Science.gov

Sample records for expressing murine cd40

  1. Construction of recombinant eukaryotic expression plasmid containing murine CD40 ligand gene and its expression in H22 cells

    PubMed Central

    Jiang, Yong-Fang; He, Yan; Gong, Guo-Zhong; Chen, Jun; Yang, Chun-Yan; Xu, Yun

    2005-01-01

    AIM: To construct a recombinant murine CD40 ligand (mCD40L) eukaryotic expression vector for gene therapy and target therapy of hepatocellular carcinoma (HCC). METHODS: mCD40L cDNA was synthesized by RT-PCR with the specific primers and directly cloned into T vector to generate middle recombinant. After digestion with restriction endonuclease, the target fragment was subcloned into the multi-clone sites of the eukaryotic vector. The constructed vector was verified by enzyme digestion and sequencing, and the product expressed was detected by RT-PCR and immunofluorescence methods. RESULTS: The full-length mCD40L-cDNA was successfully cloned into the eukaryotic vector through electrophoresis, and mCD40L gene was integrated into the genome of infected H22 cells by RT-PCR. Murine CD40L antigen molecule was observed in the plasma of mCD40L-H22 by indirect immuno-fluorescence staining. CONCLUSION: The recombined mCD40L eukaryotic expression vector can be expressed in H22 cell line. It provides experimental data for gene therapy and target therapy of hepatocellular carcinoma. PMID:15633212

  2. Separate cis-trans Pathways Post-transcriptionally Regulate Murine CD154 (CD40 Ligand) Expression

    PubMed Central

    Hamilton, B. JoNell; Wang, Xiao-Wei; Collins, Jane; Bloch, Donald; Bergeron, Alan; Henry, Brian; Terry, Benjamin M.; Zan, Moe; Mouland, Andrew J.; Rigby, William F. C.

    2008-01-01

    We report a role for CA repeats in the 3′-untranslated region (3′-UTR) in regulating CD154 expression. Human CD154 is encoded by an unstable mRNA; this instability is conferred in cis by a portion of its 3′-UTR that includes a polypyrimidine-rich region and CA dinucleotide repeat. We demonstrate similar instability activity with the murine CD154 3′-UTR. This instability element mapped solely to a conserved 100-base CU-rich region alone, which we call a CU-rich response element. Surprisingly, the CA dinucleotide-rich region also regulated reporter expression but at the level of translation. This activity was associated with poly(A) tail shortening and regulated by heterogeneous nuclear ribonucleoprotein L levels. We conclude that the CD154 3′-UTR contains dual cis-acting elements, one of which defines a novel function for exonic CA dinucleotide repeats. These findings suggest a mechanism for the association of 3′-UTR CA-rich response element polymorphisms with CD154 overexpression and the subsequent risk of autoimmune disease. PMID:18640985

  3. CD40 expression in Wehi-164 cell line

    PubMed Central

    Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-01-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body’s defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system. PMID:20496113

  4. Involvement of microglial CD40 in murine retrovirus-induced peripheral neuropathy.

    PubMed

    Cao, Ling; Butler, M Brady

    2013-08-15

    B6 mice infected with LP-BM5 develop severe immunodeficiency (termed murine acquired immunodeficiency syndrome (MAIDS)) and peripheral neuropathy. To determine whether microglial CD40 is involved in LP-BM5-induced peripheral neuropathy, B6-CD40 knockout (KO) mice and B6-CD40 KO mice adoptively transferred either total leukocytes or B cells were examined for behavioral sensitivity, tissue viral loads, cytokine responses, and the development of MAIDS. All three CD40 KO groups developed MAIDS, the severity of which was correlated with peripheral cytokine responses. CD40 KO mice displayed significantly reduced mechanical hypersensitivity post-infection compared to wild-type mice regardless of cell transfer. These findings support microglial CD40 involvement in LP-BM5-induced peripheral neuropathy. PMID:23726765

  5. Involvement of mitogen-activated protein kinases and NF{kappa}B in LPS-induced CD40 expression on human monocytic cells

    SciTech Connect

    Wu Weidong | Alexis, Neil E. |; Chen Xian |; Bromberg, Philip A. |; Peden, David B. ||

    2008-04-15

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NF{kappa}B were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NF{kappa}B activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NF{kappa}B activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NF{kappa}B activation, and CD40 expression. Moreover, blockage of MAPK and NF{kappa}B activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NF{kappa}B.

  6. CD40 antigen is expressed by endothelial cells and tumor cells in Kaposi's sarcoma.

    PubMed Central

    Pammer, J.; Plettenberg, A.; Weninger, W.; Diller, B.; Mildner, M.; Uthman, A.; Issing, W.; Stürzl, M.; Tschachler, E.

    1996-01-01

    The CD40 antigen is a member of the tumor necrosis factor receptor/nerve growth factor receptor superfamily and is involved in cell proliferation, differentiation, and survival. Using different monoclonal antibodies, we found CD40 expression by immunohistochemistry on CD31- and CD34-positive Kaposi's sarcoma spindle cells in all tumors of 18 HIV-1 seropositive and 4 HIV-1 seronegative patients. Western blot analysis of tumor lysates detected a 48- to 50-kd glycoprotein corresponding to the CD40 antigen expressed by B lymphocytes. CD40 expression was also detectable in one of four cultures of spindle cells derived from Kaposi sarcoma tissue. Treatment of the CD40-positive spindle cells but not of the CD40-negative ones with interferon-gamma up-regulated CD40 surface expression. Besides on Kaposi sarcoma tumor cells, CD40 was distinctly present on vascular endothelial cells in areas within and adjacent to the tumors and in benign inflammatory lesions such as granulation tissue of HIV-1-negative patients. In contrast, CD34-negative endothelia of thin walled vessels, most likely lymphatics, were predominantly CD40 negative. Only faint or no CD40 expression was found on endothelial cells in normal skin. We conclude from our data that expression of the CD40 antigen by endothelial cells is up-regulated during tissue inflammation. As signaling through CD40 is able to increase cell survival, expression of CD40 by Kaposi sarcoma tumor cells might play an important role in the pathogenesis of this neoplasm. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:8623911

  7. Critical role of microglial CD40 in the maintenance of mechanical hypersensitivity in a murine model of neuropathic pain.

    PubMed

    Cao, Ling; Palmer, Christopher D; Malon, Jennifer T; De Leo, Joyce A

    2009-12-01

    We recently demonstrated a contributing role of spinal cord infiltrating CD4+ T lymphocytes in the maintenance of mechanical hypersensitivity in a rodent model of neuropathic pain, spinal nerve L5 transection (L5Tx). It has been demonstrated that microglia play a role in the etiology of pain states. We hypothesized that infiltrating CD4+ T lymphocytes communicate with microglia via a CD40-CD154 interaction. Here, we investigated the role of CD40 in the development of mechanical hypersensitivity post-L5Tx. CD40 KO mice displayed significantly decreased mechanical sensitivity compared with WT mice starting from day 5 post-L5Tx. Using bone marrow chimeric mice, we further identified a pro-nociceptive role of CNS microglial CD40 rather than the peripheral leukocytic CD40. Flow cytometric analysis determined a significant increase of CD40+ microglia in the ipsilateral side of lumbar spinal cord post-L5Tx. Further, spinal cord proinflammatory cytokine (IL-1beta, IL-6, IL-12, and TNF-alpha) profiling demonstrated an induction of IL-6 in both WT and CD40 KO mice post-L5Tx prior to the increase of microglial CD40 expression, indicating a CD40-independent induction of IL-6 following L5Tx. These data establish a novel role of microglial CD40 in the maintenance of nerve injury-induced behavioral hypersensitivity, a behavioral sign of neuropathic pain. PMID:19750482

  8. T Lymphocytes Induce Endothelial Cell Matrix Metalloproteinase Expression by a CD40L-Dependent Mechanism

    PubMed Central

    Mach, François; Schönbeck, Uwe; Fabunmi, Rosalind P.; Murphy, Curran; Atkinson, Elizabeth; Bonnefoy, Jean-Yves; Graber, Pierre; Libby, Peter

    1999-01-01

    Neovascularization frequently accompanies chronic immune responses characterized by T cell infiltration and activation. Angiogenesis requires endothelial cells (ECs) to penetrate extracellular matrix, a process that involves matrix metalloproteinases (MMPs). We report here that activated human T cells mediate contact-dependent expression of MMPs in ECs through CD40/CD40 ligand signaling. Ligation of CD40 on ECs induced de novo expression of gelatinase B (MMP-9), increased interstitial collagenase (MMP-1) and stromelysin (MMP-3), and activated gelatinase A (MMP-2). Recombinant human CD40L induced expression of MMPs by human vascular ECs to a greater extent than did maximally effective concentrations of interleukin-1β or tumor necrosis factor-α. Moreover, activation of human vascular ECs through CD40 induced tube formation in a three-dimensional fibrin matrix gel assay, an effect antagonized by a MMP inhibitor. These results demonstrated that activation of ECs by interaction with T cells induced synthesis and release of MMPs and promoted an angiogenic function of ECs via CD40L-CD40 signaling. As vascular cells at the sites of chronic inflammation, such as atherosclerotic plaques, express CD40 and its ligand, our findings suggest that ligation of CD40 on ECs can mediate aspects of vascular remodeling and neovessel formation during atherogenesis and other chronic immune reactions. PMID:9916937

  9. Enhancing Antitumor Efficacy of Chimeric Antigen Receptor T Cells Through Constitutive CD40L Expression

    PubMed Central

    Curran, Kevin J; Seinstra, Beatrijs A; Nikhamin, Yan; Yeh, Raymond; Usachenko, Yelena; van Leeuwen, Dayenne G; Purdon, Terence; Pegram, Hollie J; Brentjens, Renier J

    2015-01-01

    Adoptive cell therapy with genetically modified T cells expressing a chimeric antigen receptor (CAR) is a promising therapy for patients with B-cell acute lymphoblastic leukemia. However, CAR-modified T cells (CAR T cells) have mostly failed in patients with solid tumors or low-grade B-cell malignancies including chronic lymphocytic leukemia with bulky lymph node involvement. Herein, we enhance the antitumor efficacy of CAR T cells through the constitutive expression of CD40 ligand (CD40L, CD154). T cells genetically modified to constitutively express CD40L (CD40L-modified T cells) demonstrated increased proliferation and secretion of proinflammatory TH1 cytokines. Further, CD40L-modified T cells augmented the immunogenicity of CD40+ tumor cells by the upregulated surface expression of costimulatory molecules (CD80 and CD86), adhesion molecules (CD54, CD58, and CD70), human leukocyte antigen (HLA) molecules (Class I and HLA-DR), and the Fas-death receptor (CD95). Additionally, CD40L-modified T cells induced maturation and secretion of the proinflammatory cytokine interleukin-12 by monocyte-derived dendritic cells. Finally, tumor-targeted CD19-specific CAR/CD40L T cells exhibited increased cytotoxicity against CD40+ tumors and extended the survival of tumor-bearing mice in a xenotransplant model of CD19+ systemic lymphoma. This preclinical data supports the clinical application of CAR T cells additionally modified to constitutively express CD40L with anticipated enhanced antitumor efficacy. PMID:25582824

  10. ThPOK represses CXXC5, which induces methylation of histone H3 lysine 9 in Cd40lg promoter by association with SUV39H1: implications in repression of CD40L expression in CD8+ cytotoxic T cells.

    PubMed

    Tsuchiya, Yukako; Naito, Taku; Tenno, Mari; Maruyama, Mitsuo; Koseki, Haruhiko; Taniuchi, Ichiro; Naoe, Yoshinori

    2016-08-01

    CD40 ligand is induced in CD4(+) Th cells upon TCR stimulation and provides an activating signal to B cells, making CD40 ligand an important molecule for Th cell function. However, the detailed molecular mechanisms, whereby CD40 ligand becomes expressed on the cell surface in T cells remain unclear. Here, we showed that CD40 ligand expression in CD8(+) cytotoxic T cells was suppressed by combined epigenetic regulations in the promoter region of the Cd40lg gene, such as the methylation of CpG dinucleotides, histone H3 lysine 9, histone H3 lysine 27, and histone H4 lysine 20. As the transcription factor Th-inducing pox virus and zinc finger/Kruppel-like factor (encoded by the Zbtb7b gene) is critical in Th cell development, we focused on the role of Th-inducing pox virus and zinc finger/Kruppel-like factor in CD40 ligand expression. We found that CD40 ligand expression is moderately induced by retroviral Thpok transduction into CD8(+) cytotoxic T cells, which was accompanied by a reduction of histone H3 lysine 9 methylation and histone H3 lysine 27 methylation in the promoter region of the Cd40lg gene. Th-inducing pox virus and zinc finger/Kruppel-like factor directly inhibited the expression of murine CXXC5, a CXXC-type zinc finger protein that induced histone H3 lysine 9 methylation, in part, through an interaction with the histone-lysine N-methyltransferase SUV39H1. In addition, to inhibit CD40 ligand induction in activated CD4(+) T cells by the CXXC5 transgene, our findings indicate that CXXC5 was one of the key molecules contributing to repressing CD40 ligand expression in CD8(+) cytotoxic T cells. PMID:26896487

  11. Tumor Necrosis Factor alpha (TNF{alpha}) regulates CD40 expression through SMAR1 phosphorylation

    SciTech Connect

    Singh, Kamini; Sinha, Surajit; Malonia, Sunil Kumar; Chattopadhyay, Samit

    2010-01-08

    CD40 plays an important role in mediating inflammatory response and is mainly induced by JAK/STAT phosphorylation cascade. TNF{alpha} is the key cytokine that activates CD40 during inflammation and tumorigenesis. We have earlier shown that SMAR1 can repress the transcription of Cyclin D1 promoter by forming a HDAC1 dependent repressor complex. In this study, we show that SMAR1 regulates the transcription of NF-{kappa}B target gene CD40. SMAR1 recruits HDAC1 and forms a repressor complex on CD40 promoter and keeps its basal transcription in check. Further, we show that TNF{alpha} stimulation induces SMAR1 phosphorylation at Ser-347 and promotes its cytoplasmic translocation, thus releasing its negative effect. Concomitantly, TNF{alpha} induced phosphorylation of STAT1 at Tyr-701 by JAK1 facilitates its nuclear translocation and activation of CD40 through p300 recruitment and core Histone-3 acetylation. Thus, TNF{alpha} mediated regulation of CD40 expression occurs by dual phosphorylation of SMAR1 and STAT1.

  12. CD40L expression permits CD8+ T cells to execute immunologic helper functions

    PubMed Central

    Stark, Regina; Matzmohr, Nadine; Meier, Sarah; Durlanik, Sibel; Schulz, Axel R.; Stervbo, Ulrik; Jürchott, Karsten; Gebhardt, Friedemann; Heine, Guido; Reuter, Morgan A.; Betts, Michael R.; Busch, Dirk

    2013-01-01

    CD8+ T cells play an essential role in immunity against intracellular pathogens, with cytotoxicity being considered their major effector mechanism. However, we here demonstrate that a major part of central and effector memory CD8+ T cells expresses CD40L, one key molecule for CD4+ T-cell–mediated help. CD40L+ CD8+ T cells are detectable among human antigen-specific immune responses, including pathogens such as influenza and yellow fever virus. CD40L+ CD8+ T cells display potent helper functions in vitro and in vivo, such as activation of antigen-presenting cells, and exhibit a cytokine expression signature similar to CD4+ T cells and unrelated to cytotoxic CD8+ T cells. The broad occurrence of CD40L+ CD8+ T cells in cellular immunity implicates that helper functions are not only executed by major histocompatibility complex (MHC) class II–restricted CD4+ helper T cells but are also a common feature of MHC class I–restricted CD8+ T cell responses. Due to their versatile functional capacities, human CD40L+ CD8+ T cells are promising candidate cells for immune therapies, particularly when CD4+ T-cell help or pathogen-associated molecular pattern signals are limited. PMID:23719298

  13. T lymphocytes induce endothelial cell matrix metalloproteinase expression by a CD40L-dependent mechanism: implications for tubule formation.

    PubMed

    Mach, F; Schönbeck, U; Fabunmi, R P; Murphy, C; Atkinson, E; Bonnefoy, J Y; Graber, P; Libby, P

    1999-01-01

    Neovascularization frequently accompanies chronic immune responses characterized by T cell infiltration and activation. Angiogenesis requires endothelial cells (ECs) to penetrate extracellular matrix, a process that involves matrix metalloproteinases (MMPs). We report here that activated human T cells mediate contact-dependent expression of MMPs in ECs through CD40/CD40 ligand signaling. Ligation of CD40 on ECs induced de novo expression of gelatinase B (MMP-9), increased interstitial collagenase (MMP-1) and stromelysin (MMP-3), and activated gelatinase A (MMP-2). Recombinant human CD40L induced expression of MMPs by human vascular ECs to a greater extent than did maximally effective concentrations of interleukin-1beta or tumor necrosis factor-alpha. Moreover, activation of human vascular ECs through CD40 induced tube formation in a three-dimensional fibrin matrix gel assay, an effect antagonized by a MMP inhibitor. These results demonstrated that activation of ECs by interaction with T cells induced synthesis and release of MMPs and promoted an angiogenic function of ECs via CD40L-CD40 signaling. As vascular cells at the sites of chronic inflammation, such as atherosclerotic plaques, express CD40 and its ligand, our findings suggest that ligation of CD40 on ECs can mediate aspects of vascular remodeling and neovessel formation during atherogenesis and other chronic immune reactions. PMID:9916937

  14. INVOLVEMENT OF TOLL-LIKE RECEPTOR 4 AND MAPK PATHWAYS IN LPS-INDUCED CD40 EXPRESSION IN MONOCYTIC CELLS

    EPA Science Inventory

    CD40 is a co-stimulatory surface molecule actively expressed on mature dendritic cells (DC). Recent studies suggest that endotoxin (LPS) inhalation induces DC maturation in the airways of healthy volunteers. To characterize the effect of LPS on CD40 expression and underlying mech...

  15. Induced PD-L1 expression mediates acquired resistance to agonistic anti-CD40 treatment.

    PubMed

    Zippelius, Alfred; Schreiner, Jens; Herzig, Petra; Müller, Philipp

    2015-03-01

    CD40 stimulation on antigen-presenting cells (APC) allows direct activation of CD8(+) cytotoxic T cells, independent of CD4⁺ T-cell help. Agonistic anti-CD40 antibodies have been demonstrated to induce beneficial antitumor T-cell responses in mouse models of cancer and early clinical trials. We report here that anti-CD40 treatment induces programmed death ligand-1 (PD-L1) upregulation on tumor-infiltrating monocytes and macrophages, which was strictly dependent on T cells and IFNγ. PD-L1 expression could be counteracted by coadministration of antibodies blocking the PD-1 (programmed death-1)/PD-L1 axis as shown for T cells from tumor models and human donors. The combined treatment was highly synergistic and induced complete tumor rejection in about 50% of mice bearing MC-38 colon and EMT-6 breast tumors. Mechanistically, this was reflected by a strong increase of IFNγ and granzyme-B production in intratumoral CD8⁺ T cells. Concomitant CTLA-4 blockade further improved rejection of established tumors in mice. This study uncovers a novel mechanism of acquired resistance upon agonistic CD40 stimulation and proposes that the concomitant blockade of the PD-1/PD-L1 axis is a viable therapeutic strategy to optimize clinical outcomes. PMID:25623164

  16. Latent virus infection upregulates CD40 expression facilitating enhanced autoimmunity in a model of multiple sclerosis

    PubMed Central

    Casiraghi, Costanza; Citlali Márquez, Ana; Shanina, Iryna; Steven Horwitz, Marc

    2015-01-01

    Epstein-Barr virus (EBV) has been identified as a putative environmental trigger of multiple sclerosis (MS) by multiple groups working worldwide. Previously, we reported that when experimental autoimmune encephalomyelitis (EAE) was induced in mice latently infected with murine γ-herpesvirus 68 (γHV-68), the murine homolog to EBV, a disease more reminiscent of MS developed. Specifically, MS-like lesions developed in the brain that included equal numbers of IFN-γ producing CD4+ and CD8+ T cells and demyelination, none of which is observed in MOG induced EAE. Herein, we demonstrate that this enhanced disease was dependent on the γHV-68 latent life cycle and was associated with STAT1 and CD40 upregulation on uninfected dendritic cells. Importantly, we also show that, during viral latency, the frequency of regulatory T cells is reduced via a CD40 dependent mechanism and this contributes towards a strong T helper 1 response that resolves in severe EAE disease pathology. Latent γ-herpesvirus infection established a long-lasting impact that enhances subsequent adaptive autoimmune responses. PMID:26356194

  17. A Role for CD40 Expression on CD8+ T Cells in the Generation of CD8+ T Cell Memory

    NASA Astrophysics Data System (ADS)

    Bourgeois, Christine; Rocha, Benedita; Tanchot, Corinne

    2002-09-01

    The delivery of CD4 help to CD8+ T cell responses requires interactions between CD40 and CD40 ligand and is thought to occur through antigen-presenting cell (APC) activation. Here we show that generation of memory CD8+ T cells displaying an enhanced capacity for cell division and cytokine secretion required CD4 help but not CD40 expression by the APCs. Activated CD4+ and CD8+ T cells expressed CD40; and in the absence of this protein, CD8+ T cells were unable to differentiate into memory cells or receive CD4 help. These results suggest that, like B cells, CD8+ T cells receive CD4 help directly through CD40 and that this interaction is fundamental for CD8+ T cell memory generation.

  18. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway

    PubMed Central

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-01-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4+ T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. PMID:25492061

  19. The CD40-CD40L Pathway Contributes to the Proinflammatory Function of Intestinal Epithelial Cells in Inflammatory Bowel Disease

    PubMed Central

    Borcherding, Frauke; Nitschke, Martin; Hundorfean, Gheorghe; Rupp, Jan; von Smolinski, Dorthe; Bieber, Katja; van Kooten, Cees; Lehnert, Hendrik; Fellermann, Klaus; Büning, Jürgen

    2010-01-01

    In inflammatory bowel diseases (IBD), intestinal epithelial cells (IECs) are involved in the outbalanced immune responses toward luminal antigens. However, the signals responsible for this proinflammatory capacity of IECs in IBD remain unclear. The CD40/CD40L interaction activates various pathways in immune and nonimmune cells related to inflammation and was shown to be critical for the development of IBD. Here we demonstrate CD40 expression within IECs during active IBD. Endoscopically obtained biopsies taken from Crohn’s disease (n = 112) and ulcerative colitis patients (n = 67) consistently showed immunofluorescence staining for CD40 in IECs of inflamed ileal or colonic mucosa. In noninvolved mucosa during active disease, tissue obtained during Crohn’s disease or ulcerative colitis in remission and biopsies from healthy controls (n = 38) IECs almost entirely lacked CD40 staining. Flow cytometry and RT-PCR analysis using different intestinal epithelial cell lines (HT29, SW480, and T84) showed IFN-γ to effectively induce CD40 in IECs. Cells were virtually unresponsive to LPS or whole E. coli regarding CD40 expression. In addition, a moderate induction of CD40 was found in response to TNF-α, which exerted synergistical effects with IFN-γ. CD40 ligation by CD40L-transfected murine fibroblasts or soluble CD40L increased the secretion of IL-8 in IFN-γ pretreated HT29 cells. Our findings provide evidence for the epithelial expression and modulation of CD40 in IBD-affected mucosa and indicate its involvement in the proinflammatory function of IECs. PMID:20133813

  20. The MS Risk Allele of CD40 Is Associated with Reduced Cell-Membrane Bound Expression in Antigen Presenting Cells: Implications for Gene Function

    PubMed Central

    Field, Judith; Shahijanian, Fernando; Schibeci, Stephen; Johnson, Laura; Gresle, Melissa; Laverick, Louise; Parnell, Grant; Stewart, Graeme; McKay, Fiona; Kilpatrick, Trevor; Butzkueven, Helmut; Booth, David

    2015-01-01

    Human genetic and animal studies have implicated the costimulatory molecule CD40 in the development of multiple sclerosis (MS). We investigated the cell specific gene and protein expression variation controlled by the CD40 genetic variant(s) associated with MS, i.e. the T-allele at rs1883832. Previously we had shown that the risk allele is expressed at a lower level in whole blood, especially in people with MS. Here, we have defined the immune cell subsets responsible for genotype and disease effects on CD40 expression at the mRNA and protein level. In cell subsets in which CD40 is most highly expressed, B lymphocytes and dendritic cells, the MS-associated risk variant is associated with reduced CD40 cell-surface protein expression. In monocytes and dendritic cells, the risk allele additionally reduces the ratio of expression of full-length versus truncated CD40 mRNA, the latter encoding secreted CD40. We additionally show that MS patients, regardless of genotype, express significantly lower levels of CD40 cell-surface protein compared to unaffected controls in B lymphocytes. Thus, both genotype-dependent and independent down-regulation of cell-surface CD40 is a feature of MS. Lower expression of a co-stimulator of T cell activation, CD40, is therefore associated with increased MS risk despite the same CD40 variant being associated with reduced risk of other inflammatory autoimmune diseases. Our results highlight the complexity and likely individuality of autoimmune pathogenesis, and could be consistent with antiviral and/or immunoregulatory functions of CD40 playing an important role in protection from MS. PMID:26068105

  1. CD40 promotes MHC class II expression on adipose tissue macrophages and regulates adipose tissue CD4+ T cells with obesity.

    PubMed

    Morris, David L; Oatmen, Kelsie E; Mergian, Taleen A; Cho, Kae Won; DelProposto, Jennifer L; Singer, Kanakadurga; Evans-Molina, Carmella; O'Rourke, Robert W; Lumeng, Carey N

    2016-06-01

    Obesity activates both innate and adaptive immune responses in adipose tissue, but the mechanisms critical for regulating these responses remain unknown. CD40/CD40L signaling provides bidirectional costimulatory signals between antigen-presenting cells and CD4(+) T cells, and CD40L expression is increased in obese humans. Therefore, we examined the contribution of CD40 to the progression of obesity-induced inflammation in mice. CD40 was highly expressed on adipose tissue macrophages in mice, and CD40/CD40L signaling promoted the expression of antigen-presenting cell markers in adipose tissue macrophages. When fed a high fat diet, Cd40-deficient mice had reduced accumulation of conventional CD4(+) T cells (Tconv: CD3(+)CD4(+)Foxp3(-)) in visceral fat compared with wild-type mice. By contrast, the number of regulatory CD4(+) T cells (Treg: CD3(+)CD4(+)Foxp3(+)) in lean and obese fat was similar between wild-type and knockout mice. Adipose tissue macrophage content and inflammatory gene expression in fat did not differ between obese wild-type and knockout mice; however, major histocompatibility complex class II and CD86 expression on adipose tissue macrophages was reduced in visceral fat from knockout mice. Similar results were observed in chimeric mice with hematopoietic Cd40-deficiency. Nonetheless, neither whole body nor hematopoietic disruption of CD40 ameliorated obesity-induced insulin resistance in mice. In human adipose tissue, CD40 expression was positively correlated with CD80 and CD86 expression in obese patients with type 2 diabetes. These findings indicate that CD40 signaling in adipose tissue macrophages regulates major histocompatibility complex class II and CD86 expression to control the expansion of CD4(+) T cells; however, this is largely dispensable for the development of obesity-induced inflammation and insulin resistance in mice. PMID:26658005

  2. PU.1 Expression in T Follicular Helper Cells Limits CD40L-Dependent Germinal Center B Cell Development.

    PubMed

    Awe, Olufolakemi; Hufford, Matthew M; Wu, Hao; Pham, Duy; Chang, Hua-Chen; Jabeen, Rukhsana; Dent, Alexander L; Kaplan, Mark H

    2015-10-15

    PU.1 is an ETS family transcription factor that is important for the development of multiple hematopoietic cell lineages. Previous work demonstrated a critical role for PU.1 in promoting Th9 development and in limiting Th2 cytokine production. Whether PU.1 has functions in other Th lineages is not clear. In this study, we examined the effects of ectopic expression of PU.1 in CD4(+) T cells and observed decreased expression of genes involved with the function of T follicular helper (Tfh) cells, including Il21 and Tnfsf5 (encoding CD40L). T cells from conditional mutant mice that lack expression of PU.1 in T cells (Sfpi1(lck-/-)) demonstrated increased production of CD40L and IL-21 in vitro. Following adjuvant-dependent or adjuvant-independent immunization, we observed that Sfpi1(lck-/-) mice had increased numbers of Tfh cells, increased germinal center B cells (GCB cells), and increased Ab production in vivo. This correlated with increased expression of IL-21 and CD40L in Tfh cells from Sfpi1(lck-/-) mice compared with control mice. Finally, although blockade of IL-21 did not affect GCB cells in Sfpi1(lck-/-) mice, anti-CD40L treatment of immunized Sfpi1(lck-/-) mice decreased GCB cell numbers and Ag-specific Ig concentrations. Together, these data indicate an inhibitory role for PU.1 in the function of Tfh cells, germinal centers, and Tfh-dependent humoral immunity. PMID:26363052

  3. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome.

    PubMed

    Hubbard, Nicholas; Hagin, David; Sommer, Karen; Song, Yumei; Khan, Iram; Clough, Courtnee; Ochs, Hans D; Rawlings, David J; Scharenberg, Andrew M; Torgerson, Troy R

    2016-05-26

    Loss of CD40 ligand (CD40L) expression or function results in X-linked hyper-immunoglobulin (Ig)M syndrome (X-HIGM), characterized by recurrent infections due to impaired immunoglobulin class-switching and somatic hypermutation. Previous attempts using retroviral gene transfer to correct murine CD40L expression restored immune function; however, treated mice developed lymphoproliferative disease, likely due to viral-promoter-dependent constitutive CD40L expression. These observations highlight the importance of preserving endogenous gene regulation in order to safely correct this disorder. Here, we report efficient, on-target, homology-directed repair (HDR) editing of the CD40LG locus in primary human T cells using a combination of a transcription activator-like effector nuclease-induced double-strand break and a donor template delivered by recombinant adeno-associated virus. HDR-mediated insertion of a coding sequence (green fluorescent protein or CD40L) upstream of the translation start site within exon 1 allowed transgene expression to be regulated by endogenous CD40LG promoter/enhancer elements. Additionally, inclusion of the CD40LG 3'-untranslated region in the transgene preserved posttranscriptional regulation. Expression kinetics of the transgene paralleled that of endogenous CD40L in unedited T cells, both at rest and in response to T-cell stimulation. The use of this method to edit X-HIGM patient T cells restored normal expression of CD40L and CD40-murine IgG Fc fusion protein (CD40-muIg) binding, and rescued IgG class switching of naive B cells in vitro. These results demonstrate the feasibility of engineered nuclease-directed gene repair to restore endogenously regulated CD40L, and the potential for its use in T-cell therapy for X-HIGM syndrome. PMID:26903548

  4. Expression of CD40 is a positive prognostic factor of diffuse large B-cell lymphoma treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone)

    PubMed Central

    Song, Guoqi; Ni, Huiyun; Zou, Linqing; Wang, Shukui; Tian, Fuliang; Liu, Hong; Cho, William C

    2016-01-01

    Objectives The objective of this study was to investigate the expression level of CD40 and its role in the prognosis of patients with diffuse large B-cell lymphoma (DLBCL) who were treated with rituximab-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). Design and methods The immunohistochemical expressions of CD40 in 186 well-characterized DLBCL patients were evaluated by tissue microarrays, thereby revealing the relationship of the molecule CD40 with known tumor, patient-related variables, and survival rates. Results The results showed that CD40 expressions were not statistically different between the germinal center B-cell-like (GCB) type and the non-GCB type. We also analyzed the relationships of CD40 expression with overall survival (OS) and progression-free survival (PFS) in DLBCL patients who were uniformly treated with R-CHOP. A low expression of CD40 compared to high expression is related to poor OS and PFS. Conclusion Our findings indicate that the CD40 level at onset acts as an independent prognostic predictor of DLBCL patients treated with R-CHOP. PMID:27382316

  5. Combination anti-CD137 and anti-CD40 antibody therapy in murine myc-driven hematological cancers.

    PubMed

    Westwood, Jennifer A; Matthews, Geoffrey M; Shortt, Jake; Faulkner, David; Pegram, Hollie J; Duong, Connie P M; Chesi, Marta; Bergsagel, P Leif; Sharp, Leslie L; Huhn, Richard D; Darcy, Phillip K; Johnstone, Ricky W; Kershaw, Michael H

    2014-08-01

    In order to stimulate antigen presentation and T cell activity against cancer, we treated three different tumor models in mice with the monoclonal antibodies anti-CD40 plus anti-CD137 (BiMab). In a subcutaneous transplantable MC38 colon cancer model, there was significant enhancement in the survival of mice following BiMab treatment. Anti-CD40 has shown considerable success against lymphoma in previous studies by other investigators, and we also showed in this study that, in a model of Eμ-Myc lymphoma, there was a statistically significant enhancement of survival of mice following BiMab treatment. Following the success of the BiMab treatment in the previous two models, we wished to determine if it would be successful in a mouse model of multiple myeloma. Firstly, we tested a transplantable model of disease in which multiple myeloma cells derived from Vk*MYC mice were injected intravenously. A minor proportion of anti-CD137 and BiMab treated mice experienced prolongation of life beyond 250 days. Then we tested the therapy in a spontaneously occurring multiple myeloma model, in Vk*MYC transgenic mice. The majority of mice treated survived longer than control mice, although statistical significance was not demonstrated. PMID:24934848

  6. Cloning and high level expression of the biologically active extracellular domain of Macaca mulatta CD40 in Pichia pastoris.

    PubMed

    Zhu, Shengyun; Wan, Lin; Yang, Hao; Cheng, Jingqiu; Lu, Xiaofeng

    2016-03-01

    The CD40-mediated immune response contributes to a wide variety of chronic inflammatory diseases. CD40 antagonists have potential as novel therapies for immune disorders. However, the CD40 pathway has not been well characterized in the rhesus monkey Macaca mulatta, which is a valuable animal model for human immune disease. An 834 bp transcript was cloned from peripheral blood mononuclear cells (PBMCs) of rhesus monkey using specific primers designed according to the predicted sequence of M. mulatta CD40 (mmCD40) in GenBank. Sequence analysis demonstrated that mmCD40 is highly homologous to human CD40 (hCD40), with an amino acid sequence identity of 94%. Genes encoding the extracellular domain of mmCD40 and the Fc fragment of the hIgG1 were inserted into a pPIC9K plasmid to produce mmCD40Ig by Pichia pastoris. Approximately 15-20 mg of the mmCD40Ig protein with ∼90% purity could be recovered from 1 L of culture. The purified mmCD40Ig protein can form dimers and can specifically bind CD40L-positive cells. Additionally, the mmCD40Ig protein can bind hCD40L protein in phosphate buffered saline and form a stable combination in a size-exclusion chromatography assay using a Superdex 200 column. Moreover, mmCD40Ig is as efficient as M. mulatta CTLA4Ig (mmCTLA4Ig) to suppress Con A-stimulated lymphocyte proliferation. Additionally, mmCD40Ig only showed mild immunosuppressive activity in a one-way mixed lymphocyte reaction (MLR) system. These results suggest that mmCD40Ig secreted by P. pastoris was productive and functional, and it could be used as a tool for pathogenesis and therapies for chronic inflammatory diseases in a M. mulatta model. PMID:26586612

  7. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture?

    PubMed

    Schönbeck, U; Mach, F; Sukhova, G K; Murphy, C; Bonnefoy, J Y; Fabunmi, R P; Libby, P

    1997-09-01

    Physical disruption of an atheromatous lesion often underlies acute coronary syndromes. Matrix-degrading enzymes, eg, matrix metalloproteinases (MMPs), may cause loss in mechanical integrity of plaque tissue that favors rupture. T lymphocytes accumulate at sites where atheromata rupture, but the mechanisms by which these immune cells may contribute to plaque destabilization are unknown. This study tested the hypothesis that the T-lymphocyte surface molecule CD40 ligand (CD40L), recently localized in atherosclerotic plaques, regulates the expression of MMPs in human vascular smooth muscle cells (SMCs), the most numerous cell type in arteries. We report here that stimulated human T lymphocytes induced the expression of the matrix-degrading enzymes, ie, interstitial collagenase (MMP-1), stromelysin (MMP-3), gelatinase B (MMP-9), and activated gelatinase A (MMP-2), in human vascular SMCs by cell contact via CD40 ligation, as demonstrated by Western blot analysis, zymography, and antibody neutralization. Recombinant human CD40L (rCD40L) induced de novo synthesis of MMP-1, MMP-3, and MMP-9 on vascular SMCs and stimulated the expression of these enzymes to a greater extent than did maximally effective concentrations of tumor necrosis factor-alpha or interleukin-1beta, established agonists of MMP expression. Interferon gamma, another T-lymphocyte- derived cytokine, inhibited the induction of MMPs by rCD40L. Immunohistochemical analysis of human coronary atheromata colocalized MMP-1 and MMP-3 with CD40-positive SMCs. These results demonstrated that CD40 ligand, expressed on T lymphocytes, promoted the expression of matrix-degrading enzymes in vascular SMCs and thus established a new pathway of immune-modulated destabilization in human atheromata. PMID:9285647

  8. Modulation of neuronal differentiation by CD40 isoforms

    SciTech Connect

    Hou Huayu; Obregon, Demian; Lou, Deyan; Ehrhart, Jared; Fernandez, Frank; Silver, Archie; Tan Jun

    2008-05-02

    Neuron differentiation is a complex process involving various cell-cell interactions, and multiple signaling pathways. We showed previously that CD40 is expressed and functional on mouse and human neurons. In neurons, ligation of CD40 protects against serum withdrawal-induced injury and plays a role in survival and differentiation. CD40 deficient mice display neuron dysfunction, aberrant neuron morphologic changes, and associated gross brain abnormalities. Previous studies by Tone and colleagues suggested that five isoforms of CD40 exist with two predominant isoforms expressed in humans: signal-transducible CD40 type I and a C-terminal truncated, non-signal-transducible CD40 type II. We hypothesized that differential expression of CD40 isoform type I and type II in neurons may modulate neuron differentiation. Results show that adult wild-type, and CD40{sup -/-} deficient mice predominantly express CD40 type I and II isoforms. Whereas adult wild-type mice express mostly CD40 type I in cerebral tissues at relatively high levels, in age and gender-matched CD40{sup -/-} mice CD40 type I expression was almost completely absent; suggesting a predominance of the non-signal-transducible CD40 type II isoform. Younger, 1 day old wild-type mice displayed less CD40 type I, and more CD40 type II, as well as, greater expression of soluble CD40 (CD40L/CD40 signal inhibitor), compared with 1 month old mice. Neuron-like N2a cells express CD40 type I and type II isoforms while in an undifferentiated state, however once induced to differentiate, CD40 type I predominates. Further, differentiated N2a cells treated with CD40 ligand express high levels of neuron specific nuclear protein (NeuN); an effect reduced by anti-CD40 type I siRNA, but not by control (non-targeting) siRNA. Altogether these data suggest that CD40 isoforms may act in a temporal fashion to modulate neuron differentiation during brain development. Thus, modulation of neuronal CD40 isoforms and CD40 signaling may

  9. Locally delivered CD40 agonist antibody accumulates in secondary lymphoid organs and eradicates experimental disseminated bladder cancer.

    PubMed

    Sandin, Linda C; Orlova, Anna; Gustafsson, Erika; Ellmark, Peter; Tolmachev, Vladimir; Tötterman, Thomas H; Mangsbo, Sara M

    2014-01-01

    Immunotherapy with intratumoral injection of adenoviral vectors expressing CD40L has yielded positive results in experimental and clinical bladder cancer. We therefore hypothesized that anti-CD40 antibody would be effective in this setting. Agonistic CD40 antibodies were developed as vaccine adjuvants but have later been used as treatment of advanced solid tumors and hematologic cancers. Systemic anti-CD40 therapy has been associated with immune-related adverse events, such as cytokine release syndrome and liver toxicity, and local delivery is an attractive approach that could reduce toxicity. Herein, we compared local and systemic anti-CD40 antibody delivery to evaluate efficacy, toxicity, and biodistribution in the experimental MB49 bladder cancer model. Antitumor effects were confirmed in the B16 model. In terms of antitumor efficacy, local anti-CD40 antibody stimulation was superior to systemic therapy at an equivalent dose and CD8 T cells were crucial for tumor growth inhibition. Both administration routes were dependent on host CD40 expression for therapeutic efficacy. In vivo biodistribution studies revealed CD40-specific antibody accumulation in the tumor-draining lymph nodes and the spleen, most likely reflecting organs with frequent target antigen-expressing immune cells. Systemic administration led to higher antibody concentrations in the liver and blood compared with local delivery, and was associated with elevated levels of serum haptoglobin. Despite the lack of a slow-release system, local anti-CD40 therapy was dependent on tumor antigen at the injection site for clearance of distant tumors. To summarize, local low-dose administration of anti-CD40 antibody mediates antitumor effects in murine models with reduced toxicity and may represent an attractive treatment alternative in the clinic. PMID:24778163

  10. Changes of soluble CD40 ligand in the progression of acute myocardial infarction associate to endothelial nitric oxide synthase polymorphisms and vascular endothelial growth factor but not to platelet CD62P expression.

    PubMed

    Napoleão, Patrícia; Monteiro, Maria do Céu; Cabral, Luís B P; Criado, Maria Begoña; Ramos, Catarina; Selas, Mafalda; Viegas-Crespo, Ana Maria; Saldanha, Carlota; Carmo, Miguel Mota; Ferreira, Rui Cruz; Pinheiro, Teresa

    2015-12-01

    Reported in vitro data implicated soluble CD40 ligand (sCD40L) in endothelial dysfunction and angiogenesis. However, whether sCD40L could exert that influence in endothelial dysfunction and angiogenesis after injury in acute myocardial infarction (AMI) patients remains unclear. In the present study, we evaluated the association of sCD40L with markers of platelet activation, endothelial, and vascular function during a recovery period early after AMI. To achieve this goal, the time changes of soluble, platelet-bound, and microparticle-bound CD40L levels over 1 month were assessed in AMI patients and correlated with endothelial nitric oxide synthase (eNOS) polymorphisms, vascular endothelial growth factor (VEGF) concentrations, and platelet expression of P-selectin (CD62P). The association of soluble form, platelet-bound, and microparticle-bound CD40L with CD62P expression on platelets, a marker of platelet activation, was also assessed to evaluate the role of CD40L in the thrombosis, whereas the association with eNOS and VEGF was to evaluate the role of CD40L in vascular dysfunction. This work shows for the first time that time changes of sCD40L over 1 month after myocardial infarct onset were associated with G894T eNOS polymorphism and with the VEGF concentrations, but not to the platelet CD62P expression. These results indicate that, in terms of AMI pathophysiology, the sCD40L cannot be consider just as being involved in thrombosis and inflammation but also as having a relevant role in vascular and endothelial dysfunction. PMID:26279254

  11. Agreement of skin test with IL-4 production and CD40L expression by T cells upon immunotherapy of subjects with systemic reactions to Hymenoptera stings.

    PubMed

    Urra, José M; Cabrera, Carmen M; Alfaya, Teresa; Feo-Brito, Francisco

    2016-02-01

    Venom immunotherapy is the only curative intervention for subjects with Hymenoptera venom allergy who suffering systemic reactions upon bee or wasp stings. Venom immunotherapy can restore normal immunity against venom allergens, as well as providing to allergic subjects a lifetime tolerance against venoms. Nevertheless, it is necessary using safety assays to monitoring the development of tolerance in the VIT protocols to avoid fatal anaphylactic reactions. The purpose of this study was to assess the modifications in several markers of tolerance induction in subjects with Hymenoptera venom allergy undergoing immunotherapy. The studies were performed at baseline time and after six month of VIT. Intradermal skin tests, basophil activation tests, specific IgE levels; and the T-cell markers (IL-4 and IFN-γ producing cells; and expression of the surface activation markers CD40L and CTLA-4) were assayed. At six month of immunotherapy all parameters studied had significant alterations. All decreased, except the IFN-γ producing cells. In addition, modifications in intradermal skin test showed a significant correlation with both, CD40L expression on CD4 T lymphocytes (p=0.043) and IL-4 producing T lymphocytes (p=0.012). Neither basophil activation test nor serum levels of sIgE demonstrated any correlation with the immunological parameters studied nor among them. These results suggest that both IL-4 production and CD40L expression could be two good indicators of the beneficial effects of venom immunotherapy which translate into skin tests. PMID:26774053

  12. BAFF upregulates CD28/B7 and CD40/CD154 expression and promotes mouse T and B cell interaction in vitro via BAFF receptor

    PubMed Central

    Zhang, Feng; Song, Shan-shan; Shu, Jin-ling; Li, Ying; Wu, Yu-jing; Wang, Qing-tong; Chen, Jing-yu; Chang, Yan; Wu, Hua-xun; Zhang, Ling-ling; Wei, Wei

    2016-01-01

    Aim: B cell-activating factor belonging to the TNF family (BAFF) is a member of TNF family and required for peripheral B cell survival and homeostasis. BAFF has been shown to promote the proliferation of T and B cells. In this study we examined whether and how BAFF mediated the interaction between mouse T and B cells in vitro. Methods: BAFF-stimulated B or T cells were co-cultured with T or B cells. The interactions between T and B cells were analyzed by measuring the expression of co-stimulatory molecules (CD28/CD80 or CD40/CD154), the proliferation and secretion of T and B cells and other factors. Two siRNAs against the transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and BAFF receptor (BAFF-R) were used to identify the receptors responsible for the actions of BAFF. Results: BAFF-stimulated B cells significantly promoted the proliferation and activity of co-cultured T cells, and increased the percentages of CD4+CD28+ and CD4+CD154+ T cells. Similarly, BAFF-stimulated T cells significantly promoted the proliferation and activity of co-cultured B cells, and increased CD19+CD80+ and CD19+CD40+B cell subpopulations. BAFF-R siRNA-silenced B cells showed significantly lower expression of CD40 and CD80 than the control B cells. When the BAFF-R siRNA-silenced B cells were stimulated with BAFF, then co-cultured with T cells, the expression of CD28 and CD154 on T cells was not increased. TACI siRNA-silenced B cells exhibited higher expression of CD40 and CD80 than the control B cells. When the TACI siRNA-silenced B cells were stimulated with BAFF, then co-cultured with T cells, the expression of CD28 and CD154 on T cells was significantly increased. Conclusion: BAFF upregulates CD28/B7 and CD40/CD154 expression, and promotes the interactions between T and B cells in a BAFF-R-dependent manner. PMID:27180986

  13. MicroRNA-155 Mediates Augmented CD40 Expression in Bone Marrow Derived Plasmacytoid Dendritic Cells in Symptomatic Lupus-Prone NZB/W F1 Mice

    PubMed Central

    Yan, Sheng; Yim, Lok Yan; Tam, Rachel Chun Yee; Chan, Albert; Lu, Liwei; Lau, Chak Sing; Chan, Vera Sau-Fong

    2016-01-01

    Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease characterized by hyperactivated immune responses to self-antigens and persistent systemic inflammation. Previously, we reported abnormalities in circulating and bone marrow (BM)-derived plasmacytoid dendritic cells (pDCs) from SLE patients. Here, we aim to seek for potential regulators that mediate functional aberrations of pDCs in SLE. BM-derived pDCs from NZB/W F1 mice before and after the disease onset were compared for toll-like receptor (TLR) induced responses and microRNA profile changes. While pDCs derived from symptomatic mice were phenotypically comparable to pre-symptomatic ones, functionally they exhibited hypersensitivity to TLR7 but not TLR9 stimulation, as represented by the elevated upregulation of CD40, CD86 and MHC class II molecules upon R837 stimulation. Upregulated induction of miR-155 in symptomatic pDCs following TLR7 stimulation was observed. Transfection of miR-155 mimics in pre-symptomatic pDCs induced an augmented expression of Cd40, which is consistent with the increased CD40 expression in symptomatic pDCs. Overall, our results provide evidence for miR-155-mediated regulation in pDC functional abnormalities in SLE. Findings from this study contribute to a better understanding of SLE pathogenesis and ignite future interests in evaluating the molecular regulation in autoimmunity. PMID:27509492

  14. Analysis of the association between CD40 and CD40 ligand polymorphisms and systemic sclerosis

    PubMed Central

    2012-01-01

    Introduction The aim of the present study was to investigate the possible role of CD40 and CD40 ligand (CD40LG) genes in the susceptibility and phenotype expression of systemic sclerosis (SSc). Methods In total, 2,670 SSc patients and 3,245 healthy individuals from four European populations (Spain, Germany, The Netherlands, and Italy) were included in the study. Five single-nucleotide polymorphisms (SNPs) of CD40 (rs1883832, rs4810485, rs1535045) and CD40LG (rs3092952, rs3092920) were genotyped by using a predesigned TaqMan allele-discrimination assay technology. Meta-analysis was assessed to determine whether an association exists between the genetic variants and SSc or its main clinical subtypes. Results No evidence of association between CD40 and CD40LG genes variants and susceptibility to SSc was observed. Similarly, no significant statistical differences were observed when SSc patients were stratified by the clinical subtypes, the serologic features, and pulmonary fibrosis. Conclusions Our results do not suggest an important role of CD40 and CD40LG gene polymorphisms in the susceptibility to or clinical expression of SSc. PMID:22731751

  15. Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells

    PubMed Central

    Amin, Hiren P.; Czank, Charles; Raheem, Saki; Zhang, Qingzhi; Botting, Nigel P.; Cassidy, Aedín

    2015-01-01

    Scope In vitro and in vivo studies suggest that dietary anthocyanins modulate cardiovascular disease risk; however, given anthocyanins extensive metabolism, it is likely that their degradation products and conjugated metabolites are responsible for this reported bioactivity. Methods and results Human vascular endothelial cells were stimulated with either oxidized LDL (oxLDL) or cluster of differentiation 40 ligand (CD40L) and cotreated with cyanidin‐3‐glucoside and 11 of its recently identified metabolites, at 0.1, 1, and 10 μM concentrations. Protein and gene expression of IL‐6 and VCAM‐1 was quantified by ELISA and RT‐qPCR. In oxLDL‐stimulated cells the parent anthocyanin had no effect on IL‐6 production, whereas numerous anthocyanin metabolites significantly reduced IL‐6 protein levels; phase II conjugates of protocatechuic acid produced the greatest effects (>75% reduction, p ≤ 0.05). In CD40L‐stimulated cells the anthocyanin and its phase II metabolites reduced IL‐6 protein production, where protocatechuic acid‐4‐sulfate induced the greatest reduction (>96% reduction, p ≤ 0.03). Similarly, the anthocyanin and its metabolites reduced VCAM‐1 protein production, with ferulic acid producing the greatest effect (>65% reduction, p ≤ 0.04). Conclusion These novel data provide evidence to suggest that anthocyanin metabolites are bioactive at physiologically relevant concentrations and have the potential to modulate cardiovascular disease progression by altering the expression of inflammatory mediators. PMID:25787755

  16. Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ{sup 9}-tetrahydrocannabinol in human CD4{sup +} T cells

    SciTech Connect

    Ngaotepprutaram, Thitirat; Kaplan, Barbara L.F.; Kaminski, Norbert E.

    2013-11-15

    We have previously reported that Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4{sup +} T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ{sup 9}-THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ{sup 9}-THC attenuated CD40L expression in human CD4{sup +} T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ{sup 9}-THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ{sup 9}-THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ{sup 9}-THC suppresses human T cell function. - Highlights: • Δ{sup 9}-THC attenuated CD40L expression in activated human CD4+ T cells. • Δ{sup 9}-THC suppressed DNA-binding activity of NFAT and NFκB. • Δ{sup 9}-THC impaired elevation of intracellular Ca2+. • Δ{sup 9}-THC did not affect phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β.

  17. Prostaglandin E2-EP4 signaling persistently amplifies CD40-mediated induction of IL-23 p19 expression through canonical and non-canonical NF-κB pathways

    PubMed Central

    Ma, Xiaojun; Aoki, Tomohiro; Narumiya, Shuh

    2016-01-01

    While there is mounting evidence that interleukin (IL)-23-IL-17 axis plays a critical role in the pathogenesis of various autoimmune diseases, much remains to be elucidated on how IL-23 is induced in the pathological processes. IL-23 is a heterodimer composed of p19 and p40, the latter being shared with IL-12. We previously reported that prostaglandin (PG) E2 promotes CD40-mediated induction of Il23a (p19) expression through its E receptor subtype 4 (EP4) receptor in splenic dendritic cells (DCs). Here, we have analyzed signaling pathways regulating Il23a induction in the cross talk between EP4 and CD40 in bone marrow-derived DCs. We found that PGE2 synergistically induced Il23a transcription with CD40 signaling. An EP4 agonist, but not agonists of EP1, EP2, or EP3, reproduced this action. Stimulation of CD40 with an agonist antibody evoked biphasic induction of Il23a expression, with the early phase peaking at 1 h and the late phase peaking at 12 h and lasting up to 36 h after stimulation, whereas induction by lipopolysaccharide or tumor necrosis factor-α was transient. The early phase induction by CD40 stimulation was absent in DCs derived from Nfkb1-deficient mice, and the late phase induction was eliminated by RNA interference of nuclear factor-kappa B (NF-κB) p100 subunit. Further, cAMP response element-binding protein (CREB) depletion completely eliminated the induction of Il23a by CD40 stimulation. The addition of the EP4 agonist amplified the induction in both phases through the cAMP-protein kinase A (PKA) pathway. These results suggest that Il23a expression in DCs is synergistically triggered by the PG E2-EP4-cAMP-PKA pathway and canonical/non-canonical NF-κB pathways and CREB activated by CD40 stimulation. PMID:26189370

  18. Linking Innate and Adaptive Immunity: Human Vγ9Vδ2 T Cells Enhance CD40 Expression and HMGB-1 Secretion

    PubMed Central

    Kalyan, Shirin; Chow, Anthony W.

    2009-01-01

    γδ T cells play an important role in regulating the immune response to stress stimuli; however, the mean by which these innate lymphocytes fulfill this function remains poorly defined. The main subset of human peripheral blood γδ T cells responds to nonpeptidic antigens, such as isopentylpyrophosphate (IPP), a metabolite in the mevalonate pathway for both eukaryote and prokaryote cells. IPP-primed γδ T cells significantly augment the inflammatory response mediated by monocytes and αβ T cells to TSST-1, the staphylococcal superantigen that is the major causative agent of toxic shock syndrome. Here we show that the small pool of activated peripheral γδ T cells induces an early upregulation of CD40 on monocytes and the local release of High Mobility Group Box-1 (HMGB-1), the molecule designated as the late mediator of systemic inflammation. This finding provides a new basis for how γδ T cells may serve as influential modulators of both endogenous and exogenous stress stimuli. PMID:19841752

  19. Multifunctional CD40L: pro- and anti-neoplastic activity.

    PubMed

    Korniluk, Aleksandra; Kemona, Halina; Dymicka-Piekarska, Violetta

    2014-10-01

    The CD40 ligand is a type I transmembrane protein that belongs to a tumor necrosis factor (TNF) superfamily. It is present not only on the surface of activated CD4+ T cells, B cells, blood platelets, monocytes, and natural killer (NK) cells but also on cancer cells. The receptor for ligand is constitutively expressed on cells, TNF family protein: CD40. The role of the CD40/CD40L pathway in the induction of body immunity, in inflammation, or in hemostasis has been well documented, whereas its involvement in neoplastic disease is still under investigation. CD40L ligand may potentiate apoptosis of tumor cells by activation of nuclear factor-κB (NF-κB), AP-1, CD95, or caspase-depended pathways and stimulate host immunity to defend against cancer. Although CD40L has a major contribution to anti-cancer activity, many reports point at its ambivalent nature. CD40L enhance release of strongly pro-angiogenic factor, vascular endothelial growth factor (VEGF), and activator of coagulation, TF, the level of which is correlated with tumor metastasis. CD40L involvement in the inhibition of tumor progression has led to the emergence of not only therapy using recombinant forms of the ligand and vaccines in the treatment of cancer but also therapy consisting of inhibiting platelets-main source of CD40L. This article is a review of studies on the ambivalent role of CD40L in neoplastic diseases. PMID:25117071

  20. CD40 Blockade Combines with CTLA4Ig and Sirolimus To Produce Mixed Chimerism in an MHC-defined Rhesus Macaque Transplant Model

    PubMed Central

    Page, Andrew; Srinivasan, Swetha; Singh, Karnail; Russell, Maria; Hamby, Kelly; Deane, Taylor; Sen, Sharon; Stempora, Linda; Leopardi, Frank; Price, Andrew A.; Strobert, Elizabeth; Reimann, Keith A.; Kirk, Allan D.; Larsen, Christian P.; Kean, Leslie S.

    2011-01-01

    In murine models, T-cell costimulation blockade of the CD28:B7 and CD154:CD40 pathways synergistically promotes immune tolerance after transplantation. While CD28 blockade has been successfully translated to the clinic, translation of blockade of the CD154:CD40 pathway has been less successful, in large part due to thromboembolic complications associated with anti-CD154 antibodies. Translation of CD40 blockade has also been slow, in part due to the fact that synergy between CD40 blockade and CD28 blockade had not yet been demonstrated in either primate models or humans. Here we show that a novel, non-depleting CD40 monoclonal antibody, 3A8, can combine with combined CTLA4Ig and sirolimus in a well-established primate bone marrow chimerism-induction model. Prolonged engraftment required the presence of all three agents during maintenance therapy, and resulted in graft acceptance for the duration of immunosuppressive treatment, with rejection resulting upon immunosuppression withdrawal. Flow cytometric analysis revealed that upregulation of CD95 expression on both CD4+ and CD8+ T-cells correlated with rejection, suggesting that CD95 may be a robust biomarker of graft loss. These results are the first to demonstrate prolonged chimerism in primates treated with CD28/mTOR blockade and non-depletional CD40 blockade, and support further investigation of combined costimulation blockade targeting the CD28 and CD40 pathways. PMID:21929643

  1. NORE1A induction by membrane-bound CD40L (mCD40L) contributes to CD40L-induced cell death and G1 growth arrest in p21-mediated mechanism

    PubMed Central

    Elmetwali, T; Salman, A; Palmer, D H

    2016-01-01

    Membrane-bound CD40L (mCD40L) but not soluble CD40L (sCD40L) has been implicated in direct cell death induction and apoptosis in CD40-expressing carcinomas. In this study, we show that mCD40L but not sCD40L induces NORE1A/Rassf5 expression in an NFκB-dependant mechanism. NORE1A expression appeared to contribute to mCD40L-induced cell death and enhance cell transition from G1 to S phase of the cell cycle in a p21-dependent mechanism. The upregulation of p21 protein was attributed to NORE1A expression, since NORE1A inhibition resulted in p21 downregulation. p21 upregulation was concomitant with lower p53 expression in the cytoplasmic fraction with no detectable increase at the nuclear p53 level. Moreover, mCD40L-induced cell death mediated by NORE1A expression appeared to be independent of mCD40L-induced cell death mediated by sustained JNK activation since NORE1A inhibition did not affect JNK phosphorylation and vice versa. The presented data allow better understanding of the mechanism by which mCD40L induces cell death which could be exploited in the clinical development of CD40-targeted anti-cancer therapies. PMID:26986513

  2. NORE1A induction by membrane-bound CD40L (mCD40L) contributes to CD40L-induced cell death and G1 growth arrest in p21-mediated mechanism.

    PubMed

    Elmetwali, T; Salman, A; Palmer, D H

    2016-01-01

    Membrane-bound CD40L (mCD40L) but not soluble CD40L (sCD40L) has been implicated in direct cell death induction and apoptosis in CD40-expressing carcinomas. In this study, we show that mCD40L but not sCD40L induces NORE1A/Rassf5 expression in an NFκB-dependant mechanism. NORE1A expression appeared to contribute to mCD40L-induced cell death and enhance cell transition from G1 to S phase of the cell cycle in a p21-dependent mechanism. The upregulation of p21 protein was attributed to NORE1A expression, since NORE1A inhibition resulted in p21 downregulation. p21 upregulation was concomitant with lower p53 expression in the cytoplasmic fraction with no detectable increase at the nuclear p53 level. Moreover, mCD40L-induced cell death mediated by NORE1A expression appeared to be independent of mCD40L-induced cell death mediated by sustained JNK activation since NORE1A inhibition did not affect JNK phosphorylation and vice versa. The presented data allow better understanding of the mechanism by which mCD40L induces cell death which could be exploited in the clinical development of CD40-targeted anti-cancer therapies. PMID:26986513

  3. CD40 ligand immunotherapy in cancer: an efficient approach.

    PubMed

    Kuwashima, N; Kageyama, S; Eto, Y; Urashima, M

    2001-01-01

    Cancer cells do not elicit a clinically sufficient anti-tumor immune response that results in tumor rejection. Recently, many investigators have been trying to enhance anti-tumor immunity and encouraging results have been reported. This review will discuss current anti-cancer immunotherapy; interleukin-2 therapy, tumor vaccine secreting Granulocyte macrophage-colony stimulating factor, dendritic cells fused with tumor cells, and CD40 ligand immunotherapy. Moreover, we introduce our two kinds of CD40 ligand immuno-genetherapy; (1) oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium (published in BLOOD 2000), (2) cancer vaccine transfected with CD40 ligand ex vivo for neuroblastoma (unpublished). Both approaches resulted in a high degree of protection against the tumor progression and they are simple and safe in the murine system. PMID:11911421

  4. CD40L expressed from the canarypox vector, ALVAC, can boost immunogenicity of HIV-1 canarypox vaccine in mice and enhance the in-vitro expansion of viral specific CD8+ T cell memory responses from HIV-1-infected and HIV-1-uninfected individuals

    PubMed Central

    Liu, Jun; Yu, Qigui; Stone, Geoffrey W.; Yue, Feng Yun; Ngai, Nicholas; Jones, R. Brad; Kornbluth, Richard S.; Ostrowski, Mario A.

    2011-01-01

    Summary Human immunodeficiency virus-1 (HIV-1) canarypox vaccines are safe but poorly immunogenic. CD40 ligand (CD40L), a member of the tumor necrosis factor superfamily (TNFSF), is a pivotal co-stimulatory molecule for immune responses. To explore whether CD40L can be used as an adjuvant for HIV-1 canarypox vaccine, we constructed recombinant canarypox viruses expressing CD40L. Co-immunization of mice with CD40L expressing canarypox and the canarypox vaccine expressing HIV-1 proteins, vCP1452, augmented HIV-1 specific cytotoxic T lymphocyte (CTL) responses in terms of frequency, polyfunctionality and interleukin (IL)-7 receptor α chain (IL-7Rα, CD127) expression. In addition, CD40L expressed from canarypox virus could significantly augment CD4+ T cell responses against HIV-1 in mice. CD40L expressed from canarypox virus matured human monocyte-derived dendritic cells (MDDCs) in a tumor necrosis factor α (TNF-α) independent manner, which underwent less apoptosis, and could expand ex vivo Epstein-Barr virus (EBV)-specific CTL responses from healthy human individuals and ex vivo HIV-1-specific CTL responses from HIV-1-infected individuals in the presence or absence of CD4+ T cells. Taken together, our results suggest that CD40L incorporation into poxvirus vectors could be used as a strategy to enhance their immunogenicity. PMID:18562053

  5. Increased CD40+ fibrocytes in patients with idiopathic orbital inflammation

    PubMed Central

    Lee, Brian J; Atkins, Stephen; Ginter, Anna; Elner, Victor M; Nelson, Christine C; Douglas, Raymond S

    2014-01-01

    Objective To investigate the phenotypic and functional characteristics of peripheral and tissue-infiltrating stem cells, called fibrocytes in patients with idiopathic orbital inflammation (IOI). Methods Seven patients with IOI were studied. In the three patients requiring orbital biopsy, fibrocytes were identified in orbital tissue from patients with IOI compared to healthy controls using immunohistochemistry. Fibrocytes from the peripheral blood of all seven patients and controls were quantified and phenotyped by flow cytometry and immunofluorescence for expression of CD34, alpha smooth muscle actin, CD40 and Collagen 1. Quantitation of CD40-mediated IL-6 production was measured using ELISA. Results Orbital biopsy specimens from patients with IOI demonstrate tissue infiltration by fibrocytes (n=3). Fibrocytes are present in the peripheral blood of IOI patients (n= 7) but are scarce in healthy donors (n=19). Fibrocytes from IOI patients express substantial levels of CD40 and ligation of CD40 increases IL-6 expression. Conclusions Fibrocytes are present in the peripheral blood and orbital tissues of patients with IOI and constitutively express CD40 and express IL-6 in response to ligation. This site-specific predilection of CD34+ fibrocytes to sites of orbital inflammation and fibrosis may suggest a role in IOI. Moreover CD40-mediated activation cytokine production may contribute to the proinflammatory and profibrotic features of IOI and may provide a mechanism for future targeted therapy. PMID:25098443

  6. The importance of sCD40 and sCD40L concentration in patients with chronic HCV infection and HIV co-infection.

    PubMed

    Lapiński, Tadeusz Wojciech; Pogorzelska, Joanna; Grzeszczuk, Anna; Swiderska, Magdalena; Kowalczuk, Oksana; Nikliński, Jacek; Flisiak, Robert

    2014-01-01

    CD40 receptor is activated by ligand CD40L (CD154) which is synthesized in inflammation by NK cells, monocytes and lymphocytes B. TRAF proteins are activated in cells by CD40 stimulation and next they stimulate different enzymatic pathways. High concentrations of CD40L stimulate CD40, and consequently STAT enzyme system inhibits the expression ofnonstructural proteins ofHCV NS3 and NS5A and E2 core in infected human hepatocytes. PURPOSE. The aim of the study was to evaluate the concentration of soluble components of the complex: sCD40 and sCD40L in the serum of patients infected with HCV and HCV/HIV-1 co-infected. The effect ofHCV genotype, HIV and HCV viral load and rs12979860 polymorphism on serum sCD40 and sCD40L was established among the patients. The influence of the number of CD3+, CD4+ and CD8+ on the concentrations of sCD40 and sCD40L was evaluated in the HIV-1 infected group MATERIALS AND METHODS. Serum concentrations of sCD40 and sCD40L were determined using ELISA in 68 HCV infected patients including 39 HCV monoinfected and 29 HCV/HIV-1 co-infected. RESULTS. Serum concentration of sCD40 and sCD40L was significantly higher in HCV and HCV/HIV coinfected patients compared to healthy subjects (25.7 and 23.2 v. 8.5 pg/ml and 12.7 and 7.3 v. 0.79 ng/ml). The concentration of sCD40L in patients with genotype CC rs12979860 was significantly higher compared to patients with Non-CC genotypes (11.8 v. 7.6 ng/ml, p < 0.018). CONCLUSIONS. High levels of sCD40 and sCD40L were detected among patients with chronic HCV and HCV/ HIV-1 infection The high concentration of sCD40L correlates with CC rs12979860 genotype. PMID:25004625

  7. Immune activation during the implantation phase causes preeclampsia-like symptoms via the CD40-CD40 ligand pathway in pregnant mice.

    PubMed

    Matsubara, Keiichi; Matsubara, Yuko; Mori, Miki; Uchikura, Yuka; Hamada, Katsuyuki; Fujioka, Toru; Hashimoto, Hisashi; Matsumoto, Takashi

    2016-06-01

    The CD40 ligand (CD40L) is expressed by T cells and has a critical role in immune system regulation. Interventions targeting CD40L interactions following embryo implantation represent an approach to preventing preeclampsia (PE). To better understand the role of CD40L in PE, we developed a PE mouse model in which we examined how CD40L-induced immune activation affects embryo implantation. Blastocysts were incubated with CD40L-expressing adenovirus and then were transferred into the uterine horns of pseudopregnant ICR mice. Histology, biochemistry and flow cytometry experiments were performed to examine the characteristics of the mouse model. In early pregnancy, decidualization and spiral artery remodeling were reduced in CD40L-transfected mice (CD40L mice) compared with control mice. Hematoxylin-eosin (HE) staining revealed hemorrhaging and excess fibrin deposition at the labyrinth layer-junctional zone interface of the placenta, and PAS staining demonstrated prominent focal and segmental sclerosis with collapsed glomerular capillaries in the kidneys of the CD40L mice. Flow cytometry data showed that interferon-γ production derived from CD4(+) T cells was elevated in the splenic cells of CD40L mice. Blood pressure (measured by the tail-cuff method) and urine albumin concentrations were significantly increased in CD40L mice compared with control mice. Furthermore, the plasma concentrations of soluble Flt-1 and soluble endoglin were increased in CD40L mice, as occurs in human patients with PE. Thus, CD40L-induced T-helper cell type 1 differentiation during embryo implantation may have a critical role in the pathogenesis of a PE-like presentation in a novel mouse model of PE. PMID:26763855

  8. The role of CD40 and CD40L in bone mineral density and in osteoporosis risk: A genetic and functional study.

    PubMed

    Panach, Layla; Pineda, Begoña; Mifsut, Damián; Tarín, Juan J; Cano, Antonio; García-Pérez, Miguel Ángel

    2016-02-01

    Compelling data are revealing that the CD40/CD40L system is involved in bone metabolism. Furthermore, we have previously demonstrated that polymorphisms in both genes are associated with bone phenotypes. The aim of this study is to further characterize this association and to identify the causal functional mechanism. We conducted an association study of BMD with 15 SNPs in CD40/CD40L genes in a population of 779 women. In addition, we assessed the functionality of this association through the study of the allele-dependent expression of CD40 and CD40L in peripheral blood leukocytes (PBLs) and in human osteoblasts (OBs) obtained from bone explants by qPCR and by sequencing. When an allelic imbalance (AI) was detected, studies on allele-dependent in vitro transcription rate and on CpG methylation in the gene promoter were also performed. Our results confirm the genetic association between SNP rs116535 (T>C) of CD40L gene with LS-BMD. Regarding CD40 gene, two SNPs showed nominal P-values<0.05 for FN- and LS-BMD (Z-scores), although the association was not significant after correcting for multiple testing. Homozygous TT women for SNP rs1883832 (C>T) of CD40 gene showed a trend to have lower levels of OPG (Q-value=0.059), especially when women of BMD-quartile ends were selected (P<0.05). Regarding functionality, we detected an AI for rs1883832 with the C allele the most expressed in OBs and in PBLs. Since the rs116535 of CD40L gene did not show AI, it was not further analyzed. Finally, we described a differential methylation of CpGs in the CD40 promoter among women of high in comparison to low BMD. Our results suggest that the CD40/CD40L system plays a role in regulating BMD. Effectively, our data suggest that a decreased production of OPG could be the cause of the lower BMD observed in TT women for rs1883832 of the CD40 gene and that the degree of methylation of CpGs in the CD40 promoter could contribute to the acquisition of BMD. One possibility that deserves further

  9. High serum levels of soluble CD40-L in patients with undifferentiated nasopharyngeal carcinoma: pathogenic and clinical relevance

    PubMed Central

    Caggiari, Laura; Guidoboni, Massimo; Vaccher, Emanuela; Barzan, Luigi; Franchin, Giovanni; Gloghini, Annunziata; Martorelli, Debora; Zancai, Paola; Bortolin, Maria Teresa; Mazzucato, Mario; Serraino, Diego; Carbone, Antonino; De Paoli, Paolo; Dolcetti, Riccardo

    2007-01-01

    Background Engagement of CD40 promotes survival of undifferentiated nasopharyngeal carcinoma (UNPC) cells and similar effects are induced by the EBV oncoprotein LMP-1 that is expressed in a fraction of cases. Considering that CD40 may be activated also by the soluble isoform of CD40L (sCD40L), we investigated the serum levels of sCD40L in a series of 61 UNPC patients from Italy, a non-endemic area for this disease. Results At diagnosis, serum samples of UNPC patients contained significantly higher levels of sCD40L than age-matched healthy controls (p < 0.001). High levels of sCD40L (i.e., >18 ng/ml) were more frequently found in patients <40 years of age (p = 0.03) and with distant metastases at presentation (p = 0.03). Serum levels of sCD40L were inversely associated with the expression of the EBV oncoprotein LMP-1 (p = 0.03), which mimics a constitutively activated CD40. The amount of sCD40L decreased in a fraction of patients treated with local radiotherapy alone. Moreover, CD40L+ lymphoid cells admixed to neoplastic UNPC cells were detected in cases with high serum levels of sCD40L, suggesting that sCD40L is probably produced within the tumor mass. Conclusion sCD40L may contribute to CD40 activation in UNPC cells, particularly of LMP-1-negative cases, further supporting the crucial role of CD40 signalling in the pathogenesis of UNPC. sCD40L levels may be useful to identify UNPC patients with occult distant metastases at presentation. PMID:17331231

  10. Protein Kinase C beta Mediates CD40 Ligand-Induced Adhesion of Monocytes to Endothelial Cells

    PubMed Central

    Wu, Zeyu; Zhao, Gang; Peng, Lin; Du, Jialin; Wang, Sanming; Huang, Yijie; Ou, Jinrui; Jian, Zhixiang

    2013-01-01

    Accumulating evidence supports the early involvement of monocyte/macrophage recruitment to activated endothelial cells by leukocyte adhesion molecules during atherogenesis. CD40 and its ligand CD40L are highly expressed in vascular endothelial cells, but its impact on monocyte adhesion and the related molecular mechanisms are not fully understood. The present study was designed to evaluate the direct effect of CD40L on monocytic cell adhesion and gain mechanistic insight into the signaling coupling CD40L function to the proinflammatory response. Exposure of cultured human aortic endothelial cells (HAECs) to clinically relevant concentrations of CD40L (20 to 80 ng/mL) dose-dependently increased human monocytic THP-1 cells to adhere to them under static condition. CD40L treatment induced the expression of vascular cell adhesion molecule-1 (VCAM-1) mRNA and protein expression in HAECs. Furthermore, exposure of HAECs to CD40L robustly increased the activation of protein kinase C beta (PKCβ) in ECs. A selective inhibitor of PKCβ prevented the rise in VCAM-1 and THP-1 cell adhesion to ECs. Moreover, stimulation of ECs to CD40L induced nuclear factor-κB (NF-κB) activation. PKCβ inhibition abolished CD40L-induced NF-κB activation, and NF-κB inhibition reduced expression of VCAM-1, each resulting in reduced THP-1 cell adhesion. Our findings provide the evidence that CD40L increases VCAM-1 expression in ECs by activating PKCβ and NF-κB, suggesting a novel mechanism for EC activation. Finally, administration of CD40L resulted in PKCβ activation, increased VCAM-1 expression and activated monocytes adhesiveness to HAECs, processes attenuated by PKCβ inhibitor. Therefore, CD40L may contribute directly to atherogenesis by activating ECs and recruiting monocytes to them. PMID:24039784

  11. IL-33 promotes MHC class II expression in murine mast cells.

    PubMed

    Ito, Tomonobu; Egusa, Chizu; Maeda, Tatsuo; Numata, Takafumi; Nakano, Nobuhiro; Nishiyama, Chiharu; Tsuboi, Ryoji

    2015-09-01

    Mast cells (MCs), recognized as tissue-resident cells of hematopoietic origin, are involved in cellular and pathological manifestations of allergic disorders including atopic dermatitis. IL-33, a member of the IL-1 cytokine family, activates Th2-type immune responses, and promotes the degranulation and maturation of MCs. However, it is uncertain whether IL-33 treatment induces mature mast cells to acquire the characteristics of the monocyte-dendritic cell lineage.We investigated the effect of IL-33 on the MHC class II expression and function of murine mast cells. IL-33-treated mature murine bone marrow-derived mast cells (BMMCs) were analyzed by FACS, real-time PCR, chromatin immunoprecipitation (ChIP) assay, and Western blotting. The morphology and degranulation activity of BMMCs and T-cell activation by BMMCs were also examined. BMMCs treated with IL-33 for 10 days induced cell surface expression of the MHC class II protein, whereas the expression of FcεRI and c-kit was not affected by IL-33. The expression of CIITA, driven from pIII and pIV, was up-regulated in IL-33-treated BMMCs. The amount of PU.1 mRNA and protein significantly increased in IL-33-treated BMMCs. The ChIP assay showed PU.1 binding to CIITA pIII, and enhanced histone acetylation due to IL-33 treatment. Syngeneic T cells were activated by co-culture with IL-33-treated BMMCs, although the expression of the co-stimulatory molecules, CD40, CD80, CD86, and PDL-1, was not detected. Mast cells express MHC class II after prolonged exposure to IL-33, probably due to enhanced recruitment of PU.1 to CIITA pIII, resulting in transactivation of CIITA and MHC class II. IL-33 is an important cytokine in allergic disorders. Mast cells have the ability to express MHC class II after prolonged exposure to IL-33 in a murine model. IL-33 holds a key to understanding the etiology of atopic dermatitis. PMID:26417437

  12. IL-33 promotes MHC class II expression in murine mast cells

    PubMed Central

    Ito, Tomonobu; Egusa, Chizu; Maeda, Tatsuo; Numata, Takafumi; Nakano, Nobuhiro; Nishiyama, Chiharu; Tsuboi, Ryoji

    2015-01-01

    Mast cells (MCs), recognized as tissue-resident cells of hematopoietic origin, are involved in cellular and pathological manifestations of allergic disorders including atopic dermatitis. IL-33, a member of the IL-1 cytokine family, activates Th2-type immune responses, and promotes the degranulation and maturation of MCs. However, it is uncertain whether IL-33 treatment induces mature mast cells to acquire the characteristics of the monocyte-dendritic cell lineage.We investigated the effect of IL-33 on the MHC class II expression and function of murine mast cells. IL-33-treated mature murine bone marrow-derived mast cells (BMMCs) were analyzed by FACS, real-time PCR, chromatin immunoprecipitation (ChIP) assay, and Western blotting. The morphology and degranulation activity of BMMCs and T-cell activation by BMMCs were also examined. BMMCs treated with IL-33 for 10 days induced cell surface expression of the MHC class II protein, whereas the expression of FcεRI and c-kit was not affected by IL-33. The expression of CIITA, driven from pIII and pIV, was up-regulated in IL-33-treated BMMCs. The amount of PU.1 mRNA and protein significantly increased in IL-33-treated BMMCs. The ChIP assay showed PU.1 binding to CIITA pIII, and enhanced histone acetylation due to IL-33 treatment. Syngeneic T cells were activated by co-culture with IL-33-treated BMMCs, although the expression of the co-stimulatory molecules, CD40, CD80, CD86, and PDL-1, was not detected. Mast cells express MHC class II after prolonged exposure to IL-33, probably due to enhanced recruitment of PU.1 to CIITA pIII, resulting in transactivation of CIITA and MHC class II. IL-33 is an important cytokine in allergic disorders. Mast cells have the ability to express MHC class II after prolonged exposure to IL-33 in a murine model. IL-33 holds a key to understanding the etiology of atopic dermatitis. PMID:26417437

  13. CD40 is required for protective immunity against liver stage Plasmodium infection1

    PubMed Central

    Murray, Sara A; Mohar, Isaac; Miller, Jessica L; Brempelis, Katherine J; Vaughan, Ashley M; Kappe, Stefan HI; Crispe, Ian N

    2015-01-01

    The co-stimulatory molecule CD40 enhances immunity through several distinct roles in T cell activation and T cell interaction with other immune cells. In a mouse model of immunity to liver stage Plasmodium infection, CD40 was critical for the full maturation of liver dendritic cells, accumulation of CD8+ T cells in the liver, and protective immunity induced by immunization with the P. yoelii fabb/f- genetically attenuated parasite. Using mixed adoptive transfers of polyclonal wild type (WT) and CD40-deficient (CD40−/−) CD8+ T cells into WT and CD40−/− hosts, we evaluated the contributions to CD8+ T cell immunity of CD40 expressed on host tissues including antigen-presenting cells (APC), compared to CD40 expressed on the CD8+ T cells themselves. Most of the effects of CD40 could be accounted for by expression in the T cells’ environment, including the accumulation of large numbers of CD8+ T cells in the livers of immunized mice. Thus, protective immunity generated during immunization with fabb/f- was largely dependent on effective APC licensing via CD40 signaling. PMID:25646303

  14. CD40L induces inflammation and adipogenesis in adipose cells--a potential link between metabolic and cardiovascular disease.

    PubMed

    Missiou, Anna; Wolf, Dennis; Platzer, Isabel; Ernst, Sandra; Walter, Carina; Rudolf, Philipp; Zirlik, Katja; Köstlin, Natascha; Willecke, Florian K; Münkel, Christian; Schönbeck, Uwe; Libby, Peter; Bode, Christoph; Varo, Nerea; Zirlik, Andreas

    2010-04-01

    CD40L figures prominently in atherogenesis. Recent data demonstrate elevated levels of sCD40L in the serum of patients with the metabolic syndrome (MS). This study investigated the role of CD40L in pro-inflammatory gene expression and cellular differentiation in adipose tissue to obtain insight into mechanisms linking the MS with atherosclerosis. Human adipocytes and preadipocytes expressed CD40 but not CD40L. Stimulation with recombinant CD40L or membranes over-expressing CD40L induced a time- and dose-dependent expression of IL-6, MCP-1, IL-8, and PAI-1. Supernatants of CD40L-stimulated adipose cells activated endothelial cells, suggesting a systemic functional relevance of our findings. Neutralising antibodies against CD40L attenuated these effects substantially. Signalling studies revealed the involvement of mitogen-activated protein kinases and NFkB. Furthermore, stimulation with CD40L resulted in enhanced activation of C/EBPa and PPARg and promoted adipogenesis of preadipose cells in the presence and absence of standard adipogenic conditions. Finally, patients suffering from the metabolic syndrome with high levels of sCD40L also displayed high levels of IL-6, in line with the concept that CD40L may induce the expression of inflammatory cytokines in vivo in this population. Our data reveal potent metabolic functions of CD40L aside from its known pivotal pro-inflammatory role within plaques. Our data suggest that CD40L may mediate risk at the interface of metabolic and atherothrombotic disease. PMID:20174757

  15. Cloning and expression analysis of murine phospholipase D1.

    PubMed Central

    Colley, W C; Altshuller, Y M; Sue-Ling, C K; Copeland, N G; Gilbert, D J; Jenkins, N A; Branch, K D; Tsirka, S E; Bollag, R J; Bollag, W B; Frohman, M A

    1997-01-01

    Activation of phosphatidylcholine-specific phospholipase D(PLD) occurs as part of the complex signal-transduction cascade initiated by agonist stimulation of tyrosine kinase and G-protein-coupled receptors. A variety of mammalian PLD activities have been described, and cDNAs for two PLDs recently reported (human PLD1 and murine PLD2). We describe here the cloning and chromosomal localization of murine PLD1. Northern-blot hybridization and RNase protection analyses were used to examine the expression of murine PLD1 and PLD2 ina variety of cell lines and tissues. PLD1 and PLD2 were expressed in all RNA samples examined, although the absolute expression of each isoform varied, as well as the ratio of PLD1 to PLD2. Moreover, in situ hybridization of adult brain and murine embryo sections revealed high levels of expression of individual PLDs in some cell types and no detectable expression in others. Thus the two PLDs probably carry out distinct roles in restricted subsets of cells rather than ubiquitous roles in all cells. PMID:9307024

  16. Genetic Adjuvantation of Recombinant MVA with CD40L Potentiates CD8 T Cell Mediated Immunity

    PubMed Central

    Lauterbach, Henning; Pätzold, Juliane; Kassub, Ronny; Bathke, Barbara; Brinkmann, Kay; Chaplin, Paul; Suter, Mark; Hochrein, Hubertus

    2013-01-01

    Modified vaccinia Ankara (MVA) is a safe and promising viral vaccine vector that is currently investigated in several clinical and pre-clinical trials. In contrast to inactivated or sub-unit vaccines, MVA is able to induce strong humoral as well as cellular immune responses. In order to further improve its CD8 T cell inducing capacity, we genetically adjuvanted MVA with the coding sequence of murine CD40L, a member of the tumor necrosis factor superfamily. Immunization of mice with this new vector led to strongly enhanced primary and memory CD8 T cell responses. Concordant with the enhanced CD8 T cell response, we could detect stronger activation of dendritic cells and higher systemic levels of innate cytokines (including IL-12p70) early after immunization. Interestingly, acquisition of memory characteristics (i.e., IL-7R expression) was accelerated after immunization with MVA-CD40L in comparison to non-adjuvanted MVA. Furthermore, the generated cytotoxic T-lymphocytes (CTLs) also showed improved functionality as demonstrated by intracellular cytokine staining and in vivo killing activity. Importantly, the superior CTL response after a single MVA-CD40L immunization was able to protect B cell deficient mice against a fatal infection with ectromelia virus. Taken together, we show that genetic adjuvantation of MVA can change strength, quality, and functionality of innate and adaptive immune responses. These data should facilitate a rational vaccine design with a focus on rapid induction of large numbers of CD8 T cells able to protect against specific diseases. PMID:23986761

  17. Expression and modulation of IL-1 alpha in murine keratinocytes

    SciTech Connect

    Ansel, J.C.; Luger, T.A.; Lowry, D.; Perry, P.; Roop, D.R.; Mountz, J.D.

    1988-04-01

    Murine and human keratinocytes produce an IL-1-like factor that appears to be similar if not identical to monocyte-derived IL-1. IL-1 may be an important mediator in cutaneous inflammatory responses, however, little is currently known concerning factors that may modulate IL-1 expression in keratinocytes. To address this issue we examined the effect of LPS, UV, and the cell differentiation state on murine keratinocyte IL-1 mRNA expression. Our results indicated that as with the murine P388D1 monocyte cell line, PAM 212 keratinocytes constitutively express abundant amounts of IL-1 alpha mRNA. On exposure to LPS (100 micrograms/ml) for 8 h there was more than 10 times the increase in PAM 212 IL-1 alpha mRNA which was accompanied by a sixfold increase in supernatant IL-1 activity. Similarly UV irradiation had a significant effect on keratinocyte IL-1 alpha expression. High dose UV (300 mJ/cm2) inhibited PAM 212 IL-1 alpha expression at 4, 8, 24, 48 h post-UV whereas a lower dose of UV (100 mJ/cm2) inhibited UV at 4 and 8 h post-UV, but induced IL-1 expression at 24 and 48 h post-UV. The expression of IL-1 alpha varied with the differentiation state of the keratinocytes. Freshly removed newborn murine keratinocytes were found to constitutively express IL-1 alpha mRNA. Keratinocytes grown in low (Ca2+) tissue culture media (0.05 mM) for 6 days, functionally and phenotypically become undifferentiated and express increased quantities of IL-1 alpha mRNA, whereas cells grown in high (Ca2+) media (1.2 mM) for 6 days become terminally differentiated and IL-1 expression ceased. Keratinocytes cultured for 3 days in low (Ca2+) conditions expressed an intermediate level of IL-1 alpha. In contrast, little or no IL-1 beta mRNA was detected in either the PAM 212 cells or newborn murine keratinocytes.

  18. Constitutive CD40 Signaling Calibrates Differentiation Outcomes in Responding B Cells via Multiple Molecular Pathways.

    PubMed

    Basu, Srijani; Kaw, Sheetal; D'Souza, Lucas; Vaidya, Tushar; Bal, Vineeta; Rath, Satyajit; George, Anna

    2016-08-01

    CD40 signaling during B cell activation is known to inhibit terminal differentiation and promote memory generation. Blimp-1 is essential for efficient plasma cell (PC) generation, and although CD40 signaling is known to inhibit Blimp-1 induction during B cell activation, the mechanisms involved have been unclear. We report that CD40 signaling induces miR-125b that targets Blimp-1 transcripts, and increases amounts of the ubiquitin ligase Hrd1 that targets BLIMP-1 protein for proteasomal degradation. CD40 signaling also inhibits the early unfolded protein response (UPR) of activated B cells that precedes the induction of terminal differentiation, and Hrd1 feeds into this pathway by targeting the core UPR component IRE-1α. Strikingly, CD40 signaling in the absence of BCR- or TLR-ligation also repressed Blimp-1 transcripts, suggesting that noncognate ligation of CD40 via T-B interactions may repress Blimp-1 in vivo. In support of this, we find that naive B cells purified from CD40-CD154 interaction-deficient mice express higher amounts of Blimp-1 and lower amounts of microRNAs and Hrd1. Higher basal amounts of Blimp-1 in naive CD40(-/-) B cells correlate with an increased tendency of the cells to undergo terminal differentiation upon LPS stimulation. Conversely, a 24-h exposure to CD40 ligation during LPS stimulation of wild-type B cells is sufficient to inhibit PC generation. The data show that CD40-mediated inhibition of PC generation is via engagement of multiple pathways that involve repression of Blimp-1 and inhibition of the UPR that prepares cells to become professional secretors. They also show that constitutive CD40 signaling in vivo involving bystander T-B interactions can calibrate B cell differentiation outcomes. PMID:27342845

  19. Thymic medullary epithelium and thymocyte self tolerance require cooperation between CD28-CD80/86 and CD40-CD40L costimulatory pathways

    PubMed Central

    Williams, Joy A.; Zhang, Jingjing; Jeon, Hyein; Nitta, Takeshi; Ohigashi, Izumi; Klug, David; Kruhlak, Michael J.; Choudhury, Baishakhi; Sharrow, Susan O.; Granger, Larry; Adams, Anthony; Eckhaus, Michael A.; Jenkinson, S. Rhiannon; Richie, Ellen R.; Gress, Ronald E.; Takahama, Yousuke; Hodes, Richard J.

    2014-01-01

    A critical process during thymic development of the T cell repertoire is the induction of self-tolerance. Tolerance in developing T cells is highly dependent on medullary thymic epithelial cells (mTEC) and mTEC development in turn requires signals from mature single positive (SP) thymocytes, a bidirectional relationship termed thymus crosstalk. We show that CD28-CD80/86 and CD40-CD40L costimulatory interactions, which mediate negative selection and self-tolerance, upregulate expression of LTα, LTβ and RANK in the thymus and are necessary for medullary development. Combined absence of CD28-CD80/86 and CD40-CD40L results in profound deficiency in mTEC development comparable to that observed in the absence of SP thymocytes. This requirement for costimulatory signaling is maintained even in a TCR transgenic model of high affinity TCR-ligand interactions. CD4 thymocytes maturing in the altered thymic epithelial environment of CD40/CD80/86 KO mice are highly autoreactive in vitro and are lethal in congenic adoptive transfer in vivo, demonstrating a critical role for these costimulatory pathways in self-tolerance as well as thymic epithelial development. These findings demonstrate that cooperativity between CD28-CD80/86 and CD40-CD40L pathways is required for normal medullary epithelium and for maintenance of self-tolerance in thymocyte development. PMID:24337745

  20. Soluble CD40 ligand induces β3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling

    PubMed Central

    Prasad, K. S. Srinivasa; Andre, Patrick; He, Ming; Bao, Ming; Manganello, Jeanne; Phillips, David R.

    2003-01-01

    We earlier reported that the soluble form of the CD40 ligand (sCD40L), is involved in thrombosis by stabilizing platelet thrombi. In this article, we have determined the mechanism by which this protein affects platelet biology. Addition of sCD40L to washed platelets was found to activate the receptor function of αIIbβ3 as measured by the induction of fibrinogen binding and the formation of platelet microparticles. Mutation in the KGD sequence (D117E) of sCD40L, the αIIbβ3-binding domain in the N terminus of the protein resulted in a loss of the platelet-stimulatory activity of this protein. Integrilin, a αIIbβ3 antagonist, but not an antibody to CD40 that blocked the ligand-binding activity, inhibited these platelet-stimulatory events. CD40-/- platelets bound fibrinogen and formed microparticles similar to WT platelets, again indicating that CD40 is not involved in sCD40L-induced platelet activation. Exposure of platelets to sCD40L, but not D117E-sCD40L-coated surfaces, induced platelet thrombi formation under arterial shear rate. sCD40L-induced platelet stimulation resulted in the phosphorylation of tyrosine-759 in the cytoplasmic domain of β3. Platelets from the diYF mouse strain, expressing β3 in which both cytoplasmic tyrosines are mutated to phenylalanine, were defective in sCD40L-induced platelet stimulation. These data indicate that sCD40L is a primary platelet agonist and that platelet stimulation is induced by the binding of the KGD domain of sCD40L to αIIbβ3, triggering outside-in signaling by tyrosine phosphorylation of β3. PMID:14519852

  1. Levels of human platelet-derived soluble CD40 ligand depend on haplotypes of CD40LG-CD40-ITGA2

    PubMed Central

    Aloui, Chaker; Prigent, Antoine; Tariket, Sofiane; Sut, Caroline; Fagan, Jocelyne; Cognasse, Fabrice; Chakroun, Tahar; Garraud, Olivier; Laradi, Sandrine

    2016-01-01

    Increased circulating soluble CD40 ligand (sCD40L) is commonly associated with inflammatory disorders. We aimed to investigate whether gene polymorphisms in CD40LG, CD40 and ITGA2 are associated with a propensity to secrete sCD40L; thus, we examined this issue at the level of human platelets, the principal source of sCD40L. We performed single polymorphism and haplotype analyses to test for the effect of twelve polymorphisms across the CD40LG, CD40 and ITGA2 genes in blood donors. ITGA2 presented a positive association with rs1126643, with a significant modification in sCD40L secretion (carriers of C allele, P = 0.02), unlike the investigated CD40LG and CD40 polymorphisms. One CD40LG haplotype (TGGC) showing rs975379 (C/T), rs3092952 (A/G), rs3092933 (A/G) and rs3092929 (A/C) was associated with increased sCD40L levels (1.906 μg/L (95% CI: 1.060 to 2.751); P = 0.000009). The sCD40L level was associated with the inter-chromosomal CD40LG/CD40/ITGA2 haplotype (ATC), displaying rs3092952 (A/G), rs1883832 (C/T) and rs1126643 (C/T), with increased sCD40L levels (P = 0.0135). Our results help to decipher the genetic role of CD40LG, CD40 and ITGA2 with regard to sCD40L levels found in platelet components. Given the crucial role of sCD40L, this haplotype study in a transfusion model may be helpful to further determine the role of haplotypes in inflammatory clinical settings. PMID:27094978

  2. Construction of the HBV S-ecdCD40L fusion gene and effects of HBV S-ecdCD40L modification on function of dendritic cells.

    PubMed

    Wu, J-M; Lin, X-F; Huang, Z-M; Wu, J S

    2011-10-01

    We examined the effect of dendritic cells engineered to express an HBV S antigen CD40L fusion gene (HBV S-ecdCD40L). The DNA of HBV S gene and the cDNA of the extracellular domain of human CD40 ligand were linked by cloning. Peripheral blood mononuclear cells (PBMC) from healthy adults were incubated and induced into dendritic cells (DC) in presence of granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-4(IL-4). The DCs were transfected the novel construct, and the impact of the expressed clone assessed. We find that, compared with control groups, modification of DCs with HBV S-ecdCD40L fusion gene resulted in the activation of DCs with upregulated expression of immunologically important cell surface molecules (CD80, CD86 and HLA-DR) and proinflammatory cytokines (IL-12). The DCs modified with HBV S-ecdCD40L are able to stimulate enhanced allogeneic T-cell proliferation in vitro. Thus, the fusion gene HBV S-ecdCD40L can promote DC's activation and enhance its function and may prove to be the foundation for a new type of hepatitis B vaccine. PMID:21914064

  3. Rhipicephalus microplus salivary gland molecules induce differential CD86 expression in murine macrophages

    PubMed Central

    2010-01-01

    Background Tick parasitism is a major impediment for cattle production in many parts of the world. The southern cattle tick, Rhipicephalus (Boophilus) microplus, is an obligate hematophagous parasite of domestic and wild animals that serves as vector of infectious agents lethal to cattle. Tick saliva contains molecules evolved to modulate host innate and adaptive immune responses which facilitates blood feeding and pathogen transmission. Tick feeding promotes CD4 T cell polarization to a Th2 profile usually accompanied by down-regulation of Th1 cytokines through as yet undefined mechanisms. Co-stimulatory molecules on antigen presenting cells are central to development of T cell responses including Th1 and Th2 responses. Tick induced changes to antigen presenting cell signal transduction pathways are largely unknown. Here we document the ability of R. microplus salivary gland extracts (SGE) to effect differential CD86 expression. Results We examined changes in co-stimulatory molecule expression in murine RAW 264.7 cells in response to R. microplus SGE exposure in the presence of the toll-like receptor 4 (TLR4) ligand, LPS. After 24 hrs, CD86, but not CD80, was preferentially up-regulated on mouse macrophage RAW 264.7 cells when treated with SGE and then LPS, but not SGE alone. CD80 and CD40 expression was increased with LPS, but the addition of SGE did not alter expression. Higher concentrations of SGE were less effective at increasing CD86 RNA expression. The addition of mitogen or extracellular kinase (MEK) inhibitor, PD98059, significantly reduced the ability for SGE to induce CD86 expression, indicating activation of MEK is necessary for SGE induced up-regulation. Conclusions Molecules in SGE of R. microplus have a concentration-dependent effect on differential up-regulation of CD86 in a macrophage cell line activated by the TLR4 ligand, LPS. This CD86 up-regulation is at least partially dependent on the ERK1/2 pathway and may serve to promote Th2 polarization

  4. Functional expression of murine multidrug resistance in Xenopus laevis oocytes

    SciTech Connect

    Castillo, G.; Vera, J.C.; Rosen, O.M. ); Yang, Chiaping Huang; Horwitz, S.B. )

    1990-06-01

    The development of multidrug resistance (MDR) is associated with the overproduction of a plasma membrane glycoprotein, P glycoprotein. Here the authors report the functional expression of a member of the murine MDR family of proteins and show that Xenopus oocytes injected with RNA encoding the mouse mdr1b P glycoprotein develop a MDR-like phenotype. Immunological analysis indicated that oocytes injected with the mdr1b RNA synthesized a protein with the size and immunological characteristics of the mouse mdr1b P glycoprotein. These oocytes exhibited a decreased accumulation of ({sup 3}H)vinblastine and showed an increased capacity to extrude the drug compared to control oocytes not expressing the P glycoprotein. In addition, competition experiments indicated that verapamil, vincristine, daunomycin, and quinidine, but not colchicine, can overcome the rapid drug efflux conferred by the expression of the mouse P glycoprotein.

  5. Expression of murine Fc receptors for IgG.

    PubMed

    Schreiber, R E; Buku, A; Unkeless, J C

    1990-06-15

    There are two distinct genes that encode murine low affinity Fc gamma RII, murine Fc gamma RII alpha, and murine Fc gamma RII beta, which are transcribed in specific cell lineages. Fc gamma RII alpha transcripts are present in macrophages, NK cells, and mesangial cells; Fc gamma RII beta transcripts are expressed in Fc gamma R-bearing B cells, T cells, and macrophages. We have devised a sandwich ELISA to quantify the expression of Fc gamma RII alpha protein. The ELISA is specific for Fc gamma RII alpha, and does not detect the closely related Fc gamma RII beta protein. Upon stimulation with IFN-gamma the Fc gamma RII beta- macrophage cell line J774a expressed a twelvefold enhanced level of Fc gamma RII alpha protein. Peritoneal macrophages synthesized varying amounts of Fc gamma RII alpha. High levels of Fc gamma RII alpha were observed in resident and thioglycollate-elicited peritoneal macrophages, but no Fc gamma RII alpha was detected in Bacillus Calmette Guérin-elicited macrophages. J774a cells stimulated with rIL-6 bound approximately twice as much anti-Fc gamma RII mAb 2.4G2 IgG as did unstimulated controls. However, the Fc gamma RII alpha-specific ELISA showed no change in the amount of Fc gamma RII alpha expressed. A probe encompassing the extracellular coding sequence of Fc gamma RII beta hybridized to two distinct transcripts that were elevated in rIL-6-stimulated J774a cells. One of these transcripts had the same mobility in electrophoresis as Fc gamma RII alpha mRNA and hybridized to an Fc gamma RII alpha-specific probe, whereas the other transcript was larger and did not hybridize to probes specific for either Fc gamma RII alpha or Fc gamma RII beta. Moreover, we confirmed, with an Fc gamma RII beta-specific probe, that J774a cells do not make Fc gamma RII beta mRNA. Thus, the larger transcript appears to encode a novel Fc gamma RII. We suggest that the increased level of binding of the anti-Fc gamma RII mAb 2.4G2 to rIL-6-induced cells represents

  6. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression

    PubMed Central

    Azuma, Junya; Wong, Ronald J.; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B.; Deng, Alicia C.; Spin, Joshua M.; Stevenson, David K.; Dalman, Ronald L.; Tsao, Philip S.

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease. PMID:26894432

  7. Heme Oxygenase-1 Expression Affects Murine Abdominal Aortic Aneurysm Progression.

    PubMed

    Azuma, Junya; Wong, Ronald J; Morisawa, Takeshi; Hsu, Mark; Maegdefessel, Lars; Zhao, Hui; Kalish, Flora; Kayama, Yosuke; Wallenstein, Matthew B; Deng, Alicia C; Spin, Joshua M; Stevenson, David K; Dalman, Ronald L; Tsao, Philip S

    2016-01-01

    Heme oxygenase-1 (HO-1), the rate-limiting enzyme in heme degradation, is a cytoprotective enzyme upregulated in the vasculature by increased flow and inflammatory stimuli. Human genetic data suggest that a diminished HO-1 expression may predispose one to abdominal aortic aneurysm (AAA) development. In addition, heme is known to strongly induce HO-1 expression. Utilizing the porcine pancreatic elastase (PPE) model of AAA induction in HO-1 heterozygous (HO-1+/-, HO-1 Het) mice, we found that a deficiency in HO-1 leads to augmented AAA development. Peritoneal macrophages from HO-1+/- mice showed increased gene expression of pro-inflammatory cytokines, including MCP-1, TNF-alpha, IL-1-beta, and IL-6, but decreased expression of anti-inflammatory cytokines IL-10 and TGF-beta. Furthermore, treatment with heme returned AAA progression in HO-1 Het mice to a wild-type profile. Using a second murine AAA model (Ang II-ApoE-/-), we showed that low doses of the HMG-CoA reductase inhibitor rosuvastatin can induce HO-1 expression in aortic tissue and suppress AAA progression in the absence of lipid lowering. Our results support those studies that suggest that pleiotropic statin effects might be beneficial in AAA, possibly through the upregulation of HO-1. Specific targeted therapies designed to induce HO-1 could become an adjunctive therapeutic strategy for the prevention of AAA disease. PMID:26894432

  8. Analytical workflow profiling gene expression in murine macrophages

    PubMed Central

    Nixon, Scott E.; González-Peña, Dianelys; Lawson, Marcus A.; McCusker, Robert H.; Hernandez, Alvaro G.; O’Connor, Jason C.; Dantzer, Robert; Kelley, Keith W.

    2015-01-01

    Comprehensive and simultaneous analysis of all genes in a biological sample is a capability of RNA-Seq technology. Analysis of the entire transcriptome benefits from summarization of genes at the functional level. As a cellular response of interest not previously explored with RNA-Seq, peritoneal macrophages from mice under two conditions (control and immunologically challenged) were analyzed for gene expression differences. Quantification of individual transcripts modeled RNA-Seq read distribution and uncertainty (using a Beta Negative Binomial distribution), then tested for differential transcript expression (False Discovery Rate-adjusted p-value < 0.05). Enrichment of functional categories utilized the list of differentially expressed genes. A total of 2079 differentially expressed transcripts representing 1884 genes were detected. Enrichment of 92 categories from Gene Ontology Biological Processes and Molecular Functions, and KEGG pathways were grouped into 6 clusters. Clusters included defense and inflammatory response (Enrichment Score = 11.24) and ribosomal activity (Enrichment Score = 17.89). Our work provides a context to the fine detail of individual gene expression differences in murine peritoneal macrophages during immunological challenge with high throughput RNA-Seq. PMID:25708305

  9. Soluble CD40 ligand induces endothelial dysfunction in human and porcine coronary artery endothelial cells.

    PubMed

    Chen, Changyi; Chai, Hong; Wang, Xinwen; Jiang, Jun; Jamaluddin, Md Saha; Liao, Dan; Zhang, Yuqing; Wang, Hao; Bharadwaj, Uddalak; Zhang, Sheng; Li, Min; Lin, Peter; Yao, Qizhi

    2008-10-15

    The purpose of this study was to determine the effects and mechanisms of sCD40L on endothelial dysfunction in both human coronary artery endothelial cells (HCAECs) and porcine coronary artery rings. HCAECs treated with sCD40L showed significant reductions of endothelial nitric oxide synthase (eNOS) mRNA and protein levels, eNOS mRNA stability, eNOS enzyme activity, and cellular NO levels, whereas superoxide anion (O(2)(-)) production was significantly increased. sCD40L enhanced eNOS mRNA 3'UTR binding to cytoplasmic molecules and induced a unique expression pattern of 95 microRNAs. sCD40L significantly decreased mitochondrial membrane potential, and catalase and SOD activities, whereas it increased NADPH oxidase (NOX) activity. sCD40L increased phosphorylation of MAPKs p38 and ERK1/2 as well as IkappaBalpha and enhanced NF-kappaB nuclear translocation. In porcine coronary arteries, sCD40L significantly decreased endothelium-dependent vasorelaxation and eNOS mRNA levels, whereas it increased O(2)(-) levels. Antioxidant seleno-l-methionine; chemical inhibitors of p38, ERK1/2, and mitochondrial complex II; as well as dominant negative mutant forms of IkappaBalpha and NOX4 effectively blocked sCD40L-induced eNOS down-regulation in HCAECs. Thus, sCD40L reduces eNOS levels, whereas it increases oxidative stress through the unique molecular mechanisms involving eNOS mRNA stability, 3'UTR-binding molecules, microRNAs, mitochondrial function, ROS-related enzymes, p38, ERK1/2, and NF-kappaB signal pathways in endothelial cells. PMID:18658029

  10. Gene expression of lactobacilli in murine forestomach biofilms

    PubMed Central

    Schwab, Clarissa; Tveit, Alexander Tøsdal; Schleper, Christa; Urich, Tim

    2014-01-01

    Lactobacilli populate the gastro-intestinal tract of vertebrates, and are used in food fermentations and as probiotics. Lactobacilli are also major constituents of stable biofilms in the forestomach of rodents. In order to investigate the lifestyle of these biofilm lactobacilli in C57BL/6 mice, we applied metatranscriptomics to analyse gene expression (assessed by mRNA) and community composition (assessed by rRNA). Lactobacillales were the major biofilm inhabitants (62–82% of rRNA reads), followed by Clostridiales (8–31% of rRNA reads). To identify mRNA transcripts specific for the forestomach, we compared forestomach and hindgut metatranscriptomes. Gene expression of the biofilm microbiota was characterized by high abundance of transcripts related to glucose and maltose utilization, peptide degradation, and amino acid transport, indicating their major catabolic and anabolic pathways. The microbiota transcribed genes encoding pathways enhancing oxidative stress (glutathione synthesis) and acid tolerance. Various pathways, including metabolite formation (urea degradation, arginine pathway, γ-aminobutyrate) and cell wall modification (DltA, cyclopropane-fatty-acyl-phospholipid synthase), contributed to acid tolerance, as judged from the transcript profile. In addition, the biofilm microbiota expressed numerous genes encoding extracellular proteins involved in adhesion and/or biofilm formation (e.g. MucBP, glycosyl hydrolase families 68 and 70). This study shed light on the lifestyle and specific adaptations of lactobacilli in the murine forestomach that might also be relevant for lactobacilli biofilms in other vertebrates, including humans. PMID:24702817

  11. The antileukemia activity of a human anti-CD40 antagonist antibody, HCD122, on human chronic lymphocytic leukemia cells

    PubMed Central

    Klabunde, Sha; Lin, Karen; Georgakis, Georgios V.; Cherukuri, Anu; Holash, Jocelyn; Goldbeck, Cheryl; Xu, Xiaomei; Kadel, Edward E.; Lee, Sang Hoon; Aukerman, Sharon Lea; Jallal, Bahija; Aziz, Natasha; Weng, Wen-Kai; Wierda, William; O'Brien, Susan; Younes, Anas

    2008-01-01

    B-cell chronic lymphocytic leukemia (B-CLL) is a lymphoproliferative disorder characterized by the surface expression of CD20, CD5 antigens, as well as the receptor CD40. Activation of CD40 by its ligand (CD40L) induces proliferation and rescues the cells from spontaneous and chemotherapy-induced apoptosis. CD40 activation also induces secretion of cytokines, such as IL-6, IL-10, TNF-α, IL-8, and GM-CSF, which are involved in tumor cell survival, migration, and interaction with cells in the tumor microenvironment. Here we demonstrate that in primary B-CLL tumor cells, the novel antagonist anti-CD40 monoclonal antibody, HCD122, inhibits CD40L-induced activation of signaling pathways, proliferation and survival, and secretion of cytokines. Furthermore, HCD122 is also a potent mediator of antibody-dependent cellular cytotoxicity (ADCC), lysing B-CLL cells more efficiently than rituximab in vitro, despite a significantly higher number of cell surface CD20 binding sites compared with CD40. Unlike rituximab, however, HCD122 (formerly CHIR-12.12) does not internalize upon binding to the cells. Our data suggest that HCD122 may inhibit B-CLL growth by blocking CD40 signaling and by ADCC-mediated cell lysis. PMID:18497318

  12. CD40 AND THE IMUNE RESPONSE TO PARASITIC INFECTIONS

    PubMed Central

    Subauste, Carlos S.

    2009-01-01

    The interaction between CD40 and CD154 regulates many aspects of cellular and humoral immunity. The CD40 — CD154 pathway is important for resistance against a variety of parasites. Studies done with these pathogens have provided important insight into the various mechanisms by which this pathway enhances host protection, mechanisms by which pathogens subvert CD40 signaling, conditions in which the CD40 — CD154 pathway promotes disease and on modulation of this pathway for immunotherapy. PMID:19616968

  13. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells.

    PubMed

    Marigo, Ilaria; Zilio, Serena; Desantis, Giacomo; Mlecnik, Bernhard; Agnellini, Andrielly H R; Ugel, Stefano; Sasso, Maria Stella; Qualls, Joseph E; Kratochvill, Franz; Zanovello, Paola; Molon, Barbara; Ries, Carola H; Runza, Valeria; Hoves, Sabine; Bilocq, Amélie M; Bindea, Gabriela; Mazza, Emilia M C; Bicciato, Silvio; Galon, Jérôme; Murray, Peter J; Bronte, Vincenzo

    2016-09-12

    Effective cancer immunotherapy requires overcoming immunosuppressive tumor microenvironments. We found that local nitric oxide (NO) production by tumor-infiltrating myeloid cells is important for adoptively transferred CD8(+) cytotoxic T cells to destroy tumors. These myeloid cells are phenotypically similar to inducible nitric oxide synthase (NOS2)- and tumor necrosis factor (TNF)-producing dendritic cells (DC), or Tip-DCs. Depletion of immunosuppressive, colony stimulating factor 1 receptor (CSF-1R)-dependent arginase 1(+) myeloid cells enhanced NO-dependent tumor killing. Tumor elimination via NOS2 required the CD40-CD40L pathway. We also uncovered a strong correlation between survival of colorectal cancer patients and NOS2, CD40, and TNF expression in their tumors. Our results identify a network of pro-tumor factors that can be targeted to boost cancer immunotherapies. PMID:27622331

  14. CD40 Activation Rescues Antiviral CD8+ T Cells from PD-1-Mediated Exhaustion

    PubMed Central

    Isogawa, Masanori; Chung, Josan; Murata, Yasuhiro; Kakimi, Kazuhiro; Chisari, Francis V.

    2013-01-01

    The intrahepatic immune environment is normally biased towards tolerance. Nonetheless, effective antiviral immune responses can be induced against hepatotropic pathogens. To examine the immunological basis of this paradox we studied the ability of hepatocellularly expressed hepatitis B virus (HBV) to activate immunologically naïve HBV-specific CD8+ T cell receptor (TCR) transgenic T cells after adoptive transfer to HBV transgenic mice. Intrahepatic priming triggered vigorous in situ T cell proliferation but failed to induce interferon gamma production or cytolytic effector function. In contrast, the same T cells differentiated into cytolytic effector T cells in HBV transgenic mice if Programmed Death 1 (PD-1) expression was genetically ablated, suggesting that intrahepatic antigen presentation per se triggers negative regulatory signals that prevent the functional differentiation of naïve CD8+ T cells. Surprisingly, coadministration of an agonistic anti-CD40 antibody (αCD40) inhibited PD-1 induction and restored T cell effector function, thereby inhibiting viral gene expression and causing a necroinflammatory liver disease. Importantly, the depletion of myeloid dendritic cells (mDCs) strongly diminished the αCD40 mediated functional differentiation of HBV-specific CD8+ T cells, suggesting that activation of mDCs was responsible for the functional differentiation of HBV-specific CD8+ T cells in αCD40 treated animals. These results demonstrate that antigen-specific, PD-1-mediated CD8+ T cell exhaustion can be rescued by CD40-mediated mDC-activation. PMID:23853599

  15. Expression of profibrotic genes in the murine remnant kidney model

    PubMed Central

    Yang, Binxia; Vohra, Pawan; Janardhanan, Rajiv; Misra, Khamal D.; Misra, Sanjay

    2011-01-01

    PURPOSE To test the hypothesis that there is increased expression of several profibrotic genes including matrix metalloproteinase–2 (MMP-2), and -9 (MMP-9), and its inhibitors (TIMP-1 and TIMP-2), a disintegrin and metalloproteinase with thrombospondin motif -1 (ADAMTS-1), and fibroblast specific protein-1 (FSP-1) in a murine remnant kidney (RK) model. MATERIALS AND METHODS CKD was created in ten C57BL/6 male mice (20-25 g) by performing a right nephrectomy and ligation of the upper pole of the left kidney (RK). Animals were sacrificed at 42 and 56 days later. Real time polymerase chain reaction (RT-PCR) for MMP-2, MMP-9, TIMP-1, TIMP-2, ADAMTS-1, and FSP-1 was performed in the RK. Histologic evaluation of the RK was performed using Ki-67, α-smooth muscle cell actin (α-SMA), hematoxylin and eosin, and Masson’s trichrome staining. Kidney function was assessed using serum BUN and creatinine. RESULTS The mean serum BUN and creatinine levels at day 42 and 56 were significantly higher than baseline (P <0 .05). By day 42, the mean expression of MMP-2, MMP-9, TIMP-1, ADAMTS-1, and FSP-1 was significantly higher in the RK when compared to normal kidney (P<0.05) and by day 56, only FSP-1 expression increased significantly higher (P<0.05). There was increased fibrosis by Masson’s trichrome, increased Ki-67, with increased α-SMA staining in the RK when compared to normal kidneys. CONCLUSIONS In the RK, there was increased fibrosis with increased α -SMA and Ki-67 staining with significantly increased expression of MMP-2, MMP-9, TIMP-1, ADAMTS-1, and FSP-1. PMID:22030458

  16. T cell-B cell thymic cross-talk: Maintenance and function of thymic B cells requires cognate CD40-CD40L interaction

    PubMed Central

    Fujihara, Chiharu; Williams, Joy A.; Watanabe, Masashi; Jeon, Hyein; Sharrow, Susan O.; Hodes, Richard J.

    2014-01-01

    Thymic development requires bidirectional interaction or cross-talk between developing T cells and thymic stromal cells, a relationship that has been best characterized for the interaction between thymocytes and thymic epithelial cells (TECs). We have characterized here the requirement for similar cross-talk in the maintenance and function of thymic B cells, another population that plays a role in selection of developing thymic T cells. We found that maintenance of thymic B cells is strongly dependent upon the presence of mature single positive (SP) thymocytes and on the interactions of these T cells with specific antigen ligand. Maintenance of thymic B cell number is strongly dependent upon B cell-autonomous expression of CD40, but not MHCII, indicating that direct engagement of CD40 on thymic B cells is necessary to support their maintenance and proliferation. Thymic B cells can mediate negative selection of superantigen-specific self-reactive SP thymocytes, and we show that CD40 expression on B cells is critical for this negative selection. Cross-talk with thymic T cells is thus required to support the thymic B cell population through a pathway that requires cell-autonomous expression of CD40, and that reciprocally functions in negative selection of autoreactive T cells. PMID:25344473

  17. Histone deacetylase expression patterns in developing murine optic nerve

    PubMed Central

    2014-01-01

    Background Histone deacetylases (HDACs) play important roles in glial cell development and in disease states within multiple regions of the central nervous system. However, little is known about HDAC expression or function within the optic nerve. As a first step in understanding the role of HDACs in optic nerve, this study examines the spatio-temporal expression patterns of methylated histone 3 (K9), acetylated histone 3 (K18), and HDACs 1–6 and 8–11 in the developing murine optic nerve head. Results Using RT-qPCR, western blot and immunofluorescence, three stages were analyzed: embryonic day 16 (E16), when astrocyte precursors are found in the optic stalk, postnatal day 5 (P5), when immature astrocytes and oligodendrocytes are found throughout the optic nerve, and P30, when optic nerve astrocytes and oligodendrocytes are mature. Acetylated and methylated histone H3 immunoreactivity was co-localized in the nuclei of most SOX2 positive glia within the optic nerve head and adjacent optic nerve at all developmental stages. HDACs 1–11 were expressed in the optic nerve glial cells at all three stages of optic nerve development in the mouse, but showed temporal differences in overall levels and subcellular localization. HDACs 1 and 2 were predominantly nuclear throughout optic nerve development and glial cell maturation. HDACs 3, 5, 6, 8, and 11 were predominantly cytoplasmic, but showed nuclear localization in at least one stage of optic nerve development. HDACs 4, 9 and10 were predominantly cytoplasmic, with little to no nuclear expression at any time during the developmental stages examined. Conclusions Our results showing that HDACs 1, 2, 3, 5, 6, 8, and 11 were each localized to the nuclei of SOX2 positive glia at some stages of optic nerve development and maturation and extend previous reports of HDAC expression in the aging optic nerve. These HDACs are candidates for further research to understand how chromatin remodeling through acetylation, deacetylation

  18. Rosuvastatin Attenuates CD40L-Induced Downregulation of Extracellular Matrix Production in Human Aortic Smooth Muscle Cells via TRAF6-JNK-NF-κB Pathway

    PubMed Central

    Wang, Xiao-Lin; Zhou, Yuan-Li; Sun, Wei; Li, Li

    2016-01-01

    CD40L and statins exhibit pro-inflammatory and anti-inflammatory effects, respectively. They are both pleiotropic and can regulate extracellular matrix (ECM) degeneration in an atherosclerotic plaque. Statins can decrease both the CD40 expression and the resulting inflammation. However, the effects of CD40L and stains on atherosclerotic plaque ECM production and the underlying mechanisms are not well established. Moreover, prolyl-4-hydroxylase α1 (P4Hα1) is involved in collagen synthesis but its correlations with CD40L and statins are unknown. In the present study, CD40L suppressed P4Hα1 expression in human aortic smooth muscle cells (HASMCs) in a dose- and time-dependent manner, with insignificant changes in MMP2 expression and negative enzymatic activity of MMP9. CD40L increased TRAF6 expression, JNK phosphorylation, NF-κB nuclear translocation as well as DNA binding. Furthermore, silencing TRAF6, JNK or NF-κB genes abolished CD40L-induced suppression of P4Hα1. Lower NF-κB nuclear import rates were observed when JNK or TRAF6 silenced HASMCs were stimulated with CD40L compared to HASMCs with active JNK or TRAF6. Together, these results indicate that CD40L suppresses P4Hα1 expression in HASMCs by activating the TRAF6-JNK- NF-κB pathway. We also found that rosuvastatin inhibits CD40L-induced activation of the TRAF6-JNK- NF-κB pathway, thereby significantly rescuing the CD40L stimulated P4Hα1 inhibition. The results from this study will help find potential targets for stabilizing vulnerable atherosclerotic plaques. PMID:27120457

  19. Murine somatic cell nuclear transfer using reprogrammed donor cells expressing male germ cell-specific genes.

    PubMed

    Kang, Hoin; Park, Jong Im; Roh, Sangho

    2016-01-01

    In vivo-matured mouse oocytes were enucleated, and a single murine embryonic fibroblast (control or reprogrammed by introducing extracts from murine testis tissue, which showed expression of male germ cell-specific genes) was injected into the cytoplasm of the oocytes. The rate of blastocyst development and expression levels of Oct-4, Eomes and Cdx-2 were not significantly different in both experimental groups. However, the expression levels of Nanog, Sox9 and Glut-1 were significantly increased when reprogrammed cells were used as donor nuclei. Increased expression of Nanog can be supportive of complete reprogramming of somatic cell nuclear transfer murine embryos. The present study suggested that donor cells expressing male germ cell-specific genes can be reconstructed and can develop into embryos with normal high expression of developmentally essential genes. PMID:26369430

  20. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    PubMed Central

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  1. Organization of the human CD40L gene: Implications for molecular defects in X chromosome-linked hyper-IgM syndrome and prenatal diagnosis

    SciTech Connect

    Villa, A.; Macchi, P.P.; Strina, D.; Frattini, A.; Lucchini, F.; Patrosso, C.M.; Vezzoni, P.; Notarangelo, L.D.; Giliani, S.; Mantuano, E.

    1994-03-15

    Recently, CD40L has been identified as the gene responsible for X chromosome-linked hyper-IgM syndrome (HIGM1). CD40L on activated T cells from HIGM1 patients fails to bind B-cell CD40 molecules, and subsequent analysis of CD40L transcripts by reverse transcription PCR demonstrated coding region mutations in these patients. This approach, however, is of limited use for prenatal diagnosis of HIGM1 in the early-gestation fetus. In this report, the authors have defined the genomic structure of the CD40L gene, which is composed of five exons and four intervening introns. With this information, the authors have defined at the genomic level the CD40L coding region. These different deletions arose from three distinct mechanisms, including (i) a splice donor mutation with exon skipping, (ii) a splice acceptor mutation with utilization of a cryptic splice site, and (iii) a deletion/insertion event with the creation of a new splice acceptor site. In addition, they have performed prenatal evaluation of an 11-week-old fetus at risk for HIGM1. CD40L genomic clones provide a starting point for further studies of the genetic elements that control CD40L expression. Knowledge of the CD40L gene structure will prove useful for the identification of additional mutations in HIGM1 and for performing genetic counseling about this disease. 54 refs., 4 figs., 1 tab.

  2. Inhibition of B-cell death does not restore T-cell-dependent immune responses in CD40-deficient mice

    PubMed Central

    Merino, Jesús; Díez, Miguel A; Muñiz, María; Buelta, Luis; Núñez, Gabriel; López-Hoyos, Marcos; Merino, Ramón

    2003-01-01

    Signalling through CD40 is essential for the development of immunoglobulin G (IgG) antibody responses, germinal centres and B-cell memory against T-dependent antigens. In addition, engagement of CD40 in B cells promotes cell survival by inducing the expression of anti-apoptotic members of the bcl-2 family of cell-death regulators. In the present study we analysed whether T-dependent immune responses can be developed in mice deficient in CD40 if the anti-apoptotic activity mediated by the engagement of CD40 in B cells is compensated by the constitutive over-expression of anti-apoptotic genes of the bcl-2 family. We showed that the over-expression of either hbcl-2 or hbcl-xL transgenes in B cells is not sufficient to restore IgG antibody responses and germinal centre formation in CD40-deficient mice. These results indicate that CD40 functions, other than those mediated through survival, are required for the establishment of T-dependent B-cell responses. PMID:12871216

  3. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway.

    PubMed

    Li, Gang; Diogo, Dorothée; Wu, Di; Spoonamore, Jim; Dancik, Vlado; Franke, Lude; Kurreeman, Fina; Rossin, Elizabeth J; Duclos, Grant; Hartland, Cathy; Zhou, Xuezhong; Li, Kejie; Liu, Jun; De Jager, Philip L; Siminovitch, Katherine A; Zhernakova, Alexandra; Raychaudhuri, Soumya; Bowes, John; Eyre, Steve; Padyukov, Leonid; Gregersen, Peter K; Worthington, Jane; Gupta, Namrata; Clemons, Paul A; Stahl, Eli; Tolliday, Nicola; Plenge, Robert M

    2013-05-01

    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10(-9)). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10(-9)), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA-approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in

  4. Human Genetics in Rheumatoid Arthritis Guides a High-Throughput Drug Screen of the CD40 Signaling Pathway

    PubMed Central

    Li, Gang; Diogo, Dorothée; Wu, Di; Spoonamore, Jim; Dancik, Vlado; Franke, Lude; Kurreeman, Fina; Rossin, Elizabeth J.; Duclos, Grant; Hartland, Cathy; Zhou, Xuezhong; Li, Kejie; Liu, Jun; De Jager, Philip L.; Siminovitch, Katherine A.; Zhernakova, Alexandra; Raychaudhuri, Soumya; Bowes, John; Eyre, Steve; Padyukov, Leonid; Gregersen, Peter K.; Worthington, Jane; Gupta, Namrata; Clemons, Paul A.; Stahl, Eli; Tolliday, Nicola; Plenge, Robert M.

    2013-01-01

    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10−9). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10−9), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA–approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in

  5. Manipulations of cholinesterase gene expression modulate murine megakaryocytopoiesis in vitro.

    PubMed Central

    Patinkin, D; Seidman, S; Eckstein, F; Benseler, F; Zakut, H; Soreq, H

    1990-01-01

    Megakaryocytopoiesis was selectively inhibited in cultured murine bone marrow cells by a 15-mer oligodeoxynucleotide complementary to the initiator AUG region in butyrylcholinesterase mRNA. Furthermore, conditioned medium from Xenopus oocytes producing recombinant butyrylcholinesterase stimulated megakaryocytopoiesis. These observations implicate butyrylcholinesterase in megakaryocytopoiesis and suggest application of oligodeoxynucleotides for modulating bone marrow development. Images PMID:2233731

  6. Class II-targeted antigen is superior to CD40-targeted antigen at stimulating humoral responses in vivo.

    PubMed

    Frleta, D; Demian, D; Wade, W F

    2001-02-01

    We examined the efficacy of using monoclonal antibodies to target antigen (avidin) to different surface molecules expressed on antigen presenting cells (APC). In particular, we targeted CD40 to test whether the "adjuvant" properties of CD40 signaling combined with targeted antigen would result in enhanced serologic responses. We targeted avidin to class II as a positive control and to CD11c as a negative control. These surface proteins represent an ensemble of surface molecules that signal upon ligation and that are expressed on professional APC, in particular dendritic cells (DC). We observed that targeting class II molecules on APC was superior to targeting CD40, or CD11c. However, CD40 and CD11c could function as targets for antigen bound monoclonal antibodies under certain conditions. Interestingly, inclusion of anti-CD40 mAb with the targeting anti-class II-targeted antigens negatively affects humoral response, suggesting that CD40 signaling under certain conditions may suppress processing and/or presentation of targeted antigen. PMID:11360928

  7. Vaccination with a Fusion Protein That Introduces HIV-1 Gag Antigen into a Multitrimer CD40L Construct Results in Enhanced CD8+ T Cell Responses and Protection from Viral Challenge by Vaccinia-Gag

    PubMed Central

    Gupta, Sachin; Termini, James M.; Raffa, Francesca N.; Williams, Cindi-Ann; Kornbluth, Richard S.

    2014-01-01

    CD40 ligand (CD40L, CD154) is a membrane protein that is important for the activation of dendritic cells (DCs) and DC-induced CD8+ T cell responses. To be active, CD40L must cluster CD40 receptors on responding cells. To produce a soluble form of CD40L that clusters CD40 receptors necessitates the use of a multitrimer construct. With this in mind, a tripartite fusion protein was made from surfactant protein D (SPD), HIV-1 Gag as a test antigen, and CD40L, where SPD serves as a scaffold for the multitrimer protein complex. This SPD-Gag-CD40L protein activated CD40-bearing cells and bone marrow-derived DCs in vitro. Compared to a plasmid for Gag antigen alone (pGag), DNA vaccination of mice with pSPD-Gag-CD40L induced an increased number of Gag-specific CD8+ T cells with increased avidity for major histocompatibility complex class I-restricted Gag peptide and improved vaccine-induced protection from challenge by vaccinia-Gag virus. The importance of the multitrimeric nature of the complex was shown using a plasmid lacking the N terminus of SPD that produced a single trimer fusion protein. This plasmid, pTrimer-Gag-CD40L, was only weakly active on CD40-bearing cells and did not elicit strong CD8+ T cell responses or improve protection from vaccinia-Gag challenge. An adenovirus 5 (Ad5) vaccine incorporating SPD-Gag-CD40L was much stronger than Ad5 expressing Gag alone (Ad5-Gag) and induced complete protection (i.e., sterilizing immunity) from vaccinia-Gag challenge. Overall, these results show the potential of a new vaccine design in which antigen is introduced into a construct that expresses a multitrimer soluble form of CD40L, leading to strongly protective CD8+ T cell responses. PMID:24227853

  8. Galectin-9 controls CD40 signaling through a Tim-3 independent mechanism and redirects the cytokine profile of pathogenic T cells in autoimmunity.

    PubMed

    Vaitaitis, Gisela M; Wagner, David H

    2012-01-01

    While it has long been understood that CD40 plays a critical role in the etiology of autoimmunity, glycobiology is emerging as an important contributor. CD40 signaling is also gaining further interest in transplantation and cancer therapies. Work on CD40 signaling has focused on signaling outcomes and blocking of its ligand, CD154, while little is known about the actual receptor itself and its control. We demonstrated that CD40 is in fact several receptors occurring as constellations of differentially glycosylated forms of the protein that can sometimes form hybrid receptors with other proteins. An enticing area of autoimmunity is differential glycosylation of immune molecules leading to altered signaling. Galectins interact with carbohydrates on proteins to effect such signaling alterations. Studying autoimmune prone NOD and non-autoimmune BALB/c mice, here we reveal that in-vivo CD40 signals alter the glycosylation status of non-autoimmune derived CD4 T cells to resemble that of autoimmune derived CD4 T cells. Galectin-9 interacts with CD40 and, at higher concentrations, prevents CD40 induced proliferative responses of CD4(lo)CD40(+) effector T cells and induces cell death through a Tim-3 independent mechanism. Interestingly, galectin-9, at lower concentrations, alters the surface expression of CD3, CD4, and TCR, regulating access to those molecules and thereby redirects the inflammatory cytokine phenotype and CD3 induced proliferation of autoimmune CD4(lo)CD40(+) T cells. Understanding the dynamics of the CD40 receptor(s) and the impact of glycosylation status in immunity will gain insight into how to maintain useful CD40 signals while shutting down detrimental ones. PMID:22685601

  9. Characterisation of the TNF superfamily members CD40L and BAFF in the small-spotted catshark (Scyliorhinus canicula).

    PubMed

    Li, Ronggai; Redmond, Anthony K; Wang, Tiehui; Bird, Steve; Dooley, Helen; Secombes, Chris J

    2015-11-01

    The tumour necrosis factor superfamily (TNFSF) members CD40L and BAFF play critical roles in mammalian B cell survival, proliferation and maturation, however little is known about these key cytokines in the oldest jawed vertebrates, the cartilaginous fishes. Here we report the cloning of CD40L and BAFF orthologues (designated ScCD40L and ScBAFF) in the small-spotted catshark (Scyliorhinus canicula). As predicted both proteins are type II membrane-bound proteins with a TNF homology domain in their extracellular region and both are highly expressed in shark immune tissues. ScCD40L transcript levels correlate with those of TCRα and transcription of both genes is modulated in peripheral blood leukocytes following in vitro stimulation. Although a putative CD40L orthologue was identified in the elephant shark genome the work herein is the first molecular characterisation and transcriptional analysis of CD40L in a cartilaginous fish. ScBAFF was also cloned and its transcription characterised in an attempt to resolve the discrepancies observed between spiny dogfish BAFF and bamboo shark BAFF in previously published studies. PMID:26386192

  10. CD40 ligand and interferon-γ induce an antimicrobial response against Mycobacterium tuberculosis in human monocytes

    PubMed Central

    Klug-Micu, Georgiana M; Stenger, Steffen; Sommer, Andrea; Liu, Philip T; Krutzik, Stephan R; Modlin, Robert L; Fabri, Mario

    2013-01-01

    The ability of T cells to activate antimicrobial pathways in infected macrophages is essential to host defence against many intracellular pathogens. Here, we compared the ability of two T-cell-mediated mechanisms to trigger antimicrobial responses against Mycobacterium tuberculosis in humans, CD40 activation and the release of interferon-γ (IFN-γ). Given that IFN-γ activates a vitamin D-dependent antimicrobial response, we focused on induction of the key components of this pathway. We show that activation of human monocytes via CD40 ligand (CD40L) and IFN-γ, alone, and in combination, induces the CYP27b1-hydroxylase, responsible for the conversion of 25-hydroxyvitamin D (25D) to the bioactive 1,25-dihydroxyvitamin D (1,25D), and the vitamin D receptor (VDR). The activation of the vitamin D pathway by CD40L and IFN-γ results in up-regulated expression of the antimicrobial peptides, cathelicidin and DEFB4, as well as induction of autophagy. Finally, activation of monocytes via CD40L and IFN-γ results in an antimicrobial activity against intracellular M. tuberculosis. Our data suggest that at least two parallel T-cell-mediated mechanisms, CD40L and IFN-γ, activate the vitamin D-dependent antimicrobial pathway and trigger antimicrobial activity against intracellular M. tuberculosis, thereby contributing to human host defence against intracellular infection. PMID:23289765

  11. The Serum Levels of the Soluble Factors sCD40L and CXCL1 Are Not Indicative of Endometriosis

    PubMed Central

    Pateisky, Petra; Pils, Dietmar; Kuessel, Lorenz; Szabo, Ladislaus; Walch, Katharina; Obwegeser, Reinhard; Wenzl, René; Yotova, Iveta

    2016-01-01

    Endometriosis is a benign but troublesome gynecological condition, characterized by endometrial-like tissue outside the uterine cavity. Lately, the discovery and validation of noninvasive diagnostic biomarkers for endometriosis is one of the main priorities in the field. As the disease elicits a chronic inflammatory reaction, we focused our interest on two factors well known to be involved in inflammation and neoplastic processes, namely, soluble CD40 Ligand and CXCL1, and asked whether differences in the serum levels of sCD40L and CXCL1 in endometriosis patients versus controls can serve as noninvasive disease markers. A total of n = 60 women were included in the study, 31 endometriosis patients and 29 controls, and the serum levels of sCD40L and CXCL1 were measured by enzyme-linked immunosorbent assay. Overall, there were no statistically significant differences in the levels of expression of both sCD40L and CXCL1 between patients and controls. This study adds useful clinical data showing that the serum levels of the soluble factors sCD40L and CXCL1 are not associated with endometriosis and are not suitable as biomarkers for disease diagnosis. However, we found a trend toward lower levels of sCD40L in the deep infiltrating endometriosis subgroup making it a potentially interesting target worth further investigation. PMID:27190986

  12. CD40-induced growth inhibition in epithelial cells is mimicked by Epstein-Barr Virus-encoded LMP1: involvement of TRAF3 as a common mediator.

    PubMed

    Eliopoulos, A G; Dawson, C W; Mosialos, G; Floettmann, J E; Rowe, M; Armitage, R J; Dawson, J; Zapata, J M; Kerr, D J; Wakelam, M J; Reed, J C; Kieff, E; Young, L S

    1996-11-21

    CD40, a member of the tumour necrosis factor receptor family, is expressed on the surface of B lymphocytes where its ligation provides a potent survival signal. CD40 is also expressed in basal epithelial cells and in a number of different carcinomas where its function remains unknown. We observed that contrary to the studies in normal B cells, CD40 ligation in carcinoma cell lines and in normal primary epithelial cells resulted in growth inhibition and enhanced susceptibility to apoptosis induced by anti-neoplastic drugs, TNF-alpha, Fas and ceramide. This effect was also observed in CD40-transfected Rat-1 fibroblasts. The expression of Bcl-2 did not affect growth inhibition induced by CD40 ligation in epithelial cells but the Epstein - Barr Virus-encoded latent membrane protein 1 (LMP1) blocked the effect. Whilst transient expression of LMP-1 resulted in the inhibition of epithelial cell growth, this effect was not observed with a LMP1 mutant lacking the binding domain for TRAF3, a protein which may mediate signal transduction by interacting with the cytoplasmic domains of both CD40 and LMP1. Transient expression of TRAF3 also inhibited epithelial cell growth, whilst expression of a dominant-negative TRAF3 partially blocked the inhibitory effect of CD40 ligation and of transient LMP1 expression. These results suggest that CD40 regulates epithelial cell growth in a manner mimicked by LMP1 and implicate TRAF3 as a common mediator in the transduction of the growth inhibitory signals generated via the CD40 and LMP1 pathways. PMID:8950992

  13. Behavior of a cloned murine interferon alpha/beta receptor expressed in homospecific or heterospecific background.

    PubMed Central

    Uzé, G; Lutfalla, G; Bandu, M T; Proudhon, D; Mogensen, K E

    1992-01-01

    A murine interferon (IFN) alpha/beta receptor was cloned from the IFN-sensitive L1210 cell line on the basis of its homology with the human receptor. A combination of methods that includes the screening of random-primed and oligo(dT)-primed cDNA libraries and polymerase chain reactions with a single-side specificity was used. At the amino acid level, the murine IFN-alpha/beta shows 46% identity with its human counterpart. Both human WISH cells presenting a low sensitivity to mouse IFN and a murine L1210 mutant subline that does not express the receptor have been stably transfected with the murine IFN-alpha/beta receptor. Whereas transfected human cells became sensitive to a limited number of mouse IFN-alpha/beta subtypes, the transfected murine L1210 mutant was found to be fully complemented and became sensitive to all mouse IFN-alpha/beta subtypes tested, including those that were not active on transfected human cells. These results strongly suggest that the receptor described here is implicated in the mediation of the activities of all murine IFN-alpha/beta subtypes. Images PMID:1533935

  14. Interferon-alpha inhibits murine macrophage transforming growth factor-beta mRNA expression.

    PubMed

    Dhanani, S; Huang, M; Wang, J; Dubinett, S M

    1994-06-01

    Transforming growth factor-beta (TGF-beta), a multifunctional polypeptide is produced by a wide variety of cells and regulates a broad array of physiological and pathological functions. TGF-beta appears to play a central role in pulmonary fibrosis and may contribute to tumor-associated immunosuppression. Alveolar macrophages are a rich source of TGF-beta and are intimately involved in lung inflammation. We therefore chose to study TGF-beta regulation in murine alveolar macrophages as well as an immortalized peritoneal macrophage cell line (IC-21). Murine macrophages were incubated with cytokines to evaluate their role in regulating TGF-beta mRNA expression. We conclude that IFN-alpha downregulates TGF-beta mRNA expression in murine macrophages. PMID:8088926

  15. Immunogenicity and protective efficacy of an Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and chicken CD40 ligand.

    PubMed

    Yin, Guangwen; Lin, Qian; Qiu, Jianhan; Qin, Mei; Tang, Xinming; Suo, Xun; Huang, Zhijian; Liu, Xianyong

    2015-05-30

    The CD40 ligand (CD40L) has shown potential as a powerful immunological adjuvant in various studies. Here, the efficacy of a chimeric subunit vaccine, consisting of Eimeria tenella immune mapped protein 1 (EtIMP1) and chicken CD40L, was evaluated against E. tenella infection. The recombinant EtIMP1-CD40L was purified from E. coli over-expressing this protein. Chickens were vaccinated with EtIMP1-CD40L without adjuvant or EtIMP1 with Freund's adjuvant. Immunization of chickens with EtIMP1-CD40L fusion protein resulted in stronger IFN-γ secretion and IgA response than that with only recombinant EtIMP1 with Freund's adjuvant. The clinical effect (cecal lesions, body weights gain, and oocysts shedding) of the EtIMP1-CD40L without adjuvant was also better than that of the EtIMP1 with adjuvant, as evidenced by the difference between the two groups in the oocyst output of E. tenella-challenged chickens. The results suggest that the EtIMP1-CD40L fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. PMID:25840621

  16. Transformation of the tumour microenvironment by a CD40 agonist antibody correlates with improved responses to PD-L1 blockade in a mouse orthotopic pancreatic tumour model

    PubMed Central

    Mullins, Stefanie; Sulikowski, Michal G.; Martin, Philip; Brown, Lee; Lewis, Arthur; Davies, Gareth; Morrow, Michelle; Wilkinson, Robert W.

    2016-01-01

    Despite the availability of recently developed chemotherapy regimens, survival times for pancreatic cancer patients remain poor. These patients also respond poorly to immune checkpoint blockade therapies (anti-CTLA-4, anti-PD-L1, anti-PD-1), which suggests the presence of additional immunosuppressive mechanisms in the pancreatic tumour microenvironment (TME). CD40 agonist antibodies (αCD40) promote antigen presenting cell (APC) maturation and enhance macrophage tumouricidal activity, and may therefore alter the pancreatic TME to increase sensitivity to immune checkpoint blockade. Here, we test whether αCD40 transforms the TME in a mouse syngeneic orthotopic model of pancreatic cancer, to increase sensitivity to PD-L1 blockade. We found that whilst mice bearing orthotopic Pan02 tumours responded poorly to PD-L1 blockade, αCD40 improved overall survival. αCD40 transformed the TME, upregulating Th1 chemokines, increasing cytotoxic T cell infiltration and promoting formation of an immune cell-rich capsule separating the tumour from the normal pancreas. Furthermore, αCD40 drove systemic APC maturation, memory T cell expansion, and upregulated tumour and systemic PD-L1 expression. Combining αCD40 with PD-L1 blockade enhanced anti-tumour immunity and improved overall survival versus either monotherapy. These data provide further support for the potential of combining αCD40 with immune checkpoint blockade to promote anti-tumour immunity in pancreatic cancer. PMID:26918344

  17. Transcriptional and posttranscriptional mechanisms regulate murine thymidine kinase gene expression in serum-stimulated cells.

    PubMed Central

    Lieberman, H B; Lin, P F; Yeh, D B; Ruddle, F H

    1988-01-01

    We previously isolated and characterized the structure of murine thymidine kinase (tk) genomic and cDNA sequences to begin a study designed to identify regions of the tk gene important for regulated expression during the transition of cells from G0 to a proliferating state. In this report, we describe the stable transfection of the cloned gene into L-M(TK-) cells and show that both thymidine kinase (TK) enzyme activity and DNA synthesis increase in parallel when transfectants in G0 arrest are stimulated by serum. To define promoter and regulatory regions more precisely, we have constructed a series of tk minigenes and have examined their expression in stable transfectants after serum stimulation. We have identified a 291-base-pair DNA fragment at the 5' end of the tk gene that has promoter function, and we have determined its sequence. In addition, we have found that DNA sequences which mediate serum-induced expression of TK are transcribed, since expression of the murine tk cDNA, fused to a promoter from either the murine tk gene, the simian virus 40 early region, or the herpes simplex virus tk gene, is stimulated by serum. Our constructs also reveal that the murine tk polyadenylation signal is not required for regulation, nor is most of the 3' untranslated region. RNA dot blot analysis indicates that murine cytoplasmic tk mRNA levels always parallel TK enzyme activity. Nuclear runon transcription assays show less than a 2-fold increase in transcription from the cloned tk gene in serum-stimulated transfectants, but an 11-fold increase in mouse L929 cells, which are inherently TK+. These results taken together suggest that the murine tk gene is controlled in serum-stimulated cells by a transcriptional mechanism influenced by DNA sequences that flank tk and also by a posttranscriptional system linked to gene sequences that are transcribed. Images PMID:3244356

  18. Viral Engineering of Chimeric Antigen Receptor Expression on Murine and Human T Lymphocytes.

    PubMed

    Hammill, Joanne A; Afsahi, Arya; Bramson, Jonathan L; Helsen, Christopher W

    2016-01-01

    The adoptive transfer of a bolus of tumor-specific T lymphocytes into cancer patients is a promising therapeutic strategy. In one approach, tumor specificity is conferred upon T cells via engineering expression of exogenous receptors, such as chimeric antigen receptors (CARs). Here, we describe the generation and production of both murine and human CAR-engineered T lymphocytes using retroviruses. PMID:27581020

  19. Enhanced Soluble Serum CD40L and Serum P-Selectin Levels in Primary Aldosteronism.

    PubMed

    Petramala, L; Iacobellis, G; Carnevale, R; Marinelli, C; Zinnamosca, L; Concistrè, A; Galassi, M; Iannucci, G; Lucia, P; Pignatelli, P; Ciardi, A; Violi, F; De Toma, G; Letizia, C

    2016-07-01

    Primary aldosteronism (PA) is one of the most frequent forms of secondary hypertension, associated with atherosclerosis and higher risk of cardiovascular events. Platelets play a key role in the atherosclerotic process. The aim of the study was to evaluate the platelet activation by measuring serum levels of soluble CD40L (sCD40L) and P-selectin (sP-selectin) in consecutive PA patients [subgroup: aldosterone-secreting adrenal adenoma (APA) and bilateral adrenal hyperplasia (IHA)], matched with essential hypertensive (EH) patients. The subgroup of APA patients was revaluated 6-months after unilateral adrenalectomy. In all PA group, we measured higher serum levels of both sP-selectin (14.29±9.33 pg/ml) and sCD40L (9.53±4.2 ng/ml) compared to EH patients (9.39±5.3 pg/ml and 3.54±0.94 ng/ml, respectively; p<0.001). After removal of APA, PA patients showed significant reduction of blood pressure (BP) values, plasma aldosterone (PAC) levels and ARR-ratio, associated with a significant reduction of sP-selectin (16.74±8.9 pg/ml vs. 8.1±3.8 pg/ml; p<0.01) and sCD40L (8.6±1 ng/ml vs. 5.24±0.94 ng/ml; p<0.001). In PA patients, we found a significant correlation between sP-selectin and sCD40L with PAC (r=0.52, p<0.01; r=0.50, p<0.01, respectively); this correlation was stronger in APA patients (r=0.54; p<0.01 r=0.63; p<0.01, respectively). Our results showed that PA is related to platelet activation, expressed as higher plasma values of sCD40L and sP-selectin values. Surgical treatment and consequent normalization of aldosterone secretion was associated with significant reduction of sCD40L and sP-selectin values in APA patients. PMID:27101095

  20. Murine model of otitis media with effusion: immunohistochemical demonstration of IL-1 alpha antigen expression.

    PubMed

    Johnson, M D; Contrino, A; Contrino, J; Maxwell, K; Leonard, G; Kreutzer, D

    1994-09-01

    Recent studies have suggested that cytokines likely play a central role in the formation and maintenance of otitis media with effusion (OME). Currently, there is no immunologically defined animal model for the study of cytokines as they contribute to the formation of OME. In the present study, a murine model of OME, using eustachian tube blockage via an external surgical approach, was developed. The murine model temporal bone histology appears to mimic the histology found in chronic otitis media with effusion in humans. Additionally, using this murine model, interleukin-1 alpha (IL-1 alpha) expression was detected in the middle ear using standard immunohistochemical techniques. IL-1 alpha seemed localized to the epithelial lining of the middle ear as well as 5% to 10% of inflammatory cells. This model should provide the necessary tool to further study the immunologic aspects of OME. PMID:8072363

  1. Lack of XBP-1 Impedes Murine Cytomegalovirus Gene Expression

    PubMed Central

    Drori, Adi; Messerle, Martin; Brune, Wolfram; Tirosh, Boaz

    2014-01-01

    The unfolded protein response (UPR) is an endoplasmic reticulum (ER)-to-nucleus signaling cascade induced in response to ER stress. The UPR aims at restoring homeostasis, but can also induce apoptosis if stress persists. Infection by human and murine cytomegaloviruses (CMVs) provokes ER stress and induces the UPR. However, both CMVs manipulate the UPR to promote its prosurvival activity and delay apoptosis. The underlying mechanisms remain largely unknown. Recently, we demonstrated that MCMV and HCMV encode a late protein to target IRE1 for degradation. However, the importance of its downstream effector, X Box binding protein 1 (XBP-1), has not been directly studied. Here we show that deletion of XBP-1 prior to or early after infection confers a transient delay in viral propagation in fibroblasts that can be overcome by increasing the viral dose. A similar phenotype was demonstrated in peritoneal macrophages. In vivo, acute infection by MCMV is reduced in the absence of XBP-1. Our data indicate that removal of XBP-1 confers a kinetic delay in early stages of MCMV infection and suggest that the late targeting of IRE1 is aimed at inhibiting activities other than the splicing of XBP-1 mRNA. PMID:25333725

  2. Different expression patterns of TRP genes in murine B and T lymphocytes

    SciTech Connect

    Inada, Hitoshi; Iida, Tohko; Tominaga, Makoto . E-mail: tominaga@nips.ac.jp

    2006-11-24

    A prolonged increase in the intracellular calcium concentration ([Ca{sup 2+}]{sub i}) is essential for lymphocyte activation that includes cell proliferation and differentiation. This increase in [Ca{sup 2+}]{sub i} results from Ca{sup 2+} release from the intracellular store and the subsequent Ca{sup 2+} influx from the extracellular environment via calcium channels located on the plasma membrane. Although transient receptor potential (TRP) channels have been reported to play important roles in the [Ca{sup 2+}]{sub i} increase in lymphocytes, the function of these channels in lymphocyte activation remains unknown. Here, we report the comprehensive expression profile of TRP channel gene families including TRPC, TRPV, and TRPM in the murine immune system. RT-PCR analysis revealed different expression patterns of the TRP channel genes in B and T lymphocytes isolated from the spleen. Therefore, our results provide an appropriate reference of TRP gene expression in murine lymphocytes.

  3. Cloning and expression of murine enzymes involved in the salvage pathway of GDP-L-fucose.

    PubMed

    Niittymäki, Jaana; Mattila, Pirkko; Roos, Christophe; Huopaniemi, Laura; Sjöblom, Solveig; Renkonen, Risto

    2004-01-01

    In the salvage pathway of GDP-L-fucose, free cytosolic fucose is phosphorylated by L-fucokinase to form L-fucose-L-phosphate, which is then further converted to GDP-L-fucose in the reaction catalyzed by GDP-L-fucose pyrophosphorylase. We report here the cloning and expression of murine L-fucokinase and GDP-L-fucose pyrophosphorylase. Murine L-fucokinase is expressed as two transcripts of 3057 and 3270 base pairs, encoding proteins of 1019 and 1090 amino acids with predicted molecular masses of 111 kDa and 120 kDa respectively. Only the longer splice variant of L-fucokinase was enzymatically active when expressed in COS-7 cells. Murine GDP-L-fucose pyrophosphorylase has an open reading frame of 1773 base pairs encoding a protein of 591 amino acids with a predicted molecular mass of 65.5 kDa. GDP-L-fucose, the reaction product of GDP-L-pyrophosphorylase, was identified by HPLC and MALDI-TOF MS analysis. The tissue distribution of murine L-fucokinase and GDP-L-fucose pyrophosphorylase was investigated by quantitative real time PCR, which revealed high expression of L-fucokinase and GDP-L-fucose pyrophosphorylase in various tissues. The wide expression of both enzymes can also be observed from the large amount of data collected from a number of expressed sequence tag libraries, which indicate that not only the de novo pathway alone, but also the salvage pathway, could have a significant role in the synthesis of GDP-L-fucose in the cytosol. PMID:14686921

  4. Differential gene expression in the murine gastric fundus lacking interstitial cells of Cajal

    PubMed Central

    Daigo, Yataro; Takayama, Ichiro; Ponder, Bruce AJ; Caldas, Carlos; Ward, Sean M; Sanders, Kenton M; Fujino, Masayuki A

    2003-01-01

    Background The muscle layers of murine gastric fundus have no interstitial cells of Cajal at the level of the myenteric plexus and only possess intramuscular interstitial cells and this tissue does not generate electric slow waves. The absence of intramuscular interstitial cells in W/WV mutants provides a unique opportunity to study the molecular changes that are associated with the loss of these intercalating cells. Method The gene expression profile of the gastric fundus of wild type and W/WV mice was assayed by murine microarray analysis displaying a total of 8734 elements. Queried genes from the microarray analysis were confirmed by semi-quantitative reverse transcription-polymerase chain reaction. Results Twenty-one genes were differentially expressed in wild type and W/WV mice. Eleven transcripts had 2.0–2.5 fold higher mRNA expression in W/WV gastric fundus when compared to wild type tissues. Ten transcripts had 2.1–3.9 fold lower expression in W/WV mutants in comparison with wild type animals. None of these genes have ever been implicated in any bowel motility function. Conclusions These data provides evidence that several important genes have significantly changed in the murine fundus of W/WV mutants that lack intramuscular interstitial cells of Cajal and have reduced enteric motor neurotransmission. PMID:12795813

  5. Expression, purification and biochemical characterization of recombinant murine secretory component: a novel tool in mucosal immunology.

    PubMed Central

    Crottet, P; Cottet, S; Corthésy, B

    1999-01-01

    Reconstitution of secretory IgA (S-IgA) by the association in vitro of secretory component (SC) and polymeric IgA (pIgA) obtained from hybridomas is a valuable tool in the study of the structure-function relationship in this particular class of antibody. Although dimeric IgA (dIgA) can be obtained and purified from hybridoma clones, SC remains tedious to isolate in sufficient amounts from colostral milk. Several murine models for the study of mucosal immunity are available, which could potentially benefit from the use of cognate IgA antibodies in various molecular forms, including dIgA and S-IgA. We report here on the establishment of two expression systems allowing the production of milligram amounts of pure recombinant murine SC (rmSC) with preserved murine pIgA-binding capability. The first system relies on the use of recombinant vaccinia virus to prompt infected HeLa cells to express the murine SC protein, whereas the second system is based on a stably transfected cell clone exhibiting murine glycosylation. The second source of rmSC will permit the study of the role of its sugar moieties in pathogen-host interactions, and the evaluation of its function in passive protection without risking adverse immune responses. The extensive biochemical characterization conducted in this study demonstrates that rmSC is a dependable and convenient alternative to the natural product, and indicates that the J chain is dispensable in the recognition of pIgA and SC in vitro, whereas it is required for proper pIgA-polymeric Ig receptor interaction in vivo. PMID:10393086

  6. Intraepithelial lymphocytes express junctional molecules in murine small intestine

    SciTech Connect

    Inagaki-Ohara, Kyoko . E-mail: INAGAKI@med.miyazaki-u.ac.jp; Sawaguchi, Akira; Suganuma, Tatsuo; Matsuzaki, Goro; Nawa, Yukifumi

    2005-06-17

    Intestinal intraepithelial lymphocytes (IEL) that reside at basolateral site regulate the proliferation and differentiation of epithelial cells (EC) for providing a first line of host defense in intestine. However, it remains unknown how IEL interact and communicate with EC. Here, we show that IEL express junctional molecules like EC. We identified mRNA expression of the junctional molecules in IEL such as zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM) (tight junction), {beta}-catenin and E-cadherin (adherens junction), and connexin26 (gap junction). IEL constitutively expressed occludin and E-cadherin at protein level, while other T cells in the thymus, spleen, liver, mesenteric lymph node, and Peyer's patches did not. {gamma}{delta} IEL showed higher level of these expressions than {alpha}{beta} IEL. The expression of occludin was augmented by anti-CD3 Ab stimulation. These results suggest the possibility of a novel role of IEL concerning epithelial barrier and communication between IEL and EC.

  7. Eukaryotic expression, purification, crystallization and preliminary X-ray analysis of murine Manic Fringe

    SciTech Connect

    Jinek, Martin; Conti, Elena

    2006-08-01

    The catalytic domain of the murine glycosyltransferase Manic Fringe was expressed in insect cells. Removal by site-directed mutagenesis of two N-glycosylation sites present in the protein was essential to obtain crystals that diffracted to 1.8 Å resolution. Fringe proteins are Golgi-resident β1,3-N-acetylglucosaminyltransferases that regulate development in metazoa through glycosylation of the Notch receptor and its ligands. The catalytic domain of murine Manic Fringe was expressed in the baculovirus/insect-cell system as a secreted protein. Mass-spectrometric analysis of the purified protein indicated the presence of two N-linked glycans. Abolishing the glycosylation sites by site-directed mutagenesis was necessary in order to obtain orthorhombic crystals that diffracted to 1.8 Å resolution. For phasing, a highly redundant data set was collected using a crystal soaked with halide salts.

  8. Expression of indoleamine 2,3-dioxygenase in a murine model of Aspergillus fumigatus keratitis

    PubMed Central

    Jiang, Nan; Zhao, Gui-Qiu; Lin, Jing; Hu, Li-Ting; Che, Cheng-Ye; Li, Cui; Wang, Qian; Xu, Qiang; Zhang, Jie; Peng, Xu-Dong

    2016-01-01

    AIM To observe the presence and expression of indoleamine 2,3-dioxygenase (IDO) during the corneal immunity to Aspergillus fumigatus (A. fumigatus) in the murine models. METHODS The murine model of fungal keratitis was established by smearing with colonies of A. fumigatus after scraping central epithelium of cornea and covering with contact lenses in C57BL/6 mice. The mice were randomly divided into control group, sham group and A. fumigatus keratitis group. The cornea was monitored daily using a slit lamp and recorded disease score after infection. Corneal lesion was detected by immunofluorescence staining. IDO mRNA and protein were also detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. RESULTS The disease score and slit lamp photography indicated that disease severity was consistent with corneal inflammation in the murine models, and the disease scores in A. fumigatus keratitis group were obviously higher than those in the sham group. By immunofluorescence staining, IDO was mainly localized in corneal epithelium and stroma in the murine corneal tissues with A. fumigatus keratitis. Compared with the sham group, IDO mRNA expression was significantly enhanced in corneal epithelium infected by A. fumigatus. Furthermore, IDO protein expression detected by Western blot was in accord with transcript levels of IDO mRNA measured by qRT-PCR. IDO protein expression was enhanced after A. fumigatus infection compared with the sham group. CONCLUSION IDO is detected in corneal epithelium and stroma locally, which indicates IDO takes part in the pathogenesis of A. fumigatus keratitis and plays a key role in immune regulation at the early stage. PMID:27162718

  9. Pim-1 kinase expression during murine mammary development

    SciTech Connect

    Gapter, Leslie A.; Magnuson, Nancy S.; Ng, Ka-yun; Hosick, Howard L. . E-mail: hosick@wsu.edu

    2006-07-07

    Pim-1 kinase phosphorylates substrates whose activities are linked to proliferation, survival, differentiation, and apoptosis. Although pim-1 is induced by hormones and cytokines, the hormonal control and contribution of Pim-1 to mammary gland development have not been evaluated. We examined Pim-1 expression in mammary cell lines, investigated whether Pim-1 levels could be altered in breast epithelia by mammogenic hormones, and evaluated Pim-1 expression during mammary development. We found that Pim-1 was elevated in most mammary carcinoma cell lines and progesterone increased Pim-1 protein to some extent in non-tumorigenic mammary epithelia. Pim-1 expression in situ was consistent with the documented profile of progesterone activity in mouse mammary glands. Pim-1 nuclear localization correlated with cytoplasmic distribution for its substrate, p21{sup CIP/Waf1}, and we found that Pim-1 and p21 associate in vitro. Our results suggest that Pim-1 expression may be regulated by progesterone during mammary development and Pim-1 associates with p21 in mammary epithelial cells.

  10. Differential expression of murine adult hemoglobins in early ontogeny

    SciTech Connect

    Wawrzyniak, C.J.; Lewis, S.E.; Popp, R.A.

    1985-01-01

    A hemoglobin mutation is described that permits study of the expression of the two adult ..beta..-globin genes throughout fetal and postnatal development. Mice with a mutation at the Hbb/sup s/, ..beta..-globin locus, were used to study the relative levels of ..beta..-s2major and ..beta..-sminor globins specified by the mutant Hbb/sup s2/ haplotype during development. At 11.5 days of gestation ..beta..-sminor comprised over 80% and ..beta..-s2major under 20% of the adult beta-globin. The relative level of ..beta..-sminor decreased through fetal development; at birth ..beta..-sminor represented 33.7% of the ..beta..-globin. The adult values of 71.0% ..beta..-s2major and 29.0% ..beta..-sminor globin are expressed in mice six days after birth. Because the two ..beta..-globin genes are expressed in mice of the Hbb/sup 2s/ haplotype, both the ..beta..-smajor and ..beta..-sminor genes must be expressed in mice of the Hbb/sup s/ haplotype. Expression of the ..beta..-sminor gene is elevated to 35.6% in Hbb/sup s2/ mice that have been bled repeatedly. Thus, the 5' ..beta..-s2major and 3' ..beta..-sminor genes of the Hbb/sup s2/ haplotype and, presumably the 5' ..beta..-smajor and 3' ..beta..-sminor genes of the Hbb/sup s/ haplotype, are regulated independently and are homologous to the 5' ..beta..-dmajor and 3' ..beta..-dminor genes of the Hbb/sup d/ haplotype. Mice of the Hbb/sup s2/ haplotype are better than mice of the Hbb/sup d/ haplotytpe for studying the mechanisms of hemoglobin switching because the Hbb/sup s2/ each of the three embryonic and two adult hemoglobins can be separated by electrophoresis. 17 refs., 3 figs.

  11. CD40 in coronary artery disease: a matter of macrophages?

    PubMed

    Jansen, Matthijs F; Hollander, Maurits R; van Royen, Niels; Horrevoets, Anton J; Lutgens, Esther

    2016-07-01

    Coronary artery disease (CAD), also known as ischemic heart disease (IHD), is the leading cause of mortality in the western world, with developing countries showing a similar trend. With the increased understanding of the role of the immune system and inflammation in coronary artery disease, it was shown that macrophages play a major role in this disease. Costimulatory molecules are important regulators of inflammation, and especially, the CD40L-CD40 axis is of importance in the pathogenesis of cardiovascular disease. Although it was shown that CD40 can mediate macrophage function, its exact role in macrophage biology has not gained much attention in cardiovascular disease. Therefore, the goal of this review is to give an overview on the role of macrophage-specific CD40 in cardiovascular disease, with a focus on coronary artery disease. We will discuss the function of CD40 on the macrophage and its (proposed) role in the reduction of atherosclerosis, the reduction of neointima formation, and the stimulation of arteriogenesis. PMID:27146510

  12. Molecular basis for CD40 signaling mediated by TRAF3

    PubMed Central

    Ni, Chao-Zhou; Welsh, Kate; Leo, Eugen; Chiou, Chu-kuan; Wu, Hao; Reed, John C.; Ely, Kathryn R.

    2000-01-01

    Tumor necrosis factor receptors (TNFR) are single transmembrane-spanning glycoproteins that bind cytokines and trigger multiple signal transduction pathways. Many of these TNFRs rely on interactions with TRAF proteins that bind to the intracellular domain of the receptors. CD40 is a member of the TNFR family that binds to several different TRAF proteins. We have determined the crystal structure of a 20-residue fragment from the cytoplasmic domain of CD40 in complex with the TRAF domain of TRAF3. The CD40 fragment binds as a hairpin loop across the surface of the TRAF domain. Residues shown by mutagenesis and deletion analysis to be critical for TRAF3 binding are involved either in direct contact with TRAF3 or in intramolecular interactions that stabilize the hairpin. Comparison of the interactions of CD40 with TRAF3 vs. TRAF2 suggests that CD40 may assume different conformations when bound to different TRAF family members. This molecular adaptation may influence binding affinity and specific cellular triggers. PMID:10984535

  13. Expression of decorin throughout the murine hair follicle cycle: hair cycle dependence and anagen phase prolongation.

    PubMed

    Jing, Jing; Wu, Xian-Jie; Li, Yun-Ling; Cai, Sui-Qing; Zheng, Min; Lu, Zhong-Fa

    2014-07-01

    Decorin is a prototypical member of the small leucine-rich proteoglycan (SLRP) family, which is involved in numerous biological processes. The role of decorin, as a representative SLRP, in hair follicle morphogenesis has not been elucidated. We present our initial findings on decorin expression patterns during induced murine hair follicle (HF) cycles. It was found that decorin expression is exclusively restricted to the epidermis, outer root sheath and sebaceous glands during the anagen phase, which correlates with the upregulation of decorin mRNA and protein expression in depilated murine dorsal skin. Furthermore, we used a functional approach to investigate the effects of recombinant human decorin (rhDecorin) via cutaneous injection into HFs at various murine hair cycle stages. The local injection of rhDecorin (100 μg/ml) into the hypodermis of depilated C57BL/6 mice at anagen delayed catagen progression. In contrast, rhDecorin injection during the telogen phase caused the premature onset of anagen, as demonstrated by the assessment of the following parameters: (i) hair shaft length, (ii) follicular bulbar diameter, (iii) hair follicle cycling score and (iv) follicular phase percentage. Taken together, our results suggest that decorin may modulate follicular cycling and morphogenesis. In addition, this study also provides insight into the molecular control mechanisms governing hair follicular epithelial-mesenchymal interactions. PMID:24816226

  14. Murine Hematopoietic Stem cells and Progenitors Express Adrenergic Receptors

    PubMed Central

    Muthu, Kuzhali; Iyer, Sivaraman; He, L-K.; Szilagyi, Andrea; Gamelli, Richard L; Shankar, Ravi; Jones, Stephen B

    2007-01-01

    Association between the nervous and immune system is well documented. Immune cells originate within the bone marrow that is innervated. Thermal injury induces adrenergic stimulation, augments monocytopoiesis and alters the β-adrenergic receptor (AR) profile of bone marrow monocyte committed progenitors. This provides an impetus to study AR expression in hematopoietic progenitors along myeloid lineage. Using FACS analysis and confocal microscopy, we report the expression of α1-, α2- and β2- AR in enriched populations of ER-MP20+ and ER-MP12+ myeloid progenitors, CD117+ and CD34+ multi-potential progenitors and more importantly pluripotent stem cells suggesting a plausible role for catecholamine in hematopoietic development. PMID:17428548

  15. Tumor Necrosis Factor-α/CD40 Ligand-Engineered Mesenchymal Stem Cells Greatly Enhanced the Antitumor Immune Response and Lifespan in Mice

    PubMed Central

    Daneshmandi, Saeed; Menaa, Farid

    2014-01-01

    Abstract The interaction between mesenchymal stem cells (MSCs) and dendritic cells (DCs) affects T cell development and function. Further, the chemotactic capacity of MSCs, their interaction with the tumor microenvironment, and the intervention of immune-stimulatory molecules suggest possible exploitation of tumor necrosis factor-α (TNF-α) and CD40 ligand (CD40L) to genetically modify MSCs for enhanced cancer therapy. Both DCs and MSCs were isolated from BALB/c mice. DCs were then cocultured with MSCs transduced with TNF-α and/or CD40L [(TNF-α/CD40L)-MSCs]. Major DCs' maturation markers, DC and T cell cytokines such as interleukin-4, -6, -10, -12, TNF-α, tumor growth factor-β, as well as T cell proliferation, were assessed. Meantime, a BALB/c mouse breast tumor model was inducted by injecting 4T1 cells subcutaneously. Mice (n=10) in each well-defined test groups (n=13) were cotreated with DCs and/or (TNF-α/CD40L)-MSCs. The controls included untreated, empty vector-MSC, DC-lipopolysaccharide, and immature DC mouse groups. Eventually, cytokine levels from murine splenocytes, as well as tumor volume and survival of mice, were assessed. Compared with the corresponding controls, both in vitro and in vivo analyses showed induction of T helper 1 (Th1) as well as suppression of Th2 and Treg responses in test groups, which led to a valuable antitumor immune response. Further, the longest mouse survival was observed in mouse groups that were administered with DCs plus (TNF-α/CD40L)-MSCs. In our experimental setting, the present pioneered study demonstrates that concomitant genetic modification of MSCs with TNF-α and CD40L optimized the antitumor immunity response in the presence of DCs, meantime increasing the mouse lifespan. PMID:24372569

  16. Changing expression and subcellular distribution of karyopherins during murine oogenesis.

    PubMed

    Mihalas, Bettina P; Western, Patrick S; Loveland, Kate L; McLaughlin, Eileen A; Holt, Janet E

    2015-12-01

    Mammalian oocyte growth and development is driven by a strict program of gene expression that relies on the timely presence of transcriptional regulators via nuclear pores. By targeting specific cargos for nucleo-cytoplasmic transport, karyopherin (KPN) proteins are key to the relocation of essential transcription factors and chromatin-remodelling factors into and out of the nucleus. Using multiple complementary techniques, here we establish that KPNA genes and proteins are dynamically expressed and relocalised throughout mouse oogenesis and folliculogenesis. Of the KPNAs examined (Kpna1, Kpna2, Kpna3, Kpna4, Kpna6, Kpna7, Kpnb1, Ipo5 and Xpo1), all were expressed in the embryonic ovary with up-regulation of protein levels concomitant with meiotic entry for KPNA2, accompanied by the redistribution of the cellular localisation of KPNA2 and XPO1. In contrast, postnatal folliculogenesis revealed significant up-regulation of Kpna1, Kpna2, Kpna4, Kpna6 and Ipo5 and down-regulation of Kpnb1, Kpna7 and Xpo1 at the primordial to primary follicle transition. KPNAs exhibited different localisation patterns in both oocytes and granulosa cells during folliculogenesis, with three KPNAs--KPNA1, KPNA2 and IPO5--displaying marked enrichment in the nucleus by antral follicle stage. Remarkably, varied subcellular expression profiles were also identified in isolated pre-ovulatory oocytes with KPNAs KPNA2, KPNB1 and IPO5 detected in the cytoplasm and at the nuclear rim and XPO1 in cytoplasmic aggregates. Intriguingly, meiotic spindle staining was also observed for KPNB1 and XPO1 in meiosis II eggs, implying roles for KPNAs outside of nucleo-cytoplasmic transport. Thus, we propose that KPNAs, by targeting specific cargoes, are likely to be key regulators of oocyte development. PMID:26399853

  17. 1.8 Astroms Structure of Murine GITR Ligand Dimer Expressed in Drosophila Melanogaster S2 Cells

    SciTech Connect

    Chattopadhyay, K.; Ramagopal, U; Nathenson, S; Almo, S

    2009-01-01

    Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure, murine GITRL demonstrated a unique 'strand-exchanged' dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with the murine GITRL costimulatory system. In this present work, the 1.8 {angstrom} resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical 'strand-exchanged' dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL.

  18. Involvement of calcitonin gene-related peptide and CCL2 production in CD40-mediated behavioral hypersensitivity in a model of neuropathic pain

    PubMed Central

    MALON, JENNIFER T.; MADDULA, SWATHI; BELL, HARMONY; CAO, LING

    2014-01-01

    The neuropeptide calcitonin gene-related peptide (CGRP) is known to play a pro-nociceptive role after peripheral nerve injury upon its release from primary afferent neurons in preclinical models of neuropathic pain. We previously demonstrated a critical role for spinal cord microglial CD40 in the development of spinal nerve L5 transection (L5Tx)-induced mechanical hypersensitivity. Herein, we investigated whether CGRP is involved in the CD40-mediated behavioral hypersensitivity. First, L5Tx was found to significantly induce CGRP expression in wild-type (WT) mice up to 14 days post-L5Tx. This increase in CGRP expression was reduced in CD40 knockout (KO) mice at day 14 post-L5Tx. Intrathecal injection of the CGRP antagonist CGRP8–37 significantly blocked L5Tx-induced mechanical hypersensitivity. In vitro, CGRP induced glial IL-6 and CCL2 production, and CD40 stimulation added to the effects of CGRP in neonatal glia. Further, there was decreased CCL2 production in CD40 KO mice compared to WT mice 21 days post-L5Tx. However, CGRP8–37 did not significantly affect spinal cord CCL2 production following L5Tx in WT mice. Altogether, these data suggest that CD40 contributes to the maintenance of behavioral hypersensitivity following peripheral nerve injury in part through two distinct pathways, the enhancement of CGRP expression and spinal cord CCL2 production. PMID:22377050

  19. CD40-TRAF Signaling Upregulates CX3CL1 and TNF-α in Human Aortic Endothelial Cells but Not in Retinal Endothelial Cells

    PubMed Central

    Greene, Jennifer A.; Portillo, Jose-Andres C.; Lopez Corcino, Yalitza; Subauste, Carlos S.

    2015-01-01

    CD40, CX3CL1 and TNF-α promote atheroma and neointima formation. CD40 and TNF-α are also central to the development of diabetic retinopathy while CX3CL1 may play a role in the pathogenesis of this retinopathy. The purpose of this study was to examine whether CD40 ligation increases CX3CL1 and TNF-α protein expression in human endothelial cells from the aorta and retina. CD154 (CD40 ligand) upregulated membrane-bound and soluble CX3CL1 in human aortic endothelial cells. CD154 triggered TNF-α production by human aortic endothelial cells. TNF Receptor Associated Factors (TRAF) are key mediators of CD40 signaling. Compared to human aortic endothelial cells that express wt CD40, cells that express CD40 with a mutation that prevents TRAF2,3 recruitment, or CD40 with a mutation that prevents TRAF6 recruitment exhibited a profound inhibition of CD154-driven upregulation of membrane bound and soluble CX3CL1 as well as of TNF-α secretion. While both CD154 and TNF-α upregulated CX3CL1 in human aortic endothelial cells, these stimuli could act independently of each other. In contrast to human aortic endothelial cells, human retinal endothelial cells did not increase membrane bound or soluble CX3CL1 expression or secrete TNF-α in response to CD154 even though CD40 ligation upregulated ICAM-1 and CCL2 in these cells. Moreover, TNF-α did not upregulate CX3CL1 in retinal endothelial cells. In conclusion, CD40 ligation increases CX3CL1 protein levels and induces TNF-α production in endothelial cells. However, endothelial cells are heterogeneous in regards to these responses. Human aortic but not retinal endothelial cells upregulated CX3CL1 and TNF-α in response to CD40 ligation, as well as upregulated CX3CL1 in response to TNF-α. These dissimilarities may contribute to differences in regulation of inflammation in large vessels versus the retina. PMID:26710229

  20. Gene expression analysis in the compartments of the murine uterus.

    PubMed

    Rosario, Gracy Xavier; Cheng, Jr-Gang; Stewart, Colin L

    2016-01-01

    Embryo implantation, a key critical feature of mammalian pregnancy, involves co-ordinate interplay between an incoming blastocyst and a receptive uterus. Aberrations in signaling cascades during this process result in pregnancy loss in mammals, including women. Analysis of the complete uterus at any given point either during preparation for implantation or during and after embryo attachment and invasion makes it difficult to assign specific signaling mechanism to the individual cellular compartments of the uterus. Here, we describe methods for the specific isolation of the luminal epithelium (LE) and subsequent analysis of gene expression/signaling pathways during embryo attachment. We further describe the analysis of RNA and proteins by specific techniques of quantitative PCR (qPCR), immunostaining and Western blotting of uterine tissues. These methods can be applied to the other cellular compartments of the uterus and embryo invasion and endometrial development. These techniques will be beneficial to investigators for delineating the mechanisms involved during embryo attachment and female reproduction as well as providing a means to studying highly dynamic changes in gene expression in tissues. PMID:26651425

  1. Integrating Murine Gene Expression Studies to Understand Obstructive Lung Disease Due to Chronic Inhaled Endotoxin

    PubMed Central

    Lai, Peggy S.; Hofmann, Oliver; Baron, Rebecca M.; Cernadas, Manuela; Meng, Quanxin Ryan; Bresler, Herbert S.; Brass, David M.; Yang, Ivana V.; Schwartz, David A.; Christiani, David C.; Hide, Winston

    2013-01-01

    Rationale Endotoxin is a near ubiquitous environmental exposure that that has been associated with both asthma and chronic obstructive pulmonary disease (COPD). These obstructive lung diseases have a complex pathophysiology, making them difficult to study comprehensively in the context of endotoxin. Genome-wide gene expression studies have been used to identify a molecular snapshot of the response to environmental exposures. Identification of differentially expressed genes shared across all published murine models of chronic inhaled endotoxin will provide insight into the biology underlying endotoxin-associated lung disease. Methods We identified three published murine models with gene expression profiling after repeated low-dose inhaled endotoxin. All array data from these experiments were re-analyzed, annotated consistently, and tested for shared genes found to be differentially expressed. Additional functional comparison was conducted by testing for significant enrichment of differentially expressed genes in known pathways. The importance of this gene signature in smoking-related lung disease was assessed using hierarchical clustering in an independent experiment where mice were exposed to endotoxin, smoke, and endotoxin plus smoke. Results A 101-gene signature was detected in three murine models, more than expected by chance. The three model systems exhibit additional similarity beyond shared genes when compared at the pathway level, with increasing enrichment of inflammatory pathways associated with longer duration of endotoxin exposure. Genes and pathways important in both asthma and COPD were shared across all endotoxin models. Mice exposed to endotoxin, smoke, and smoke plus endotoxin were accurately classified with the endotoxin gene signature. Conclusions Despite the differences in laboratory, duration of exposure, and strain of mouse used in three experimental models of chronic inhaled endotoxin, surprising similarities in gene expression were observed

  2. Spatial and temporal expression of histone demethylase, Kdm2a, during murine molar development.

    PubMed

    Yi, Q; Cao, Y; Liu, O S; Lu, Y Q; Wang, J S; Wang, S L; Yao, R; Fan, Z P

    2016-01-01

    The histone demethylase, lysine (K)-specific demethylase 2A (Kdm2a), is highly conserved and expressed ubiquitously. Kdm2a can regulate cell proliferation and osteo/dentinogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells (MSCs) derived from dental tissue. We used quantitative real-time RT-PCR analysis and immunohistochemistry to detect Kdm2a expression during development of the murine molar at embryonic days E12, E14, E16 and E17 and postnatal days P3 and P14. Immunohistochemistry results showed no positive staining of Kdm2a at E12. At E14, Kdm2a was expressed weakly in the inner enamel epithelium, stellate reticulum cells and dental sac. At E16, Kdm2a was expressed mainly in the inner and outer enamel epithelium, stratum intermedium and dental sac, but weaker staining was found in cervical loop and dental papilla cells adjacent to the basement membrane. At E17, the strongest Kdm2a staining was detected in the ameloblasts and stronger Kdm2a staining also was detected in the stratum intermedium, outer enamel epithelium and dental papilla cells compared to the expression at E16. Postnatally, we found that Kdm2a was localized in secretory and mature ameloblasts and odontoblasts, and dentin was unstained. Real-time RT-PCR showed that Kdm2a mRNA levels in murine germ cells increased from E12 to E14 and from E14 to E16; no significant change occurred at E16, E17 or P3, then the levels decreased at P14 compared to P3. Kdm2a expression may be closely related to cell proliferation, to ameloblast and odontoblast differentiation and to the secretion of extracellular enamel and dentin during murine tooth development. PMID:26720400

  3. Hyperimmunoglobulin syndrome due to CD40 deficiency: Possibly the first case from India

    PubMed Central

    Mishra, A; Italia, K; Gupta, M; Desai, M; Madkaikar, M

    2015-01-01

    Hyperimmunoglobulin M (HIGM) type 3 due to CD40 deficiency is a very rare syndrome. Only 16 cases have been reported thus far. The clinical presentation is very variable. We present the first case of this rare disorder from India. The case is of a two-and-a-half-year-old female, with a history of repeated episodes of skin infections and diarrhea since birth. Laboratory evaluation revealed elevated absolute lymphocyte count and an absolute neutrophil count (ANC) of 1026/mm3. The lymphocyte subset analysis showed normal absolute counts of Natural Killer (NK) cells and elevated absolute counts of T-cells (CD4 and CD8) and B-cells. The serum immunoglobulin estimation showed low levels of IgG, IgA, IgE and an elevated level of IgM. The CD154 analysis was normal and expression of CD40 was absent on the B-cells. Molecular analysis showed a novel mutation, with deletion of 3bp (AAG) [p.Glu107GlyfsX84] in the homozygous state, in the CD40 gene. Thus the patient was diagnosed as HIGM type 3. The parents were screened and counseled regarding prenatal diagnosis at the time of next pregnancy. PMID:25511220

  4. Microarray Based Gene Expression Analysis of Murine Brown and Subcutaneous Adipose Tissue: Significance with Human

    PubMed Central

    Boparai, Ravneet K.; Kondepudi, Kanthi Kiran; Mantri, Shrikant; Bishnoi, Mahendra

    2015-01-01

    Background Two types of adipose tissues, white (WAT) and brown (BAT) are found in mammals. Increasingly novel strategies are being proposed for the treatment of obesity and its associated complications by altering amount and/or activity of BAT using mouse models. Methodology/Principle Findings The present study was designed to: (a) investigate the differential expression of genes in LACA mice subcutaneous WAT (sWAT) and BAT using mouse DNA microarray, (b) to compare mouse differential gene expression with previously published human data; to understand any inter- species differences between the two and (c) to make a comparative assessment with C57BL/6 mouse strain. In mouse microarray studies, over 7003, 1176 and 401 probe sets showed more than two-fold, five-fold and ten-fold change respectively in differential expression between murine BAT and WAT. Microarray data was validated using quantitative RT-PCR of key genes showing high expression in BAT (Fabp3, Ucp1, Slc27a1) and sWAT (Ms4a1, H2-Ob, Bank1) or showing relatively low expression in BAT (Pgk1, Cox6b1) and sWAT (Slc20a1, Cd74). Multi-omic pathway analysis was employed to understand possible links between the organisms. When murine two fold data was compared with published human BAT and sWAT data, 90 genes showed parallel differential expression in both mouse and human. Out of these 90 genes, 46 showed same pattern of differential expression whereas the pattern was opposite for the remaining 44 genes. Based on our microarray results and its comparison with human data, we were able to identify genes (targets) (a) which can be studied in mouse model systems to extrapolate results to human (b) where caution should be exercised before extrapolation of murine data to human. Conclusion Our study provides evidence for inter species (mouse vs human) differences in differential gene expression between sWAT and BAT. Critical understanding of this data may help in development of novel ways to engineer one form of adipose

  5. Expression and localization of GPR91 and GPR99 in murine organs.

    PubMed

    Diehl, Julia; Gries, Barbara; Pfeil, Uwe; Goldenberg, Anna; Mermer, Petra; Kummer, Wolfgang; Paddenberg, Renate

    2016-05-01

    Energy substrates and metabolic intermediates are proven ligands of a growing number of G-protein coupled receptors. In 2004, GPR91 and GPR99 were identified as receptors for the citric acid cycle intermediates, succinate and α-ketoglutarate, respectively. GPR91 seems to act as a first responder to local stress and GPR99 participates in the regulation of the acid-base balance through an intrarenal paracrine mechanism. However, a systematic analysis of the distribution of both receptors in mouse organs is still missing. The aim of this study was to examine the expression of GPR91 and GPR99 in a large number of different murine organs both at mRNA and protein level. Whereas GPR91 mRNA was detectable in almost all organs, GPR99 mRNA was mainly expressed in neuronal tissues. Widespread expression of GPR91 was also detected at the protein level by western blotting and immunohistochemistry. In addition to neuronal cells, GPR99 protein was found in renal intercalated cells and epididymal narrow cells. Double-labeling immunohistochemistry demonstrated the colocalization of GPR99 with the B1 subunit isoform of vacuolar H(+)-ATPases which is expressed only by a very limited number of cell types. In summary, our detailed expression analysis of GPR91 and GPR99 in murine tissues will allow a more directed search for additional functions of both receptors. PMID:26590824

  6. Lymphocytes and not IFNγ mediate expression of iNOS by intestinal epithelium in murine cryptosporidiosis

    PubMed Central

    Nordone, S.K.; Gookin, J.L.

    2013-01-01

    We hypothesized that unrecognized differences in epithelial expression of inducible nitric oxide synthase (iNOS), resulting from engineered immunodeficiency, could explain the contradictory findings of prior studies regarding the importance of nitric oxide (NO) in murine models of C. parvum infection. Severe combined immunodeficient mice (SCID) failed to constitutively or inducibly express epithelial iNOS or increase NO synthesis in response to C. parvum infection. In contrast, mice lacking IFNγ alone induced both epithelial iNOS expression and NO synthesis in response to infection. Accordingly, lymphocytes mediate epithelial expression of iNOS and NO synthesis independent of IFNγ in response to C. parvum infection. These findings in large part explain the contradictory conclusions of prior studies regarding the role of iNOS in C. parvum infection. PMID:20352449

  7. MicroRNA-145 regulates platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration by targeting CD40

    PubMed Central

    Li, Yumei; Huang, Jiangnan; Jiang, Zhiyuan; Zhong, Yuanli; Xia, Mingjie; Wang, Hui; Jiao, Yang

    2016-01-01

    The objective of this study is to investigate the expression of microRNA (miR)-145 in human aortic vascular smooth muscle cells (VSMCs) and the effect of miR-145 in the biological behavior and expression of CD40 in VSMCs. Cells were treated with either miR-145 or miR-145 inhibitor. Cell proliferation was analyzed by a colony formation assay and a methyl thiazolyl tetrazolium assay. Cell migration and invasion were assessed using a transwell assay, an invasion assay, and a wound healing assay. A luciferase reporter assay was used to detect the interaction between miR-145 and CD40. Expression of α-SMA, calponin, osteopontin (OPN), epiregulin, activator protein-1 (AP-1) and CD40 was measured using real-time RT-PCR for mRNA levels and Western blotting for protein levels. Overexpression of miR-145 significantly inhibited VSMC proliferation, invasion and migration. Furthermore, OPN, epiregulin, AP-1 and CD40 expression at the mRNA and protein levels was down-regulated by overexpression of miR-145. However, α-SMA and calponin expression at the mRNA and protein levels was up-regulated by overexpression of miR-145. In addition, the luciferase reporter assay showed that CD40 may be a direct target gene of miR-145 in VSMC initiation and development. Moreover, these data demonstrate that the up-regulation of CD40 is critical for miR-145-mediated inhibitory effects on platelet-derived growth factor-induced cell proliferation and migration in human VSMCs. In summary, CD40, a direct target of miR-145, reverses the inhibitory effects of miR-145. These results suggest that the specific modulation of miR-145 in human VSMCs may be an attractive approach for the treatment of proliferative vascular diseases. PMID:27186305

  8. Lipopolysaccharide modulation of dendritic cells is insufficient to mature dendritic cells to generate CTLs from naive polyclonal CD8+ T cells in vitro, whereas CD40 ligation is essential.

    PubMed

    Kelleher, M; Beverley, P C

    2001-12-01

    Many cytotoxic CD8+ T cell responses are dependent on the interactions between CD40 ligand on the helper CD4+ T cell and CD40 on the APC. Although CD40 triggering of dendritic cells (DC) has been shown to mature the DC by increasing the level of expression of costimulatory molecules and inducing IL-12 secretion, the precise mechanisms by which CD40-CD40 ligand interactions allow DC to drive CTL responses remain unknown. We have used an in vitro model in which naive polyclonal CD8+ T cells can be activated by bone marrow-derived DC to investigate factor(s) that are responsible for this CD40-dependent generation of CTLs. DC modulated with agonistic anti-CD40 mAb (aCD40) are able to generate Ag-specific CTL responses while DC modulated with the microbial stimulus LPS alone do not. We compared the Ag-presenting capacity, levels of costimulatory molecules, and release of cytokines and chemokines of DC modulated with aCD40 to that of DC modulated by LPS. None of the factors assayed account for the unique capacity of anti-CD40-matured DC to drive CTL but this model provides a simplified system for further investigation. Although we attempted to use an LPS-free system for these studies, we are unable to rule out the possibility that very low levels of endotoxin (<20 pg/ml) may synergize with CD40 ligation in the generation of CTLs. PMID:11714787

  9. An autologous in situ tumor vaccination approach for hepatocellular carcinoma. 2. Tumor-specific immunity and cure after radio-inducible suicide gene therapy and systemic CD40-ligand and Flt3-ligand gene therapy in an orthotopic tumor model.

    PubMed

    Kawashita, Yujo; Deb, Niloy J; Garg, Madhur K; Kabarriti, Rafi; Fan, Zuoheng; Alfieri, Alan A; Roy-Chowdhury, Jayanta; Guha, Chandan

    2014-08-01

    Diffuse hepatocellular carcinoma (HCC) is a lethal disease that radiation therapy (RT) currently has a limited role in treating because of the potential for developing fatal radiation-induced liver disease. However, recently diffuse HCC, "radio-inducible suicide gene therapy" has been shown to enhance local tumor control and residual microscopic disease within the liver for diffuse HCC, by using a combination of chemoactivation and molecular radiosensitization. We have demonstrated that the addition of recombinant adenovirus-expressing human Flt3 ligand (Adeno-Flt3L) after radio-inducible suicide gene therapy induced a Th1-biased, immune response and enhanced tumor control in an ectopic model of HCC. We hypothesized that sequential administration of recombinant adenovirus-expressing CD40L (Adeno-CD40L) could further potentiate the efficacy of our trimodal therapy with RT + HSV-TK + Adeno-Flt3L. We examined our hypothesis in an orthotopic model of diffuse HCC using BNL1ME A.7R.1 (BNL) cells in Balb/c mice. BNL murine hepatoma cells (5 × 10(4)) transfected with an expression vector of HSV-TK under the control of a radiation-inducible promoter were injected intraportally into BALB/cJ mice. Fourteen days after the HCC injection, mice were treated with a 25 Gy dose of radiation to the whole liver, followed by ganciclovir (GCV) treatment and systemic adenoviral cytokine gene therapy (Flt3L or CD40L or both). Untreated mice died in 27 ± 4 days. Radiation therapy alone had a marginal effect on survival (median = 35 ± 7 days) and the addition of HSV-TK/GCV gene therapy improved the median survival to 47 ± 6 days. However, the addition of Adeno-Flt3L to radiation therapy and HSV-TK/GCV therapy significantly (P = 0.0005) increased survival to a median of 63 ± 20 days with 44% (7/16) of the animals still alive 116 days after tumor implantation. The curative effect of Flt3L was completely abolished when using immunodeficient nude mice or mice depleted for CD4, CD8 and

  10. Targeting the HA2 subunit of influenza A virus hemagglutinin via CD40L provides universal protection against diverse subtypes.

    PubMed

    Fan, X; Hashem, A M; Chen, Z; Li, C; Doyle, T; Zhang, Y; Yi, Y; Farnsworth, A; Xu, K; Li, Z; He, R; Li, X; Wang, J

    2015-01-01

    The influenza viral hemagglutinin (HA) is comprised of two subunits. Current influenza vaccine predominantly induces neutralizing antibodies (Abs) against the HA1 subunit, which is constantly evolving in unpredictable fashion. The other subunit, HA2, however, is highly conserved but largely shielded by the HA head domain. Thus, enhancing immune response against HA2 could potentially elicit broadly inhibitory Abs. We generated a recombinant adenovirus (rAd) encoding secreted fusion protein, consisting of codon-optimized HA2 subunit of influenza A/California/7/2009(H1N1) virus fused to a trimerized form of murine CD40L, and determined its ability of inducing protective immunity upon intranasal administration. We found that mice immunized with this recombinant viral vaccine were completely protected against lethal challenge with divergent influenza A virus subtypes including H1N1, H3N2, and H9N2. Codon-optimization of HA2 as well as the use of CD40L as a targeting ligand/molecular adjuvant were indispensable to enhance HA2-specific mucosal IgA and serum IgG levels. Moreover, induction of HA2-specific T-cell responses was dependent on CD40L, as rAd secreting HA2 subunit without CD40L failed to induce any significant levels of T-cell cytokines. Finally, sera obtained from immunized mice were capable of inhibiting 13 subtypes of influenza A viruses in vitro. These results provide proof of concept for a prototype HA2-based universal influenza vaccine. PMID:25052763

  11. Dynamic variation in allele-specific gene expression of Paraoxonase-1 in murine and human tissues

    PubMed Central

    Parker-Katiraee, Layla; Bousiaki, Eleni; Monk, David; Moore, Gudrun E.; Nakabayashi, Kazuhiko; Scherer, Stephen W.

    2008-01-01

    Differential allelic expression has been shown to be common in mice, humans and maize, and variability in the expression of polymorphic alleles has been associated with human disease. Here, we describe the differential expression pattern of Paraoxonase-1, a gene involved in lipid metabolism and implicated in the formation of atherosclerotic lesions. We measured the expression of the murine Paraoxonase-1 gene (Pon1) in livers at different stages of embryonic development using F1 hybrid crosses and quantified the transcriptional level of both parental alleles. Using human foetal tissues, we analysed the expression of the human orthologue (PON1) and found monoallelic or preferential allelic expression in 6/7 and 4/4 samples from liver and pancreas, respectively. We observed that Pon1 does not show a parent-of-origin preference in its allelic expression, but has dramatic variations in allele-specific expression occurring throughout development. This study has important repercussions in the analysis of haplotypes at disease loci, since it implies that the expression of polymorphic alleles can be unequal and dynamic. PMID:18678600

  12. Bacterial Colonization and the Expression of Inducible Nitric Oxide Synthase in Murine Wounds

    PubMed Central

    Mahoney, Eric; Reichner, Jonathan; Robinson Bostom, Leslie; Mastrofrancesco, Balduino; Henry, William; Albina, Jorge

    2002-01-01

    The expression of inducible nitric oxide synthase (iNOS) in two different murine wound models was investigated. Animals were subjected to either full-thickness linear skin incision with subcutaneous implantation of sterile polyvinyl alcohol sponges, or to 1.5 × 1.5-cm dorsal skin excision. Reverse transcriptase-polymerase chain reaction detected iNOS mRNA in all cell samples retrieved from the sponges. Immunoblotting of lysates of inflammatory cells harvested from the sponges failed to detect iNOS protein, and immunohistochemistry of the incisional wound was mildly positive. Inflammatory cells of excisional wounds stained strongly positive for iNOS. Cutaneous wounds were found to be colonized with Staphylococcus aureus. The detection of iNOS in cells from sponges inoculated in vivo with heat-killed bacteria and the reduction of immunohistochemical signal for iNOS in excisional wounds of animals treated with antibiotics support a role of bacteria in the induction of iNOS in wounds. The expression of iNOS in excisional wounds requires interferon-γ and functional lymphocytes because interferon-γ knockout and SCID-Beige mice exhibited attenuated iNOS staining in excisional wounds. The expression of iNOS in the inflammatory cells of murine wounds is a response to bacterial colonization and not part of the normal repair process elicited by sterile tissue injury. PMID:12466130

  13. c-kit mRNA expression in human and murine hematopoietic cell lines.

    PubMed

    André, C; d'Auriol, L; Lacombe, C; Gisselbrecht, S; Galibert, F

    1989-08-01

    The c-kit proto-oncogene belongs to the tyrosine kinase receptor family. Although its ligand is still unknown, there is increasing evidence to suggest its involvement in hematopoiesis. In order to detect lineage or differentiation related specificity, we have studied c-kit mRNA expression in both human and murine hematopoietic organs and cell lines. We show that c-kit mRNA expression is found at early stages of erythroid and myeloid differentiation. There is however, no evidence of c-kit expression in the lymphoid lineage. Our results suggest a possible role for c-kit as a receptor in the early stages of the erythroid/myeloid differentiation. PMID:2474787

  14. 1.8 Å structure of murine GITR ligand dimer expressed in Drosophila melanogaster S2 cells

    SciTech Connect

    Chattopadhyay, Kausik; Ramagopal, Udupi A.; Nathenson, Stanley G.; Almo, Steven C.

    2009-05-01

    1.8 Å X-ray crystal structure of mouse GITRL expressed in D. melanogaster S2 cells shows an identical ‘strand-exchanged’ dimeric assembly similar to that observed previously for the E. coli-expressed protein. Glucocorticoid-induced TNF receptor ligand (GITRL), a prominent member of the TNF superfamily, activates its receptor on both effector and regulatory T cells to generate critical costimulatory signals that have been implicated in a wide range of T-cell immune functions. The crystal structures of murine and human orthologs of GITRL recombinantly expressed in Escherichia coli have previously been determined. In contrast to all classical TNF structures, including the human GITRL structure, murine GITRL demonstrated a unique ‘strand-exchanged’ dimeric organization. Such a novel assembly behavior indicated a dramatic impact on receptor activation as well as on the signaling mechanism associated with the murine GITRL costimulatory system. In this present work, the 1.8 Å resolution crystal structure of murine GITRL expressed in Drosophila melanogaster S2 cells is reported. The eukaryotic protein-expression system allows transport of the recombinant protein into the extracellular culture medium, thus maximizing the possibility of obtaining correctly folded material devoid of any folding/assembly artifacts that are often suspected with E. coli-expressed proteins. The S2 cell-expressed murine GITRL adopts an identical ‘strand-exchanged’ dimeric structure to that observed for the E. coli-expressed protein, thus conclusively demonstrating the novel quaternary structure assembly behavior of murine GITRL.

  15. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    SciTech Connect

    Hachem, Ahmed; Yacoub, Daniel; Zaid, Younes; Mourad, Walid; Merhi, Yahye

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Given that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo

  16. Bifidobacterium bifidum actively changes the gene expression profile induced by Lactobacillus acidophilus in murine dendritic cells.

    PubMed

    Weiss, Gudrun; Rasmussen, Simon; Nielsen Fink, Lisbeth; Jarmer, Hanne; Nøhr Nielsen, Birgit; Frøkiaer, Hanne

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-beta, other virus defence genes, and cytokine and chemokine genes related to the innate and the adaptive immune response. By contrast, B. bifidum Z9 up-regulated genes encoding cytokines and chemokines related to the innate immune response. Moreover, B. bifidum Z9 inhibited the expression of the Th1-promoting genes induced by L. acidophilus NCFM and had an additive effect on genes of the innate immune response and Th2 skewing genes. The gene encoding Jun dimerization protein 2 (JDP2), a transcription factor regulating the activation of JNK, was one of the few genes only induced by B. bifidum Z9. Neutralization of IFN-beta abrogated L. acidophilus NCFM-induced expression of Th1-skewing genes, and blocking of the JNK pathway completely inhibited the expression of IFN-beta. Our results indicate that B. bifidum Z9 actively inhibits the expression of genes related to the adaptive immune system in murine dendritic cells and that JPD2 via blocking of IFN-beta plays a central role in this regulatory mechanism. PMID:20548777

  17. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type-1 immunity

    PubMed Central

    Zaccard, Colleen R.; Watkins, Simon C.; Kalinski, Pawel; Fecek, Ronald J.; Yates, Aarika L.; Salter, Russell D.; Ayyavoo, Velpandi; Rinaldo, Charles R.; Mailliard, Robbie B.

    2014-01-01

    The ability of dendritic cells (DC) to mediate CD4+ T cell help for cellular immunity is guided by instructive signals received during DC maturation, and the resulting pattern of DC responsiveness to the Th signal, CD40L. Furthermore, the professional transfer of antigenic information from migratory DC to lymph node-residing DC is critical for the effective induction of cellular immune responses. Here we report that, in addition to their enhanced IL-12p70 producing capacity, human DC matured in the presence of inflammatory mediators of type-1 immunity (DC1) are uniquely programmed to form networks of tunneling nanotube-like structures in response to CD40L-expressing Th cells or recombinant CD40L. This immunologic process of DC ‘reticulation’ facilitates intercellular trafficking of endosome-associated vesicles and Ag, but also pathogens such HIV-1, and is regulated by the opposing roles of IFN-γ and IL-4. The initiation of DC reticulation represents a novel helper function of CD40L and a superior mechanism of intercellular communication possessed by DC1, as well as a target for exploitation by pathogens to enhance direct cell-to-cell spread. PMID:25548234

  18. BCL11B expression in intramembranous osteogenesis during murine craniofacial suture development

    PubMed Central

    Holmes, Greg; van Bakel, Harm; Zhou, Xueyan; Losic, Bojan; Jabs, Ethylin Wang

    2014-01-01

    Sutures, where neighboring craniofacial bones are separated by undifferentiated mesenchyme, are major growth sites during craniofacial development. Pathologic fusion of bones within sutures occurs in a wide variety of craniosynostosis conditions and can result in dysmorphic craniofacial growth and secondary neurologic deficits. Our knowledge of the genes involved in suture formation is poor. Here we describe the novel expression pattern of the BCL11B transcription factor protein during murine embryonic craniofacial bone formation. We examined BCL11B protein expression at E14.5, E16.5, and E18.5 in 14 major craniofacial sutures of C57BL/6J mice. We found BCL11B expression to be associated with all intramembranous craniofacial bones examined. The most striking aspects of BCL11B expression were its high levels in suture mesenchyme and increasingly complementary expression with RUNX2 in differentiating osteoblasts during development. BCL11B was also expressed in mesenchyme at the non-sutural edges of intramembranous bones. No expression was seen in osteoblasts involved in endochondral ossification of the cartilaginous cranial base. BCL11B is expressed to potentially regulate the transition of mesenchymal differentiation and suture formation within craniofacial intramembranous bone. PMID:25511173

  19. ZAP inhibits murine gammaherpesvirus 68 ORF64 expression and is antagonized by RTA.

    PubMed

    Xuan, Yifang; Gong, Danyang; Qi, Jing; Han, Chuanhui; Deng, Hongyu; Gao, Guangxia

    2013-03-01

    Zinc finger antiviral protein (ZAP) is an interferon-inducible host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1 and Ebola virus. ZAP functions as a dimer formed through intermolecular interactions of its N-terminal tails. ZAP binds directly to specific viral mRNAs and inhibits their expression by repressing translation and/or promoting degradation of the target mRNA. ZAP is not a universal antiviral factor, since some viruses grow normally in ZAP-expressing cells. It is not fully understood what determines whether a virus is susceptible to ZAP. We explored the interaction between ZAP and murine gammaherpesvirus 68 (MHV-68), whose life cycle has latent and lytic phases. We previously reported that ZAP inhibits the expression of M2, which is expressed mainly in the latent phase, and regulates MHV-68 latency in cultured cells. Here, we report that ZAP inhibits the expression of ORF64, a tegument protein that is expressed in the lytic phase and is essential for lytic replication. MHV-68 infection induced ZAP expression. However, ZAP did not inhibit lytic replication of MHV-68. We provide evidence showing that the antiviral activity of ZAP is antagonized by MHV-68 RTA, a critical viral transactivator expressed in the lytic phase. We further show that RTA inhibits the antiviral activity of ZAP by disrupting the N-terminal intermolecular interaction of ZAP. Our results provide an example of how a virus can escape ZAP-mediated immunity. PMID:23255809

  20. Lipid rafts regulate cellular CD40 receptor localization in vascular endothelial cells

    SciTech Connect

    Xia Min; Wang Qing; Zhu Huilian; Ma Jing; Hou Mengjun; Tang Zhihong; Li Juanjuan; Ling Wenhua

    2007-09-28

    Cholesterol enriched lipid rafts are considered to function as platforms involved in the regulation of membrane receptor signaling complex through the clustering of signaling molecules. In this study, we tested whether these specialized membrane microdomains affect CD40 localization in vitro and in vivo. Here, we provide evidence that upon CD40 ligand stimulation, endogenous and exogenous CD40 receptor is rapidly mobilized into lipid rafts compared with unstimulated HAECs. Efficient binding between CD40L and CD40 receptor also increases amounts of CD40 protein levels in lipid rafts. Deficiency of intracellular conserved C terminus of the CD40 cytoplasmic tail impairs CD40 partitioning in raft. Raft disorganization after methyl-{beta}-cyclodextrin treatment diminishes CD40 localization into rafts. In vivo studies show that elevation of circulating cholesterol in high-cholesterol fed rabbits increases the cholesterol content and CD40 receptor localization in lipid rafts. These findings identify a physiological role for membrane lipid rafts as a critical regulator of CD40-mediated signal transduction and raise the possibility that certain pathologic conditions may be treated by altering CD40 signaling with drugs affecting its raft localization.

  1. Multiple regions within the promoter of the murine Ifnar-2 gene confer basal and inducible expression.

    PubMed Central

    Hardy, Matthew P; Hertzog, Paul J; Owczarek, Catherine M

    2002-01-01

    The (murine) type I interferon (IFN) receptor, muIfnar-2, is expressed ubiquitously, and exists as both transmembrane and soluble forms. In the present study we show that the gene encoding muIfnar-2 spans approx. 33 kb on mouse chromosome 16, and consists of nine exons and eight introns. The three mRNA splice variants resulting in one transmembrane (muIfnar-2c) and two soluble (muIfnar-2a/2a') mRNA isoforms are generated by alternative RNA processing of the muIfnar-2 gene. Treatment of a range of murine cell lines with a combination of type I and II IFN showed that the muIfnar-2a and -2c mRNA isoforms were up-regulated independently of each other in L929 fibroblasts and hepa-1c1c7 hepatoma cells, but not in M1 myeloid leukaemia cells. Analysis of the 5' flanking region of muIfnar-2 using promoter-luciferase reporter constructs defined three regulatory regions: a region proximal to exon 1, conferring high basal expression, a distal region conferring inducible expression, and a negative regulatory region between the two. These data represent the first promoter analysis of a type I IFN receptor and, taken together with our previous data demonstrating high expression levels and dual biological functions for muIfnar-2a protein, suggests that the regulation of muIfnar-2 isoform expression may be an important way of modulating type I IFN responses. PMID:11939908

  2. Constitutive expression of murine c-FLIPR causes autoimmunity in aged mice.

    PubMed

    Ewald, F; Annemann, M; Pils, M C; Plaza-Sirvent, C; Neff, F; Erck, C; Reinhold, D; Schmitz, I

    2014-01-01

    Death receptor-mediated apoptosis is a key mechanism for the control of immune responses and dysregulation of this pathway may lead to autoimmunity. Cellular FLICE-inhibitory proteins (c-FLIPs) are known as inhibitors of death receptor-mediated apoptosis. The only short murine c-FLIP splice variant is c-FLIPRaji (c-FLIPR). To investigate the functional role of c-FLIPR in the immune system, we used the vavFLIPR mouse model constitutively expressing murine c-FLIPR in all hematopoietic compartments. Lymphocytes from these mice are protected against CD95-mediated apoptosis and activation-induced cell death. Young vavFLIPR mice display normal lymphocyte compartments, but the lymphocyte populations alter with age. We identified reduced levels of T cells and slightly higher levels of B cells in 1-year-old vavFLIPR mice compared with wild-type (WT) littermates. Moreover, both B and T cells from aged vavFLIPR animals show activated phenotypes. Sera from 1-year-old WT and transgenic animals were analysed for anti-nuclear antibodies. Notably, elevated titres of these autoantibodies were detected in vavFLIPR sera. Furthermore, tissue damage in kidneys and lungs from aged vavFLIPR animals was observed, indicating that vavFLIPR mice develop a systemic lupus erythematosus-like phenotype with age. Taken together, these data suggest that c-FLIPR is an important modulator of apoptosis and enforced expression leads to autoimmunity. PMID:24722293

  3. Plasma Prostaglandin E2 Levels Correlated with the Prevention of Intravenous Immunoglobulin Resistance and Coronary Artery Lesions Formation via CD40L in Kawasaki Disease

    PubMed Central

    Kuo, Ho-Chang; Wang, Chih-Lu; Yang, Kuender D.; Lo, Mao-Hung; Hsieh, Kai-Sheng; Li, Sung-Chou

    2016-01-01

    Background A form of systemic vasculitis, Kawasaki disease (KD) occurs most frequently in children under the age of five years old. Previous studies have found that Prostaglandin E2 (PGE2) correlates with KD, although the related mechanisms are still unknown. CD40L may also be a marker of vasculitis in KD, so this study focuses on PGE2 and CD40L expression in KD. Materials and Methods This study consisted of a total of 144 KD patients, whose intravenous immunoglobulin (IVIG)/coronary arterial lesion (CAL) formation resistance was evaluated. PGE2 levels were evaluated in vitro to study the effect of CD40L on CD4+ T lymphocytes. Results PGE2 levels significantly increased after IVIG treatment (p<0.05), especially in patients who responded to initial IVIG treatment (p = 0.004) and for patients without CAL formation (p = 0.016). Furthermore, an in vitro study revealed that IVIG acted as a trigger for PGE2 expression in the acute-stage mononuclear cells of KD patients. According to our findings, both IVIG and PGE2 can impede surface CD40L expressions on CD4+ T lymphocytes (p<0.05). Conclusions The results of this study are among the first to find that plasma PGE2 is correlated with the prevention of IVIG resistance and CAL formation through CD40L in KD. PMID:27525421

  4. A T cell controlled molecular pathway regulating the IgH locus: CD40-mediated activation of the IgH 3' enhancer.

    PubMed Central

    Grant, P A; Andersson, T; Neurath, M F; Arulampalam, V; Bauch, A; Müller, R; Reth, M; Pettersson, S

    1996-01-01

    Immunoglobulin heavy chain (IgH) class switch recombination and regulation of IgH expression levels are processes suggested to be controlled by the IgH 3' enhancer. Here we demonstrate that CD40 or IgM receptor stimulation of primary B cells results in transactivation of this enhancer. 4-Hydroxy-3-nitrophenylacetyl (NIP)-BSA induction of a K46 B cell line expressing a chimeric NIP-specific CD40 single chain receptor results in a ligand receptor-dependent response of a 3' enhancer ETS/AP-1 minimal promoter construct. Gel retardation analysis and genomic footprinting experiments reveal that CD40 or IgM induction recruits NFAB (nuclear factors of activated B cells) to the ETS/AP-1 motif. While IgM signalling recruits c-Fos, JunB and Elf-1 (NFAB-I), only JunB and Elf-1 were observed following CD40 signalling (NFAB-II). CD40 signalling, however, induces a Fos family-related partner for JunB, which may account for the transcriptional activity observed by NFAB-II in K46 cells. We propose a model whereby CD40 and IgM receptor-mediated signalling converge in the process of 3' enhancer activation in B lymphocytes. Our data provide a putative molecular explanation as to why CD40L-deficient mice, and possibly patients with hyper-IgM syndrome, are unable to undergo T cell-dependent class switch recombination but respond properly upon lipopolysaccharide-induced switch recombination. Images PMID:8978695

  5. The Expression of Tubb2b Undergoes a Developmental Transition in Murine Cortical Neurons.

    PubMed

    Breuss, Martin; Morandell, Jasmin; Nimpf, Simon; Gstrein, Thomas; Lauwers, Mattias; Hochstoeger, Tobias; Braun, Andreas; Chan, Kelvin; Sánchez Guajardo, Edmundo R; Zhang, Lijuan; Suplata, Marek; Heinze, Katrin G; Elsayad, Kareem; Keays, David A

    2015-10-15

    The development of the mammalian brain requires the generation, migration, and differentiation of neurons, cellular processes that are dependent on a dynamic microtubule cytoskeleton. Mutations in tubulin genes, which encode for the structural subunits of microtubules, cause detrimental neurological disorders known as the tubulinopathies. The disease spectra associated with different tubulin genes are overlapping but distinct, an observation believed to reflect functional specification of this multigene family. Perturbation of the β-tubulin TUBB2B is known to cause polymicrogyria, pachygyria, microcephaly, and axon guidance defects. Here we provide a detailed analysis of the expression pattern of its murine homolog Tubb2b. The generation and characterization of BAC-transgenic eGFP reporter mouse lines has revealed that it is highly expressed in progenitors and postmitotic neurons during cortical development. This contrasts with the 8-week-old cortex, in which Tubb2b expression is restricted to macroglia, and expression is almost completely absent in mature neurons. This developmental transition in neurons is mirrored in the adult hippocampus and the cerebellum but is not a universal feature of Tubb2b; its expression persists in a population of postmitotic neurons in the 8-week-old retina. We propose that the dynamic spatial and temporal expression of Tubb2b reflects specific functional requirements of the microtubule cytoskeleton. PMID:26105993

  6. Impact of CD40 ligand, B cells, and mast cells in peanut-induced anaphylactic responses.

    PubMed

    Sun, Jiangfeng; Arias, Katherine; Alvarez, David; Fattouh, Ramzi; Walker, Tina; Goncharova, Susanna; Kim, Bobae; Waserman, Susan; Reed, Jennifer; Coyle, Anthony J; Jordana, Manel

    2007-11-15

    The effector immune mechanisms underlying peanut-induced anaphylaxis remain to be fully elucidated. We investigated the relative contribution of Igs, mast cells (MCs), and FcepsilonRI in the elicitation of anaphylaxis in a murine model. Assessment of peanut hypersensitivity reactions was performed clinically and biologically. Our data show that wild-type (WT; C57BL/6 strain) mice consistently developed severe anaphylaxis (median clinical score: 3.5/5), an approximately 8 degrees C drop in core body temperature, and significantly increased plasma levels of histamine and leukotrienes. CD40 ligand- and B cell-deficient mice presented evidence of allergic sensitization as demonstrated by production of Th2-associated cytokines by splenocytes and a late-phase inflammatory response that were both indistinguishable to those detected in WT mice. However, CD40 ligand- and B cell-deficient mice did not exhibit any evidence of anaphylaxis. Our data also show that MC-deficient (Kit(W)/Kit(W-v)) mice did not suffer, unlike their littermate controls, anaphylactic reactions despite the fact that serum levels of peanut-specific Igs were similarly elevated. Finally, FcepsilonRI-deficient mice experienced anaphylactic responses although to a significantly lesser degree than those observed in WT mice. Thus, these data demonstrate that the presence of peanut-specific Abs along with functional MCs comprise a necessary and sufficient condition for the elicitation of peanut-induced anaphylaxis. That the absence of FcepsilonRI prevented the development of anaphylaxis only partially insinuates the contribution of an IgE-independent pathway, and suggests that strategies to impair MC degranulation may be necessary to improve the efficacy of anti-IgE therapy. PMID:17982059

  7. CD40 dependent exacerbation of immune mediated hepatitis by hepatic CD11b+ Gr-1+ myeloid derived suppressor cells in tumor bearing mice

    PubMed Central

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M.; Wiltrout, Robert H.; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A.; Manns, Michael P.; Wang, Ena; Marincola, Francesco M.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immunosuppressive CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) accumulate in the livers of tumor-bearing mice. We studied hepatic MDSC in two murine models of immune mediated hepatitis. Unexpectedly, treatment of tumor bearing mice with Concanavalin A or α-Galactosylceramide resulted in increased ALT and AST serum levels in comparison to tumor free mice. Adoptive transfer of hepatic MDSC into naïve mice exacerbated Concanavalin A induced liver damage. Hepatic CD11b+Gr-1+ cells revealed a polarized pro-inflammatory gene signature after Concanavalin A treatment. An interferon gamma- dependent up-regulation of CD40 on hepatic CD11b+Gr-1+ cells along with an up-regulation of CD80, CD86, and CD1d after Concanavalin A treatment was observed. Concanavalin A treatment resulted in a loss of suppressor function by tumor-induced CD11b+Gr-1+ MDSC as well as enhanced reactive oxygen species-mediated hepatotoxicity. CD40 knockdown in hepatic MDSC led to increased arginase activity upon Concanavalin A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40−/− tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased reactive oxygen species production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSC act as pro-inflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. PMID:25616156

  8. CD40 Ligand Deficient C57BL/6 Mouse Is a Potential Surrogate Model of Human X-Linked Hyper IgM (X-HIGM) Syndrome for Characterizing Immune Responses against Pathogens

    PubMed Central

    Lopez-Saucedo, Catalina; Bernal-Reynaga, Rodolfo; Zayas-Jahuey, Jesus; Galindo-Gomez, Silvia; Shibayama, Mineko; Garcia-Galvez, Carlos; Estrada-Parra, Sergio; Estrada-Garcia, Teresa

    2015-01-01

    Individuals with X-HIGM syndrome fail to express functional CD40 ligand; consequently they cannot mount effective protective antibody responses against pathogenic bacteria. We evaluated, compared, and characterized the humoral immune response of wild type (WT) and C57-CD40L deficient (C57-CD40L−/−) mice infected with Citrobacter rodentium. Basal serum isotype levels were similar for IgM and IgG3 among mice, while total IgG and IgG2b concentrations were significantly lower in C57-CD40L−/− mice compared with WT. Essentially IgG1 and IgG2c levels were detectable only in WT mice. C57-CD40L−/− animals, orally inoculated with 2 × 109 CFU, presented several clinical manifestations since the second week of infection and eventually died. In contrast at this time point no clinical manifestations were observed among C57-CD40L−/− mice infected with 1 × 107 CFU. Infection was subclinical in WT mice inoculated with either bacterial dose. The serum samples from infected mice (1 × 107 CFU), collected at day 14 after infection, had similar C. rodentium-specific IgM titres. Although C57-CD40L−/− animals had lower IgG and IgG2b titres than WT mice, C57-CD40L−/− mice sera displayed complement-mediated bactericidal activity against C. rodentium. C. rodentium-infected C57-CD40L−/− mice are capable of producing antibodies that are protective. C57-CD40L−/− mouse is a useful surrogate model of X-HIGM syndrome for studying immune responses elicited against pathogens. PMID:26064940

  9. Functional Antagonism of Human CD40 Achieved by Targeting a Unique Species-Specific Epitope.

    PubMed

    Yamniuk, Aaron P; Suri, Anish; Krystek, Stanley R; Tamura, James; Ramamurthy, Vidhyashankar; Kuhn, Robert; Carroll, Karen; Fleener, Catherine; Ryseck, Rolf; Cheng, Lin; An, Yongmi; Drew, Philip; Grant, Steven; Suchard, Suzanne J; Nadler, Steven G; Bryson, James W; Sheriff, Steven

    2016-07-17

    Current clinical anti-CD40 biologic agents include both antagonist molecules for the treatment of autoimmune diseases and agonist molecules for immuno-oncology, yet the relationship between CD40 epitope and these opposing biological outcomes is not well defined. This report describes the identification of potent antagonist domain antibodies (dAbs) that bind to a novel human CD40-specific epitope that is divergent in the CD40 of nonhuman primates. A similarly selected anti-cynomolgus CD40 dAb recognizing the homologous epitope is also a potent antagonist. Mutagenesis, biochemical, and X-ray crystallography studies demonstrate that the epitope is distinct from that of CD40 agonists. Both the human-specific and cynomolgus-specific molecules remain pure antagonists even when formatted as bivalent Fc-fusion proteins, making this an attractive therapeutic format for targeting hCD40 in autoimmune indications. PMID:27216500

  10. Patterns of gene expression among murine models of hemorrhagic shock/trauma and sepsis.

    PubMed

    Mira, Juan C; Szpila, Benjamin E; Nacionales, Dina C; Lopez, Maria-Cecilia; Gentile, Lori F; Mathias, Brittany J; Vanzant, Erin L; Ungaro, Ricardo; Holden, David; Rosenthal, Martin D; Rincon, Jaimar; Verdugo, Patrick T; Larson, Shawn D; Moore, Frederick A; Brakenridge, Scott C; Mohr, Alicia M; Baker, Henry V; Moldawer, Lyle L; Efron, Philip A

    2016-02-01

    Controversy remains whether the leukocyte genomic response to trauma or sepsis is dependent upon the initiating stimulus. Previous work illustrated poor correlations between historical models of murine trauma and sepsis (i.e., trauma-hemorrhage and lipopolysaccharide injection, respectively). The aim of this study is to examine the early genomic response in improved murine models of sepsis [cecal ligation and puncture (CLP)] and trauma [polytrauma (PT)] with and without pneumonia (PT+Pp). Groups of naïve, CLP, PT, and PT+Pp mice were killed at 2 h, 1 or 3 days. Total leukocytes were isolated for genome-wide expression analysis, and genes that were found to differ from control (false discovery rate adjusted P < 0.001) were assessed for fold-change differences. Spearman correlations were also performed. For all time points combined (CLP, PT, PT+Pp), there were 10,426 total genes that were found to significantly differ from naïve controls. At 2 h, the transcriptomic changes between CLP and PT showed a positive correlation (rs) of 0.446 (P < 0.0001) but were less positive thereafter. Correlations were significantly improved when we limited the analysis to common genes whose expression differed by a 1.5 fold-change. Both pathway and upstream analyses revealed the activation of genes known to be associated with pathogen-associated and damage-associated molecular pattern signaling, and early activation patterns of expression were very similar between polytrauma and sepsis at the earliest time points. This study demonstrates that the early leukocyte genomic response to sepsis and trauma are very similar in mice. PMID:26578697

  11. CD40 signaling synergizes with TLR-2 in the BCR independent activation of resting B cells.

    PubMed

    Jain, Shweta; Chodisetti, Sathi Babu; Agrewala, Javed N

    2011-01-01

    Conventionally, signaling through BCR initiates sequence of events necessary for activation and differentiation of B cells. We report an alternative approach, independent of BCR, for stimulating resting B (RB) cells, by involving TLR-2 and CD40--molecules crucial for innate and adaptive immunity. CD40 triggering of TLR-2 stimulated RB cells significantly augments their activation, proliferation and differentiation. It also substantially ameliorates the calcium flux, antigen uptake capacity and ability of B cells to activate T cells. The survival of RB cells was improved and it increases the number of cells expressing activation induced deaminase (AID), signifying class switch recombination (CSR). Further, we also observed increased activation rate and decreased threshold period required for optimum stimulation of RB cells. These results corroborate well with microarray gene expression data. This study provides novel insights into coordination between the molecules of innate and adaptive immunity in activating B cells, in a BCR independent manner. This strategy can be exploited to design vaccines to bolster B cell activation and antigen presenting efficiency, leading to faster and better immune response. PMID:21674065

  12. Purified murine granulocyte/macrophage progenitor cells express a high-affinity receptor for recombinant murine granulocyte/macrophage colony-stimulating factor

    SciTech Connect

    Williams, D.E.; Bicknell, D.C.; Park, L.S.; Straneva, J.E.; Cooper, S.; Broxmeyer, H.E.

    1988-01-01

    Purified recombinant murine granulocyte/macrophage colony-stimulating factor (GM-CSF) was labeled with /sup 125/I and used to examine the GM-CSF receptor on unfractionated normal murine bone marrow cells, casein-induced peritoneal exudate cells, and highly purified murine granulocyte/macrophage progenitor cells (CFU-GM). CFU-GM were isolated from cyclophosphamide-treated mice by Ficoll-Hypaque density centrifugation followed by counterflow centrifugal elutriation. The resulting population had a cloning efficiency of 62-99% in cultures containing conditioned medium from pokeweed mitogen-stimulated spleen cells and 55-86% in the presence of a plateau concentration of purified recombinant murine GM-CSF. Equilibrium binding studies with /sup 125/I-labeled GM-CSF showed that normal bone marrow cells, casein-induced peritoneal exudate cells, and purified CFU-GM had a single class of high-affinity receptor. Affinity crosslinking studies demonstrated that /sup 125/I-labeled GM-CSF bound specifically to two species of M/sub r/ 180,000 and 70,000 on CFU-GM, normal bone marrow cells, and peritoneal exudate cells. The M/sub r/ 70,000 species is thought to be a proteolytic fragment of the intact M/sub r/ 180,000 receptor. The present studies indicate that the GM-CSF receptor expressed on CFU-GM and mature myeloid cells are structurally similar. In addition, the number of GM-CSF receptors on CFU-GM is twice the average number of receptors on casein-induced mature myeloid cells, suggesting that receptor number may decrease as CFU-GM mature.

  13. Regulation of mineralocorticoid receptor expression during neuronal differentiation of murine embryonic stem cells

    PubMed Central

    Munier, Mathilde; Meduri, Geri; Viengchareun, Say; Leclerc, Phillipe; Le Menuet, Damien; Lombès, Marc

    2010-01-01

    Mineralocorticoid receptor (MR) plays a critical role in brain function. However, the regulatory mechanisms controlling neuronal MR expression that constitutes a key element of the hormonal response are currently unknown. Two alternative P1 and P2 promoters drive human MR gene transcription. To examine promoter activities and their regulation during neuronal differentiation and in mature neurons, we generated stably transfected recombinant murine embryonic stem (ES) cell lines, namely P1-GFP and P2-GFP, in which each promoter drove the expression of the reporter gene Green Fluorescent Protein (GFP). An optimized protocol, using embryoid bodies and retinoic acid, permitted to obtain a reproducible neuronal differentiation as revealed by the decrease in phosphatase alkaline activity, the concomitant appearance of morphological changes (neurites) and the increase in the expression of neuronal markers (nestin, β-tubulin III, MAP2) as demonstrated by immunocytochemistry and qPCR. Using these cell-based models, we showed that MR expression increased by 5-fold during neuronal differentiation, MR being preferentially if not exclusively expressed in mature neurons. Although the P2 promoter was always weaker than the P1 promoter during neuronal differentiation, their activities increased by 7- and 5-fold, respectively and correlated with MR expression. Finally, while progesterone and dexamethasone were ineffective, aldosterone stimulated both P1 and P2 activity and MR expression, an effect that was abrogated by knockdown of MR by siRNA. Concluding, we provide evidence for a tight transcriptional control of MR expression during neuronal differentiation. Given the neuroprotective and antiapoptotic role proposed for MR, the neuronal differentiation of ES cell lines opens potential therapeutic perspectives in neurological and psychiatric diseases. PMID:20207834

  14. Expression of the Murine Duchenne Muscular Dystrophy Gene in Muscle and Brain

    NASA Astrophysics Data System (ADS)

    Chamberlain, Jeffrey S.; Pearlman, Joel A.; Muzny, Donna M.; Gibbs, Richard A.; Ranier, Joel E.; Reeves, Alice A.; Caskey, C. Thomas

    1988-03-01

    Complementary DNA clones were isolated that represent the 5' terminal 2.5 kilobases of the murine Duchenne muscular dystrophy (Dmd) messenger RNA (mRNA). Mouse Dmd mRNA was detectable in skeletal and cardiac muscle and at a level approximately 90 percent lower in brain. Dmd mRNA is also present, but at much lower than normal levels, in both the muscle and brain of three different strains of dystrophic mdx mice. The identification of Dmd mRNA in brain raises the possibility of a relation between human Duchenne muscular dystrophy (DMD) gene expression and the mental retardation found in some DMD males. These results also provide evidence that the mdx mutations are allelic variants of mouse Dmd gene mutations.

  15. ICAM-1–expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia

    PubMed Central

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R.; Hordijk, Peter L.; Hogg, Nancy

    2016-01-01

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1–deficient mice were defective in these effector functions. Mechanistically, ICAM-1–mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. PMID:26647392

  16. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    SciTech Connect

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.

  17. ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia.

    PubMed

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R; Hordijk, Peter L; Hogg, Nancy; Nourshargh, Sussan

    2016-02-18

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense. PMID:26647392

  18. Transfusion of murine RBCs expressing the human KEL glycoprotein induces clinically significant alloantibodies

    PubMed Central

    Stowell, Sean R.; Girard-Pierce, Kathryn R.; Smith, Nicole H.; Henry, Kate L.; Arthur, C. Maridith; Zimring, James C.; Hendrickson, Jeanne E.

    2013-01-01

    Background Red blood cell (RBC) alloantibodies to non-self antigens may develop following transfusion or pregnancy, leading to morbidity and mortality in the form of hemolytic transfusion reactions or hemolytic disease of the newborn. A better understanding of the mechanisms of RBC alloantibody induction, or strategies to mitigate the consequences of such antibodies, may ultimately improve transfusion safety. However, such studies are inherently difficult in humans. Study Design and Methods We recently generated transgenic mice with RBC specific expression of the human KEL glycoprotein, with the KEL2 or KEL1 antigens. Herein, we investigate recipient alloimmune responses to transfused RBCs in this system. Results Transfusion of RBCs from KEL2 donors into wild type recipients (lacking the human KEL protein but expressing the murine KEL orthologue) resulted in dose dependent anti-KEL glycoprotein IgM and IgG antibody responses, enhanced by recipient inflammation with poly (I:C). Boostable responses were evident upon repeat transfusion, with morbid appearing alloimmunized recipients experiencing rapid clearance of transfused KEL2 but not control RBCs. Although KEL1 RBCs were also immunogenic following transfusion into wild type recipients, transfusion of KEL1 RBCs into KEL2 recipients or vice versa failed to lead to detectable anti-KEL1 or anti-KEL2 responses. Conclusions This murine model, with reproducible and clinically significant KEL glycoprotein alloantibody responses, provides a platform for future mechanistic studies of RBC alloantibody induction and consequences. Long term translational goals of these studies include improving transfusion safety for at risk patients. PMID:23621760

  19. Dynamic Expression of BCL6 in Murine Conventional Dendritic Cells during In Vivo Development and Activation

    PubMed Central

    Zhang, Ting-ting; Liu, Dong; Calabro, Samuele; Eisenbarth, Stephanie C.; Cattoretti, Giorgio; Haberman, Ann M.

    2014-01-01

    The transcriptional repressor BCL6 plays an essential role in the development of germinal center B cells and follicular helper T cells. However, much less is known about the expression and function of BCL6 in other cell types. Here we report that during murine dendritic cell (DC) ontogeny in vivo, BCL6 is not expressed in bone marrow hematopoietic stem cells, common DC precursors and committed precursors of conventional DCs (pre-cDCs), but is elevated in peripheral pre-cDCs. BCL6 protein levels rise as pre-cDCs differentiate into cDCs in secondary lymphoid organs. Elevated protein levels of Bcl6 are observed in all cDC subsets, with CD8α+ cDCs displaying the greatest levels. Co-staining of Ki-67 revealed BCL6hi cDCs to be more proliferative than BCL6lo cDCs. After adjuvant inoculation, BCL6 levels are significantly reduced in the CD11cint MHC class IIhi CD86hi cDCs. Activation-induced BCL6 reduction correlated with reduced proliferation. A LPS injection study further confirmed that, in response to microbial stimuli, BCL6 levels are dynamically regulated during the maturation of CD11cint MHC class IIhi splenic cDCs. This reduction of BCL6 levels in cDCs does not occur after LPS injection in MyD88−/− TRIF−/− mice. Thus, regulation of Bcl6 protein levels is dynamic in murine cDCs during development, maturation and activation in vivo. PMID:24979752

  20. Dynamic expression of BCL6 in murine conventional dendritic cells during in vivo development and activation.

    PubMed

    Zhang, Ting-ting; Liu, Dong; Calabro, Samuele; Eisenbarth, Stephanie C; Cattoretti, Giorgio; Haberman, Ann M

    2014-01-01

    The transcriptional repressor BCL6 plays an essential role in the development of germinal center B cells and follicular helper T cells. However, much less is known about the expression and function of BCL6 in other cell types. Here we report that during murine dendritic cell (DC) ontogeny in vivo, BCL6 is not expressed in bone marrow hematopoietic stem cells, common DC precursors and committed precursors of conventional DCs (pre-cDCs), but is elevated in peripheral pre-cDCs. BCL6 protein levels rise as pre-cDCs differentiate into cDCs in secondary lymphoid organs. Elevated protein levels of Bcl6 are observed in all cDC subsets, with CD8α+ cDCs displaying the greatest levels. Co-staining of Ki-67 revealed BCL6hi cDCs to be more proliferative than BCL6lo cDCs. After adjuvant inoculation, BCL6 levels are significantly reduced in the CD11cint MHC class IIhi CD86hi cDCs. Activation-induced BCL6 reduction correlated with reduced proliferation. A LPS injection study further confirmed that, in response to microbial stimuli, BCL6 levels are dynamically regulated during the maturation of CD11cint MHC class IIhi splenic cDCs. This reduction of BCL6 levels in cDCs does not occur after LPS injection in MyD88-/- TRIF-/- mice. Thus, regulation of Bcl6 protein levels is dynamic in murine cDCs during development, maturation and activation in vivo. PMID:24979752

  1. Expression and function of a novel variant of estrogen receptor-α36 in murine airways.

    PubMed

    Jia, Shuping; Zhang, Xintian; He, David Z Z; Segal, Manav; Berro, Abdo; Gerson, Trevor; Wang, Zhaoyi; Casale, Thomas B

    2011-11-01

    Evidence suggests that estrogen signaling is involved in sex differences in the prevalence rates and control of asthma, but the expression patterns of estrogen receptor variants and estrogen function in the lung are not well established. We investigated the expression of major estrogen receptor variants occurring naturally and after the development of allergen-induced airway hyperreactivity in a murine model of allergic asthma, along with the role of estrogen signaling in small-airway ciliary motion and smooth muscle contraction. Female BALB/c mice were sensitized with ovalbumin, and estrogen receptor expression patterns were examined by immunofluorescence and Western blot analysis. Time-lapse video and photodiode-based displacement measurement systems were used to assess the effects of estrogen signaling on airway ciliary beat frequency and smooth muscle contraction. We found that a novel variant of estrogen receptor (ER)-α, ER-α36, is expressed in airway epithelial and smooth muscle cells. ER-α36 was predominately localized on the plasma membranes of airway cells. After sensitization to allergen, the expression levels of ER-α36 increased significantly (P < 0.01), whereas the expression of ER-β and ER-α66 did not significantly change. Estrogen treatment in vitro resulted in a rapid increase in airway cilia motion in a dose-dependent fashion, but did not exert any effect on airway smooth muscle contraction. We speculate that the up-regulation of estrogen receptor expression associated with allergen-induced airway hyperresponsiveness may constitute a protective mechanism to facilitate the clearance of mucus. The identification and localization of specific estrogen receptor subtypes in the lung could lead to newer therapeutic avenues aimed at addressing sex differences of asthma susceptibility. PMID:21642591

  2. Hypoxia Inducible Factor 1 Alpha Is Expressed in Germ Cells throughout the Murine Life Cycle

    PubMed Central

    Gardner, Lauren H.; Mathews, Juanita; Yamazaki, Yuki; Allsopp, Richard C.

    2016-01-01

    Pluripotent stem cells of the early embryo, and germ line cells, are essential to ensure uncompromised development to adulthood as well as species propagation, respectively. Recently, the transcription factor hypoxia inducible factor 1 alpha (Hif1α) has been shown to have important roles in embryonic stem cells; in particular, regulation of conversion to glycolytic metabolism and, as we have shown, maintenance of functional levels of telomerase. In the present study, we sought to assess whether Hif1α was also expressed in the primitive cells of the murine embryo. We observed expression of Hif1α in pre-implantation embryos, specifically the 2-cell stage, morula, and blastocyst. Robust Hif1α expression was also observed in male and female primordial germ cells. We subsequently assessed whether Hif1α was expressed in adult male and female germ cells. In the testis, Hif1α was robustly expressed in spermatogonial cells, in both juvenile (6-week old) and adult (3-month old) males. In the ovaries, Hif1α was expressed in mature oocytes from adult females, as assessed both in situ and in individual oocytes flushed from super-ovulated females. Analysis of Hif1α transcript levels indicates a mechanism of regulation during early development that involves stockpiling of Hif1α protein in mature oocytes, presumably to provide protection from hypoxic stress until the gene is re-activated at the blastocyst stage. Together, these observations show that Hif1α is expressed throughout the life-cycle, including both the male and female germ line, and point to an important role for Hif1α in early progenitor cells. PMID:27148974

  3. Cytofluorimetric evaluation of N-glycolylated GM3 ganglioside expression on murine leukocytes.

    PubMed

    Miranda, A; de León, J; Roque-Navarro, L; Fernández, L E

    2011-06-30

    Gangliosides are considered relevant components of lipid rafts at the plasma membrane. Antigen encounter, immunological synapse assembly and signal transduction modify lipid raft composition and distribution on immune system cells. On the contrary of other gangliosides, differential expression of the N-glycolylated variant of GM3 (NGcGM3) on murine leukocytes has received limited attention. In particular, whether cell activation modulates the expression of NGcGM3 on lymphoid and myeloid cells is still unexplored. Availability of the NGcGM3 specific 14F7 MAb allows us to characterize by cytofluorimetric assays the presence of this molecule on resting and activated immune system cells. On T cells, preferential expression of NGcGM3 was detected on CD4(+) single positive thymocytes, peripheral CD4(+) lymphocytes and natural occurring regulatory T cells. In comparison with peritoneal B1 cells, reduced expression of NGcGM3 was observed in peritoneal B2 and splenic B cell subpopulations. Of note, activation of CD4(+) and NK 1.1(+) cells abrogated NGcGM3 expression while LPS-maturated DC increased the ganglioside level at the plasma membrane. Modifications on the presence of NGcGM3 mediated by cell activation did not influence the expression of the N-acetylated variant of GM3 (NAcGM3). In addition to extend previous descriptions of NGcGM3 expression on immunity cell subpopulations, this work highlights the opposite effect of cellular activation over NGcGM3 levels on lymphoid and myeloid cellular series. Obtained results complement the evaluation of a tumor-specific, non-human sialic acid containing ganglioside that has been considered an attractive target for cancer immunotherapy. PMID:21324343

  4. Increased concentrations of soluble vascular cell adhesion molecule-1 and soluble CD40L in subjects with metabolic syndrome.

    PubMed

    Palomo, Iván G; Jaramillo, Julio C; Alarcón, Marcelo L; Gutiérrez, César L; Moore-Carrasco, Rodrigo; Segovia, Fabián M; Leiva, Elba M; Mujica, Verónica E; Icaza, Gloria; Dí, Nora S

    2009-01-01

    Metabolic syndrome (MS) is associated with a high incidence rate of cardiovascular disease. It is characterized by abdominal obesity, elevated blood pressure, atherogenic dyslipidemia [high LDL-c (low density lipoprotein cholesterol) and low HDL-c (high density lipoprotein cholesterol)] and insulin resistance or glucose intolerance. In the context of MS, alterations in the plasmatic levels of some soluble forms of cell adhesion molecules can appear, e.g., soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin) and soluble CD40L (sCD40L). The objective of this study was to compare the serum levels of sVCAM-1, sE-selectin and sCD40L in MS and non-MS groups and to associate these molecules with the diagnostic criteria of MS. A total of 185 non-smokers between 45 and 64 years of age were included. Of these, 93 corresponded to the MS group and the remaining 92 to a non-MS group (according to modified ATP III criteria). The serum concentration of sVCAM-1, sE-selectin and sCD40L was determined by commercial solid phase ELISA. The results were expressed as a median and interquartile range. The MS group showed high levels of sVCAM-1 (558.9 ng/ml; 481.3-667.6 ng/ml) compared with the non-MS group (405.2 ng/ml; 361.0-470.5 ng/ml) (p<0.0001). As well, the median level of sCD40L (3.0 ng/ml; 2.1l-11.7 ng/ml) was significantly higher in the MS group than that in the non-MS group (2.6 ng/ml; 2.3-3.4 ng/ml) (p=0.0061). sE-selectin levels did not differ significantly between the groups: 73.9 ng/ml (58.3-87.0 ng/ml) and 68.5 ng/ml (51.6-97.5 ng/ml) in the MS and non-MS group, respectively. In conclusion, the serum levels of sVCAM-1 and sCD40L, but not sE-selectin, were significantly higher in patients with MS than in subjects that did not present MS. MS may therefore increase the expression of cell adhesion molecules, probably through endothelial activation. PMID:21475854

  5. [Construction of human growth hormone lentiviral vector and its expression in murine skeletal myoblasts].

    PubMed

    Liu, Xiang-Yang; Lu, Yong-Xin; Xu, Yu-Lan; Li, Xiao-Qing; Liu, Juan; Li, Ai-Hua; Luo, Ping; Wan, Jian-Ping

    2006-03-01

    The aim of this study is to construct a lentiviral vector encoding human growth hormone, and to achieve the long, efficient and stable expression in murine skeletal myoblasts. Primary skeletal myoblasts were isolated from Sprague-Dawley rats and cultured by enzymatic digestion. We tested them by Desmin immunohistochemistry stains and found their viability was up to 94% by Trypan blue. Human growth hormone (hGH) cDNA was subcloned into expression vector pLenti6/V5-D-TOPO to construct recombinant pLenti6/V5-hGH. The pLenti6/V5-hGH and the contructed pLenti6/V5-EGFP were transfected into murine skeletal myoblasts by the Lipofectamin 2000. Through counting by the Confocal Laser Scanning Microscope, we identified the transfection efficency. We added the blasticidin to the 6-well plate with lids and obtained stable myoblasts expressing hGH. The concentration of human growth hormone (hGH) in cell culture medium was detected by Radioimmunoassay (RIA). Polymerase Chain Reaction (PCR) and DNA sequence showed hGH cDNA had been correctly inserted into pLenti6/V5-D-TOPO vector. Bright green fluorescence of the transfected cells could be observed under the Confocal Laser Scanning Microscope after 24 h transfection with pLenti6/V5-EGFP plasmids, and the transfection rate reached 40%. The difference was distinct (P < 0.01) between the pLenti6/V5- hGH groups and control groups in the secretive level of human growth hormone. After 8 weeks, the expression of human growth hormone was still stable. Then, we validated the biological characterization of the rhGH by the enzyme-link immunosorbent assay (ELISA) of the Insulin-like growth factor I (IGF-1). These results demonstrate we have successfully constructed the recombinant pLenti6/V5-hGH plasmids and accomplished rhGH long, efficient and stable expression ectopic in skeletal muscle myoblasts. PMID:16607951

  6. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    SciTech Connect

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D. )

    1991-05-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymic epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.

  7. Human Dendritic Cells Activated by TSLP and CD40L Induce Proallergic Cytotoxic T Cells

    PubMed Central

    Gilliet, Michel; Soumelis, Vassili; Watanabe, Norihiko; Hanabuchi, Shino; Antonenko, Svetlana; de Waal-Malefyt, Rene; Liu, Yong-Jun

    2003-01-01

    Human thymic stromal lymphopoietin (TSLP) is a novel epithelial cell–derived cytokine, which induces dendritic cell (DC)-mediated CD4+ T cell responses with a proallergic phenotype. Although the participation of CD8+ T cells in allergic inflammation is well documented, their functional properties as well as the pathways leading to their generation remain poorly understood. Here, we show that TSLP-activated CD11c+ DCs potently activate and expand naive CD8+ T cells, and induce their differentiation into interleukin (IL)-5 and IL-13–producing effectors exhibiting poor cytolytic activity. Additional CD40L triggering of TSLP-activated DCs induced CD8+ T cells with potent cytolytic activity, producing large amounts of interferon (IFN)-γ, while retaining their capacity to produce IL-5 and IL-13. These data further support the role of TSLP as initial trigger of allergic T cell responses and suggest that CD40L-expressing cells may act in combination with TSLP to amplify and sustain pro-allergic responses and cause tissue damage by promoting the generation of IFN-γ–producing cytotoxic effectors. PMID:12707303

  8. Murine branched chain alpha-ketoacid dehydrogenase kinase; cDNA cloning, tissue distribution, and temporal expression during embryonic development.

    PubMed

    Doering, C B; Coursey, C; Spangler, W; Danner, D J

    1998-06-01

    These studies were designed to demonstrate the structural and functional similarity of murine branched chain alpha-ketoacid dehydrogenase and its regulation by the complex-specific kinase. Nucleotide sequence and deduced amino acid sequence for the kinase cDNA demonstrate a highly conserved coding sequence between mouse and human. Tissue-specific expression in adult mice parallels that reported in other mammals. Kinase expression in female liver is influenced by circadian rhythm. Of special interest is the fluctuating expression of this kinase during embryonic development against the continuing increase in the catalytic subunits of this mitochondrial complex during development. The need for regulation of the branched chain alpha-ketoacid dehydrogenase complex by kinase expression during embryogenesis is not understood. However, the similarity of murine branched chain alpha-ketoacid dehydrogenase and its kinase to the human enzyme supports the use of this animal as a model for the human system. PMID:9611264

  9. Efficient expression of protein coding genes from the murine U1 small nuclear RNA promoters.

    PubMed Central

    Bartlett, J S; Sethna, M; Ramamurthy, L; Gowen, S A; Samulski, R J; Marzluff, W F

    1996-01-01

    Few promoters are active at high levels in all cells. Of these, the majority encode structural RNAs transcribed by RNA polymerases I or III and are not accessible for the expression of proteins. An exception are the small nuclear RNAs (snRNAs) transcribed by RNA polymerase II. Although snRNA biosynthesis is unique and thought not to be compatible with synthesis of functional mRNA, we have tested these promoters for their ability to express functional mRNAs. We have used the murine U1a and U1b snRNA gene promoters to express the Escherichia coli lacZ gene and the human alpha-globin gene from either episomal or integrated templates by transfection, or infection into a variety of mammalian cell types. Equivalent expression of beta-galactosidase was obtained from < 250 nucleotides of 5'-flanking sequence containing the complete promoter of either U1 snRNA gene or from the 750-nt cytomegalovirus promoter and enhancer regions. The mRNA was accurately initiated at the U1 start site, efficiently spliced and polyadenylylated, and localized to polyribosomes. Recombinant adenovirus containing the U1b-lacZ chimeric gene transduced and expressed beta-galactosidase efficiently in human 293 cells and airway epithelial cells in culture. Viral vectors containing U1 snRNA promoters may be an attractive alternative to vectors containing viral promoters for persistent high-level expression of therapeutic genes or proteins. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8799116

  10. Carbonic anhydrase IV (CAR4) is expressed on IL-5 activated murine eosinophils

    PubMed Central

    Wen, Ting; Mingler, Melissa K.; Wahl, Benjamin; Khorki, M. Eyad; Pabst, Oliver; Zimmermann, Nives; Rothenberg, Marc E.

    2014-01-01

    Eosinophilia and its cellular activation are hallmark features of asthma, as well as other allergic/TH2 disorders, yet there are few, if any, reliable surface markers of eosinophil activation. We have employed a FACS-based genome-wide screening system to identify transcriptional alterations in murine lung eosinophils recruited and activated by pulmonary allergen exposure. Using a relatively stringent screen with false-positive correction, we identified 82 candidate genes that could serve as eosinophil activation markers and/or pathogenic effector markers in asthma. Carbonic anhydrase IV (Car4) was a top dysregulated gene with 36-fold induction in allergen-elicited pulmonary eosinophils, which was validated by quantitative PCR, IHC and by flow cytometry. Eosinophil CAR4 expression was kinetically regulated by IL-5 but not IL-13. IL-5 was both necessary and sufficient for induction of eosinophil CAR4. While CAR4-deficient mice did not have a defect in eosinophil recruitment to the lung nor a change in eosinophil pH-buffering capacity, allergen-challenged chimeric mice that contained Car4−/− hematopoietic cells aberrantly expressed a series of genes enriched in biological processes involved in epithelial differentiation, keratinization, and anion exchange. In conclusion, we have determined that eosinophils express CAR4 following IL-5 or allergen exposure, and that CAR4 is involved in regulating the lung transcriptome associated with allergic airway inflammation; as such, CAR4 has potential value for diagnosing and monitoring eosinophilic responses. PMID:24808371

  11. Demethylation and expression of murine mammary tumor proviruses in mouse thymoma cell lines.

    PubMed Central

    Mermod, J J; Bourgeois, S; Defer, N; Crépin, M

    1983-01-01

    Murine mammary tumor virus (MMTV) expression is analyzed in a T-lymphoid cell line (T1M1) sensitive to the killing effect of glucocorticoids and in two of its variants, one resistant (T1M1r) and one supersensitive (T1M1ss) to glucocorticoid-induced lymphocytolysis. In the T1M1 line, MMTV is expressed and induced approximately 10-fold by short treatment with dexamethasone. Southern blot analyses of restriction enzyme digests of DNA from T1M1 cells reveal three proviruses similar to those of normal C57BL mouse tissue. In the T1M1ss line, which has retained functional glucocorticoid receptors, MMTV mRNA is inducible by glucocorticoids, while induction is reduced in the T1M1r line defective in glucocorticoid receptors. Moreover, the T1M1r line expresses a strikingly elevated basal level of MMTV mRNA in the absence of hormone. No rearrangements or superinfection have occurred in the variants, but all the regions containing 5'-long terminal repeats are demethylated in the T1M1r variant although other sites of the provirus remain methylated. Because this variant was selected by prolonged treatment with dexamethasone, these observations raise the possibility that the continuous transcription of MMTV that occurred during this selection can result in glucocorticoid-induced demethylation of long-terminal-repeat sequences. Images PMID:6296860

  12. Pax-3, a novel murine DNA binding protein expressed during early neurogenesis.

    PubMed Central

    Goulding, M D; Chalepakis, G; Deutsch, U; Erselius, J R; Gruss, P

    1991-01-01

    We describe the isolation and characterization of Pax-3, a novel murine paired box gene expressed exclusively during embryogenesis. Pax-3 encodes a 479 amino acid protein with an Mr of 56 kd containing both a paired domain and a paired-type homeodomain. The Pax-3 protein is a DNA binding protein that specifically recognizes the e5 sequence present upstream of the Drosophila even-skipped gene. Pax-3 transcripts are first detected in 8.5 day mouse embryos where they are restricted to the dorsal part of the neuroepithelium and to the adjacent segmented dermomyotome. During early neurogenesis, Pax-3 expression is limited to mitotic cells in the ventricular zone of the developing spinal cord and to distinct regions in the hindbrain, midbrain and diencephalon. In 10-12 day embryos, expression of Pax-3 is also seen in neural crest cells of the developing spinal ganglia, the craniofacial mesectoderm and in limb mesenchyme of 10 and 11 day embryos. Images PMID:2022185

  13. In vivo expression of adenovirus-mediated lacZ gene in murine nasal mucosa.

    PubMed

    Arimoto, Yukiko; Nagata, Hiroshi; Isegawa, Naohisa; Kumahara, Keiichiro; Isoyama, Kyoko; Konno, Akiyoshi; Shirasawa, Hiroshi

    2002-09-01

    Adenovirus is a good tool for transferring exogenous genes into various organs because the virus has a wide spectrum of infection. In this report, we demonstrate that a recombinant adenovirus, Ax1CAlacZ, can transfer an exogenous lacZ gene into murine nasal mucosa in vivo. The efficiency of the exogenous gene expression varied for different cell types and was improved by optimizing the method of administration. In the olfactory region, the olfactory epithelia, sustentacular cells and olfactory nerve efficiently expressed lacZ gene transferred by Ax1CAlacZ using either of two administration methods, dripping or injecting. In contrast, in the respiratory region, the respiratory epithelia but not the subepithelial tissues expressed lacZ gene transferred by Ax1CAlacZ, and the efficiency of the gene transfer, which was low when the virus was administered by nasal drops, was improved when the virus was administered by injection. Our study demonstrated that gene transfer mediated by adenovirus is more efficient in the olfactory epithelia than in the respiratory epithelia, and may be applicable to nasal or paranasal diseases such as olfactory epithelial disturbances. PMID:12403125

  14. Retinoic acid inhibits the proliferative response induced by CD40 activation and interleukin-4 in mantle cell lymphoma.

    PubMed

    Guidoboni, Massimo; Zancai, Paola; Cariati, Roberta; Rizzo, Silvana; Dal Col, Jessica; Pavan, Alessandro; Gloghini, Annunziata; Spina, Michele; Cuneo, Antonio; Pomponi, Fabrizio; Bononi, Antonio; Doglioni, Claudio; Maestro, Roberta; Carbone, Antonino; Boiocchi, Mauro; Dolcetti, Riccardo

    2005-01-15

    Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin's lymphoma with poor response to therapy and unfavorable prognosis. Here, we show that retinoic acid (RA) isomers significantly inhibit the proliferation of both primary MCL cultures (n = 7) and established cell lines (Granta 519 and SP-53) as shown by [(3)H]thymidine uptake and carboxyfluorescein diacetate succinimidyl ester labeling coupled with cyclin D1 staining. RA induces cell accumulation in G(0)-G(1) together with a marked up-regulation of p27(Kip1) by inhibiting ubiquitination and proteasome-dependent degradation of the protein. The p21(Cip1) inhibitor was also up-regulated by RA in Granta 519 cells, whereas the expression of cyclin D1 is unaffected. Most of RA-induced p27(Kip1) was bound to cyclin D1/cyclin-dependent kinase 4 complexes, probably contributing to the decreased cyclin-dependent kinase 4 kinase activity and pRb hypophosphorylation observed in RA-treated cells. Experiments with receptor-selective ligands indicate that RA receptor alpha cooperates with retinoid X receptors in mediating RA-dependent MCL cell growth inhibition. Notably, RA isomers, and particularly 9-cis-RA, also inhibited the growth-promoting effect induced in primary MCL cells by CD40 activation alone or in combination with interleukin-4. Immunohistochemical analysis showed that significant numbers of CD40L-expressing lymphoid cells are present in lymph node biopsies of MCL patients. These results therefore further strengthen the possibility that triggering of CD40 by infiltrating CD40L+ cells may continuously promote the growth of MCL cells in vivo. On these grounds, our findings that RA inhibits basal MCL proliferation as well as MCL growth-promoting effects exerted by microenvironmental factors make these compounds highly attractive in terms of potential clinical efficacy in this setting. PMID:15695403

  15. Induction of IL-12 Production in Human Peripheral Monocytes by Trypanosoma cruzi Is Mediated by Glycosylphosphatidylinositol-Anchored Mucin-Like Glycoproteins and Potentiated by IFN-γ and CD40-CD40L Interactions

    PubMed Central

    Abel, Lúcia Cristina Jamli; Ferreira, Ludmila Rodrigues Pinto; Cunha Navarro, Isabela; Baron, Monique Andrade; Kalil, Jorge; Gazzinelli, Ricardo Tostes; Rizzo, Luiz Vicente; Cunha-Neto, Edecio

    2014-01-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is characterized by immunopathology driven by IFN-γ secreting Th1-like T cells. T. cruzi has a thick coat of mucin-like glycoproteins covering its surface, which plays an important role in parasite invasion and host immunomodulation. It has been extensively described that T. cruzi or its products—like GPI anchors isolated from GPI-anchored mucins from the trypomastigote life cycle stage (tGPI-mucins)—are potent inducers of proinflammatory responses (i.e., cytokines and NO production) by IFN-γ primed murine macrophages. However, little is known about whether T. cruzi or GPI-mucins exert a similar action in human cells. We therefore decided to further investigate the in vitro cytokine production profile from human mononuclear cells from uninfected donors exposed to T. cruzi as well as tGPI-mucins. We observed that both living T. cruzi trypomastigotes and tGPI-mucins are potent inducers of IL-12 by human peripheral blood monocytes and this effect depends on CD40-CD40L interaction and IFN-γ. Our findings suggest that the polarized T1-type cytokine profile seen in T. cruzi infected patients might be a long-term effect of IL-12 production induced by lifelong exposure to T. cruzi tGPI-mucins. PMID:25120285

  16. Gene expression profile of androgen modulated genes in the murine fetal developing lung

    PubMed Central

    2010-01-01

    Background Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood. Methods To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17) and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens. Results Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment. Conclusion Our results show clearly that there is a real delay in lung maturation between male and female in this period

  17. Murine and Human Spermatids Are Characterized by Numerous, Newly Synthesized and Differentially Expressed Transcription Factors and Bromodomain-Containing Proteins.

    PubMed

    Klaus, Elisabeth Sabine; Gonzalez, Nicola Helena; Bergmann, Martin; Bartkuhn, Marek; Weidner, Wolfgang; Kliesch, Sabine; Rathke, Christina

    2016-07-01

    Much of spermatid differentiation takes place in the absence of active transcription, but in the early phase, large amounts of mRNA are synthesized, translationally repressed, and stored. Most nucleosomal histones are then degraded, and chromatin is repackaged by protamines. For both transcription and the histone-to-protamine transition in differentiating spermatids, chromatin must be opened. This raises the question of whether two different processes exist. It is conceivable that for initiation of the histone-to-protamine transition, the already accessible, actively transcribed chromatin regions are utilized or vice versa. We analyzed the enrichment of different canonical TATA-box-binding, protein-associated factors and their variants in murine spermatids, diverse bromodomain-containing proteins, and components of the Polycomb repressive complexes PRC1 and PRC2 using quantitative PCR. We compared the enrichment of corresponding proteins in human and murine spermatids and analyzed the time frame of postmeiotic transcription and expression of histones, transition proteins, and protamines in human and murine spermatids using immunohistology. We correlated the expression of different transcription factors and bromodomain-containing proteins and the pattern of acetylated histones to active transcription and to the histone-to-protamine transition in both human and murine spermatids. Our findings suggest that differentiating spermatids use both common and specific features to open chromatin first for transcription and subsequently for histone-to-protamine transition. PMID:27170439

  18. B7-H3 protein expression in a murine model of osteosarcoma

    PubMed Central

    ZHAO, JIA-LI; CHEN, FENG-LI; ZHOU, QUAN; PAN, WEI; WANG, XIN-HONG; XU, JIN; ZHANG, SHAO-XIAN; NI, LI; YANG, HUI-LIN

    2016-01-01

    Osteosarcoma is an aggressive type of bone tumor that commonly occurs in pediatric age groups. The complete molecular mechanisms behind osteosarcoma formation and progression require elucidation. B7-H3 is a protein of the B7 family that acts as a co-stimulatory molecule with a significant role in adaptive immune responses. The link between B7-H3 expression and its role in different types of cancer remains unclear. B7-H3 protein exhibits different functional roles in in vivo and in vitro conditions that remain controversial. In the present study, a murine model of osteosarcoma was successfully established using a modified protocol so as to easily obtain a low grade and metastatic form of osteosarcoma tissue without complication. Histological data showed that a less organized and highly proliferative mass of cells was observed in the osteosarcoma tissue. A higher expression level of B7-H3 protein was also observed at each advanced stage of osteosarcoma, which indicated the contributory role of the protein in the development of the primary and metastatic forms of osteosarcoma. Immunohistochemistry was performed, which showed that the overexpression of B7-H3 protein in the metastatic form of osteosarcoma may be associated with its migration and invasion. PMID:27347155

  19. Expression of mink cell focus-forming murine leukemia virus-related transcripts in AKR mice

    SciTech Connect

    Khan, A.S.; Laigret, F.; Rodi, C.P.

    1987-03-01

    The authors used a synthetic 16-base-pair mink cell focus-forming (MCF) env-specific oligomer as radiolabeled probe to study MCF murine leukemia virus (MuLV)-related transcripts in brain, kidney, liver, spleen, and thymus tissues of AKR mice ranging from 5 weeks to 6 months (mo) of age. Tissue-specific expression of poly(A)/sup +/ RNAs was seen. In addition, all the tissues tested contained 3.0-kb messages. The transcription of these MCF-related mRNAs was independent of the presence of ecotropic and xenotropic MuLVs. In general, expression of the MCF env-related transcripts appeared to peak at 2 mo of age; these messages were barely detectable in brain, kidney, liver, and spleen tissues after 2 mo and in thymus tissue after 4 mo of age. All of the subgenomic MCF env-related mRNAs appeared to contain the 190-base-pair cellular DNA insert, characteristic of the long terminal repeats associated with endogenous MCF env-related proviruses. No genomic-size (8.4-kb) transcripts corresponding to endogenous MCF-related proviruses were detected. An 8.4-kb MCF env-related mRNA was first seen at 3 mo of age, exclusively in thymus tissue. This species most likely represents the first appearance of a recombinant MCF-related MuLV genome. The transcripts which were detected in thymus tissue might be involved in the generation of leukemogenic MCF viruses.

  20. PRENATAL EXPOSURE TO ENVIRONMENTAL TOBACCO SMOKE ALTERS GENE EXPRESSION IN THE DEVELOPING MURINE HIPPOCAMPUS

    PubMed Central

    Mukhopadhyay, Partha; Horn, Kristin H.; Greene, Robert M.; Pisano, M. Michele

    2010-01-01

    Background Little is known about the effects of passive smoke exposures on the developing brain. Objective The purpose of the current study was to identify changes in gene expression in the murine hippocampus as a consequence of in utero exposure to sidestream cigarette smoke (an experimental equivalent of environmental tobacco smoke (ETS)) at exposure levels that do not result in fetal growth inhibition. Methods A whole body smoke inhalation exposure system was utilized to deliver ETS to pregnant C57BL/6J mice for six hours/day from gestational days 6–17 (gd 6–17) [for microarray] or gd 6–18.5 [for fetal phenotyping]. Results There were no significant effects of ETS exposure on fetal phenotype. However, 61 “expressed” genes in the gd 18.5 fetal hippocampus were differentially regulated (up- or down-regulated by 1.5 fold or greater) by maternal exposure to ETS. Of these 61 genes, 25 genes were upregulated while 36 genes were downregulated. A systems biology approach, including computational methodologies, identified cellular response pathways, and biological themes, underlying altered fetal programming of the embryonic hippocampus by in utero cigarette smoke exposure. Conclusions Results from the present study suggest that even in the absence of effects on fetal growth, prenatal smoke exposure can alter gene expression during the “early” period of hippocampal growth and may result in abnormal hippocampal morphology, connectivity, and function. PMID:19969065

  1. Human glioblastoma-associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples.

    PubMed

    Szulzewsky, Frank; Arora, Sonali; de Witte, Lot; Ulas, Thomas; Markovic, Darko; Schultze, Joachim L; Holland, Eric C; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-08-01

    Glioblastoma (GBM) is the most aggressive brain tumor in adults. It is strongly infiltrated by microglia and peripheral monocytes that support tumor growth. In the present study we used RNA sequencing to compare the expression profile of CD11b(+) human glioblastoma-associated microglia/monocytes (hGAMs) to CD11b(+) microglia isolated from non-tumor samples. Hierarchical clustering and principal component analysis showed a clear separation of the two sample groups and we identified 334 significantly regulated genes in hGAMs. In comparison to human control microglia hGAMs upregulated genes associated with mitotic cell cycle, cell migration, cell adhesion, and extracellular matrix organization. We validated the expression of several genes associated with extracellular matrix organization in samples of human control microglia, hGAMs, and the hGAMs-depleted fraction via qPCR. The comparison to murine GAMs (mGAMs) showed that both cell populations share a significant fraction of upregulated transcripts compared with their respective controls. These genes were mostly related to mitotic cell cycle. However, in contrast to murine cells, human GAMs did not upregulate genes associated to immune activation. Comparison of human and murine GAMs expression data to several data sets of in vitro-activated human macrophages and murine microglia showed that, in contrast to mGAMs, hGAMs share a smaller overlap to these data sets in general and in particular to cells activated by proinflammatory stimulation with LPS + INFγ or TNFα. Our findings provide new insights into the biology of human glioblastoma-associated microglia/monocytes and give detailed information about the validity of murine experimental models. GLIA 2016 GLIA 2016;64:1416-1436. PMID:27312099

  2. A comparison of two distinct murine macrophage gene expression profiles in response to Leishmania amazonensis infection

    PubMed Central

    2012-01-01

    Background The experimental murine model of leishmaniasis has been widely used to characterize the immune response against Leishmania. CBA mice develop severe lesions, while C57BL/6 present small chronic lesions under L. amazonensis infection. Employing a transcriptomic approach combined with biological network analysis, the gene expression profiles of C57BL/6 and CBA macrophages, before and after L. amazonensis infection in vitro, were compared. These strains were selected due to their different degrees of susceptibility to this parasite. Results The genes expressed by C57BL/6 and CBA macrophages, before and after infection, differ greatly, both with respect to absolute number as well as cell function. Uninfected C57BL/6 macrophages express genes involved in the deactivation pathway of macrophages at lower levels, while genes related to the activation of the host immune inflammatory response, including apoptosis and phagocytosis, have elevated expression levels. Several genes that participate in the apoptosis process were also observed to be up-regulated in C57BL/6 macrophages infected with L. amazonensis, which is very likely related to the capacity of these cells to control parasite infection. By contrast, genes involved in lipid metabolism were found to be up-regulated in CBA macrophages in response to infection, which supports the notion that L. amazonensis probably modulates parasitophorous vacuoles in order to survive and multiply in host cells. Conclusion The transcriptomic profiles of C57BL/6 macrophages, before and after infection, were shown to be involved in the macrophage pathway of activation, which may aid in the control of L. amazonensis infection, in contrast to the profiles of CBA cells. PMID:22321871

  3. Life spanning murine gene expression profiles in relation to chronological and pathological aging in multiple organs.

    PubMed

    Jonker, Martijs J; Melis, Joost P M; Kuiper, Raoul V; van der Hoeven, Tessa V; Wackers, Paul F K; Robinson, Joke; van der Horst, Gijsbertus T J; Dollé, Martijn E T; Vijg, Jan; Breit, Timo M; Hoeijmakers, Jan H J; van Steeg, Harry

    2013-10-01

    Aging and age-related pathology is a result of a still incompletely understood intricate web of molecular and cellular processes. We present a C57BL/6J female mice in vivo aging study of five organs (liver, kidney, spleen, lung, and brain), in which we compare genome-wide gene expression profiles during chronological aging with pathological changes throughout the entire murine life span (13, 26, 52, 78, 104, and 130 weeks). Relating gene expression changes to chronological aging revealed many differentially expressed genes (DEGs), and altered gene sets (AGSs) were found in most organs, indicative of intraorgan generic aging processes. However, only ≤ 1% of these DEGs are found in all organs. For each organ, at least one of 18 tested pathological parameters showed a good age-predictive value, albeit with much inter- and intraindividual (organ) variation. Relating gene expression changes to pathology-related aging revealed correlated genes and gene sets, which made it possible to characterize the difference between biological and chronological aging. In liver, kidney, and brain, a limited number of overlapping pathology-related AGSs were found. Immune responses appeared to be common, yet the changes were specific in most organs. Furthermore, changes were observed in energy homeostasis, reactive oxygen species, cell cycle, cell motility, and DNA damage. Comparison of chronological and pathology-related AGSs revealed substantial overlap and interesting differences. For example, the presence of immune processes in liver pathology-related AGSs that were not detected in chronological aging. The many cellular processes that are only found employing aging-related pathology could provide important new insights into the progress of aging. PMID:23795901

  4. Dual Transgene Expression in Murine Cerebellar Purkinje Neurons by Viral Transduction In Vivo

    PubMed Central

    Bosch, Marie K.; Nerbonne, Jeanne M.; Ornitz, David M.

    2014-01-01

    Viral-vector mediated gene transfer to cerebellar Purkinje neurons in vivo is a promising avenue for gene therapy of cerebellar ataxias and for genetic manipulation in functional studies of animal models of cerebellar disease. Here, we report the results of experiments designed to identify efficient methods for viral transduction of adult murine Purkinje neurons in vivo. For these analyses, several lentiviral and an adeno-associated virus (AAV), serotype 1, vector with various promoter combinations were generated and compared for in situ transduction efficiency, assayed by fluorescent reporter protein expression in Purkinje neurons. Additional experiments were also conducted to identify the optimal experimental strategy for co-expression of two proteins in individual Purkinje neurons. Of the viruses tested, AAV1 with a CAG promoter exhibited the highest specificity for Purkinje neurons. To deliver two proteins to the same Purkinje neuron, several methods were tested, including: an internal ribosome entry site (IRES), a 2A sequence, a dual promoter vector, and co-injection of two viruses. Efficient expression of both proteins in the same Purkinje neuron was only achieved by co-injecting two AAV1-CAG viruses. We found that use of an AAV1-CAG virus outperformed similar lentivirus vectors and that co-injection of two AAV1-CAG viruses could be used to efficiently deliver two proteins to the same Purkinje neuron in adult mice. AAV1 with a CAG promoter is highly efficient and selective at transducing adult cerebellar Purkinje neurons and two AAV-CAG viruses can be used to efficiently express two proteins in the same neuron in vivo. PMID:25093726

  5. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells

    PubMed Central

    Mason, Mike J; Fan, Guoping; Plath, Kathrin; Zhou, Qing; Horvath, Steve

    2009-01-01

    Background Recent work has revealed that a core group of transcription factors (TFs) regulates the key characteristics of embryonic stem (ES) cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we investigated the use of unsigned and signed network analysis to identify pluripotency and differentiation related genes. Results We show that signed networks provide a better systems level understanding of the regulatory mechanisms of ES cells than unsigned networks, using two independent murine ES cell expression data sets. Specifically, using signed weighted gene co-expression network analysis (WGCNA), we found a pluripotency module and a differentiation module, which are not identified in unsigned networks. We confirmed the importance of these modules by incorporating genome-wide TF binding data for key ES cell regulators. Interestingly, we find that the pluripotency module is enriched with genes related to DNA damage repair and mitochondrial function in addition to transcriptional regulation. Using a connectivity measure of module membership, we not only identify known regulators of ES cells but also show that Mrpl15, Msh6, Nrf1, Nup133, Ppif, Rbpj, Sh3gl2, and Zfp39, among other genes, have important roles in maintaining ES cell pluripotency and self-renewal. We also report highly significant relationships between module membership and epigenetic modifications (histone modifications and promoter CpG methylation status), which are known to play a role in controlling gene expression during ES cell self-renewal and differentiation. Conclusion Our systems biologic re-analysis of gene expression, transcription factor binding, epigenetic and gene ontology data provides a novel integrative view of ES cell biology. PMID:19619308

  6. Complexity of murine cardiomyocyte miRNA biogenesis, sequence variant expression and function.

    PubMed

    Humphreys, David T; Hynes, Carly J; Patel, Hardip R; Wei, Grace H; Cannon, Leah; Fatkin, Diane; Suter, Catherine M; Clancy, Jennifer L; Preiss, Thomas

    2012-01-01

    microRNAs (miRNAs) are critical to heart development and disease. Emerging research indicates that regulated precursor processing can give rise to an unexpected diversity of miRNA variants. We subjected small RNA from murine HL-1 cardiomyocyte cells to next generation sequencing to investigate the relevance of such diversity to cardiac biology. ∼40 million tags were mapped to known miRNA hairpin sequences as deposited in miRBase version 16, calling 403 generic miRNAs as appreciably expressed. Hairpin arm bias broadly agreed with miRBase annotation, although 44 miR* were unexpectedly abundant (>20% of tags); conversely, 33 -5p/-3p annotated hairpins were asymmetrically expressed. Overall, variability was infrequent at the 5' start but common at the 3' end of miRNAs (5.2% and 52.3% of tags, respectively). Nevertheless, 105 miRNAs showed marked 5' isomiR expression (>20% of tags). Among these was miR-133a, a miRNA with important cardiac functions, and we demonstrated differential mRNA targeting by two of its prevalent 5' isomiRs. Analyses of miRNA termini and base-pairing patterns around Drosha and Dicer cleavage regions confirmed the known bias towards uridine at the 5' most position of miRNAs, as well as supporting the thermodynamic asymmetry rule for miRNA strand selection and a role for local structural distortions in fine tuning miRNA processing. We further recorded appreciable expression of 5 novel miR*, 38 extreme variants and 8 antisense miRNAs. Analysis of genome-mapped tags revealed 147 novel candidate miRNAs. In summary, we revealed pronounced sequence diversity among cardiomyocyte miRNAs, knowledge of which will underpin future research into the mechanisms involved in miRNA biogenesis and, importantly, cardiac function, disease and therapy. PMID:22319597

  7. Expression of the Wilms' tumor gene WT1 in the murine urogenital system.

    PubMed

    Pelletier, J; Schalling, M; Buckler, A J; Rogers, A; Haber, D A; Housman, D

    1991-08-01

    The Wilms' tumor gene WT1 is a recessive oncogene that encodes a putative transcription factor implicated in nephrogenesis during kidney development. In this report we analyze expression of WT1 in the murine urogenital system. WT1 is expressed in non-germ-cell components of the testis and ovaries in both young and adult mice. In situ mRNA hybridization studies demonstrate that WT1 is expressed in the granulosa and epithelial cells of ovaries, the Sertoli cells of the testis, and in the uterine wall. In addition to the 3.1-kb WT1 transcript detected by Northern blotting of RNA from kidney, uterus, and gonads, there is an approximately 2.5-kb WT1-related mRNA species in testis. The levels of WT1 mRNA in the gonads are among the highest observed, surpassing amounts detected in the embryonic kidney. During development, these levels are differentially regulated, depending on the sexual differentiation of the gonad. Expression of WT1 mRNA in the female reproductive system does not fluctuate significantly from days 4 to 40 postpartum. In contrast, WT1 mRNA levels in the tesis increase steadily after birth, reaching their highest expression levels at day 8 postpartum and decreasing slightly as the animal matures. Expression of WT1 in the gonads is detectable as early as 12.5 days postcoitum (p.c.). As an initial step toward exploring the tissue-specific expression of WT1, DNA elements upstream of WT1 were cloned and sequenced. Three putative transcription initiation sites, utilized in testis, ovaries, and uterus, were mapped by S1 nuclease protection assays. The sequences surrounding these sites have a high G + C content, and typical upstream CCAAT and TATAA boxes are not present. These studies allowed us to identify the translation initiation site for WT1 protein synthesis. We have also used an epitope-tagging protocol to demonstrate that WT1 is a nuclear protein, consistent with its role as a transcription factor. Our results demonstrate regulation of WT1 expression

  8. Molecular Diagnostic Challenges and Complex Management of Consecutive Twin Pregnancies in a Family with CD40 Ligand Deficiency.

    PubMed

    Török, O; Tóth, B; Erdős, M; Csorba, G; Gyimesi, E; Balogh, I; Tóth, Z; Maródi, L

    2012-02-01

    X-linked hyper-IgM syndrome (XHIGM) is a primary immunodeficiency disorder (PID) caused by mutation in the gene encoding the CD40 ligand (CD40L) expressed on activated T cells. Prenatal genotyping in carriers with twin pregnancies is more challenging than in women with singleton pregnancies. In addition, women with twin pregnancies may decide on selective termination for which the risk of loss of the healthy foetus may exceed 7%. We report here on a family affected by XHIGM. Diagnosis of the disease was made in a male patient as late as 33 years of age. After family screening, the sister of the proband conceived male twins in two consecutive pregnancies. In the first pregnancy, one of the male foetuses was hemizygous for the c.521A>G (Q174R) mutation in the CD40L gene. In the second pregnancy, ultrasound scan showed one foetus to have exencephaly and karyotyping revealed this foetus to have trisomy 18. Several options were discussed, but the parents decided on selective termination in both pregnancies. The interventions were successful in both cases, and the mother now has two healthy sons. This report demonstrates the way in which advanced technologies in molecular medicine and obstetric interventions may assist families with decisions about possible selective termination in case of life-threatening molecular or chromosomal disorders. Diagnosis of CD40L deficiency at the age of 33 years in the proband was striking and indicated that PIDs are still neglected as disease entities in the evaluation of patients with recurrent severe infectious diseases. PMID:21958324

  9. Irradiation-induced localization of IL-12-expressing mesenchymal stem cells to enhance the curative effect in murine metastatic hepatoma.

    PubMed

    Jeong, Keun-Yeong; Lee, Eun-Jung; Kim, Su Jin; Yang, Seung-Hyun; Sung, Young Chul; Seong, Jinsil

    2015-08-01

    Irradiation in conjunction with gene therapy is considered for efficient cancer treatment. Mesenchymal stem cells (MSCs), due to their irradiation-promotable tumor tropism, are ideal delivery vehicles for gene therapy. In this study, we investigated whether treatment with radiation and interleukin (IL)-12-expressing MSCs (MSCs/IL-12) exerts improved antitumor effects on murine metastatic hepatoma. HCa-I and Hepa 1-6 cells were utilized to generate heterotopic murine hepatoma models. Tumor-bearing mice were treated with irradiation or MSCs/IL-12 alone, or a combination. Monocyte chemoattractant protein-1 (MCP-1/CCL2) expression was assessed in irradiated hepatoma tissues to confirm a chemotactic effect. Combination treatment strategies were established and their therapeutic efficacies were evaluated by monitoring tumor growth, metastasis and survival rate. IL-12 expression was assessed and the apoptotic activity and immunological alterations in the tumor microenvironment were examined. MCP-1/CCL2 expression and localization of MSCs/IL-12 increased in the irradiated murine hepatoma cells. The antitumor effects, including suppression of pulmonary metastasis and survival rate improvements, were increased by the combination treatment with irradiation and MSCs/IL-12. IL-12 expression was increased in tumor cells, causing proliferation of cluster of differentiation 8(+) T-lymphocytes and natural killer cells. The apoptotic activity increased, indicating that the cytotoxicity of immune cells was involved in the antitumor effect of the combined treatment. Treatment with irradiation and MSCs/IL-12 showed effectiveness in treating murine metastatic hepatoma. IL-12-induced proliferation of immune cells played an important role in apoptosis of tumor cells. Our results suggest that treatment with irradiation and MSCs/IL-12 may be a useful strategy for enhancing antitumor activity in metastatic hepatoma. PMID:25639194

  10. Global microRNA expression is essential for murine mast cell development in vivo

    PubMed Central

    Oh, Sun Young; Brandal, Stephanie; Kapur, Reuben; Zhu, Zhou; Takemoto, Clifford M.

    2014-01-01

    microRNAs (miRNAs) are small, non-coding RNAs that have been shown to play a critical role in normal physiology and disease, such as hematopoietic development and cancer. However, their role in mast cell function and development is poorly understood. The major objective of this study was to determine how global miRNA expression affects mast cell physiology. The RNase III endonuclease, Dicer, is required for the processing of pre-miRNAs into mature miRNAs. To investigate the effect of global miRNA depletion on mast cells in vivo, we generated a mast cell-specific knock out of Dicer in mice. Transgenic mice (Mcpt5-Cre) that express Cre selectively in connective tissue mast cells were crossed with mice carrying the floxed conditional Dicer allele (Dicer fl/fl). Mcpt5-Cre x Dicer fl/fl mice with homozygous Dicer gene deletion in mast cells were found to have a profound mast cell deficiency with near complete loss of peritoneal, gastrointestinal, and skin mast cells. We examined the in vivo functional consequence of mast cell-specific Dicer deletion using an IgE-dependent passive systemic anaphylaxis (PSA) murine model. IgE sensitized wild type Mcpt5-Cre x Dicer +/+ and heterozygous Mcpt5-Cre x Dicer fl/+ mice show marked hypothermia with antigen; however, homozygous Mcpt5-Cre x Dicer fl/fl mice were completely unresponsive to antigen challenge. These studies suggest a critical role for Dicer and miRNA expression for establishment of tissue compartments of functional mast cells in vivo. PMID:25201754

  11. Post-transcriptional regulation of E2A proteins via lipopolysaccharide and CD40 signaling.

    PubMed

    Meyer, K B; Mufti, D A

    2000-02-01

    The transcription factor E2A plays a crucial role in B cell development, the control of immunoglobulin gene rearrangement and expression. Here we report that in primary mouse B cells lipopolysaccharide (LPS) is able to induce the level of E2A protein by over 50-fold in days of culture. In contrast, CD40 signaling is insufficient to cause an E2A increase and can in fact prevent the LPS-mediated induction of E2A. These results suggest that E2A induction requires both proliferation and differentiation. We find that E2A protein induction is regulated post-transcriptionally since E2A mRNA is not induced by LPS. We have thus identified an important additional layer of regulation affecting the activity of E2A transcription factors. PMID:10671233

  12. Inhibin betaB expression in murine adipose tissue and its regulation by leptin, insulin and dexamethasone.

    PubMed

    Hoggard, N; Cruickshank, M; Moar, K M; Barrett, P; Bashir, S; Miller, J D B

    2009-10-01

    Inhibin betaB (INHBB; coding for the activin betaB subunit) has previously been identified in both human and rodent adipose tissue and using Taqman real-time PCR with specific primers we confirm the expression of INHBB mRNA in rodent adipose tissue. Expression of INHBB in murine epididymal adipose tissue was higher than in any of the other tissues studied and appears to be regulated by changes in energy balance and leptin. It was increased fourfold in the epididymal fat depot of ob/ob mice compared with the same fat depot in lean mice. The i.p. administration of leptin in obese ob/ob mice decreases the expression of INHBB. In human adipose tissue, INHBB is reduced by weight loss. In keeping with this, we demonstrate that INHBB expression in murine adipose tissue is decreased in fasting and increased upon refeeding. We show that INHBB is expressed in both the mature adipocyte and the stromal vascular fraction of adipose tissue. INHBB increases with the differentiation of pre-adipocytes into mature adipocytes in the 3T3-L1 cell line. In differentiated 3T3-L1 adipocytes, where receptors to activin have been previously reported, insulin increases the expression of INHBB, while dexamethasone decreases the expression of INHBB when compared with untreated control cells. Taken together, these results suggest that the regulation of INHBB expression in adipose tissue may play a physiological role in energy balance or the insulin insensitivity associated with obesity. PMID:19491194

  13. Murine Cytomegalovirus Influences Foxj1 Expression, Ciliogenesis, and Mucus Plugging in Mice with Allergic Airway Disease

    PubMed Central

    Wu, Carol A.; Peluso, John J.; Shanley, John D.; Puddington, Lynn; Thrall, Roger S.

    2008-01-01

    We have followed throughout time the development of allergic airway disease (AAD) in both uninfected mice and mice infected intranasally with murine cytomegalovirus (MCMV). Histological evaluation of lung tissue from uninfected mice with AAD demonstrated mucus plugging after 14 and 21 days of ovalbumin-aerosol challenge, with resolution of mucus plugging occurring by 42 days. In MCMV/AAD mice, mucus plugging was observed after 7 days of ovalbumin-aerosol challenge and remained present at 42 days. The level of interleukin-13 in bronchoalveolar lavage fluid from MCMV/AAD mice was decreased compared with AAD mice and was accompanied by increased levels of interferon-γ. Levels of Muc5A/C, Muc5B, or Muc2 mucin mRNA in the lungs of MCMV/AAD mice were not elevated compared with AAD mice. MCMV was able to infect the airway epithelium, resulting in decreased expression of Foxj1, a transcription factor critical for ciliogenesis, and a loss of ciliated epithelial cells. In addition, an increase in the number of epithelial cells staining positive for periodic acid-Schiff was observed in MCMV/AAD airways. Together, these findings suggest that MCMV infection of the airway epithelium enhances goblet cell metaplasia and diminishes efficient mucociliary clearance in mice with AAD, resulting in increased mucus plugging. PMID:18258850

  14. Proinflammatory Cytokine Gene Expression by Murine Macrophages in Response to Brugia malayi Wolbachia Surface Protein

    PubMed Central

    Porksakorn, Chantima; Nuchprayoon, Surang; Park, Kiwon; Scott, Alan L.

    2007-01-01

    Wolbachia, an endosymbiotic bacterium found in most species of filarial parasites, is thought to play a significant role in inducing innate inflammatory responses in lymphatic filariasis patients. However, the Wolbachia-derived molecules that are recognized by the innate immune system have not yet been identified. In this study, we exposed the murine macrophage cell line RAW 264.7 to a recombinant form of the major Wolbachia surface protein (rWSP) to determine if WSP is capable of innately inducing cytokine transcription. Interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF) mRNAs were all upregulated by the rWSP stimulation in a dose-dependant manner. TNF transcription peaked at 3 hours, whereas IL-1β and IL-6 transcription peaked at 6 hours post-rWSP exposure. The levels of innate cytokine expression induced by a high-dose (9.0 μg/mL) rWSP in the RAW 264.7 cells were comparable to the levels induced by 0.1 μg/mL E. coli-derived lipopolysaccharides. Pretreatment of the rWSP with proteinase-K drastically reduced IL-1β, IL-6, and TNF transcription. However, the proinflammatory response was not inhibited by polymyxin B treatment. These results strongly suggest that the major Wolbachia surface protein molecule WSP is an important inducer of innate immune responses during filarial infections. PMID:17641731

  15. Expression of murine leukemia viruses in the highly lymphomatous BXH-2 recombinant inbred mouse strain.

    PubMed Central

    Bedigian, H G; Taylor, B A; Meier, H

    1981-01-01

    Among 12 recombinant inbred strains of mice derived from crossing two strains, C57BL/6J and C3H/HeJ, which have a low incidence of neoplastic disease, one strain (BXH-2) has been found to have a high incidence of lymphoma, of non-T-cell origin, at an early age. The BXH-2 strain carries the Fv-1b allele and spontaneously expresses a B-tropic murine leukemia virus beginning at as early as 10 days of gestation and continuing throughout their life. No significant differences in ecotropic virus titers were observed at any age tested (16 to 17 days of gestation through 7 months), whereas xenotropic virus was first detected in lymphoid tissues of 2-month-old mice and virus titers increased with age. Dual tropic virus(es), which induced cytopathic changes on mink lung cells, was isolated from BXH-2 lymphomatous tissues. Unlike AKR mink lung focus-forming virus (N-tropic recombinant), BXH-2 dual tropic virus is B tropic and induces cytopathic changes in mouse fibroblast cultures as well. The BXH-2 mouse provides a model system for studying the role of replication-competent viruses in spontaneously occurring leukemias of non-T-cell lineage and neurological disease. Images PMID:6268848

  16. Cloning of murine interferon gamma receptor cDNA: expression in human cells mediates high-affinity binding but is not sufficient to confer sensitivity to murine interferon gamma.

    PubMed Central

    Hemmi, S; Peghini, P; Metzler, M; Merlin, G; Dembic, Z; Aguet, M

    1989-01-01

    A full-length cDNA encoding the murine interferon gamma (IFN-gamma) receptor was isolated from a lambda gt11 library using a human IFN-gamma receptor cDNA probe. The deduced amino acid sequence of the murine IFN-gamma receptor shows approximately 53% homology to its human counterpart but no homology to other known proteins. Murine IFN-gamma receptor cDNA was expressed in human HEp-2 cells, which do not bind murine IFN-gamma and are insensitive to its action. Transfectants displayed the same binding properties as mouse cells. The biological responsiveness of such transfectants to various biological effects of both human and murine IFN-gamma was investigated, including modulation of major histocompatibility complex class I and class II antigen expression, inhibition of cell growth, and antiviral activity. Like parental HEp-2 cells, these transfectants responded only to human, but not to murine, IFN-gamma. Inversely, mouse L929 cells transfected with human IFN-gamma receptor cDNA were insensitive to human IFN-gamma. These results confirm and extend previous findings, suggesting that species-specific cofactors are needed for IFN-gamma-mediated signal transduction. Images PMID:2532365

  17. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells.

    PubMed

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-11-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces. PMID:21985363

  18. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells

    PubMed Central

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-01-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces. PMID:21985363

  19. STAT3 and SOCS3 Expression Patterns During Murine Placenta Development

    PubMed Central

    San Martin, S.; Fitzgerald, J.S.; Weber, M.; Párraga, M.; Sáez, T.; Zorn, T.M.; Markert, U.R.

    2013-01-01

    Signal transducers and activators of transcription 3 (STAT3) has been identified as an important signal transducer in the invasive phenotype of the trophoblasts cells in in vitro studies. However, the in situ distribution and patterns of expression of this molecule in trophoblast cells during the development of the placenta are still under-elucidated. Mice uteri of gestational ages between 7 and 14 days of pregnancy (dop) were fixed in methacarn and processed with immunoperoxidase techniques for detection of STAT3 and its phosphorylation at serine (p-ser727) residues, as well as the suppressor of cytokine signaling 3 (SOCS3) expression. STAT3 was observed at 7 through 9 dop in both the antimesometrial and mesometrial deciduas, while continued immunoreactivity between 10 and 13 dop was seen only in the mesometrial decidua. In the placenta, STAT3 was detected in the cytotrophoblast cells of labyrinth and giant trophoblast cells between 10 and 14 dop. Immunoreactivity for STAT3 was also seen in trophoblast cells surrounding the maternal blood vessels. On days 10 and 11 of pregnancy, p-ser727 was detectable in the mesometrial decidua and in giant trophoblasts, while during 12-14 dop in the spongiotrophoblast region. In addition, SOCS3 was immunodetected in maternal and placental tissues, principally in the giant trophoblast cells during the whole period of the study. The present in situ study shows the distribution of STAT3, its serine activation and SOCS3 in different maternal and fetal compartments during murine placental development, thus further supporting the idea that they play a role during physiological placentation in mice. PMID:23807298

  20. Luteinizing hormone induces mouse vas deferens protein expression in the murine ovary.

    PubMed

    Brockstedt, E; Peters-Kottig, M; Badock, V; Hegele-Hartung, C; Lessl, M

    2000-07-01

    The aim of our study was to isolate and identify novel proteins that are involved in the process of ovulation. To achieve this goal we used the technique of proteome analysis. Comparison of ovary protein patterns, obtained by high resolution two-dimensional gel electrophoresis from recombinant FSH (rFSH)- and rFSH + human CG (hCG)-treated mice, showed significant differences in protein spot positions and intensities. Subsequent analysis of one of these proteins was performed by mass spectrometry, resulting in the identification of the mouse vas deferens protein (MVDP). MVDP, which was absent in the two-dimensional gel electrophoresis protein pattern of rFSH-primed mice and appeared 3 h after the hCG surge, is a member of the aldo-keto reductase superfamily and was originally identified in the mouse vas deferens. This is the first study describing MVDP expression and regulation by LH in the ovary. Northern blot analysis of female mice tissues showed that mvdp messenger RNA (mRNA) was only present in adrenal glands and in hCG-treated ovaries. In situ hybridization studies localized the mvdp mRNA unequivocally to ovarian thecal and interstitial cells with an expression profile starting already 1.5 h, and decreasing 24 h, after LH treatment. In the adrenal glands, mvdp mRNA was not regulated by LH and localized in the cells of the zona fasciculata. In murine adrenocortical cells, a recent study proposed a detoxifying role of MVDP. MVDP might fulfill the same function in the ovary; however, because of its strong and early transcriptional induction by LH, it is also possible that MVDP catalyses another important step during the cascade of events occurring at the time of ovulation. PMID:10875260

  1. Therapeutic expression of hairpins targeting apolipoprotein B100 induces phenotypic and transcriptome changes in murine liver

    PubMed Central

    Maczuga, P; Verheij, J; van der Loos, C; van Logtenstein, R; Hooijer, G; Martier, R; Borel, F; Lubelski, J; Koornneef, A; Blits, B; van Deventer, S; Petry, H; Konstantinova, P

    2014-01-01

    Constitutive expression of short hairpin RNAs (shRNAs) may cause cellular toxicity in vivo and using microRNA (miRNA) scaffolds can circumvent this problem. Previously, we have shown that embedding small interfering RNA sequences targeting apolipoprotein B100 (ApoB) in shRNA (shApoB) or miRNA (miApoB) scaffolds resulted in differential processing and long-term efficacy in vivo. Here we show that adeno-associated virus (AAV)-shApoB- or AAV-miApoB-mediated ApoB knockdown induced differential liver morphology and transcriptome expression changes. Our analyses indicate that ApoB knockdown with both shApoB and miApoB resulted in alterations of genes involved in lipid metabolism. In addition, in AAV-shApoB-injected animals, genes involved in immune system activation or cell growth and death were affected, which was associated with increased hepatocyte proliferation. Subsequently, in AAV-miApoB-injected animals, changes of genes involved in oxidoreductase activity, oxidative phosphorylation and nucleic bases biosynthetic processes were observed. Our results demonstrate that long-term knockdown of ApoB in vivo by shApoB or miApoB induces several transcriptome changes in murine liver. The increased hepatocyte profileration by AAV-shRNA may have severe long-term effects indicating that AAV-mediated RNA interference therapy using artificial miRNA may be a safer approach for familial hypercholesterolemia therapy. PMID:24152580

  2. [Regulatory B cells activated by CpG-ODN combined with anti-CD40 monoclonal antibody inhibit CD4(+)T cell proliferation].

    PubMed

    Wang, Keng; Tao, Lei; Su, Jianbing; Zhang, Yueyang; Zou, Binhua; Wang, Yiyuan; Li, Xiaojuan

    2016-09-01

    Objective To observe the immunosuppressive function of regulatory B cells (Bregs) in vitro after activated by CpG oligodeoxynucleotide (CpG-ODN) and anti-CD40 mAb. Methods Mice splenic CD5(+)CD1d(high)B cells and CD5(-)CD1d(low)B cells were sorted by flow cytometry. These B cells were first stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours, and then co-cultured with purified CD4(+)T cells. The interleukin 10 (IL-10) expression in the activated Bregs and other B cell subset, as well as the proliferation and interferon γ (IFN-γ) expression in the CD4(+) T cells activated by anti-CD3 mAb plus anti-CD28 mAb were determined by flow cytometry. Results CD5(+)CD1d(high) B cells activated by CpG-ODN plus anti-CD40 mAb blocked the up-regulated CD4(+)T proliferation and significantly reduced the IFN-γ level. At the same time, activated CD5(-)CD1d(low)B cells showed no inhibitory effect on CD4(+)T cells. Further study revealed that IL-10 expression in the CD5(+)CD1d(high) B cells were much higher than that in the CD5(-)CD1d(low)B cells after stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours. Conclusion CD5(+)CD1d(high) B cells activated by CpG-ODN combined with anti-CD40 mAb have immune inhibitory effects on CD4(+)T cell activation in vitro , which possibly due to IL-10 secretion. PMID:27609568

  3. Differential gene expression in the murine thymus assayed by quantitative hybridization of arrayed cDNA clones

    SciTech Connect

    Nguyen, C.; Rocha, D.; Granjeaud, S.

    1995-09-01

    High-throughput measurement of hybridization signatures obtained using complex probes prepared from poly(A){sup +} RNA and high-density cDNA colony filters is described. The performance of the system, elimination of artifacts, and verification of the validity of the data are discussed. cDNAs corresponding to sequences present at levels of approximately 0.01% in the complex probe can be detected. Good correlation is observed between expression profiles determined by this method and by Northern blotting. The method is applied to a preliminary investigation of differential expression in three cell types present in the murine thymus. 41 refs., 3 figs., 1 tab.

  4. Timing and expression of the angiopoietin-1-Tie-2 pathway in murine lung development and congenital diaphragmatic hernia.

    PubMed

    Grzenda, Adrienne; Shannon, John; Fisher, Jason; Arkovitz, Marc S

    2013-01-01

    Congenital diaphragmatic hernia (CDH) is one of the most common congenital abnormalities. Children born with CDH suffer a number of co-morbidities, the most serious of which is respiratory insufficiency from a combination of alveolar hypoplasia and pulmonary vascular hypertension. All children born with CDH display some degree of pulmonary hypertension, the severity of which has been correlated with mortality. The molecular mechanisms responsible for the development of pulmonary hypertension in CDH remain poorly understood. Angiopoitein-1 (Ang-1), a central mediator in angiogenesis, participates in the vascular development of many tissues, including the lung. Although previous studies have demonstrated that Ang-1 might play an important role in the development of familial pulmonary hypertension, the role of Ang-1 in the development of the pulmonary hypertension associated with CDH is poorly understood. The aim of this study was to examine the role of the Ang-1 pathway in a murine model of CDH. Here, we report that Ang-1 appears important in normal murine lung development, and have established its tissue-level expression and localization patterns at key time-points. Additionally, our data from a nitrofen and bisdiamine-induced murine model of CDH suggests that altered expression patterns of Ang-1, its receptor Tie-2 and one of its transcription factors (epithelium-specific Ets transcription factor 1) might be responsible for development of the pulmonary vasculopathy seen in the setting of CDH. PMID:22917924

  5. Integrated Expression Profiles of mRNA and miRNA in Polarized Primary Murine Microglia

    PubMed Central

    Freilich, Robert W.; Woodbury, Maya E.; Ikezu, Tsuneya

    2013-01-01

    Neuroinflammation contributes to many neurologic disorders including Alzheimer’s disease, multiple sclerosis, and stroke. Microglia is brain resident myeloid cells and have emerged as a key driver of the neuroinflammatory responses. MicroRNAs (miRNAs) provide a novel layer of gene regulation and play a critical role in regulating the inflammatory response of peripheral macrophages. However, little is known about the miRNA in inflammatory activation of microglia. To elucidate the role that miRNAs have on microglial phenotypes under classical (M1) or alternative (M2) activation under lipopolysaccharide (‘M1’-skewing) and interleukin-4 (‘M2a’-skewing) stimulation conditions, we performed microarray expression profiling and bioinformatics analysis of both mRNA and miRNA using primary cultured murine microglia. miR-689, miR-124, and miR-155 were the most strongly associated miRNAs predicted to mediate pro-inflammatory pathways and M1-like activation phenotype. miR-155, the most strongly up-regulated miRNA, regulates the signal transducer and activator of transcription 3 signaling pathway enabling the late phase response to M1-skewing stimulation. Reduced expression in miR-689 and miR-124 are associated with dis-inhibition of many canonical inflammatory pathways. miR-124, miR-711, miR-145 are the strongly associated miRNAs predicted to mediate anti-inflammatory pathways and M2-like activation phenotype. Reductions in miR-711 and miR-124 may regulate inflammatory signaling pathways and peroxisome proliferator-activated receptor-gamma pathway. miR-145 potentially regulate peripheral monocyte/macrophage differentiation and faciliate the M2-skewing phenotype. Overall, through combined miRNA and mRNA expression profiling and bioinformatics analysis we have identified six miRNAs and their putative roles in M1 and M2-skewing of microglial activation through different signaling pathways. PMID:24244499

  6. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    NASA Astrophysics Data System (ADS)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  7. Structural organization, expression, and functional characterization of the murine cytomegalovirus immediate-early gene 3.

    PubMed Central

    Messerle, M; Bühler, B; Keil, G M; Koszinowski, U H

    1992-01-01

    We have previously defined ie3 as a coding region located downstream of the ie1 gene which gives rise to a 2.75-kb immediate-early (IE) transcript. Here we describe the structural organization of the ie3 gene, the amino acid sequence of the gene product, and some of the functional properties of the protein. The 2.75-kb ie3 mRNA is generated by splicing and is composed of four exons. The first three exons, of 300, 111, and 191 nucleotides (nt), are shared with the ie1 mRNA and are spliced to exon 5, which is located downstream of the fourth exon used by the ie1 mRNA. Exon 5 starts 28 nt downstream of the 3' end of the ie1 mRNA and has a length of 1,701 nt. The IE3 protein contains 611 amino acids, the first 99 of which are shared with the ie1 product pp89. The IE3 protein expressed at IE times has a relative mobility of 88 kDa in gels, and a mobility shift to 90 kDa during the early phase is indicative of posttranslational modification. Sequence comparison reveals significant homology of the exon 5-encoded amino acid sequence with the respective sequence of UL 122, a component of the IE1-IE2 complex of human cytomegalovirus (HCMV). This homology is also apparent at the functional level. The IE3 protein is a strong transcriptional activator of the murine cytomegalovirus (MCMV) e1 promoter and shows an autoregulatory function by repression of the MCMV ie1/ie3 promoter. The high degree of conservation between the MCMV ie3 and HCMV IE2 genes and their products with regard to gene structure, amino acid sequence, and protein functions suggests that these genes play a comparable role in the transcriptional control of the two cytomegaloviruses. Images PMID:1309246

  8. HCELL Expression on Murine MSC Licenses Pancreatotropism and Confers Durable Reversal of Autoimmune Diabetes in NOD Mice

    PubMed Central

    Abdi, Reza; Moore, Robert; Sakai, Shinobu; Donnelly, Conor B.; Mounayar, Marwan; Sackstein, Robert

    2015-01-01

    Type 1 diabetes (T1D) is an immune-mediated disease resulting in destruction of insulin-producing pancreatic beta cells. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties, garnering increasing attention as cellular therapy for T1D and other immunologic diseases. However, MSCs generally lack homing molecules, hindering their colonization at inflammatory sites following intravenous (IV) administration. Here we analyzed whether enforced E-selectin ligand expression on murine MSCs could impact their effect in reversing hyperglycemia in non-obese diabetic (NOD) mice. Though murine MSCs natively do not express the E-selectin binding determinant sialyl Lewisx (sLex), we found that fucosyltransferase-mediated α(1,3)-exofucosylation of murine MSCs resulted in sLex display uniquely on cell surface CD44 thereby creating HCELL, the E-selectin-binding glycoform of CD44. Following IV infusion into diabetic NOD mice, allogeneic HCELL+ MSCs showed 3-fold greater peri-islet infiltrates compared to buffer-treated (i.e., HCELL−) MSCs, with distribution in proximity to E-selectin-expressing microvessels. Exofucosylation had no effect on MSC immunosuppressive capacity in in vitro assays, however, though engraftment was temporary for both HCELL+ and HCELL− MSCs, administration of HCELL+ MSCs resulted in durable reversal of hyperglycemia, whereas only transient reversal was observed following administration of HCELL− MSCs. Notably, exofucosylation of MSCs generated from CD44−/− mice induced prominent membrane expression of sLex, but IV administration of these MSCs into hyperglycemic NOD mice showed no enhanced pancreatotropism or reversal of hyperglycemia. These findings provide evidence that glycan engineering to enforce HCELL expression boosts trafficking of infused MSCs to pancreatic islets of NOD mice and substantially improves their efficacy in reversing autoimmune diabetes. PMID:25641589

  9. Expression of intronic miRNAs and their host gene Igf2 in a murine unilateral ureteral obstruction model

    PubMed Central

    Li, N.Q.; Yang, J.; Cui, L.; Ma, N.; Zhang, L.; Hao, L.R.

    2015-01-01

    The objective of this study was to determine the expression of miR-483 and miR-483* and the relationship among them, their host gene (Igf2), and other cytokines in a murine model of renal fibrosis. The extent of renal fibrosis was visualized using Masson staining, and fibrosis was scored 3 days and 1 and 2 weeks after unilateral ureteral obstruction (UUO). Expression of miR-483, miR-483* and various cytokine mRNAs was detected by real-time polymerase chain reaction (PCR). Expression of miR-483 and miR-483* was significantly upregulated in the UUO model, particularly miR-483 expression was the greatest 2 weeks after surgery. Additionally, miR-483 and miR-483* expression negatively correlated with Bmp7 expression and positively correlated with Igf2, Tgfβ, Hgf, and Ctgf expression, as determined by Pearson's correlation analysis. Hgf expression significantly increased at 1 and 2 weeks after the surgery compared to the control group. This study showed that miR-483 and miR-483* expression was upregulated in a murine UUO model. These data suggest that miR-483 and miR-483* play a role in renal fibrosis and that miR-483* may interact with miR-483 in renal fibrosis. Thus, these miRNAs may play a role in the pathogenesis of renal fibrosis and coexpression of their host gene Igf2. PMID:25831208

  10. Expression of surfactant proteins SP-A and SP-D in murine decidua and immunomodulatory effects on decidual macrophages.

    PubMed

    Madhukaran, Shanmuga Priyaa; Koippallil Gopalakrishnan, Aghila Rani; Pandit, Hrishikesh; Marri, Eswari Dodagatta-; Kouser, Lubna; Jamil, Kaiser; Alhamlan, Fatimah S; Kishore, Uday; Madan, Taruna

    2016-02-01

    Surfactant proteins SP-A and SP-D are pattern recognition innate immune molecules that belong to the C-type lectin family. In lungs, they play an important role in the clearance of pathogens and control of inflammation. SP-A and SP-D are also expressed in the female reproductive tract where they play an important role in pregnancy and parturition. However, the role of SP-A and SP-D expressed at the feto-maternal interface (decidua) remains unclear. Here, we have examined the expression of SP-A and SP-D in the murine decidua at 17.5 (pre-parturition) and 19.5dpc (near parturition) and their effect on lipopolysaccharide (LPS)-treated decidual macrophages. SP-A and SP-D were localized to stromal cells in the murine decidua at 17.5 and 19.5dpc in addition to cells lining the maternal spiral artery. Purified pre-parturition decidual cells were challenged with LPS with and without SP-A or SP-D, and expression of F4/80 and TNF-α were measured by flow cytometry. On their own, SP-A or SP-D did not affect the percentage of F4/80 positive cells while they suppressed the percentage of TNF-α positive cells. However, simultaneous addition of SP-A or SP-D, together with LPS, reduced TNF-α secreting F4/80 positive cells. It is likely that exogenous administration of SP-A and SP-D in decidua can potentially control infection and inflammation mediators during spontaneous term labor and infection-induced preterm labor. Thus, the presence of SP-A and SP-D in the murine decidua is likely to play a protective role against intrauterine infection during pregnancy. PMID:26421960

  11. CD40 Signaling to the Rescue: A CD8 Exhaustion Perspective in Chronic Infectious Diseases

    PubMed Central

    Bhadra, Rajarshi; Cobb, Dustin A.; Khan, Imtiaz A.

    2013-01-01

    Chronic infectious diseases such as HIV, HBV, and HCV, among others, cause severe morbidity and mortality globally. Progressive decline in CD8 functionality, survival, and proliferative potential—a phenomenon referred to as CD8 exhaustion—is believed to be responsible for poor pathogen control in chronic infectious diseases. While the role of negative inhibitory receptors such as PD-1 in augmenting CD8 exhaustion has been extensively studied, the role of positive costimulatory receptors remains poorly understood. In this review, we discuss how one such costimulatory pathway, CD40CD40L, regulates CD8 dysfunction and rescue. While the significance of this pathway has been extensively investigated in models of autoimmunity, acute infectious diseases, and tumor models, the role played by CD40CD40L in regulating CD8 exhaustion in chronic infectious diseases is just beginning to be understood. Considering that monotherapy with blocking antibodies targeting inhibitory PD-1-PD-L1 pathway is only partially effective at ameliorating CD8 exhaustion and that humanized CD40 agonist antibodies are currently available, a better understanding of the role of the CD40CD40L pathway in chronic infectious diseases will pave the way for the development of more robust immunotherapeutic and prophylactic vaccination strategies. PMID:23971530

  12. Lymphocytes and not IFN-gamma mediate expression of iNOS by intestinal epithelium in murine cryptosporidiosis.

    PubMed

    Nordone, Shila K; Gookin, Jody L

    2010-05-01

    We hypothesized that unrecognized differences in epithelial expression of inducible nitric oxide synthase (iNOS), resulting from engineered immunodeficiency, could explain the contradictory findings of prior studies regarding the importance of nitric oxide (NO) in murine models of Cryptosporidium parvum infection. Severe combined immunodeficient mice (SCID) failed to constitutively or inducibly express epithelial iNOS or increase NO synthesis in response to C. parvum infection. In contrast, mice lacking IFN-gamma alone induced both epithelial iNOS expression and NO synthesis in response to infection. Accordingly, lymphocytes mediate epithelial expression of iNOS and NO synthesis independent of IFN-gamma in response to C. parvum infection. These findings in large part explain the contradictory conclusions of prior studies regarding the role of iNOS in C. parvum infection. PMID:20352449

  13. Recent developments in StemBase: a tool to study gene expression in human and murine stem cells

    PubMed Central

    Sandie, Reatha; Palidwor, Gareth A; Huska, Matthew R; Porter, Christopher J; Krzyzanowski, Paul M; Muro, Enrique M; Perez-Iratxeta, Carolina; Andrade-Navarro, Miguel A

    2009-01-01

    Background Currently one of the largest online repositories for human and mouse stem cell gene expression data, StemBase was first designed as a simple web-interface to DNA microarray data generated by the Canadian Stem Cell Network to facilitate the discovery of gene functions relevant to stem cell control and differentiation. Findings Since its creation, StemBase has grown in both size and scope into a system with analysis tools that examine either the whole database at once, or slices of data, based on tissue type, cell type or gene of interest. As of September 1, 2008, StemBase contains gene expression data (microarray and Serial Analysis of Gene Expression) from 210 stem cell samples in 60 different experiments. Conclusion StemBase can be used to study gene expression in human and murine stem cells and is available at . PMID:19284540

  14. Structure, distribution, and expression of an ancient murine endogenous retroviruslike DNA family.

    PubMed Central

    Obata, M M; Khan, A S

    1988-01-01

    An endogenous retroviruslike DNA, B-26, was cloned from a BALB/c mouse embryo gene library by using a generalized murine leukemia virus DNA probe. Southern blot hybridization and nucleotide sequence analyses indicated that B-26 DNA might be a novel member of the GLN DNA family (A. Itin and E. Keshet, J. Virol. 59:301-307, 1986) which contains murine leukemia virus-related pol and env sequences. Northern analysis indicated that B-26-related RNAs of 8.4 and 3.0 kilobases were transcribed in thymus, spleen, brain, and liver tissues of 6-week-old BALB/c mice. Images PMID:3172346

  15. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

    SciTech Connect

    Bujak, Emil; Pretto, Francesca; Ritz, Danilo; Gualandi, Laura; Wulhfard, Sarah; Neri, Dario

    2014-09-10

    There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens

  16. Distal regulation of c-myb expression during IL-6-induced differentiation in murine myeloid progenitor M1 cells.

    PubMed

    Zhang, Junfang; Han, Bingshe; Li, Xiaoxia; Bies, Juraj; Jiang, Penglei; Koller, Richard P; Wolff, Linda

    2016-01-01

    The c-Myb transcription factor is a major regulator that controls differentiation and proliferation of hematopoietic progenitor cells, which is frequently deregulated in hematological diseases, such as lymphoma and leukemia. Understanding of the mechanisms regulating the transcription of c-myb gene is challenging as it lacks a typical promoter and multiple factors are involved. Our previous studies identified some distal regulatory elements in the upstream regions of c-myb gene in murine myeloid progenitor M1 cells, but the detailed mechanisms still remain unclear. In the present study, we found that a cell differentiation-related DNase1 hypersensitive site is located at a -28k region upstream of c-myb gene and that transcription factors Hoxa9, Meis1 and PU.1 bind to the -28k region. Circular chromosome conformation capture (4C) assay confirmed the interaction between the -28k region and the c-myb promoter, which is supported by the enrichment of CTCF and Cohesin. Our analysis also points to a critical role for Hoxa9 and PU.1 in distal regulation of c-myb expression in murine myeloid cells and cell differentiation. Overexpression of Hoxa9 disrupted the IL-6-induced differentiation of M1 cells and upregulated c-myb expression through binding of the -28k region. Taken together, our results provide an evidence for critical role of the -28k region in distal regulatory mechanism for c-myb gene expression during differentiation of myeloid progenitor M1 cells. PMID:27607579

  17. Preparation of anti-CD40 antibody modified magnetic PCL-PEG-PCL microspheres.

    PubMed

    Gao, Xiang; Kan, Bing; Gou, MaLing; Zhang, Juan; Guo, Gang; Huang, Ning; Zhao, Xia; Qian, ZhiYong

    2011-04-01

    Antibody modified magnetic polymeric microspheres have potential biomedical application. In this paper, anti-CD40 antibody modified magnetic poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL, PCEC) microspheres were prepared. First, PCL-PEG-PCL triblock copolymer was synthesized by ring-opening polymerization, followed by reaction with succinic anhydride, creating carboxylated PCL-PEG-PCL copolymer. Then, magnetite nanoparticles were encapsulated into carboxylated PCL-PEG-PCL microspheres, forming magnetic PCL-PEG-PCL microspheres with carboxyl group on their surface. Catalyzed by EDC/NHS, the anti-CD40 antibody was linked to these magnetic PCL-PEG-PCL microspheres, thus forming anti-CD40 modified PCL-PEG-PCL microspheres. These anti-CD40 antibody modified magnetic PCL-PEG-PCL microspheres may have potential application in cell separation. PMID:21702366

  18. Effects of representative glucocorticoids on TNFα- and CD40L-induced NF-κB activation in sensor cells.

    PubMed

    Cechin, Sirlene R; Buchwald, Peter

    2014-07-01

    Glucocorticoids are an important class of anti-inflammatory/immunosuppressive drugs. A crucial part of their anti-inflammatory action results from their ability to repress proinflammatory transcription factors such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) upon binding to the glucocorticoid receptor (GR). Accordingly, sensor cells quantifying their effect on inflammatory signal-induced NF-κB activation can provide useful information regarding their potencies as well as their transrepression abilities. Here, we report results obtained on their effect in suppressing both the TNFα- and the CD40L-induced activation of NF-κB in sensor cells that contain an NF-κB-inducible SEAP construct. In these cells, we confirmed concentration-dependent NF-κB activation for both TNFα and CD40L at low nanomolar concentrations (EC50). Glucocorticoids tested included hydrocortisone, prednisolone, dexamethasone, loteprednol etabonate, triamcinolone acetonide, beclomethasone dipropionate, and clobetasol propionate. They all caused significant, but only partial inhibition of these activations in concentration-dependent manners that could be well described by sigmoid response-functions. Despite the limitations of only partial maximum inhibitions, this cell-based assay could be used to quantitate the suppressing ability of glucocorticoids (transrepression potency) on the expression of proinflammatory transcription factors caused by two different cytokines in parallel both in a detailed, full dose-response format as well as in a simpler single-dose format. Whereas inhibitory potencies obtained in the TNF assay correlated well with consensus glucocorticoid potencies (receptor-binding affinities, Kd, RBA, at the GR) for all compounds, the non-halogenated steroids (hydrocortisone, prednisolone, and loteprednol etabonate) were about an order of magnitude more potent than expected in the CD40 assay in this system. PMID:24747770

  19. p62 regulates CD40-mediated NFκB activation in macrophages through interaction with TRAF6

    SciTech Connect

    Seibold, Kristina; Ehrenschwender, Martin

    2015-08-14

    CD40 is a member of the tumor necrosis factor (TNF) receptor family. Activation-induced recruitment of adapter proteins, so-called TNF-receptor-associated factors (TRAFs) to the cytoplasmic tail of CD40 triggers signaling cascades important in the immune system, but has also been associated with excessive inflammation in diseases such as atherosclerosis and rheumatoid arthritis. Especially, pro-inflammatory nuclear factor κB (NFκB) signaling emanating from CD40-associated TRAF6 appears to be a key pathogenic driving force. Consequently, targeting the CD40-TRAF6 interaction is emerging as a promising therapeutic strategy, but the underlying molecular machinery of this signaling axis is to date poorly understood. Here, we identified the multifunctional adaptor protein p62 as a critical regulator in CD40-mediated NFκB signaling via TRAF6. CD40 activation triggered formation of a TRAF6-p62 complex. Disturbing this interaction tremendously reduced CD40-mediated NFκB signaling in macrophages, while TRAF6-independent signaling pathways remained unaffected. This highlights p62 as a potential target in hyper-inflammatory, CD40-associated pathologies. - Highlights: • CD40 activation triggers interaction of the adapter protein TRAF6 with p62. • TRAF6-p62 interaction regulates CD40-mediated NFκB signaling in macrophages. • Defective TRAF6-p62 interaction reduces CD40-mediated NFκB activation in macrophages.

  20. Expression of skeletal muscle sodium channel (Nav1.4) or connexin32 prevents reperfusion arrhythmias in murine heart

    PubMed Central

    Anyukhovsky, Evgeny P.; Sosunov, Eugene A.; Kryukova, Yelena N.; Prestia, Kevin; Ozgen, Nazira; Rivaud, Mathilde; Cohen, Ira S.; Robinson, Richard B.; Rosen, Michael R.

    2011-01-01

    Aims Acute myocardial ischaemia induces a decrease in resting membrane potential [which leads to reduction of action potential (AP) Vmax] and intracellular acidification (which closes gap junctions). Both contribute to conduction slowing. We hypothesized that ventricular expression of the skeletal muscle Na+ channel, Nav1.4 (which activates fully at low membrane potentials), or connexin32 (Cx32, which is less pH-sensitive than connexin43) would support conduction and be antiarrhythmic. We tested this hypothesis in a murine model of ischaemia and reperfusion arrhythmias. Methods and results Empty adenovirus (Sham) or adenoviral constructs expressing either SkM1 (gene encoding Nav1.4) or Cx32 genes were injected into the left ventricular wall. Four days later, ventricular tachycardia (VT) occurred during reperfusion following a 5 min coronary occlusion. In Nav1.4- and Cx32-expressing mice, VT incidence and duration were lower than in Sham (P < 0.05). In vitro multisite microelectrode mapping was performed in the superfused right ventricular wall. To simulate ischaemic conditions, [K+] in solution was increased to 10 mmol/L and/or pH was decreased to 6.0. Western blots revealed Cx32 and Nav1.4 expression in both ventricles. Nav1.4 APs showed higher Vmax and conduction velocity (CV) than Shams at normal and elevated [K+]. Exposure of tissue to acid solution reduced intracellular pH to 6.4. There was no difference in CV between Sham and Cx32 groups in control solution. Acid solution slowed CV in Sham (P < 0.05) but not in Cx32. Conclusion Nav1.4 or Cx32 expression preserved normal conduction in murine hearts and decreased the incidence of reperfusion VT. PMID:20823275

  1. [Mesenchymal stem cells expressing cytosine deaminase inhibit growth of murine melanoma B16F10 in vivo].

    PubMed

    Krasikova, L S; Karshieva, S S; Cheglakov, I B; Belyavsky, A V

    2015-01-01

    The aim of this study was to estimate the efficacy of mesenchymal stem cell-based suicide gene therapy in mice bearing murine melanoma B16F10. Adipose mesenchymal stem cells (MSCs) were transfected with plasmid constructs expressing cytosine deaminase fused with uracil phosphoribosyltransferase (CDA/UPRT) or CDA/UPRT fused with HSV-1 tegument protein VP22 (CDA/UPRT/VP22). In this study, we demonstrate that direct intratumoral transplantation of MSCs expressing CDA/UPRT or CDA/UPRT/VP22 followed by systemic administration of 5-fluorocytosine (5-FC) results in a significant inhibition of tumor growth. There was a 53% reduction in tumor volume in mice treated with CDA/UPRT-MSCs and 58% reduction in tumor volume in mice treated with CDA/UPRT/VP22-MSCs as compared with control animals transplanted with B16F10 melanoma alone. Injection of CDA/UPRT-MSC and CDA/UPRT/VP22-MSC prolonged the life span of mice bearing B16F10 melanoma by 15 and 26%, respectively. The data indicate that in murine B16F10 melanoma model, MSCs encoding CDA/UPRT suicide gene have a significant antitumor effect. PMID:26710783

  2. ACAT1 deletion in murine macrophages associated with cytotoxicity and decreased expression of collagen type 3A1

    SciTech Connect

    Rodriguez, Annabelle . E-mail: arodrig5@jhmi.edu; Ashen, M. Dominique; Chen, Edward S.

    2005-05-27

    In contrast to some published studies of murine macrophages, we previously showed that ACAT inhibitors appeared to be anti-atherogenic in primary human macrophages in that they decreased foam cell formation without inducing cytotoxicity. Herein, we examined foam cell formation and cytotoxicity in murine ACAT1 knockout (KO) macrophages in an attempt to resolve the discrepancies. Elicited peritoneal macrophages from normal C57BL6 and ACAT1 KO mice were incubated with DMEM containing acetylated LDL (acLDL, 100 {mu}g protein/ml) for 48 h. Cells became cholesterol enriched and there were no differences in the total cholesterol mass. Esterified cholesterol mass was lower in ACAT1 KO foam cells compared to normal macrophages (p < 0.04). Cytotoxicity, as measured by the cellular release of [{sup 14}C]adenine from macrophages, was approximately 2-fold greater in ACAT1 KO macrophages as compared to normal macrophages (p < 0.0001), and this was independent of cholesterol enrichment. cDNA microarray analysis showed that ACAT1 KO macrophages expressed substantially less collagen type 3A1 (26-fold), which was confirmed by RT-PCR. Total collagen content was also significantly reduced (57%) in lung homogenates isolated from ACAT1 KO mice (p < 0.02). Thus, ACAT1 KO macrophages show biochemical changes consistent with increased cytotoxicity and also a novel association with decreased expression of collagen type 3A1.

  3. Local expression of matrix metalloproteinases, cathepsins, and their inhibitors during the development of murine antigen-induced arthritis

    PubMed Central

    Schurigt, Uta; Stopfel, Nadine; Hückel, Marion; Pfirschke, Christina; Wiederanders, Bernd; Bräuer, Rolf

    2005-01-01

    Cartilage and bone degradation, observed in human rheumatoid arthritis (RA), are caused by aberrant expression of proteinases, resulting in an imbalance of these degrading enzymes and their inhibitors. However, the role of the individual proteinases in the pathogenesis of degradation is not yet completely understood. Murine antigen-induced arthritis (AIA) is a well-established animal model of RA. We investigated the time profiles of expression of matrix metalloproteinase (MMP), cathepsins, tissue inhibitors of matrix metalloproteinases (TIMP) and cystatins in AIA. For primary screening, we revealed the expression profile with Affymetrix oligonucleotide chips. Real-time polymerase chain reaction (PCR) analyses were performed for the validation of array results, for tests of more RNA samples and for the completion of the time profile. For the analyses at the protein level, we used an MMP fluorescence activity assay and zymography. By a combination of oligonucleotide chips, real-time PCR and zymography, we showed differential expressions of several MMPs, cathepsins and proteinase inhibitors in the course of AIA. The strongest dysregulation was observed on days 1 and 3 in the acute phase. Proteoglycan loss analysed by safranin O staining was also strongest on days 1 and 3. Expression of most of the proteinases followed the expression of pro-inflammatory cytokines. TIMP-3 showed an expression profile similar to that of anti-inflammatory interleukin-4. The present study indicates that MMPs and cathepsins are important in AIA and contribute to the degradation of cartilage and bone. PMID:15642138

  4. Etomidate induces cytotoxic effects and gene expression in a murine leukemia macrophage cell line (RAW264.7).

    PubMed

    Wu, Rick Sai-Chuen; Wu, King-Chuen; Yang, Jai-Sing; Chiou, Shang-Ming; Yu, Chun-Shu; Chang, Shu-Jen; Chueh, Fu-Shin; Chung, Jing-Gung

    2011-06-01

    Etomidate is an important tool in the arsenal of the emergency physician, and it has been used in a variety of scenarios for both intubation and procedural sedation. In the present study, we investigated the cytotoxicity of etomidate including induction of apoptosis, and levels of protein and gene expressions associated with apoptotic cell death in murine leukemia RAW264.7 cells in vitro. Cytotoxic and apoptotic responses to etomidate of RAW264.7 cells, including cell morphological changes and cell viability were examined and measured by phase-contrast microscopy and flow cytometric assay, respectively. Results indicated that etomidate increased apoptotic cell morphological changes and reduced cell viability in RAW264.7 cells. 4',6-Diamidino-2-phenylindole (DAPI) staining also showed that etomidate induced the formation of apoptotic bodies, a characteristic of apoptosis. Results from Western blotting indicated that etomidate enhanced the levels of cytochrome c, apoptosis-inducing factor (AIF), endonuclease G (Endo G), caspase-9, caspase-3 active form and Bax proteins, but it inhibited the expression of Bcl-xl, leading to apoptosis. DNA microarray assay indicated that etomidate increased the expression of 17 genes (LOC676175; Gm14636; 2810021G02Rik; Iltifb; Olfr1167; Ttc30b; Olfr766; Gas5; Rgs1; LOC280487; V1rd4; Hist1h2bc; V1rj3; Gm10366; Olfr192; Gm10002 and Cspp1) and reduced the expression of 15 genes: (Gm10152; Gm5334; Olfr216; Lcn9; Gm10683; Gm5100; Tdgf1; Cypt2; Gm5595; 1700018F24Rik; Gm10417; Maml2; Olfr591; Trdn and Apol7c). In conclusion, etomidate induced cytotoxic and apoptotic effects the in murine leukemia RAW264.7 cells in vitro. PMID:21737642

  5. Dexamethasone Attenuates VEGF Expression and Inflammation but Not Barrier Dysfunction in a Murine Model of Ventilator–Induced Lung Injury

    PubMed Central

    Hegeman, Maria A.; Hennus, Marije P.; Cobelens, Pieter M.; Kavelaars, Annemieke; Jansen, Nicolaas J. G.; Schultz, Marcus J.; van Vught, Adrianus J.; Heijnen, Cobi J.

    2013-01-01

    Background Ventilator–induced lung injury (VILI) is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF) has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar–capillary barrier dysfunction in an established murine model of VILI. Methods Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O (“lower” tidal volumes of ∼7.5 ml/kg; LVT) or 18 cmH2O (“higher” tidal volumes of ∼15 ml/kg; HVT). Dexamethasone was intravenously administered at the initiation of HVT–ventilation. Non–ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios. Results Particularly HVT–ventilation led to alveolar–capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro–inflammatory response in lungs of HVT–ventilated mice, without improving alveolar–capillary permeability, gas exchange and pulmonary edema formation. Conclusions Dexamethasone treatment completely abolishes ventilator–induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar–capillary barrier dysfunction in an established murine model of VILI. PMID:23451215

  6. Nasal administration of interleukin-33 induces airways angiogenesis and expression of multiple angiogenic factors in a murine asthma surrogate.

    PubMed

    Shan, Shan; Li, Yan; Wang, Jingjing; Lv, Zhe; Yi, Dawei; Huang, Qiong; Corrigan, Chris J; Wang, Wei; Quangeng, Zhang; Ying, Sun

    2016-05-01

    The T-helper cell type 2-promoting cytokine interleukin-33 (IL-33) has been implicated in asthma pathogenesis. Angiogenesis is a feature of airways remodelling in asthma. We hypothesized that IL-33 induces airways angiogenesis and expression of angiogenic factors in an established murine surrogate of asthma. In the present study, BALB/c mice were subjected to serial intranasal challenge with IL-33 alone for up to 70 days. In parallel, ovalbumin (OVA) -sensitized mice were subjected to serial intranasal challenge with OVA or normal saline to serve as positive and negative controls, respectively. Immunohistochemical analysis of expression of von Willebrand factor and erythroblast transformation-specific-related gene, both blood vessel markers, and angiogenic factors angiogenin, insulin-like growth factor-1, endothelin-1, epidermal growth factor and amphiregulin was performed in lung sections ex vivo. An established in-house assay was used to test whether IL-33 was able to induce microvessel formation by human vascular endothelial cells. Results showed that serial intranasal challenge of mice with IL-33 or OVA resulted in proliferation of peribronchial von Willebrand factor-positive blood vessels to a degree closely related to the total expression of the angiogenic factors amphiregulin, angiogenin, endothelin-1, epidermal growth factor and insulin-like growth factor-1. IL-33 also induced microvessel formation by human endothelial cells in a concentration-dependent fashion in vitro. Our data are consistent with the hypothesis that IL-33 has the capacity to induce angiogenesis at least partly by increasing local expression of multiple angiogenic factors in an allergen-independent murine asthma surrogate, and consequently that IL-33 or its receptor is a potential novel molecular target for asthma therapy. PMID:27035894

  7. Expression of the platelet-activating factor receptor enhances benzyl isothiocyanate-induced apoptosis in murine and human melanoma cells.

    PubMed

    Sahu, Ravi Prakash

    2015-07-01

    Melanoma cells often express platelet-activating factor receptor (PAF-R), which has been demonstrated to increase metastatic behavior. However, the effect of PAF-R on the responsiveness of melanoma to naturally occurring cytotoxic agents remains to be elucidated. The present study aimed to determine the relative cytotoxicity and mechanism of benzyl isothiocyanate (BITC), a component of cruciferous vegetables, in melanoma cells expressing PAF-R. To evaluate the importance of PAF-R signaling in melanoma cell growth, PAF-R-negative murine B16F10 cells were transduced with a retrovirus containing the cDNA for PAF-R to generate cells stably expressing PAF-R (B16-PAF-R) or an empty vector (MSCV) to generate PAF-R-deficient B16-MSCV control cells. Activation of PAF-R, using the PAF-R agonist, 1-hexadecyl-2-N-methylcarbamoyl-3-glycerophosphocholine, induced an increase in the proliferation of B16-PAF-R cells compared with the B16-MSCV cells. Reverse transcription quantitative polymerase chain reaction revealed the presence of functional PAF-R in human melanoma SK23MEL cells, but not in SK5MEL cells. The present study investigated the effect of BITC treatments on the survival of murine and human melanoma cells, in the presence or absence of functional PAF-R. The results revealed that treatment with BITC decreased the survival rate of the PAF-R-positive and negative murine and human melanoma cells. However, the expression of PAF-R substantially augmented BITC-mediated cytotoxicity in the PAF-R-positive cells at lower concentrations compared with the PAF-R-negative cells. In order to determine the underlying mechanism, flow cytometric analysis was used, which demonstrated a significant increase in the generation of reactive oxygen species (ROS) in the B16-PAF-R cells compared with the B16-MSCV cells, which enhanced apoptosis by BITC, as measured by increased caspase-3/7 luminescence. Notably, the BITC-mediated decreased cell survival rate, increased ROS and increased

  8. Identification of a neuronal gene expression signature: role of cell cycle arrest in murine neuronal differentiation in vitro

    PubMed Central

    Felfly, Hady; Xue, Jin; Zambon, Alexander C.; Muotri, Alysson; Zhou, Dan

    2011-01-01

    Stem cells are a potential key strategy for treating neurodegenerative diseases in which the generation of new neurons is critical. A better understanding of the characteristics and molecular properties of neural stem cells (NSCs) and differentiated neurons can help with assessing neuronal maturity and, possibly, in devising better therapeutic strategies. We have performed an in-depth gene expression profiling study of murine NSCs and primary neurons derived from embryonic mouse brains. Microarray analysis revealed a neuron-specific gene expression signature that distinguishes primary neurons from NSCs, with elevated levels of transcripts involved in neuronal functions, such as neurite development and axon guidance in primary neurons and decreased levels of multiple cytokine transcripts. Among the differentially expressed genes, we found a statistically significant enrichment of genes in the ephrin, neurotrophin, CDK5, and actin pathways, which control multiple neuronal-specific functions. We then artificially blocked the cell cycle of NSCs with mitomycin C (MMC) and examined cellular morphology and gene expression signatures. Although these MMC-treated NSCs displayed a neuronal morphology and expressed some neuronal differentiation marker genes, their gene expression patterns were very different from primary neurons. We conclude that 1) fully differentiated mouse primary neurons display a specific neuronal gene expression signature; 2) cell cycle block at the S phase in NSCs with MMC does not induce the formation of fully differentiated neurons; 3) cytokines change their expression pattern during differentiation of NSCs into neurons; and 4) signaling pathways of ephrin, neurotrophin, CDK5, and actin, related to major neuronal features, are dynamically enriched in genes showing changes in expression level. PMID:21677276

  9. Expression and regulation of Ang-2 in murine ovaries during sexual maturation and development of corpus luteum.

    PubMed

    Guo, B; Zhang, X-M; Li, S-J; Tian, X-C; Wang, S-T; Li, D-D; Liu, D-F; Yue, Z-P

    2012-01-01

    The aim of this study was to examine the expression and regulation of angiopoietin-2 (Ang-2) in murine ovaries during sexual maturation, gonadotropin treatment and luteal development by in situ hybridization and RT-PCR. By in situ hybridization Ang-2 mRNA was mainly localized in granulosa cells, thecal cells and corpus luteum, otherwise in oocytes. Moreover, Ang-2 mRNA was highly expressed in corpus luteum and granulosa cells of atretic follicles. According to RT-PCR data, Ang-2 mRNA was lowly expressed on day 10 after birth, then expression levels gradually increased and reached their highest values on day 25 after birth. In the superovulated model of immature mice, Ang-2 expression was strongly induced by equine chorionic gonadotropin (eCG) 48 h post the eCG injection, and was high from 0.5 to 13 h after hCG treatment. In situ hybridization showed that Ang-2 mRNA was highly expressed in corpus luteum from day 2 to 9 post the hCG injection, then the expression levels gradually declined on days 11 and 13 after hCG treatment. According to RT-PCR data, the levels of Ang-2 mRNA expression showed a decline after the hCG injection, with a nadir on day 3, followed by an increase, reaching the highest level on day 9 post-hCG injection. Then again Ang-2 expression gradually declined from day 11 to 15 after hCG injection. These results suggest that Ang-2 may be involved in follicular development, atresia, ovulation, and corpus luteum formation and regression. PMID:23350236

  10. Induction of murine adenosine A(2A) receptor expression by LPS: analysis of the 5' upstream promoter.

    PubMed

    Elson, G; Eisenberg, M; Garg, C; Outram, S; Ferrante, C J; Hasko, G; Leibovich, S J

    2013-04-01

    Non-activated macrophages express low levels of A(2A)Rs and lipopolysaccharides (LPS) upregulates A(2A)R expression in an NF-κB-dependent manner. The murine A(2A)R gene is encoded by three exons, m1, m2 and m3. Exons m2 and m3 are conserved, while m1 encodes the 5' untranslated UTR. Three m1 variants have been defined, m1A, m1B and m1C, with m1C being farthest from the transcriptional start site. LPS upregulates A(2A)Rs in primary murine peritoneal and bone-marrow-derived macrophages and RAW264.7 cells by selectively splicing m1C to m2, through a promoter located upstream of m1C. We have cloned ∼1.6 kb upstream of m1C into pGL4.16(luc2CP/Hygro) promoterless vector. This construct in RAW 264.7 cells responds to LPS, and adenosine receptor agonists augmented LPS responsiveness. The NF-κB inhibitors BAY-11 and triptolide inhibited LPS-dependent induction. Deletion of a key proximal NF-κB site (402-417) abrogated LPS responsiveness, while deletion of distal NF-κB and C/EBPβ sites did not. Site-directed mutagenesis of CREB (309-320), STAT1 (526-531) and AP2 (566-569) sites had little effect on LPS and adenosine receptor agonist responsiveness; however, mutation of a second STAT1 site (582-588) abrogated this responsiveness. Further analysis of this promoter should provide valuable insights into regulation of A(2A)R expression in macrophages in response to inflammatory stimuli. PMID:23328845

  11. Analysis of the expression of murine glutaryl-CoA dehydrogenase: in vitro and in vivo studies.

    PubMed

    Woontner, M; Crnic, L S; Koeller, D M

    2000-02-01

    Glutaric acidemia type I (GAI) is an autosomal recessive organic acidemia caused by a mutation in the gene encoding glutaryl-CoA dehydrogenase (GCD). Clinically, GAI is characterized by progressive dystonia, resulting from degeneration of neurons in the caudate and putamen nuclei of the striatum. In an attempt to understand the basis for the specific neuropathology in GAI, we have analyzed the expression of the murine GCD gene using both in vitro and in vivo approaches. Transfection studies mapped the mouse GCD promoter to a 500-bp region of DNA 5' of the translation start site. The promoter lacks a TATA consensus sequence, but includes possible binding sites for several transcription factors with roles in the regulation of nuclear genes encoding mitochondrial proteins. Western blot and RT/PCR analyses of mouse tissues demonstrated that GCD is ubiquitously expressed, with the highest levels of expression in liver and kidney, consistent with its role in amino acid oxidation. Expression in multiple regions of the brain was also detected by Western blotting. Based on these results we conclude that the specific neuropathology associated with GCD deficiency in GAI cannot be accounted for by its expression pattern. PMID:10720438

  12. The Influence of Loud Sound Stress on Expression of Osmotic Stress Protein 94 in the Murine Inner Ear

    PubMed Central

    Yamamoto, Hiroshi; Shi, Xiaorui; Nuttall, Alfred L.

    2009-01-01

    Osmotic stress protein 94 (OSP94), a member of the HSP110/SSE subfamily, is expressed in certain organs such as the kidney, testis, and brain where it can act as a molecular chaperon. In general, its alteration in expression is in response to hyper-ionic and osmotic stress as well as heat shock stress. Since many cells in the inner ear are involved in active ion transportation and are constantly exposed to two ionic different environments, we hypothesize that OSP94 may be expressed in the inner ear and its expression may be influenced by loud sound stress (LSS). With immunohistochemistry combined with confocal microscopy, immunoblotting, and RT-PCR techniques, we found that OSP94 was widely expressed in various cells in the murine cochlea including the stria vascularis (SV), the organ of Corti (OC), the interdental cells, spiral ganglion cells, the spiral ligament, and Reissner’s membrane. Under the unstressed condition, the transcription and protein level of OSP94 expression in the inner ear was quantitatively similar to that of the kidney. Furthermore, its expression in the inner ear by LSS from broadband noise at 117dB/SPL was upregulated, but remained unchanged in the kidney. In particular, the upregulation of OSP94 in the cochlear lateral wall tissue (CLW) was slowly elicited in a LSS time-dependent manner compared with the response of two other heat shock proteins (HSPs); HSP25 and HSP70 are considered to play a cytoprotective role under stressful conditions. Our results show that OSP94 is expressed in the inner ear and indicate this may be necessary for cells in a special ionic and osmotic environment such as endo- perilymphatic ion compartments. The organ-specific upregulation of OSP94 by acoustic overstimulation reveals that OSP94 in the inner ear is potentially important for cellular functional adaptation to LSS. PMID:19059312

  13. Expression of vascular endothelial growth factor (VEGF)-B and its receptor (VEGFR1) in murine heart, lung and kidney.

    PubMed

    Muhl, Lars; Moessinger, Christine; Adzemovic, Milena Z; Dijkstra, Marike H; Nilsson, Ingrid; Zeitelhofer, Manuel; Hagberg, Carolina E; Huusko, Jenni; Falkevall, Annelie; Ylä-Herttuala, Seppo; Eriksson, Ulf

    2016-07-01

    Metabolic diseases, such as obesity and diabetes, are a serious burden for the health system. Vascular endothelial growth factor (VEGF)-B has been shown to regulate tissue uptake and accumulation of fatty acids and is thus involved in these metabolic diseases. However, the cell-type-specific expression pattern of Vegfb and its receptor (VEGFR1, gene Flt1) remains unclear. We explore the expression of Vegfb and Flt1 in the murine heart, lung and kidney by utilizing β-galactosidase knock-in mouse models and combining the analysis of reporter gene expression and immunofluorescence microscopy. Furthermore, Flt1 heterozygous mice were analyzed with regard to muscular fatty acid accumulation and peripheral insulin sensitivity. Throughout the heart, Vegfb expression was found in cardiomyocytes with a postnatal ventricular shift corresponding to known changes in energy requirements. Vegfb expression was also found in the pulmonary myocardium of the lung and in renal epithelial cells of the thick ascending limb of Henle's loop, the connecting tubule and the collecting duct. In all analyzed organs, VEGFR1 expression was restricted to endothelial cells. We also show that reduced expression of VEGFR1 resulted in decreased cardiac fatty acid accumulation and increased peripheral insulin sensitivity, possibly as a result of attenuated VEGF-B/VEGFR1 signaling. Our data therefore support a tightly controlled, paracrine signaling mechanism of VEGF-B to VEGFR1. The identified cell-specific expression pattern of Vegfb and Flt1 might form the basis for the development of cell-type-targeted research models and contributes to the understanding of the physiological and pathological role of VEGF-B/VEGFR1 signaling. PMID:26928042

  14. Dexamethasone promotes tolerance in vivo by enriching CD11clo CD40lo tolerogenic macrophages.

    PubMed

    Zheng, Guoxing; Zhong, Shibo; Geng, Yajun; Munirathinam, Gnanasekar; Cha, Isaac; Reardon, Catherine; Getz, Godfrey S; van Rooijen, Nico; Kang, Youmin; Wang, Bin; Chen, Aoshuang

    2013-01-01

    We previously showed that antigen immunization in the presence of the immunosuppressant dexamethasone (a strategy we termed "suppressed immunization") could tolerize established recall responses of T cells. However, the mechanism by which dexamethasone acts as a tolerogenic adjuvant has remained unclear. In the present study, we show that dexamethasone enriches CD11c(lo) CD40(lo) macrophages in a dose-dependent manner in the spleen and peripheral lymph nodes of mice by depleting all other CD11c(+) CD40(+) cells including dendritic cells. The enriched macrophages display a distinct MHC class II (MHC II)(lo) CD86(hi) phenotype. Upon activation by antigen in vivo, CD11c(lo) CD40(lo) macrophages upregulate IL-10, a classic marker for tolerogenic antigen-presenting cells, and elicit a serum IL-10 response. When presenting antigen in vivo, these cells do not elicit recall responses from memory T cells, but rather stimulate the expansion of antigen-specific regulatory T cells. Moreover, the depletion of CD11c(lo) CD40(lo) macrophages during suppressed immunization diminishes the tolerogenic efficacy of the treatment. These results indicate that dexamethasone acts as a tolerogenic adjuvant partly by enriching the CD11c(lo) CD40(lo) tolerogenic macrophages. PMID:23001956

  15. APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation

    PubMed Central

    Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo

    2009-01-01

    Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches. PMID:18617267

  16. CD40 Stimulation Obviates Innate Sensors and Drives T Cell Immunity in Cancer.

    PubMed

    Byrne, Katelyn T; Vonderheide, Robert H

    2016-06-21

    Cancer immunotherapies are more effective in tumors with robust T cell infiltrates, but mechanisms to convert T cell-devoid tumors with active immunosuppression to those capable of recruiting T cells remain incompletely understood. Here, using genetically engineered mouse models of pancreatic ductal adenocarcinoma (PDA), we demonstrate that a single dose of agonistic CD40 antibody with chemotherapy rendered PDA susceptible to T cell-dependent destruction and potentiated durable remissions. CD40 stimulation caused a clonal expansion of T cells in the tumor, but the addition of chemotherapy optimized myeloid activation and T cell function. Although recent data highlight the requirement for innate sensors in cancer immunity, these canonical pathways-including TLRs, inflammasome, and type I interferon/STING-played no role in mediating the efficacy of CD40 and chemotherapy. Thus, CD40 functions as a non-redundant mechanism to convert the tumor microenvironment immunologically. Our data provide a rationale for a newly initiated clinical trial of CD40 and chemotherapy in PDA. PMID:27292635

  17. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    PubMed

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. PMID:24861204

  18. Recombinant Salmonella Expressing Burkholderia mallei LPS O Antigen Provides Protection in a Murine Model of Melioidosis and Glanders

    PubMed Central

    Moustafa, Dina A.; Scarff, Jennifer M.; Garcia, Preston P.; Cassidy, Sara K. B.; DiGiandomenico, Antonio; Waag, David M.; Inzana, Thomas J.; Goldberg, Joanna B.

    2015-01-01

    Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine. PMID:26148026

  19. Regulation of the expression of nitric oxide synthase and leishmanicidal activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages.

    PubMed Central

    Proudfoot, L; Nikolaev, A V; Feng, G J; Wei, W Q; Ferguson, M A; Brimacombe, J S; Liew, F Y

    1996-01-01

    Lipophosphoglycan (LPG) glycoconjugates from promastigotes of Leishmania were not able to induce the expression of the cytokine-inducible nitric oxide synthase (iNOS) by the murine macrophage cell line, J774. However, they synergize with interferon gamma to stimulate the macrophages to express high levels of iNOS. This synergistic effect was critically time-dependent. Preincubation of J774 cells with the LPG glycans 4-18 h before stimulation with interferon gamma resulted in a significant reduction in the expression of iNOS mRNA and of NO synthesis, compared with cells preincubated with culture medium alone. The regulatory effect on the induction of iNOS by LPG is located in the LPG phosphoglycan disaccharide backbone. Synthetic fragments of this backbone had a similar regulatory effect on NO synthesis. Further, the production of NO by activated macrophages in the present system was correlated directly with the leishmanicidal capacity of the cells. These data therefore demonstrate that LPG glycoconjugates have a profound effect on the survival of Leishmania parasites through their ability to regulate the expression of iNOS by macrophages. Images Fig. 4 PMID:8855295

  20. Regulation of the expression of nitric oxide synthase and leishmanicidal activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages.

    PubMed

    Proudfoot, L; Nikolaev, A V; Feng, G J; Wei, W Q; Ferguson, M A; Brimacombe, J S; Liew, F Y

    1996-10-01

    Lipophosphoglycan (LPG) glycoconjugates from promastigotes of Leishmania were not able to induce the expression of the cytokine-inducible nitric oxide synthase (iNOS) by the murine macrophage cell line, J774. However, they synergize with interferon gamma to stimulate the macrophages to express high levels of iNOS. This synergistic effect was critically time-dependent. Preincubation of J774 cells with the LPG glycans 4-18 h before stimulation with interferon gamma resulted in a significant reduction in the expression of iNOS mRNA and of NO synthesis, compared with cells preincubated with culture medium alone. The regulatory effect on the induction of iNOS by LPG is located in the LPG phosphoglycan disaccharide backbone. Synthetic fragments of this backbone had a similar regulatory effect on NO synthesis. Further, the production of NO by activated macrophages in the present system was correlated directly with the leishmanicidal capacity of the cells. These data therefore demonstrate that LPG glycoconjugates have a profound effect on the survival of Leishmania parasites through their ability to regulate the expression of iNOS by macrophages. PMID:8855295

  1. Expression of the NS5 (VPg) Protein of Murine Norovirus Induces a G1/S Phase Arrest

    PubMed Central

    Davies, Colin; Ward, Vernon K.

    2016-01-01

    Murine norovirus-1 (MNV-1) is known to subvert host cell division inducing an accumulation of cells in the G0/G1 phase, creating conditions where viral replication is favored. This study identified that NS5 (VPg), is capable of inducing cell cycle arrest in the absence of viral replication or other viral proteins in an analogous manner to MNV-1 infection. NS5 expression induced an accumulation of cells in the G0/G1 phase in an asynchronous population by inhibiting progression at the G1/S restriction point. Furthermore, NS5 expression resulted in a down-regulation of cyclin A expression in asynchronous cells and inhibited cyclin A expression in cells progressing from G1 to S phase. The activity of NS5 on the host cell cycle occurs through an uncharacterized function. Amino acid substitutions of NS5(Y26A) and NS5(F123A) that inhibit the ability for NS5 to attach to RNA and recruit host eukaryotic translation initiation factors, respectively, retained the ability to induce an accumulation of cells in the G0/G1 phase as identified for wild-type NS5. To the best of our knowledge, this is the first report of a VPg protein manipulating the host cell cycle. PMID:27556406

  2. CD40 Ligand and GMCSF Coexpression Enhance the Immune Responses and Protective Efficacy of PCV2 Adenovirus Vaccine.

    PubMed

    Li, Delong; Huang, Yong; Du, Qian; Wang, Zhenyu; Chang, Lingling; Zhao, Xiaomin; Tong, Dewen

    2016-04-01

    Porcine circovirus 2 (PCV2) capsid protein (Cap) is the major structural protein that is responsible for neutralizing antibodies development and protective immunity, thus it is usually used to develop vaccines against porcine circovirus-associated disease (PCVAD). Porcine CD40 ligand (CD40L) and granulocyte-macrophage colony-stimulating factor (GMCSF) have positive immunostimulatory effects on immunocytes and have been applied in vaccine efficacy improvement as attractive adjuvant cytokines, respectively. However, whether these two cytokines can produce synergistic effect in vaccines still need to be further studied. In this study, porcine CD40L and GMCSF were inserted into recombinant adenoviruses to test the immunogenicity of PCV2 adenovirus vaccine in mice. Western blot and indirect immunofluorescence assay showed that Ad-Cap, Ad-CD40L-Cap, Ad-Cap-GMCSF, and Ad-CD40L-Cap-GMCSF were successfully constructed. Indirect ELISA and virus neutralizing assay showed that CD40L and GMCSF could enhance humoral immune responses, and PCV2 Cap-specific antibody titer and neutralizing activities were significantly higher in Ad-CD40L-Cap-GMCSF group than that in the other groups that just inserted either porcine CD40L or GMCSF in recombinant adenoviruses. Moreover, lymphocyte proliferation assay and cytokine release assay showed that CD40L and GMCSF enhanced the cellular immune responses of Ad-Cap, and had synergistic effects in lymphocyte proliferative activities and Th1-type cytokine production. Following PCV2 challenge, the viral loads in lungs of Ad-CD40L-Cap-GMCSF group were significantly lower compared with Ad-Cap, Ad-CD40L-Cap, and Ad-Cap-GMCSF group. Taken together, the results of this study demonstrated that CD40L and GMCSF could synergistically enhance the protective immune responses of PCV2 adenovirus vaccine, which would be used as a potent vaccine for the prevention and control of PCVAD. PMID:26982652

  3. Expression level and DNA methylation status of Glutathione-S-transferase genes in normal murine prostate and TRAMP tumors

    PubMed Central

    Mavis, Cory K.; Kinney, Shannon R. Morey; Foster, Barbara A.; Karpf, Adam R.

    2010-01-01

    BACKGROUND Glutathione-S-transferase (Gst) genes are down-regulated in human prostate cancer, and GSTP1 silencing is mediated by promoter DNA hypermethylation in this malignancy. We examined Gst gene expression and Gst promoter DNA methylation in normal murine prostates and Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) tumors. METHODS Primary and metastatic tumors were obtained from TRAMP mice, and normal prostates were obtained from strain-matched WT mice (n=15/group). Quantitative real-time RT-PCR was used to measure GstA4, GstK1, GstM1, GstO1, and GstP1 mRNA expression, and Western blotting and immunohistochemical staining was used to measure GstM1 and GstP1 protein expression. MassARRAY Quantitative Methylation Analysis was used to measure DNA methylation of the 5’ CpG islands of GstA4, GstK1, GstM1, GstO1, and GstP1. TRAMP-C2 cells were treated with the epigenetic remodeling drugs decitabine and trichostatin A (TSA) alone and in combination, and Gst gene expression was measured. RESULTS Of the genes analyzed, GstM1 and GstP1 were expressed at highest levels in normal prostate. All five Gst genes showed greatly reduced expression in primary tumors compared to normal prostate, but not in tumor metastases. Gst promoter methylation was unchanged in TRAMP tumors compared to normal prostate. Combined decitabine + TSA treatment significantly enhanced the expression of 4/5 Gst genes in TRAMP-C2 cells. CONCLUSIONS Gst genes are extensively downregulated in primary but not metastatic TRAMP tumors. Promoter DNA hypermethylation does not appear to drive Gst gene repression in TRAMP primary tumors; however, pharmacological studies using TRAMP cells suggest the involvement of epigenetic mechanisms in Gst gene repression. PMID:19444856

  4. Expression of infectious woodchuck hepatitis virus in murine and avian fibroblasts.

    PubMed Central

    Seeger, C; Baldwin, B; Tennant, B C

    1989-01-01

    The liver is the primary site for replication of the hepadnavirus genome. We asked whether the posttranscriptional phase of the viral replication cycle would depend on hepatocyte-specific functions. For this purpose, we assayed a previously constructed chimera between sequences of the cytomegalovirus immediate-early promoter-enhancer region and woodchuck hepatitis virus (WHV) (C. Seeger and J. Maragos, J. Virol. 63:1907-1915, 1989) for its ability to direct the synthesis of infectious WHV in hepatoma cells and in murine and avian fibroblast cells. Viruslike particles containing WHV DNA were produced transiently in transfected hepatoma cells and in fibroblasts. Inoculation of woodchucks with culture medium from hepatoma cells or fibroblasts transfected with viral DNA led to productive WHV infection, as observed following infection of woodchucks with serum from WHV-infected animals. These results demonstrate that posttranscriptional events of the hepadnavirus replication cycle are not dependent on hepatocyte-specific functions. Images PMID:2795716

  5. Regulation of CD1d expression by murine tumor cells: escape from immunosurveillance or alternate target molecules?

    PubMed

    Fiedler, Tim; Walter, Wolfgang; Reichert, Torsten E; Maeurer, Markus J

    2002-03-20

    alpha beta+ TCR T cells recognize peptide fragments displayed by MHC-class I or -class II molecules. Recently, additional mechanisms of antigen recognition by T cells have been identified, including CD1-mediated presentation of nonpeptide antigens. Only a limited number of CD1 antigens is retained in the mouse, i.e., the group II CD1 antigens, which are split into CD1D1 and CD1d2. Several T cell subsets have been shown to interact with murine CD1 antigens, including NK cells or "natural T cells" with the invariant V alpha 14 J alpha 281 TCR chain. Even if TAP defects may prevent classical endogenous antigen presentation in tumor cell lines, antigen presentation via CD1 is still functional. Therefore, CD1-mediated recognition of transformed cells by NK cells or "natural T cells" may represent an alternative way for immune surveillance. CD1 cell surface expression in murine tumor cell lines of different histology, including the B cell lymphoma A20, macrophage cell lines J774 and P388D1, mastocytoma P815, thymoma EL-4, melanoma B16, colon adenocarcinoma MC-38 and renal carcinoma Renca is regulated by Th1- (IFN-gamma), Th2- (IL-4, IL-10 and vIL-10) or GM-CSF (Th1/Th2) cytokines, depending on the tumor histology. In order to distinguish between CD1D1 and CD1d2 molecules, we examined differential expression of these CD1 isoforms by ratio RT-PCR: A20, EL-4, P815 and MC-38 cells exclusively express CD1D1 transcripts but not CD1D2 mRNA independent of cytokine treatment. Decreased CD1d expression leads to reduced immune recognition of CD1d+ tumor cells by freshly isolated NK1.1(+) effector cells as defined by cytolysis and IFN-gamma release. Thus, modulation of CD1 expression on tumor cells by cytokines may be advantageous to drive cellular anti-tumor antigen directed immune responses directed against TAP-independent, non-classical MHC restricting molecules. PMID:11920590

  6. CD40 ligand preferentially modulates immune response and enhances protection against influenza virus.

    PubMed

    Hashem, Anwar M; Gravel, Caroline; Chen, Ze; Yi, Yinglei; Tocchi, Monika; Jaentschke, Bozena; Fan, Xingliang; Li, Changgui; Rosu-Myles, Michael; Pereboev, Alexander; He, Runtao; Wang, Junzhi; Li, Xuguang

    2014-07-15

    CD40L, a key regulator of the immune system, was studied as both a targeting ligand and a molecular adjuvant in nucleoprotein (NP)-based host defense against influenza in mouse models with different genetic backgrounds. Adenoviral vectors secreting NP-CD40L fusion protein (denoted as rAd-SNP40L) afforded full protection of immunocompetent and immunocompromised mice (CD40L(-/-) and CD4(-/-)) against lethal influenza infection. Mechanistically, rAd-SNP40L preferentially induced early and persistent B cell germinal center formation, and accelerated Ig isotype-switching and Th1-skewed, NP-specific Ab response. Moreover, it drastically augmented primary and memory NP-specific CTL activity and polyfunctional CD8(+) T cells. The markedly enhanced nonneutralizing Abs and CTLs significantly reduced viral burdens in the lungs of mice upon lethal virus challenge. Data generated from CD40L(-/-) and CD4(-/-) mice revealed that the protection was indeed CD40L mediated but CD4(+) T cell independent, demonstrating the viability of the fusion Ags in protecting immunodeficient hosts. Notably, a single dose of rAd-SNP40L completely protected mice from lethal viral challenge 4 mo after immunization, representing the first report, to our knowledge, on NP in conjunction with a molecular adjuvant inducing a robust and long-lasting memory immune response against influenza. This platform is characterized by an increased in vivo load of CD40-targeted Ag upon the secretion of the fusion protein from adenovirus-infected cells and may represent a promising strategy to enhance the breadth, durability, and potency of Ag-specific immune responses. PMID:24928989

  7. Small Molecule Inhibition of the TNF Family Cytokine CD40 Ligand Through a Subunit Fracture Mechanism

    SciTech Connect

    L Silvian; J Friedman; K Strauch; T Cachero; E Day; F Qian; B Cunningham; A Fung; L Sun; et al.

    2011-12-31

    BIO8898 is one of several synthetic organic molecules that have recently been reported to inhibit receptor binding and function of the constitutively trimeric tumor necrosis factor (TNF) family cytokine CD40 ligand (CD40L, aka CD154). Small molecule inhibitors of protein-protein interfaces are relatively rare, and their discovery is often very challenging. Therefore, to understand how BIO8898 achieves this feat, we characterized its mechanism of action using biochemical assays and X-ray crystallography. BIO8898 inhibited soluble CD40L binding to CD40-Ig with a potency of IC{sub 50} = 25 {mu}M and inhibited CD40L-dependent apoptosis in a cellular assay. A co-crystal structure of BIO8898 with CD40L revealed that one inhibitor molecule binds per protein trimer. Surprisingly, the compound binds not at the surface of the protein but by intercalating deeply between two subunits of the homotrimeric cytokine, disrupting a constitutive protein-protein interface and breaking the protein's 3-fold symmetry. The compound forms several hydrogen bonds with the protein, within an otherwise hydrophobic binding pocket. In addition to the translational splitting of the trimer, binding of BIO8898 was accompanied by additional local and longer-range conformational perturbations of the protein, both in the core and in a surface loop. Binding of BIO8898 is reversible, and the resulting complex is stable and does not lead to detectable dissociation of the protein trimer. Our results suggest that a set of core aromatic residues that are conserved across a subset of TNF family cytokines might represent a generic hot-spot for the induced-fit binding of trimer-disrupting small molecules.

  8. Analysis of the pattern of expression of the Fanconi anemia group C (Facc) gene during murine development

    SciTech Connect

    Krasnoshtein, F.; Buchwald, M.

    1994-09-01

    Fanconi anemia (FA) is an autosomal recessive disorder characterized by a variety of congenital and skeletal malformations, progressive pancytopanenia and predisposition to malignancies. FA cells display chromosomal instability and hypersensitivity to DNA-damaging agents. Both the human and the corresponding murine cDNAs have been cloned in our lab. Here we describe the expression of Facc during mouse development, using mRNA in situ hybridization. Our aim is to obtain clues on the possible function of the Facc gene product during development that may help elucidate basic defect(s) in FA. In addition, knowledge of the exact pattern of Facc expression will assist in interpreting the phenotypes of mutant mice, currently being developed. In embryos the gene is diffusely expressed over the entire embryo, with higher hybridization levels in the mesenchyme and in both upper and lower extremities. Specific expression of Facc is seen in the perichondrium and marrow of long bones of hind limbs/hip; long bones of front limbs/shoulder region; developing digits of front and hind paws; and ribs. The signal is also detected in the following regions: cranial/frontal; facial/periorbital and maxillary/mandibular, hair follicles, diaphragm and lung. In addition, generalized Facc expression is seen during these embryonic stages. The pattern of Facc expression is consistent with the known skeletal abnormalities in FA patients, which include radial ray deformities, metacarpal hypoplasia, and abnormalities of lower limbs, ribs, head and face. The signal in the lung is consistent with the lung lobe absence and abnormal pulmonary drainage that have been detected in some FA patients. The sloped forehead and microcephaly in FA patients may have some association with the signal seen in the frontal region of the mouse cranium. Taken together, our results suggest that Facc is directly involved in the development of various embryonic tissues, particularly bone.

  9. Sonicated Protein Fractions of Mycoplasma hyopneumoniae Induce Inflammatory Responses and Differential Gene Expression in a Murine Alveolar Macrophage Cell Line.

    PubMed

    Damte, Dereje; Lee, Seung-Jin; Birhanu, Biruk Tesfaye; Suh, Joo-Won; Park, Seung-Chun

    2015-12-28

    Mycoplasma hyopneumoniae is known to cause porcine enzootic pneumonia (EP), an important disease in swine production. The objective of this study was to examine the effects of sonicated protein fractions of M. hyopneumoniae on inflammatory response and gene expression in the murine alveolar macrophage MH-S cell line. The effects of sonicated protein fractions and intact M. hyopneumoniae on the gene expression of cytokines and iNOS were assessed using RT-PCR. The Annealing Control Primer (ACP)-based PCR method was used to screen differentially expressed genes. Increased transcription of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, COX-2, and iNOS mRNA was observed after exposure to the supernatant (SPT), precipitant (PPT), and intact M. hyopneumoniae protein. A time-dependent analysis of the mRNA expression revealed an upregulation after 4 h for IL-6 and iNOS and after 12 h for IL-1β and TNF-α, for both SPT and PPT; the fold change in COX-2 expression was less. A dose- and time-dependent correlation was observed in nitrite (NO) production for both protein fractions; however, there was no significant difference between the effects of the two protein fractions. In a differential gene analysis, PCR revealed differential expression for nine gene bands after 3 h of stimulation - only one gene was downregulated, while the remaining eight were upregulated. The results of this study provide insights that help improve our understanding of the mechanisms underlying the pathogenesis of and macrophage defenses against M. hyopneumoniae assault, and suggest targets for future studies on therapeutic interventions for M. hyopneumoniae infections. PMID:26370797

  10. Diverse inflammatory cytokines induce selectin ligand expression on murine CD4 T cells via p38α MAPK.

    PubMed

    Ebel, Mark E; Awe, Olufolakemi; Kaplan, Mark H; Kansas, Geoffrey S

    2015-06-15

    Selectins are glycan-binding adhesion molecules that mediate the initial steps of leukocyte recognition of endothelium. Cytokines control numerous aspects of CD4 Th cell differentiation, but how cytokines control the induction of ligands for E- and P-selectin on Th cell subsets remains poorly understood. Among 20 cytokines that affect Th cell differentiation, we identified six that induce expression of selectin ligands on murine CD4 T cells above the low levels associated with TCR engagement: IL-12, IL-18, IL-27, IL-9, IL-25, and TGF-β1. Collectively, these six cytokines could potentially account for selectin ligand expression on all of the currently defined nonsessile Th cell lineages, including Th1, Th2, Th9, and Th17 cells, as well as regulatory T cells. Induction of selectin ligand expression by each of these six cytokines was almost completely inhibited by pharmacologic inhibition of p38 MAPK, but not other MAPKs, or by conditional genetic deletion of p38α MAPK. Analysis of the expression of key glycosyltransferase genes revealed that p38α signaling was selectively required for induction of Fut7 and Gcnt1 but not for the induction of St3gal4 or St3gal6. Constitutively active MKK6, an immediate upstream activator of p38 MAPK, induced selectin ligand expression equivalent to that of cytokines, and this induction was completely dependent on the expression of p38α. Our results identify the repertoire of cytokines responsible for selectin ligand induction on CD4 T cells and provide a mechanistic link between Th cell development and T cell migration. PMID:25941329

  11. A model of secreting murine mammary epithelial HC11 cells comprising endogenous Bcrp/Abcg2 expression and function.

    PubMed

    Tallkvist, Jonas; Yagdiran, Yagmur; Danielsson, Louise; Oskarsson, Agneta

    2015-04-01

    Breast cancer resistance protein (Bcrp/Abcg2) and multidrug transporter 1 (Mdr1/Abcb1) are efflux proteins located in the apical membrane of mammary epithelial cells (MEC). Bcrp is induced in MEC during gestation and lactation, while Mdr1 is down-regulated during lactation. Numerous drugs and toxic compounds are known to be actively secreted into milk by Bcrp, but most chemicals have not been investigated in this respect, emphasizing the need for functional Bcrp studies in an established cell line with secreting mammary epithelial cells. The present study was undertaken to examine expressions of Bcrp and Mdr1 in mammary epithelial HC11 cells, derived from a mid-gestational murine mammary gland. In addition, Bcrp function was assessed by transport experiments with mitoxantrone (MX) in undifferentiated HC11 cells, in HC11 cells subjected to Bcrp RNA interference (RNAi), as well as in HC11 cells stimulated to differentiate by treatment with lactogenic hormones. Differentiated HC11 cells organized into alveolar-resembling structures and gene expression of the major milk protein β-casein was induced, whereas undifferentiated cells formed monolayers with lower β-casein expression. Bcrp and Mdr1 gene and protein were expressed in both undifferentiated and differentiated HC11 cells. Differentiation of HC11 cells resulted in increased Bcrp protein expression, while Mdr1 gene and protein expressions were reduced. The Bcrp inhibitor elacridar (GF120918) reduced secretion and increased accumulation of MX in both undifferentiated and differentiated HC11 cells. Silencing of the Bcrp gene caused an increased accumulation of MX. The results indicate that the HC11 cell model provides a promising tool to investigate transport of potential Bcrp substrates in mammary epithelial cells. PMID:25791223

  12. Transgenic Expression of Viral Capsid Proteins Predisposes to Axonal Injury in a Murine Model of Multiple Sclerosis

    PubMed Central

    Denic, Aleksandar; Zoecklein, Laurie; Kerkvliet, Jason; Papke, Louisa; Edukulla, Ramakrishna; Warrington, Arthur; Bieber, Allan; Pease, Larry R.; David, Chella S.; Rodriguez, Moses

    2010-01-01

    We used transgenic expression of capsid antigens to Theiler's murine encephalomyelitis virus (TMEV) to study the influence of VP1, VP2, or VP2121-130 to either protection or pathogenesis to chronic spinal cord demyelination, axonal loss and functional deficits during the acute and chronic phases of infection. We used both mice that are normally susceptible (FVB) and mice normally resistant (FVB.Db) to demyelination. Transgenic expression of VP2121-130 epitope in resistant FVB.Db mice caused spinal cord pathology and virus persistence because the VP2121-130 epitope is the dominant peptide recognized by Db, which is critical for virus clearance. In contrast, all three FVB TMEV transgenic mice showed more demyelination, inflammation, and axonal loss as compared to wild type FVB mice even though virus load was not increased. Motor function measured by rotarod showed weak correlation with total number of midthoracic axons, but a strong correlation with large caliber axons (>10μm2). This study supports the hypothesis that expression of viral capsid proteins as self influences the extent of axonal pathology following Theiler's virus-induced demyelination. The findings provide insight into the role of axonal injury in the development of functional deficits that may have relevance to human demyelinating disease. PMID:21314744

  13. IL-22-Expressing Murine Lymphocytes Display Plasticity and Pathogenicity in Reporter Mice

    PubMed Central

    Shen, Wei; Hixon, Julie A.; McLean, Mairi H.; Li, Wen Qing; Durum, Scott K.

    2016-01-01

    IL-22 has multiple activities ranging from tissue repair to inflammation. To characterize the pathogenicity and plasticity of cells that produce IL-22, a novel reporter mouse strain was generated. Homeostatic IL-22 reporter expression was observed in intestinal lymphoid cells identified as CD4 T cells and ILC3 cells. In a model of inflammatory bowel disease, CD4 T cells strongly expressed the IL-22 reporter in mesenteric lymph node. To examine plasticity of IL-22+ T cells, they were purified after generation in vitro or in vivo from inflamed colon, and then cultured under Th1, Th2, or Th17 conditions. In vitro-generated IL-22+ CD4 T cells showed relatively durable IL-22 expression under Th1 or Th2 conditions, whereas in vivo-generated cells rapidly lost IL-22 expression under these conditions. In vitro-generated cells could not be diverted to express Th1 or Th2 cytokines despite the expression of “master regulators.” In vivo-generated cells could be diverted, at very low frequency, to express Th1 or Th2 cytokines. Both in vitro- and in vivo-generated cells could be induced in vitro to express high levels of IL-17A and IL-17F, assigning them to a “Th17 biased” class. However, IL-27 potently downregulated IL-22 expression. To examine IL-22+ T cell pathogenicity, in vitro-generated cells were transferred into Rag1−/− mice, retaining the modest reporter expression and inducing moderate colitis. In contrast, IL-22 expressers from colitic mice, transferred into secondary hosts, lost reporter expression, acquired high T-bet and modest IFNγ and IL-17 expression, and induced severe colitis. These findings are consistent with a model of strong polarization under optimal in vitro conditions, but a plastic state of T cells in vivo. PMID:26834739

  14. SiRNA In Vivo-Targeted Delivery to Murine Dendritic Cells by Oral Administration of Recombinant Yeast.

    PubMed

    Xu, Kun; Liu, Zhongtian; Zhang, Long; Zhang, Tingting; Zhang, Zhiying

    2016-01-01

    SiRNA therapeutics promise a future where any target in the transcriptome could be potentially addressed. However, the delivery of SiRNAs and targeting of particular cell types or organs are major challenges. A novel, efficient, and safe delivery system for promising the introduction of SiRNAs into particular cell types within living organisms is of great significance. Our previous studies have proved that recombinant protein (MSTN) and exogenous gene (EGFP) as vaccines, and furthermore functional CD40 shRNA expression can be delivered into dendritic cells (DCs) in mouse by oral administration of recombinant yeast (Saccharomyces cerevisiae). Here, we describe the details of the promising and innovative approach based on oral administration of recombinant yeast that allows in vivo-targeted delivery of functional SiRNA to murine intestinal DCs. PMID:26472450

  15. Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma

    PubMed Central

    2011-01-01

    Background Arginase overexpression contributes to airways hyperresponsiveness (AHR) in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR. Methods To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA) and challenged with nebulized PBS (OVA/PBS) or OVA (OVA/OVA) for three consecutive days (sub-acute model) or 12 weeks (chronic model), which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3), or HEPA-filtered air (FA), for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC) or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization. Results Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models. Conclusions This study demonstrates that arginase is upregulated following environmental exposures in murine models of asthma, and contributes

  16. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy.

    PubMed

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke; Hirobe, Sachiko; Nakagawa, Shinsaku; Okada, Naoki

    2016-04-22

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period of pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. PMID:26993168

  17. Development of retrovirus vectors useful for expressing genes in cultured murine embryonal cells and hematopoietic cells in vivo.

    PubMed Central

    Guild, B C; Finer, M H; Housman, D E; Mulligan, R C

    1988-01-01

    A series of retrovirus vectors were constructed in which cellular promoter elements derived from the chicken beta-actin and human histone H4 genes were introduced within the proviral transcriptional unit of Moloney murine leukemia virus in order to promote expression of inserted sequences. Each of these vectors gave rise to high titer of virus capable of transferring the expected proviral structure to cells. Inclusion of normal 5' splice sequences or a portion of viral gag sequences in these constructions resulted in significant increases in virus titer. Each construction was transcriptionally active in NIH 3T3 cells and in undifferentiated F9 cells. One of the vectors, HSG-neo, which contained the human histone H4 promoter, was shown to be transcriptionally active in hematopoietic cells derived from long-term reconstituted bone marrow transplant recipients engrafted with transduced stem cells. These vectors should be of general use for obtaining efficient gene expression in embryonal and hematopoietic cells. Images PMID:3418785

  18. Epoc-1: a POU-domain gene expressed in murine epidermal basal cells and thymic stromal cells.

    PubMed

    Yukawa, K; Yasui, T; Yamamoto, A; Shiku, H; Kishimoto, T; Kikutani, H

    1993-11-15

    POU-domain transcription factors are known as developmental regulators which control organ development and cell phenotypes. In order to clarify the roles of POU-domain transcription factors in cell differentiation, we cloned a novel POU family gene, Epoc-1, from a murine thymus cDNA library. The amino acid (aa) sequence of the POU-specific domain of Epoc-1 is almost identical to those of Oct-1 and Oct-2. However, within the POU-homeodomain, 13 out of 60 aa differ between Epoc-1 and Oct-2. Recombinant Epoc-1 products were found to bind specifically to the octamer sequence. Epoc-1 was found to be expressed in skin, thymus, stomach and testis. In situ hybridization experiments and RNase protection assays indicated that Epoc-1 is expressed in the epidermal basal cells of the skin, which contain stem cells unipotent for keratinocyte differentiation and in thymic stromal elements. These results suggest that Epoc-1 might be one of the developmental regulators which controls epidermal development and thymic organogenesis. PMID:8224904

  19. Systems Genetics of Liver Fibrosis: Identification of Fibrogenic and Expression Quantitative Trait Loci in the BXD Murine Reference Population

    PubMed Central

    Hall, Rabea A.; Liebe, Roman; Hochrath, Katrin; Kazakov, Andrey; Alberts, Rudi; Laufs, Ulrich; Böhm, Michael; Fischer, Hans-Peter; Williams, Robert W.; Schughart, Klaus

    2014-01-01

    The progression of liver fibrosis in response to chronic injury varies considerably among individual patients. The underlying genetics is highly complex due to large numbers of potential genes, environmental factors and cell types involved. Here, we provide the first toxicogenomic analysis of liver fibrosis induced by carbon tetrachloride in the murine ‘genetic reference panel’ of recombinant inbred BXD lines. Our aim was to define the core of risk genes and gene interaction networks that control fibrosis progression. Liver fibrosis phenotypes and gene expression profiles were determined in 35 BXD lines. Quantitative trait locus (QTL) analysis identified seven genomic loci influencing fibrosis phenotypes (pQTLs) with genome-wide significance on chromosomes 4, 5, 7, 12, and 17. Stepwise refinement was based on expression QTL mapping with stringent selection criteria, reducing the number of 1,351 candidate genes located in the pQTLs to a final list of 11 cis-regulated genes. Our findings demonstrate that the BXD reference population represents a powerful experimental resource for shortlisting the genes within a regulatory network that determine the liver's vulnerability to chronic injury. PMID:24586654

  20. Kaliziri extract upregulates tyrosinase, TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells

    PubMed Central

    2014-01-01

    Background Kaliziri extract (KZE) is a traditional Uyghur medicine (TUM), used by traditional hospitals in China as an injection for treatment of vitiligo for more than 30 years. Clinical application has shown that this medicine has obvious therapeutic effects. However, its phytochemical analysis and mechanism have not been examined. Methods KZE was extracted from seeds of Kaliziri [Vernonia anthelmintica (L.) Willd.] in ethanol-water (80:20, v/v), its components were identified by LC-MS/MS, and the signaling pathway of melanin synthesis in KZE treated murine B16 melanoma cells was examined by western blotting. Results Liquid chromatography-mass spectrometry analysis confirmed that the main components of KZE are flavonoids. KZE increased the tyrosinase activity and melanin content in a dose-dependent manner at concentrations of 5-40 μg/ml, and treatment with 20 μg/ml of KZE enhanced the expression of tyrosinase in B16 cells in a time-dependent manner. Conclusions KZE induced melanogenesis by increasing the expression of TYR, TRP-1, TRP-2 and MITF in B16 cells. PMID:24884952

  1. Systems genetics of liver fibrosis: identification of fibrogenic and expression quantitative trait loci in the BXD murine reference population.

    PubMed

    Hall, Rabea A; Liebe, Roman; Hochrath, Katrin; Kazakov, Andrey; Alberts, Rudi; Laufs, Ulrich; Böhm, Michael; Fischer, Hans-Peter; Williams, Robert W; Schughart, Klaus; Weber, Susanne N; Lammert, Frank

    2014-01-01

    The progression of liver fibrosis in response to chronic injury varies considerably among individual patients. The underlying genetics is highly complex due to large numbers of potential genes, environmental factors and cell types involved. Here, we provide the first toxicogenomic analysis of liver fibrosis induced by carbon tetrachloride in the murine 'genetic reference panel' of recombinant inbred BXD lines. Our aim was to define the core of risk genes and gene interaction networks that control fibrosis progression. Liver fibrosis phenotypes and gene expression profiles were determined in 35 BXD lines. Quantitative trait locus (QTL) analysis identified seven genomic loci influencing fibrosis phenotypes (pQTLs) with genome-wide significance on chromosomes 4, 5, 7, 12, and 17. Stepwise refinement was based on expression QTL mapping with stringent selection criteria, reducing the number of 1,351 candidate genes located in the pQTLs to a final list of 11 cis-regulated genes. Our findings demonstrate that the BXD reference population represents a powerful experimental resource for shortlisting the genes within a regulatory network that determine the liver's vulnerability to chronic injury. PMID:24586654

  2. More efficient induction of antitumor T cell immunity by exosomes from CD40L gene-modified lung tumor cells.

    PubMed

    Wang, Jiaoli; Wang, Limin; Lin, Zhendong; Tao, Lisha; Chen, Ming

    2014-01-01

    The incidence of lung cancer increases annually. However, the effects of the present methods for the treatment of lung cancer are extremely poor. It has been reported that exosomes from heat‑stressed 3LL Lewis lung tumor cells effectively elicit systemic antitumor immunity. CD40 signaling is critical in the activation of dendritic cells (DCs), which are important in the induction of antitumor immunity. In the present study, exosomes from CD40 ligand gene‑modified 3LL tumor cells (CD40L‑EXO) were identified to be more immunogenic compared with control‑EXO and lac Z-EXO. CD40L‑EXO induced a more mature phenotype of the DCs and promoted them to secrete high levels of interleukin‑12. CD40L‑EXO‑treated DCs induced a greater proliferation of allogeneic T cells in the mixed lymphocyte reaction. Moreover, CD40L‑EXO induced robust tumor antigen‑specific CD4+ T cell proliferation ex vivo. CD40L‑EXO were also extremely effective in the protective and therapeutic antitumor tests in vivo. These results indicate that CD40L‑EXO may be used as an efficient vaccine for lung cancer immunotherapy. PMID:24173626

  3. Life-spanning murine gene expression profiles in relation to chronological and pathological aging in multiple organs

    PubMed Central

    Kuiper, Raoul V; van der Hoeven, Tessa V; Wackers, P.F.K.; Robinson, Joke; van der Horst, Gijsbertus TJ; Dollé, Martijn ET; Vijg, Jan; Breit, Timo M; Hoeijmakers, Jan HJ; van Steeg, Harry

    2013-01-01

    Summary Aging and age-related pathology is a result of a still incompletely-understood intricate web of molecular and cellular processes. We present a C57BL/6J female mice in vivo aging study of five organs (liver, kidney, spleen, lung and brain), in which we compare genome-wide gene expression profiles during chronological aging with pathological changes throughout the entire murine lifespan (13, 26, 52, 78, 104 and 130 weeks). Relating gene expression changes to chronological aging revealed many differentially expressed genes (DEGs) and altered gene-sets (AGSs) were found in most organs, indicative of intra-organ generic aging processes. However, only ≤ 1% of these DEGs are found in all organs. For each organ, at least one of 18 tested pathological parameters showed a good age-predictive value, albeit with much inter- and intra-individual (organ) variation. Relating gene expression changes to pathology-related aging revealed correlated genes and gene-sets, which made it possible to characterize the difference between biological and chronological aging. In liver, kidney and brain, a limited number of overlapping pathology-related AGSs were found. Immune responses appeared to be common, yet the changes were specific in most organs. Furthermore, changes were observed in energy homeostasis, reactive oxygen species, cell cycle, cell motility and DNA damage. Comparison of chronological and pathology-related AGSs revealed substantial overlap and interesting differences. For example, the presence of immune processes in liver pathology-related AGSs which were not detected in chronological aging. The many cellular processes that are only found employing aging–related pathology could provide important new insights into the progress of aging. PMID:23795901

  4. Immunodominant Liver-Specific Expression Suppresses Transgene-Directed Immune Responses in Murine Pompe Disease

    PubMed Central

    Zhang, Ping; Sun, Baodong; Osada, Takuya; Rodriguiz, Ramona; Yang, Xiao Yi; Luo, Xiaoyan; Kemper, Alex R.; Clay, Timothy M.

    2012-01-01

    Abstract Pompe disease can be treated effectively, if immune tolerance to enzyme replacement therapy (ERT) with acid α-glucosidase (GAA) is present. An adeno-associated viral (AAV) vector carrying a liver-specific regulatory cassette to drive GAA expression (AAV-LSPhGAA) established immune tolerance in GAA knockout (KO) mice, whereas ubiquitous expression with AAV-CBhGAA provoked immune responses. Therefore, we investigated the hypothesis that immune tolerance induced by hepatic-restricted expression was dominant. AAV-LSPhGAA and AAV-CBhGAA were administered singly or in combination to groups of adult GAA-KO mice, and AAV-LSPhGAA induced immune tolerance even in combination with AAV-CBhGAA. The dual vector approach to GAA expression improved biochemical correction of GAA deficiency and glycogen accumulations at 18 weeks, and improved motor function testing including wire-hang and grip-strength testing. The greatest efficacy was demonstrated by dual vector administration, when both vectors were pseudotyped as AAV8. T cells from mice injected with AAV-LSPhGAA failed to proliferate at all after an immune challenge with GAA and adjuvant, whereas mock-treated GAA-KO mice mounted vigorous T cell proliferation. Unlike AAV-LSPhGAA, AAV-CBhGAA induced selective cytokine and chemokine expression in liver and spleen after the immune challenge. AAV-CBhGAA transduced dendritic cells and expressed high-level GAA, whereas AAV-LSPhGAA failed to express GAA in dendritic cells. The level of transduction in liver was much higher after dual AAV8 vector administration at 18 weeks, in comparison with either vector alone. Dual vector administration failed to provoke antibody formation in response to GAA expression with AAV-CBhGAA; however, hepatic-restricted expression from dual vector expression did not prevent antibody formation after a strong immune challenge with GAA and adjuvant. The relevance of immune tolerance to gene therapy in Pompe disease indicates that hepatic expression

  5. Immunodominant liver-specific expression suppresses transgene-directed immune responses in murine pompe disease.

    PubMed

    Zhang, Ping; Sun, Baodong; Osada, Takuya; Rodriguiz, Ramona; Yang, Xiao Yi; Luo, Xiaoyan; Kemper, Alex R; Clay, Timothy M; Koeberl, Dwight D

    2012-05-01

    Pompe disease can be treated effectively, if immune tolerance to enzyme replacement therapy (ERT) with acid α-glucosidase (GAA) is present. An adeno-associated viral (AAV) vector carrying a liver-specific regulatory cassette to drive GAA expression (AAV-LSPhGAA) established immune tolerance in GAA knockout (KO) mice, whereas ubiquitous expression with AAV-CBhGAA provoked immune responses. Therefore, we investigated the hypothesis that immune tolerance induced by hepatic-restricted expression was dominant. AAV-LSPhGAA and AAV-CBhGAA were administered singly or in combination to groups of adult GAA-KO mice, and AAV-LSPhGAA induced immune tolerance even in combination with AAV-CBhGAA. The dual vector approach to GAA expression improved biochemical correction of GAA deficiency and glycogen accumulations at 18 weeks, and improved motor function testing including wire-hang and grip-strength testing. The greatest efficacy was demonstrated by dual vector administration, when both vectors were pseudotyped as AAV8. T cells from mice injected with AAV-LSPhGAA failed to proliferate at all after an immune challenge with GAA and adjuvant, whereas mock-treated GAA-KO mice mounted vigorous T cell proliferation. Unlike AAV-LSPhGAA, AAV-CBhGAA induced selective cytokine and chemokine expression in liver and spleen after the immune challenge. AAV-CBhGAA transduced dendritic cells and expressed high-level GAA, whereas AAV-LSPhGAA failed to express GAA in dendritic cells. The level of transduction in liver was much higher after dual AAV8 vector administration at 18 weeks, in comparison with either vector alone. Dual vector administration failed to provoke antibody formation in response to GAA expression with AAV-CBhGAA; however, hepatic-restricted expression from dual vector expression did not prevent antibody formation after a strong immune challenge with GAA and adjuvant. The relevance of immune tolerance to gene therapy in Pompe disease indicates that hepatic expression might best

  6. Gene expression of transporters and phase I/II metabolic enzymes in murine small intestine during fasting

    PubMed Central

    van den Bosch, Heleen M; Bünger, Meike; de Groot, Philip J; van der Meijde, Jolanda; Hooiveld, Guido JEJ; Müller, Michael

    2007-01-01

    Background Fasting has dramatic effects on small intestinal transport function. However, little is known on expression of intestinal transport and phase I/II metabolism genes during fasting and the role the fatty acid-activated transcription factor PPARα may play herein. We therefore investigated the effects of fasting on expression of these genes using Affymetrix GeneChip MOE430A arrays and quantitative RT-PCR. Results After 24 hours of fasting, expression levels of 33 of the 253 analyzed transporter and phase I/II metabolism genes were changed. Upregulated genes were involved in transport of energy-yielding molecules in processes such as glycogenolysis (G6pt1) and mitochondrial and peroxisomal oxidation of fatty acids (Cact, Mrs3/4, Fatp2, Cyp4a10, Cyp4b1). Other induced genes were responsible for the inactivation of the neurotransmitter serotonin (Sert, Sult1d1, Dtd, Papst2), formation of eicosanoids (Cyp2j6, Cyp4a10, Cyp4b1), or for secretion of cholesterol (Abca1 and Abcg8). Cyp3a11, typically known because of its drug metabolizing capacity, was also increased. Fasting had no pronounced effect on expression of phase II metabolic enzymes, except for glutathione S-transferases which were down-regulated. Time course studies revealed that some genes were acutely regulated, whereas expression of other genes was only affected after prolonged fasting. Finally, we identified 8 genes that were PPARα-dependently upregulated upon fasting. Conclusion We have characterized the response to fasting on expression of transporters and phase I/II metabolic enzymes in murine small intestine. Differentially expressed genes are involved in a variety of processes, which functionally can be summarized as a) increased oxidation of fat and xenobiotics, b) increased cholesterol secretion, c) increased susceptibility to electrophilic stressors, and d) reduced intestinal motility. This knowledge increases our understanding of gut physiology, and may be of relevance for e.g. pre

  7. Differentiation of Murine Embryonic Stem Cells Induces Progesterone Receptor Gene Expression

    PubMed Central

    Sauter, Carley N.; McDermid, Rebecca L.; Weinberg, Amy L.; Greco, Tamara L.; Xu, Xiaojie; Murdoch, Fern E.; Fritsch, Michael K.

    2005-01-01

    The role of steroid hormone receptors in very early embryonic development remains unknown. Clearly, expression during organogenesis is important for tissue-specific development. However, progesterone receptor (PR) and estrogen receptors (ERα, ERβ), are expressed during early development through the blastocyst stage in mice and other species, and yet are not essential for embryonic viability. We have utilized the mouse embryonic stem (mES) cell model to investigate the regulated expression of these receptors during differentiation. Surprisingly, one of the earliest changes in gene expression in response to a differentiation signal observed is PR gene induction. It parallels the time course of expression for the patterning genes Hoxb1 and Hoxa5. Unexpectedly, PR gene expression is not regulated in an estrogen dependent manner by endogenous ERs or by transiently overexpressed ERα. Our results suggest a potentially novel mechanism of PR gene regulation within mES cells compared to adult tissues and the possibility of unique targets of PR action during early mES cell differentiation PMID:16223481

  8. Potent suppression of arginase 1 expression in murine macrophages by low dose endotoxin

    PubMed Central

    Surace, Michael J; Li, Liwu

    2013-01-01

    Macrophages can respond to diverse signals and adopt multiple phenotypes. Although interleukin-4 (IL-4) is shown to potently induce the expression of arginase 1 and contribute to differentiation of macrophages to the anti-inflammatory M2 phenotype, other modulators may potentiate or reduce the effect of IL-4. In this report, we focus on the combinatorial effects of IL-4 with all-trans retinoic acid (ATRA) and lipopolysaccharide (LPS). ATRA has been shown to contribute to the resolution of inflammation, however it has not been linked to arginase 1 expression in macrophages. We demonstrate that although ATRA alone has no effect on the expression or activities of arginase 1, ATRA can dramatically potentiate the induction of arginase 1 by IL-4. On the other hand, high doses of LPS, such as those seen in septic shock, can induce the expression of both M1 and M2 mediators in macrophages. The effects of subclinical doses of LPS, which are prevalent in humans with adverse health conditions, on macrophage differentiation are not well studied. We demonstrate that low dose LPS can effectively suppress the expression of arginase 1 induced by IL-4 and ATRA. Mechanistically, we report that the interleukin-1 receptor-associated kinase 1 (IRAK-1) and Toll-interacting-protein (Tollip) are involved in the suppressive effect of low dose LPS. Our study reveals dynamic modulation of arginase 1 expression in macrophages by competing agonists, and bears relevance for potential intervention of chronic diseases. PMID:23885329

  9. Urocortin-1 Mediated Cardioprotection Involves XIAP and CD40-Ligand Recovery: Role of EPAC2 and ERK1/2

    PubMed Central

    Ordóñez, Antonio; Smani, Tarik

    2016-01-01

    Aims Urocortin-1 (Ucn-1) is an endogenous peptide that protects heart from ischemia and reperfusion (I/R) injuries. Ucn-1 is known to prevent cardiac cell death, but its role in the transcription of specific genes related to survival signaling pathway has not been fully defined. The aim of this study was to investigate the molecular signaling implicated in the improvement of cardiac myocytes survival induced by Ucn-1. Methods and Results Ucn-1 administration before ischemia and at the onset of reperfusion, in rat hearts perfused in Langendorff system, fully recovered heart contractility and other hemodynamic parameters. Ucn-1 enhanced cell viability and decreased lactate dehydrogenase (LDH) release in adult cardiac myocytes subjected to simulated I/R. Annexin V-FITC/PI staining indicated that Ucn-1 promoted cell survival and decreased cell necrosis through Epac2 (exchange protein directly activated by cAMP) and ERK1/2 (extracellular signal–regulated kinases 1/2) activation. We determined that Ucn-1 shifted cell death from necrosis to apoptosis and activated caspases 9 and 3/7. Furthermore, mini-array, RT-qPCR and protein analyses of apoptotic genes showed that Ucn-1 upregulated the expression of CD40lg, Xiap and BAD in cells undergoing I/R, involving Epac2 and ERK1/2 activation. Conclusions Our data indicate that Ucn-1 efficiently protected hearts from I/R damage by increasing the cell survival and stimulated apoptotic genes, CD40lg, Xiap and BAD, overexpression through the activation of Epac2 and ERK1/2. PMID:26840743

  10. CSF-1R-Dependent Lethal Hepatotoxicity When Agonistic CD40 Antibody Is Given before but Not after Chemotherapy.

    PubMed

    Byrne, Katelyn T; Leisenring, Nathan H; Bajor, David L; Vonderheide, Robert H

    2016-07-01

    Cancer immunotherapies are increasingly effective in the clinic, especially immune checkpoint blockade delivered to patients who have T cell-infiltrated tumors. Agonistic CD40 mAb promotes stromal degradation and, in combination with chemotherapy, drives T cell infiltration and de novo responses against tumors, rendering resistant tumors susceptible to current immunotherapies. Partnering anti-CD40 with different treatments is an attractive approach for the next phase of cancer immunotherapies, with a number of clinical trials using anti-CD40 combinations ongoing, but the optimal therapeutic regimens with anti-CD40 are not well understood. Pancreatic ductal adenocarcinoma (PDA) is classically resistant to immunotherapy and lacks baseline T cell infiltration. In this study, we used a tumor cell line derived from a genetically engineered mouse model of PDA to investigate alterations in the sequence of anti-CD40 and chemotherapy as an approach to enhance pharmacological delivery of chemotherapy. Unexpectedly, despite our previous studies showing anti-CD40 treatment after chemotherapy is safe in both mice and patients with PDA, we report in this article that anti-CD40 administration <3 d in advance of chemotherapy is lethal in more than half of treated C57BL/6 mice. Anti-CD40 treatment 2 or 3 d before chemotherapy resulted in significantly increased populations of both activated myeloid cells and macrophages and lethal hepatotoxicity. Liver damage was fully abrogated when macrophage activation was blocked using anti-CSF-1R mAb. These studies highlight the dual nature of CD40 in activating both macrophages and T cell responses, and the need for preclinical investigation of optimal anti-CD40 treatment regimens for safe design of clinical trials. PMID:27217585

  11. Alterations in gene expression and DNA methylation during murine and human lung alveolar septation.

    PubMed

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J; Ambalavanan, Namasivayam

    2015-07-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation. PMID:25387348

  12. Alterations in Gene Expression and DNA Methylation during Murine and Human Lung Alveolar Septation

    PubMed Central

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K.; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J.

    2015-01-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation. PMID:25387348

  13. Development of an inducible gene expression system for primary murine keratinocytes

    PubMed Central

    Nagarajan, Priyadharsini

    2008-01-01

    Background The tetracycline (Tet) responsive system is a valuable tool that is routinely used in a wide variety of mammalian cells for regulatable expression of gene products. However, technical difficulties such as harsh selection conditions and extensive screening processes to identify suitably responsive clones limit the generation of stable cell lines. Hence, application of this system in mammalian cells with relatively slow growth rates and / or the capacity to undergo terminal differentiation such as primary mouse keratinocytes is particularly challenging. Objective To our knowledge, no Tet-responsive stable cell lines have been generated from mouse keratinocytes, presumably due to their sensitivity to selection conditions. Our goal was to utilize a modified and robust Tet-expression system to generate a stable primary mouse keratinocyte cell line. These cells could be then utilized for conditional expression of potentially toxic proteins in an inducible fashion. Methods We utilized a eukaryotic promoter instead of a viral promoter to express a modified reverse tetracycline transactivator in mouse keratinocytes and optimized the selection process for generating stable cell lines. Results Here, we report the generation of a stable mouse keratinocyte cell line for Tet-regulated gene expression with minimal leakiness and high degree of Tet responsivity. This mouse keratinocyte cell line was further engineered for generation of a double stable cell line, which expresses the transcription factor AP-2α in an inducible manner. Importantly, the selected cells retain their inherent keratinocyte morphology, respond to differentiation signals and exhibit a persistent and highly tunable Tet inducibility upon continuous culturing. Conclusion We have generated a tetracycline inducible gene expression model system in mouse epidermal keratinocytes. Such inducible cell lines will serve as valuable in vitro models for future gain-of-function and loss-of-function studies. PMID

  14. Regulatory T Cell-Dependent and -Independent Mechanisms of Immune Suppression by CD28/B7 and CD40/CD40L Costimulation Blockade.

    PubMed

    Vogel, Isabel; Verbinnen, Bert; Van Gool, Stefaan; Ceuppens, Jan L

    2016-07-15

    Blocking of costimulatory CD28/B7 and CD40/CD40L interactions is an experimental approach to immune suppression and tolerance induction. We previously reported that administration of a combination of CTLA-4Ig and MR1 (anti-CD40L mAb) for blockade of these interactions induces tolerance in a fully mismatched allogeneic splenocyte transfer model in mice. We now used this model to study whether regulatory T cells (Tregs) contribute to immune suppression and why both pathways have to be blocked simultaneously. Mice were injected with allogeneic splenocytes, CD4(+) T cells, or CD8(+) T cells and treated with MR1 mAb and different doses of CTLA-4Ig. The graft-versus-host reaction of CD4(+) T cells, but not of CD8(+) T cells, was inhibited by MR1. CTLA-4Ig was needed to cover CD8(+) T cells but had only a weak effect on CD4(+) T cells. Consequently, only the combination provided full protection when splenocytes were transferred. Importantly, MR1 and low-dose CTLA-4Ig treatment resulted in a relative increase in Tregs, and immune suppressive efficacy was abolished in the absence of Tregs. High-dose CTLA-4Ig treatment, in contrast, prevented Treg expansion and activity, and in combination with MR1 completely inhibited CD4(+) and CD8(+) T cell activation in a Treg-independent manner. In conclusion, MR1 and CTLA-4Ig act synergistically as they target different T cell populations. The contribution of Tregs to immune suppression by costimulation blockade depends on the concentration of CTLA-4Ig and thus on the degree of available CD28 costimulation. PMID:27288533

  15. Expression of cassini, a murine gamma-satellite sequence conserved in evolution, is regulated in normal and malignant hematopoietic cells

    PubMed Central

    2012-01-01

    Background Acute lymphoblastic leukemia (ALL) cells treated with drugs can become drug-tolerant if co-cultured with protective stromal mouse embryonic fibroblasts (MEFs). Results We performed transcriptional profiling on these stromal fibroblasts to investigate if they were affected by the presence of drug-treated ALL cells. These mitotically inactivated MEFs showed few changes in gene expression, but a family of sequences of which transcription is significantly increased was identified. A sequence related to this family, which we named cassini, was selected for further characterization. We found that cassini was highly upregulated in drug-treated ALL cells. Analysis of RNAs from different normal mouse tissues showed that cassini expression is highest in spleen and thymus, and can be further enhanced in these organs by exposure of mice to bacterial endotoxin. Heat shock, but not other types of stress, significantly induced the transcription of this locus in ALL cells. Transient overexpression of cassini in human 293 embryonic kidney cells did not increase the cytotoxic or cytostatic effects of chemotherapeutic drugs but provided some protection. Database searches revealed that sequences highly homologous to cassini are present in rodents, apicomplexans, flatworms and primates, indicating that they are conserved in evolution. Moreover, CASSINI RNA was induced in human ALL cells treated with vincristine. Surprisingly, cassini belongs to the previously reported murine family of γ-satellite/major satellite DNA sequences, which were not known to be present in other species. Conclusions Our results show that the transcription of at least one member of these sequences is regulated, suggesting that this has a function in normal and transformed immune cells. Expression of these sequences may protect cells when they are exposed to specific stress stimuli. PMID:22916712

  16. Dissection of Genetic Mechanisms Governing the Expression of Serum Retroviral gp70 Implicated in Murine Lupus Nephritis1

    PubMed Central

    Baudino, Lucie; Yoshinobu, Kumiko; Morito, Naoki; Kikuchi, Shuichi; Fossati-Jimack, Liliane; Morley, Bernard J.; Vyse, Timothy J.; Hirose, Sachiko; Jørgensen, Trine N.; Tucker, Rebecca M.; Roark, Christina L.; Kotzin, Brian L.; Evans, Leonard H.; Izui, Shozo

    2008-01-01

    The endogenous retroviral envelope glycoprotein, gp70, implicated in murine lupus nephritis is secreted by hepatocytes as an acute phase protein, and has been believed to be a product of an endogenous xenotropic virus, NZB-X1. However, since endogenous polytropic (PT) and modified polytropic (mPT) viruses encode gp70s that are closely related to xenotropic gp70, these viruses can be additional sources of serum gp70. To better understand the genetic basis of the expression of serum gp70, we analyzed the abundance of xenotropic, PT or mPT gp70 RNAs in livers and the genomic composition of corresponding proviruses in various strains of mice, including two different Sgp (serum gp70 production) congenic mice. Our results demonstrated that the expression of different viral gp70 RNAs was remarkable heterogeneous among various mouse strains and that the level of serum gp70 production was regulated by multiple structural and regulatory genes. In addition, a significant contribution of PT and mPT gp70s to serum gp70 was revealed by the detection of PT and mPT, but not xenotropic transcripts in 129 mice and by a closer correlation of serum levels of gp70 with the abundance of PT and mPT gp70 RNAs than with that of xenotropic gp70 RNA in Sgp3 congenic mice. Furthermore, the injection of lipopolysaccharides selectively up-regulated the expression of xenotropic and mPT gp70 RNAs, but not PT gp70 RNA. Our data indicate that the genetic origin of serum gp70 is more heterogeneous than previously believed, and that distinct retroviral gp70s are differentially regulated in physiological vs. inflammatory conditions. PMID:18684976

  17. Interleukin-2 and interleukin-2 receptor expression in human corticotrophic adenoma and murine pituitary cell cultures.

    PubMed Central

    Arzt, E; Stelzer, G; Renner, U; Lange, M; Müller, O A; Stalla, G K

    1992-01-01

    The production of IL-1 and IL-6 by pituitary cells has recently been demonstrated. In this study we investigated the expression of IL-2 and its receptor (IL-2R) by pituitary cells of different species. In Northern blots, a single hybridizing band of 1 kb, identical to that in normal stimulated lymphocytes, was obtained with specific IL-2 probes. In the mouse AT-20 pituitary tumor cell line, IL-2 mRNA expression was detected after stimulation with corticotropin-releasing hormone or phorbol myristate acetate. In human corticotrophic adenoma cells, basal IL-2 mRNA expression as well as IL-2 secretion were further stimulated by phorbol myristate acetate. Both adenoma and AtT-20 cells showed detectable amounts of IL-2R mRNA and by immunofluorescence, IL-2R membrane expression. In addition, dual immunofluorescence studies in rat anterior pituitary cells demonstrated colocalization of IL-2R with ACTH-positive cells and other cell types expressing the receptor. In addition to the action of lymphocyte-produced IL-2, this cytokine may have a paracrine or autocrine regulatory role within the pituitary. It remains to be established whether IL-2 production occurs in the normal pituitary or is intrinsic to the process of tumor development of these cells. IL-2 may be involved in the growth control of pituitary cells. Images PMID:1331177

  18. Altered Expression of Bone Morphogenetic Protein Accessory Proteins in Murine and Human Pulmonary Fibrosis.

    PubMed

    Murphy, Noelle; Gaynor, Katherine U; Rowan, Simon C; Walsh, Sinead M; Fabre, Aurelie; Boylan, John; Keane, Michael P; McLoughlin, Paul

    2016-03-01

    Idiopathic pulmonary fibrosis is a chronic, progressive fibrotic disease with a poor prognosis. The balance between transforming growth factor β1 and bone morphogenetic protein (BMP) signaling plays an important role in tissue homeostasis, and alterations can result in pulmonary fibrosis. We hypothesized that multiple BMP accessory proteins may be responsible for maintaining this balance in the lung. Using the bleomycin mouse model for fibrosis, we examined an array of BMP accessory proteins for changes in mRNA expression. We report significant increases in mRNA expression of gremlin 1, noggin, follistatin, and follistatin-like 1 (Fstl1), and significant decreases in mRNA expression of chordin, kielin/chordin-like protein, nephroblastoma overexpressed gene, and BMP and activin membrane-bound inhibitor (BAMBI). Protein expression studies demonstrated increased levels of noggin, BAMBI, and FSTL1 in the lungs of bleomycin-treated mice and in the lungs of idiopathic pulmonary fibrosis patients. Furthermore, we demonstrated that transforming growth factor β stimulation resulted in increased expression of noggin, BAMBI, and FSTL1 in human small airway epithelial cells. These results provide the first evidence that multiple BMP accessory proteins are altered in fibrosis and may play a role in promoting fibrotic injury. PMID:26765958

  19. Recombinant expression of soluble murine prion protein for C-terminal modification.

    PubMed

    Chu, Nam Ky; Becker, Christian F W

    2013-03-01

    Membrane attachment of prion protein (PrP) via its glycosylphosphatidylinositol (GPI) anchor plays a key role during conversion of cellular PrP(C) into its pathogenic isoform PrP(Sc). Strategies to access homogenous lipidated PrP via expressed protein ligation (EPL) are required to fully decipher the effect of membrane attachment. Such strategies suffer from insoluble expression of PrP-intein fusion constructs and low folding efficiencies that severely limit the available amount of homogeneous lipidated PrP. Here, we describe an alternative method for expression of soluble PrP-intein fusion proteins in Escherichia coli that provides access to natively folded PrP ready to use in EPL. PMID:23337878

  20. Analysis of Human TAAR8 and Murine Taar8b Mediated Signaling Pathways and Expression Profile

    PubMed Central

    Mühlhaus, Jessica; Dinter, Juliane; Nürnberg, Daniela; Rehders, Maren; Depke, Maren; Golchert, Janine; Homuth, Georg; Yi, Chun-Xia; Morin, Silke; Köhrle, Josef; Brix, Klaudia; Tschöp, Matthias; Kleinau, Gunnar; Biebermann, Heike

    2014-01-01

    The thyroid hormone derivative 3-iodothyronamine (3-T1AM) exerts metabolic effects in vivo that contradict known effects of thyroid hormones. 3-T1AM acts as a trace amine-associated receptor 1 (TAAR1) agonist and activates Gs signaling in vitro. Interestingly, 3-T1AM-meditated in vivo effects persist in Taar1 knockout-mice indicating that further targets of 3-T1AM might exist. Here, we investigated another member of the TAAR family, the only scarcely studied mouse and human trace-amine-associated receptor 8 (Taar8b, TAAR8). By RT-qPCR and locked-nucleic-acid (LNA) in situ hybridization, Taar8b expression in different mouse tissues was analyzed. Functionally, we characterized TAAR8 and Taar8b with regard to cell surface expression and signaling via different G-protein-mediated pathways. Cell surface expression was verified by ELISA, and cAMP accumulation was quantified by AlphaScreen for detection of Gs and/or Gi/o signaling. Activation of G-proteins Gq/11 and G12/13 was analyzed by reporter gene assays. Expression analyses revealed at most marginal Taar8b expression and no gender differences for almost all analyzed tissues. In heart, LNA-in situ hybridization demonstrated the absence of Taar8b expression. We could not identify 3-T1AM as a ligand for TAAR8 and Taar8b, but both receptors were characterized by a basal Gi/o signaling activity, a so far unknown signaling pathway for TAARs. PMID:25391046

  1. Regulation of histamine synthesis and tryptase expression through transcription factors, growth factor independent 1 (Gfi1) and Gfi1b, in murine cultured mast cells.

    PubMed

    Taura, Azusa; Furuta, Kazuyuki; Yamaguchi, Tomoko; Kawabata, Kenji; Tanaka, Satoshi

    2014-01-01

    Mast cells are involved in various immunological responses, although it remains unknown how their terminal differentiation is regulated. We previously established a culture model that mimics the process of mast cell maturation in the cutaneous tissue and found that growth factor independent 1 (Gfi1) was up-regulated whereas its paralogue Gfi1b down-regulated. Here we investigated the roles of Gfi1 and Gfi1b in the process of mast cell maturation using a murine mast cell line, MC9. Gfi1 and Gfi1b cDNAs were stably expressed in MC9 cells using the recombinant lentivirus. Histamine synthesis was significantly induced by stem cell factor (SCF) alone, whereas tryptase expression was significantly augmented in the presence of both SCF and Swiss 3T3 cells. Since exogenously expressed Gfi1 and Gfi1b might affect their expression levels in MC9 cells, we investigated the relationship between the expression profiles of Gfi1/Gfi1b proteins and maturation indices, such as histamine synthesis and tryptase expression. The comparison suggested that histamine synthesis during the co-culture period was positively regulated by Gfi1b while augmented expression of tryptase was abolished by one-sided expression of Gfi1/Gfi1b. Our findings indicated the involvement of Gfi1 and Gfi1b in the process of murine mast cell maturation. PMID:24389484

  2. Antibody formation and mannose-6-phosphate receptor expression impact the efficacy of muscle-specific transgene expression in murine Pompe disease

    PubMed Central

    Sun, Baodong; Li, Songtao; Bird, Andrew; Yi, Haiqing; Kemper, Alex; Koeberl, Dwight D.

    2013-01-01

    BACKGROUND Lysosomal storage disorders such as Pompe disease can be more effectively treated, if immune tolerance to enzyme or gene replacement therapy can be achieved. Alternatively, immune responses against acid α-glucosidase (GAA) might be evaded in Pompe disease through muscle-specific expression of GAA with adeno-associated virus (AAV) vectors. METHODS An AAV vector containing the MHCK7 regulatory cassette to drive muscle-specific GAA expression was administered to GAA knockout (KO) mice, immune tolerant GAA-KO mice, and mannose-6-phosphate deficient GAA-KO mice. GAA activity and glycogen content were analyzed in striated muscle to determine biochemical efficacy. RESULTS The biochemical efficacy from GAA expression was slightly reduced in GAA-KO mice, as demonstrated by higher residual glycogen content in skeletal muscles. Next immune tolerance to GAA was induced in GAA-KO mice by co-administration of a second AAV vector encoding liver-specific GAA along with the AAV vector encoding muscle-specific GAA. Antibody formation was prevented by liver-specific GAA, and the biochemical efficacy of GAA expression was improved in absence of antibodies as evidenced by significantly reduced glycogen content in the diaphragm. Efficacy was reduced in old GAA-KO mice despite the absence of antibodies. The greatest impact upon gene therapy was observed in GAA-KO mice lacking the mannose-6-phosphate receptor in muscle. The clearance of stored glycogen was markedly impaired despite high GAA expression in receptor-deficient Pompe disease mice. CONCLUSIONS Overall, antibody formation had a subtle effect upon efficacy, while the absence of mannose-6-phosphate receptors markedly impaired muscle-targeted gene therapy in murine Pompe disease. PMID:20967919

  3. Identification of Signaling Pathways by Which CD40 Stimulates Autophagy and Antimicrobial Activity against Toxoplasma gondii in Macrophages.

    PubMed

    Liu, Elizabeth; Lopez Corcino, Yalitza; Portillo, Jose-Andres C; Miao, Yanling; Subauste, Carlos S

    2016-09-01

    CD40 is an important stimulator of autophagy and autophagic killing of Toxoplasma gondii in host cells. In contrast to autophagy induced by nutrient deprivation or pattern recognition receptors, less is known about the effects of cell-mediated immunity on Beclin 1 and ULK1, key regulators of autophagy. Here we studied the molecular mechanisms by which CD40 stimulates autophagy in macrophages. CD40 ligation caused biphasic Jun N-terminal protein kinase (JNK) phosphorylation. The second phase of JNK phosphorylation was dependent on autocrine production of tumor necrosis factor alpha (TNF-α). TNF-α and JNK signaling were required for the CD40-induced increase in autophagy. JNK signaling downstream of CD40 caused Ser-87 phosphorylation of Bcl-2 and dissociation between Bcl-2 and Beclin 1, an event known to stimulate the autophagic function of Beclin 1. However, TNF-α alone was unable to stimulate autophagy. CD40 also stimulated autophagy via a pathway that included calcium/calmodulin-dependent kinase kinase β (CaMKKβ), AMP-activated protein kinase (AMPK), and ULK1. CD40 caused AMPK phosphorylation at its activating site, Thr-172. This effect was mediated by CaMKKβ and was not impaired by neutralization of TNF-α. CD40 triggered AMPK-dependent Ser-555 phosphorylation of ULK1. CaMKKβ, AMPK, and ULK1 were required for CD40-induced increase in autophagy. CD40-mediated autophagic killing of Toxoplasma gondii is known to require TNF-α. Knockdown of JNK, CaMKKβ, AMPK, or ULK1 prevented T. gondii killing in CD40-activated macrophages. The second phase of JNK phosphorylation-Bcl-2 phosphorylation-Bcl-2-Beclin 1 dissociation and AMPK phosphorylation-ULK1 phosphorylation occurred simultaneously at ∼4 h post-CD40 stimulation. Thus, CaMKKβ and TNF-α are upstream molecules by which CD40 acts on ULK1 and Beclin 1 to stimulate autophagy and killing of T. gondii. PMID:27354443

  4. Expression patterns of two murine homologs of Drosophila single-minded suggest possible roles in embryonic patterning and in the pathogenesis of Down syndrome.

    PubMed

    Fan, C M; Kuwana, E; Bulfone, A; Fletcher, C F; Copeland, N G; Jenkins, N A; Crews, S; Martinez, S; Puelles, L; Rubenstein, J L; Tessier-Lavigne, M

    1996-01-01

    The single-minded (sim) gene encodes a transcriptional regulator that functions as a key determinant of central nervous system (CNS) midline development in Drosophila. We report here the identification of two murine homologs of sim, Sim1 and Sim2, whose products show a high degree of sequence conservation with Drosophila SIM in their amino-terminal halves, with each containing a basic helix-loop-helix domain as well as a PAS domain. Sim1 maps to the proximal region of mouse chromosome 10, whereas Sim2 maps to a portion of the distal end of chromosome 16 that is syntenic to the Down syndrome critical region of human chromosome 21. Recent exon-trapping studies have identified in the critical region several exons of a human sim homolog which appears to be the homolog of murine Sim2; this has led to the hypothesis that increased dosage of this sim homolog in cases of trisomy 21 might be a causal factor in the pathogenesis of Down syndrome. We have examined the expression patterns of the Sim genes during embryogenesis. Both genes are expressed in dynamic and selective fashion in specific neuromeric compartments of the developing forebrain, and the expression pattern of Sim2 provides evidence for early regionalization of the diencephalon prior to any overt morphological differentiation in this region. Outside the CNS, Sim1 is expressed in mesodermal and endodermal tissues, including developing somites, mesonephric duct, and foregut. Sim2 is expressed in facial and trunk cartilage, as well as trunk muscles. Both murine Sim genes are also expressed in the developing kidney. Our data suggest that the Sim genes play roles in directing the regionalization of tissues where they are expressed. Moreover, the expression pattern documented for Sim2 may provide insights into its potential roles in Down syndrome. PMID:8812055

  5. Expression of cyclooxygenase-2, alpha 1-acid-glycoprotein and inducible nitric oxide synthase in the developing lesions of murine leprosy

    PubMed Central

    Silva Miranda, Mayra; Rodríguez, Kendy Wek; Martínez Cordero, Erasmo; Rojas-Espinosa, Oscar

    2006-01-01

    Murine leprosy is a chronic disease of the mouse, the most popular animal model used in biomedical investigation, which is caused by Mycobacterium lepraemurium (MLM) whose characteristic lesion is the macrophage-made granuloma. From onset to the end of the disease, the granuloma undergoes changes that gradually transform the environment into a more appropriate milieu for the growth of M. lepraemurium. The mechanisms that participate in the formation and maturation of the murine leprosy granulomas are not completely understood; however, microbial and host-factors are believed to participate in their formation. In this study, we analysed the role of various pro-inflammatory and anti-inflammatory proteins in granulomas of murine leprosy after 21 weeks of infection. We assessed the expression of cyclooxygenase-2 (COX-2), alpha acid-glycoprotein (AGP), and inducible nitric oxide synthase (iNOS) at sequential stages of infection. We also looked for the nitric-oxide nitrosylation product, nitrotyrosine (NT) in the granulomatous lesions of murine leprosy. We found that a pro-inflammatory environment predominates in the early granulomas while an anti-inflammatory environment predominates in late granulomas. No obvious signs of bacillary destruction were observed during the entire period of infection, but nitrosylation products and cell alterations were observed in granulomas in the advanced stages of disease. The change from a pro-inflammatory to an anti-inflammatory environment, which is probably driven by the bacillus itself, results in a more conducive environment for both bacillus replication and the disease progression. PMID:17222216

  6. Osteopontin modulates inflammation, mucin production, and gene expression signatures after inhalation of asbestos in a murine model of fibrosis.

    PubMed

    Sabo-Attwood, Tara; Ramos-Nino, Maria E; Eugenia-Ariza, Maria; Macpherson, Maximilian B; Butnor, Kelly J; Vacek, Pamela C; McGee, Sean P; Clark, Jessica C; Steele, Chad; Mossman, Brooke T

    2011-05-01

    Inflammation and lung remodeling are hallmarks of asbestos-induced fibrosis, but the molecular mechanisms that control these events are unclear. Using laser capture microdissection (LCM) of distal bronchioles in a murine asbestos inhalation model, we show that osteopontin (OPN) is up-regulated by bronchiolar epithelial cells after chrysotile asbestos exposures. In contrast to OPN wild-type mice (OPN(+/+)) inhaling asbestos, OPN null mice (OPN(-/-)) exposed to asbestos showed less eosinophilia in bronchoalveolar lavage fluids, diminished lung inflammation, and decreased mucin production. Bronchoalveolar lavage fluid concentrations of inflammatory cytokines (IL-1β, IL-4, IL-6, IL-12 subunit p40, MIP1α, MIP1β, and eotaxin) also were significantly less in asbestos-exposed OPN(-/-) mice. Microarrays performed on lung tissues from asbestos-exposed OPN(+/+) and OPN(-/-) mice showed that OPN modulated the expression of a number of genes (Col1a2, Timp1, Tnc, Eln, and Col3a1) linked to fibrosis via initiation and cross talk between IL-1β and epidermal growth factor receptor-related signaling pathways. Novel targets of OPN identified include genes involved in cell signaling, immune system/defense, extracellular matrix remodeling, and cell cycle regulation. Although it is unclear whether the present findings are specific to chrysotile asbestos or would be observed after inhalation of other fibers in general, these results highlight new potential mechanisms and therapeutic targets for asbestosis and other diseases (asthma, smoking-related interstitial lung diseases) linked to OPN overexpression. PMID:21514415

  7. Fibronectin-mediated Calmette-Guerin bacillus attachment to murine bladder mucosa. Requirement for the expression of an antitumor response.

    PubMed Central

    Kavoussi, L R; Brown, E J; Ritchey, J K; Ratliff, T L

    1990-01-01

    Adjuvant intravesical Calmette-Guerin bacillus (BCG) is an effective treatment for superficial bladder cancer. The mechanisms by which BCG mediates antitumor activity are not known. We investigated the initial interaction of BCG with the bladder mucosa to determine whether binding was essential for the development of antitumor activity. Herein, we show that bladder urothelial disruption induced by acrolein, adriamycin, or electrocautery resulted in BCG binding in areas of urothelial damage. Binding induced by each method was inhibited by anti-fibronectin (FN) antibodies but not by antibodies to the basement membrane component laminin. Intravesical BCG binding also was inhibited by pretreating BCG with soluble FN. Inhibition of intravesical FN-mediated BCG attachment prevented immunization via the intravesical route. Moreover, the expression of both delayed hypersensitivity in the bladder of BCG-immunized mice and antitumor activity was inhibited by blocking FN-mediated intravesical BCG attachment. These data suggest that intralumenal attachment of BCG appears to be mediated by FN. Moreover, these data suggest that intravesical FN mediated attachment of BCG is a requisite step in BCG-mediated antitumor activity in the murine bladder tumor model. Images PMID:2404029

  8. A nuclear factor containing the leucine-rich repeats expressed in murine cerebellar neurons.

    PubMed Central

    Matsuoka, K; Taoka, M; Satozawa, N; Nakayama, H; Ichimura, T; Takahashi, N; Yamakuni, T; Song, S Y; Isobe, T

    1994-01-01

    A nuclear protein, termed leucine-rich acidic nuclear protein (LANP), has been isolated from among rat cerebellar proteins whose expression was transiently increased during an early stage of postnatal development. The amino acid sequence, deduced from its cDNA, showed that LANP contains 247 amino acids consisting of two distinct structural domains: the N-terminal domain characterized by "leucine-rich repeat," which is found in many eukaryotic proteins and which potentially functions in mediating protein-protein interactions, and the C-terminal domain characterized by a cluster of acidic amino acids with a putative nuclear localization signal. Immunohistochemical study using an antibody against LANP revealed that the protein is localized mainly in nuclei of Purkinje cells. In the rat cerebellum on postnatal day 7, LANP mRNA was expressed moderately in the external granule and Purkinje cells and weakly in the internal granule cells. The expression in these cells, especially in Purkinje cells, increased in the second postnatal week and thereafter decreased to an adult level. The structural characteristics, localization, and the stage- and cell type-specific expression suggest a potential role of LANP in a signal transduction pathway that directs differentiation of cerebellar neurons. Images PMID:7937870

  9. Expression and modulation of nerve growth factor in murine keratinocytes (PAM 212)

    SciTech Connect

    Tron, V.A.; Coughlin, M.D.; Jang, D.E.; Stanisz, J.; Sauder, D.N. )

    1990-04-01

    Nerve growth factor (NGF) is a polypeptide that is required for normal development and maintenance of the sympathetic and sensory nervous systems. Skin has been shown to contain relatively high amounts of NGF, which is in keeping with the finding that the quantity of NGF in a tissue is proportional to the extent of sympathetic innervation of that organ. Since the keratinocyte, a major cellular constituent of the skin, is known to produce other growth factors and cytokines, our experiments were designed to determine whether keratinocytes are a source of NGF. Keratinocyte-conditioned media from the keratinocyte cell line PAM 212 contained NGF-like activity, approximately 2-3 ng/ml, as detected by the neurite outgrowth assay. Freshly isolated BALB/c keratinocytes contained approximately 0.1 ng/ml. Using a cDNA probe directed against NGF, we demonstrated the presence of a 1.3-kb NGF mRNA in both PAM 212 and BALB/c keratinocytes. Since ultraviolet radiation (UV) is a potentially important modulating factor for cytokines in skin, we examined the effect of UV on NGF mRNA expression. Although UV initially inhibited the expression of keratinocyte NGF mRNA (4 h), by 24 h an induction of NGF mRNA was seen. The NGF signal could also be induced by phorbol esters. Thus, keratinocytes synthesize and express NGF, and its expression is modulated by UVB and phorbol esters.

  10. The effects of lifelong blindness on murine neuroanatomy and gene expression

    PubMed Central

    Abbott, Charles W.; Kozanian, Olga O.; Huffman, Kelly J.

    2015-01-01

    Mammalian neocortical development is regulated by neural patterning mechanisms, with distinct sensory and motor areas arising through the process of arealization. This development occurs alongside developing central or peripheral sensory systems. Specifically, the parcellation of neocortex into specific areas of distinct cytoarchitecture, connectivity and function during development is reliant upon both cortically intrinsic mechanisms, such as gene expression, and extrinsic processes, such as input from the sensory receptors. This developmental program shifts from patterning to maintenance as the animal ages and is believed to be active throughout life, where the brain’s organization is stable yet plastic. In this study, we characterize the long-term effects of early removal of visual input via bilateral enucleation at birth. To understand the long-term effects of early blindness we conducted anatomical and molecular assays 18 months after enucleation, near the end of lifespan in the mouse. Bilateral enucleation early in life leads to long-term, stable size reductions of the thalamic lateral geniculate nucleus (LGN) and the primary visual cortex (V1) alongside a increase in individual whisker barrel size. Neocortical gene expression in the aging brain has not been previously identified; we document cortical expression of multiple regionalization genes. Expression patterns of Ephrin A5, COUP-TFI, and RZRβ and patterns of intraneocortical connectivity (INC) are altered in the neocortices of aging blind mice. Sensory inputs from different modalities during development likely play a major role in the development of cortical areal and thalamic nuclear boundaries. We suggest that early patterning by prenatal retinal activity combined with persistent gene expression within the thalamus and cortex is sufficient to establish and preserve a small but present LGN and V1 into late adulthood. PMID:26257648

  11. The effects of lifelong blindness on murine neuroanatomy and gene expression.

    PubMed

    Abbott, Charles W; Kozanian, Olga O; Huffman, Kelly J

    2015-01-01

    Mammalian neocortical development is regulated by neural patterning mechanisms, with distinct sensory and motor areas arising through the process of arealization. This development occurs alongside developing central or peripheral sensory systems. Specifically, the parcellation of neocortex into specific areas of distinct cytoarchitecture, connectivity and function during development is reliant upon both cortically intrinsic mechanisms, such as gene expression, and extrinsic processes, such as input from the sensory receptors. This developmental program shifts from patterning to maintenance as the animal ages and is believed to be active throughout life, where the brain's organization is stable yet plastic. In this study, we characterize the long-term effects of early removal of visual input via bilateral enucleation at birth. To understand the long-term effects of early blindness we conducted anatomical and molecular assays 18 months after enucleation, near the end of lifespan in the mouse. Bilateral enucleation early in life leads to long-term, stable size reductions of the thalamic lateral geniculate nucleus (LGN) and the primary visual cortex (V1) alongside a increase in individual whisker barrel size. Neocortical gene expression in the aging brain has not been previously identified; we document cortical expression of multiple regionalization genes. Expression patterns of Ephrin A5, COUP-TFI, and RZRβ and patterns of intraneocortical connectivity (INC) are altered in the neocortices of aging blind mice. Sensory inputs from different modalities during development likely play a major role in the development of cortical areal and thalamic nuclear boundaries. We suggest that early patterning by prenatal retinal activity combined with persistent gene expression within the thalamus and cortex is sufficient to establish and preserve a small but present LGN and V1 into late adulthood. PMID:26257648

  12. Expression and Function of S100A8/A9 (Calprotectin) in Human Typhoid Fever and the Murine Salmonella Model

    PubMed Central

    De Jong, Hanna K.; Achouiti, Ahmed; Koh, Gavin C. K. W.; Parry, Christopher M.; Baker, Stephen; Faiz, Mohammed Abul; van Dissel, Jaap T.; Vollaard, Albert M.; van Leeuwen, Ester M. M.; Roelofs, Joris J. T. H.; de Vos, Alex F.; Roth, Johannes; van der Poll, Tom; Vogl, Thomas; Wiersinga, Willem Joost

    2015-01-01

    Background Typhoid fever, caused by the Gram-negative bacterium Salmonella enterica serovar Typhi, is a major cause of community-acquired bacteremia and death worldwide. S100A8 (MRP8) and S100A9 (MRP14) form bioactive antimicrobial heterodimers (calprotectin) that can activate Toll-like receptor 4, promoting lethal, endotoxin-induced shock and multi-organ failure. We aimed to characterize the expression and function of S100A8/A9 in patients with typhoid fever and in a murine invasive Salmonella model. Methods and principal findings S100A8/A9 protein levels were determined in acute phase plasma or feces from 28 Bangladeshi patients, and convalescent phase plasma from 60 Indonesian patients with blood culture or PCR-confirmed typhoid fever, and compared to 98 healthy control subjects. To functionally characterize the role of S100A8/A9, we challenged wildtype (WT) and S100A9-/- mice with S. Typhimurium and determined bacterial loads and inflammation 2- and 5- days post infection. We further assessed the antimicrobial function of recombinant S100A8/A9 on S. Typhimurium and S. Typhi replication in vitro. Typhoid fever patients demonstrated a marked increase of S100A8/A9 in acute phase plasma and feces and this increases correlated with duration of fever prior to admission. S100A8/A9 directly inhibited the growth of S. Typhimurium and S. Typhi in vitro in a dose and time dependent fashion. WT mice inoculated with S. Typhimurium showed increased levels of S100A8/A9 in both the liver and the systemic compartment but S100A9-/- mice were indistinguishable from WT mice with respect to bacterial growth, survival, and inflammatory responses, as determined by cytokine release, histopathology and organ injury. Conclusion S100A8/A9 is markedly elevated in human typhoid, correlates with duration of fever prior to admission and directly inhibits the growth of S. Typhimurium and S. Typhi in vitro. Despite elevated levels in the murine invasive Salmonella model, S100A8/A9 does not

  13. Murine bone marrow-derived mast cells express chemoattractant receptor-homologous molecule expressed on T-helper class 2 cells (CRTh2).

    PubMed

    Boehme, Stefen A; Franz-Bacon, Karin; Chen, Edward P; Ly, Tai Wei; Kawakami, Yuko; Bacon, Kevin B

    2009-06-01

    Mast cells are bone marrow-derived effector cells that can initiate inflammatory responses to infectious organisms or allergens by releasing a multitude of pro-inflammatory factors including prostaglandin (PG) D(2). We demonstrate that primary murine bone marrow-derived mast cells (BMMCs) express the PGD(2) receptor; chemoattractant receptor-homologous molecule expressed on T(h) class 2 cells (CRT(h)2). Activation of CRT(h)2 on BMMC by PGD(2) or the CRT(h)2-specific agonist, 13,14-dihydro-15-keto-prostaglandin D(2) (DK-PGD(2)), resulted in signaling response including Ca(2+) mobilization and phosphorylation of the p42/p44 extracellular signal-regulated kinases (ERKs) kinases. Phosphorylation of the ERKs could be blocked by pertussis toxin, as well as a small molecule antagonist of CRT(h)2, Compound A. Activation of CRT(h)2 on BMMC also resulted in the up-regulation of CD23 and CD30 on the cell surface, as well as CD62L shedding. Finally, PGD(2) and DK-PGD(2) induced the migration of BMMC in vitro and in vivo in response to an intra-dermal DK-PGD(2) injection. Both these processes were inhibited by the CRT(h)2 antagonist. These results raise the possibility that the functional consequences of the PGD(2)-CRT(h)2 interaction on mast cells may be relevant in allergic inflammation. PMID:19346259

  14. Gene expression profiles of murine fatty liver induced by the administration of valproic acid

    SciTech Connect

    Lee, Min-Ho; Hong, Il; Kim, Mingoo; Lee, Byung Hoon; Kim, Ju-Han; Kang, Kyung-Sun; Kim, Hyung-Lae; Yoon, Byung-Il; Chung, Heekyoung; Kong, Gu; Lee, Mi-Ock . E-mail: molee@snu.ac.kr

    2007-04-01

    Valproic acid (VPA) has been used as anticonvulsants, however, it induces hepatotoxicity such as microvesicular steatosis and necrosis in the liver. To explore the mechanisms of VPA-induced steatosis, we profiled the gene expression patterns of the mouse liver that were altered by treatment with VPA using microarray analysis. VPA was orally administered as a single dose of 100 mg/kg (low-dose) or 1000 mg/kg (high-dose) to ICR mice and the animals were killed at 6, 24, or 72 h after treatment. Serum alanine aminotransferase and aspartate aminotransferase levels were not significantly altered in the experimental animals. However, symptoms of steatosis were observed at 72 h with low-dose and at 24 h and 72 h with high-dose. After microarray data analysis, 1910 genes were selected by two-way ANOVA (P < 0.05) as VPA-responsive genes. Hierarchical clustering revealed that gene expression changes depended on the time rather than the dose of VPA treatment. Gene profiling data showed striking changes in the expression of genes associated with lipid, fatty acid, and steroid metabolism, oncogenesis, signal transduction, and development. Functional categorization of 1156 characteristically up- and down-regulated genes (cutoff > 1.5-fold) revealed that 60 genes were involved in lipid metabolism that was interconnected with biological pathways for biosynthesis of triglyceride and cholesterol, catabolism of fatty acid, and lipid transport. This gene expression profile may be associated with the known steatogenic hepatotoxicity of VPA and it may provide useful information for prediction of hepatotoxicity of unknown chemicals or new drug candidates through pattern recognition.

  15. Murine immune responses to a Plasmodium vivax-derived chimeric recombinant protein expressed in Brassica napus

    PubMed Central

    2011-01-01

    Background To develop a plant-based vaccine against Plasmodium vivax, two P. vivax candidate proteins were chosen. First, the merozoite surface protein-1 (MSP-1), a major asexual blood stage antigen that is currently considered a strong vaccine candidate. Second, the circumsporozoite protein (CSP), a component of sporozoites that contains a B-cell epitope. Methods A synthetic chimeric recombinant 516 bp gene encoding containing PvMSP-1, a Pro-Gly linker motif, and PvCSP was synthesized; the gene, named MLC, encoded a total of 172 amino acids. The recombinant gene was modified with regard to codon usage to optimize gene expression in Brassica napus. The Ti plasmid inducible gene transfer system was used for MLC chimeric recombinant gene expression in B. napus. Gene expression was confirmed by polymerase chain reaction (PCR), beta-glucuronidase reporter gene (GUS) assay, and Western blot. Results The MLC chimeric recombinant protein expressed in B. napus had a molecular weight of approximately 25 kDa. It exhibited a clinical sensitivity of 84.21% (n = 38) and a clinical specificity of 100% (n = 24) as assessed by enzyme-linked immunosorbent assay (ELISA). Oral immunization of BALB/c mice with MLC chimeric recombinant protein successfully induced antigen-specific IgG1 production. Additionally, the Th1-related cytokines IL-12 (p40), TNF, and IFN-γ were significantly increased in the spleens of the BALB/c mice. Conclusions The chimeric MLC recombinant protein produced in B. napus has potential as both as an antigen for diagnosis and as a valuable vaccine candidate for oral immunization against vivax malaria. PMID:21529346

  16. Tumor necrosis factor-alpha inhibits albumin gene expression in a murine model of cachexia.

    PubMed Central

    Brenner, D A; Buck, M; Feitelberg, S P; Chojkier, M

    1990-01-01

    The mechanisms responsible for decreased serum albumin levels in patients with cachexia-associated infection, inflammation, and cancer are unknown. Since tumor necrosis factor-alpha (TNF alpha) is elevated in cachexia-associated diseases, and chronic administration of TNF alpha induces cachexia in animal models, we assessed the regulation of albumin gene expression by TNF alpha in vivo. In this animal model of cachexia, Chinese hamster ovary cells transfected with the functional gene for human TNF alpha were inoculated into nude mice (TNF alpha mice). TNF alpha mice became cachectic and manifested decreased serum albumin levels, albumin synthesis, and albumin mRNA levels. However, even before the TNF alpha mice lost weight, their albumin mRNA steady-state levels were decreased approximately 90%, and in situ hybridization revealed a low level of albumin gene expression throughout the hepatic lobule. The mRNA levels of several other genes were unchanged. Hepatic nuclei from TNF alpha mice before the onset of weight loss were markedly less active in transcribing the albumin gene than hepatic nuclei from control mice. Therefore, TNF alpha selectively inhibits the genetic expression of albumin in this model before weight loss. Images PMID:2295699

  17. Schlafen 4-expressing myeloid-derived suppressor cells are induced during murine gastric metaplasia.

    PubMed

    Ding, Lin; Hayes, Michael M; Photenhauer, Amanda; Eaton, Kathryn A; Li, Qian; Ocadiz-Ruiz, Ramon; Merchant, Juanita L

    2016-08-01

    Chronic Helicobacter pylori infection triggers neoplastic transformation of the gastric mucosa in a small subset of patients, but the risk factors that induce progression to gastric metaplasia have not been identified. Prior to cancer development, the oxyntic gastric glands atrophy and are replaced by metaplastic cells in response to chronic gastritis. Previously, we identified schlafen 4 (Slfn4) as a GLI1 target gene and myeloid differentiation factor that correlates with spasmolytic polypeptide-expressing metaplasia (SPEM) in mice. Here, we tested the hypothesis that migration of SLFN4-expressing cells from the bone marrow to peripheral organs predicts preneoplastic changes in the gastric microenvironment. Lineage tracing in Helicobacter-infected Slfn4 reporter mice revealed that SLFN4+ cells migrated to the stomach, where they exhibited myeloid-derived suppressor cell (MDSC) markers and acquired the ability to inhibit T cell proliferation. SLFN4+ MDSCs were not observed in infected GLI1-deficient mice. Overexpression of sonic hedgehog ligand (SHH) in infected WT mice accelerated the appearance of SLFN4+ MDSCs in the gastric corpus. Similarly, in the stomachs of H. pylori-infected patients, the human SLFN4 ortholog SLFN12L colocalized to cells that expressed MDSC surface markers CD15+CD33+HLA-DRlo. Together, these results indicate that SLFN4 marks a GLI1-dependent population of MDSCs that predict a shift in the gastric mucosa to a metaplastic phenotype. PMID:27427984

  18. Lactobacillus rhamnosus GG increases Toll-like receptor 3 gene expression in murine small intestine ex vivo and in vivo.

    PubMed

    Aoki-Yoshida, A; Saito, S; Fukiya, S; Aoki, R; Takayama, Y; Suzuki, C; Sonoyama, K

    2016-06-01

    Administration of Lactobacillus rhamnosus GG (LGG) has been reported to be therapeutically effective against acute secretory diarrhoea resulting from the structural and functional intestinal mucosal lesions induced by rotavirus infection; however, the underlying mechanisms remain to be completely elucidated. Because Toll-like receptor 3 (TLR3) plays a key role in the innate immune responses following the recognition of rotavirus, the present study examined whether LGG influences TLR3 gene expression in murine small intestine ex vivo and in vivo. We employed cultured intestinal organoids derived from small intestinal crypts as an ex vivo tissue model. LGG supplementation increased TLR3 mRNA levels in the intestinal organoids, as estimated by quantitative real-time polymerase chain reaction. Likewise, single and 7-day consecutive daily administrations of LGG increased TLR3 mRNA levels in the small intestine of C57BL/6N mice. The mRNA levels of other TLRs were not substantially altered both ex vivo and in vivo. In addition, LGG supplementation increased the mRNA levels of an antiviral type 1 interferon, interferon-α (IFN-α), and a neutrophil chemokine, CXCL1, upon stimulation with a synthetic TLR3 ligand, poly(I:C) in the intestinal organoids. LGG administration did not alter IFN-α and CXCL1 mRNA levels in the small intestine in vivo. Supplementation of other bacterial strains, Bifidobacterium bifidum and Lactobacillus paracasei, failed to increase TLR3 and poly(I:C)-stimulated CXCL1 mRNA levels ex vivo. We propose that upregulation of TLR3 gene expression may play a pivotal role in the therapeutic efficacy of LGG against rotavirus-associated diarrhoea. In addition, we demonstrated that intestinal organoids may be a promising ex vivo tissue model for investigating host-pathogen interactions and the antiviral action of probiotics in the intestinal epithelium. PMID:27013459

  19. Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells.

    PubMed

    Murakami, Takashi; Maki, Wusi; Cardones, Adela R; Fang, Hui; Tun Kyi, Adrian; Nestle, Frank O; Hwang, Sam T

    2002-12-15

    The chemokine receptors CC chemokine receptor (CCR) 7 and CXC chemokine receptor (CXCR) 4 have been implicated in cancer metastasis. To evaluate whether CXCR4 is sufficient to increase tumor metastasis in an organ-specific manner, we transduced murine B16 melanoma cells with CXCR4 (CXCR4-B16) and followed the metastatic fate of the transduced cells in both i.v. and s.c. inoculation models of metastasis. CXCR4-B16 cells demonstrated marked increases (>10-fold) in pulmonary metastasis compared with vector (pLNCX2)-B16 after i.v. and s.c. inoculation of tumor cells. The increase in metastasis could be completely inhibited by T22, a small peptide antagonist of CXCR4. As early as 24 and 48 h after i.v. injection, CXCR4-B16 cells were significantly increased in the lung compared with control B16 cells by 5- and 10-fold (P < 0.05), respectively. CXCR4-B16 cells adhered better to both dermal and pulmonary microvascular endothelial cells relative to control B16 cells. Moreover, CXCL12 promoted the growth of CXCR4-B16 cells in vitro. Whereas expression of CXCR4 in B16 cells dramatically enhanced pulmonary metastasis, metastasis to the lymph nodes, liver, and kidney was rare. Immunohistochemical staining of both primary human cutaneous melanoma and pulmonary metastases revealed CXCR4 expression. Thus, CXCR4 plays a potentially important role in promoting organ-selective metastasis, possibly by stimulating tumor adhesion to microvascular endothelial cells and by enhancing the growth of tumor cells under stress. PMID:12499276

  20. Differential gene expression in the testes of different murine strains under normal and hyperthermic conditions.

    PubMed

    Li, Ying; Zhou, Qing; Hively, Randy; Yang, Lizhong; Small, Christopher; Griswold, Michael D

    2009-01-01

    Cryptorchidism and scrotal heating result in abnormal spermatogenesis, but the mechanism(s) prescribing this temperature sensitivity are unknown. It was previously reported that the AKR/N or MRL/MpJ-+/+ mouse testis is more heat-resistant than the testis from the C57BL/6 strain. We have attempted to probe into the mechanism(s) involved in heat sensitivity by examining global gene expression profiles of normal and heat-treated testes from C57BL/6, AKR/N, and MRL/MpJ-+/+ mice by microarray analysis. In the normal C57BL/6 testis, 415 and 416 transcripts were differentially expressed (at least 2-fold higher or lower) when compared with the normal AKR/N and MRL/MpJ-+/+ testis, respectively. The AKR/N and MRL/MpJ-+/+ strains revealed 268 differentially expressed transcripts between them. There were 231 transcripts differentially expressed between C57BL/6 and 2 purported heat-resistant strains, AKR/N and MRL/MpJ-+/+. Next, the testes of C57BL/6 and AKR/N mice were exposed to 43 degrees C for 15 minutes and harvested at different time points for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) studies and microarrays. An increase of TUNEL-positive germ cell numbers was significant 8 hours after heat exposure in the C57BL/6 mouse. However, this increase was not observed in the AKR/N mouse until 10 hours after heat exposure. All tubules showed germ cell loss and disruption in C57BL/6 testis 24 hours after heat shock. In contrast, although a number of seminiferous tubules showed an abnormal morphology 24 hours post-heat shock in the AKR/N mouse, many tubules still retained a normal structure. Numerous transcripts exhibited differential regulation between the 2 strains within 24 hours after heat exposure. The differentially expressed transcripts in the testes 8 hours after heat exposure were targeted to identify the genes involved in the initial response rather than those attributable to germ cell loss. Twenty transcripts were significantly down

  1. Cloning of murine ferrochelatase.

    PubMed Central

    Brenner, D A; Frasier, F

    1991-01-01

    Ferrochelatase (protoheme ferro-lyase, EC 4.99.1.1) catalyzes the last step in the heme biosynthetic pathway, the chelation of ferrous iron and protoporphyrin to form heme. The activity of ferrochelatase is deficient in the inherited disease protoporphyria. In this study, murine ferrochelatase cDNAs were obtained by screening cDNA libraries with an oligonucleotide probe. The derived amino acid sequence of murine ferrochelatase has 47% identity with the recently cloned Saccharomyces cerevisiae ferrochelatase, but it is not significantly similar to other published sequences. Results of Southern blotting are consistent with a single murine ferrochelatase gene, while Northern blotting demonstrates two ferrochelatase transcripts in all tissues examined. The ferrochelatase protein and mRNAs have different relative concentrations in different tissues. The cloning of murine ferrochelatase cDNAs provides the basis for future studies on ferrochelatase gene expression and on the identification of the molecular defect in protoporphyria. Images PMID:1704134

  2. Expression of murine leukemia viruses in RFM mice with host versus graft disease after perinatal inoculation of (T6 X RFM)F1 lymphohemopoietic cells.

    PubMed Central

    Cross, S S; Brede, G; Tucker, H S; Maloney, M; Montour, J L; Hard, R C

    1983-01-01

    Host versus graft disease is the fatal syndrome of altered immunity that follows the perinatal inoculation of related F1 hybrid spleen cells to susceptible strains of inbred mice. The allogenic reaction results in severe depletion of T-lymphocytes, but causes hyperplasia and hypersecretion of B-cells. Among the long-term survivors of acute host versus graft reactions, there is a high incidence of nonthymic lymphomas associated with ecotropic murine leukemia virus that may be of donor F1 origin. The present studies were done to determine whether ecotropic murine leukemia virus played any role in the pathogenesis of acute host versus graft disease in RFM mice perinatally inoculated with (T6 X RFM)F1 spleen cells. In RFM/(T6 X RFM)F1 chimeras, N-tropic murine leukemia virus can be detected as early as 3 days. The progression of the disease was accompanied by increasing viral expression. The inoculation of N-tropic virus of F1 donor origin into RFM neonates failed to induce disease, although the virus proliferated. Detection of progressively rising titers of antibody to murine leukemia virus linked the virus to the development of hyperimmunoglobulinemia by virtue of its ability to serve as a replicating source of antigens. These and other studies provided evidence that the seemingly paradoxical appearance of hyperimmunoglobulinemia in T-cell-deficient mice with the host versus graft syndrome is due, at least in part, to the stimulation of presensitized F1 donor B-cells, which are not destroyed in the allogenic reaction, as are the T-cells. Another unusual finding was the detection of polytropic murine leukemia virus in 25-day-old RFM/(T6 X RFM)F1 chimeras. It is suggested that the allogenic host versus graft reaction favored the formation of recombinants. PMID:6135664

  3. Intraosseous Delivery of Lentiviral Vectors Targeting Factor VIII Expression in Platelets Corrects Murine Hemophilia A

    PubMed Central

    Wang, Xuefeng; Shin, Simon C; Chiang, Andy F J; Khan, Iram; Pan, Dao; Rawlings, David J; Miao, Carol H

    2015-01-01

    Intraosseous (IO) infusion of lentiviral vectors (LVs) for in situ gene transfer into bone marrow may avoid specific challenges posed by ex vivo gene delivery, including, in particular, the requirement of preconditioning. We utilized IO delivery of LVs encoding a GFP or factor VIII (FVIII) transgene directed by ubiquitous promoters (a MND or EF-1α-short element; M-GFP-LV, E-F8-LV) or a platelet-specific, glycoprotein-1bα promoter (G-GFP-LV, G-F8-LV). A single IO infusion of M-GFP-LV or G-GFP-LV achieved long-term and efficient GFP expression in Lineage-Sca1+c-Kit+ hematopoietic stem cells and platelets, respectively. While E-F8-LV produced initially high-level FVIII expression, robust anti-FVIII immune responses eliminated functional FVIII in circulation. In contrast, IO delivery of G-F8-LV achieved long-term platelet-specific expression of FVIII, resulting in partial correction of hemophilia A. Furthermore, similar clinical benefit with G-F8-LV was achieved in animals with pre-existing anti-FVIII inhibitors. These findings further support platelets as an ideal FVIII delivery vehicle, as FVIII, stored in α-granules, is protected from neutralizing antibodies and, during bleeding, activated platelets locally excrete FVIII to promote clot formation. Overall, a single IO infusion of G-F8-LV was sufficient to correct hemophilia phenotype for long term, indicating that this approach may provide an effective means to permanently treat FVIII deficiency. PMID:25655313

  4. The effects of deoxynivalenol on gene expression in the murine thymus

    SciTech Connect

    Kol, Sandra W.M. van; Hendriksen, Peter J.M.; Loveren, Henk van; Peijnenburg, Ad

    2011-02-01

    Deoxynivalenol (DON) is a mycotoxin produced by several Fusarium species and is often detected in grains. Because of its high abundance, there has been a large interest in the effects of DON in animals and humans. DON is known to be immunosuppressive at high concentrations and immunostimulatory at low concentrations. The present study aimed to acquire insight into the modes of action of DON. For this, C57Bl6 mice were orally exposed to 5, 10, or 25 mg/kg bw DON for 3, 6, or 24 h and thymuses were subjected to genome-wide expression microarray analysis. Gene set enrichment analysis (GSEA) demonstrated that DON downregulated genes involved in proliferation, mitochondria, protein synthesis, and ribosomal proteins. Furthermore, GSEA showed a selective downregulation of genes highly expressed at the early precursor thymocytes stage. This indicates that early precursor thymocytes, particularly at the double-positive CD4+CD8+ stage, are more vulnerable to DON than very early or late precursor thymocytes. There was a large overlap of genes upregulated by DON with genes previously reported to be either upregulated during T cell activation or upregulated during negative selection of thymocytes that recognize 'self-antigens'. This indicates that DON induces cellular events that also occur after activation of the T cell receptor, for example, release of calcium from the endoplasmatic reticulum. This T cell activation in the thymus then evokes negative selection and depletion of thymocytes, which provides a plausible explanation for the high sensitivity of the thymus for DON exposure. The expression patterns of four genes indicative for some of the processes that were affected after DON treatment were confirmed using real-time PCR. Immunocytological experiments with primary mouse thymocytes demonstrated the translocation of NFAT from the cytoplasm into the nucleus upon exposure top DON, thus providing further evidence for the involvement of T cell activation.

  5. Molecular genetic mechanisms of allelic specific regulation of murine Comt expression.

    PubMed

    Segall, Samantha K; Shabalina, Svetlana A; Meloto, Carolina B; Wen, Xia; Cunningham, Danielle; Tarantino, Lisa M; Wiltshire, Tim; Gauthier, Josée; Tohyama, Sarasa; Martin, Loren J; Mogil, Jeffrey S; Diatchenko, Luda

    2015-10-01

    A functional allele of the mouse catechol-O-methyltransferase (Comt) gene is defined by the insertion of a B2 short interspersed repeat element in its 3'-untranslated region (UTR). This allele has been associated with a number of phenotypes, such as pain and anxiety. In comparison with mice carrying the ancestral allele (Comt+), Comt B2i mice show higher Comt mRNA and enzymatic activity levels. Here, we investigated the molecular genetic mechanisms underlying this allelic specific regulation of Comt expression. Insertion of the B2 element introduces an early polyadenylation signal generating a shorter Comt transcript, in addition to the longer ancestral mRNA. Comparative analysis and in silico prediction of Comt mRNA potential targets within the transcript 3' to the B2 element was performed and allowed choosing microRNA (miRNA) candidates for experimental screening: mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667. Cell transfection with each miRNA downregulated the expression of the ancestral transcript and COMT enzymatic activity. Our in vivo experiments showed that mmu-miR-667-3p is strongly correlated with decreasing amounts of Comt mRNA in the brain, and lentiviral injections of mmu-miR-3470a, mmu-miR-3470b, and mmu-miR-667 increase hypersensitivity in the mouse formalin model, consistent with reduced COMT activity. In summary, our data demonstrate that the Comt+ transcript contains regulatory miRNA signals in its 3'-untranslated region leading to mRNA degradation; these signals, however, are absent in the shorter transcript, resulting in higher mRNA expression and activity levels. PMID:26067582

  6. Impact of murine intestinal apolipoprotein A-IV expression on regional lipid absorption, gene expression, and growth

    PubMed Central

    Simon, Trang; Cook, Victoria R.; Rao, Anuradha; Weinberg, Richard B.

    2011-01-01

    Apolipoprotein A-IV (apoA-IV) is synthesized by intestinal enterocytes during lipid absorption and secreted into lymph on the surface of nascent chylomicrons. A compelling body of evidence supports a central role of apoA-IV in facilitating intestinal lipid absorption and in regulating satiety, yet a longstanding conundrum is that no abnormalities in fat absorption, feeding behavior, or weight gain were observed in chow-fed apoA-IV knockout (A4KO) mice. Herein we reevaluated the impact of apoA-IV expression in C57BL6 and A4KO mice fed a high-fat diet. Fat balance and lymph cannulation studies found no effect of intestinal apoA-IV gene expression on the efficiency of fatty acid absorption, but gut sac transport studies revealed that apoA-IV differentially modulates lipid transport and the number and size of secreted triglyceride-rich lipoproteins in different anatomic regions of the small bowel. ApoA-IV gene deletion increased expression of other genes involved in chylomicron assembly, impaired the ability of A4KO mice to gain weight and increase adipose tissue mass, and increased the distal gut hormone response to a high-fat diet. Together these findings suggest that apoA-IV may play a unique role in integrating feeding behavior, intestinal lipid absorption, and energy storage. PMID:21840868

  7. Generation and characterization of regulatory dendritic cells derived from murine induced pluripotent stem cells

    PubMed Central

    Zhang, Qi; Fujino, Masayuki; Iwasaki, Shizue; Hirano, Hiroshi; Cai, Songjie; Kitajima, Yuya; Xu, Jinhua; Li, Xiao-Kang

    2014-01-01

    Regulatory dendritic cells (DCregs) represent a potential therapeutic tool for assessing a variety of immune overreaction conditions; however, current approaches for generating DCregs for therapeutic purposes are limited. We attempted to generate and characterize DCregs from murine induced pluripotent stem (iPS) cells. The iPS cells co-cultured with OP9 cells displayed mesodermally differentiated flat colonies. GM-CSF drove most of the colonies exhibiting a differentiated morphology. Thereafter, cells became morphologically heterologous under the effects of TGF-β and IL-10. Most of the floating cells developed an irregular shape with areas of protrusion. The generated iPS-DCregs demonstrated high CD11b/c and low CD40, CD80, CD86 and MHC-II expressions with a high antigen uptake ability and poor T-cell stimulatory function. Importantly, iPS-DCregs showed immune responsiveness regulation effects both in vitro and in vivo and the ability to generate regulatory T-cells in vitro. Our result illustrates a feasible approach for generating functional DCregs from murine iPS cells. PMID:24496181

  8. A potent adjuvant effect of CD40 antibody attached to antigen

    PubMed Central

    Barr, Tom A; Mccormick, Adele L; Carlring, Jennifer; Heath, Andrew W

    2003-01-01

    There is great potential for novel vaccines based on recombinant proteins and synthetic peptides. Unfortunately these antigens often lack the immunogenicity of whole, killed pathogens used in traditional vaccines. Thus there is strong interest in the identification of immunological adjuvants with low reactogenicity, but high potency, to enhance immune responses and realize the potential of these new vaccine strategies. CD40 antibodies have been shown to have adjuvant effects when administered at very high doses. These large doses are impractical and induce a cascade of cytokine release giving rise to septic shock-like symptoms, as well as splenomegaly and polyclonal antibody production. We show here that a very small amount of CD40 antibody can exhibit potent adjuvant effects when attached to soluble antigen. The lack of detectable systemic effects indicates that this method may be a powerful and practical means of enhancing the efficacy of recombinant vaccines. PMID:12709021

  9. Global Gene Expression Profiling in R155H Knock-In Murine Model of VCP Disease

    PubMed Central

    Nalbandian, Angèle; Ghimbovschi, Svetlana; Wang, Zuyi; Knoblach, Susan; Llewellyn, Katrina J.; Vesa, Jouni; Hoffman, Eric P.; Kimonis, Virginia E.

    2014-01-01

    Dominant mutations in the valosin containing protein (VCP) gene cause inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), which is characterized by progressive muscle weakness, dysfunction in bone remodeling, and frontotemporal dementia. More recently, VCP has been linked to 2% of familial amyotrophic lateral sclerosis (ALS) cases. VCP plays a significant role in a plethora of cellular functions including membrane fusion, transcription activation, nuclear envelope reconstruction, post-mitotic organelle reassembly, cell cycle control. To elucidate the pathological mechanisms underlying the VCP disease progression, we have previously generated a VCPR155H/+ mouse model with the R155H mutation. Histological analyses of mutant muscle showed vacuolization of myofibrils, centrally located nuclei, and disorganized muscle fibers. Global expression profiling of VCPR155H/+ mice using gene annotations by DAVID identified key dysregulated signaling pathways including genes involved in the physiological system development and function, diseases and disorders, and molecular and cellular functions. There were a total of 212 significantly dysregulated genes, several of which are involved in the regulation of proteasomal function and NF-κB signaling cascade. Findings of the gene expression study were validated by using quantitative reverse transcriptase polymerase chain reaction analyses to test genes involved in various signaling cascades. This investigation reveals the importance of the VCPR155H/+ mouse model in the understanding of cellular and molecular mechanisms causing VCP-associated neurodegenerative diseases and in the discovery of novel therapeutic advancements and strategies for patients suffering with these debilitating disorders. PMID:25388089

  10. Influence of helper T cells on the expression of a murine intrastrain crossreactive idiotype.

    PubMed Central

    Hathcock, K S; Gurish, M F; Nisonoff, A; Conger, J D; Hodes, R J

    1986-01-01

    The requirement for idiotype-specific helper T (Th) cells in the generation of a major intrastrain crossreactive idiotype was investigated. This idiotype, designated CRIA, is associated with a large proportion of anti-p-azobenzenearsonate (anti-Ar) antibodies in A/J mice. Secondary in vitro responses were studied. Using carrier-primed heterogeneous Th-cell populations, it was found that CRIA expression is determined by the mouse strain that provides the responding B cells and is independent of the strain of the Th cells functioning in vitro. Thus, A/J or A.BY (Ighe) B-plus-accessory-cell populations, primed in vivo to keyhole limpet hemocyanin-Ar (KLH-Ar), generated CRIA-dominant responses in vitro in the presence of KLH-Ar regardless of whether the KLH-primed Th cells were derived from CRIA+ strains (A/J or A.BY, Ighe) or CRIA- strains (B10.A or C57BL/10, Ighb). Further, when major histocompatibility complex-restricted, KLH-specific Th-cell clones were used, the CRIA dominance of the Ar-specific responses was again determined by the strain providing B plus accessory cells. Similar levels of expression of CRIA in Ar-specific antibodies were generated in the presence of heterogeneous or cloned Th cells. The results suggest that there is no absolute requirement for idiotype-specific Th cells in generating an Ar-specific secondary antibody response in vitro. PMID:2934739

  11. Murine bone cell lines as models for spaceflight induced effects on differentiation and gene expression

    NASA Astrophysics Data System (ADS)

    Lau, P.; Hellweg, C. E.; Baumstark-Khan, C.; Reitz, G.

    Critical health factors for space crews especially on long-term missions are radiation exposure and the absence of gravity DNA double strand breaks DSB are presumed to be the most deleterious DNA lesions after radiation as they disrupt both DNA strands in close proximity Besides radiation risk the absence of gravity influences the complex skeletal apparatus concerning muscle and especially bone remodelling which results from mechanical forces exerting on the body Bone is a dynamic tissue which is life-long remodelled by cells from the osteoblast and osteoclast lineage Any imbalance of this system leads to pathological conditions such as osteoporosis or osteopetrosis Osteoblastic cells play a crucial role in bone matrix synthesis and differentiate either into bone-lining cells or into osteocytes Premature terminal differentiation has been reported to be induced by a number of DNA damaging or cell stress inducing agents including ionising and ultraviolet radiation as well as treatment with mitomycin C In the present study we compare the effects of sequential differentiation by adding osteoinductive substances ss -glycerophosphate and ascorbic acid Radiation-induced premature differentiation was investigated regarding the biosynthesis of specific osteogenic marker molecules and the differentiation dependent expression of marker genes The bone cell model established in our laboratory consists of the osteocyte cell line MLO-Y4 the osteoblast cell line OCT-1 and the subclones 4 and 24 of the osteoblast cell line MC3T3-E1 expressing several

  12. Immunisation with proteins expressed during chronic murine melioidosis provides enhanced protection against disease.

    PubMed

    Champion, Olivia L; Gourlay, Louise J; Scott, Andrew E; Lassaux, Patricia; Conejero, Laura; Perletti, Lucia; Hemsley, Claudia; Prior, Joann; Bancroft, Gregory; Bolognesi, Martino; Titball, Richard W

    2016-03-29

    There is an urgent need for an effective vaccine against human disease caused by Burkholderia pseudomallei, and although a wide range of candidates have been tested in mice none provide high level protection. We considered this might reflect the inability of these vaccine candidates to protect against chronic disease. Using Q-RT PCR we have identified 6 genes which are expressed in bacteria colonising spleens and lungs of chronically infected mice. Three of the genes (BPSL1897, BPSL3369 and BPSL2287) have been expressed in Escherichia coli and the encoded proteins purified. We have also included BPSL2765, a protein known to induce immune responses associated with a reduced incidence of chronic/recurrent disease in humans. Immunisation of mice with a combination of these antigens resulted in the induction of antibody responses against all of the proteins. Compared with mice immunised with capsular polysaccharide or LolC protein, mice immunised with the combination of chronic stage antigens showed enhanced protection against experimental disease in mice. PMID:26917010

  13. Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression.

    PubMed

    Pearson, Melanie M; Yep, Alejandra; Smith, Sara N; Mobley, Harry L T

    2011-07-01

    The enteric bacterium Proteus mirabilis is a common cause of complicated urinary tract infections. In this study, microarrays were used to analyze P. mirabilis gene expression in vivo from experimentally infected mice. Urine was collected at 1, 3, and 7 days postinfection, and RNA was isolated from bacteria in the urine for transcriptional analysis. Across nine microarrays, 471 genes were upregulated and 82 were downregulated in vivo compared to in vitro broth culture. Genes upregulated in vivo encoded mannose-resistant Proteus-like (MR/P) fimbriae, urease, iron uptake systems, amino acid and peptide transporters, pyruvate metabolism enzymes, and a portion of the tricarboxylic acid (TCA) cycle enzymes. Flagella were downregulated. Ammonia assimilation gene glnA (glutamine synthetase) was repressed in vivo, while gdhA (glutamate dehydrogenase) was upregulated in vivo. Contrary to our expectations, ammonia availability due to urease activity in P. mirabilis did not drive this gene expression. A gdhA mutant was growth deficient in minimal medium with citrate as the sole carbon source, and loss of gdhA resulted in a significant fitness defect in the mouse model of urinary tract infection. Unlike Escherichia coli, which represses gdhA and upregulates glnA in vivo and cannot utilize citrate, the data suggest that P. mirabilis uses glutamate dehydrogenase to monitor carbon-nitrogen balance, and this ability contributes to the pathogenic potential of P. mirabilis in the urinary tract. PMID:21505083

  14. Ethanol-related alterations in gene expression patterns in the developing murine hippocampus.

    PubMed

    Mandal, Chanchal; Park, Kyoung Sun; Jung, Kyoung Hwa; Chai, Young Gyu

    2015-08-01

    It is well known that consuming alcohol prior to and during pregnancy can cause harm to the developing fetus. Fetal alcohol spectrum disorder is a term commonly used to describe a range of disabilities that may arise from prenatal alcohol exposure such as fetal alcohol syndrome, partial fetal alcohol syndrome, alcohol-related neurodevelopmental disorders, and alcohol-related birth defects. Here, we report that maternal binge alcohol consumption alters several important genes that are involved in nervous system development in the mouse hippocampus at embryonic day 18. Microarray analysis revealed that Nova1, Ntng1, Gal, Neurog2, Neurod2, and Fezf2 gene expressions are altered in the fetal hippocampus. Pathway analysis also revealed the association of the calcium signaling pathway in addition to other pathways with the differentially expressed genes during early brain development. Alteration of such important genes and dynamics of the signaling pathways may cause neurodevelopmental disorders. Our findings offer insight into the molecular mechanism involved in neurodevelopmental disorders associated with alcohol-related defects. PMID:26063602

  15. Efficient expression of bioactive murine IL12 as a self-processing P2A polypeptide driven by inflammation-regulated promoters in tumor cell lines.

    PubMed

    Lorenzo, C; Pérez-Chacón, G; Garaulet, G; Mallorquín, Z; Zapata, J M; Rodríguez, A

    2015-11-01

    Interleukin 12 (IL12) is a heterodimeric proinflammatory cytokine that has shown promise as an anticancer agent. However, despite encouraging results in animal models, clinical trials involving IL12 have been unsuccessful due to toxic side effects associated with its systemic administration, prompting investigation into new delivery methods to confine IL12 expression to the tumor environment. In this study we used the self-cleaving property of the 2A peptide to express both codon-optimized murine IL12 subunits (muIL12opt) as a self-processing polypeptide (muIL12opt-P2A). We cloned muIL12opt-P2A driven by different inflammation-induced lentiviral expression systems to transduce murine tumor cell lines commonly employed in syngeneic tumor models. We confirmed the inducibility of these systems in vitro and in vivo and demonstrated the successful expression of both IL12 subunits and the release of bioactive IL12 upon proinflammatory stimulation in vitro. Therefore, IL12 release driven by these inflammation-regulated expression systems might be useful not only to address the impact of IL12 expression in the tumor environment but also to achieve a local IL12 release controlled by the inflammation state of the tumor, thus avoiding toxic side effects associated with systemic administration. PMID:26450626

  16. The γ3 Chain of Laminin is Widely But Differentially Expressed in Murine Basement Membranes: Expression and Functional Studies

    PubMed Central

    Li, Yong N.; Radner, Stephanie; French, Margaret M.; Pinzón-Duarte, Germán; Daly, Gerard H.; Burgeson, Robert E.; Koch, Manuel; Brunken, William J.

    2012-01-01

    Laminins are heterotrimeric extracellular glycoproteins found in, but not confined to, basement membranes (BMs). They are important components in formation of the molecular networks of BMs as well as in cell polarity, cell differentiation and tissue morphogenesis. Each laminin is composed by an α, a β and a γ chain. Previous studies have shown that the γ3 chain is partnered with either the β1 chain (in placenta) or β2 chain (in the CNS) (Libby et al., 2000). Several studies, including our own, suggested that the γ3 chain is expressed in both apical and basal compartments (Gersdorff et al., 2005; Koch et al., 1999; Yan and Cheng, 2006). This study investigates the expression pattern of the γ3 chain in mouse. We developed three new γ3-reactive antibodies, and we show that the γ3 chain is present in BMs. The distribution pattern is considerably more restricted than that of the γ1 chain and within any tissue there is differential deposition into BM compartments. This is particularly true in the retina and brain, where γ3 is uniquely expressed in a subset of the vascular basement membranes and the pial surface. We used conventional genetic ablation techniques to remove the γ3 chain in mice; unlike other laminin null mice (α5, β2, γ1 nulls) (Miner et al., 1998; Noakes et al., 1995; Smyth et al., 1999), these mice live a normal lifespan and have only minor abnormalities, the most striking of which are ectopic granule cells in the cerebellum and an apparent increase in capillary branching in the outer retina. These data support the suggestion that the γ3 chain is deposited in BMs and contributes some unique properties to their function, particularly in the nervous system. PMID:22222602

  17. Upregulated Tim-3/galectin-9 expressions in acute lung injury in a murine malarial model.

    PubMed

    Liu, Jinfeng; Xiao, Siyu; Huang, Shiguang; Pei, Fuquan; Lu, Fangli

    2016-02-01

    Malaria is the most relevant parasitic disease worldwide, and severe malaria is characterized by cerebral edema, acute lung injury (ALI), and multiple organ dysfunctions; however, the mechanisms of lung damage need to be better clarified. In this study, we used Kunming outbred mice infected with Plasmodium berghei ANKA (PbANKA) to elucidate the profiles of T cell immunoglobulin and mucin domain-3 (Tim-3) and its ligand galecin-9 (Gal-9) in the development of ALI. Mice were injected intraperitoneally with 10(6) PbANKA-infected red blood cells. The lungs and mediastinal lymph nodes (MLNs) were harvested at days 5, 10, 15, and 20 post infections (p.i.). The grade of lung injury was histopathologically evaluated. Tim-3- and Gal-9-positive cells in the lungs and MLNs were stained by immunohistochemistry, and the messenger RNA (mRNA) expressions of Tim-3, Gal-9, and related cytokines were assessed using quantitative real-time polymerase chain reaction (qRT-PCR). Bronchoalveolar lavage fluid (BALF) analyses were performed from days 18 to 20 p.i. The results showed that the pathological severities in the lungs were increased with times and the total protein level in the BALFs was significantly elevated in PbANKA-infected mice. The numbers of Gal-9(+) and Tim-3(+) cells in the lungs were significantly increased, and the mRNA levels of both Gal-9 and Tim-3 in the lungs and MLNs were over-expressed in PbANKA-infected mice. In conclusion, our data suggested that Tim-3/Gal-9 may play a role in PbANKA-induced ALI. PMID:26494364

  18. Genetic Variants of CD40 Gene Are Associated with Coronary Artery Disease and Blood Lipid Levels

    PubMed Central

    Zhou, Liting; Xie, Lin; Zheng, Dongchun; Li, Na; Zhu, Jian; Wang, Shuyue; Li, Bo; Ye, Lin

    2016-01-01

    Objectives. The present study aimed to evaluate the effect of CD40 and CXCR4 genes polymorphisms on CAD susceptibility and the blood lipid levels and history of cardiovascular risk factors in a Chinese Han population. Materials and Methods. A total of 583 unrelated patients with CAD and 540 controls were recruited. Two tag SNPs (rs4239702 and rs1535045) at the CD40 locus and one tag SNP (rs2228014) at the CXCR4 locus were genotyped using the SEQUENOM Mass-ARRAY system. Results. After adjusting the risk factors, the frequency of rs1535045-T allele was also higher in patients than controls. Haplotype analysis showed that the rs4239702(C)-rs1535045(T) haplotype was associated with CAD. People with rs4239702-TT genotype had higher blood lipid levels in case group while it was not in the control group. History of cardiovascular risk factors showed no association for the three SNPs in case group and control group. Conclusions. rs1535045 in CD40 gene is likely to be associated with CAD in the Chinese Han population. rs4239702(C)-rs1535045(T) haplotype was associated with CAD. Only in CAD patients, the blood lipid level of patients with rs4239702-TT genotype was higher than other patients. CXCR4 gene may not relate to CAD. PMID:27200368

  19. Crystallographic analysis of CD40 recognition and signaling by human TRAF2

    PubMed Central

    McWhirter, Sarah M.; Pullen, Steven S.; Holton, James M.; Crute, James J.; Kehry, Marilyn R.; Alber, Tom

    1999-01-01

    Tumor necrosis factor receptor superfamily members convey signals that promote diverse cellular responses. Receptor trimerization by extracellular ligands initiates signaling by recruiting members of the tumor necrosis factor receptor-associated factor (TRAF) family of adapter proteins to the receptor cytoplasmic domains. We report the 2.4-Å crystal structure of a 22-kDa, receptor-binding fragment of TRAF2 complexed with a functionally defined peptide from the cytoplasmic domain of the CD40 receptor. TRAF2 forms a mushroom-shaped trimer consisting of a coiled coil and a unique β-sandwich domain. Both domains mediate trimerization. The CD40 peptide binds in an extended conformation with every side chain in contact with a complementary groove on the rim of each TRAF monomer. The spacing between the CD40 binding sites on TRAF2 supports an elegant signaling mechanism in which trimeric, extracellular ligands preorganize the receptors to simultaneously recognize three sites on the TRAF trimer. PMID:10411888

  20. Anti-CD40 Ab- or 8-oxo-dG-enhanced Treg cells reduce development of experimental autoimmune encephalomyelitis via down-regulating migration and activation of mast cells.

    PubMed

    Hong, Gwan Ui; Kim, Nam Goo; Jeoung, Dooil; Ro, Jai Youl

    2013-07-15

    This study investigated whether anti-CD40 Ab and 8-oxo-dG attenuate mast cell migration and EAE development. Anti-CD40 Ab and 8-oxo-dG reduced EAE scores, mast cell numbers, expression of adhesion molecules, OX40L and Act1, levels of TNF-α, LTs, expression of cytokines, and co-localization of Treg cells and mast cells, all of which are increased in EAE-brain tissues. Each treatment enhanced Treg cells, expression of OX40, and cytokines related to suppressive function of Treg cells in EAE brain tissues. Act-BMMCs with Treg cells reduced expression of OX40L and CCL2/CCR2, VCAM-1, PECAM-1, [Ca²⁺]i levels, release of mediators, various signaling molecules, Act1 related to IL-17a signals versus those in act-BMMCs without Treg cells. The data suggest that IL-10- and IL-35-producing Foxp3⁺-Treg cells, enhanced by anti-CD40 Ab or 8-oxo-dG, suppress migration of mast cells through down-regulating the expression of adhesion molecules, and suppress mast cell activation through cell-to-cell cross-talk via OX40/OX40L in EAE development. PMID:23622820

  1. Gene structure, expression and chromosomal localization of murine theta class glutathione transferase mGSTT1-1.

    PubMed Central

    Whittington, A; Vichai, V; Webb, G; Baker, R; Pearson, W; Board, P

    1999-01-01

    We have isolated and characterized a cDNA and partial gene encoding a murine subfamily 1 Theta class glutathione transferase (GST). The cDNA derived from mouse GSTT1 has an open reading frame of 720 bp encoding a peptide of 240 amino acids with a calculated molecular mass of 27356 Da. The encoded protein shares only 51% deduced amino acid sequence identity with mouse GSTT2, but greater than 80% deduced amino acid sequence identity with rat GSTT1 and human GSTT1. Mouse GSTT1-1 was expressed in Escherichia coli as an N-terminal 6x histidine-tagged protein and purified using immobilized-metal affinity chromatography on nickel-agarose. The yield of the purified recombinant protein from E. coli cultures was approx. 14 mg/l. Recombinant mouse GSTT1-1 was catalytically active towards 1, 2-epoxy-3-(p-nitrophenoxy)propane, 4-nitrobenzyl chloride and dichloromethane. Low activity towards 1-menaphthyl sulphate and 1-chloro-2,4-dinitrobenzene was detected, whereas mouse GSTT1-1 was inactive towards ethacrynic acid. Recombinant mouse GSTT1-1 exhibited glutathione peroxidase activity towards cumene hydroperoxide and t-butyl hydroperoxide, but was inactive towards a range of secondary lipid-peroxidation products, such as the trans-alk-2-enals and trans,trans-alka-2,4-dienals. Mouse GSTT1 mRNA is most abundant in mouse liver and kidney, with some expression in intestinal mucosa. Mouse GSTT1 mRNA is induced in liver by phenobarbital, but not by butylated hydroxyanisole, beta-napthoflavone or isosafrole. The structure of mouse GSTT1 is conserved with that of the subfamily 2 Theta class GST genes mouse GSTT2 and rat GSTT2, comprising five exons interrupted by four introns. The mouse GSTT1 gene was found, by in situ hybridization, to be clustered with mouse GSTT2 on chromosome 10 at bands B5-C1. This region is syntenic with the location of the human Theta class GSTs clustered on chromosome 22q11.2. Similarity searches of a mouse-expressed sequence tag database suggest that there may

  2. Xenogeneic human p53 DNA vaccination by electroporation breaks immune tolerance to control murine tumors expressing mouse p53.

    PubMed

    Soong, Ruey-Shyang; Trieu, Janson; Lee, Sung Yong; He, Liangmei; Tsai, Ya-Chea; Wu, T-C; Hung, Chien-Fu

    2013-01-01

    The pivotal role of p53 as a tumor suppressor protein is illustrated by the fact that this protein is found mutated in more than 50% of human cancers. In most cases, mutations in p53 greatly increase the otherwise short half-life of this protein in normal tissue and cause it to accumulate in the cytoplasm of tumors. The overexpression of mutated p53 in tumor cells makes p53 a potentially desirable target for the development of cancer immunotherapy. However, p53 protein represents an endogenous tumor-associated antigen (TAA). Immunization against a self-antigen is challenging because an antigen-specific immune response likely generates only low affinity antigen-specific CD8(+) T-cells. This represents a bottleneck of tumor immunotherapy when targeting endogenous TAAs expressed by tumors. The objective of the current study is to develop a safe cancer immunotherapy using a naked DNA vaccine. The vaccine employs a xenogeneic p53 gene to break immune tolerance resulting in a potent therapeutic antitumor effect against tumors expressing mutated p53. Our study assessed the therapeutic antitumor effect after immunization with DNA encoding human p53 (hp53) or mouse p53 (mp53). Mice immunized with xenogeneic full length hp53 DNA plasmid intramuscularly followed by electroporation were protected against challenge with murine colon cancer MC38 while those immunized with mp53 DNA were not. In a therapeutic model, established MC38 tumors were also well controlled by treatment with hp53 DNA therapy in tumor bearing mice compared to mp53 DNA. Mice vaccinated with hp53 DNA plasmid also exhibited an increase in mp53-specific CD8(+) T-cell precursors compared to vaccination with mp53 DNA. Antibody depletion experiments also demonstrated that CD8(+) T-cells play crucial roles in the antitumor effects. This study showed intramuscular vaccination with xenogeneic p53 DNA vaccine followed by electroporation is capable of inducing potent antitumor effects against tumors expressing mutated

  3. Does Pattern Scan Laser (PASCAL) photocoagulation really induce less VEGF expression in murine retina than conventional laser treatment?

    PubMed

    Konac, Ece; Sonmez, Kenan; Bahcelioglu, Meltem; Kaplanoglu, Gulnur Take; Varol, Nuray; Sarac, Gulce Naz; Ozcan, P Yasin

    2014-10-01

    To investigate the differences in the mRNA and protein expression levels of vascular endothelial growth factor (VEGF) in murine retina between mice subjected to conventional laser (AG) and those subjected to Pattern Scan Laser (PASCAL) system. Male C57BL/6 mice were randomly assigned to one of three groups: Group 1 (G1) receiving retinal scatter laser photocoagulation using with AG photocoagulator (n=16), Group 2 (G2) receiving retinal scatter laser photocoagulation using with PASCAL (n=16) and Group 3 (G3) served as an untreated control group (n=6). Molecular and morphological analyses of VEGF were performed on days 1, 2 and 5 by ELISA, real-time PCR and immuno-histochemical analysis. In samples which underwent AG (G1), when compared with the control group (G3), VEGF mRNA level increased 2.4 folds on day 2, whereas it decreased on day 5 (p□0.001). In samples which underwent PASCAL (G2), on the other hand, VEGF mRNA level increased 1.8 folds on day 1 and 2.2 folds on day 5 when compared with the control group (G3). In samples which underwent AG (G1), when compared with the control group (G3), VEGF protein level increased significantly on day 2, whereas it decreased on day 5 (p□0.001). In group G2, the VEGF levels in the sensory retina significantly increased as compared to control groups at both 2 and 5 days after laser photocoagulation using PASCAL laser (p=0.012, both time points). The peak expressions of VEGF protein in samples which underwent PASCAL and conventional laser were found on day 5 and day 2 respectively. In retinas of PASCAL-treated mice, VEGF immunoreactivity gradually increased during the 5-day follow-up. However, in argon laser group, the strongest VEGF immunoreactivity was detected on day 2, then started to decrease on day 5. In summary, the expression of VEGF protein and mRNA gradually increase during a 5-day follow-up period in PASCAL-treated mouse eyes, whereas in AG group they reach their peak levels on the second day of follow-up and

  4. Genomic Expression Analyses Reveal Lysosomal, Innate Immunity Proteins, as Disease Correlates in Murine Models of a Lysosomal Storage Disorder

    PubMed Central

    Alam, Md. Suhail; Getz, Michelle; Safeukui, Innocent; Yi, Sue; Tamez, Pamela; Shin, Jenny; Velázquez, Peter; Haldar, Kasturi

    2012-01-01

    Niemann-Pick Type C (NPC) disease is a rare, genetic, lysosomal disorder with progressive neurodegeneration. Poor understanding of the pathophysiology and a lack of blood-based diagnostic markers are major hurdles in the treatment and management of NPC and several additional, neurological lysosomal disorders. To identify disease severity correlates, we undertook whole genome expression profiling of sentinel organs, brain, liver, and spleen of Balb/c Npc1−/− mice relative to Npc1+/− at an asymptomatic stage, as well as early- and late-symptomatic stages. Unexpectedly, we found prominent up regulation of innate immunity genes with age-dependent change in their expression, in all three organs. We shortlisted a set of 12 secretory genes whose expression steadily increased with age in both brain and liver, as potential plasma correlates of neurological and/or liver disease. Ten were innate immune genes with eight ascribed to lysosomes. Several are known to be elevated in diseased organs of murine models of other lysosomal diseases including Gaucher’s disease, Sandhoff disease and MPSIIIB. We validated the top candidate lysozyme, in the plasma of Npc1−/− as well as Balb/c Npc1nmf164 mice (bearing a point mutation closer to human disease mutants) and show its reduction in response to an emerging therapeutic. We further established elevation of innate immunity in Npc1−/− mice through multiple functional assays including inhibition of bacterial infection as well as cellular analysis and immunohistochemistry. These data revealed neutrophil elevation in the Npc1−/− spleen and liver (where large foci were detected proximal to damaged tissue). Together our results yield a set of lysosomal, secretory innate immunity genes that have potential to be developed as pan or specific plasma markers for neurological diseases associated with lysosomal storage and where diagnosis is a major problem. Further, the accumulation of neutrophils in diseased organs (hitherto

  5. Sequential alteration of peanut agglutinin binding-glycoprotein expression during progression of murine mammary neoplasia.

    PubMed

    Rak, J W; McEachern, D; Miller, F R

    1992-05-01

    glycoprotein (greater than 250 kd) expressed by normal mammary epithelium and preneoplastic D2HAN cells, but not by tumour cells regardless of neuraminidase treatment. A PNA reactive glycoprotein of approximately 90 kd was uniquely expressed in normal mammary epithelial lysates, although neuraminidase treatment exposed a similar band in a few tumour lines. Normal mammary epithelium, preneoplastic D2HAN cells, and the poorly tumorigenic clone D2.0R expressed a PNA binding glycoprotein of approximately 150 kd. This band appeared to be specifically sialylated during transition from the high PNA binding, low tumorigenic phenotype of D2.0R cells to the low PNA binding, highly tumorigenic phenotype of cells isolated from tumours resulting from s.c. implantation of D2.0R cells.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1586590

  6. Sequential alteration of peanut agglutinin binding-glycoprotein expression during progression of murine mammary neoplasia.

    PubMed Central

    Rak, J. W.; McEachern, D.; Miller, F. R.

    1992-01-01

    glycoprotein (greater than 250 kd) expressed by normal mammary epithelium and preneoplastic D2HAN cells, but not by tumour cells regardless of neuraminidase treatment. A PNA reactive glycoprotein of approximately 90 kd was uniquely expressed in normal mammary epithelial lysates, although neuraminidase treatment exposed a similar band in a few tumour lines. Normal mammary epithelium, preneoplastic D2HAN cells, and the poorly tumorigenic clone D2.0R expressed a PNA binding glycoprotein of approximately 150 kd. This band appeared to be specifically sialylated during transition from the high PNA binding, low tumorigenic phenotype of D2.0R cells to the low PNA binding, highly tumorigenic phenotype of cells isolated from tumours resulting from s.c. implantation of D2.0R cells.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 8 Figure 9 PMID:1586590

  7. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages

    SciTech Connect

    Ohara, Kazuaki; Wakabayashi, Hideyuki; Taniguchi, Yoshimasa; Shindo, Kazutoshi; Yajima, Hiroaki; Yoshida, Aruto

    2013-11-29

    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXRα. •Q3GA induced ABCA1 via LXRα activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXRα), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXRα in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.

  8. Murine abortion is associated with enhanced hyaluronan expression and abnormal localization at the fetomaternal interface.

    PubMed

    Cordo-Russo, R; Garcia, M G; Barrientos, G; Orsal, A S; Viola, M; Moschansky, P; Ringel, F; Passi, A; Alaniz, L; Hajos, S; Blois, S M

    2009-01-01

    The remodelling of the endometrial architecture is fundamental to create a suitable environment for the establishment of pregnancy. During this process, substantial alterations in the composition of maternal extracellular matrix play an important role by providing a prosperous medium for implantation as well as modulating trophoblast invasion leading to the formation of a functional placental unit. Hyaluronan is a conspicuous component of the extracellular matrix, particularly in remodelling tissues undergoing regeneration and repair. During gestation, changes in HA deposition and distribution indicate that this molecule may participate in preparation of the endometrial stroma for reception and implantation of the embryo. However, little is known about the role of hyaluronan at the fetomaternal interface, specially regarding its influence in pregnancy outcome. In the present study we show increased decidual hyaluronan levels in spontaneous abortion compared with normal pregnancy mice on gestation day 7.5. Both in normal and pathologic pregnancies, high molecular size hyaluronan was found at the fetomaternal unit. However, hyaluronan metabolism (which results from the activity of hyaluronan synthases and hyaluronidases) seems to be altered in spontaneous abortion as shown by a decrease in Hyal-3 expression as well as by differences in hyaluronan molecular size spectrum. This alteration in hyaluronan metabolism in spontaneous abortion could explain its increased concentration observed in decidua and the abnormal distribution of hyaluronan around the embryo implantation crypt. Thus, increased decidual hyaluronan levels resulting from abnormal deposition and turn over may contribute to the pathogenesis of pregnancy failure. PMID:19059644

  9. Murine Gammaherpesvirus M2 Protein Induction of IRF4 via the NFAT Pathway Leads to IL-10 Expression in B Cells

    PubMed Central

    Rangaswamy, Udaya S.; Speck, Samuel H.

    2014-01-01

    Reactivation of the gammaherpesviruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) from latently infected B cells has been linked to plasma cell differentiation. We have previously shown that the MHV68 M2 protein is important for virus reactivation from B cells and, when expressed alone in primary murine B cells, can drive B cell differentiation towards a pre-plasma cell phenotype. In addition, expression of M2 in primary murine B cells leads to secretion of high levels of IL-10 along with enhanced proliferation and survival. Furthermore, the absence of M2 in vivo leads to a defect in the appearance of MHV68 infected plasma cells in the spleen at the peak of MHV68 latency. Here, employing an inducible B cell expression system, we have determined that M2 activates the NFAT pathway in a Src kinase-dependent manner – leading to induction of the plasma cell-associated transcription factor, Interferon Regulatory Factor-4 (IRF4). Furthermore, we show that expression of IRF4 alone in a B cell line up-regulates IL-10 expression in culture supernatants, revealing a novel role for IRF4 in B cell induced IL-10. Consistent with the latter observation, we show that IRF4 can regulate the IL-10 promoter in B cells. In primary murine B cells, addition of cyclosporine (CsA) resulted in a significant decrease in M2-induced IL-10 levels as well as IRF4 expression, emphasizing the importance of the NFAT pathway in M2- mediated induction of IL-10. Together, these studies argue in favor of a model wherein M2 activation of the NFAT pathway initiates events leading to increased levels of IRF4 – a key player in plasma cell differentiation – which in turn triggers IL-10 expression. In the context of previous findings, the data presented here provides insights into how M2 facilitates plasma cell differentiation and subsequent virus reactivation. PMID:24391506

  10. Retrovirus gene expression during the cell cycle. I. Virus production, synthesis, and expression of viral proteins in Rauscher murine leukemia virus-infected mouse cells.

    PubMed Central

    Balazs, I; Caldarella, J

    1981-01-01

    Synchronized mouse cells (JLS-V9) chronically infected with Rauscher murine leukemia virus were used to study virus production, the synthesis of gag and env precursor proteins, and the expression of env protein on the cell surface during the cell cycle. The amount of virus released into the medium by synchronized cells during a 30-min interval was determined by using the XC plaque assay and by measuring reverse transcriptase activity. The results show that virus production occurs during mitosis. Labeling of the cell surface of synchronized cells with 125I or with fluorescein-conjugated antiserum shows that the amount of gp 70env on the cell surface parallels cellular growth. Therefore, the cell cycle-dependent release of virus is not accompanied by similar variations in the amount of viral envelope protein on the cell surface. Immunoprecipitation of cells labeled with [35S]methionine, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was used to measure viral protein synthesis during the cell cycle. The rate of synthesis of gag precursor proteins show three maximums corresponding to the G1, middle S, and late S to G2 phases of the cell cycle. The rate of synthesis of env precursor proteins does not change, suggesting that in these cells the synthesis of these two gene products is controlled separately. Images PMID:7288918

  11. Expression, characterization, and preliminary X-ray crystallographic analysis of recombinant murine Follistatin-like 1 expressed in Drosophila S2 cells.

    PubMed

    Li, Lian; Li, Xinxin; Liu, Xue; Dong, Yingying; Geng, Yan; Liu, Xinqi; Ning, Wen

    2013-04-01

    The matricellular protein Follistatin-like 1 (FSTL1) has been shown to negatively regulate bone morphogenetic protein (BMP)/Smad1/5/8 signaling by functioning as an antagonist and has been implicated in physiological and pathological events including organogenesis, immunity and cardiovascular disease. It is therefore an attractive target for potential therapeutic intervention studies. In this study, we established a high-level expression system in Drosophila S2 cells which could produce about 12.5 mg of recombinant murine Follistatin-like 1 protein (rFSTL1) per liter of culture medium. The recombinant protein was then purified to greater than 95% purity using Ni-NTA agarose affinity chromatography followed by HiLoad 16/60 Superdex 200 gel filtration. The biological activity of rFSTL1 was evaluated by its ability to negatively regulate BMP/Smad1/5/8 signaling in cultured mink lung epithelial cells. Furthermore, we crystallized a truncated form of rFSTL1 containing the follistatin-like domain using the sitting drop vapor diffusion method. In conclusion, we have generated and purified biologically active recombinant FSTL1 protein, which will be important for further protein structure and drug discovery studies. PMID:23612079

  12. Mycobacterium-Specific γ9δ2 T Cells Mediate Both Pathogen-Inhibitory and CD40 Ligand-Dependent Antigen Presentation Effects Important for Tuberculosis Immunity

    PubMed Central

    Spencer, Charles T.; Hamzabegovic, Fahreta; Blazevic, Azra; Xia, Mei

    2015-01-01

    Numerous pathogens, including Mycobacterium tuberculosis, can activate human γ9δ2 T cells to proliferate and express effector mechanisms. γ9δ2 T cells can directly inhibit the growth of intracellular mycobacteria and may also act as antigen-presenting cells (APC). Despite evidence for γδ T cells having the capacity to function as APC, the mechanisms involved and importance of these effects on overall tuberculosis (TB) immunity are unknown. We prepared M. tuberculosis-specific γ9δ2 T cell lines to study their direct protective effects and APC functions for M. tuberculosis-specific αβ T cells. The direct inhibitory effects on intracellular mycobacteria were measured, and the enhancing effects on proliferative and effector responses of αβ T cells assessed. Furthermore, the importance of cell-to-cell contact and soluble products for γ9δ2 T cell effector responses and APC functions were investigated. We demonstrate, in addition to direct inhibitory effects on intracellular mycobacteria, the following: (i) γ9δ2 T cells enhance the expansion of M. tuberculosis-specific αβ T cells and increase the ability of αβ T cells to inhibit intracellular mycobacteria; (ii) although soluble mediators are critical for the direct inhibitory effects of γ9δ2 T cells, their APC functions do not require soluble mediators; (iii) the APC functions of γ9δ2 T cells involve cell-to-cell contact that is dependent on CD40-CD40 ligand (CD40L) interactions; and (iv) fully activated CD4+ αβ T cells and γ9δ2 T cells provide similar immune enhancing/APC functions for M. tuberculosis-specific T cells. These effector and helper effects of γ9δ2 T cells further indicate that these T cells should be considered important new targets for new TB vaccines. PMID:26644385

  13. Association of Single Nucleotide Polymorphisms in the Apoptosis-Related Genes TP63 and CD40 with Risk for Lung Cancer in a Chinese Han Population.

    PubMed

    Tang, WenJun; Xue, Li; Yan, QiXing; Cai, ShaoXi; Bai, YuJie; Lin, Li; Lin, BiLin; Huang, MingLong; Yi, GuoHui; Li, Hui

    2016-01-01

    Apoptosis plays a critical role in tumorigenesis. TP63 inhibits the pro-apoptosis function of TP53, and CD40 increases expression of anti-apoptotic proteins. Two single nucleotide polymorphisms (SNPs), rs6790167 (g243059A>G) in intron 9 of TP63 and rs1535045 (g6194C>T) in intron 1 of CD40 respectively, may affect the susceptibility of lung cancer. To evaluate the association of these SNPs with lung cancer, we performed a case-control study with 258 patients, including 149 adenocarcinoma and 47 small cell lung cancer, and 270 controls. Genotyping was conducted using allele-specific polymerase chain reaction and pyrosequencing. We found that rs6790167 and rs1535045 are associated with the risk of lung adenocarcinoma (P = 0.048) and small cell lung cancer (P = 0.019), respectively. Non-smoking males carrying the GG genotype of rs6790167 had higher risk for lung adenocarcinoma than individuals carrying the AA genotype (OR = 7.58, 95% CI: 2.43-23.65). Compared to the TT genotype of rs1535045, non-smoking women with the CC genotype had higher risk for lung adenocarcinoma (OR = 4.20, 95% CI: 1.34-13.12). After stratified analysis based on clinical characteristics, the frequency of the CC genotype of rs1535045 was higher in patients at I-II stages (P = 0.013) or patients whose tumor markers were negative (P = 0.003). Individuals carrying both the GG genotype of rs6790167 and the CC genotype of rs1535045 were associated with significantly higher risk for lung adenocarcinoma. Thus, the polymorphisms in the TP63 and CD40 genes are associated with lung cancer in a Chinese Han population. PMID:27063419

  14. Effects of Representative Glucocorticoids on TNFα– and CD40L–Induced NF-κB Activation in Sensor Cells

    PubMed Central

    Cechin, Sirlene R.; Buchwald, Peter

    2014-01-01

    Glucocorticoids are an important class of anti-inflammatory/immunosuppressive drugs. A crucial part of their anti-inflammatory action results from their ability to repress proinflammatory transcription factors such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) upon binding to the glucocorticoid receptor (GR). Accordingly, sensor cells quantifying their effect on inflammatory signal-induced NF-κB activation can provide useful information regarding their potencies as well as their transrepression abilities. Here, we report results obtained on their effect in suppressing both the TNFα- and the CD40L-induced activation of NF-κB in sensor cells that contain an NF-κB–inducible SEAP construct. In these cells, we confirmed concentration-dependent NF-κB activation for both TNFα and CD40L at low nanomolar concentrations (EC50). Glucocorticoids tested included hydrocortisone, prednisolone, dexamethasone, loteprednol etabonate, triamcinolone acetonide, beclomethasone dipropionate, and clobetasol propionate. They all caused significant, but only partial inhibition of these activations in concentration-dependent manners that could be well described by sigmoid response-functions. Despite the limitations of only partial maximum inhibitions, this cell-based assay could be used to quantitate the suppressing ability of glucocorticoids (transrepression potency) on the expression of proinflammatory transcription factors caused by two different cytokines in parallel both in a detailed, full dose-response format as well as in a simpler single-dose format. Whereas inhibitory potencies obtained in the TNF assay correlated well with consensus glucocorticoid potencies (receptor-binding affinities, Kd, RBA, at the GR) for all compounds, the non-halogenated steroids (hydrocortisone, prednisolone, and loteprednol etabonate) were about an order of magnitude more potent than expected in the CD40 assay in this system. PMID:24747770

  15. Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse

    NASA Technical Reports Server (NTRS)

    Tidball, James G.; Spencer, Melissa J.

    2002-01-01

    Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease.

  16. Potential predictive role of chemotherapy-induced changes of soluble CD40 ligand in untreated advanced pancreatic ductal adenocarcinoma

    PubMed Central

    Azzariti, Amalia; Brunetti, Oronzo; Porcelli, Letizia; Graziano, Giusi; Iacobazzi, Rosa Maria; Signorile, Michele; Scarpa, Aldo; Lorusso, Vito; Silvestris, Nicola

    2016-01-01

    Pancreas ductal adenocarcinoma lacks predictive biomarkers. CD40 is a member of the tumor necrosis factor superfamily. CD40–sCD40L interaction is considered to contribute to the promotion of tumor cell growth and angiogenesis. The aim of the present study was to investigate the role of serum sCD40L as a predictor in metastatic pancreatic cancer. We evaluated 27 consecutive pancreatic cancer patients treated with FOLFIRINOX (21 patients) or gemcitabine plus nab-paclitaxel combination (six patients). The sCD40L level was measured in serum by enzyme-linked immunosorbent assay at baseline, at first evaluation (all patients), and at time to progression (18 patients). The radiological response was evaluated according to the Response Evaluation Criteria in Solid Tumors, Version 1.1. The Wilcoxon signed-rank test was used to compare pre–post treatment sCD40L levels with respect to clinical response, while Pearson’s correlation coefficient was used for the correlation between sCD40L and CA19.9 pre- and post-treatment. The Kruskal–Wallis test was also conducted for further comparisons. We observed a statistically significant reduction in the sCD40L level after 3 months of treatment in patients with partial response (11,718.05±7,097.13 pg/mL vs 4,689.42±5,409.96 pg/mL; P<0.01). Conversely, in patients with progressive disease, the biomarker statistically increased in the same time (9,351.51±7,356.91 pg/mL vs 22,282.92±11,629.35 pg/mL; P<0.01). This trend of sCD40L was confirmed in 18 patients at time to progression after the first evaluation. No differences were recorded within the stable disease group. Moreover, there was a positive correlation between the sCD40L and CA19.9 pre–post treatment variation percentage (Pearson’s correlation coefficient =0.52; P<0.05). Our data suggest a possible predictive role of sCD40L in pancreatic cancer patients, similar to CA19.9. PMID:27555786

  17. Potential predictive role of chemotherapy-induced changes of soluble CD40 ligand in untreated advanced pancreatic ductal adenocarcinoma.

    PubMed

    Azzariti, Amalia; Brunetti, Oronzo; Porcelli, Letizia; Graziano, Giusi; Iacobazzi, Rosa Maria; Signorile, Michele; Scarpa, Aldo; Lorusso, Vito; Silvestris, Nicola

    2016-01-01

    Pancreas ductal adenocarcinoma lacks predictive biomarkers. CD40 is a member of the tumor necrosis factor superfamily. CD40-sCD40L interaction is considered to contribute to the promotion of tumor cell growth and angiogenesis. The aim of the present study was to investigate the role of serum sCD40L as a predictor in metastatic pancreatic cancer. We evaluated 27 consecutive pancreatic cancer patients treated with FOLFIRINOX (21 patients) or gemcitabine plus nab-paclitaxel combination (six patients). The sCD40L level was measured in serum by enzyme-linked immunosorbent assay at baseline, at first evaluation (all patients), and at time to progression (18 patients). The radiological response was evaluated according to the Response Evaluation Criteria in Solid Tumors, Version 1.1. The Wilcoxon signed-rank test was used to compare pre-post treatment sCD40L levels with respect to clinical response, while Pearson's correlation coefficient was used for the correlation between sCD40L and CA19.9 pre- and post-treatment. The Kruskal-Wallis test was also conducted for further comparisons. We observed a statistically significant reduction in the sCD40L level after 3 months of treatment in patients with partial response (11,718.05±7,097.13 pg/mL vs 4,689.42±5,409.96 pg/mL; P<0.01). Conversely, in patients with progressive disease, the biomarker statistically increased in the same time (9,351.51±7,356.91 pg/mL vs 22,282.92±11,629.35 pg/mL; P<0.01). This trend of sCD40L was confirmed in 18 patients at time to progression after the first evaluation. No differences were recorded within the stable disease group. Moreover, there was a positive correlation between the sCD40L and CA19.9 pre-post treatment variation percentage (Pearson's correlation coefficient =0.52; P<0.05). Our data suggest a possible predictive role of sCD40L in pancreatic cancer patients, similar to CA19.9. PMID:27555786

  18. Adenoviral expression of murine serum amyloid A proteins to study amyloid fibrillogenesis.

    PubMed

    Kindy, M S; King, A R; Yu, J; Gerardot, C; Whitley, J; de Beer, F C

    1998-06-15

    Serum amyloid A (SAA) proteins are one of the most inducible acute-phase reactants and are precursors of secondary amyloidosis. In the mouse, SAA1 and SAA2 are induced in approximately equal quantities in response to amyloid induction models. These two isotypes differ in only 9 of 103 amino acid residues; however, only SAA2 is selectively deposited into amyloid fibrils. SAA expression in the CE/J mouse species is an exception in that gene duplication did not occur and the CE/J variant is a hybrid molecule sharing features of SAA1 and SAA2. However, even though it is more closely related to SAA2 it is not deposited as amyloid fibrils. We have developed an adenoviral vector system to overexpress SAA proteins in cell culture to determine the ability of these proteins to form amyloid fibrils, and to study the structural features in relation to amyloid formation. Both the SAA2 and CE/J SAA proteins were synthesized in large quantities and purified to homogeneity. Electron microscopic analysis of the SAA proteins revealed that the SAA2 protein was capable of forming amyloid fibrils, whereas the CE/J SAA was incapable. Radiolabelled SAAs were associated with normal or acute-phase high-density lipoproteins (HDLs); we examined them for their clearance from the circulation. In normal mice, SAA2 had a half-life of 70 min and CE/J SAA had a half-life of 120 min; however, in amyloid mice 50% of the SAA2 cleared in 55 min, compared with 135 min for the CE/J protein. When the SAA proteins were associated with acute-phase HDLs, SAA2 clearance was decreased to 60 min in normal mice compared with 30 min in amyloidogenic mice. Both normal and acute-phase HDLs were capable of depositing SAA2 into preformed amyloid fibrils, whereas the CE/J protein did not become associated with amyloid fibrils. This established approach opens the doors for large-scale SAA production and for the examination of specific amino acids involved in the fibrillogenic capability of the SAA2 molecule in vitro

  19. MCP-1 Upregulates Amylin Expression in Murine Pancreatic β Cells through ERK/JNK-AP1 and NF-κB Related Signaling Pathways Independent of CCR2

    PubMed Central

    Cai, Kun; Qi, Dongfei; Hou, Xinwei; Wang, Oumei; Chen, Juan; Deng, Bo; Qian, Lihua; Liu, Xiaolong; Le, Yingying

    2011-01-01

    Background Amylin is the most abundant component of islet amyloid implicated in the development of type 2 diabetes. Plasma amylin levels are elevated in individuals with obesity and insulin resistance. Monocyte chemoattractant protein-1 (MCP-1, CCL2) is involved in insulin resistance of obesity and type 2 diabetes. We investigated the effect of MCP-1 on amylin expression and the underlying mechanisms with murine pancreatic β-cell line MIN6 and pancreatic islets. Methodology/Principal Findings We found that MCP-1 induced amylin expression at transcriptional level and increased proamylin and intermediate forms of amylin at protein level in MIN6 cells and islets. However, MCP-1 had no effect on the expressions of proinsulin 1 and 2, as well as prohormone convertase (PC) 1/3 and PC2, suggesting that MCP-1 specifically induces amylin expression in β-cells. Mechanistic studies showed that although there is no detectable CCR2 mRNA in MIN6 cells and islets, pretreatment of MIN6 cells with pertussis toxin inhibited MCP-1 induced amylin expression, suggesting that alternative Gi-coupled receptor(s) mediates the inductive effect of MCP-1. MCP-1 rapidly induced ERK1/2 and JNK phosphorylation. Inhibitors for MEK1/2 (PD98059), JNK (SP600125) or AP1 (curcumin) significantly inhibited MCP-1-induced amylin mRNA expression. MCP-1 failed to induce amylin expression in pancreatic islets isolated from Fos knockout mice. EMSA showed that JNK and ERK1/2 were involved in MCP-1-induced AP1 activation. These results suggest that MCP-1 induces murine amylin expression through AP1 activation mediated by ERK1/2 or JNK. Further studies showed that treatment of MIN6 cells with NF-κB inhibitor or overexpression of IκBα dominant-negative construct in MIN6 cells significantly inhibited MCP-1-induced amylin expression, suggesting that NF-κB related signaling also participates in MCP-1-induced murine amylin expression. Conclusions/Significance MCP-1 induces amylin expression through ERK1/2/JNK

  20. Activation of B cells by 1 microm particulate lysozyme or peptides: a Th-dependent pathway requiring CD40-CD40 ligand interaction.

    PubMed

    Sedlik, C; Rojas, M; Leclerc, C

    1998-08-01

    Many antigens encountered by the immune system are included in complex structures such as bacteria or parasites. We previously developed an in vivo model to study the immunogenicity of particulate antigens, based on covalent linkage of proteins or peptides to 1 microm latex particles and showed that these antigens cannot be presented to MHC class II-restricted specific T cells by B cells. However, they induce strong CD4+ T cell responses when injected to mice without adjuvant. The present study demonstrates that four out of the five proteins tested did not stimulate antibody synthesis when linked to 1 microm microparticles, although a strong IgG production was induced by the same proteins administered in soluble form with adjuvant. In contrast, lysozyme and two synthetic peptides containing B and T cell viral epitopes induced strong and long-lasting specific antibody responses when linked to 1 micrometer synthetic beads. The isotypic pattern of antibodies induced by particulate lysozyme was similar to that induced by the soluble protein in alum. Studies using CD4+ T cell-depleted mice revealed that the induction of antibodies by particulate lysozyme strictly required Th cell activity. Moreover, the T-B cell cooperation involved in B cell activation by antigens linked to beads required CD40-CD40 ligand interaction. Thus, these particulate antigens provide a useful tool to study the mechanisms of induction of antibody response against complex bacterial or parasitic antigens. Moreover, they may represent attractive candidates to elaborate efficient new vaccines using short synthetic peptides. PMID:9723697

  1. Synergy between anti-CD40 MAb and Epstein-Barr virus in activation and transformation of human B lymphocytes.

    PubMed

    Tsuchiyama, L; Kieran, J; Boyle, P; Wetzel, G D

    1997-01-01

    For human B lymphocytes, Epstein-Barr virus (EBV) is a polyclonal activator, inducing both proliferation and Ig secretion. It is also a transforming virus capable of generating immortalized B cell lines. These early and late functions of EBV are not apparently connected. The receptor for EBV, CD21, also serves as a receptor for some complement components and is called CR2. This molecule associates with CD19 and TAPA-1 on the surface of B cells. This complex is involved in signaling B cells and participates in many responses. We have observed that simultaneous ligation of CD40 and the CD21 complex, by exposure to anti-CD40 MAbs and EBV, enhances both the short-term proliferation as well as the long-term transformation rate of human B lymphocytes. B cell proliferation shows synergy between anti-CD40 MAb and EBV. CD19 also appears to be involved in the synergistic activation of B cells through CD40 and CD21, since ligation of CD19 with anti-CD19 MAbs, either prior to or concomitant with exposure to anti-CD40 and EBV, markedly inhibits both proliferation and subsequent B cell transformation. These observations do not elucidate the mechanisms of B cell transformation employed by EBV but the do suggest a relationship between early proliferation and later transformation induced by the virus. Anti-CD40 enhances both these effects and anti-CD19 is capable of inhibiting both. PMID:9265505

  2. Expression of the murine alpha B-crystallin gene in lens and skeletal muscle: identification of a muscle-preferred enhancer.

    PubMed Central

    Dubin, R A; Gopal-Srivastava, R; Wawrousek, E F; Piatigorsky, J

    1991-01-01

    The alpha B-crystallin gene is expressed at high levels in lens and at lower levels in some other tissues, notably skeletal and cardiac muscle, kidney, lung, and brain. A promoter fragment of the murine alpha B-crystallin gene extending from positions -661 to +44 and linked to the bacterial chloramphenicol acetyltransferase (CAT) gene showed preferential expression in lens and skeletal muscle in transgenic mice. Transfection experiments revealed that a region between positions -426 and -257 is absolutely required for expression in C2C12 and G8 myotubes, while sequences downstream from position -115 appear to be determinants for lens expression. In association with a heterologous promoter, a -427 to -259 fragment functions as a strong enhancer in C2C12 myotubes and less efficiently in myoblasts and lens. Gel shift and methylation interference studies demonstrated that nuclear proteins from C2C12 myoblasts and myotubes specifically bind to the enhancer. Images PMID:1875925

  3. Topical glucocorticoids application induced an augmentation in the expression of IL-1alpha while inhibiting the expression of IL-10 in the epidermis in murine contact hypersensitivity.

    PubMed

    Igawa, K; Yokozeki, H; Miyazaki, Y; Minatohara, K; Satoh, T; Katayama, I; Nishioka, K

    2001-03-01

    The repeated application of glucocorticoids (GC) on the skin augmented the inflammatory response of both allergic and irritant contact dermatitis in our studies. In order to further clarify the mechanism of such an augmentation of contact hypersensitivity (CHS), we investigated the modulatory effects of cytokines in the epidermis after the administration of GC at challenged sites in CHS. Diflucortolone valerate was applied to BALB/c mice on alternate days for a total of nine times. On day 12, they were contact sensitized with dinitrofluorobenzene (DNFB). Next, on day 17, one day after the last application of GC, they were challenged with DNFB on the ear. The whole challenged ear lobes were removed after a hapten challenge and then were analysed by the RT-PCR method or underwent an immunohistochemical analysis. To clarify the modulatory effects of cytokines in vivo, DNFB sensitized mice pre-treated with GC were injected with rIL-10, IL-1 receptor antagonist (ra) and anti-IL-1alpha monoclonal antibody (mAb) and thereafter were challenged with DNFB. A RT-PCR analysis has demonstrated IL-10 mRNA to be detected in the challenged skin of non-GC-pretreated mice but not in that of GC-pre-treated mice after challenge. On the other hand, the expression of IL-1alpha mRNA in the challenged skin of mice pretreated with GC was more strongly detected that that in mice without GC-pretreatment. Furthermore, an immuno-histochemical analysis in the challenge showed the expression of IL-10 in the skin showed the expression of IL-10 in the challenged epidermis of the non-GC-pretreated mice but not in the GC-pretreated mice and IL-1alpha was also strongly expressed in the epidermis of the GC-pretreated mice. A subcutaneous injection of anti-IL-1alpha mAb or IL-1 ra inhibited the augmented CHS reaction in the GC-pretreated mice. A subcutaneous injection of rIL-10 also inhibited the augmentation of the CHS reaction in the GC-pretreated mice; however, no such inhibition was observed in the

  4. Primary structure and developmental expression pattern of Hox 3.1, a member of the murine Hox 3 homeobox gene cluster.

    PubMed Central

    Breier, G; Dressler, G R; Gruss, P

    1988-01-01

    The murine Hox 3.1 gene maps to a cluster of homeobox-containing genes on chromosome 15. We report the primary structure of the Hox 3.1 protein, as deduced from cDNA sequences, and the expression of Hox 3.1 mRNA during embryogenesis. In addition, a second member of the gene cluster, Hox 3.2, is characterized. The predicted Hox 3.1 protein consists of 242 amino acid residues and has a calculated mol. wt of 28 kd. Besides the homeodomain, it shares with other murine homeodomain proteins a conserved hexapeptide, a region rich in glutamic acid residues at the carboxy terminus and homology at the amino terminus. During embryogenesis, Hox 3.1 transcripts are detected first in the posterior neural tube of 9.5 days post-coital embryos. At later developmental stages, a ventral-dorsal gradient of Hox 3.1 transcript accumulation is established. Hox 3.1 transcripts also are detected in the thoracic sclerotomes from the 6th to the 10th thoracic pre-vertebrae. The data support the hypothesis that the Hox 3.1 gene specifies positional information during murine embryogenesis. Images PMID:2900757

  5. MURINE PULMONARY MACROPHAGE EXPRESSION AND PRODUCTION OF TNFA AND MIP-2 AFTER EXPOSURE TO DIESEL EXHAUST PARTICLES (DEP) AND EXTRACTS

    EPA Science Inventory

    DEP constitute an important fraction of particulate air pollution and have been shown to cause inflammation of the airways. The aim of this study was to investigate the inflammatory cytokine response of alveolar macrophages exposed to DEP and DEP-extracts. A murine alveolar macr...

  6. CD40: Novel Association with Crohn's Disease and Replication in Multiple Sclerosis Susceptibility

    PubMed Central

    Alcina, Antonio; Teruel, María; Díaz-Gallo, Lina M.; Gómez-García, María; López-Nevot, Miguel A.; Rodrigo, Luis; Nieto, Antonio; Cardeña, Carlos; Alcain, Guillermo; Díaz-Rubio, Manuel; de la Concha, Emilio G.; Fernandez, Oscar; Arroyo, Rafael

    2010-01-01

    Background A functional polymorphism located at −1 from the start codon of the CD40 gene, rs1883832, was previously reported to disrupt a Kozak sequence essential for translation. It has been consistently associated with Graves' disease risk in populations of different ethnicity and genetic proxies of this variant evaluated in genome-wide association studies have shown evidence of an effect in rheumatoid arthritis and multiple sclerosis (MS) susceptibility. However, the protective allele associated with Graves' disease or rheumatoid arthritis has shown a risk role in MS, an effect that we aimed to replicate in the present work. We hypothesized that this functional polymorphism might also show an association with other complex autoimmune condition such as inflammatory bowel disease, given the CD40 overexpression previously observed in Crohn's disease (CD) lesions. Methodology Genotyping of rs1883832C>T was performed in 1564 MS, 1102 CD and 969 ulcerative colitis (UC) Spanish patients and in 2948 ethnically matched controls by TaqMan chemistry. Principal Findings The observed effect of the minor allele rs1883832T was replicated in our independent Spanish MS cohort [p = 0.025; OR (95% CI) = 1.12 (1.01–1.23)]. The frequency of the minor allele was also significantly higher in CD patients than in controls [p = 0.002; OR (95% CI) = 1.19 (1.06–1.33)]. This increased predisposition was not detected in UC patients [p = 0.5; OR (95% CI) = 1.04 (0.93–1.17)]. Conclusion The impact of CD40 rs1883832 on MS and CD risk points to a common signaling shared by these autoimmune conditions. PMID:20634952

  7. Biological rational for sequential targeting of Bruton tyrosine kinase and Bcl-2 to overcome CD40-induced ABT-199 resistance in mantle cell lymphoma

    PubMed Central

    Chiron, David; Touzeau, Cyrille; Maïga, Sophie; Moreau, Philippe; Pellat-Deceunynck, Catherine; Le Gouill, Steven; Amiot, Martine

    2015-01-01

    The aggressive biological behavior of mantle cell lymphoma (MCL) and its short response to current treatment highlight a great need for better rational therapy. Herein, we investigate the ability of ABT-199, the Bcl-2-selective BH3 mimetic, to kill MCL cells. Among MCL cell lines tested (n = 8), only three were sensitive (LD50 < 200 nM). In contrast, all primary MCL samples tested (n = 11) were highly sensitive to ABT-199 (LD50 < 10 nM). Mcl-1 and Bcl-xL both confer resistance to ABT-199-specific killing and BCL2/(BCLXL + MCL1) mRNA ratio is a strong predictor of sensitivity. By mimicking the microenvironment through CD40 stimulation, we show that ABT-199 sensitivity is impaired through activation of NF-kB pathway and Bcl-xL up-regulation. We further demonstrate that resistance is rapidly lost when MCL cells detach from CD40L-expressing fibroblasts. It has been reported that ibrutinib induces lymphocytosis in vivo holding off malignant cells from their protective microenvironment. We show here for two patients undergoing ibrutinib therapy that mobilized MCL cells are highly sensitive to ABT-199. These results provide evidence that in situ ABT-199 resistance can be overcome when MCL cells escape from the lymph nodes. Altogether, our data support the clinical application of ABT-199 therapy both as a single agent and in sequential combination with BTK inhibitors. PMID:25797245

  8. The Relationship between the Antitumor Effect of the IL-12 Gene Therapy and the Expression of Th1 Cytokines in an HPV16-Positive Murine Tumor Model

    PubMed Central

    García Paz, Flor; Madrid Marina, Vicente; Morales Ortega, Ausencio; Santander González, Abimelec; Peralta Zaragoza, Oscar; Burguete García, Ana; Torres Poveda, Kirvis; Moreno, José; Alcocer González, Juan; Hernandez Marquez, Eva; Bermúdez Morales, Victor

    2014-01-01

    Objective. The goal of the present study was to investigate the effect of IL-12 expressed in plasmid on the Th1 cytokine profile in an experimental HPV16-positive murine tumor model and the association with the IL-12's antitumor effect. Methods. Mice were injected with BMK-16/myc cells to establish HPV16-positive tumor and then pNGVL3-mIL-12 plasmid; pcDNA3 plasmid or PBS was injected directly into tumor site. The antitumor effect of the treatment was evaluated and the cytokines expression profile in each tumor tissue was analyzed. Results. Treatment with pNGVL3-mIL-12 plasmid had a significant antitumor effect, and a Th2-Th3-type cytokines prolife was detected in the murine tumor model with expression of the cytokines IL-10, IL-4, and TGF-β1. However, after the tumor was treated with three intratumoral injections of plasmid containing IL-12 cDNA, it showed a cytokine profile associated with Th1 with expression of IL-2, IL-12, and IFN-γ cytokines and reduced expression of IL-10, IL-4, and TGF-β1. Conclusions. The treatment with the IL-12 gene in the experimental HPV16-positive tumor model promoted the activation of the cellular immune response via expression of a Th1-type cytokine profile and was associated with the inhibition of tumor growth. Thus, IL-12 treatment represents a novel approach for gene therapy against cervical cancer. PMID:24808638

  9. Maturation and upregulation of functions of murine dendritic cells (DCs) under the influence of purified Aromatic-Turmerone (AR)

    PubMed Central

    Yonggang, Tan; Yiming, Meng; Heying, Zhang; Cheng, Sun; Qiushi, Wang; Xianghong, Yang; Wei, Zheng; Huawei, Zhou; Shan, Fengping

    2012-01-01

    The aim of this work is to evaluate the effects of purified aromatic-turmerone(ar-turmerione, AR) on murine dendritic cells (DCs). These impacts of AR on DCs from bone marrow derived DCs(BMDCs) were assessed with use of conventional scanning electron microscopy (SEM), fluorescence activated cell sorting (FACS), transmission electron microscopy (TEM), cytochemistry assay, FITC-dextran, bio-assay and enzyme linked immunosorbent assay (ELISA). We found that AR induced phenotypic maturation as evidenced by increased expression of CD86, CD40, CD83, CD80 and major histocompatibility complex II (MHC II). The functional tests showed the activity of acidic phosphatase (ACP) inside the DCs were downregulated after treatment with AR (which occurs when phagocytosis of DCs were decreased). Finally, we proved that AR increased the production of IL-12 and tumor necrosis factor α (TNF-α). These data suggested that AR could promote phenotypic and functional maturation of DCs and this adjuvant-like activity may have potential therapeutic value. It is therefore concluded that AR could exert positive modulation on murine DCs. PMID:23095866

  10. Co-administration of CD40 agonistic antibody and antigen fails to overcome the induction of oral tolerance.

    PubMed

    Chung, Yeonseok; Kim, Dong-Hyeon; Lee, Seung-Ho; Kang, Chang-Yuil

    2004-01-01

    T-cell stimulation in the absence of a second, costimulatory signal can lead to anergy or deletion. There is growing evidence that peripheral tolerance to an exogenous antigen might be caused by the lack of costimulatory molecules on antigen-presenting cells (APCs). In the present study, we examined whether tolerance against orally administered antigen could be reversed by maturation of APCs via CD40 signalling. Monoclonal antibody (mAb) to CD40 efficiently induced costimulatory molecules on APCs. Treatment with anti-CD40 mAb potentiated the division of ovalbumin-specific T cells in response to oral ovalbumin in secondary lymphoid organs. However, such treatment did not prolong the presentation of oral ovalbumin on APCs. Surprisingly, treatment of anti-CD40 mAb at the time of oral administration of ovalbumin did not reverse the induction of tolerance to ovalbumin in either the high- or low-dose regimens. Furthermore, the induction of oral tolerance in our model is not the result of negative signalling by cytotoxic T-lymphocyte antigen-4. These results indicate that tolerance for oral antigen could be established regardless of APC maturation by a CD40-specific mAb, suggesting that there could be a unique mechanism to regulate immunity versus tolerance to encountered antigen in the gut-associated lymphoid tissue. PMID:14678195

  11. Phorbol myristate acetate, but not CD40L, induces the differentiation of CLL B cells into Ab-secreting cells

    PubMed Central

    Ghamlouch, Hussein; Ouled-Haddou, Hakim; Guyart, Aude; Regnier, Aline; Trudel, Stéphanie; Claisse, Jean-François; Fuentes, Vincent; Royer, Bruno; Marolleau, Jean-Pierre; Gubler, Brigitte

    2014-01-01

    In this study, we investigated the capacity of chronic lymphocytic leukemia (CLL) B cells to undergo terminal differentiation into Ig-secreting plasma cells in T cell-independent and T cell-dependent responses. We used a two-step model involving stimulation with phorbol myristate acetate (PMA) and CD40L, together with cytokines (PMA/c and CD40L/c), for 7 days. We describe immunophenotypic modifications, changes in the levels of mRNA and protein for transcription factors and morphological and functional events occurring during the differentiation of CLL B cells into antibody-secreting cells (ASCs). The induction of differentiation differed significantly between the CD40L/c and PMA/c culture systems. The PMA/c culture system allowed CLL B cells to differentiate into IgM-secreting cells with an immunophenotype and molecular profile resembling those of preplasmablasts. By contrast, CD40L/c-stimulated cells had a phenotype and morphology similar to those of activated B cells and resembling those of the CLL B cells residing in the lymph node and bone marrow. These data suggest that the CLL B cells are not frozen permanently at a stage of differentiation and are able to differentiate into ASCs as appropriate stimulation are provided. The data presented here raise questions about the molecular processes and stimulation required for CLL B-cell differentiation and about the inability of CD40 ligand to induce differentiation of the CLL B cells. PMID:24797583

  12. Chemokine gene expression in the murine renal cell carcinoma, RENCA, following treatment in vivo with interferon-alpha and interleukin-2.

    PubMed Central

    Sonouchi, K.; Hamilton, T. A.; Tannenbaum, C. S.; Tubbs, R. R.; Bukowski, R.; Finke, J. H.

    1994-01-01

    The expression of three chemoattractant cytokine (chemokine) messenger (m)RNAs in the murine renal cell carcinoma (RENCA) from mice treated with a combination of interferon-alpha (IFN-alpha) and interleukin-2 was examined and related to tumor infiltration by inflammatory leukocytes. Using a semi-quantitative reverse transcriptase polymerase chain reaction assay, mRNAs encoding the KC, JE, and IP-10 genes were all elevated in tumor tissue from mice treated systemically with IFN-alpha/interleukin-2 for 4 days. Similarly, the mRNA for tumor necrosis factor-alpha (TNF-alpha) was also increased in tumors from treated as compared to control animals. The same tumors showed a significant increase in Mac-1+ leukocytes, which correlated well with the increase in chemokine and TNF-alpha gene expression. The renal cell carcinoma tumor itself may be responsible for the expression of chemokine genes in the tumor bed following cytokine therapy. Cultures of freshly explanted RENCA cells expressed significant levels of chemokine mRNAs when stimulated in vitro with IFN alpha, IFN gamma, and/or interleukin-2, demonstrating that this tumor cell has potential for expression of these genes in vivo. In contrast, TNF-alpha expression was not detected in cultured tumor cells. Thus TNF-alpha may be expressed by infiltrating monocytes following exposure to recombinant cytokine therapy. Images Figure 1 Figure 2 Figure 4 PMID:8160774

  13. Rat sequences of the Kirsten and Harvey murine sarcoma virus genomes: nature, origin, and expression in rat tumor RNA.

    PubMed Central

    Anderson, G R; Robbins, K C

    1976-01-01

    Two murine sarcoma viruses, the Kirsten and the Harvey, were isolated by passage of mouse type C leukemia viruses through rats. These sarcoma viruses have genomes containing portions of their parental type C mouse leukemia virus genomes, in stable association with specific rat cellular sequences that we find to be quite likely not those of a rat type C leukemia virus. To determine if these murine sarcoma viruses provide a model relevant to the events occurring in spontaneous tumors, we have hybridized DNA and RNA prepared from rat tumors and normal rat tissues to [3H]DNA prepared from the Kirsten murine sarcoma virus. We have also hybridized these rat tissue nucleic acids to [3H]DNA prepared from a respresentative endogenous rat type C leukemia virus, the WFU (Wistar-Furth). Sarcoma-viral rat cellular sequences and endogenous rat leukemia viral sequences were detected in the DNA of both tumor and normal tissues, with no evidence of either gene amplification or additional sequences being present in tumor DNA. Sarcoma-viral rat cellular sequences and endogenous rat leukemia viral sequences were detected at elevated concentrations in the RNA of many rat tumors and in specific groups of normal tissues. PMID:176419

  14. Members of the murine Pate family are predominantly expressed in the epididymis in a segment-specific fashion and regulated by androgens and other testicular factors

    PubMed Central

    2011-01-01

    Background Spermatozoa leaving the testis are not able to fertilize the egg in vivo. They must undergo further maturation in the epididymis. Proteins secreted to the epididymal lumen by the epithelial cells interact with the spermatozoa and enable these maturational changes, and are responsible for proper storage conditions before ejaculation. The present study was carried out in order to characterize the expression of a novel Pate (prostate and testis expression) gene family, coding for secreted cysteine-rich proteins, in the epididymis. Methods Murine genome databases were searched and sequence comparisons were performed to identify members of the Pate gene family, and their expression profiles in several mouse tissues were characterized by RT-PCR. Alternate transcripts were identified by RT-PCR, sequencing and Northern hybridization. Also, to study the regulation of expression of Pate family genes by the testis, quantitative (q) RT-PCR analyses were performed to compare gene expression levels in the epididymides of intact mice, gonadectomized mice, and gonadectomized mice under testosterone replacement treatment. Results A revised family tree of Pate genes is presented, including a previously uncharacterized Pate gene named Pate-X, and the data revealed that Acrv1 and Sslp1 should also be considered as members of the Pate family. Alternate splicing was observed for Pate-X, Pate-C and Pate-M. All the Pate genes studied are predominantly expressed in the epididymis, whereas expression in the testis and prostate is notably lower. Loss of androgens and/or testicular luminal factors was observed to affect the epididymal expression of several Pate genes. Conclusions We have characterized a gene cluster consisting of at least 14 expressed Pate gene members, including Acrv1, Sslp1 and a previously uncharacterized gene which we named Pate-X. The genes code for putatively secreted, cysteine-rich proteins with a TFP/Ly-6/uPAR domain. Members of the Pate gene cluster

  15. Analysis of telomerase target gene expression effects from murine models in patient cohorts by homology translation and random survival forest modeling.

    PubMed

    Bagger, Frederik Otzen; Bruedigam, Claudia; Lane, Steven W

    2016-03-01

    Acute myeloid leukemia (AML) is an aggressive and rapidly fatal blood cancer that affects patients of any age group. Despite an initial response to standard chemotherapy, most patients relapse and this relapse is mediated by leukemia stem cell (LSC) populations. We identified a functional requirement for telomerase in sustaining LSC populations in murine models of AML and validated this requirement using an inhibitor of telomerase in human AML. Here, we describe in detail the contents, quality control and methods of the gene expression analysis used in the published study (Gene Expression Omnibus GSE63242). Additionally, we provide annotated gene lists of telomerase regulated genes in AML and R code snippets to access and analyze the data used in the original manuscript. PMID:26981425

  16. A murine platelet-activating factor receptor gene: cloning, chromosomal localization and up-regulation of expression by lipopolysaccharide in peritoneal resident macrophages.

    PubMed Central

    Ishii, S; Matsuda, Y; Nakamura, M; Waga, I; Kume, K; Izumi, T; Shimizu, T

    1996-01-01

    A murine gene encoding a platelet-activating factor receptor (PAFR) was cloned. The gene was mapped to a region of the D2.2 band of chromosome 4 both by fluorescence in situ hybridization and by molecular linkage analysis. Northern blot analysis showed a high expression of the PAFR message in peritoneal macrophages. When C3H/HeN macrophages were treated with bacterial lipopolysaccharide (LPS) or synthetic lipid A, the PAFR gene expression was induced. Bacterial LPS, but not lipid A, induced the level of PAFR mRNA in LPS unresponsive C3H/HeJ macrophages. These induction patterns were parallel to those of tumor necrosis factor-alpha mRNA. Thus the PAFR in macrophages is important in LPS-induced pathologies. PMID:8670084

  17. Analysis of telomerase target gene expression effects from murine models in patient cohorts by homology translation and random survival forest modeling

    PubMed Central

    Bagger, Frederik Otzen; Bruedigam, Claudia; Lane, Steven W.

    2016-01-01

    Acute myeloid leukemia (AML) is an aggressive and rapidly fatal blood cancer that affects patients of any age group. Despite an initial response to standard chemotherapy, most patients relapse and this relapse is mediated by leukemia stem cell (LSC) populations. We identified a functional requirement for telomerase in sustaining LSC populations in murine models of AML and validated this requirement using an inhibitor of telomerase in human AML. Here, we describe in detail the contents, quality control and methods of the gene expression analysis used in the published study (Gene Expression Omnibus GSE63242). Additionally, we provide annotated gene lists of telomerase regulated genes in AML and R code snippets to access and analyze the data used in the original manuscript. PMID:26981425

  18. Runx transcription factors repress human and murine c-Myc expression in a DNA-binding and C-terminally dependent manner.

    PubMed

    Jacobs, Paejonette T; Cao, Li; Samon, Jeremy B; Kane, Christyne A; Hedblom, Emmett E; Bowcock, Anne; Telfer, Janice C

    2013-01-01

    The transcription factors Runx1 and c-Myc have individually been shown to regulate important gene targets as well as to collaborate in oncogenesis. However, it is unknown whether there is a regulatory relationship between the two genes. In this study, we investigated the transcriptional regulation of endogenous c-Myc by Runx1 in the human T cell line Jurkat and murine primary hematopoietic cells. Endogenous Runx1 binds to multiple sites in the c-Myc locus upstream of the c-Myc transcriptional start site. Cells transduced with a C-terminally truncated Runx1 (Runx1.d190), which lacks important cofactor interaction sites and can block C-terminal-dependent functions of all Runx transcription factors, showed increased transcription of c-Myc. In order to monitor c-Myc expression in response to early and transiently-acting Runx1.d190, we generated a cell membrane-permeable TAT-Runx1.d190 fusion protein. Murine splenocytes treated with TAT-Runx1.d190 showed an increase in the transcription of c-Myc within 2 hours, peaking at 4 hours post-treatment and declining thereafter. This effect is dependent on the ability of Runx1.d190 to bind to DNA. The increase in c-Myc transcripts is correlated with increased c-Myc protein levels. Collectively, these data show that Runx1 directly regulates c-Myc transcription in a C-terminal- and DNA-binding-dependent manner. PMID:23874874

  19. Runx Transcription Factors Repress Human and Murine c-Myc Expression in a DNA-Binding and C-Terminally Dependent Manner

    PubMed Central

    Jacobs, Paejonette T.; Cao, Li; Samon, Jeremy B.; Kane, Christyne A.; Hedblom, Emmett E.; Bowcock, Anne; Telfer, Janice C.

    2013-01-01

    The transcription factors Runx1 and c-Myc have individually been shown to regulate important gene targets as well as to collaborate in oncogenesis. However, it is unknown whether there is a regulatory relationship between the two genes. In this study, we investigated the transcriptional regulation of endogenous c-Myc by Runx1 in the human T cell line Jurkat and murine primary hematopoietic cells. Endogenous Runx1 binds to multiple sites in the c-Myc locus upstream of the c-Myc transcriptional start site. Cells transduced with a C-terminally truncated Runx1 (Runx1.d190), which lacks important cofactor interaction sites and can block C-terminal-dependent functions of all Runx transcription factors, showed increased transcription of c-Myc. In order to monitor c-Myc expression in response to early and transiently-acting Runx1.d190, we generated a cell membrane-permeable TAT-Runx1.d190 fusion protein. Murine splenocytes treated with TAT-Runx1.d190 showed an increase in the transcription of c-Myc within 2 hours, peaking at 4 hours post-treatment and declining thereafter. This effect is dependent on the ability of Runx1.d190 to bind to DNA. The increase in c-Myc transcripts is correlated with increased c-Myc protein levels. Collectively, these data show that Runx1 directly regulates c-Myc transcription in a C-terminal- and DNA-binding-dependent manner. PMID:23874874

  20. Alterations in protein expression and membrane properties during Müller cell gliosis in a murine model of transient retinal ischemia.

    PubMed

    Hirrlinger, Petra G; Ulbricht, Elke; Iandiev, Ianors; Reichenbach, Andreas; Pannicke, Thomas

    2010-03-12

    Retinal Müller glial cells are involved in K+ ion homeostasis of the tissue. Inwardly rectifying K(+) (Kir) channels play a decisive role in the process of spatial K+ buffering. It has been demonstrated that Kir-mediated currents of Müller cells are downregulated in various cases of retinal neurodegeneration. However, this has not yet been verified for any murine animal model. The aim of the present study was to investigate Müller cells after transient retinal ischemia in mice. High intraocular pressure was applied for 1h; the retina was analysed 1 week later. We studied protein expression in the tissue by immunohistochemistry, and membrane currents of isolated cells by patch-clamp experiments. We found the typical indicators of reactive gliosis such as upregulation of glial fibrillary acidic protein. Moreover, the membrane capacitance of isolated Müller cells was increased and the amplitudes of Kir-mediated currents were slightly, but significantly decreased. This murine high intraocular pressure model of transient retinal ischemia is proposed as a versatile tool for further studies on Müller cell functions in retinal degeneration. PMID:20132867

  1. A competitive enzyme-linked immunosorbent assay specific for murine hepcidin-1: correlation with hepatic mRNA expression in established and novel models of dysregulated iron homeostasis

    PubMed Central

    Gutschow, Patrick; Schmidt, Paul J.; Han, Huiling; Ostland, Vaughn; Bartnikas, Thomas B.; Pettiglio, Michael A.; Herrera, Carolina; Butler, James S.; Nemeth, Elizabeta; Ganz, Tomas; Fleming, Mark D.; Westerman, Mark

    2015-01-01

    Mice have been essential for distinguishing the role of hepcidin in iron homeostasis. Currently, investigators monitor levels of murine hepatic hepcidin-1 mRNA as a surrogate marker for the bioactive hepcidin protein itself. Here, we describe and validate a competitive, enzyme-linked immunosorbent assay that quantifies hepcidin-1 in mouse serum and urine. The assay exhibits a biologically relevant lower limit of detection, high precision, and excellent linearity and recovery. We also demonstrate correlation between serum and urine hepcidin-1 values and validate the competitive enzyme-linked immunosorbent assay by analyzing plasma hepcidin response of mice to physiological challenges, including iron deficiency, iron overload, acute blood loss, and inflammation. Furthermore, we analyze multiple murine genetic models of iron dysregulation, including β-thalassemia intermedia (Hbbth3/+), hereditary hemochromatosis (Hfe−/−, Hjv−/−, and Tfr2Y245X/Y245X), hypotransferrinemia (Trfhpx/hpx), heterozygous transferrin receptor 1 deficiency (Tfrc+/−) and iron refractory iron deficiency anemia (Tmprss6−/− and Tmprss6hem8/hem8). Novel compound iron metabolism mutants were also phenotypically characterized here for the first time. We demonstrate that serum hepcidin concentrations correlate with liver hepcidin mRNA expression, transferrin saturation and non-heme liver iron. In some circumstances, serum hepcidin-1 more accurately predicts iron parameters than hepcidin mRNA, and distinguishes smaller, statistically significant differences between experimental groups. PMID:25425686

  2. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling

    PubMed Central

    Lomaga, Mark A.; Yeh, Wen-Chen; Sarosi, Ildiko; Duncan, Gordon S.; Furlonger, Caren; Ho, Alexandra; Morony, Sean; Capparelli, Casey; Van, Gwyneth; Kaufman, Stephen; van der Heiden, Annette; Itie, Annick; Wakeham, Andrew; Khoo, Wilson; Sasaki, Takehiko; Cao, Zhaodan; Penninger, Josef M.; Paige, Christopher J.; Lacey, David L.; Dunstan, Colin R.; Boyle, William J.; Goeddel, David V.; Mak, Tak W.

    1999-01-01

    Bone resorption and remodeling is an intricately controlled, physiological process that requires the function of osteoclasts. The processes governing both the differentiation and activation of osteoclasts involve signals induced by osteoprotegerin ligand (OPGL), a member of tumor necrosis factor (TNF) superfamily, and its cognate receptor RANK. The molecular mechanisms of the intracellular signal transduction remain to be elucidated. Here we report that mice deficient in TNF receptor-associated factor 6 (TRAF6) are osteopetrotic with defects in bone remodeling and tooth eruption due to impaired osteoclast function. Using in vitro assays, we demonstrate that TRAF6 is crucial not only in IL-1 and CD40 signaling but also, surprisingly, in LPS signaling. Furthermore, like TRAF2 and TRAF3, TRAF6 is essential for perinatal and postnatal survival. These findings establish unexpectedly diverse and critical roles for TRAF6 in perinatal and postnatal survival, bone metabolism, LPS, and cytokine signaling. PMID:10215628

  3. Selective IAP inhibition results in sensitization of unstimulated but not CD40-stimulated chronic lymphocytic leukaemia cells to TRAIL-induced apoptosis

    PubMed Central

    Zhuang, Jianguo; Laing, Naomi; Oates, Melanie; Lin, Ke; Johnson, Gillian; Pettitt, Andrew R

    2014-01-01

    Despite recent advances in therapy, chronic lymphocytic leukaemia (CLL) remains incurable and new treatment strategies are therefore urgently required. Inhibitor of apoptosis proteins (IAPs) are over-expressed in CLL, suggesting both a role in disease pathogenesis and the potential for therapeutic targeting. To explore these questions, we evaluated the effects on primary CLL cells of AZD5582, a novel potent and selective inhibitor of IAPs. AZD5582 at nanomolar concentrations induced extensive degradation of cIAP-1 and cIAP-2, but minimally of X chromosome-linked IAP (XIAP). However, these effects of AZD5582 produced little or no direct cytotoxicity, nor did they sensitize CLL cells to p53-dependent killing by fludarabine or p53-independent killing by dexamethasone. In contrast, AZD5582 significantly enhanced apoptosis induced by the death receptor (DR) agonist tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Importantly, killing by TRAIL plus AZD5582 was independent of adverse prognostic features including TP53 deletion which is strongly associated with chemoresistance in CLL. Coculture experiments involving transfected mouse fibroblasts expressing human CD40L (CD154) to mimic the effect of T cells at sites of tissue involvement showed that CD40 stimulation almost completely prevented the killing of CLL cells by TRAIL plus AZD5582 despite up-regulating TRAIL receptors 1 and 2. In conclusion, our findings confirm the rate-limiting, upstream involvement of IAPs in the extrinsic but not intrinsic apoptotic pathway of CLL cells and suggest that drug combinations that simultaneously activate DRs and inhibit IAPs may have therapeutic potential in patients with CLL who have failed T-cell-depleting chemotherapy. PMID:25505620

  4. Selective IAP inhibition results in sensitization of unstimulated but not CD40-stimulated chronic lymphocytic leukaemia cells to TRAIL-induced apoptosis.

    PubMed

    Zhuang, Jianguo; Laing, Naomi; Oates, Melanie; Lin, Ke; Johnson, Gillian; Pettitt, Andrew R

    2014-12-01

    Despite recent advances in therapy, chronic lymphocytic leukaemia (CLL) remains incurable and new treatment strategies are therefore urgently required. Inhibitor of apoptosis proteins (IAPs) are over-expressed in CLL, suggesting both a role in disease pathogenesis and the potential for therapeutic targeting. To explore these questions, we evaluated the effects on primary CLL cells of AZD5582, a novel potent and selective inhibitor of IAPs. AZD5582 at nanomolar concentrations induced extensive degradation of cIAP-1 and cIAP-2, but minimally of X chromosome-linked IAP (XIAP). However, these effects of AZD5582 produced little or no direct cytotoxicity, nor did they sensitize CLL cells to p53-dependent killing by fludarabine or p53-independent killing by dexamethasone. In contrast, AZD5582 significantly enhanced apoptosis induced by the death receptor (DR) agonist tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Importantly, killing by TRAIL plus AZD5582 was independent of adverse prognostic features including TP53 deletion which is strongly associated with chemoresistance in CLL. Coculture experiments involving transfected mouse fibroblasts expressing human CD40L (CD154) to mimic the effect of T cells at sites of tissue involvement showed that CD40 stimulation almost completely prevented the killing of CLL cells by TRAIL plus AZD5582 despite up-regulating TRAIL receptors 1 and 2. In conclusion, our findings confirm the rate-limiting, upstream involvement of IAPs in the extrinsic but not intrinsic apoptotic pathway of CLL cells and suggest that drug combinations that simultaneously activate DRs and inhibit IAPs may have therapeutic potential in patients with CLL who have failed T-cell-depleting chemotherapy. PMID:25505620

  5. Developmental alterations in expression and subcellular localization of antizyme and antizyme inhibitor and their functional importance in the murine mammary gland.

    PubMed

    Murakami, Y; Suzuki, J; Samejima, K; Oka, T

    2010-02-01

    Ornithine decarboxylase (ODC), antizyme (AZ), and antizyme inhibitor (AIn) play a key role in regulation of intracellular polyamine levels by forming a regulatory circuit through their interactions. To gain insight into their functional importance in cell growth and differentiation, we systematically examined the changes of their expression, cellular polyamine contents, expression of genes related to polyamine metabolism, and beta-casein gene expression during murine mammary gland development. The activity of ODC and AZ1 as well as putrescine level were low in the virgin and involuting stages, but they increased markedly during late pregnancy and early lactation when mammary cells proliferate extensively and begin to augment their differentiated function. The level of spermidine and expression of genes encoding spermidine synthase and AIn increased in a closely parallel manner with that of casein gene expression during pregnancy and lactation. On the other hand, the level of spermidine/spermine N(1)-acetyltransferase (SSAT) mRNA and AZ2 mRNA decreased during those periods. Immunohistochemical analysis showed the translocation of ODC and AIn between the nucleus and cytoplasm and the continuous presence of AZ in the nucleus during gland development. Reduction of AIn by RNA interference inhibited expression of beta-casein gene stimulated by lactogenic hormones in HC11 cells. In contrast, reduction of AZ by AZsiRNA resulted in the small increase of beta-casein gene expression. These results suggested that AIn plays an important role in the mammary gland development by changing its expression, subcellular localization, and functional interplay with AZ. PMID:19997757

  6. Human and murine erythropoiesis

    PubMed Central

    An, Xiuli; Schulz, Vincent P.; Mohandas, Narla; Gallagher, Patrick G.

    2015-01-01

    Purpose of review Research into the fundamental mechanisms of erythropoiesis has provided critical insights into inherited and acquired disorders of the erythrocyte. Studies of human erythropoiesis have primarily utilized in-vitro systems, whereas murine models have provided insights from in-vivo studies. This report reviews recent insights into human and murine erythropoiesis gained from transcriptome-based analyses. Recent findings The availability of high-throughput genomic methodologies has allowed attainment of detailed gene expression data from cells at varying developmental and differentiation stages of erythropoiesis. Transcriptome analyses of human and murine reveal both stage and species-specific similarities and differences across terminal erythroid differentiation. Erythroid-specific long noncoding RNAs exhibit poor sequence conservation between human and mouse. Genome-wide analyses of alternative splicing reveal that complex, dynamic, stage-specific programs of alternative splicing program are utilized during terminal erythroid differentiation. Transcriptome data provide a significant resource for understanding mechanisms of normal and perturbed erythropoiesis. Understanding these processes will provide innovative strategies to detect, diagnose, prevent, and treat hematologic disease. Summary Understanding the shared and different mechanisms controlling human and murine erythropoiesis will allow investigators to leverage the best model system to provide insights in normal and perturbed erythropoiesis. PMID:25719574

  7. Lunar soil simulant uptake produces a concentration-dependent increase in inducible nitric oxide synthase expression in murine RAW 264.7 macrophage cells.

    PubMed

    Chatterjee, Anuran; Wang, Angela; Lera, Matthew; Bhattacharya, Sharmila

    2010-01-01

    One of NASA's long-term objectives is to be able to stay on the moon for extended periods, and to provide a stepping-stone for future Mars explorations. The lunar soil simulant JSC-1 has been developed by NASA from volcanic ash found in Arizona to facilitate testing of toxicity and system requirements for lunar exploration. A concentration-response study of JSC-1 was undertaken on the murine macrophage cell line RAW 264.7. Results demonstrated concentrations of 50-2000 microg/ml JSC-1 induced enhanced expression of inducible nitric oxide synthase (iNOS). Data suggest that extraterrestrial regolith has the potential to induce an inflammatory response, and that future development of anti-inflammatory mitigative strategies may be necessary to counteract lunar dust-associated cellular toxicity. PMID:20391141

  8. INFLUENCE OF TYPE II DIABETES, OBESITY, AND EXPOSURE TO 2, 3, 7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD) EXPOSURE ON THE EXPRESSION OF HEPATIC CYP1A2 IN A MURIN MODEL OF TYPE II DIABETES

    EPA Science Inventory

    Influence of type II diabetes, obesity and exposure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on the expression of hepatic CYPIA2 in a murine model of type II diabetes. SJ Godin', VM Richardson2, JJ Diliberto2, LS Birnbaum', MJ DeVito2; 'Curriculum In Toxicology, UNC-CH...

  9. Cloning, expression and purification of binding domains of lethal factor and protective antigen of Bacillus anthracis in Escherichia coli and evaluation of their related murine antibody.

    PubMed

    Rezaee, Mehdi; Honari, Hossein; Kooshk, Mohammad Reza Ashrafi

    2014-01-01

    Anthrax is common disease between human and animals caused by Bacillus anthracis. The cell binding domain of protective antigen (PAD4) and the binding domain of lethal factor (LFD1) have high immunogenicity potential and always were considered as a vaccine candidate against anthrax. The aims of this study are cloning and expressing of PAD4 and LFD1 in Escherichia coli, purification of the recombinant proteins and determination of their immunogenicity through evaluating of the relative produced polyclonal antibodies in mice. PAD4 and LFD1 genes were cloned in pET28a(+) vector and expressed in E. coli Bl21(DE3)PlysS. Expression and purification of the two recombinant proteins were confirmed by SDS-PAGE and Western blotting techniques. The PAD4 and LFD1 were purified using Ni(+)-NTA affinity chromatography (95-98 %), yielding 37.5 and 45 mg/l of culture, respectively. The antigens were injected three times into mice and production of relative antibodies was evaluated by ELISA test. The results showed that both PAD4 and LFD1 are immunogenic, but LFD1 has higher potential to stimulate Murine immune system. With regard to the high level of LFD1 and PAD4 expression and also significant increment in produced polyclonal antibodies, these recombinant proteins can be considered as a recombinant vaccine candidate against anthrax. PMID:24430302

  10. Zfp-37, a new murine zinc finger encoding gene, is expressed in a developmentally regulated pattern in the male germ line.

    PubMed Central

    Burke, P S; Wolgemuth, D J

    1992-01-01

    To begin to examine the function in the mouse testis of genes containing the zinc finger motif, we have screened an adult mouse total testis cDNA library with probes to a conserved region of zinc fingers. We have isolated cDNAs for a new murine zinc finger encoding gene that has been designated Zfp-37. Northern blot hybridization analysis revealed Zfp-37 transcripts at high levels in the testis, the only adult tissue in which Zfp-37 expression was observed. Zfp-37 was also expressed at lower levels in the mid-gestation embryo and placenta. The major testicular transcripts are 2.3 and 2.6 kb. A 4.0 kb transcript was detected at lower levels in the testis as well as in embryo and placenta. Northern blot and in situ hybridization analysis revealed that expression of Zfp-37 was most abundant in germ cells which have completed meiosis and are undergoing the complex morphogenetic changes of spermiogenesis. The pattern of expression of Zfp-37 and the presence of the zinc finger domain suggest that Zfp-37 may have a role in regulating spermiogenesis. Images PMID:1614869

  11. Requirement of the expression of 3-phosphoglycerate dehydrogenase for traversing S phase in murine T lymphocytes following immobilized anti-CD3 activation.

    PubMed

    Jun, Do Youn; Taub, Dennis; Chrest, Francis J; Kim, Young Ho

    2014-02-01

    Murine resting (G(0)) T lymphocytes contained no detectable mRNA of 3-phosphoglycerate dehydrogenase (PHGDH) catalyzing the first step in the phosphorylated pathway of l-serine biosynthesis. Immobilized anti-CD3 activation of G(0) T cells expressed the PHGDH mRNA in G(1) with a maximum level in S phase. G(0) T cells activated with either immobilized anti-CD3 plus CsA or PBu(2), which failed to drive the activated T cells to enter S phase, did not express the PHGDH mRNA unless exogenous rIL-2 was added. Blocking of IL-2R signaling by adding anti-IL-2 and anti-IL-2Rα resulted in no expression of the PHGDH mRNA during immobilized anti-CD3 activation of G(0) T cells. Deprivation of l-serine from culture medium or addition of antisense PHGDH oligonucleotide significantly reduced [(3)H]TdR incorporation of activated T cells. These results indicate that the PHGDH gene expression, dictated by IL-2R signaling, is a crucial event for DNA synthesis during S phase of activated T cells. PMID:24434753

  12. Leptin potentiates IFN-γ-induced expression of nitric oxide synthase and cyclo-oxygenase-2 in murine macrophage J774A.1

    PubMed Central

    Raso, Giuseppina Mattace; Pacilio, Maria; Esposito, Emanuela; Coppola, Anna; Di Carlo, Raffaele; Meli, Rosaria

    2002-01-01

    Leptin, a pleiotropic hormone believed to regulate body weight, has recently been associated with inflammatory states and immune activity. Here we have studied the effect of leptin on expression of IFN-γ-induced nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2), both prominent markers of macrophage activation, using the murine macrophage J774A.1 cell line. After 24 h of incubation, leptin (1–10 μg ml−1) potently synergized with IFN-γ (100 U ml−1) in nitric oxide (NO) release, evaluated as nitrite and nitrate (NOx), and prostaglandin E2 (PGE2) production in culture medium. The observed increase of NO and PGE2 was related to enhanced expression of the respective inducible enzyme isoforms, measured in mRNA and protein by RT–PCR and Western blot analysis, respectively. When cells were stimulated only with leptin, a weak induction of NO and PGE2 release and of the expression of related inducible enzymes was observed. Moreover IFN-γ increased the expression of the functional form of leptin receptor (Ob-Rb) and this effect was potentiated by leptin in a concentration-dependent manner. These data suggest that macrophages, among the peripheral immune cells, represent a target for leptin and confirm the relevance of this hormone in the pathophysiology of inflammation. PMID:12411410

  13. A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1.

    PubMed Central

    Garber, D A; Schaffer, P A; Knipe, D M

    1997-01-01

    Herpes simplex virus (HSV) persists in the human population by establishing long-term latent infections followed by periodic reactivation and transmission. Latent infection of sensory neurons is characterized by repression of viral productive-cycle gene expression, with abundant transcription limited to a single locus that encodes the latency-associated transcripts (LATs). We have observed that LAT- deletion mutant viruses express viral productive-cycle genes in greater numbers of murine trigeminal ganglion neurons than LAT+ HSV type 1 at early times during acute infection but show reduced reactivation from latent infection. Thus, a viral function associated with the LAT region exerts an effect at an early stage of neuronal infection to reduce productive-cycle viral gene expression. These results provide the first evidence that the virus plays an active role in down-regulating productive infection during acute infection of sensory neurons. The effect of down-regulation of productive-cycle gene expression during acute infection may contribute to viral evasion from the host immune responses and to reduced cytopathic effects, thereby facilitating neuronal survival and the establishment of latency. PMID:9223478

  14. Soluble M3 proteins of murine gammaherpesviruses 68 and 72 expressed in Escherichia coli: analysis of chemokine-binding properties.

    PubMed

    Matúšková, R; Pančík, P; Štibrániová, I; Belvončíková, P; Režuchová, I; Kúdelová, M

    2015-12-01

    M3 protein of murine gammaherpesvirus 68 (MHV-68) was identified as a viral chemokine-binding protein 3 (vCKBP-3) capable to bind a broad spectrum of chemokines and their receptors. During both acute and latent infection MHV-68 M3 protein provides a selective advantage for the virus by inhibiting the antiviral and inflammatory response. A unique mutation Asp307Gly was identified in the M3 protein of murine gammaherpesvirus 72 (MHV-72), localized near chemokine-binding domain. Study on chemokine-binding properties of MHV-72 M3 protein purified from medium of infected cells implied reduced binding to some chemokines when compared to MHV-68 M3 protein. It was suggested that the mutation in the M3 protein might be involved in the attenuation of immune response to infection with MHV-72. Recently, Escherichia coli cells were used to prepare native recombinant M3 proteins of murine gammaherpesviruses 68 and 72 (Pančík et al., 2013). In this study, we assessed the chemokine-binding properties of three M3 proteins prepared in E. coli Rosetta-gami 2 (DE3) cells, the full length M3 protein of both MHV-68 and MHV-72 and MHV-68 M3 protein truncated in the signal sequence (the first 24 aa). They all displayed binding activity to human chemokines CCL5 (RANTES), CXCL8 (IL-8), and CCL3 (MIP-1α). The truncated MHV-68 M3 protein had more than twenty times reduced binding activity to CCL5, but only about five and three times reduced binding to CXCL8 and CCL3 when compared to its full length counterpart. Binding of the full length MHV-72 M3 protein to all chemokines was reduced when compared to MHV-68 M3 protein. Its binding to CCL5 and CCL3 was reduced over ten and seven times. However, its binding to CXCL8 was only slightly reduced (64.8 vs 91.8%). These data implied the significance of the signal sequence and also of a single mutation (at aa 307) for efficient M3 protein binding to some chemokines. PMID:26666184

  15. Conditional expression of murine Flt3 ligand leads to expansion of multiple dendritic cell subsets in peripheral blood and tissues of transgenic mice.

    PubMed

    Manfra, Denise J; Chen, Shu-Cheng; Jensen, Kristian K; Fine, Jay S; Wiekowski, Maria T; Lira, Sergio A

    2003-03-15

    The analysis of the development and function of distinct subsets of murine dendritic cells (DC) has been hampered by the limited number of these cells in vivo. To circumvent this limitation we have developed a conditional transgenic mouse model for producing large numbers of DC. We used the tetracycline-inducible system to conditionally express murine Flt3 ligand (FL), a potent hemopoietic growth factor that promotes the differentiation and mobilization of DC. Acute treatment (96 h) of the transgenic animals with the tetracycline analog doxycycline (DOX) promoted an approximately 200-fold increase in serum levels of FL without affecting the number of circulating DC. However, within 1 wk of DOX treatment, the relative number of DC in peripheral blood increased from approximately 8 to approximately 40%. Interestingly, both the levels of FL and the number of DC remained elevated for at least 9 mo with continual DOX treatment. Chronic treatment of the mice with DOX led to dramatic increases in the number of DC in multiple tissues without any apparent pathological consequences. Most DC populations were expanded, including immature and mature DC, myeloid (CD11c(+)CD11b(+)CD8a(-)), lymphoid (CD11c(+)CD11b(-)CD8a(+)), and the recently defined plasmacytoid (pDC) subsets. Finally, transplantation of BM from green fluorescent protein-expressing mice into lethally irradiated transgenic mice followed by subsequent DOX treatment led to expansion of green fluorescent protein-labeled DC. The transgenic mice described here should thus provide a readily available source of multiple DC subsets and should facilitate the analysis of their role in homeostasis and disease. PMID:12626534

  16. Role of platelet CD40 ligand for endothelial cell-monocyte interaction in the presence of flow

    NASA Astrophysics Data System (ADS)

    Wagner, Andreas H.; Schwarz, Manuel; König, Gerd; Hecker, Markus

    2014-11-01

    CD40 ligand (CD154)-induced ultra-large von Willebrand factor (vWF) multimer-mediated endothelial cell-platelet-monocyte interaction may play an important role in adaptive and maladaptive vascular remodeling processes. Here we analyzed the impact of and conditions favouring the deposition of these multimers on the endothelial cell (EC) surface by way of CD40-CD154 co-stimulation in settings mimicking different forms of blood flow. Upon exposure to low oscillatory shear stress and sCD154, a release of vWF multimers comparable to histamine stimulation was monitored on the EC surface in a string-like fashion. Moreover, ex vivo perfused carotid arteries of wild type mice at low laminar shear stress rates showed a luminal release of vWF as ultra-large vWF multimers (ULVWF) upon stimulation with sCD154 which was absent in blood vessels of CD40 knockout mice. The observed CD40- and flow-dependent vWF release from intact endothelial cells and subsequent vWF multimer formation may facilitate adhesion and subsequent activation of circulating platelets at atherosclerotic predilection sites, which are characterized by disturbed flow patterns. This in turn may amplify endothelial cell-monocyte interaction, thus possibly initiating or promoting early atherosclerotic lesion formation.

  17. CD40 agonist antibody mediated improvement of chronic Cryptosporidium infection in patients with X-linked hyper IgM syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    X-linked hyper-IgM syndrome (XHM) is a combined immune deficiency disorder caused by mutations in CD40 ligand. We tested CP-870,893, a human CD40 agonist monoclonal antibody, in the treatment of two XHM patients with biliary Cryptosporidiosis. CP-870,893 activated B cells and APCs in vitro, restori...

  18. Expression of Moloney Murine Leukemia Virus RNase H Rescues the Growth Defect of an Escherichia coli Mutant

    PubMed Central

    Campbell, Andrew G.

    2001-01-01

    A 157-amino-acid fragment of Moloney murine leukemia virus reverse transcriptase encoding RNase H is shown to rescue the growth-defective phenotype of an Escherichia coli mutant. In vitro assays of the recombinant wild-type protein purified from the conditionally defective mutant confirm that it is catalytically active. Mutagenesis of one of the presumptive RNase H-catalytic residues results in production of a protein variant incapable of rescue and which lacks activity in vitro. Analyses of additional active site mutants demonstrate that their encoded variant proteins lack robust activity yet are able to rescue the bacterial mutant. These results suggest that genetic complementation may be useful for in vivo screening of mutant viral RNase H gene fragments and in evaluating their function under conditions that more closely mimic physiological conditions. The rescue system may also be useful in verifying the functional outcomes of mutations based on protein structural predictions and modeling. PMID:11390625

  19. Use of CD40L immunoconjugates to overcome the defective immune response to vaccines for infections and cancer in the aged.

    PubMed

    Tang, Yu Cheng; Thoman, Marilyn; Linton, Phyllis-Jean; Deisseroth, Albert

    2009-12-01

    :147-164, 1998; Ben-Yehuda and Weksler In: Cancer Investigation 10:525-531, 1992]. One of the more interesting examples of the functional defects in the cells of the adaptive immune response is a reduced level of expression in the surface cytoadhesion and activation receptor molecules on CD4 helper T cells undergoing activation during vaccination. Upon infection or vaccination, CD40L is typically increased on the surface of CD4 helper T cells during activation, and this increased expression is absolutely essential to the CD40L promotion of expansion of antigen-specific B cells and CD 8 effector T cells in response to infection or vaccination [Singh et al. In: Protein Sci 7:1124-1135, 1998; Grewal and Flavell In: Immunol Res 16: 59-70, 1997; Kornbluth In: J Hematother Stem Cell Res 11:787-801, 2002; Garcia de Vinuesa et al. In: Eur J Immunol 29:3216-3224, 1999]. In aged human beings and mice, the reduced levels of expression of CD40 ligand (CD40L) in activated CD4 helper T cells is dramatically reduced [Eaton et al. In: J Exp Med 200:1613-1622, 2004; Dong et al. In: J Gen Virol 84:1623-1628, 2003]. To circumvent the reduction in CD40L expression and the subsequent reduction in immune response in the elderly, we have developed a chimeric vaccine comprised of the CD40L linked to the target antigen, in a replication incompetent adenoviral vector and in booster protein. This review will discuss the implementation the potential use of this approach for the vaccination of the older populations for cancer and infection. PMID:19444444

  20. Sgp3 and Sgp4 Control Expression of Distinct and Restricted Sets of Xenotropic Retroviruses Encoding Serum gp70 Implicated in Murine Lupus Nephritis

    PubMed Central

    Kihara, Maso; Leroy, Valérie; Baudino, Lucie; Evans, Leonard H.; Izui, Shozo

    2011-01-01

    The envelope glycoprotein gp70 of endogenous retroviruses implicated in murine lupus nephritis is secreted by hepatocytes and its expression is controlled by Sgp3 (serum gp70 production 3) and Sgp4 loci derived from lupusprone mice. Among three different endogenous retroviruses (ecotropic, xenotropic and polytropic), xenotropic viruses are considered to be the major source of serum gp70. Although the abundance of xenotropic viral gp70 RNA in livers was up-regulated by the presence of these two Sgp loci, it has not yet been clear whether Sgp3 and Sgp4 regulate the expression of a fraction or multiple xenotropic viruses present in mouse genome. To address this question, we determined the genetic origin of xenotropic viral sequences expressed in wildtype and two different Sgp congenic C57BL/6 mice. Among 14 xenotropic proviruses present in the C57BL/6 genome, only two proviruses (Xmv10 and Xmv14) were actively transcribed in wild-type C57BL/6 mice. In contrast, Sgp3 enhanced the transcription of Xmv10 and induced the transcription of three additional xenotropic viruses (Xmv15, Xmv17 and Xmv18), while Sgp4 induced the expression of a different xenotropic virus (Xmv13). Notably, stimulation of TLR7 in Sgp3 congenic C57BL/6 mice led to a highly enhanced expression of potentially replication-competent Xmv18. These results indicated that Sgp3 and Sgp4 independently regulated the transcription of distinct and restricted sets of xenotropic viruses in trans, thereby promoting the production of nephritogenic gp70 autoantigens. Furthermore, the induced expression of potentially replication-competent xenotropic viruses by Sgp3 may contribute to the development of autoimmune responses against gp70 through the activation of TLR7. PMID:21982749

  1. Differential Expression of Chemokine and Matrix Re-Modelling Genes Is Associated with Contrasting Schistosome-Induced Hepatopathology in Murine Models

    PubMed Central

    Stenzel, Deborah J.; McManus, Donald P.; Ramm, Grant A.; Gobert, Geoffrey N.

    2011-01-01

    The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This

  2. Establishment and evaluation of a murine αvβ3-integrin-expressing cell line with increased susceptibility to Foot-and-mouth disease virus

    PubMed Central

    Zhang, Wei; Lian, Kaiqi; Yang, Fan; Yang, Yang; Zhu, Zhijian; Zhu, Zixiang; Cao, Weijun; Mao, Ruoqing; Jin, Ye; He, Jijun; Guo, Jianhong; Liu, Xiangtao

    2015-01-01

    Integrin αvβ3 plays a major role in various signaling pathways, cell apoptosis, and tumor angiogenesis. To examine the functions and roles of αvβ3 integrin, a stable CHO-677 cell line expressing the murine αvβ3 heterodimer (designated as "CHO-677-mαvβ3" cells) was established using a highly efficient lentiviral-mediated gene transfer technique. Integrin subunits αv and β3 were detected at the gene and protein levels by polymerase chain reaction (PCR) and indirect immunofluorescent assay (IFA), respectively, in the CHO-677-mαvβ3 cell line at the 20th passage, implying that these genes were successfully introduced into the CHO-677 cells and expressed stably. A plaque-forming assay, 50% tissue culture infective dose (TCID50), real-time quantitative reverse transcription-PCR, and IFA were used to detect the replication levels of Foot-and-mouth disease virus (FMDV) in the CHO-677-mαvβ3 cell line. After infection with FMDV/O/ZK/93, the cell line showed a significant increase in viral RNA and protein compared with CHO-677 cells. These findings suggest that we successfully established a stable αvβ3-receptor-expressing cell line with increased susceptibility to FMDV. This cell line will be very useful for further investigation of αvβ3 integrin, and as a cell model for FMDV research. PMID:25643796

  3. Decreased spinal cord opioid receptor mRNA expression and antinociception in a Theiler’s murine encephalomyelitis virus model of multiple sclerosis

    PubMed Central

    Lynch, Jessica L.; Alley, Jeremy F.; Wellman, Lori; Beitz, Alvin J.

    2008-01-01

    Multiple sclerosis patients typically experience increased pain that is relatively insensitive to opiate treatment. The mechanistic basis for this increased nociception is currently poorly understood. In the present study, we utilized the Theiler’s murine encephalomyelitis virus (TMEV) model of MS to examine possible changes in spinal cord opioid receptor mRNA over the course of disease progression. TMEV infection led to significantly decreased mu, delta and kappa opioid receptor mRNA expression as analyzed by quantitative Real-Time PCR in both male and female mice at days 90, 150 and 180 post-infection (PI). Since opioid receptor mRNA expression decreased in TMEV mice, we examined whether opiate analgesia is also altered. TMEV infected female mice had significantly decreased opiate analgesia in thermal nociceptive tests beginning at day 90 PI, while TMEV-infected male mice did not display significantly decreased opiate analgesia until day 120 PI. The novel finding that opioid receptor expression is significantly decreased in the spinal cord of TMEV mice could explain the increased nociception and loss of opiate analgesia observed in both TMEV mice and multiple sclerosis patients. PMID:18096140

  4. Generation of an attenuated Salmonella-delivery strains expressing adhesin and toxin antigens for progressive atrophic rhinitis, and evaluation of its immune responses in a murine model.

    PubMed

    Byeon, Hoyeon; Hur, Jin; Kim, Bo Ram; Lee, John Hwa

    2014-09-01

    An expression/secretion plasmid containing genes encoding the FimA, CP39, PtfA, ToxA and F1P2 antigens associated with porcine pneumonic pasteurellosis and progressive atrophic rhinitis (PAR) was constructed and harbored in an attenuated Salmonella Typhimurium, which was used as the vaccine candidate. The immune responses induced by this delivery strain were investigated in a murine model. Each antigen secreted from the delivery strain was confirmed by Western blot analysis. Thirty BALB/c mice were divided equally into two groups; group A were intranasally inoculated with the mixture of the five delivery strains, and group B were inoculated with sterile PBS. In group A, all antigen-specific serum IgG were significantly increased compared to those of group B from the 2nd week post-inoculation (WPI) till the 8th WPI. All antigen-specific mucosal IgA in group A were also significantly greater than those of group B. In addition, the significant splenic lymphocyte proliferative responses, the elevations of CD3(+)CD4(+), CD3(+)CD8(+) and B-cell populations, and the induction of IFN-γ expression in group A were observed. In conclusion, the mixture of five delivery strains expressing specific antigen for these diseases was found to be capable of inducing significant humoral and cellular immune responses. PMID:25045826

  5. HSP86 and HSP84 exhibit cellular specificity of expression and co-precipitate with an HSP70 family member in the murine testis

    NASA Technical Reports Server (NTRS)

    Gruppi, C. M.; Wolgemuth, D. J.

    1993-01-01

    This study extends to the protein level our previous observations, which had established the stage and cellular specificity of expression of hsp86 and hsp84 in the murine testis in the absence of exogenous stress. Immunoblot analysis was used to demonstrate that HSP86 protein was present throughout testicular development and that its levels increased with the appearance of differentiating germ cells. HSP86 was most abundant in the germ cell population and was present at significantly lower levels in the somatic cells. By contrast, the HSP84 protein was detected in the somatic cells of the testis rather than in germ cells. The steady-state levels of HSP86 and HSP84 paralleled the pattern of the expression of their respective mRNAs, suggesting that regulation at the level of translation was not a major mechanism controlling hsp90 gene expression in testicular cells. Immunoprecipitation analysis revealed that a 70-kDa protein coprecipitated with the HSP86/HSP84 proteins in testicular homogenates. This protein was identified as an HSP70 family member by immunoblot analysis, suggesting that HSP70 and HSP90 family members interact in testicular cells.

  6. Murine Typhus

    PubMed Central

    Dzul-Rosado, Karla R; Zavala Velázquez, Jorge Ernesto; Zavala-Castro, Jorge

    2012-01-01

    Rickettsia typhi: is an intracellular bacteria who causes murine typhus. His importance is reflected in the high frequency founding specific antibodies against Rickettsia typhi in several worldwide seroepidemiological studies, the seroprevalence ranging between 3-36%. Natural reservoirs of R. typhi are rats (some species belonging the Rattus Genus) and fleas (Xenopsylla cheopis) are his vector. This infection is associated with overcrowding, pollution and poor hygiene. Typically presents fever, headache, rash on trunk and extremities, in some cases may occur organ-specific complications, affecting liver, kidney, lung or brain. Initially the disease is very similar to other diseases, is very common to confuse the murine typhus with Dengue fever, therefore, ignorance of the disease is a factor related to complications or non-specific treatments for the resolution of this infection. This paper presents the most relevant information to consider about the rickettsiosis caused by Rickettsia typhi. PMID:24893060

  7. Expression, refolding and crystallization of murine MHC class I H-2D{sup b} in complex with human β{sub 2}-microglobulin

    SciTech Connect

    Sandalova, Tatyana; Michaëlsson, Jakob; Harris, Robert A.; Ljunggren, Hans-Gustaf; Kärre, Klas; Schneider, Gunter; Achour, Adnane

    2005-12-01

    Mouse MHC class I H-2Db in complex with human β2m and the LCMV-derived peptide gp33 has been produced and crystallized. Resolution of the structure of this complex combined with the structural comparison with the previously solved crystal structure of H-2Db/mβ2m/gp33 should lead to a better understanding of how the β2m subunit affects the overall conformation of MHC complexes as well as the stability of the presented peptides. β{sub 2}-Microglobulin (β{sub 2}m) is non-covalently linked to the major histocompatibility (MHC) class I heavy chain and interacts with CD8 and Ly49 receptors. Murine MHC class I can bind human β{sub 2}m (hβ{sub 2}m) and such hybrid molecules are often used in structural and functional studies. The replacement of mouse β{sub 2}m (mβ{sub 2}m) by hβ{sub 2}m has important functional consequences for MHC class I complex stability and specificity, but the structural basis for this is unknown. To investigate the impact of species-specific β{sub 2}m subunits on MHC class I conformation, murine MHC class I H-2D{sup b} in complex with hβ{sub 2}m and the peptide gp33 derived from lymphocytic choriomeningitis virus (LCMV) has been expressed, refolded in vitro and crystallized. Crystals containing two complexes per asymmetric unit and belonging to the space group P2{sub 1}, with unit-cell parameters a = 68.1, b = 65.2, c = 101.9 Å, β = 102.4°, were obtained.

  8. The murine gammaherpesvirus immediate-early Rta synergizes with IRF4, targeting expression of the viral M1 superantigen to plasma cells.

    PubMed

    O'Flaherty, Brigid M; Soni, Tanushree; Wakeman, Brian S; Speck, Samuel H

    2014-08-01

    MHV68 is a murine gammaherpesvirus that infects laboratory mice and thus provides a tractable small animal model for characterizing critical aspects of gammaherpesvirus pathogenesis. Having evolved with their natural host, herpesviruses encode numerous gene products that are involved in modulating host immune responses to facilitate the establishment and maintenance of lifelong chronic infection. One such protein, MHV68 M1, is a secreted protein that has no known homologs, but has been shown to play a critical role in controlling virus reactivation from latently infected macrophages. We have previous demonstrated that M1 drives the activation and expansion of Vβ4+ CD8+ T cells, which are thought to be involved in controlling MHV68 reactivation through the secretion of interferon gamma. The mechanism of action and regulation of M1 expression are poorly understood. To gain insights into the function of M1, we set out to evaluate the site of expression and transcriptional regulation of the M1 gene. Here, using a recombinant virus expressing a fluorescent protein driven by the M1 gene promoter, we identify plasma cells as the major cell type expressing M1 at the peak of infection in the spleen. In addition, we show that M1 gene transcription is regulated by both the essential viral immediate-early transcriptional activator Rta and cellular interferon regulatory factor 4 (IRF4), which together potently synergize to drive M1 gene expression. Finally, we show that IRF4, a cellular transcription factor essential for plasma cell differentiation, can directly interact with Rta. The latter observation raises the possibility that the interaction of Rta and IRF4 may be involved in regulating a number of viral and cellular genes during MHV68 reactivation linked to plasma cell differentiation. PMID:25101696

  9. Human CD38hiCD138+ Plasma Cells Can Be Generated In Vitro from CD40-Activated Switched-Memory B Lymphocytes

    PubMed Central

    Itoua Maïga, Rayelle; Tremblay Rochette, Josiane; Néron, Sonia

    2014-01-01

    B lymphocyte differentiation into long-lived plasma cells is the keystone event for the production of long-term protective antibodies. CD40-CD154 and CD27-CD70 interactions are involved in human B lymphocyte differentiation into CD38hiCD138+ cells in vivo as well as in vitro. In this study, we have compared these interactions in their capacity to drive switched-memory B lymphocytes differentiation into CD38hiCD138+ plasma cells. The targeted B lymphocytes were isolated from human peripheral blood, expanded for 19 days, and then submitted to CD70 or CD154 interactions for 14 days. The expanded B lymphocytes were constitutively expressing CD39, whereas CD31's expression was noticed only following the in vitro differentiation step (day 5) and was exclusively present on the CD38hi cell population. Furthermore, the generated CD38hiCD138+ cells showed a higher proportion of CD31+ cells than the CD38hiCD138− cells. Besides, analyses done with human blood and bone marrow plasma cells showed that in vivo and de novo generated CD38hiCD138+ cells have a similar CD31 expression profile but are distinct according to their reduced CD39 expression level. Overall, we have evidences that in vitro generated plasma cells are heterogeneous and appear as CD39+ precursors to the ones present in bone marrow niches. PMID:25759831

  10. Tacrolimus (FK506) Suppresses TREM-1 Expression at an Early but Not at a Late Stage in a Murine Model of Fungal Keratitis

    PubMed Central

    Jia, Xiuhua; Lin, Binwu; Huang, Xi; Zhong, Jing; Li, Weihua; Lin, Xiaolei; Sun, Yifang; Yuan, Jin

    2014-01-01

    Purpose To investigate the efficacy and mechanism of tacrolimus(FK506), which is a novel macrolide immunosuppressant, in inhibiting triggering receptor expressed on myeloid cells-1 (TREM-1) expression in a murine keratitis model induced by Aspergillus fumigatus. Method TREM-1 was detected in 11 fungus-infected human corneas by quantitative real-time PCR (qRT-PCR). RAW264.7 macrophages were divided into four groups, which received treatment with zymosan (100 µg/ml), zymosan (100 µg/ml) + mTREM-1/Fc protein (1 µg/ml), or zymosan (100 µg/ml) + FK506 (20 µM) or negative-control treatment. After this treatment, the expression of TREM-1, interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) was assayed using qRT-PCR and ELISA. The mouse model of fungal keratitis was created by intrastromal injection with Aspergillus fumigatus, and the mice were divided into 2 groups: group A received vehicle eye drops 4 times each day, and group B received 4 doses of FK506 eye drops each day. Corneal damage was evaluated by clinical scoring and histologic examination,and myeloperoxidase (MPO) protein levels were also detected by ELISA. The expression of TREM-1, IL-1β and TNFα was then determined at different time points using qRT-PCR and ELISA. Results TREM-1 expression dramatically increased in the human corneas with fungal keratitis. In contrast, FK506 reduced the expression of TREM-1, IL-1β and TNFα in RAW264.7 macrophages stimulated with zymosan. In the mouse model, at day 1 post-infection, the corneal score of the FK506-treated group was lower than that of the control, and polymorphonuclear neutrophil (PMN) infiltration was diminished. TREM-1, IL-1β and TNFα expression was significantly reduced at the same time point. However, the statistically significant differences in cytokine expression, clinical scores and infiltration disappeared at 5 days post-infection. Conclusions FK506 may inhibit the inflammation induced by fungi and alleviate the severity of corneal

  11. Effects of Pholiota nameko polysaccharide on NF-κB pathway of murine bone marrow-derived dendritic cells.

    PubMed

    Li, Haiping; Tao, Yongqing; Zhao, Pei; Huai, Lihua; Zhi, Dexian; Liu, Jiangmei; Li, Guoliang; Dang, Chunlan; Xu, Yufeng

    2015-01-01

    This study investigated the effect of a polysaccharide purified from Pholiota nameko (PNPS-1) on the NF-κB signaling pathway of murine bone marrow-derived dendritic cells (BMDCs) and relevant mechanisms. The results showed that PNPS-1 could decrease the expression of maturation markers CD40 and CD80 on BMDCs. PNPS-1 also could decrease the mRNA expression of Myd88, TRAF6, TIRAP, IRAKI, IKBKB, NFKB1, NFKB2 and RelA in immature BMDCs determined by RT-PCR, and decreased the IKKβ and P65 production in BMDCs determined by Western blot, and decreased the NF-кB P65 production determined by ELISA. In addition, the effects of PNPS-1 on BMDCs were significantly impaired by treating the cells with anti-TLR2 antibody prior to PNPS-1 treatment, implying direct interaction between PNPS-1 and TLR2 on cell surface. These results indicate that PNPS-1 regulates BMDCs through TLR2 and downstream NF-кB signalings. PMID:25812973

  12. Temporal Analysis of Gene Expression in the Murine Schwann Cell Lineage and the Acutely Injured Postnatal Nerve.

    PubMed

    Balakrishnan, Anjali; Stykel, Morgan G; Touahri, Yacine; Stratton, Jo Anne; Biernaskie, Jeff; Schuurmans, Carol

    2016-01-01

    Schwann cells (SCs) arise from neural crest cells (NCCs) that first give rise to SC precursors (SCPs), followed by immature SCs, pro-myelinating SCs, and finally, non-myelinating or myelinating SCs. After nerve injury, mature SCs 'de-differentiate', downregulating their myelination program while transiently re-activating early glial lineage genes. To better understand molecular parallels between developing and de-differentiated SCs, we characterized the expression profiles of a panel of 12 transcription factors from the onset of NCC migration through postnatal stages, as well as after acute nerve injury. Using Sox10 as a pan-glial marker in co-expression studies, the earliest transcription factors expressed in E9.0 Sox10+ NCCs were Sox9, Pax3, AP2α and Nfatc4. E10.5 Sox10+ NCCs coalescing in the dorsal root ganglia differed slightly, expressing Sox9, Pax3, AP2α and Etv5. E12.5 SCPs continued to express Sox10, Sox9, AP2α and Pax3, as well as initiating Sox2 and Egr1 expression. E14.5 immature SCs were similar to SCPs, except that they lost Pax3 expression. By E18.5, AP2α, Sox2 and Egr1 expression was turned off in the nerve, while Jun, Oct6 and Yy1 expression was initiated in pro-myelinating Sox9+/Sox10+ SCs. Early postnatal and adult SCs continued to express Sox9, Jun, Oct6 and Yy1 and initiated Nfatc4 and Egr2 expression. Notably, at all stages, expression of each marker was observed only in a subset of Sox10+ SCs, highlighting the heterogeneity of the SC pool. Following acute nerve injury, Egr1, Jun, Oct6, and Sox2 expression was upregulated, Egr2 expression was downregulated, while Sox9, Yy1, and Nfatc4 expression was maintained at similar frequencies. Notably, de-differentiated SCs in the injured nerve did not display a transcription factor profile corresponding to a specific stage in the SC lineage. Taken together, we demonstrate that uninjured and injured SCs are heterogeneous and distinct from one another, and de-differentiation recapitulates

  13. Temporal Analysis of Gene Expression in the Murine Schwann Cell Lineage and the Acutely Injured Postnatal Nerve

    PubMed Central

    Touahri, Yacine; Stratton, Jo Anne; Biernaskie, Jeff; Schuurmans, Carol

    2016-01-01

    Schwann cells (SCs) arise from neural crest cells (NCCs) that first give rise to SC precursors (SCPs), followed by immature SCs, pro-myelinating SCs, and finally, non-myelinating or myelinating SCs. After nerve injury, mature SCs ‘de-differentiate’, downregulating their myelination program while transiently re-activating early glial lineage genes. To better understand molecular parallels between developing and de-differentiated SCs, we characterized the expression profiles of a panel of 12 transcription factors from the onset of NCC migration through postnatal stages, as well as after acute nerve injury. Using Sox10 as a pan-glial marker in co-expression studies, the earliest transcription factors expressed in E9.0 Sox10+ NCCs were Sox9, Pax3, AP2α and Nfatc4. E10.5 Sox10+ NCCs coalescing in the dorsal root ganglia differed slightly, expressing Sox9, Pax3, AP2α and Etv5. E12.5 SCPs continued to express Sox10, Sox9, AP2α and Pax3, as well as initiating Sox2 and Egr1 expression. E14.5 immature SCs were similar to SCPs, except that they lost Pax3 expression. By E18.5, AP2α, Sox2 and Egr1 expression was turned off in the nerve, while Jun, Oct6 and Yy1 expression was initiated in pro-myelinating Sox9+/Sox10+ SCs. Early postnatal and adult SCs continued to express Sox9, Jun, Oct6 and Yy1 and initiated Nfatc4 and Egr2 expression. Notably, at all stages, expression of each marker was observed only in a subset of Sox10+ SCs, highlighting the heterogeneity of the SC pool. Following acute nerve injury, Egr1, Jun, Oct6, and Sox2 expression was upregulated, Egr2 expression was downregulated, while Sox9, Yy1, and Nfatc4 expression was maintained at similar frequencies. Notably, de-differentiated SCs in the injured nerve did not display a transcription factor profile corresponding to a specific stage in the SC lineage. Taken together, we demonstrate that uninjured and injured SCs are heterogeneous and distinct from one another, and de-differentiation recapitulates

  14. Molecular cloning of a novel NF2/ERM/4.1 superfamily gene, ehm2, that is expressed in high-metastatic K1735 murine melanoma cells.

    PubMed

    Shimizu, K; Nagamachi, Y; Tani, M; Kimura, K; Shiroishi, T; Wakana, S; Yokota, J

    2000-04-15

    We have cloned a novel gene, Ehm2, that is expressed in high-metastatic but not in low-metastatic K-1735 murine melanoma cells. The Ehm2 gene encodes a protein of 527 amino acid residues, showing up to 41% amino acid identity with the FERM domain of NF2/ERM/4.1 superfamily proteins, which have the function of connecting cell surface transmembrane proteins to cytoskeletal molecules. The Ehm2 gene was mapped to chromosome 4 and was expressed in the liver, lung, kidney, and testis and in 7- to 17-day embryos. The highest level of homology was observed with NBL4, which is a new subfamily protein of the NF2/ERM/4.1 superfamily. A human homologue of the mouse Ehm2 gene, showing significant homology (83% identity), was identified in the genomic DNA and EST databases. Furthermore, seven rat EST clones and one pig EST clone in the GenBank EST database were identified as having 83-92% sequence homology with the cDNA sequence of the mouse Ehm2 gene. Thus, Ehm2 is a highly conserved gene that encodes a novel member of the NF2/ERM/4.1 superfamily proteins. PMID:10783258

  15. Expression of the murine RanBP1 and Htf9-c genes is regulated from a shared bidirectional promoter during cell cycle progression.

    PubMed Central

    Guarguaglini, G; Battistoni, A; Pittoggi, C; Di Matteo, G; Di Fiore, B; Lavia, P

    1997-01-01

    The murine Htf9-a/RanBP1 and Htf9-c genes are divergently transcribed from a bidirectional promoter. The Htf9-a gene encodes the RanBP1 protein, a major partner of the Ran GTPase. The divergently transcribed Htf9-c gene encodes a protein sharing similarity with yeast and bacterial nucleic acid-modifying enzymes. We report here that both mRNA species produced by the Htf9-associated genes are regulated during the cell cycle progression, peak in S phase and decrease during mitosis. Transient expression experiments with reporter constructs showed that cell cycle expression is controlled at the transcriptional level, because the bidirectional Htf9 promoter is down-regulated in growth-arrested cells, is activated at the G1/S transition and reaches maximal activity in S phase, though with a different efficiency for each orientation. We have delimited specific promoter regions controlling S phase activity in one or both orientations: identified elements contain recognition sites for members belonging to both the E2F and Sp1 families of transcription factors. Together, the results suggest that the sharing of the regulatory region supports co-regulation of the Htf9-a/RanBP1 and Htf9-c genes in a common window of the cell cycle. PMID:9224656

  16. Adenoviral vector expressing murine β-defensin 2 enhances immunogenicity of an adenoviral vector based H5N1 influenza vaccine in aged mice.

    PubMed

    Vemula, Sai V; Pandey, Aseem; Singh, Neetu; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K

    2013-10-01

    The ability to resist infections and respond to vaccinations is greatly reduced in the older adult population owing to a general decline in innate and adaptive immune functions with aging. Over the years several strategies such as increasing the vaccine dose, number of immunizations and using adjuvants have been evaluated to improve the immunogenicity and efficacy of vaccines in the older adult population. Murine β-defensin 2 (Mbd2) has been shown to function as a molecular adjuvant by recruiting and activating immature dendritic cells (DCs), professional antigen-presenting cells (APC), to the site of the immunization. In this study, we evaluated the potential utility of Mbd2 to enhance the efficacy of an adenoviral vector-based H5N1 influenza vaccine expressing hemagglutinin (HA) and nucleoprotein (NP) (HAd-HA-NP) in an aged mouse model. Our results indicated that immunostimulation with an adenoviral vector expressing Mbd2 (HAd-Mbd2) activated DCs and significantly enhanced the humoral and cellular immune responses induced by HAd-HA-NP. Furthermore, immunostimulation with HAd-Mbd2 followed by immunization with HAd-HA-NP resulted in significantly lower virus titers in the lungs following challenge with a H5N1 influenza virus compared to the group immunized with HAd-HA-NP without immunostimulation. Overall, our results highlight the potential utility of Mbd2 as a molecular adjuvant to enhance the immunogenicity and protective efficacy of vaccines for the elderly. PMID:23892144

  17. Activation of MITF by Argan Oil Leads to the Inhibition of the Tyrosinase and Dopachrome Tautomerase Expressions in B16 Murine Melanoma Cells.

    PubMed

    Villareal, Myra O; Kume, Sayuri; Bourhim, Thouria; Bakhtaoui, Fatima Zahra; Kashiwagi, Kenichi; Han, Junkyu; Gadhi, Chemseddoha; Isoda, Hiroko

    2013-01-01

    Argan (Argania spinosa L.) oil has been used for centuries in Morocco as cosmetic oil to maintain a fair complexion and to cure skin pimples and chicken pox pustules scars. Although it is popular, the scientific basis for its effect on the skin has not yet been established. Here, the melanogenesis regulatory effect of argan oil was evaluated using B16 murine melanoma cells. Results of melanin assay using B16 cells treated with different concentrations of argan oil showed a dose-dependent decrease in melanin content. Western blot results showed that the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT) proteins were decreased. In addition, there was an increase in the activation of MITF and ERK1/2. Real-time PCR results revealed a downregulation of Tyr, Trp1, Dct, and Mitf mRNA expressions. Argan oil treatment causes MITF phosphorylation which subsequently inhibited the transcription of melanogenic enzymes, TYR and DCT. The inhibitory effect of argan oil on melanin biosynthesis may be attributed to tocopherols as well as the synergistic effect of its components. The results of this study provide the scientific basis for the traditionally established benefits of argan oil and present its therapeutic potential against hyperpigmentation disorders. PMID:23935660

  18. Adenoviral Vector Expressing Murine β-Defensin 2 Enhances Immunogenicity of an Adenoviral Vector based H5N1 Influenza Vaccine in Aged Mice

    PubMed Central

    Vemula, Sai V.; Pandey, Aseem; Singh, Neetu; Katz, Jacqueline M; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K.

    2013-01-01

    The ability to resist infections and respond to vaccinations is greatly reduced in the older adult population owing to a general decline in innate and adaptive immune functions with aging. Over the years several strategies such as increasing the vaccine dose, number of immunizations and using adjuvants have been evaluated to improve the immunogenicity and efficacy of vaccines in the older adult population. Murine ß-defensin 2 (Mbd2) has been shown to function as a molecular adjuvant by recruiting and activating immature dendritic cells (DCs), professional antigen-presenting cells (APC), to the site of the immunization. In this study, we evaluated the potential utility of Mbd2 to enhance the efficacy of an adenoviral vector-based H5N1 influenza vaccine expressing hemagglutinin (HA) and nucleoprotein (NP) (HAd-HA-NP) in an aged mouse model. Our results indicated that immunostimulation with an adenoviral vector expressing Mbd2 (HAd-Mbd2) activated DCs and significantly enhanced the humoral and cellular immune responses induced by HAd-HA-NP. Furthermore, immunostimulation with HAd-Mbd2 followed by immunization with HAd-HA-NP resulted in significantly lower virus titers in the lungs following challenge with a H5N1 influenza virus compared to the group immunized with HAd-HA-NP without immunostimulation. Overall, our results highlight the potential utility of Mbd2 as a molecular adjuvant to enhance the immunogenicity and protective efficacy of vaccines for the elderly. PMID:23892144

  19. Activation of MITF by Argan Oil Leads to the Inhibition of the Tyrosinase and Dopachrome Tautomerase Expressions in B16 Murine Melanoma Cells

    PubMed Central

    Villareal, Myra O.; Kume, Sayuri; Bourhim, Thouria; Bakhtaoui, Fatima Zahra; Han, Junkyu; Gadhi, Chemseddoha; Isoda, Hiroko

    2013-01-01

    Argan (Argania spinosa L.) oil has been used for centuries in Morocco as cosmetic oil to maintain a fair complexion and to cure skin pimples and chicken pox pustules scars. Although it is popular, the scientific basis for its effect on the skin has not yet been established. Here, the melanogenesis regulatory effect of argan oil was evaluated using B16 murine melanoma cells. Results of melanin assay using B16 cells treated with different concentrations of argan oil showed a dose-dependent decrease in melanin content. Western blot results showed that the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT) proteins were decreased. In addition, there was an increase in the activation of MITF and ERK1/2. Real-time PCR results revealed a downregulation of Tyr, Trp1, Dct, and Mitf mRNA expressions. Argan oil treatment causes MITF phosphorylation which subsequently inhibited the transcription of melanogenic enzymes, TYR and DCT. The inhibitory effect of argan oil on melanin biosynthesis may be attributed to tocopherols as well as the synergistic effect of its components. The results of this study provide the scientific basis for the traditionally established benefits of argan oil and present its therapeutic potential against hyperpigmentation disorders. PMID:23935660

  20. Expression of the Murine Norovirus (MNV) ORF1 Polyprotein Is Sufficient to Induce Apoptosis in a Virus-Free Cell Model

    PubMed Central

    Skilton, Rachel J.; Prince, Cynthia A.; Ward, Vernon K.; Lambden, Paul R.; Clarke, Ian N.

    2014-01-01

    Investigations into human norovirus infection, replication and pathogenesis, as well as the development of potential antiviral agents, have been restricted by the lack of a cell culture system for human norovirus. To date, the optimal cell culture surrogate virus model for studying human norovirus biology is the murine norovirus (MNV). In this report we generate a tetracycline-regulated, inducible eukaryotic cell system expressing the entire MNV ORF1 polyprotein. Once induced, the MNV ORF1 polyprotein was faithfully processed to the six mature non-structural proteins that predominately located to a discrete perinuclear region, as has been observed in active MNV infection. Furthermore, we found that expression of the ORF1 polyprotein alone was sufficient to induce apoptosis, characterised by caspase-9 activation and survivin down-regulation. This cell line provides a valuable new tool for studying MNV ORF1 non-structural protein function, screening for potential antiviral agents and acts as a proof-of-principle for such systems to be developed for human noroviruses. PMID:24599381

  1. Expression of the murine norovirus (MNV) ORF1 polyprotein is sufficient to induce apoptosis in a virus-free cell model.

    PubMed

    Herod, Morgan R; Salim, Omar; Skilton, Rachel J; Prince, Cynthia A; Ward, Vernon K; Lambden, Paul R; Clarke, Ian N

    2014-01-01

    Investigations into human norovirus infection, replication and pathogenesis, as well as the development of potential antiviral agents, have been restricted by the lack of a cell culture system for human norovirus. To date, the optimal cell culture surrogate virus model for studying human norovirus biology is the murine norovirus (MNV). In this report we generate a tetracycline-regulated, inducible eukaryotic cell system expressing the entire MNV ORF1 polyprotein. Once induced, the MNV ORF1 polyprotein was faithfully processed to the six mature non-structural proteins that predominately located to a discrete perinuclear region, as has been observed in active MNV infection. Furthermore, we found that expression of the ORF1 polyprotein alone was sufficient to induce apoptosis, characterised by caspase-9 activation and survivin down-regulation. This cell line provides a valuable new tool for studying MNV ORF1 non-structural protein function, screening for potential antiviral agents and acts as a proof-of-principle for such systems to be developed for human noroviruses. PMID:24599381

  2. Stable differentiation and clonality of murine long-term hematopoiesis after extended reduced-intensity selection for MGMT P140K transgene expression

    PubMed Central

    Ball, Claudia R.; Pilz, Ingo H.; Schmidt, Manfred; Fessler, Sylvia; Williams, David A.; Glimm, Hanno

    2007-01-01

    Efficient in vivo selection increases survival of gene-corrected hematopoietic stem cells (HSCs) and protects hematopoiesis, even if initial gene transfer efficiency is low. Moreover, selection of a limited number of transduced HSCs lowers the number of cell clones at risk of gene activation by insertional mutagenesis. However, a limited clonal repertoire greatly increases the proliferation stress of each individual clone. Therefore, understanding the impact of in vivo selection on proliferation and lineage differentiation of stem-cell clones is essential for its clinical use. We established minimal cell and drug dosage requirements for selection of P140K mutant O6-methylguanine-DNA-methyltransferase (MGMT P140K)–expressing HSCs and monitored their differentiation potential and clonality under long-term selective stress. Up to 17 administrations of O6-benzylguanine (O6-BG) and 1,3-bis(2-chloroethyl)-1-nitroso-urea (BCNU) did not impair long-term differentiation and proliferation of MGMT P140K–expressing stem-cell clones in mice that underwent serial transplantation and did not lead to clonal exhaustion. Interestingly, not all gene-modified hematopoietic repopulating cell clones were efficiently selectable. Our studies demonstrate that the normal function of murine hematopoietic stem and progenitor cells is not compromised by reduced-intensity long-term in vivo selection, thus underscoring the potential value of MGMT P140K selection for clinical gene therapy. PMID:17496202

  3. Whiskey congeners suppress LPS/IFNγ-induced NO production in murine macrophage RAW 264 cells by inducing heme oxygenase-1 expression.

    PubMed

    Itoh, Tomohiro; Ando, Masashi; Tsukamasa, Yasuyuki; Wakimoto, Toshiyuki; Nukaya, Haruo

    2012-12-26

    Whiskey includes many nonvolatile substances (whiskey congeners; Whc) that seep from the oak cask during the maturation process. To date, many functions of Whc have reported, such as antiallergy and antimelanogenesis. This study examined the effect of Whc on LPS/IFNγ-induced nitric oxide (NO) production in murine macrophage RAW 264 cells. Whc suppressed LPS/IFNγ-induced NO production in a concentration-dependent manner. To determine the active compounds in Whc, the effect of 10 major compounds isolated from Whc on LPS/IFNγ-induced NO production was examined. Coniferylaldehyde (CA) and sinapylaldehyde (SiA) strongly suppressed LPS/IFNγ-induced NO production. Pretreatment with Whc, CA, and SiA induced heme oxygenase-1 (HO-1) expression. The expression of HO-1 by Whc, CA, and SiA pretreatment was due to activation of Nrf2/ARE signaling via the elevation of intracellular reactive oxygen species. To investigate the in vivo effects of Whc, Whc was administered to mice with antitype II collagen antibody-induced arthritis, and we the arthritis score and hind paw volume were measured. Administration of Whc remarkably suppressed the arthritis score and hind paw volume. Taken together, these findings suggest that Whc is beneficial for the treatment of inflammatory disease. PMID:23199195

  4. Enzyme-Treated Asparagus Extract Attenuates Hydrogen Peroxide-Induced Matrix Metalloproteinase-9 Expression in Murine Skin Fibroblast L929 Cells.

    PubMed

    Shirato, Ken; Takanari, Jun; Ogasawara, Junetsu; Sakurai, Takuya; Imaizumi, Kazuhiko; Ohno, Hideki; Kizaki, Takako

    2016-05-01

    Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts. PMID:27319149

  5. Permanent acceptance of mouse cardiac allografts with CD40 siRNA to induce regulatory myeloid cells by use of a novel polysaccharide siRNA delivery system.

    PubMed

    Zhang, Q; Ichimaru, N; Higuchi, S; Cai, S; Hou, J; Fujino, M; Nonomura, N; Kobayashi, M; Ando, H; Uno, A; Sakurai, K; Mochizuki, S; Adachi, Y; Ohno, N; Zou, H; Xu, J; Li, X-K; Takahara, S

    2015-03-01

    The CD40/CD154 co-stimulatory pathway is crucial in alloimmune response. We developed a novel small interfering RNA (siRNA) delivery system with a poly-dA extension at the 5'-end of the siRNA sense strand that was stably incorporated into 1,3-β-glucan (schizophyllan, SPG). This was captured and incorporated into dendritic cells (DCs) through its receptor, Dectin-1, specifically silencing CD40 genes (siCD40) to exert immunoregulatory activity. siCD40/SPG-treated CBA mice permanently accepted B10 fully mismatched cardiac allografts. Consistent with graft survival, the infiltration of CD4(+), CD8(+) T cells into the graft was lower, and that the numbers of CD40(low)CD11c(+) DCs cells and CD4(+)Foxp3(+)cells were increased in both the graft and in the recipient spleen. In addition, naive CBA recipients given an adoptive transfer of splenocytes from the primary recipients with siCD40/SPG accepted a heart graft from donor-type B10, but not third-party Balb/c mice. In conclusion, the treatment with siCD40/SPG targeting DCs could generate antigen-specific Tregs, resulting in the permanent acceptance of mouse cardiac allografts. These findings have important implications for clarifying the mechanism underlying the induction of tolerance in DCs, and also highlight the potential of immunomodulation and the feasibility of siRNA-based clinical therapy in the transplantation field. PMID:25567536

  6. Human α-Defensin Expression Is Not Dependent on CCAAT/Enhancer Binding Protein-ε in a Murine Model

    PubMed Central

    Glenthøj, Andreas; Dahl, Sara; Larsen, Maria T.; Cowland, Jack B.; Borregaard, Niels

    2014-01-01

    Specific granule deficiency (SGD) is a rare congenital disorder characterized by recurrent infections. The disease is caused by inactivating mutations of the CCAAT/enhancer binding protein-ε (C/EBP-ε) gene. As a consequence, specific and gelatinase granules lack most matrix proteins. Furthermore, azurophil granules contain diminished amounts of their most abundant proteins, α-defensins, also known as human neutrophil peptides (HNPs). In accordance with this, in vitro models have demonstrated induction of HNPs by C/EBP-ε. Since mice do not express myeloid defensins, they cannot per se be used to characterize the role of C/EBP-ε in controlling HNP expression in vivo. We therefore crossed a transgenic HNP-1-expressing mouse with the Cebpe-/- mouse to study the in vivo significance of C/EBP-ε for HNP-1 transcription and expression. Surprisingly, neither expression nor processing of HNP-1 was affected by lack of C/EBP-ε in these mice. Transduction of C/EBP-ε into primary bone marrow cells from HNP-1 mice induced some HNP-1 expression, but not to levels comparable to expression human cells. Taken together, our data infer that the HNP-1 of the transgenic mouse does not show an expression pattern equivalent to endogenous secondary granule proteins. This limits the use of these transgenic mice as a model for human conditions. PMID:24658030

  7. Direct exposure to nitrogen dioxide fails to induce the expression of some inflammatory cytokines in an IC-21 murine macrophage cell model.

    PubMed

    Tu, B; Wallin, A; Moldéus, P; Cotgreave, I A

    1995-12-15

    Biologically-active molecules secreted from alveolar macrophages, such as cytokines, have been proposed to be involved in the induction of pulmonary toxicity and inflammation in response to the inhalation of oxidant gas pollutants such as NO2 and O3. Despite this, mechanistic studies are hampered by the difficulty in obtaining control macrophages from human subjects, and the intrinsic variability of such primary cells. It is, thus, of importance to develop alternative models for such studies. Here, we have characterised expression kinetics of the mRNAs for tumour necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), macrophage inflammatory protein-1 alpha (MIP-1 alpha) and macrophage inflammatory protein-1 beta (MIP-1 beta) in confluent cultures of the murine IC-21 macrophage line in response to LPS. The secretion of TNF-alpha protein into the medium, assayed by L-929 cell bioassay, closely followed the expression of its mRNA in response to the LPS stimulus. In contrast to LPS, the exposure of IC-21 cells to either air or various concentrations of NO2 in air between 2 and 20 ppm, in an inverted plate exposure model, failed to induce the expression of any of the cytokine mRNAs probed. We conclude that the IC-21 cell line may represent a suitable model for studying the role of stimulated cytokine gene expression in inflammation and that the early events in the pulmonary inflammatory response to the inhalation of NO2 do not involve stimulated release of TNF-alpha, IL-1 beta or MIP-1 alpha/MIP-1 beta from macrophages. PMID:8560494

  8. Real-time quantification of matrix metalloproteinase and integrin αvβ3 expression during biomaterial-associated infection in a murine model.

    PubMed

    Daghighi, S; Sjollema, J; Dijkstra, R J B; Jaspers, V; Zaat, S A J; van der Mei, H C; Busscher, H J

    2014-01-01

    Biomaterial implants and devices increase the risk of microbial infections due to the biofilm mode of growth of infecting bacteria on implant materials, in which bacteria are protected against antibiotic treatment and the local immune system. Matrix-metalloproteinases (MMPs) and cell surface integrin receptors facilitate transmigration of inflammatory cells toward infected or inflamed tissue. This study investigates the relationship between MMP- and integrin-expression and the clearance of infecting Staphylococcus aureus around implanted biomaterials in a murine model.MMP- and integrin αvβ3-expression were monitored in mice, with and without subcutaneously implanted biomaterial samples, in the absence and presence of bioluminescent S. aureus Xen36. Staphylococcal persistence was imaged longitudinally over time using bioluminescence imaging. The activatable MMPSense®680 and integrin-targeted IntegriSense®750 probes were injected on different days after implantation and their signal intensity and localisation monitored using fluorescence imaging. After sacrifice 7 or 16 days post-implantation, staphylococci from biomaterial samples and surrounding tissues were cultured on agar-plates and presence of host inflammatory cells was histologically evaluated.MMP- and integrin-expression were equally enhanced in presence of staphylococci or biomaterials up to 7 days post-implantation, but their localisation along the biomaterial samples differed. Bacterial clearance from tissue was higher in the absence of biomaterials. It is of clinical relevance that MMP- and integrin-expression were enhanced in presence of both staphylococci and biomaterials, although the immune system in the presence of biomaterials remained hampered in eradicating bacteria during the first 7 days post-implantation. PMID:24464726

  9. Colony-stimulating factor-1 suppresses responses to CpG DNA and expression of toll-like receptor 9 but enhances responses to lipopolysaccharide in murine macrophages.

    PubMed

    Sweet, Matthew J; Campbell, Carol C; Sester, David P; Xu, Damo; McDonald, Rebecca C; Stacey, Katryn J; Hume, David A; Liew, Foo Y

    2002-01-01

    During bacterial infections, the balance between resolution of infection and development of sepsis is dependent upon the macrophage response to bacterial products. We show that priming of murine bone marrow-derived macrophages (BMMs) with CSF-1 differentially regulates the response to two such stimuli, LPS and immunostimulatory (CpG) DNA. CSF-1 pretreatment enhanced IL-6, IL-12, and TNF-alpha production in response to LPS but suppressed the same response to CpG DNA. CSF-1 also regulated cytokine gene expression in response to CpG DNA and LPS; CpG DNA-induced IL-12 p40, IL-12 p35, and TNF-alpha mRNAs were all suppressed by CSF-1 pretreatment. CSF-1 pretreatment enhanced LPS-induced IL-12 p40 mRNA but not TNF-alpha and IL-12 p35 mRNAs, suggesting that part of the priming effect is posttranscriptional. CSF-1 pretreatment also suppressed CpG DNA-induced nuclear translocation of NF-kappaB and phosphorylation of the mitogen-activated protein kinases p38 and extracellular signal-related kinases-1/2 in BMMs, indicating that early events in CpG DNA signaling were regulated by CSF-1. Expression of Toll-like receptor (TLR)9, which is necessary for responses to CpG DNA, was markedly suppressed by CSF-1 in both BMMs and thioglycolate-elicited peritoneal macrophages. CSF-1 also down-regulated expression of TLR1, TLR2, and TLR6, but not the LPS receptor, TLR4, or TLR5. Hence, CSF-1 may regulate host responses to pathogens through modulation of TLR expression. Furthermore, these results suggest that CSF-1 and CSF-1R antagonists may enhance the efficacy of CpG DNA in vivo. PMID:11751985

  10. Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons.

    PubMed

    Alves da Costa, Cristine; Paitel, Erwan; Mattson, Mark P; Amson, Robert; Telerman, Adam; Ancolio, Karine; Checler, Frédéric; Mattson, Marc P

    2002-03-19

    Presenilins 1 and 2 are two homologous proteins that, when mutated, account for most early onset Alzheimer's disease. Several lines of evidence suggest that, among various functions, presenilins could modulate cell apoptotic responses. Here we establish that the overexpression of presenilin 2 (PS2) and its mutated form Asn-141-Ile-PS2 alters the viability of human embryonic kidney (HEK)293 cells as established by combined trypan blue exclusion, sodium 3'-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate assay, and propidium iodide incorporation FACS analyses. The two parent proteins increase the acetyl-DEVD-al-sensitive caspase-3-like activity in both HEK293 cells and Telencephalon specific murine neurons, modulate Bax and bcl-2 expressions, and enhance cytochrome C translocation into the cytosol. We show that overexpression of both wild-type and mutated PS2 increases p53-like immunoreactivity and transcriptional activity. We also establish that wild-type- and mutated PS2-induced caspase activation is reduced by p53 antisense approach and by pifithrin-alpha, a chemical inhibitor of p53. Furthermore, mouse fibroblasts in which the PS2 gene has been knocked out exhibited strongly reduced p53-transcriptional activity. Finally, we establish that the overexpression of both wild-type and mutated PS2 is accompanied by a drastic reduction of endogenous presenilin 1 (PS1) expression. Interestingly, pifithrin-alpha diminished endogenous PS2 immunoreactivity, whereas the inhibitor increases PS1 expression. Altogether, our data demonstrate that wild-type and familial Alzheimer's disease-linked PS2 trigger apoptosis and down-regulate PS1 expression through p53-dependent mechanisms. PMID:11904448

  11. Infection of simian B lymphoblastoid cells with simian immunodeficiency virus is associated with upregulation of CD23 and CD40 cell surface markers.

    PubMed

    Titti, Fausto; Zamarchi, Rita; Maggiorella, Maria Teresa; Sernicola, Leonardo; Geraci, Andrea; Negri, Donatella Rita Maria; Borsetti, Alessandra; Menin, Chiara; D'Andrea, Emma; Modesti, Andrea; Masuelli, Laura; Verani, Paola; Chieco-Bianchi, Luigi; Amadori, Alberto

    2002-09-01

    Simian immunodeficiency virus (SIV) as well as human immunodeficiency virus (HIV) induce polyclonal B-cell activation and are associated with the appearance of lymphomas in their respective hosts in either the presence or the absence of other co-infecting viruses such as Epstein-Barr virus (EBV). However, the pathogenic role of these retroviruses in the development of lymphoproliferative disorders remains poorly understood. To explore the virus-B-cell interactions, two immortalized lymphoblastoid B-cell lines (SL-P1 and SL-691) were established from cynomolgus monkeys that were naturally co-infected with a simian type D retrovirus-2 (SRV-2) and with the herpes virus Macaca fascicularis (HVMF-1). We addressed their susceptibility to SIV infection and the phenotypic modifications associated with SIV infection. In response, both cell lines (1) were co-infected with HVMF-1 (latent infection) and with SRV-2 (productive infection), (2) had a transformed phenotype because they did not require exogenous growth factors, and (3) when injected into mice with severe combined immunodeficiency (SCID), generated serially transplantable tumors. The B-cell origin of SL cells was demonstrated by the presence of rearrangements of the IgH gene and by the expression of typical B-cell lineage markers, such as CD20. SL-P1 and SL-691 could be discriminated on the basis of different expressions of CD23 and CD40 and of kappa- and lambda-chains. Most importantly, SL-691 cells, but not SL-P1 cells, were susceptible to chronic noncytolytic SIV infection. This infection occurred in a CD4/CCR5/CXCR4-independent manner and was associated with the upregulated expression of CD23 and CD40 cell surface markers. In addition, CD20 expression, which progressively disappeared in SL-691 noninfected cells, was maintained in the SIV-infected counterpart. These findings support the hypothesis that SIV induce phenotypic perturbations in B cells that might eventually contribute to the development of

  12. Docosahexaenoic acid differentially affects TNFα and IL-6 expression in LPS-stimulated RAW 264.7 murine macrophages.

    PubMed

    Honda, Kaori L; Lamon-Fava, Stefania; Matthan, Nirupa R; Wu, Dayong; Lichtenstein, Alice H

    2015-06-01

    Docosahexaenoic acid (DHA) is generally reported to have anti-inflammatory properties, however, prior work has documented differential effects on individual pro-inflammatory cytokines: reduced IL-6, but not TNFα, mRNA expression in macrophages. To elucidate the mechanism, the roles of prostaglandin E2 (PGE2), cyclic AMP response element-binding protein (CREB), and NFκB were examined in RAW 264.7 macrophages. DHA did not influence CREB activity, but significantly reduced PGE2 production by 41% and NFκB activity by 32%. Exogenous PGE2 inhibited TNFα mRNA expression dose dependently. Unexpectedly, inhibiting PGE2 production with NS-398 also decreased TNFα mRNA expression, suggesting a concentration-dependent dual role of PGE2 in regulating TNFα expression. IL-6 expression was unaffected by endogenous or exogenous PGE2. Partial block of NFκB activation (SN50; 46%, or, BAY-11-7082; 41%) lowered IL-6 to a greater extent than TNFα mRNA expression. The differential effect of DHA on TNFα and IL-6 mRNA expression may be mediated via reduction in NFκB activity. PMID:25921297

  13. Docosahexaenoic acid differentially affects TNFα and IL-6 expression in LPS-stimulated RAW 264.7 murine macrophages

    PubMed Central

    Honda, Kaori L.; Lamon-Fava, Stefania; Matthan, Nirupa R.; Wu, Dayong; Lichtenstein, Alice H.

    2015-01-01

    Docosahexaenoic acid (DHA) is generally reported to have anti-inflammatory properties, however, prior work has documented differential effects on individual pro-inflammatory cytokines: reduced IL-6, but not TNFα, mRNA expression in macrophages. To elucidate the mechanism, the roles of prostaglandin E2 (PGE2), cyclic AMP response element-binding protein (CREB), and NFκB were examined in RAW 264.7 macrophages. DHA did not influence CREB activity, but significantly reduced PGE2 production by 41% and NFκB activity by 32%. Exogenous PGE2 inhibited TNFα mRNA expression dose dependently. Unexpectedly, inhibiting PGE2 production with NS-398 also decreased TNFα mRNA expression, suggesting a concentration-dependent dual role of PGE2 in regulating TNFα expression. IL-6 expression was unaffected by endogenous or exogenous PGE2. Partial block of NFκB activation (SN50; 46%, or, BAY-11-7082; 41%) lowered IL-6 to a greater extent than TNFα mRNA expression. The differential effect of DHA on TNFα and IL-6 mRNA expression may be mediated via reduction in NFκB activity. PMID:25921297

  14. Embryonic expression of murine 5T4 oncofoetal antigen is associated with morphogenetic events at implantation and in developing epithelia.

    PubMed

    Barrow, Katie M; Ward, Christopher M; Rutter, Jennifer; Ali, Sumia; Stern, Peter L

    2005-08-01

    Overexpression of 5T4 oncofoetal antigen, an early marker of ES cell differentiation, in vitro increases cellular motility and decreases adhesion, properties relevant to development and cancer. Embryonic expression of m5T4 antigen is first detected on trophectoderm at implantation and is restricted to extra-embryonic tissues to embryonic day (E) 11.5. In the embryo, significant m5T4 expression is detected at E12.5 in hindbrain roofplate and in various epithelia derived from all germ layers. In keratin 14-expressing epithelia, there is a congruent 5T4 expression pattern with many of these cells being Ki-67 positive. In brain, expression is observed in roofplate, ependymal layers, choroid plexus, and subventricular zones of lateral ventricles at E14.5. By E17.5, expression is decreased in the subventricular zone with further restriction to choroid plexus in adult brain. Our data demonstrate a limited 5T4 expression profile during embryogenesis associated with actively cycling, undifferentiated epithelial progenitor cells that may contribute to their migration. PMID:15977177

  15. B cell TLR1/2, TLR4, TLR7 and TLR9 interact in induction of class switch DNA recombination: modulation by BCR and CD40, and relevance to T-independent antibody responses.

    PubMed

    Pone, Egest J; Lou, Zheng; Lam, Tonika; Greenberg, Milton L; Wang, Rui; Xu, Zhenming; Casali, Paolo

    2015-02-01

    Ig class switch DNA recombination (CSR) in B cells is crucial to the maturation of antibody responses. It requires IgH germline IH-CH transcription and expression of AID, both of which are induced by engagement of CD40 or dual engagement of a Toll-like receptor (TLR) and B cell receptor (BCR). Here, we have addressed cross-regulation between two different TLRs or between a TLR and CD40 in CSR induction by using a B cell stimulation system involving lipopolysaccharides (LPS). LPS-mediated long-term primary class-switched antibody responses and memory-like antibody responses in vivo and induced generation of class-switched B cells and plasma cells in vitro. Consistent with the requirement for dual TLR and BCR engagement in CSR induction, LPS, which engages TLR4 through its lipid A moiety, triggered cytosolic Ca2+ flux in B cells through its BCR-engaging polysaccharidic moiety. In the presence of BCR crosslinking, LPS synergized with a TLR1/2 ligand (Pam3CSK4) in CSR induction, but much less efficiently with a TLR7 (R-848) or TLR9 (CpG) ligand. In the absence of BCR crosslinking, R-848 and CpG, which per se induced marginal CSR, virtually abrogated CSR to IgG1, IgG2a, IgG2b, IgG3 and/or IgA, as induced by LPS or CD154 (CD40 ligand) plus IL-4, IFN-γ or TGF-β, and reduced secretion of class-switched Igs, without affecting B cell proliferation or IgM expression. The CSR inhibition by TLR9 was associated with the reduction in AID expression and/or IgH germline IH-S-CH transcription, and required co-stimulation of B cells by CpG with LPS or CD154. Unexpectedly, B cells also failed to undergo CSR or plasma cell differentiation when co-stimulated by LPS and CD154. Overall, by addressing the interaction of TLR1/2, TLR4, TLR7 and TLR9 in the induction of CSR and modulation of TLR-dependent CSR by BCR and CD40, our study suggests the complexity of how different stimuli cross-regulate an important B cell differentiation process and an important role of TLRs in inducing

  16. Activation of neurokinin-1 receptors up-regulates substance P and neurokinin-1 receptor expression in murine pancreatic acinar cells

    PubMed Central

    Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav

    2012-01-01

    Abstract Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25–30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10−6M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R. PMID:22040127

  17. SoxS Increases the Expression of the Zinc Uptake System ZnuACB in an Escherichia coli Murine Pyelonephritis Model

    PubMed Central

    Warner, Douglas M.

    2012-01-01

    Paralogous transcriptional regulators MarA, Rob, and SoxS act individually and together to control expression of more than 80 Escherichia coli genes. Deletion of marA, rob, and soxS from an E. coli clinical isolate prevents persistence beyond 2 days postinfection in a mouse model of pyelonephritis. We used microarray analysis to identify 242 genes differentially expressed between the triple deletion mutant and its parent strain at 2 days postinfection in the kidney. One of these, znuC of the zinc transport system ZnuACB, displayed decreased expression in the triple mutant compared to that in the parental strain, and deletion of znuC from the parental strain reduced persistence. The marA rob soxS triple deletion mutant was less viable in vitro under limited-Zn and Zn-depleted conditions, while disruption of znuC caused a reduction in the growth rates for the parental and triple mutant strains to equally low levels under limited-Zn or Zn-depleted conditions. Complementation of the triple mutant with soxS, but not marA or rob, restored the parental growth rate in Zn-depleted medium, while deletion of only soxS from the parental strain led to low growth in Zn-depleted medium. Both results suggested that SoxS is a major regulator responsible for growth under Zn-depleted conditions. Gel shift experiments failed to show direct binding of SoxS to the znuCB promoter, thus suggesting indirect control of znuCB expression by SoxS. While SoxS expression in the triple mutant fully restored persistence, increased expression of znuACB via a plasmid in this mutant only partially restored wild-type levels of persistence in the kidney. This work implicates SoxS control of znuCB expression as a key factor in persistence of E. coli in murine pyelonephritis. PMID:22210763

  18. THE RELATIONSHIPS AMONG SPATIOTEMPORAL COLLAGEN GENE EXPRESSION, HISTOLOGY, AND BIOMECHANICS FOLLOWING FULL-LENGTH INJURY IN THE MURINE PATELLAR TENDON

    PubMed Central

    Dyment, Nathaniel A; Kazemi, Namdar; Aschbacher-Smith, Lindsey E; Barthelery, Nicolas J.; Kenter, Keith; Gooch, Cynthia; Shearn, Jason T; Wylie, Christopher; Butler, David L

    2011-01-01

    Tendon injuries are major orthopaedic problems that worsen as the population ages. Type-I (Col1) and type-II (Col2) collagens play important roles in tendon midsubstance and tendon-to-bone insertion healing, respectively. Using double transgenic mice, this study aims to spatiotemporally monitor Col1 and Col2 gene expression, histology and biomechanics up to 8 weeks following a full-length patellar tendon injury. Gene expression and histology were analyzed weekly for up to 5 weeks while mechanical properties were measured at 1, 2, 5, and 8 weeks. At week 1, the healing region displayed loose granulation tissue with little Col1 expression. Col1 expression peaked at 2 weeks, but the ECM was highly disorganized and hypercellular. By 3 weeks, Col1 expression had reduced and by 5 weeks, the ECM was generally aligned along the tendon axis. Col2 expression was not seen in the healing midsubstance or insertion at any time point. The biomechanics of the healing tissue was inadequate at all time points, achieving ultimate loads and stiffnesses of 48% and 63% of normal values by 8 weeks. Future studies will further characterize the cells within the healing midsubstance and insertion using tenogenic markers and compare these results to those of tendon cells during normal development. PMID:21698662

  19. Extracellular vesicles released by CD40/IL-4-stimulated CLL cells confer altered functional properties to CD4+ T cells.

    PubMed

    Smallwood, Dawn T; Apollonio, Benedetta; Willimott, Shaun; Lezina, Larissa; Alharthi, Afaf; Ambrose, Ashley R; De Rossi, Giulia; Ramsay, Alan G; Wagner, Simon D

    2016-07-28

    The complex interplay between cancer cells, stromal cells, and immune cells in the tumor microenvironment (TME) regulates tumorigenesis and provides emerging targets for immunotherapies. Crosstalk between CD4(+) T cells and proliferating chronic lymphocytic leukemia (CLL) tumor B cells occurs within lymphoid tissue pseudofollicles, and investigating these interactions is essential to understand both disease pathogenesis and the effects of immunotherapy. Tumor-derived extracellular vesicle (EV) shedding is emerging as an important mode of intercellular communication in the TME. In order to characterize tumor EVs released in response to T-cell-derived TME signals, we performed microRNA (miRNA [miR]) profiling of EVs released from CLL cells stimulated with CD40 and interleukin-4 (IL-4). Our results reveal an enrichment of specific cellular miRNAs including miR-363 within EVs derived from CD40/IL-4-stimulated CLL cells compared with parental cell miRNA content and control EVs from unstimulated CLL cells. We demonstrate that autologous patient CD4(+) T cells internalize CLL-EVs containing miR-363 that targets the immunomodulatory molecule CD69. We further reveal that autologous CD4(+) T cells that are exposed to EVs from CD40/IL-4-stimulated CLL cells exhibit enhanced migration, immunological synapse signaling, and interactions with tumor cells. Knockdown of miR-363 in CLL cells prior to CD40/IL-4 stimulation prevented the ability of CLL-EVs to induce increased synapse signaling and confer altered functional properties to CD4(+) T cells. Taken together, these data reveal a novel role for CLL-EVs in modifying T-cell function that highlights unanticipated complexity of intercellular communication that may have implications for bidirectional CD4(+) T-cell:tumor interactions within the TME. PMID:27118451

  20. Natural IgM Switches the Function of Lipopolysaccharide-Activated Murine Bone Marrow-Derived Dendritic Cells to a Regulatory Dendritic Cell That Suppresses Innate Inflammation.

    PubMed

    Lobo, Peter I; Schlegel, Kailo H; Bajwa, Amandeep; Huang, Liping; Kurmaeva, Elvira; Wang, Binru; Ye, Hong; Tedder, Thomas F; Kinsey, Gilbert R; Okusa, Mark D

    2015-12-01

    We have previously shown that polyclonal natural IgM protects mice from renal ischemia/reperfusion injury (IRI) by inhibiting the reperfusion inflammatory response. We hypothesized that a potential mechanism involved IgM modulation of dendritic cells (DC), as we observed high IgM binding to splenic DC. To test this hypothesis, we pretreated bone marrow-derived DC (BMDC) with polyclonal murine or human IgM prior to LPS activation and demonstrated that 0.5 × 10(6) IgM/LPS-pretreated BMDC, when injected into wild-type C57BL/6 mice 24 h before renal ischemia, protect mice from developing renal IRI. We show that this switching of LPS-activated BMDC to a regulatory phenotype requires modulation of BMDC function that is mediated by IgM binding to nonapoptotic BMDC receptors. Regulatory BMDC require IL-10 and programmed death 1 as well as downregulation of CD40 and p65 NF-κB phosphorylation to protect in renal IRI. Blocking the programmed death ligand 1 binding site just before i.v. injection of IgM/LPS-pretreated BMDC or using IL-10 knockout BMDC fails to induce protection. Similarly, IgM/LPS-pretreated BMDC are rendered nonprotective by increasing CD40 expression and phosphorylation of p65 NF-κB. How IgM/LPS regulatory BMDC suppress in vivo ischemia-induced innate inflammation remains to be determined. However, we show that suppression is dependent on other in vivo regulatory mechanisms in the host, that is, CD25(+) T cells, B cells, IL-10, and circulating IgM. There was no increase in Foxp3(+) regulatory T cells in the spleen either before or after renal IRI. Collectively, these findings show that natural IgM anti-leukocyte Abs can switch BMDC to a regulatory phenotype despite the presence of LPS that ordinarily induces BMDC maturation. PMID:26519533