwor, Gareth A; Huska, Matthew R; Porter, Christopher J; Krzyzanowski, Paul M; Muro, Enrique M; Perez-Iratxeta, Carolina; Andrade-Navarro, Miguel A

    2009-01-01

    Background Currently one of the largest online repositories for human and mouse stem cell gene expression data, StemBase was first designed as a simple web-interface to DNA microarray data generated by the Canadian Stem Cell Network to facilitate the discovery of gene functions relevant to stem cell control and differentiation. Findings Since its creation, StemBase has grown in both size and scope into a system with analysis tools that examine either the whole database at once, or slices of data, based on tissue type, cell type or gene of interest. As of September 1, 2008, StemBase contains gene expression data (microarray and Serial Analysis of Gene Expression) from 210 stem cell samples in 60 different experiments. Conclusion StemBase can be used to study gene expression in human and murine stem cells and is available at . PMID:19284540

  13. Lymphocytes and not IFN-gamma mediate expression of iNOS by intestinal epithelium in murine cryptosporidiosis.

    PubMed

    Nordone, Shila K; Gookin, Jody L

    2010-05-01

    We hypothesized that unrecognized differences in epithelial expression of inducible nitric oxide synthase (iNOS), resulting from engineered immunodeficiency, could explain the contradictory findings of prior studies regarding the importance of nitric oxide (NO) in murine models of Cryptosporidium parvum infection. Severe combined immunodeficient mice (SCID) failed to constitutively or inducibly express epithelial iNOS or increase NO synthesis in response to C. parvum infection. In contrast, mice lacking IFN-gamma alone induced both epithelial iNOS expression and NO synthesis in response to infection. Accordingly, lymphocytes mediate epithelial expression of iNOS and NO synthesis independent of IFN-gamma in response to C. parvum infection. These findings in large part explain the contradictory conclusions of prior studies regarding the role of iNOS in C. parvum infection. PMID:20352449

  14. Structure, distribution, and expression of an ancient murine endogenous retroviruslike DNA family.

    PubMed Central

    Obata, M M; Khan, A S

    1988-01-01

    An endogenous retroviruslike DNA, B-26, was cloned from a BALB/c mouse embryo gene library by using a generalized murine leukemia virus DNA probe. Southern blot hybridization and nucleotide sequence analyses indicated that B-26 DNA might be a novel member of the GLN DNA family (A. Itin and E. Keshet, J. Virol. 59:301-307, 1986) which contains murine leukemia virus-related pol and env sequences. Northern analysis indicated that B-26-related RNAs of 8.4 and 3.0 kilobases were transcribed in thymus, spleen, brain, and liver tissues of 6-week-old BALB/c mice. Images PMID:3172346

  15. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

    SciTech Connect

    Bujak, Emil; Pretto, Francesca; Ritz, Danilo; Gualandi, Laura; Wulhfard, Sarah; Neri, Dario

    2014-09-10

    There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens

  16. Distal regulation of c-myb expression during IL-6-induced differentiation in murine myeloid progenitor M1 cells.

    PubMed

    Zhang, Junfang; Han, Bingshe; Li, Xiaoxia; Bies, Juraj; Jiang, Penglei; Koller, Richard P; Wolff, Linda

    2016-01-01

    The c-Myb transcription factor is a major regulator that controls differentiation and proliferation of hematopoietic progenitor cells, which is frequently deregulated in hematological diseases, such as lymphoma and leukemia. Understanding of the mechanisms regulating the transcription of c-myb gene is challenging as it lacks a typical promoter and multiple factors are involved. Our previous studies identified some distal regulatory elements in the upstream regions of c-myb gene in murine myeloid progenitor M1 cells, but the detailed mechanisms still remain unclear. In the present study, we found that a cell differentiation-related DNase1 hypersensitive site is located at a -28k region upstream of c-myb gene and that transcription factors Hoxa9, Meis1 and PU.1 bind to the -28k region. Circular chromosome conformation capture (4C) assay confirmed the interaction between the -28k region and the c-myb promoter, which is supported by the enrichment of CTCF and Cohesin. Our analysis also points to a critical role for Hoxa9 and PU.1 in distal regulation of c-myb expression in murine myeloid cells and cell differentiation. Overexpression of Hoxa9 disrupted the IL-6-induced differentiation of M1 cells and upregulated c-myb expression through binding of the -28k region. Taken together, our results provide an evidence for critical role of the -28k region in distal regulatory mechanism for c-myb gene expression during differentiation of myeloid progenitor M1 cells. PMID:27607579

  17. Preparation of anti-CD40 antibody modified magnetic PCL-PEG-PCL microspheres.

    PubMed

    Gao, Xiang; Kan, Bing; Gou, MaLing; Zhang, Juan; Guo, Gang; Huang, Ning; Zhao, Xia; Qian, ZhiYong

    2011-04-01

    Antibody modified magnetic polymeric microspheres have potential biomedical application. In this paper, anti-CD40 antibody modified magnetic poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL, PCEC) microspheres were prepared. First, PCL-PEG-PCL triblock copolymer was synthesized by ring-opening polymerization, followed by reaction with succinic anhydride, creating carboxylated PCL-PEG-PCL copolymer. Then, magnetite nanoparticles were encapsulated into carboxylated PCL-PEG-PCL microspheres, forming magnetic PCL-PEG-PCL microspheres with carboxyl group on their surface. Catalyzed by EDC/NHS, the anti-CD40 antibody was linked to these magnetic PCL-PEG-PCL microspheres, thus forming anti-CD40 modified PCL-PEG-PCL microspheres. These anti-CD40 antibody modified magnetic PCL-PEG-PCL microspheres may have potential application in cell separation. PMID:21702366

  18. Effects of representative glucocorticoids on TNFα- and CD40L-induced NF-κB activation in sensor cells.

    PubMed

    Cechin, Sirlene R; Buchwald, Peter

    2014-07-01

    Glucocorticoids are an important class of anti-inflammatory/immunosuppressive drugs. A crucial part of their anti-inflammatory action results from their ability to repress proinflammatory transcription factors such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) upon binding to the glucocorticoid receptor (GR). Accordingly, sensor cells quantifying their effect on inflammatory signal-induced NF-κB activation can provide useful information regarding their potencies as well as their transrepression abilities. Here, we report results obtained on their effect in suppressing both the TNFα- and the CD40L-induced activation of NF-κB in sensor cells that contain an NF-κB-inducible SEAP construct. In these cells, we confirmed concentration-dependent NF-κB activation for both TNFα and CD40L at low nanomolar concentrations (EC50). Glucocorticoids tested included hydrocortisone, prednisolone, dexamethasone, loteprednol etabonate, triamcinolone acetonide, beclomethasone dipropionate, and clobetasol propionate. They all caused significant, but only partial inhibition of these activations in concentration-dependent manners that could be well described by sigmoid response-functions. Despite the limitations of only partial maximum inhibitions, this cell-based assay could be used to quantitate the suppressing ability of glucocorticoids (transrepression potency) on the expression of proinflammatory transcription factors caused by two different cytokines in parallel both in a detailed, full dose-response format as well as in a simpler single-dose format. Whereas inhibitory potencies obtained in the TNF assay correlated well with consensus glucocorticoid potencies (receptor-binding affinities, Kd, RBA, at the GR) for all compounds, the non-halogenated steroids (hydrocortisone, prednisolone, and loteprednol etabonate) were about an order of magnitude more potent than expected in the CD40 assay in this system. PMID:24747770

  19. p62 regulates CD40-mediated NFκB activation in macrophages through interaction with TRAF6

    SciTech Connect

    Seibold, Kristina; Ehrenschwender, Martin

    2015-08-14

    CD40 is a member of the tumor necrosis factor (TNF) receptor family. Activation-induced recruitment of adapter proteins, so-called TNF-receptor-associated factors (TRAFs) to the cytoplasmic tail of CD40 triggers signaling cascades important in the immune system, but has also been associated with excessive inflammation in diseases such as atherosclerosis and rheumatoid arthritis. Especially, pro-inflammatory nuclear factor κB (NFκB) signaling emanating from CD40-associated TRAF6 appears to be a key pathogenic driving force. Consequently, targeting the CD40-TRAF6 interaction is emerging as a promising therapeutic strategy, but the underlying molecular machinery of this signaling axis is to date poorly understood. Here, we identified the multifunctional adaptor protein p62 as a critical regulator in CD40-mediated NFκB signaling via TRAF6. CD40 activation triggered formation of a TRAF6-p62 complex. Disturbing this interaction tremendously reduced CD40-mediated NFκB signaling in macrophages, while TRAF6-independent signaling pathways remained unaffected. This highlights p62 as a potential target in hyper-inflammatory, CD40-associated pathologies. - Highlights: • CD40 activation triggers interaction of the adapter protein TRAF6 with p62. • TRAF6-p62 interaction regulates CD40-mediated NFκB signaling in macrophages. • Defective TRAF6-p62 interaction reduces CD40-mediated NFκB activation in macrophages.

  20. Expression of skeletal muscle sodium channel (Nav1.4) or connexin32 prevents reperfusion arrhythmias in murine heart

    PubMed Central

    Anyukhovsky, Evgeny P.; Sosunov, Eugene A.; Kryukova, Yelena N.; Prestia, Kevin; Ozgen, Nazira; Rivaud, Mathilde; Cohen, Ira S.; Robinson, Richard B.; Rosen, Michael R.

    2011-01-01

    Aims Acute myocardial ischaemia induces a decrease in resting membrane potential [which leads to reduction of action potential (AP) Vmax] and intracellular acidification (which closes gap junctions). Both contribute to conduction slowing. We hypothesized that ventricular expression of the skeletal muscle Na+ channel, Nav1.4 (which activates fully at low membrane potentials), or connexin32 (Cx32, which is less pH-sensitive than connexin43) would support conduction and be antiarrhythmic. We tested this hypothesis in a murine model of ischaemia and reperfusion arrhythmias. Methods and results Empty adenovirus (Sham) or adenoviral constructs expressing either SkM1 (gene encoding Nav1.4) or Cx32 genes were injected into the left ventricular wall. Four days later, ventricular tachycardia (VT) occurred during reperfusion following a 5 min coronary occlusion. In Nav1.4- and Cx32-expressing mice, VT incidence and duration were lower than in Sham (P < 0.05). In vitro multisite microelectrode mapping was performed in the superfused right ventricular wall. To simulate ischaemic conditions, [K+] in solution was increased to 10 mmol/L and/or pH was decreased to 6.0. Western blots revealed Cx32 and Nav1.4 expression in both ventricles. Nav1.4 APs showed higher Vmax and conduction velocity (CV) than Shams at normal and elevated [K+]. Exposure of tissue to acid solution reduced intracellular pH to 6.4. There was no difference in CV between Sham and Cx32 groups in control solution. Acid solution slowed CV in Sham (P < 0.05) but not in Cx32. Conclusion Nav1.4 or Cx32 expression preserved normal conduction in murine hearts and decreased the incidence of reperfusion VT. PMID:20823275

  1. ACAT1 deletion in murine macrophages associated with cytotoxicity and decreased expression of collagen type 3A1

    SciTech Connect

    Rodriguez, Annabelle . E-mail: arodrig5@jhmi.edu; Ashen, M. Dominique; Chen, Edward S.

    2005-05-27

    In contrast to some published studies of murine macrophages, we previously showed that ACAT inhibitors appeared to be anti-atherogenic in primary human macrophages in that they decreased foam cell formation without inducing cytotoxicity. Herein, we examined foam cell formation and cytotoxicity in murine ACAT1 knockout (KO) macrophages in an attempt to resolve the discrepancies. Elicited peritoneal macrophages from normal C57BL6 and ACAT1 KO mice were incubated with DMEM containing acetylated LDL (acLDL, 100 {mu}g protein/ml) for 48 h. Cells became cholesterol enriched and there were no differences in the total cholesterol mass. Esterified cholesterol mass was lower in ACAT1 KO foam cells compared to normal macrophages (p < 0.04). Cytotoxicity, as measured by the cellular release of [{sup 14}C]adenine from macrophages, was approximately 2-fold greater in ACAT1 KO macrophages as compared to normal macrophages (p < 0.0001), and this was independent of cholesterol enrichment. cDNA microarray analysis showed that ACAT1 KO macrophages expressed substantially less collagen type 3A1 (26-fold), which was confirmed by RT-PCR. Total collagen content was also significantly reduced (57%) in lung homogenates isolated from ACAT1 KO mice (p < 0.02). Thus, ACAT1 KO macrophages show biochemical changes consistent with increased cytotoxicity and also a novel association with decreased expression of collagen type 3A1.

  2. [Mesenchymal stem cells expressing cytosine deaminase inhibit growth of murine melanoma B16F10 in vivo].

    PubMed

    Krasikova, L S; Karshieva, S S; Cheglakov, I B; Belyavsky, A V

    2015-01-01

    The aim of this study was to estimate the efficacy of mesenchymal stem cell-based suicide gene therapy in mice bearing murine melanoma B16F10. Adipose mesenchymal stem cells (MSCs) were transfected with plasmid constructs expressing cytosine deaminase fused with uracil phosphoribosyltransferase (CDA/UPRT) or CDA/UPRT fused with HSV-1 tegument protein VP22 (CDA/UPRT/VP22). In this study, we demonstrate that direct intratumoral transplantation of MSCs expressing CDA/UPRT or CDA/UPRT/VP22 followed by systemic administration of 5-fluorocytosine (5-FC) results in a significant inhibition of tumor growth. There was a 53% reduction in tumor volume in mice treated with CDA/UPRT-MSCs and 58% reduction in tumor volume in mice treated with CDA/UPRT/VP22-MSCs as compared with control animals transplanted with B16F10 melanoma alone. Injection of CDA/UPRT-MSC and CDA/UPRT/VP22-MSC prolonged the life span of mice bearing B16F10 melanoma by 15 and 26%, respectively. The data indicate that in murine B16F10 melanoma model, MSCs encoding CDA/UPRT suicide gene have a significant antitumor effect. PMID:26710783

  3. Local expression of matrix metalloproteinases, cathepsins, and their inhibitors during the development of murine antigen-induced arthritis

    PubMed Central

    Schurigt, Uta; Stopfel, Nadine; Hückel, Marion; Pfirschke, Christina; Wiederanders, Bernd; Bräuer, Rolf

    2005-01-01

    Cartilage and bone degradation, observed in human rheumatoid arthritis (RA), are caused by aberrant expression of proteinases, resulting in an imbalance of these degrading enzymes and their inhibitors. However, the role of the individual proteinases in the pathogenesis of degradation is not yet completely understood. Murine antigen-induced arthritis (AIA) is a well-established animal model of RA. We investigated the time profiles of expression of matrix metalloproteinase (MMP), cathepsins, tissue inhibitors of matrix metalloproteinases (TIMP) and cystatins in AIA. For primary screening, we revealed the expression profile with Affymetrix oligonucleotide chips. Real-time polymerase chain reaction (PCR) analyses were performed for the validation of array results, for tests of more RNA samples and for the completion of the time profile. For the analyses at the protein level, we used an MMP fluorescence activity assay and zymography. By a combination of oligonucleotide chips, real-time PCR and zymography, we showed differential expressions of several MMPs, cathepsins and proteinase inhibitors in the course of AIA. The strongest dysregulation was observed on days 1 and 3 in the acute phase. Proteoglycan loss analysed by safranin O staining was also strongest on days 1 and 3. Expression of most of the proteinases followed the expression of pro-inflammatory cytokines. TIMP-3 showed an expression profile similar to that of anti-inflammatory interleukin-4. The present study indicates that MMPs and cathepsins are important in AIA and contribute to the degradation of cartilage and bone. PMID:15642138

  4. Dexamethasone Attenuates VEGF Expression and Inflammation but Not Barrier Dysfunction in a Murine Model of Ventilator–Induced Lung Injury

    PubMed Central

    Hegeman, Maria A.; Hennus, Marije P.; Cobelens, Pieter M.; Kavelaars, Annemieke; Jansen, Nicolaas J. G.; Schultz, Marcus J.; van Vught, Adrianus J.; Heijnen, Cobi J.

    2013-01-01

    Background Ventilator–induced lung injury (VILI) is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF) has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar–capillary barrier dysfunction in an established murine model of VILI. Methods Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O (“lower” tidal volumes of ∼7.5 ml/kg; LVT) or 18 cmH2O (“higher” tidal volumes of ∼15 ml/kg; HVT). Dexamethasone was intravenously administered at the initiation of HVT–ventilation. Non–ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios. Results Particularly HVT–ventilation led to alveolar–capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro–inflammatory response in lungs of HVT–ventilated mice, without improving alveolar–capillary permeability, gas exchange and pulmonary edema formation. Conclusions Dexamethasone treatment completely abolishes ventilator–induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar–capillary barrier dysfunction in an established murine model of VILI. PMID:23451215

  5. Etomidate induces cytotoxic effects and gene expression in a murine leukemia macrophage cell line (RAW264.7).

    PubMed

    Wu, Rick Sai-Chuen; Wu, King-Chuen; Yang, Jai-Sing; Chiou, Shang-Ming; Yu, Chun-Shu; Chang, Shu-Jen; Chueh, Fu-Shin; Chung, Jing-Gung

    2011-06-01

    Etomidate is an important tool in the arsenal of the emergency physician, and it has been used in a variety of scenarios for both intubation and procedural sedation. In the present study, we investigated the cytotoxicity of etomidate including induction of apoptosis, and levels of protein and gene expressions associated with apoptotic cell death in murine leukemia RAW264.7 cells in vitro. Cytotoxic and apoptotic responses to etomidate of RAW264.7 cells, including cell morphological changes and cell viability were examined and measured by phase-contrast microscopy and flow cytometric assay, respectively. Results indicated that etomidate increased apoptotic cell morphological changes and reduced cell viability in RAW264.7 cells. 4',6-Diamidino-2-phenylindole (DAPI) staining also showed that etomidate induced the formation of apoptotic bodies, a characteristic of apoptosis. Results from Western blotting indicated that etomidate enhanced the levels of cytochrome c, apoptosis-inducing factor (AIF), endonuclease G (Endo G), caspase-9, caspase-3 active form and Bax proteins, but it inhibited the expression of Bcl-xl, leading to apoptosis. DNA microarray assay indicated that etomidate increased the expression of 17 genes (LOC676175; Gm14636; 2810021G02Rik; Iltifb; Olfr1167; Ttc30b; Olfr766; Gas5; Rgs1; LOC280487; V1rd4; Hist1h2bc; V1rj3; Gm10366; Olfr192; Gm10002 and Cspp1) and reduced the expression of 15 genes: (Gm10152; Gm5334; Olfr216; Lcn9; Gm10683; Gm5100; Tdgf1; Cypt2; Gm5595; 1700018F24Rik; Gm10417; Maml2; Olfr591; Trdn and Apol7c). In conclusion, etomidate induced cytotoxic and apoptotic effects the in murine leukemia RAW264.7 cells in vitro. PMID:21737642

  6. Nasal administration of interleukin-33 induces airways angiogenesis and expression of multiple angiogenic factors in a murine asthma surrogate.

    PubMed

    Shan, Shan; Li, Yan; Wang, Jingjing; Lv, Zhe; Yi, Dawei; Huang, Qiong; Corrigan, Chris J; Wang, Wei; Quangeng, Zhang; Ying, Sun

    2016-05-01

    The T-helper cell type 2-promoting cytokine interleukin-33 (IL-33) has been implicated in asthma pathogenesis. Angiogenesis is a feature of airways remodelling in asthma. We hypothesized that IL-33 induces airways angiogenesis and expression of angiogenic factors in an established murine surrogate of asthma. In the present study, BALB/c mice were subjected to serial intranasal challenge with IL-33 alone for up to 70 days. In parallel, ovalbumin (OVA) -sensitized mice were subjected to serial intranasal challenge with OVA or normal saline to serve as positive and negative controls, respectively. Immunohistochemical analysis of expression of von Willebrand factor and erythroblast transformation-specific-related gene, both blood vessel markers, and angiogenic factors angiogenin, insulin-like growth factor-1, endothelin-1, epidermal growth factor and amphiregulin was performed in lung sections ex vivo. An established in-house assay was used to test whether IL-33 was able to induce microvessel formation by human vascular endothelial cells. Results showed that serial intranasal challenge of mice with IL-33 or OVA resulted in proliferation of peribronchial von Willebrand factor-positive blood vessels to a degree closely related to the total expression of the angiogenic factors amphiregulin, angiogenin, endothelin-1, epidermal growth factor and insulin-like growth factor-1. IL-33 also induced microvessel formation by human endothelial cells in a concentration-dependent fashion in vitro. Our data are consistent with the hypothesis that IL-33 has the capacity to induce angiogenesis at least partly by increasing local expression of multiple angiogenic factors in an allergen-independent murine asthma surrogate, and consequently that IL-33 or its receptor is a potential novel molecular target for asthma therapy. PMID:27035894

  7. Expression of the platelet-activating factor receptor enhances benzyl isothiocyanate-induced apoptosis in murine and human melanoma cells.

    PubMed

    Sahu, Ravi Prakash

    2015-07-01

    Melanoma cells often express platelet-activating factor receptor (PAF-R), which has been demonstrated to increase metastatic behavior. However, the effect of PAF-R on the responsiveness of melanoma to naturally occurring cytotoxic agents remains to be elucidated. The present study aimed to determine the relative cytotoxicity and mechanism of benzyl isothiocyanate (BITC), a component of cruciferous vegetables, in melanoma cells expressing PAF-R. To evaluate the importance of PAF-R signaling in melanoma cell growth, PAF-R-negative murine B16F10 cells were transduced with a retrovirus containing the cDNA for PAF-R to generate cells stably expressing PAF-R (B16-PAF-R) or an empty vector (MSCV) to generate PAF-R-deficient B16-MSCV control cells. Activation of PAF-R, using the PAF-R agonist, 1-hexadecyl-2-N-methylcarbamoyl-3-glycerophosphocholine, induced an increase in the proliferation of B16-PAF-R cells compared with the B16-MSCV cells. Reverse transcription quantitative polymerase chain reaction revealed the presence of functional PAF-R in human melanoma SK23MEL cells, but not in SK5MEL cells. The present study investigated the effect of BITC treatments on the survival of murine and human melanoma cells, in the presence or absence of functional PAF-R. The results revealed that treatment with BITC decreased the survival rate of the PAF-R-positive and negative murine and human melanoma cells. However, the expression of PAF-R substantially augmented BITC-mediated cytotoxicity in the PAF-R-positive cells at lower concentrations compared with the PAF-R-negative cells. In order to determine the underlying mechanism, flow cytometric analysis was used, which demonstrated a significant increase in the generation of reactive oxygen species (ROS) in the B16-PAF-R cells compared with the B16-MSCV cells, which enhanced apoptosis by BITC, as measured by increased caspase-3/7 luminescence. Notably, the BITC-mediated decreased cell survival rate, increased ROS and increased

  8. Identification of a neuronal gene expression signature: role of cell cycle arrest in murine neuronal differentiation in vitro

    PubMed Central

    Felfly, Hady; Xue, Jin; Zambon, Alexander C.; Muotri, Alysson; Zhou, Dan

    2011-01-01

    Stem cells are a potential key strategy for treating neurodegenerative diseases in which the generation of new neurons is critical. A better understanding of the characteristics and molecular properties of neural stem cells (NSCs) and differentiated neurons can help with assessing neuronal maturity and, possibly, in devising better therapeutic strategies. We have performed an in-depth gene expression profiling study of murine NSCs and primary neurons derived from embryonic mouse brains. Microarray analysis revealed a neuron-specific gene expression signature that distinguishes primary neurons from NSCs, with elevated levels of transcripts involved in neuronal functions, such as neurite development and axon guidance in primary neurons and decreased levels of multiple cytokine transcripts. Among the differentially expressed genes, we found a statistically significant enrichment of genes in the ephrin, neurotrophin, CDK5, and actin pathways, which control multiple neuronal-specific functions. We then artificially blocked the cell cycle of NSCs with mitomycin C (MMC) and examined cellular morphology and gene expression signatures. Although these MMC-treated NSCs displayed a neuronal morphology and expressed some neuronal differentiation marker genes, their gene expression patterns were very different from primary neurons. We conclude that 1) fully differentiated mouse primary neurons display a specific neuronal gene expression signature; 2) cell cycle block at the S phase in NSCs with MMC does not induce the formation of fully differentiated neurons; 3) cytokines change their expression pattern during differentiation of NSCs into neurons; and 4) signaling pathways of ephrin, neurotrophin, CDK5, and actin, related to major neuronal features, are dynamically enriched in genes showing changes in expression level. PMID:21677276

  9. Expression and regulation of Ang-2 in murine ovaries during sexual maturation and development of corpus luteum.

    PubMed

    Guo, B; Zhang, X-M; Li, S-J; Tian, X-C; Wang, S-T; Li, D-D; Liu, D-F; Yue, Z-P

    2012-01-01

    The aim of this study was to examine the expression and regulation of angiopoietin-2 (Ang-2) in murine ovaries during sexual maturation, gonadotropin treatment and luteal development by in situ hybridization and RT-PCR. By in situ hybridization Ang-2 mRNA was mainly localized in granulosa cells, thecal cells and corpus luteum, otherwise in oocytes. Moreover, Ang-2 mRNA was highly expressed in corpus luteum and granulosa cells of atretic follicles. According to RT-PCR data, Ang-2 mRNA was lowly expressed on day 10 after birth, then expression levels gradually increased and reached their highest values on day 25 after birth. In the superovulated model of immature mice, Ang-2 expression was strongly induced by equine chorionic gonadotropin (eCG) 48 h post the eCG injection, and was high from 0.5 to 13 h after hCG treatment. In situ hybridization showed that Ang-2 mRNA was highly expressed in corpus luteum from day 2 to 9 post the hCG injection, then the expression levels gradually declined on days 11 and 13 after hCG treatment. According to RT-PCR data, the levels of Ang-2 mRNA expression showed a decline after the hCG injection, with a nadir on day 3, followed by an increase, reaching the highest level on day 9 post-hCG injection. Then again Ang-2 expression gradually declined from day 11 to 15 after hCG injection. These results suggest that Ang-2 may be involved in follicular development, atresia, ovulation, and corpus luteum formation and regression. PMID:23350236

  10. Analysis of the expression of murine glutaryl-CoA dehydrogenase: in vitro and in vivo studies.

    PubMed

    Woontner, M; Crnic, L S; Koeller, D M

    2000-02-01

    Glutaric acidemia type I (GAI) is an autosomal recessive organic acidemia caused by a mutation in the gene encoding glutaryl-CoA dehydrogenase (GCD). Clinically, GAI is characterized by progressive dystonia, resulting from degeneration of neurons in the caudate and putamen nuclei of the striatum. In an attempt to understand the basis for the specific neuropathology in GAI, we have analyzed the expression of the murine GCD gene using both in vitro and in vivo approaches. Transfection studies mapped the mouse GCD promoter to a 500-bp region of DNA 5' of the translation start site. The promoter lacks a TATA consensus sequence, but includes possible binding sites for several transcription factors with roles in the regulation of nuclear genes encoding mitochondrial proteins. Western blot and RT/PCR analyses of mouse tissues demonstrated that GCD is ubiquitously expressed, with the highest levels of expression in liver and kidney, consistent with its role in amino acid oxidation. Expression in multiple regions of the brain was also detected by Western blotting. Based on these results we conclude that the specific neuropathology associated with GCD deficiency in GAI cannot be accounted for by its expression pattern. PMID:10720438

  11. Induction of murine adenosine A(2A) receptor expression by LPS: analysis of the 5' upstream promoter.

    PubMed

    Elson, G; Eisenberg, M; Garg, C; Outram, S; Ferrante, C J; Hasko, G; Leibovich, S J

    2013-04-01

    Non-activated macrophages express low levels of A(2A)Rs and lipopolysaccharides (LPS) upregulates A(2A)R expression in an NF-κB-dependent manner. The murine A(2A)R gene is encoded by three exons, m1, m2 and m3. Exons m2 and m3 are conserved, while m1 encodes the 5' untranslated UTR. Three m1 variants have been defined, m1A, m1B and m1C, with m1C being farthest from the transcriptional start site. LPS upregulates A(2A)Rs in primary murine peritoneal and bone-marrow-derived macrophages and RAW264.7 cells by selectively splicing m1C to m2, through a promoter located upstream of m1C. We have cloned ∼1.6 kb upstream of m1C into pGL4.16(luc2CP/Hygro) promoterless vector. This construct in RAW 264.7 cells responds to LPS, and adenosine receptor agonists augmented LPS responsiveness. The NF-κB inhibitors BAY-11 and triptolide inhibited LPS-dependent induction. Deletion of a key proximal NF-κB site (402-417) abrogated LPS responsiveness, while deletion of distal NF-κB and C/EBPβ sites did not. Site-directed mutagenesis of CREB (309-320), STAT1 (526-531) and AP2 (566-569) sites had little effect on LPS and adenosine receptor agonist responsiveness; however, mutation of a second STAT1 site (582-588) abrogated this responsiveness. Further analysis of this promoter should provide valuable insights into regulation of A(2A)R expression in macrophages in response to inflammatory stimuli. PMID:23328845

  12. The Influence of Loud Sound Stress on Expression of Osmotic Stress Protein 94 in the Murine Inner Ear

    PubMed Central

    Yamamoto, Hiroshi; Shi, Xiaorui; Nuttall, Alfred L.

    2009-01-01

    Osmotic stress protein 94 (OSP94), a member of the HSP110/SSE subfamily, is expressed in certain organs such as the kidney, testis, and brain where it can act as a molecular chaperon. In general, its alteration in expression is in response to hyper-ionic and osmotic stress as well as heat shock stress. Since many cells in the inner ear are involved in active ion transportation and are constantly exposed to two ionic different environments, we hypothesize that OSP94 may be expressed in the inner ear and its expression may be influenced by loud sound stress (LSS). With immunohistochemistry combined with confocal microscopy, immunoblotting, and RT-PCR techniques, we found that OSP94 was widely expressed in various cells in the murine cochlea including the stria vascularis (SV), the organ of Corti (OC), the interdental cells, spiral ganglion cells, the spiral ligament, and Reissner’s membrane. Under the unstressed condition, the transcription and protein level of OSP94 expression in the inner ear was quantitatively similar to that of the kidney. Furthermore, its expression in the inner ear by LSS from broadband noise at 117dB/SPL was upregulated, but remained unchanged in the kidney. In particular, the upregulation of OSP94 in the cochlear lateral wall tissue (CLW) was slowly elicited in a LSS time-dependent manner compared with the response of two other heat shock proteins (HSPs); HSP25 and HSP70 are considered to play a cytoprotective role under stressful conditions. Our results show that OSP94 is expressed in the inner ear and indicate this may be necessary for cells in a special ionic and osmotic environment such as endo- perilymphatic ion compartments. The organ-specific upregulation of OSP94 by acoustic overstimulation reveals that OSP94 in the inner ear is potentially important for cellular functional adaptation to LSS. PMID:19059312

  13. Expression of vascular endothelial growth factor (VEGF)-B and its receptor (VEGFR1) in murine heart, lung and kidney.

    PubMed

    Muhl, Lars; Moessinger, Christine; Adzemovic, Milena Z; Dijkstra, Marike H; Nilsson, Ingrid; Zeitelhofer, Manuel; Hagberg, Carolina E; Huusko, Jenni; Falkevall, Annelie; Ylä-Herttuala, Seppo; Eriksson, Ulf

    2016-07-01

    Metabolic diseases, such as obesity and diabetes, are a serious burden for the health system. Vascular endothelial growth factor (VEGF)-B has been shown to regulate tissue uptake and accumulation of fatty acids and is thus involved in these metabolic diseases. However, the cell-type-specific expression pattern of Vegfb and its receptor (VEGFR1, gene Flt1) remains unclear. We explore the expression of Vegfb and Flt1 in the murine heart, lung and kidney by utilizing β-galactosidase knock-in mouse models and combining the analysis of reporter gene expression and immunofluorescence microscopy. Furthermore, Flt1 heterozygous mice were analyzed with regard to muscular fatty acid accumulation and peripheral insulin sensitivity. Throughout the heart, Vegfb expression was found in cardiomyocytes with a postnatal ventricular shift corresponding to known changes in energy requirements. Vegfb expression was also found in the pulmonary myocardium of the lung and in renal epithelial cells of the thick ascending limb of Henle's loop, the connecting tubule and the collecting duct. In all analyzed organs, VEGFR1 expression was restricted to endothelial cells. We also show that reduced expression of VEGFR1 resulted in decreased cardiac fatty acid accumulation and increased peripheral insulin sensitivity, possibly as a result of attenuated VEGF-B/VEGFR1 signaling. Our data therefore support a tightly controlled, paracrine signaling mechanism of VEGF-B to VEGFR1. The identified cell-specific expression pattern of Vegfb and Flt1 might form the basis for the development of cell-type-targeted research models and contributes to the understanding of the physiological and pathological role of VEGF-B/VEGFR1 signaling. PMID:26928042

  14. APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation

    PubMed Central

    Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo

    2009-01-01

    Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches. PMID:18617267

  15. Dexamethasone promotes tolerance in vivo by enriching CD11clo CD40lo tolerogenic macrophages.

    PubMed

    Zheng, Guoxing; Zhong, Shibo; Geng, Yajun; Munirathinam, Gnanasekar; Cha, Isaac; Reardon, Catherine; Getz, Godfrey S; van Rooijen, Nico; Kang, Youmin; Wang, Bin; Chen, Aoshuang

    2013-01-01

    We previously showed that antigen immunization in the presence of the immunosuppressant dexamethasone (a strategy we termed "suppressed immunization") could tolerize established recall responses of T cells. However, the mechanism by which dexamethasone acts as a tolerogenic adjuvant has remained unclear. In the present study, we show that dexamethasone enriches CD11c(lo) CD40(lo) macrophages in a dose-dependent manner in the spleen and peripheral lymph nodes of mice by depleting all other CD11c(+) CD40(+) cells including dendritic cells. The enriched macrophages display a distinct MHC class II (MHC II)(lo) CD86(hi) phenotype. Upon activation by antigen in vivo, CD11c(lo) CD40(lo) macrophages upregulate IL-10, a classic marker for tolerogenic antigen-presenting cells, and elicit a serum IL-10 response. When presenting antigen in vivo, these cells do not elicit recall responses from memory T cells, but rather stimulate the expansion of antigen-specific regulatory T cells. Moreover, the depletion of CD11c(lo) CD40(lo) macrophages during suppressed immunization diminishes the tolerogenic efficacy of the treatment. These results indicate that dexamethasone acts as a tolerogenic adjuvant partly by enriching the CD11c(lo) CD40(lo) tolerogenic macrophages. PMID:23001956

  16. CD40 Stimulation Obviates Innate Sensors and Drives T Cell Immunity in Cancer.

    PubMed

    Byrne, Katelyn T; Vonderheide, Robert H

    2016-06-21

    Cancer immunotherapies are more effective in tumors with robust T cell infiltrates, but mechanisms to convert T cell-devoid tumors with active immunosuppression to those capable of recruiting T cells remain incompletely understood. Here, using genetically engineered mouse models of pancreatic ductal adenocarcinoma (PDA), we demonstrate that a single dose of agonistic CD40 antibody with chemotherapy rendered PDA susceptible to T cell-dependent destruction and potentiated durable remissions. CD40 stimulation caused a clonal expansion of T cells in the tumor, but the addition of chemotherapy optimized myeloid activation and T cell function. Although recent data highlight the requirement for innate sensors in cancer immunity, these canonical pathways-including TLRs, inflammasome, and type I interferon/STING-played no role in mediating the efficacy of CD40 and chemotherapy. Thus, CD40 functions as a non-redundant mechanism to convert the tumor microenvironment immunologically. Our data provide a rationale for a newly initiated clinical trial of CD40 and chemotherapy in PDA. PMID:27292635

  17. Regulation of the expression of nitric oxide synthase and leishmanicidal activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages.

    PubMed

    Proudfoot, L; Nikolaev, A V; Feng, G J; Wei, W Q; Ferguson, M A; Brimacombe, J S; Liew, F Y

    1996-10-01

    Lipophosphoglycan (LPG) glycoconjugates from promastigotes of Leishmania were not able to induce the expression of the cytokine-inducible nitric oxide synthase (iNOS) by the murine macrophage cell line, J774. However, they synergize with interferon gamma to stimulate the macrophages to express high levels of iNOS. This synergistic effect was critically time-dependent. Preincubation of J774 cells with the LPG glycans 4-18 h before stimulation with interferon gamma resulted in a significant reduction in the expression of iNOS mRNA and of NO synthesis, compared with cells preincubated with culture medium alone. The regulatory effect on the induction of iNOS by LPG is located in the LPG phosphoglycan disaccharide backbone. Synthetic fragments of this backbone had a similar regulatory effect on NO synthesis. Further, the production of NO by activated macrophages in the present system was correlated directly with the leishmanicidal capacity of the cells. These data therefore demonstrate that LPG glycoconjugates have a profound effect on the survival of Leishmania parasites through their ability to regulate the expression of iNOS by macrophages. PMID:8855295

  18. Regulation of the expression of nitric oxide synthase and leishmanicidal activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages.

    PubMed Central

    Proudfoot, L; Nikolaev, A V; Feng, G J; Wei, W Q; Ferguson, M A; Brimacombe, J S; Liew, F Y

    1996-01-01

    Lipophosphoglycan (LPG) glycoconjugates from promastigotes of Leishmania were not able to induce the expression of the cytokine-inducible nitric oxide synthase (iNOS) by the murine macrophage cell line, J774. However, they synergize with interferon gamma to stimulate the macrophages to express high levels of iNOS. This synergistic effect was critically time-dependent. Preincubation of J774 cells with the LPG glycans 4-18 h before stimulation with interferon gamma resulted in a significant reduction in the expression of iNOS mRNA and of NO synthesis, compared with cells preincubated with culture medium alone. The regulatory effect on the induction of iNOS by LPG is located in the LPG phosphoglycan disaccharide backbone. Synthetic fragments of this backbone had a similar regulatory effect on NO synthesis. Further, the production of NO by activated macrophages in the present system was correlated directly with the leishmanicidal capacity of the cells. These data therefore demonstrate that LPG glycoconjugates have a profound effect on the survival of Leishmania parasites through their ability to regulate the expression of iNOS by macrophages. Images Fig. 4 PMID:8855295

  19. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    PubMed

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. PMID:24861204

  20. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders

    PubMed Central

    Moustafa, Dina A.; Scarff, Jennifer M.; Garcia, Preston P.; Cassidy, Sara K. B.; DiGiandomenico, Antonio; Waag, David M.; Inzana, Thomas J.; Goldberg, Joanna B.

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine. PMID:26148026

  1. Expression of the NS5 (VPg) Protein of Murine Norovirus Induces a G1/S Phase Arrest

    PubMed Central

    Davies, Colin; Ward, Vernon K.

    2016-01-01

    Murine norovirus-1 (MNV-1) is known to subvert host cell division inducing an accumulation of cells in the G0/G1 phase, creating conditions where viral replication is favored. This study identified that NS5 (VPg), is capable of inducing cell cycle arrest in the absence of viral replication or other viral proteins in an analogous manner to MNV-1 infection. NS5 expression induced an accumulation of cells in the G0/G1 phase in an asynchronous population by inhibiting progression at the G1/S restriction point. Furthermore, NS5 expression resulted in a down-regulation of cyclin A expression in asynchronous cells and inhibited cyclin A expression in cells progressing from G1 to S phase. The activity of NS5 on the host cell cycle occurs through an uncharacterized function. Amino acid substitutions of NS5(Y26A) and NS5(F123A) that inhibit the ability for NS5 to attach to RNA and recruit host eukaryotic translation initiation factors, respectively, retained the ability to induce an accumulation of cells in the G0/G1 phase as identified for wild-type NS5. To the best of our knowledge, this is the first report of a VPg protein manipulating the host cell cycle. PMID:27556406

  2. CD40 Ligand and GMCSF Coexpression Enhance the Immune Responses and Protective Efficacy of PCV2 Adenovirus Vaccine.

    PubMed

    Li, Delong; Huang, Yong; Du, Qian; Wang, Zhenyu; Chang, Lingling; Zhao, Xiaomin; Tong, Dewen

    2016-04-01

    Porcine circovirus 2 (PCV2) capsid protein (Cap) is the major structural protein that is responsible for neutralizing antibodies development and protective immunity, thus it is usually used to develop vaccines against porcine circovirus-associated disease (PCVAD). Porcine CD40 ligand (CD40L) and granulocyte-macrophage colony-stimulating factor (GMCSF) have positive immunostimulatory effects on immunocytes and have been applied in vaccine efficacy improvement as attractive adjuvant cytokines, respectively. However, whether these two cytokines can produce synergistic effect in vaccines still need to be further studied. In this study, porcine CD40L and GMCSF were inserted into recombinant adenoviruses to test the immunogenicity of PCV2 adenovirus vaccine in mice. Western blot and indirect immunofluorescence assay showed that Ad-Cap, Ad-CD40L-Cap, Ad-Cap-GMCSF, and Ad-CD40L-Cap-GMCSF were successfully constructed. Indirect ELISA and virus neutralizing assay showed that CD40L and GMCSF could enhance humoral immune responses, and PCV2 Cap-specific antibody titer and neutralizing activities were significantly higher in Ad-CD40L-Cap-GMCSF group than that in the other groups that just inserted either porcine CD40L or GMCSF in recombinant adenoviruses. Moreover, lymphocyte proliferation assay and cytokine release assay showed that CD40L and GMCSF enhanced the cellular immune responses of Ad-Cap, and had synergistic effects in lymphocyte proliferative activities and Th1-type cytokine production. Following PCV2 challenge, the viral loads in lungs of Ad-CD40L-Cap-GMCSF group were significantly lower compared with Ad-Cap, Ad-CD40L-Cap, and Ad-Cap-GMCSF group. Taken together, the results of this study demonstrated that CD40L and GMCSF could synergistically enhance the protective immune responses of PCV2 adenovirus vaccine, which would be used as a potent vaccine for the prevention and control of PCVAD. PMID:26982652

  3. Expression level and DNA methylation status of Glutathione-S-transferase genes in normal murine prostate and TRAMP tumors

    PubMed Central

    Mavis, Cory K.; Kinney, Shannon R. Morey; Foster, Barbara A.; Karpf, Adam R.

    2010-01-01

    BACKGROUND Glutathione-S-transferase (Gst) genes are down-regulated in human prostate cancer, and GSTP1 silencing is mediated by promoter DNA hypermethylation in this malignancy. We examined Gst gene expression and Gst promoter DNA methylation in normal murine prostates and Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) tumors. METHODS Primary and metastatic tumors were obtained from TRAMP mice, and normal prostates were obtained from strain-matched WT mice (n=15/group). Quantitative real-time RT-PCR was used to measure GstA4, GstK1, GstM1, GstO1, and GstP1 mRNA expression, and Western blotting and immunohistochemical staining was used to measure GstM1 and GstP1 protein expression. MassARRAY Quantitative Methylation Analysis was used to measure DNA methylation of the 5’ CpG islands of GstA4, GstK1, GstM1, GstO1, and GstP1. TRAMP-C2 cells were treated with the epigenetic remodeling drugs decitabine and trichostatin A (TSA) alone and in combination, and Gst gene expression was measured. RESULTS Of the genes analyzed, GstM1 and GstP1 were expressed at highest levels in normal prostate. All five Gst genes showed greatly reduced expression in primary tumors compared to normal prostate, but not in tumor metastases. Gst promoter methylation was unchanged in TRAMP tumors compared to normal prostate. Combined decitabine + TSA treatment significantly enhanced the expression of 4/5 Gst genes in TRAMP-C2 cells. CONCLUSIONS Gst genes are extensively downregulated in primary but not metastatic TRAMP tumors. Promoter DNA hypermethylation does not appear to drive Gst gene repression in TRAMP primary tumors; however, pharmacological studies using TRAMP cells suggest the involvement of epigenetic mechanisms in Gst gene repression. PMID:19444856

  4. Expression of infectious woodchuck hepatitis virus in murine and avian fibroblasts.

    PubMed Central

    Seeger, C; Baldwin, B; Tennant, B C

    1989-01-01

    The liver is the primary site for replication of the hepadnavirus genome. We asked whether the posttranscriptional phase of the viral replication cycle would depend on hepatocyte-specific functions. For this purpose, we assayed a previously constructed chimera between sequences of the cytomegalovirus immediate-early promoter-enhancer region and woodchuck hepatitis virus (WHV) (C. Seeger and J. Maragos, J. Virol. 63:1907-1915, 1989) for its ability to direct the synthesis of infectious WHV in hepatoma cells and in murine and avian fibroblast cells. Viruslike particles containing WHV DNA were produced transiently in transfected hepatoma cells and in fibroblasts. Inoculation of woodchucks with culture medium from hepatoma cells or fibroblasts transfected with viral DNA led to productive WHV infection, as observed following infection of woodchucks with serum from WHV-infected animals. These results demonstrate that posttranscriptional events of the hepadnavirus replication cycle are not dependent on hepatocyte-specific functions. Images PMID:2795716

  5. Regulation of CD1d expression by murine tumor cells: escape from immunosurveillance or alternate target molecules?

    PubMed

    Fiedler, Tim; Walter, Wolfgang; Reichert, Torsten E; Maeurer, Markus J

    2002-03-20

    alpha beta+ TCR T cells recognize peptide fragments displayed by MHC-class I or -class II molecules. Recently, additional mechanisms of antigen recognition by T cells have been identified, including CD1-mediated presentation of nonpeptide antigens. Only a limited number of CD1 antigens is retained in the mouse, i.e., the group II CD1 antigens, which are split into CD1D1 and CD1d2. Several T cell subsets have been shown to interact with murine CD1 antigens, including NK cells or "natural T cells" with the invariant V alpha 14 J alpha 281 TCR chain. Even if TAP defects may prevent classical endogenous antigen presentation in tumor cell lines, antigen presentation via CD1 is still functional. Therefore, CD1-mediated recognition of transformed cells by NK cells or "natural T cells" may represent an alternative way for immune surveillance. CD1 cell surface expression in murine tumor cell lines of different histology, including the B cell lymphoma A20, macrophage cell lines J774 and P388D1, mastocytoma P815, thymoma EL-4, melanoma B16, colon adenocarcinoma MC-38 and renal carcinoma Renca is regulated by Th1- (IFN-gamma), Th2- (IL-4, IL-10 and vIL-10) or GM-CSF (Th1/Th2) cytokines, depending on the tumor histology. In order to distinguish between CD1D1 and CD1d2 molecules, we examined differential expression of these CD1 isoforms by ratio RT-PCR: A20, EL-4, P815 and MC-38 cells exclusively express CD1D1 transcripts but not CD1D2 mRNA independent of cytokine treatment. Decreased CD1d expression leads to reduced immune recognition of CD1d+ tumor cells by freshly isolated NK1.1(+) effector cells as defined by cytolysis and IFN-gamma release. Thus, modulation of CD1 expression on tumor cells by cytokines may be advantageous to drive cellular anti-tumor antigen directed immune responses directed against TAP-independent, non-classical MHC restricting molecules. PMID:11920590

  6. CD40 ligand preferentially modulates immune response and enhances protection against influenza virus.

    PubMed

    Hashem, Anwar M; Gravel, Caroline; Chen, Ze; Yi, Yinglei; Tocchi, Monika; Jaentschke, Bozena; Fan, Xingliang; Li, Changgui; Rosu-Myles, Michael; Pereboev, Alexander; He, Runtao; Wang, Junzhi; Li, Xuguang

    2014-07-15

    CD40L, a key regulator of the immune system, was studied as both a targeting ligand and a molecular adjuvant in nucleoprotein (NP)-based host defense against influenza in mouse models with different genetic backgrounds. Adenoviral vectors secreting NP-CD40L fusion protein (denoted as rAd-SNP40L) afforded full protection of immunocompetent and immunocompromised mice (CD40L(-/-) and CD4(-/-)) against lethal influenza infection. Mechanistically, rAd-SNP40L preferentially induced early and persistent B cell germinal center formation, and accelerated Ig isotype-switching and Th1-skewed, NP-specific Ab response. Moreover, it drastically augmented primary and memory NP-specific CTL activity and polyfunctional CD8(+) T cells. The markedly enhanced nonneutralizing Abs and CTLs significantly reduced viral burdens in the lungs of mice upon lethal virus challenge. Data generated from CD40L(-/-) and CD4(-/-) mice revealed that the protection was indeed CD40L mediated but CD4(+) T cell independent, demonstrating the viability of the fusion Ags in protecting immunodeficient hosts. Notably, a single dose of rAd-SNP40L completely protected mice from lethal viral challenge 4 mo after immunization, representing the first report, to our knowledge, on NP in conjunction with a molecular adjuvant inducing a robust and long-lasting memory immune response against influenza. This platform is characterized by an increased in vivo load of CD40-targeted Ag upon the secretion of the fusion protein from adenovirus-infected cells and may represent a promising strategy to enhance the breadth, durability, and potency of Ag-specific immune responses. PMID:24928989

  7. Small Molecule Inhibition of the TNF Family Cytokine CD40 Ligand Through a Subunit Fracture Mechanism

    SciTech Connect

    L Silvian; J Friedman; K Strauch; T Cachero; E Day; F Qian; B Cunningham; A Fung; L Sun; et al.

    2011-12-31

    BIO8898 is one of several synthetic organic molecules that have recently been reported to inhibit receptor binding and function of the constitutively trimeric tumor necrosis factor (TNF) family cytokine CD40 ligand (CD40L, aka CD154). Small molecule inhibitors of protein-protein interfaces are relatively rare, and their discovery is often very challenging. Therefore, to understand how BIO8898 achieves this feat, we characterized its mechanism of action using biochemical assays and X-ray crystallography. BIO8898 inhibited soluble CD40L binding to CD40-Ig with a potency of IC{sub 50} = 25 {mu}M and inhibited CD40L-dependent apoptosis in a cellular assay. A co-crystal structure of BIO8898 with CD40L revealed that one inhibitor molecule binds per protein trimer. Surprisingly, the compound binds not at the surface of the protein but by intercalating deeply between two subunits of the homotrimeric cytokine, disrupting a constitutive protein-protein interface and breaking the protein's 3-fold symmetry. The compound forms several hydrogen bonds with the protein, within an otherwise hydrophobic binding pocket. In addition to the translational splitting of the trimer, binding of BIO8898 was accompanied by additional local and longer-range conformational perturbations of the protein, both in the core and in a surface loop. Binding of BIO8898 is reversible, and the resulting complex is stable and does not lead to detectable dissociation of the protein trimer. Our results suggest that a set of core aromatic residues that are conserved across a subset of TNF family cytokines might represent a generic hot-spot for the induced-fit binding of trimer-disrupting small molecules.

  8. Sonicated Protein Fractions of Mycoplasma hyopneumoniae Induce Inflammatory Responses and Differential Gene Expression in a Murine Alveolar Macrophage Cell Line.

    PubMed

    Damte, Dereje; Lee, Seung-Jin; Birhanu, Biruk Tesfaye; Suh, Joo-Won; Park, Seung-Chun

    2015-12-28

    Mycoplasma hyopneumoniae is known to cause porcine enzootic pneumonia (EP), an important disease in swine production. The objective of this study was to examine the effects of sonicated protein fractions of M. hyopneumoniae on inflammatory response and gene expression in the murine alveolar macrophage MH-S cell line. The effects of sonicated protein fractions and intact M. hyopneumoniae on the gene expression of cytokines and iNOS were assessed using RT-PCR. The Annealing Control Primer (ACP)-based PCR method was used to screen differentially expressed genes. Increased transcription of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, COX-2, and iNOS mRNA was observed after exposure to the supernatant (SPT), precipitant (PPT), and intact M. hyopneumoniae protein. A time-dependent analysis of the mRNA expression revealed an upregulation after 4 h for IL-6 and iNOS and after 12 h for IL-1β and TNF-α, for both SPT and PPT; the fold change in COX-2 expression was less. A dose- and time-dependent correlation was observed in nitrite (NO) production for both protein fractions; however, there was no significant difference between the effects of the two protein fractions. In a differential gene analysis, PCR revealed differential expression for nine gene bands after 3 h of stimulation - only one gene was downregulated, while the remaining eight were upregulated. The results of this study provide insights that help improve our understanding of the mechanisms underlying the pathogenesis of and macrophage defenses against M. hyopneumoniae assault, and suggest targets for future studies on therapeutic interventions for M. hyopneumoniae infections. PMID:26370797

  9. Analysis of the pattern of expression of the Fanconi anemia group C (Facc) gene during murine development

    SciTech Connect

    Krasnoshtein, F.; Buchwald, M.

    1994-09-01

    Fanconi anemia (FA) is an autosomal recessive disorder characterized by a variety of congenital and skeletal malformations, progressive pancytopanenia and predisposition to malignancies. FA cells display chromosomal instability and hypersensitivity to DNA-damaging agents. Both the human and the corresponding murine cDNAs have been cloned in our lab. Here we describe the expression of Facc during mouse development, using mRNA in situ hybridization. Our aim is to obtain clues on the possible function of the Facc gene product during development that may help elucidate basic defect(s) in FA. In addition, knowledge of the exact pattern of Facc expression will assist in interpreting the phenotypes of mutant mice, currently being developed. In embryos the gene is diffusely expressed over the entire embryo, with higher hybridization levels in the mesenchyme and in both upper and lower extremities. Specific expression of Facc is seen in the perichondrium and marrow of long bones of hind limbs/hip; long bones of front limbs/shoulder region; developing digits of front and hind paws; and ribs. The signal is also detected in the following regions: cranial/frontal; facial/periorbital and maxillary/mandibular, hair follicles, diaphragm and lung. In addition, generalized Facc expression is seen during these embryonic stages. The pattern of Facc expression is consistent with the known skeletal abnormalities in FA patients, which include radial ray deformities, metacarpal hypoplasia, and abnormalities of lower limbs, ribs, head and face. The signal in the lung is consistent with the lung lobe absence and abnormal pulmonary drainage that have been detected in some FA patients. The sloped forehead and microcephaly in FA patients may have some association with the signal seen in the frontal region of the mouse cranium. Taken together, our results suggest that Facc is directly involved in the development of various embryonic tissues, particularly bone.

  10. Diverse inflammatory cytokines induce selectin ligand expression on murine CD4 T cells via p38α MAPK.

    PubMed

    Ebel, Mark E; Awe, Olufolakemi; Kaplan, Mark H; Kansas, Geoffrey S

    2015-06-15

    Selectins are glycan-binding adhesion molecules that mediate the initial steps of leukocyte recognition of endothelium. Cytokines control numerous aspects of CD4 Th cell differentiation, but how cytokines control the induction of ligands for E- and P-selectin on Th cell subsets remains poorly understood. Among 20 cytokines that affect Th cell differentiation, we identified six that induce expression of selectin ligands on murine CD4 T cells above the low levels associated with TCR engagement: IL-12, IL-18, IL-27, IL-9, IL-25, and TGF-β1. Collectively, these six cytokines could potentially account for selectin ligand expression on all of the currently defined nonsessile Th cell lineages, including Th1, Th2, Th9, and Th17 cells, as well as regulatory T cells. Induction of selectin ligand expression by each of these six cytokines was almost completely inhibited by pharmacologic inhibition of p38 MAPK, but not other MAPKs, or by conditional genetic deletion of p38α MAPK. Analysis of the expression of key glycosyltransferase genes revealed that p38α signaling was selectively required for induction of Fut7 and Gcnt1 but not for the induction of St3gal4 or St3gal6. Constitutively active MKK6, an immediate upstream activator of p38 MAPK, induced selectin ligand expression equivalent to that of cytokines, and this induction was completely dependent on the expression of p38α. Our results identify the repertoire of cytokines responsible for selectin ligand induction on CD4 T cells and provide a mechanistic link between Th cell development and T cell migration. PMID:25941329