Science.gov

Sample records for expression facial expression

  1. Holistic facial expression classification

    NASA Astrophysics Data System (ADS)

    Ghent, John; McDonald, J.

    2005-06-01

    This paper details a procedure for classifying facial expressions. This is a growing and relatively new type of problem within computer vision. One of the fundamental problems when classifying facial expressions in previous approaches is the lack of a consistent method of measuring expression. This paper solves this problem by the computation of the Facial Expression Shape Model (FESM). This statistical model of facial expression is based on an anatomical analysis of facial expression called the Facial Action Coding System (FACS). We use the term Action Unit (AU) to describe a movement of one or more muscles of the face and all expressions can be described using the AU's described by FACS. The shape model is calculated by marking the face with 122 landmark points. We use Principal Component Analysis (PCA) to analyse how the landmark points move with respect to each other and to lower the dimensionality of the problem. Using the FESM in conjunction with Support Vector Machines (SVM) we classify facial expressions. SVMs are a powerful machine learning technique based on optimisation theory. This project is largely concerned with statistical models, machine learning techniques and psychological tools used in the classification of facial expression. This holistic approach to expression classification provides a means for a level of interaction with a computer that is a significant step forward in human-computer interaction.

  2. Measuring facial expression of emotion

    PubMed Central

    Wolf, Karsten

    2015-01-01

    Research into emotions has increased in recent decades, especially on the subject of recognition of emotions. However, studies of the facial expressions of emotion were compromised by technical problems with visible video analysis and electromyography in experimental settings. These have only recently been overcome. There have been new developments in the field of automated computerized facial recognition; allowing real-time identification of facial expression in social environments. This review addresses three approaches to measuring facial expression of emotion and describes their specific contributions to understanding emotion in the healthy population and in persons with mental illness. Despite recent progress, studies on human emotions have been hindered by the lack of consensus on an emotion theory suited to examining the dynamic aspects of emotion and its expression. Studying expression of emotion in patients with mental health conditions for diagnostic and therapeutic purposes will profit from theoretical and methodological progress. PMID:26869846

  3. Facial expression recognition with facial parts based sparse representation classifier

    NASA Astrophysics Data System (ADS)

    Zhi, Ruicong; Ruan, Qiuqi

    2009-10-01

    Facial expressions play important role in human communication. The understanding of facial expression is a basic requirement in the development of next generation human computer interaction systems. Researches show that the intrinsic facial features always hide in low dimensional facial subspaces. This paper presents facial parts based facial expression recognition system with sparse representation classifier. Sparse representation classifier exploits sparse representation to select face features and classify facial expressions. The sparse solution is obtained by solving l1 -norm minimization problem with constraint of linear combination equation. Experimental results show that sparse representation is efficient for facial expression recognition and sparse representation classifier obtain much higher recognition accuracies than other compared methods.

  4. Cortical control of facial expression.

    PubMed

    Müri, René M

    2016-06-01

    The present Review deals with the motor control of facial expressions in humans. Facial expressions are a central part of human communication. Emotional face expressions have a crucial role in human nonverbal behavior, allowing a rapid transfer of information between individuals. Facial expressions can be either voluntarily or emotionally controlled. Recent studies in nonhuman primates and humans have revealed that the motor control of facial expressions has a distributed neural representation. At least five cortical regions on the medial and lateral aspects of each hemisphere are involved: the primary motor cortex, the ventral lateral premotor cortex, the supplementary motor area on the medial wall, and the rostral and caudal cingulate cortex. The results of studies in humans and nonhuman primates suggest that the innervation of the face is bilaterally controlled for the upper part and mainly contralaterally controlled for the lower part. Furthermore, the primary motor cortex, the ventral lateral premotor cortex, and the supplementary motor area are essential for the voluntary control of facial expressions. In contrast, the cingulate cortical areas are important for emotional expression, because they receive input from different structures of the limbic system. PMID:26418049

  5. Compound facial expressions of emotion.

    PubMed

    Du, Shichuan; Tao, Yong; Martinez, Aleix M

    2014-04-15

    Understanding the different categories of facial expressions of emotion regularly used by us is essential to gain insights into human cognition and affect as well as for the design of computational models and perceptual interfaces. Past research on facial expressions of emotion has focused on the study of six basic categories--happiness, surprise, anger, sadness, fear, and disgust. However, many more facial expressions of emotion exist and are used regularly by humans. This paper describes an important group of expressions, which we call compound emotion categories. Compound emotions are those that can be constructed by combining basic component categories to create new ones. For instance, happily surprised and angrily surprised are two distinct compound emotion categories. The present work defines 21 distinct emotion categories. Sample images of their facial expressions were collected from 230 human subjects. A Facial Action Coding System analysis shows the production of these 21 categories is different but consistent with the subordinate categories they represent (e.g., a happily surprised expression combines muscle movements observed in happiness and surprised). We show that these differences are sufficient to distinguish between the 21 defined categories. We then use a computational model of face perception to demonstrate that most of these categories are also visually discriminable from one another. PMID:24706770

  6. Compound facial expressions of emotion

    PubMed Central

    Du, Shichuan; Tao, Yong; Martinez, Aleix M.

    2014-01-01

    Understanding the different categories of facial expressions of emotion regularly used by us is essential to gain insights into human cognition and affect as well as for the design of computational models and perceptual interfaces. Past research on facial expressions of emotion has focused on the study of six basic categories—happiness, surprise, anger, sadness, fear, and disgust. However, many more facial expressions of emotion exist and are used regularly by humans. This paper describes an important group of expressions, which we call compound emotion categories. Compound emotions are those that can be constructed by combining basic component categories to create new ones. For instance, happily surprised and angrily surprised are two distinct compound emotion categories. The present work defines 21 distinct emotion categories. Sample images of their facial expressions were collected from 230 human subjects. A Facial Action Coding System analysis shows the production of these 21 categories is different but consistent with the subordinate categories they represent (e.g., a happily surprised expression combines muscle movements observed in happiness and surprised). We show that these differences are sufficient to distinguish between the 21 defined categories. We then use a computational model of face perception to demonstrate that most of these categories are also visually discriminable from one another. PMID:24706770

  7. Spontaneous Facial Mimicry in Response to Dynamic Facial Expressions

    ERIC Educational Resources Information Center

    Sato, Wataru; Yoshikawa, Sakiko

    2007-01-01

    Based on previous neuroscientific evidence indicating activation of the mirror neuron system in response to dynamic facial actions, we hypothesized that facial mimicry would occur while subjects viewed dynamic facial expressions. To test this hypothesis, dynamic/static facial expressions of anger/happiness were presented using computer-morphing…

  8. Analysis of Facial Expression by Taste Stimulation

    NASA Astrophysics Data System (ADS)

    Tobitani, Kensuke; Kato, Kunihito; Yamamoto, Kazuhiko

    In this study, we focused on the basic taste stimulation for the analysis of real facial expressions. We considered that the expressions caused by taste stimulation were unaffected by individuality or emotion, that is, such expressions were involuntary. We analyzed the movement of facial muscles by taste stimulation and compared real expressions with artificial expressions. From the result, we identified an obvious difference between real and artificial expressions. Thus, our method would be a new approach for facial expression recognition.

  9. Mapping and Manipulating Facial Expression

    ERIC Educational Resources Information Center

    Theobald, Barry-John; Matthews, Iain; Mangini, Michael; Spies, Jeffrey R.; Brick, Timothy R.; Cohn, Jeffrey F.; Boker, Steven M.

    2009-01-01

    Nonverbal visual cues accompany speech to supplement the meaning of spoken words, signify emotional state, indicate position in discourse, and provide back-channel feedback. This visual information includes head movements, facial expressions and body gestures. In this article we describe techniques for manipulating both verbal and nonverbal facial…

  10. Facial dynamics and emotional expressions in facial aging treatments.

    PubMed

    Michaud, Thierry; Gassia, Véronique; Belhaouari, Lakhdar

    2015-03-01

    Facial expressions convey emotions that form the foundation of interpersonal relationships, and many of these emotions promote and regulate our social linkages. Hence, the facial aging symptomatological analysis and the treatment plan must of necessity include knowledge of the facial dynamics and the emotional expressions of the face. This approach aims to more closely meet patients' expectations of natural-looking results, by correcting age-related negative expressions while observing the emotional language of the face. This article will successively describe patients' expectations, the role of facial expressions in relational dynamics, the relationship between facial structures and facial expressions, and the way facial aging mimics negative expressions. Eventually, therapeutic implications for facial aging treatment will be addressed. PMID:25620090

  11. Neuroticism Delays Detection of Facial Expressions

    PubMed Central

    Sawada, Reiko; Sato, Wataru; Uono, Shota; Kochiyama, Takanori; Kubota, Yasutaka; Yoshimura, Sayaka; Toichi, Motomi

    2016-01-01

    The rapid detection of emotional signals from facial expressions is fundamental for human social interaction. The personality factor of neuroticism modulates the processing of various types of emotional facial expressions; however, its effect on the detection of emotional facial expressions remains unclear. In this study, participants with high- and low-neuroticism scores performed a visual search task to detect normal expressions of anger and happiness, and their anti-expressions within a crowd of neutral expressions. Anti-expressions contained an amount of visual changes equivalent to those found in normal expressions compared to neutral expressions, but they were usually recognized as neutral expressions. Subjective emotional ratings in response to each facial expression stimulus were also obtained. Participants with high-neuroticism showed an overall delay in the detection of target facial expressions compared to participants with low-neuroticism. Additionally, the high-neuroticism group showed higher levels of arousal to facial expressions compared to the low-neuroticism group. These data suggest that neuroticism modulates the detection of emotional facial expressions in healthy participants; high levels of neuroticism delay overall detection of facial expressions and enhance emotional arousal in response to facial expressions. PMID:27073904

  12. Facial Expressions, Emotions, and Sign Languages

    PubMed Central

    Elliott, Eeva A.; Jacobs, Arthur M.

    2013-01-01

    Facial expressions are used by humans to convey various types of meaning in various contexts. The range of meanings spans basic possibly innate socio-emotional concepts such as “surprise” to complex and culture specific concepts such as “carelessly.” The range of contexts in which humans use facial expressions spans responses to events in the environment to particular linguistic constructions within sign languages. In this mini review we summarize findings on the use and acquisition of facial expressions by signers and present a unified account of the range of facial expressions used by referring to three dimensions on which facial expressions vary: semantic, compositional, and iconic. PMID:23482994

  13. Recognizing Facial Expressions Automatically from Video

    NASA Astrophysics Data System (ADS)

    Shan, Caifeng; Braspenning, Ralph

    Facial expressions, resulting from movements of the facial muscles, are the face changes in response to a person's internal emotional states, intentions, or social communications. There is a considerable history associated with the study on facial expressions. Darwin [22] was the first to describe in details the specific facial expressions associated with emotions in animals and humans, who argued that all mammals show emotions reliably in their faces. Since that, facial expression analysis has been a area of great research interest for behavioral scientists [27]. Psychological studies [48, 3] suggest that facial expressions, as the main mode for nonverbal communication, play a vital role in human face-to-face communication. For illustration, we show some examples of facial expressions in Fig. 1.

  14. Mapping and Manipulating Facial Expression

    PubMed Central

    Theobald, Barry-John; Matthews, Iain; Mangini, Michael; Spies, Jeffrey R.; Brick, Timothy R.; Cohn, Jeffrey F.; Boker, Steven M.

    2009-01-01

    Non-verbal visual cues accompany speech to supplement the meaning of spoken words, signify emotional state, indicate position in discourse, and provide back-channel feedback. This visual information includes head movements, facial expressions and body gestures. In this paper we describe techniques for manipulating both verbal and non-verbal facial gestures in video sequences of people engaged in conversation. We are developing a system for use in psychological experiments, where the effects of manipulating individual components of non-verbal visual behaviour during live face-to-face conversation can be studied. In particular, the techniques we describe operate in real-time at video frame-rate and the manipulation can be applied so both participants in a conversation are kept blind to the experimental conditions. PMID:19624037

  15. Averaging facial expression over time

    PubMed Central

    Haberman, Jason; Harp, Tom; Whitney, David

    2010-01-01

    The visual system groups similar features, objects, and motion (e.g., Gestalt grouping). Recent work suggests that the computation underlying perceptual grouping may be one of summary statistical representation. Summary representation occurs for low-level features, such as size, motion, and position, and even for high level stimuli, including faces; for example, observers accurately perceive the average expression in a group of faces (J. Haberman & D. Whitney, 2007, 2009). The purpose of the present experiments was to characterize the time-course of this facial integration mechanism. In a series of three experiments, we measured observers’ abilities to recognize the average expression of a temporal sequence of distinct faces. Faces were presented in sets of 4, 12, or 20, at temporal frequencies ranging from 1.6 to 21.3 Hz. The results revealed that observers perceived the average expression in a temporal sequence of different faces as precisely as they perceived a single face presented repeatedly. The facial averaging was independent of temporal frequency or set size, but depended on the total duration of exposed faces, with a time constant of ~800 ms. These experiments provide evidence that the visual system is sensitive to the ensemble characteristics of complex objects presented over time. PMID:20053064

  16. Man-machine collaboration using facial expressions

    NASA Astrophysics Data System (ADS)

    Dai, Ying; Katahera, S.; Cai, D.

    2002-09-01

    For realizing the flexible man-machine collaboration, understanding of facial expressions and gestures is not negligible. In our method, we proposed a hierarchical recognition approach, for the understanding of human emotions. According to this method, the facial AFs (action features) were firstly extracted and recognized by using histograms of optical flow. Then, based on the facial AFs, facial expressions were classified into two calsses, one of which presents the positive emotions, and the other of which does the negative ones. Accordingly, the facial expressions belonged to the positive class, or the ones belonged to the negative class, were classified into more complex emotions, which were revealed by the corresponding facial expressions. Finally, the system architecture how to coordinate in recognizing facil action features and facial expressions for man-machine collaboration was proposed.

  17. Social Use of Facial Expressions in Hylobatids.

    PubMed

    Scheider, Linda; Waller, Bridget M; Oña, Leonardo; Burrows, Anne M; Liebal, Katja

    2016-01-01

    Non-human primates use various communicative means in interactions with others. While primate gestures are commonly considered to be intentionally and flexibly used signals, facial expressions are often referred to as inflexible, automatic expressions of affective internal states. To explore whether and how non-human primates use facial expressions in specific communicative interactions, we studied five species of small apes (gibbons) by employing a newly established Facial Action Coding System for hylobatid species (GibbonFACS). We found that, despite individuals often being in close proximity to each other, in social (as opposed to non-social contexts) the duration of facial expressions was significantly longer when gibbons were facing another individual compared to non-facing situations. Social contexts included grooming, agonistic interactions and play, whereas non-social contexts included resting and self-grooming. Additionally, gibbons used facial expressions while facing another individual more often in social contexts than non-social contexts where facial expressions were produced regardless of the attentional state of the partner. Also, facial expressions were more likely 'responded to' by the partner's facial expressions when facing another individual than non-facing. Taken together, our results indicate that gibbons use their facial expressions differentially depending on the social context and are able to use them in a directed way in communicative interactions with other conspecifics. PMID:26978660

  18. Social Use of Facial Expressions in Hylobatids

    PubMed Central

    Scheider, Linda; Waller, Bridget M.; Oña, Leonardo; Burrows, Anne M.; Liebal, Katja

    2016-01-01

    Non-human primates use various communicative means in interactions with others. While primate gestures are commonly considered to be intentionally and flexibly used signals, facial expressions are often referred to as inflexible, automatic expressions of affective internal states. To explore whether and how non-human primates use facial expressions in specific communicative interactions, we studied five species of small apes (gibbons) by employing a newly established Facial Action Coding System for hylobatid species (GibbonFACS). We found that, despite individuals often being in close proximity to each other, in social (as opposed to non-social contexts) the duration of facial expressions was significantly longer when gibbons were facing another individual compared to non-facing situations. Social contexts included grooming, agonistic interactions and play, whereas non-social contexts included resting and self-grooming. Additionally, gibbons used facial expressions while facing another individual more often in social contexts than non-social contexts where facial expressions were produced regardless of the attentional state of the partner. Also, facial expressions were more likely ‘responded to’ by the partner’s facial expressions when facing another individual than non-facing. Taken together, our results indicate that gibbons use their facial expressions differentially depending on the social context and are able to use them in a directed way in communicative interactions with other conspecifics. PMID:26978660

  19. Simultaneous facial feature tracking and facial expression recognition.

    PubMed

    Li, Yongqiang; Wang, Shangfei; Zhao, Yongping; Ji, Qiang

    2013-07-01

    The tracking and recognition of facial activities from images or videos have attracted great attention in computer vision field. Facial activities are characterized by three levels. First, in the bottom level, facial feature points around each facial component, i.e., eyebrow, mouth, etc., capture the detailed face shape information. Second, in the middle level, facial action units, defined in the facial action coding system, represent the contraction of a specific set of facial muscles, i.e., lid tightener, eyebrow raiser, etc. Finally, in the top level, six prototypical facial expressions represent the global facial muscle movement and are commonly used to describe the human emotion states. In contrast to the mainstream approaches, which usually only focus on one or two levels of facial activities, and track (or recognize) them separately, this paper introduces a unified probabilistic framework based on the dynamic Bayesian network to simultaneously and coherently represent the facial evolvement in different levels, their interactions and their observations. Advanced machine learning methods are introduced to learn the model based on both training data and subjective prior knowledge. Given the model and the measurements of facial motions, all three levels of facial activities are simultaneously recognized through a probabilistic inference. Extensive experiments are performed to illustrate the feasibility and effectiveness of the proposed model on all three level facial activities. PMID:23529088

  20. Mutual information-based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Hazar, Mliki; Hammami, Mohamed; Hanêne, Ben-Abdallah

    2013-12-01

    This paper introduces a novel low-computation discriminative regions representation for expression analysis task. The proposed approach relies on interesting studies in psychology which show that most of the descriptive and responsible regions for facial expression are located around some face parts. The contributions of this work lie in the proposition of new approach which supports automatic facial expression recognition based on automatic regions selection. The regions selection step aims to select the descriptive regions responsible or facial expression and was performed using Mutual Information (MI) technique. For facial feature extraction, we have applied Local Binary Patterns Pattern (LBP) on Gradient image to encode salient micro-patterns of facial expressions. Experimental studies have shown that using discriminative regions provide better results than using the whole face regions whilst reducing features vector dimension.

  1. Facial expression recognition on a people-dependent personal facial expression space (PFES)

    NASA Astrophysics Data System (ADS)

    Chandrasiri, N. P.; Park, Min Chul; Naemura, Takeshi; Harashima, Hiroshi

    2000-04-01

    In this paper, a person-specific facial expression recognition method which is based on Personal Facial Expression Space (PFES) is presented. The multidimensional scaling maps facial images as points in lower dimensions in PFES. It reflects personality of facial expressions as it is based on the peak instant of facial expression images of a specific person. In constructing PFES for a person, his/her whole normalized facial image is considered as a single pattern without block segmentation and differences of 2-D DCT coefficients from neutral facial image of the same person are used as features. Therefore, in the early part of the paper, separation characteristics of facial expressions in the frequency domain are analyzed using a still facial image database which consists of neutral, smile, anger, surprise and sadness facial images for each of 60 Japanese males (300 facial images). Results show that facial expression categories are well separated in the low frequency domain. PFES is constructed using multidimensional scaling by taking these low frequency domain of differences of 2-D DCT coefficients as features. On the PFES, trajectory of a facial image sequence of a person can be calculated in real time. Based on this trajectory, facial expressions can be recognized. Experimental results show the effectiveness of this method.

  2. Human Facial Expressions as Adaptations:Evolutionary Questions in Facial Expression Research

    PubMed Central

    SCHMIDT, KAREN L.; COHN, JEFFREY F.

    2007-01-01

    The importance of the face in social interaction and social intelligence is widely recognized in anthropology. Yet the adaptive functions of human facial expression remain largely unknown. An evolutionary model of human facial expression as behavioral adaptation can be constructed, given the current knowledge of the phenotypic variation, ecological contexts, and fitness consequences of facial behavior. Studies of facial expression are available, but results are not typically framed in an evolutionary perspective. This review identifies the relevant physical phenomena of facial expression and integrates the study of this behavior with the anthropological study of communication and sociality in general. Anthropological issues with relevance to the evolutionary study of facial expression include: facial expressions as coordinated, stereotyped behavioral phenotypes, the unique contexts and functions of different facial expressions, the relationship of facial expression to speech, the value of facial expressions as signals, and the relationship of facial expression to social intelligence in humans and in nonhuman primates. Human smiling is used as an example of adaptation, and testable hypotheses concerning the human smile, as well as other expressions, are proposed. PMID:11786989

  3. Realistic facial animation generation based on facial expression mapping

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Garrod, Oliver; Jack, Rachael; Schyns, Philippe

    2014-01-01

    Facial expressions reflect internal emotional states of a character or in response to social communications. Though much effort has been taken to generate realistic facial expressions, it still remains a challenging topic due to human being's sensitivity to subtle facial movements. In this paper, we present a method for facial animation generation, which reflects true facial muscle movements with high fidelity. An intermediate model space is introduced to transfer captured static AU peak frames based on FACS to the conformed target face. And then dynamic parameters derived using a psychophysics method is integrated to generate facial animation, which is assumed to represent natural correlation of multiple AUs. Finally, the animation sequence in the intermediate model space is mapped to the target face to produce final animation.

  4. Robust facial expression recognition via compressive sensing.

    PubMed

    Zhang, Shiqing; Zhao, Xiaoming; Lei, Bicheng

    2012-01-01

    Recently, compressive sensing (CS) has attracted increasing attention in the areas of signal processing, computer vision and pattern recognition. In this paper, a new method based on the CS theory is presented for robust facial expression recognition. The CS theory is used to construct a sparse representation classifier (SRC). The effectiveness and robustness of the SRC method is investigated on clean and occluded facial expression images. Three typical facial features, i.e., the raw pixels, Gabor wavelets representation and local binary patterns (LBP), are extracted to evaluate the performance of the SRC method. Compared with the nearest neighbor (NN), linear support vector machines (SVM) and the nearest subspace (NS), experimental results on the popular Cohn-Kanade facial expression database demonstrate that the SRC method obtains better performance and stronger robustness to corruption and occlusion on robust facial expression recognition tasks. PMID:22737035

  5. Facial Expressivity in Infants of Depressed Mothers.

    ERIC Educational Resources Information Center

    Pickens, Jeffrey; Field, Tiffany

    1993-01-01

    Facial expressions were examined in 84 3-month-old infants of mothers classified as depressed, nondepressed, or low scoring on the Beck Depression Inventory. Infants of both depressed and low-scoring mothers showed significantly more sadness and anger expressions and fewer interest expressions than infants of nondepressed mothers. (Author/MDM)

  6. The MPI Facial Expression Database — A Validated Database of Emotional and Conversational Facial Expressions

    PubMed Central

    Kaulard, Kathrin; Cunningham, Douglas W.; Bülthoff, Heinrich H.; Wallraven, Christian

    2012-01-01

    The ability to communicate is one of the core aspects of human life. For this, we use not only verbal but also nonverbal signals of remarkable complexity. Among the latter, facial expressions belong to the most important information channels. Despite the large variety of facial expressions we use in daily life, research on facial expressions has so far mostly focused on the emotional aspect. Consequently, most databases of facial expressions available to the research community also include only emotional expressions, neglecting the largely unexplored aspect of conversational expressions. To fill this gap, we present the MPI facial expression database, which contains a large variety of natural emotional and conversational expressions. The database contains 55 different facial expressions performed by 19 German participants. Expressions were elicited with the help of a method-acting protocol, which guarantees both well-defined and natural facial expressions. The method-acting protocol was based on every-day scenarios, which are used to define the necessary context information for each expression. All facial expressions are available in three repetitions, in two intensities, as well as from three different camera angles. A detailed frame annotation is provided, from which a dynamic and a static version of the database have been created. In addition to describing the database in detail, we also present the results of an experiment with two conditions that serve to validate the context scenarios as well as the naturalness and recognizability of the video sequences. Our results provide clear evidence that conversational expressions can be recognized surprisingly well from visual information alone. The MPI facial expression database will enable researchers from different research fields (including the perceptual and cognitive sciences, but also affective computing, as well as computer vision) to investigate the processing of a wider range of natural facial expressions

  7. Do Facial Expressions Develop before Birth?

    PubMed Central

    Reissland, Nadja; Francis, Brian; Mason, James; Lincoln, Karen

    2011-01-01

    Background Fetal facial development is essential not only for postnatal bonding between parents and child, but also theoretically for the study of the origins of affect. However, how such movements become coordinated is poorly understood. 4-D ultrasound visualisation allows an objective coding of fetal facial movements. Methodology/Findings Based on research using facial muscle movements to code recognisable facial expressions in adults and adapted for infants, we defined two distinct fetal facial movements, namely “cry-face-gestalt” and “laughter- gestalt,” both made up of up to 7 distinct facial movements. In this conceptual study, two healthy fetuses were then scanned at different gestational ages in the second and third trimester. We observed that the number and complexity of simultaneous movements increased with gestational age. Thus, between 24 and 35 weeks the mean number of co-occurrences of 3 or more facial movements increased from 7% to 69%. Recognisable facial expressions were also observed to develop. Between 24 and 35 weeks the number of co-occurrences of 3 or more movements making up a “cry-face gestalt” facial movement increased from 0% to 42%. Similarly the number of co-occurrences of 3 or more facial movements combining to a “laughter-face gestalt” increased from 0% to 35%. These changes over age were all highly significant. Significance This research provides the first evidence of developmental progression from individual unrelated facial movements toward fetal facial gestalts. We propose that there is considerable potential of this method for assessing fetal development: Subsequent discrimination of normal and abnormal fetal facial development might identify health problems in utero. PMID:21904607

  8. Biased Facial Expression Interpretation in Shy Children

    ERIC Educational Resources Information Center

    Kokin, Jessica; Younger, Alastair; Gosselin, Pierre; Vaillancourt, Tracy

    2016-01-01

    The relationship between shyness and the interpretations of the facial expressions of others was examined in a sample of 123 children aged 12 to 14?years. Participants viewed faces displaying happiness, fear, anger, disgust, sadness, surprise, as well as a neutral expression, presented on a computer screen. The children identified each expression…

  9. Hereditary family signature of facial expression

    PubMed Central

    Peleg, Gili; Katzir, Gadi; Peleg, Ofer; Kamara, Michal; Brodsky, Leonid; Hel-Or, Hagit; Keren, Daniel; Nevo, Eviatar

    2006-01-01

    Although facial expressions of emotion are universal, individual differences create a facial expression “signature” for each person; but, is there a unique family facial expression signature? Only a few family studies on the heredity of facial expressions have been performed, none of which compared the gestalt of movements in various emotional states; they compared only a few movements in one or two emotional states. No studies, to our knowledge, have compared movements of congenitally blind subjects with their relatives to our knowledge. Using two types of analyses, we show a correlation between movements of congenitally blind subjects with those of their relatives in think-concentrate, sadness, anger, disgust, joy, and surprise and provide evidence for a unique family facial expression signature. In the analysis “in-out family test,” a particular movement was compared each time across subjects. Results show that the frequency of occurrence of a movement of a congenitally blind subject in his family is significantly higher than that outside of his family in think-concentrate, sadness, and anger. In the analysis “the classification test,” in which congenitally blind subjects were classified to their families according to the gestalt of movements, results show 80% correct classification over the entire interview and 75% in anger. Analysis of the movements' frequencies in anger revealed a correlation between the movements' frequencies of congenitally blind individuals and those of their relatives. This study anticipates discovering genes that influence facial expressions, understanding their evolutionary significance, and elucidating repair mechanisms for syndromes lacking facial expression, such as autism. PMID:17043232

  10. The identification of unfolding facial expressions.

    PubMed

    Fiorentini, Chiara; Schmidt, Susanna; Viviani, Paolo

    2012-01-01

    We asked whether the identification of emotional facial expressions (FEs) involves the simultaneous perception of the facial configuration or the detection of emotion-specific diagnostic cues. We recorded at high speed (500 frames s-1) the unfolding of the FE in five actors, each expressing six emotions (anger, surprise, happiness, disgust, fear, sadness). Recordings were coded every 10 frames (20 ms of real time) with the Facial Action Coding System (FACS, Ekman et al 2002, Salt Lake City, UT: Research Nexus eBook) to identify the facial actions contributing to each expression, and their intensity changes over time. Recordings were shown in slow motion (1/20 of recording speed) to one hundred observers in a forced-choice identification task. Participants were asked to identify the emotion during the presentation as soon as they felt confident to do so. Responses were recorded along with the associated response times (RTs). The RT probability density functions for both correct and incorrect responses were correlated with the facial activity during the presentation. There were systematic correlations between facial activities, response probabilities, and RT peaks, and significant differences in RT distributions for correct and incorrect answers. The results show that a reliable response is possible long before the full FE configuration is reached. This suggests that identification is reached by integrating in time individual diagnostic facial actions, and does not require perceiving the full apex configuration. PMID:23025158

  11. Facial expression recognition in perceptual color space.

    PubMed

    Lajevardi, Seyed Mehdi; Wu, Hong Ren

    2012-08-01

    This paper introduces a tensor perceptual color framework (TPCF) for facial expression recognition (FER), which is based on information contained in color facial images. The TPCF enables multi-linear image analysis in different color spaces and demonstrates that color components provide additional information for robust FER. Using this framework, the components (in either RGB, YCbCr, CIELab or CIELuv space) of color images are unfolded to two-dimensional (2- D) tensors based on multi-linear algebra and tensor concepts, from which the features are extracted by Log-Gabor filters. The mutual information quotient (MIQ) method is employed for feature selection. These features are classified using a multi-class linear discriminant analysis (LDA) classifier. The effectiveness of color information on FER using low-resolution and facial expression images with illumination variations is assessed for performance evaluation. Experimental results demonstrate that color information has significant potential to improve emotion recognition performance due to the complementary characteristics of image textures. Furthermore, the perceptual color spaces (CIELab and CIELuv) are better overall for facial expression recognition than other color spaces by providing more efficient and robust performance for facial expression recognition using facial images with illumination variation. PMID:22575677

  12. Stereoscopy Amplifies Emotions Elicited by Facial Expressions

    PubMed Central

    Kätsyri, Jari; Häkkinen, Jukka

    2015-01-01

    Mediated facial expressions do not elicit emotions as strongly as real-life facial expressions, possibly due to the low fidelity of pictorial presentations in typical mediation technologies. In the present study, we investigated the extent to which stereoscopy amplifies emotions elicited by images of neutral, angry, and happy facial expressions. The emotional self-reports of positive and negative valence (which were evaluated separately) and arousal of 40 participants were recorded. The magnitude of perceived depth in the stereoscopic images was manipulated by varying the camera base at 15, 40, 65, 90, and 115 mm. The analyses controlled for participants’ gender, gender match, emotional empathy, and trait alexithymia. The results indicated that stereoscopy significantly amplified the negative valence and arousal elicited by angry expressions at the most natural (65 mm) camera base, whereas stereoscopy amplified the positive valence elicited by happy expressions in both the narrowed and most natural (15–65 mm) base conditions. Overall, the results indicate that stereoscopy amplifies the emotions elicited by mediated emotional facial expressions when the depth geometry is close to natural. The findings highlight the sensitivity of the visual system to depth and its effect on emotions. PMID:27551358

  13. Stereoscopy Amplifies Emotions Elicited by Facial Expressions.

    PubMed

    Hakala, Jussi; Kätsyri, Jari; Häkkinen, Jukka

    2015-12-01

    Mediated facial expressions do not elicit emotions as strongly as real-life facial expressions, possibly due to the low fidelity of pictorial presentations in typical mediation technologies. In the present study, we investigated the extent to which stereoscopy amplifies emotions elicited by images of neutral, angry, and happy facial expressions. The emotional self-reports of positive and negative valence (which were evaluated separately) and arousal of 40 participants were recorded. The magnitude of perceived depth in the stereoscopic images was manipulated by varying the camera base at 15, 40, 65, 90, and 115 mm. The analyses controlled for participants' gender, gender match, emotional empathy, and trait alexithymia. The results indicated that stereoscopy significantly amplified the negative valence and arousal elicited by angry expressions at the most natural (65 mm) camera base, whereas stereoscopy amplified the positive valence elicited by happy expressions in both the narrowed and most natural (15-65 mm) base conditions. Overall, the results indicate that stereoscopy amplifies the emotions elicited by mediated emotional facial expressions when the depth geometry is close to natural. The findings highlight the sensitivity of the visual system to depth and its effect on emotions. PMID:27551358

  14. LBP and SIFT based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Sumer, Omer; Gunes, Ece O.

    2015-02-01

    This study compares the performance of local binary patterns (LBP) and scale invariant feature transform (SIFT) with support vector machines (SVM) in automatic classification of discrete facial expressions. Facial expression recognition is a multiclass classification problem and seven classes; happiness, anger, sadness, disgust, surprise, fear and comtempt are classified. Using SIFT feature vectors and linear SVM, 93.1% mean accuracy is acquired on CK+ database. On the other hand, the performance of LBP-based classifier with linear SVM is reported on SFEW using strictly person independent (SPI) protocol. Seven-class mean accuracy on SFEW is 59.76%. Experiments on both databases showed that LBP features can be used in a fairly descriptive way if a good localization of facial points and partitioning strategy are followed.

  15. Facial Expressivity at 4 Months: A Context by Expression Analysis.

    PubMed

    Bennett, David S; Bendersky, Margaret; Lewis, Michael

    2002-01-01

    The specificity predicted by differential emotions theory (DET) for early facial expressions in response to 5 different eliciting situations was studied in a sample of 4-month-old infants (n = 150). Infants were videotaped during tickle, sour taste, jack-in-the-box, arm restraint, and masked-stranger situations and their expressions were coded second by second. Infants showed a variety of facial expressions in each situation; however, more infants exhibited positive (joy and surprise) than negative expressions (anger, disgust, fear, and sadness) across all situations except sour taste. Consistent with DET-predicted specificity, joy expressions were the most common in response to tickling, and were less common in response to other situations. Surprise expressions were the most common in response to the jack-in-the-box, as predicted, but also were the most common in response to the arm restraint and masked-stranger situations, indicating a lack of specificity. No evidence of predicted specificity was found for anger, disgust, fear, and sadness expressions. Evidence of individual differences in expressivity within situations, as well as stability in the pattern across situations, underscores the need to examine both child and contextual factors in studying emotional development. The results provide little support for the DET postulate of situational specificity and suggest that a synthesis of differential emotions and dynamic systems theories of emotional expression should be considered. PMID:16878184

  16. Role of facial expressions in social interactions.

    PubMed

    Frith, Chris

    2009-12-12

    The expressions we see in the faces of others engage a number of different cognitive processes. Emotional expressions elicit rapid responses, which often imitate the emotion in the observed face. These effects can even occur for faces presented in such a way that the observer is not aware of them. We are also very good at explicitly recognizing and describing the emotion being expressed. A recent study, contrasting human and humanoid robot facial expressions, suggests that people can recognize the expressions made by the robot explicitly, but may not show the automatic, implicit response. The emotional expressions presented by faces are not simply reflexive, but also have a communicative component. For example, empathic expressions of pain are not simply a reflexive response to the sight of pain in another, since they are exaggerated when the empathizer knows he or she is being observed. It seems that we want people to know that we are empathic. Of especial importance among facial expressions are ostensive gestures such as the eyebrow flash, which indicate the intention to communicate. These gestures indicate, first, that the sender is to be trusted and, second, that any following signals are of importance to the receiver. PMID:19884140

  17. Mapping the development of facial expression recognition.

    PubMed

    Rodger, Helen; Vizioli, Luca; Ouyang, Xinyi; Caldara, Roberto

    2015-11-01

    Reading the non-verbal cues from faces to infer the emotional states of others is central to our daily social interactions from very early in life. Despite the relatively well-documented ontogeny of facial expression recognition in infancy, our understanding of the development of this critical social skill throughout childhood into adulthood remains limited. To this end, using a psychophysical approach we implemented the QUEST threshold-seeking algorithm to parametrically manipulate the quantity of signals available in faces normalized for contrast and luminance displaying the six emotional expressions, plus neutral. We thus determined observers' perceptual thresholds for effective discrimination of each emotional expression from 5 years of age up to adulthood. Consistent with previous studies, happiness was most easily recognized with minimum signals (35% on average), whereas fear required the maximum signals (97% on average) across groups. Overall, recognition improved with age for all expressions except happiness and fear, for which all age groups including the youngest remained within the adult range. Uniquely, our findings characterize the recognition trajectories of the six basic emotions into three distinct groupings: expressions that show a steep improvement with age - disgust, neutral, and anger; expressions that show a more gradual improvement with age - sadness, surprise; and those that remain stable from early childhood - happiness and fear, indicating that the coding for these expressions is already mature by 5 years of age. Altogether, our data provide for the first time a fine-grained mapping of the development of facial expression recognition. This approach significantly increases our understanding of the decoding of emotions across development and offers a novel tool to measure impairments for specific facial expressions in developmental clinical populations. PMID:25704672

  18. Violent Media Consumption and the Recognition of Dynamic Facial Expressions

    ERIC Educational Resources Information Center

    Kirsh, Steven J.; Mounts, Jeffrey R. W.; Olczak, Paul V.

    2006-01-01

    This study assessed the speed of recognition of facial emotional expressions (happy and angry) as a function of violent media consumption. Color photos of calm facial expressions morphed to either an angry or a happy facial expression. Participants were asked to make a speeded identification of the emotion (happiness or anger) during the morph.…

  19. Categorical Perception of Affective and Linguistic Facial Expressions

    ERIC Educational Resources Information Center

    McCullough, Stephen; Emmorey, Karen

    2009-01-01

    Two experiments investigated categorical perception (CP) effects for affective facial expressions and linguistic facial expressions from American Sign Language (ASL) for Deaf native signers and hearing non-signers. Facial expressions were presented in isolation (Experiment 1) or in an ASL verb context (Experiment 2). Participants performed ABX…

  20. Automatic recognition of emotions from facial expressions

    NASA Astrophysics Data System (ADS)

    Xue, Henry; Gertner, Izidor

    2014-06-01

    In the human-computer interaction (HCI) process it is desirable to have an artificial intelligent (AI) system that can identify and categorize human emotions from facial expressions. Such systems can be used in security, in entertainment industries, and also to study visual perception, social interactions and disorders (e.g. schizophrenia and autism). In this work we survey and compare the performance of different feature extraction algorithms and classification schemes. We introduce a faster feature extraction method that resizes and applies a set of filters to the data images without sacrificing the accuracy. In addition, we have enhanced SVM to multiple dimensions while retaining the high accuracy rate of SVM. The algorithms were tested using the Japanese Female Facial Expression (JAFFE) Database and the Database of Faces (AT&T Faces).

  1. Categorical perception of affective and linguistic facial expressions

    PubMed Central

    McCullough, Stephen; Emmorey, Karen

    2009-01-01

    Two experiments investigated categorical perception (CP) effects for affective facial expressions and linguistic facial expressions from American Sign Language (ASL) for Deaf native signers and hearing non-signers. Facial expressions were presented in isolation (Experiment 1) or in an ASL verb context (Experiment 2). Participants performed ABX discrimination and identification tasks on morphed affective and linguistic facial expression continua. The continua were created by morphing end-point photo exemplars into 11 images, changing linearly from one expression to another in equal steps. For both affective and linguistic expressions, hearing non-signers exhibited better discrimination across category boundaries than within categories for both experiments, thus replicating previous results with affective expressions and demonstrating CP effects for non-canonical facial expressions. Deaf signers, however, showed significant CP effects only for linguistic facial expressions. Subsequent analyses indicated that order of presentation influenced signers' response time performance for affective facial expressions: viewing linguistic facial expressions first slowed response time for affective facial expressions. We conclude that CP effects for affective facial expressions can be influenced by language experience. PMID:19111287

  2. Adults' responsiveness to children's facial expressions.

    PubMed

    Aradhye, Chinmay; Vonk, Jennifer; Arida, Danielle

    2015-07-01

    We investigated the effect of young children's (hereafter children's) facial expressions on adult responsiveness. In Study 1, 131 undergraduate students from a midsized university in the midwestern United States rated children's images and videos with smiling, crying, or neutral expressions on cuteness, likelihood to adopt, and participants' experienced distress. Looking times at images and videos along with perception of cuteness, likelihood to adopt, and experienced distress using 10-point Likert scales were measured. Videos of smiling children were rated as cuter and more likely to be adopted and were viewed for longer times compared with videos of crying children, which evoked more distress. In Study 2, we recorded responses from 101 of the same participants in an online survey measuring gender role identity, empathy, and perspective taking. Higher levels of femininity (as measured by Bem's Sex Role Inventory) predicted higher "likely to adopt" ratings for crying images. These findings indicate that adult perception of children and motivation to nurture are affected by both children's facial expressions and adult characteristics and build on existing literature to demonstrate that children may use expressions to manipulate the motivations of even non-kin adults to direct attention toward and perhaps nurture young children. PMID:25838165

  3. Automated Video Based Facial Expression Analysis of Neuropsychiatric Disorders

    PubMed Central

    Wang, Peng; Barrett, Frederick; Martin, Elizabeth; Milanova, Marina; Gur, Raquel E.; Gur, Ruben C.; Kohler, Christian; Verma, Ragini

    2008-01-01

    Deficits in emotional expression are prominent in several neuropsychiatric disorders, including schizophrenia. Available clinical facial expression evaluations provide subjective and qualitative measurements, which are based on static 2D images that do not capture the temporal dynamics and subtleties of expression changes. Therefore, there is a need for automated, objective and quantitative measurements of facial expressions captured using videos. This paper presents a computational framework that creates probabilistic expression profiles for video data and can potentially help to automatically quantify emotional expression differences between patients with neuropsychiatric disorders and healthy controls. Our method automatically detects and tracks facial landmarks in videos, and then extracts geometric features to characterize facial expression changes. To analyze temporal facial expression changes, we employ probabilistic classifiers that analyze facial expressions in individual frames, and then propagate the probabilities throughout the video to capture the temporal characteristics of facial expressions. The applications of our method to healthy controls and case studies of patients with schizophrenia and Asperger’s syndrome demonstrate the capability of the video-based expression analysis method in capturing subtleties of facial expression. Such results can pave the way for a video based method for quantitative analysis of facial expressions in clinical research of disorders that cause affective deficits. PMID:18045693

  4. Dynamic facial expressions are processed holistically, but not more holistically than static facial expressions.

    PubMed

    Tobin, Alanna; Favelle, Simone; Palermo, Romina

    2016-09-01

    There is evidence that facial expressions are perceived holistically and featurally. The composite task is a direct measure of holistic processing (although the absence of a composite effect implies the use of other types of processing). Most composite task studies have used static images, despite the fact that movement is an important aspect of facial expressions and there is some evidence that movement may facilitate recognition. We created static and dynamic composites, in which emotions were reliably identified from each half of the face. The magnitude of the composite effect was similar for static and dynamic expressions identified from the top half (anger, sadness and surprise) but was reduced in dynamic as compared to static expressions identified from the bottom half (fear, disgust and joy). Thus, any advantage in recognising dynamic over static expressions is not likely to stem from enhanced holistic processing, rather motion may emphasise or disambiguate diagnostic featural information. PMID:26208146

  5. Effects of facial expression on working memory.

    PubMed

    Stiernströmer, Emelie S; Wolgast, Martin; Johansson, Mikael

    2016-08-01

    In long-term memory (LTM) emotional content may both enhance and impair memory, however, disagreement remains whether emotional content exerts different effects on the ability to maintain and manipulate information over short intervals. Using a working-memory (WM) recognition task requiring the monitoring of faces displaying facial expressions of emotion, participants judged each face as identical (target) or not (non-target) to that presented 2 trials back (2-back). Negative expression was better and faster recognised, illustrated by higher target discriminability and target detection. Positive and negative expressions also induced a more liberal detection bias compared with neutral. Taking the preceding item into account, additional accuracy impairment (negative preceding negative target) and enhancement effects (negative or positive preceding neutral target) appeared. This illustrates a differential modulation of WM based on the affective tone of the target (mirroring LTM enhancement- and recognition bias effects), and of the preceding item (enhanced and impaired target detection). PMID:26238683

  6. Suitable models for face geometry normalization in facial expression recognition

    NASA Astrophysics Data System (ADS)

    Sadeghi, Hamid; Raie, Abolghasem A.

    2015-01-01

    Recently, facial expression recognition has attracted much attention in machine vision research because of its various applications. Accordingly, many facial expression recognition systems have been proposed. However, the majority of existing systems suffer from a critical problem: geometric variability. It directly affects the performance of geometric feature-based facial expression recognition approaches. Furthermore, it is a crucial challenge in appearance feature-based techniques. This variability appears in both neutral faces and facial expressions. Appropriate face geometry normalization can improve the accuracy of each facial expression recognition system. Therefore, this paper proposes different geometric models or shapes for normalization. Face geometry normalization removes geometric variability of facial images and consequently, appearance feature extraction methods can be accurately utilized to represent facial images. Thus, some expression-based geometric models are proposed for facial image normalization. Next, local binary patterns and local phase quantization are used for appearance feature extraction. A combination of an effective geometric normalization with accurate appearance representations results in more than a 4% accuracy improvement compared to several state-of-the-arts in facial expression recognition. Moreover, utilizing the model of facial expressions which have larger mouth and eye region sizes gives higher accuracy due to the importance of these regions in facial expression.

  7. A comparison of facial expression properties in five hylobatid species.

    PubMed

    Scheider, Linda; Liebal, Katja; Oña, Leonardo; Burrows, Anne; Waller, Bridget

    2014-07-01

    Little is known about facial communication of lesser apes (family Hylobatidae) and how their facial expressions (and use of) relate to social organization. We investigated facial expressions (defined as combinations of facial movements) in social interactions of mated pairs in five different hylobatid species belonging to three different genera using a recently developed objective coding system, the Facial Action Coding System for hylobatid species (GibbonFACS). We described three important properties of their facial expressions and compared them between genera. First, we compared the rate of facial expressions, which was defined as the number of facial expressions per units of time. Second, we compared their repertoire size, defined as the number of different types of facial expressions used, independent of their frequency. Third, we compared the diversity of expression, defined as the repertoire weighted by the rate of use for each type of facial expression. We observed a higher rate and diversity of facial expression, but no larger repertoire, in Symphalangus (siamangs) compared to Hylobates and Nomascus species. In line with previous research, these results suggest siamangs differ from other hylobatids in certain aspects of their social behavior. To investigate whether differences in facial expressions are linked to hylobatid socio-ecology, we used a Phylogenetic General Least Square (PGLS) regression analysis to correlate those properties with two social factors: group-size and level of monogamy. No relationship between the properties of facial expressions and these socio-ecological factors was found. One explanation could be that facial expressions in hylobatid species are subject to phylogenetic inertia and do not differ sufficiently between species to reveal correlations with factors such as group size and monogamy level. PMID:24395677

  8. Sex differences in perception of invisible facial expressions.

    PubMed

    Hong, Sang Wook; Yoon, K Lira; Peaco, Sophia

    2015-01-01

    Previous research indicates that women are better at recognizing facial expressions than men. In the current study, we examined whether this female advantage in the processing of facial expressions also occurs at the unconscious level. In two studies, participants performed a simple detection task and a 4-AFC task while faces were rendered invisible by continuous flash suppression. When faces with full intensity expressions were suppressed, there was no significant sex difference in the time of breakup of suppression (Study 1). However, when suppressed faces depicted low intensity expressions, suppression broke up earlier in men than women, indicating that men may be more sensitive to facial features related to mild facial expressions (Study 2). The current findings suggest that the female advantage in processing of facial expressions is absent in unconscious processing of emotional information. The female advantage in facial expression processing may require conscious perception of faces. PMID:25883583

  9. Objectifying Facial Expressivity Assessment of Parkinson's Patients: Preliminary Study

    PubMed Central

    Patsis, Georgios; Jiang, Dongmei; Sahli, Hichem; Kerckhofs, Eric; Vandekerckhove, Marie

    2014-01-01

    Patients with Parkinson's disease (PD) can exhibit a reduction of spontaneous facial expression, designated as “facial masking,” a symptom in which facial muscles become rigid. To improve clinical assessment of facial expressivity of PD, this work attempts to quantify the dynamic facial expressivity (facial activity) of PD by automatically recognizing facial action units (AUs) and estimating their intensity. Spontaneous facial expressivity was assessed by comparing 7 PD patients with 8 control participants. To voluntarily produce spontaneous facial expressions that resemble those typically triggered by emotions, six emotions (amusement, sadness, anger, disgust, surprise, and fear) were elicited using movie clips. During the movie clips, physiological signals (facial electromyography (EMG) and electrocardiogram (ECG)) and frontal face video of the participants were recorded. The participants were asked to report on their emotional states throughout the experiment. We first examined the effectiveness of the emotion manipulation by evaluating the participant's self-reports. Disgust-induced emotions were significantly higher than the other emotions. Thus we focused on the analysis of the recorded data during watching disgust movie clips. The proposed facial expressivity assessment approach captured differences in facial expressivity between PD patients and controls. Also differences between PD patients with different progression of Parkinson's disease have been observed. PMID:25478003

  10. Objectifying facial expressivity assessment of Parkinson's patients: preliminary study.

    PubMed

    Wu, Peng; Gonzalez, Isabel; Patsis, Georgios; Jiang, Dongmei; Sahli, Hichem; Kerckhofs, Eric; Vandekerckhove, Marie

    2014-01-01

    Patients with Parkinson's disease (PD) can exhibit a reduction of spontaneous facial expression, designated as "facial masking," a symptom in which facial muscles become rigid. To improve clinical assessment of facial expressivity of PD, this work attempts to quantify the dynamic facial expressivity (facial activity) of PD by automatically recognizing facial action units (AUs) and estimating their intensity. Spontaneous facial expressivity was assessed by comparing 7 PD patients with 8 control participants. To voluntarily produce spontaneous facial expressions that resemble those typically triggered by emotions, six emotions (amusement, sadness, anger, disgust, surprise, and fear) were elicited using movie clips. During the movie clips, physiological signals (facial electromyography (EMG) and electrocardiogram (ECG)) and frontal face video of the participants were recorded. The participants were asked to report on their emotional states throughout the experiment. We first examined the effectiveness of the emotion manipulation by evaluating the participant's self-reports. Disgust-induced emotions were significantly higher than the other emotions. Thus we focused on the analysis of the recorded data during watching disgust movie clips. The proposed facial expressivity assessment approach captured differences in facial expressivity between PD patients and controls. Also differences between PD patients with different progression of Parkinson's disease have been observed. PMID:25478003

  11. Children's Representations of Facial Expression and Identity: Identity-Contingent Expression Aftereffects

    ERIC Educational Resources Information Center

    Vida, Mark D.; Mondloch, Catherine J.

    2009-01-01

    This investigation used adaptation aftereffects to examine developmental changes in the perception of facial expressions. Previous studies have shown that adults' perceptions of ambiguous facial expressions are biased following adaptation to intense expressions. These expression aftereffects are strong when the adapting and probe expressions share…

  12. Facial expression recognition using constructive neural networks

    NASA Astrophysics Data System (ADS)

    Ma, Liying; Khorasani, Khashayar

    2001-08-01

    The computer-based recognition of facial expressions has been an active area of research for quite a long time. The ultimate goal is to realize intelligent and transparent communications between human beings and machines. The neural network (NN) based recognition methods have been found to be particularly promising, since NN is capable of implementing mapping from the feature space of face images to the facial expression space. However, finding a proper network size has always been a frustrating and time consuming experience for NN developers. In this paper, we propose to use the constructive one-hidden-layer feed forward neural networks (OHL-FNNs) to overcome this problem. The constructive OHL-FNN will obtain in a systematic way a proper network size which is required by the complexity of the problem being considered. Furthermore, the computational cost involved in network training can be considerably reduced when compared to standard back- propagation (BP) based FNNs. In our proposed technique, the 2-dimensional discrete cosine transform (2-D DCT) is applied over the entire difference face image for extracting relevant features for recognition purpose. The lower- frequency 2-D DCT coefficients obtained are then used to train a constructive OHL-FNN. An input-side pruning technique previously proposed by the authors is also incorporated into the constructive OHL-FNN. An input-side pruning technique previously proposed by the authors is also incorporated into the constructive learning process to reduce the network size without sacrificing the performance of the resulting network. The proposed technique is applied to a database consisting of images of 60 men, each having the resulting network. The proposed technique is applied to a database consisting of images of 60 men, each having 5 facial expression images (neutral, smile, anger, sadness, and surprise). Images of 40 men are used for network training, and the remaining images are used for generalization and

  13. Multi-curve spectrum representation of facial movements and expressions

    NASA Astrophysics Data System (ADS)

    Pei, Li; Zhang, Zhijiang; Chen, Zhixiang; Zeng, Dan

    2009-07-01

    This paper presents a method of multi-curve spectrum representation of facial movements and expressions. Based on 3DMCF (3D muscle-controlled facial) model, facial movements and expressions are controlled by 21 virtual muscles. So, facial movements and expressions can be described by a group of time-varying curves of normalized muscle contraction, called multi-curve spectrum. The structure and basic characters of multi-curve spectrum is introduced. The performance of the proposed method is among the best. This method needs small quantity of data, and is easy to apply. It can also be used to transplant facial animation between different faces.

  14. Altering sensorimotor feedback disrupts visual discrimination of facial expressions.

    PubMed

    Wood, Adrienne; Lupyan, Gary; Sherrin, Steven; Niedenthal, Paula

    2016-08-01

    Looking at another person's facial expression of emotion can trigger the same neural processes involved in producing the expression, and such responses play a functional role in emotion recognition. Disrupting individuals' facial action, for example, interferes with verbal emotion recognition tasks. We tested the hypothesis that facial responses also play a functional role in the perceptual processing of emotional expressions. We altered the facial action of participants with a gel facemask while they performed a task that involved distinguishing target expressions from highly similar distractors. Relative to control participants, participants in the facemask condition demonstrated inferior perceptual discrimination of facial expressions, but not of nonface stimuli. The findings suggest that somatosensory/motor processes involving the face contribute to the visual perceptual-and not just conceptual-processing of facial expressions. More broadly, our study contributes to growing evidence for the fundamentally interactive nature of the perceptual inputs from different sensory modalities. PMID:26542827

  15. From facial expressions to bodily gestures

    PubMed Central

    2016-01-01

    This article aims to determine to what extent photographic practices in psychology, psychiatry and physiology contributed to the definition of the external bodily signs of passions and emotions in the second half of the 19th century in France. Bridging the gap between recent research in the history of emotions and photographic history, the following analyses focus on the photographic production of scientists and photographers who made significant contributions to the study of expressions and gestures, namely Duchenne de Boulogne, Charles Darwin, Paul Richer and Albert Londe. This article argues that photography became a key technology in their works due to the adequateness of the exposure time of different cameras to the duration of the bodily manifestations to be recorded, and that these uses constituted facial expressions and bodily gestures as particular objects for the scientific study. PMID:26900264

  16. Shadows Alter Facial Expressions of Noh Masks

    PubMed Central

    Kawai, Nobuyuki; Miyata, Hiromitsu; Nishimura, Ritsuko; Okanoya, Kazuo

    2013-01-01

    Background A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers’ recognition of the emotional expressions. Methodology/Principal Findings In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. Conclusions/Significance Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa’s smile. They also agree with the aesthetic principle of Japanese traditional art “yugen (profound grace and subtlety)”, which highly appreciates subtle emotional expressions in the darkness. PMID:23940748

  17. Facial expression recognition in crested macaques (Macaca nigra).

    PubMed

    Micheletta, Jérôme; Whitehouse, Jamie; Parr, Lisa A; Waller, Bridget M

    2015-07-01

    Facial expressions are a main communication channel used by many different species of primate. Despite this, we know relatively little about how primates discriminate between different facial expressions, and most of what we do know comes from a restricted number of well-studied species. In this study, three crested macaques (Macaca nigra) took part in matching-to-sample tasks where they had to discriminate different facial expressions. In a first experiment, the macaques had to match a photograph of a facial expression to another exemplar of the same expression produced by a different individual, against examples of one of three other types of expressions and neutral faces. In a second experiment, they had to match a dynamic video recording of a facial expression to a still photograph of another exemplar of the same facial expression produced by another individual, also against one of four other expressions. The macaques performed above chance in both tasks, identifying expressions as belonging to the same category regardless of individual identity. Using matrix correlations and multidimensional scaling, we analysed the pattern of errors to see whether overall similarity between facial expressions and/or specific morphological features caused the macaques to confuse facial expressions. Overall similarity, measured with the macaque facial action coding system (maqFACS), did not correlate with performances. Instead, functional similarities between facial expressions could be responsible for the observed pattern of error. These results expand previous findings to a novel primate species and highlight the potential of using video stimuli to investigate the perception and categorisation of visual signals in primates. PMID:25821924

  18. Dynamic Facial Expression Recognition With Atlas Construction and Sparse Representation.

    PubMed

    Guo, Yimo; Zhao, Guoying; Pietikainen, Matti

    2016-05-01

    In this paper, a new dynamic facial expression recognition method is proposed. Dynamic facial expression recognition is formulated as a longitudinal groupwise registration problem. The main contributions of this method lie in the following aspects: 1) subject-specific facial feature movements of different expressions are described by a diffeomorphic growth model; 2) salient longitudinal facial expression atlas is built for each expression by a sparse groupwise image registration method, which can describe the overall facial feature changes among the whole population and can suppress the bias due to large intersubject facial variations; and 3) both the image appearance information in spatial domain and topological evolution information in temporal domain are used to guide recognition by a sparse representation method. The proposed framework has been extensively evaluated on five databases for different applications: the extended Cohn-Kanade, MMI, FERA, and AFEW databases for dynamic facial expression recognition, and UNBC-McMaster database for spontaneous pain expression monitoring. This framework is also compared with several state-of-the-art dynamic facial expression recognition methods. The experimental results demonstrate that the recognition rates of the new method are consistently higher than other methods under comparison. PMID:26955032

  19. The Facial Expression Coding System (FACES): Development, Validation, and Utility

    ERIC Educational Resources Information Center

    Kring, Ann M.; Sloan, Denise M.

    2007-01-01

    This article presents information on the development and validation of the Facial Expression Coding System (FACES; A. M. Kring & D. Sloan, 1991). Grounded in a dimensional model of emotion, FACES provides information on the valence (positive, negative) of facial expressive behavior. In 5 studies, reliability and validity data from 13 diverse…

  20. Four not six: Revealing culturally common facial expressions of emotion.

    PubMed

    Jack, Rachael E; Sun, Wei; Delis, Ioannis; Garrod, Oliver G B; Schyns, Philippe G

    2016-06-01

    As a highly social species, humans generate complex facial expressions to communicate a diverse range of emotions. Since Darwin's work, identifying among these complex patterns which are common across cultures and which are culture-specific has remained a central question in psychology, anthropology, philosophy, and more recently machine vision and social robotics. Classic approaches to addressing this question typically tested the cross-cultural recognition of theoretically motivated facial expressions representing 6 emotions, and reported universality. Yet, variable recognition accuracy across cultures suggests a narrower cross-cultural communication supported by sets of simpler expressive patterns embedded in more complex facial expressions. We explore this hypothesis by modeling the facial expressions of over 60 emotions across 2 cultures, and segregating out the latent expressive patterns. Using a multidisciplinary approach, we first map the conceptual organization of a broad spectrum of emotion words by building semantic networks in 2 cultures. For each emotion word in each culture, we then model and validate its corresponding dynamic facial expression, producing over 60 culturally valid facial expression models. We then apply to the pooled models a multivariate data reduction technique, revealing 4 latent and culturally common facial expression patterns that each communicates specific combinations of valence, arousal, and dominance. We then reveal the face movements that accentuate each latent expressive pattern to create complex facial expressions. Our data questions the widely held view that 6 facial expression patterns are universal, instead suggesting 4 latent expressive patterns with direct implications for emotion communication, social psychology, cognitive neuroscience, and social robotics. (PsycINFO Database Record PMID:27077757

  1. The efficiency of dynamic and static facial expression recognition

    PubMed Central

    Gold, Jason M.; Barker, Jarrett D.; Barr, Shawn; Bittner, Jennifer L.; Bromfield, W. Drew; Chu, Nicole; Goode, Roy A.; Lee, Doori; Simmons, Michael; Srinath, Aparna

    2012-01-01

    Unlike frozen snapshots of facial expressions that we often see in photographs, natural facial expressions are dynamic events that unfold in a particular fashion over time. But how important are the temporal properties of expressions for our ability to reliably extract information about a person's emotional state? We addressed this question experimentally by gauging human performance in recognizing facial expressions with varying temporal properties relative to that of a statistically optimal (“ideal”) observer. We found that people recognized emotions just as efficiently when viewing them as naturally evolving dynamic events, temporally reversed events, temporally randomized events, or single images frozen in time. Our results suggest that the dynamic properties of human facial movements may play a surprisingly small role in people's ability to infer the emotional states of others from their facial expressions. PMID:23620533

  2. Robust facial expression recognition algorithm based on local metric learning

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Jia, Kebin

    2016-01-01

    In facial expression recognition tasks, different facial expressions are often confused with each other. Motivated by the fact that a learned metric can significantly improve the accuracy of classification, a facial expression recognition algorithm based on local metric learning is proposed. First, k-nearest neighbors of the given testing sample are determined from the total training data. Second, chunklets are selected from the k-nearest neighbors. Finally, the optimal transformation matrix is computed by maximizing the total variance between different chunklets and minimizing the total variance of instances in the same chunklet. The proposed algorithm can find the suitable distance metric for every testing sample and improve the performance on facial expression recognition. Furthermore, the proposed algorithm can be used for vector-based and matrix-based facial expression recognition. Experimental results demonstrate that the proposed algorithm could achieve higher recognition rates and be more robust than baseline algorithms on the JAFFE, CK, and RaFD databases.

  3. Enhanced subliminal emotional responses to dynamic facial expressions.

    PubMed

    Sato, Wataru; Kubota, Yasutaka; Toichi, Motomi

    2014-01-01

    Emotional processing without conscious awareness plays an important role in human social interaction. Several behavioral studies reported that subliminal presentation of photographs of emotional facial expressions induces unconscious emotional processing. However, it was difficult to elicit strong and robust effects using this method. We hypothesized that dynamic presentations of facial expressions would enhance subliminal emotional effects and tested this hypothesis with two experiments. Fearful or happy facial expressions were presented dynamically or statically in either the left or the right visual field for 20 (Experiment 1) and 30 (Experiment 2) ms. Nonsense target ideographs were then presented, and participants reported their preference for them. The results consistently showed that dynamic presentations of emotional facial expressions induced more evident emotional biases toward subsequent targets than did static ones. These results indicate that dynamic presentations of emotional facial expressions induce more evident unconscious emotional processing. PMID:25250001

  4. The not face: A grammaticalization of facial expressions of emotion.

    PubMed

    Benitez-Quiroz, C Fabian; Wilbur, Ronnie B; Martinez, Aleix M

    2016-05-01

    Facial expressions of emotion are thought to have evolved from the development of facial muscles used in sensory regulation and later adapted to express moral judgment. Negative moral judgment includes the expressions of anger, disgust and contempt. Here, we study the hypothesis that these facial expressions of negative moral judgment have further evolved into a facial expression of negation regularly used as a grammatical marker in human language. Specifically, we show that people from different cultures expressing negation use the same facial muscles as those employed to express negative moral judgment. We then show that this nonverbal signal is used as a co-articulator in speech and that, in American Sign Language, it has been grammaticalized as a non-manual marker. Furthermore, this facial expression of negation exhibits the theta oscillation (3-8 Hz) universally seen in syllable and mouthing production in speech and signing. These results provide evidence for the hypothesis that some components of human language have evolved from facial expressions of emotion, and suggest an evolutionary route for the emergence of grammatical markers. PMID:26872248

  5. Postauricular and eyeblink startle responses to facial expressions.

    PubMed

    Hess, Ursula; Sabourin, Gabrielle; Kleck, Robert E

    2007-05-01

    Emotional facial expressions have affective significance. Smiles, for example, are perceived as positive and responded to with increased happiness, whereas angry expressions are perceived as negative and threatening. Yet, these perceptions are modulated in part by facial morphological cues related to the sex of the expresser. The present research assessed both eyeblink startle and the postauricular reflex during happy and angry expressions by men and women. For this 14 male and 16 female undergraduates saw happy, neutral, and angry facial expressions as well as positive and negative pictures. The postauricular reflex was potentiated during happy expressions and inhibited during anger expressions; however, as expected, this pattern was more clearly found for female expressers. Conversely, the expected pattern of eyeblink startle potentiation during angry faces and inhibition during happy faces was found only for male expressers. PMID:17371491

  6. How Facial Expressions of Emotion Affect Distance Perception.

    PubMed

    Kim, Nam-Gyoon; Son, Heejung

    2015-01-01

    Facial expressions of emotion are thought to convey expressers' behavioral intentions, thus priming observers' approach and avoidance tendencies appropriately. The present study examined whether detecting expressions of behavioral intent influences perceivers' estimation of the expresser's distance from them. Eighteen undergraduates (nine male and nine female) participated in the study. Six facial expressions were chosen on the basis of degree of threat-anger, hate (threatening expressions), shame, surprise (neutral expressions), pleasure, and joy (safe expressions). Each facial expression was presented on a tablet PC held by an assistant covered by a black drape who stood 1, 2, or 3 m away from participants. Participants performed a visual matching task to report the perceived distance. Results showed that facial expression influenced distance estimation, with faces exhibiting threatening or safe expressions judged closer than those showing neutral expressions. Females' judgments were more likely to be influenced; but these influences largely disappeared beyond the 2 m distance. These results suggest that facial expressions of emotion (particularly threatening or safe emotions) influence others' (especially females') distance estimations but only within close proximity. PMID:26635708

  7. Recognition, Expression, and Understanding Facial Expressions of Emotion in Adolescents with Nonverbal and General Learning Disabilities

    ERIC Educational Resources Information Center

    Bloom, Elana; Heath, Nancy

    2010-01-01

    Children with nonverbal learning disabilities (NVLD) have been found to be worse at recognizing facial expressions than children with verbal learning disabilities (LD) and without LD. However, little research has been done with adolescents. In addition, expressing and understanding facial expressions is yet to be studied among adolescents with LD…

  8. Viewing distance matter to perceived intensity of facial expressions

    PubMed Central

    Gerhardsson, Andreas; Högman, Lennart; Fischer, Håkan

    2015-01-01

    In our daily perception of facial expressions, we depend on an ability to generalize across the varied distances at which they may appear. This is important to how we interpret the quality and the intensity of the expression. Previous research has not investigated whether this so called perceptual constancy also applies to the experienced intensity of facial expressions. Using a psychophysical measure (Borg CR100 scale) the present study aimed to further investigate perceptual constancy of happy and angry facial expressions at varied sizes, which is a proxy for varying viewing distances. Seventy-one (42 females) participants rated the intensity and valence of facial expressions varying in distance and intensity. The results demonstrated that the perceived intensity (PI) of the emotional facial expression was dependent on the distance of the face and the person perceiving it. An interaction effect was noted, indicating that close-up faces are perceived as more intense than faces at a distance and that this effect is stronger the more intense the facial expression truly is. The present study raises considerations regarding constancy of the PI of happy and angry facial expressions at varied distances. PMID:26191035

  9. Identification of emotional facial expressions following recovery from depression.

    PubMed

    LeMoult, Joelle; Joormann, Jutta; Sherdell, Lindsey; Wright, Yamanda; Gotlib, Ian H

    2009-11-01

    This study investigated the identification of facial expressions of emotion in currently nondepressed participants who had a history of recurrent depressive episodes (recurrent major depression; RMD) and never-depressed control participants (CTL). Following a negative mood induction, participants were presented with faces whose expressions slowly changed from neutral to full intensity. Identification of facial expressions was measured by the intensity of the expression at which participants could accurately identify whether faces expressed happiness, sadness, or anger. There were no group differences in the identification of sad or angry expressions. Compared with CTL participants, however, RMD participants required significantly greater emotional intensity in the faces to correctly identify happy expressions. These results indicate that biases in the processing of emotional facial expressions are evident even after individuals have recovered from a depressive episode. PMID:19899852

  10. The Relationships between Processing Facial Identity, Emotional Expression, Facial Speech, and Gaze Direction during Development

    ERIC Educational Resources Information Center

    Spangler, Sibylle M.; Schwarzer, Gudrun; Korell, Monika; Maier-Karius, Johanna

    2010-01-01

    Four experiments were conducted with 5- to 11-year-olds and adults to investigate whether facial identity, facial speech, emotional expression, and gaze direction are processed independently of or in interaction with one another. In a computer-based, speeded sorting task, participants sorted faces according to facial identity while disregarding…

  11. Parameterized Facial Expression Synthesis Based on MPEG-4

    NASA Astrophysics Data System (ADS)

    Raouzaiou, Amaryllis; Tsapatsoulis, Nicolas; Karpouzis, Kostas; Kollias, Stefanos

    2002-12-01

    In the framework of MPEG-4, one can include applications where virtual agents, utilizing both textual and multisensory data, including facial expressions and nonverbal speech help systems become accustomed to the actual feelings of the user. Applications of this technology are expected in educational environments, virtual collaborative workplaces, communities, and interactive entertainment. Facial animation has gained much interest within the MPEG-4 framework; with implementation details being an open research area (Tekalp, 1999). In this paper, we describe a method for enriching human computer interaction, focusing on analysis and synthesis of primary and intermediate facial expressions (Ekman and Friesen (1978)). To achieve this goal, we utilize facial animation parameters (FAPs) to model primary expressions and describe a rule-based technique for handling intermediate ones. A relation between FAPs and the activation parameter proposed in classical psychological studies is established, leading to parameterized facial expression analysis and synthesis notions, compatible with the MPEG-4 standard.

  12. How Facial Expressions of Emotion Affect Distance Perception

    PubMed Central

    Kim, Nam-Gyoon; Son, Heejung

    2015-01-01

    Facial expressions of emotion are thought to convey expressers’ behavioral intentions, thus priming observers’ approach and avoidance tendencies appropriately. The present study examined whether detecting expressions of behavioral intent influences perceivers’ estimation of the expresser’s distance from them. Eighteen undergraduates (nine male and nine female) participated in the study. Six facial expressions were chosen on the basis of degree of threat—anger, hate (threatening expressions), shame, surprise (neutral expressions), pleasure, and joy (safe expressions). Each facial expression was presented on a tablet PC held by an assistant covered by a black drape who stood 1, 2, or 3 m away from participants. Participants performed a visual matching task to report the perceived distance. Results showed that facial expression influenced distance estimation, with faces exhibiting threatening or safe expressions judged closer than those showing neutral expressions. Females’ judgments were more likely to be influenced; but these influences largely disappeared beyond the 2 m distance. These results suggest that facial expressions of emotion (particularly threatening or safe emotions) influence others’ (especially females’) distance estimations but only within close proximity. PMID:26635708

  13. The Neuropsychology of Facial Identity and Facial Expression in Children with Mental Retardation

    ERIC Educational Resources Information Center

    Singh, Nirbhay N.; Oswald, Donald P.; Lancioni, Giulio E.; Ellis, Cynthia R.; Sage, Monica; Ferris, Jennifer R.

    2005-01-01

    We indirectly determined how children with mental retardation analyze facial identity and facial expression, and if these analyses of identity and expression were controlled by independent cognitive processes. In a reaction time study, 20 children with mild mental retardation were required to determine if simultaneously presented photographs of…

  14. Macaques can predict social outcomes from facial expressions.

    PubMed

    Waller, Bridget M; Whitehouse, Jamie; Micheletta, Jérôme

    2016-09-01

    There is widespread acceptance that facial expressions are useful in social interactions, but empirical demonstration of their adaptive function has remained elusive. Here, we investigated whether macaques can use the facial expressions of others to predict the future outcomes of social interaction. Crested macaques (Macaca nigra) were shown an approach between two unknown individuals on a touchscreen and were required to choose between one of two potential social outcomes. The facial expressions of the actors were manipulated in the last frame of the video. One subject reached the experimental stage and accurately predicted different social outcomes depending on which facial expressions the actors displayed. The bared-teeth display (homologue of the human smile) was most strongly associated with predicted friendly outcomes. Contrary to our predictions, screams and threat faces were not associated more with conflict outcomes. Overall, therefore, the presence of any facial expression (compared to neutral) caused the subject to choose friendly outcomes more than negative outcomes. Facial expression in general, therefore, indicated a reduced likelihood of social conflict. The findings dispute traditional theories that view expressions only as indicators of present emotion and instead suggest that expressions form part of complex social interactions where individuals think beyond the present. PMID:27155662

  15. Facial expression recognition using kernel canonical correlation analysis (KCCA).

    PubMed

    Zheng, Wenming; Zhou, Xiaoyan; Zou, Cairong; Zhao, Li

    2006-01-01

    In this correspondence, we address the facial expression recognition problem using kernel canonical correlation analysis (KCCA). Following the method proposed by Lyons et al. and Zhang et al., we manually locate 34 landmark points from each facial image and then convert these geometric points into a labeled graph (LG) vector using the Gabor wavelet transformation method to represent the facial features. On the other hand, for each training facial image, the semantic ratings describing the basic expressions are combined into a six-dimensional semantic expression vector. Learning the correlation between the LG vector and the semantic expression vector is performed by KCCA. According to this correlation, we estimate the associated semantic expression vector of a given test image and then perform the expression classification according to this estimated semantic expression vector. Moreover, we also propose an improved KCCA algorithm to tackle the singularity problem of the Gram matrix. The experimental results on the Japanese female facial expression database and the Ekman's "Pictures of Facial Affect" database illustrate the effectiveness of the proposed method. PMID:16526490

  16. Automated Facial Action Coding System for Dynamic Analysis of Facial Expressions in Neuropsychiatric Disorders

    PubMed Central

    Hamm, Jihun; Kohler, Christian G.; Gur, Ruben C.; Verma, Ragini

    2011-01-01

    Facial expression is widely used to evaluate emotional impairment in neuropsychiatric disorders. Ekman and Friesen’s Facial Action Coding System (FACS) encodes movements of individual facial muscles from distinct momentary changes in facial appearance. Unlike facial expression ratings based on categorization of expressions into prototypical emotions (happiness, sadness, anger, fear, disgust, etc.), FACS can encode ambiguous and subtle expressions, and therefore is potentially more suitable for analyzing the small differences in facial affect. However, FACS rating requires extensive training, and is time consuming and subjective thus prone to bias. To overcome these limitations, we developed an automated FACS based on advanced computer science technology. The system automatically tracks faces in a video, extracts geometric and texture features, and produces temporal profiles of each facial muscle movement. These profiles are quantified to compute frequencies of single and combined Action Units (AUs) in videos, which can facilitate statistical study of large populations in disorders affecting facial expression. We derived quantitative measures of flat and inappropriate facial affect automatically from temporal AU profiles. Applicability of the automated FACS was illustrated in a pilot study, by applying it to data of videos from eight schizophrenia patients and controls. We created temporal AU profiles that provided rich information on the dynamics of facial muscle movements for each subject. The quantitative measures of flatness and inappropriateness showed clear differences between patients and the controls, highlighting their potential in automatic and objective quantification of symptom severity. PMID:21741407

  17. Automatic decoding of facial movements reveals deceptive pain expressions

    PubMed Central

    Bartlett, Marian Stewart; Littlewort, Gwen C.; Frank, Mark G.; Lee, Kang

    2014-01-01

    Summary In highly social species such as humans, faces have evolved to convey rich information for social interaction, including expressions of emotions and pain [1–3]. Two motor pathways control facial movement [4–7]. A subcortical extrapyramidal motor system drives spontaneous facial expressions of felt emotions. A cortical pyramidal motor system controls voluntary facial expressions. The pyramidal system enables humans to simulate facial expressions of emotions not actually experienced. Their simulation is so successful that they can deceive most observers [8–11]. Machine vision may, however, be able to distinguish deceptive from genuine facial signals by identifying the subtle differences between pyramidally and extrapyramidally driven movements. Here we show that human observers could not discriminate real from faked expressions of pain better than chance, and after training, improved accuracy to a modest 55%. However a computer vision system that automatically measures facial movements and performs pattern recognition on those movements attained 85% accuracy. The machine system’s superiority is attributable to its ability to differentiate the dynamics of genuine from faked expressions. Thus by revealing the dynamics of facial action through machine vision systems, our approach has the potential to elucidate behavioral fingerprints of neural control systems involved in emotional signaling. PMID:24656830

  18. Facial expression of emotions in borderline personality disorder and depression.

    PubMed

    Renneberg, Babette; Heyn, Katrin; Gebhard, Rita; Bachmann, Silke

    2005-09-01

    Borderline personality disorder (BPD) is characterized by marked problems in interpersonal relationships and emotion regulation. The assumption of emotional hyper-reactivity in BPD is tested regarding the facial expression of emotions, an aspect highly relevant for communication processes and a central feature of emotion regulation. Facial expressions of emotions are examined in a group of 30 female inpatients with BPD, 27 women with major depression and 30 non-patient female controls. Participants were videotaped while watching two short movie sequences, inducing either positive or negative emotions. Frequency of emotional facial expressions and intensity of happiness expressions were examined, using the Emotional Facial Action Coding System (EMFACS-7, Friesen & Ekman, EMFACS-7: Emotional Facial Action Coding System, Version 7. Unpublished manual, 1984). Group differences were analyzed for the negative and the positive mood-induction procedure separately. Results indicate that BPD patients reacted similar to depressed patients with reduced facial expressiveness to both films. The highest emotional facial activity to both films and most intense happiness expressions were displayed by the non-clinical control group. Current findings contradict the assumption of a general hyper-reactivity to emotional stimuli in patients with BPD. PMID:15950175

  19. Perception of temporal asymmetries in dynamic facial expressions

    PubMed Central

    Reinl, Maren; Bartels, Andreas

    2015-01-01

    In the current study we examined whether timeline-reversals and emotional direction of dynamic facial expressions affect subjective experience of human observers. We recorded natural movies of faces that increased or decreased their expressions of fear, and played them either in the natural frame order or reversed from last to first frame (reversed timeline). This led to four conditions of increasing or decreasing fear, either following the natural or reversed temporal trajectory of facial dynamics. This 2-by-2 factorial design controlled for visual low-level properties, static visual content, and motion energy across the different factors. It allowed us to examine perceptual consequences that would occur if the timeline trajectory of facial muscle movements during the increase of an emotion are not the exact mirror of the timeline during the decrease. It additionally allowed us to study perceptual differences between increasing and decreasing emotional expressions. Perception of these time-dependent asymmetries have not yet been quantified. We found that three emotional measures, emotional intensity, artificialness of facial movement, and convincingness or plausibility of emotion portrayal, were affected by timeline-reversals as well as by the emotional direction of the facial expressions. Our results imply that natural dynamic facial expressions contain temporal asymmetries, and show that deviations from the natural timeline lead to a reduction of perceived emotional intensity and convincingness, and to an increase of perceived artificialness of the dynamic facial expression. In addition, they show that decreasing facial expressions are judged as less plausible than increasing facial expressions. Our findings are of relevance for both, behavioral as well as neuroimaging studies, as processing and perception are influenced by temporal asymmetries. PMID:26300807

  20. Discrimination of gender using facial image with expression change

    NASA Astrophysics Data System (ADS)

    Kuniyada, Jun; Fukuda, Takahiro; Terada, Kenji

    2005-12-01

    By carrying out marketing research, the managers of large-sized department stores or small convenience stores obtain the information such as ratio of men and women of visitors and an age group, and improve their management plan. However, these works are carried out in the manual operations, and it becomes a big burden to small stores. In this paper, the authors propose a method of men and women discrimination by extracting difference of the facial expression change from color facial images. Now, there are a lot of methods of the automatic recognition of the individual using a motion facial image or a still facial image in the field of image processing. However, it is very difficult to discriminate gender under the influence of the hairstyle and clothes, etc. Therefore, we propose the method which is not affected by personality such as size and position of facial parts by paying attention to a change of an expression. In this method, it is necessary to obtain two facial images with an expression and an expressionless. First, a region of facial surface and the regions of facial parts such as eyes, nose, and mouth are extracted in the facial image with color information of hue and saturation in HSV color system and emphasized edge information. Next, the features are extracted by calculating the rate of the change of each facial part generated by an expression change. In the last step, the values of those features are compared between the input data and the database, and the gender is discriminated. In this paper, it experimented for the laughing expression and smile expression, and good results were provided for discriminating gender.

  1. Cognitive penetrability and emotion recognition in human facial expressions

    PubMed Central

    Marchi, Francesco

    2015-01-01

    Do our background beliefs, desires, and mental images influence our perceptual experience of the emotions of others? In this paper, we will address the possibility of cognitive penetration (CP) of perceptual experience in the domain of social cognition. In particular, we focus on emotion recognition based on the visual experience of facial expressions. After introducing the current debate on CP, we review examples of perceptual adaptation for facial expressions of emotion. This evidence supports the idea that facial expressions are perceptually processed as wholes. That is, the perceptual system integrates lower-level facial features, such as eyebrow orientation, mouth angle etc., into facial compounds. We then present additional experimental evidence showing that in some cases, emotion recognition on the basis of facial expression is sensitive to and modified by the background knowledge of the subject. We argue that such sensitivity is best explained as a difference in the visual experience of the facial expression, not just as a modification of the judgment based on this experience. The difference in experience is characterized as the result of the interference of background knowledge with the perceptual integration process for faces. Thus, according to the best explanation, we have to accept CP in some cases of emotion recognition. Finally, we discuss a recently proposed mechanism for CP in the face-based recognition of emotion. PMID:26150796

  2. Top-down guidance in visual search for facial expressions.

    PubMed

    Hahn, Sowon; Gronlund, Scott D

    2007-02-01

    Using a visual search paradigm, we investigated how a top-down goal modified attentional bias for threatening facial expressions. In two experiments, participants searched for a facial expression either based on stimulus characteristics or a top-down goal. In Experiment 1 participants searched for a discrepant facial expression in a homogenous crowd of faces. Consistent with previous research, we obtained a shallower response time (RT) slope when the target face was angry than when it was happy. In Experiment 2, participants searched for a specific type of facial expression (allowing a top-down goal). When the display included a target, we found a shallower RT slope for the angry than for the happy face search. However, when an angry or happy face was present in the display in opposition to the task goal, we obtained equivalent RT slopes, suggesting that the mere presence of an angry face in opposition to the task goal did not support the well-known angry face superiority effect. Furthermore, RT distribution analyses supported the special status of an angry face only when it was combined with the top-down goal. On the basis of these results, we suggest that a threatening facial expression may guide attention as a high-priority stimulus in the absence of a specific goal; however, in the presence of a specific goal, the efficiency of facial expression search is dependent on the combined influence of a top-down goal and the stimulus characteristics. PMID:17546747

  3. Facial expressions of singers influence perceived pitch relations.

    PubMed

    Thompson, William Forde; Russo, Frank A; Livingstone, Steven R

    2010-06-01

    In four experiments, we examined whether facial expressions used while singing carry musical information that can be "read" by viewers. In Experiment 1, participants saw silent video recordings of sung melodic intervals and judged the size of the interval they imagined the performers to be singing. Participants discriminated interval sizes on the basis of facial expression and discriminated large from small intervals when only head movements were visible. Experiments 2 and 3 confirmed that facial expressions influenced judgments even when the auditory signal was available. When matched with the facial expressions used to perform a large interval, audio recordings of sung intervals were judged as being larger than when matched with the facial expressions used to perform a small interval. The effect was not diminished when a secondary task was introduced, suggesting that audio-visual integration is not dependent on attention. Experiment 4 confirmed that the secondary task reduced participants' ability to make judgments that require conscious attention. The results provide the first evidence that facial expressions influence perceived pitch relations. PMID:20551352

  4. Learning Multiscale Active Facial Patches for Expression Analysis.

    PubMed

    Zhong, Lin; Liu, Qingshan; Yang, Peng; Huang, Junzhou; Metaxas, Dimitris N

    2015-08-01

    In this paper, we present a new idea to analyze facial expression by exploring some common and specific information among different expressions. Inspired by the observation that only a few facial parts are active in expression disclosure (e.g., around mouth, eye), we try to discover the common and specific patches which are important to discriminate all the expressions and only a particular expression, respectively. A two-stage multitask sparse learning (MTSL) framework is proposed to efficiently locate those discriminative patches. In the first stage MTSL, expression recognition tasks are combined to located common patches. Each of the tasks aims to find dominant patches for each expression. Secondly, two related tasks, facial expression recognition and face verification tasks, are coupled to learn specific facial patches for individual expression. The two-stage patch learning is performed on patches sampled by multiscale strategy. Extensive experiments validate the existence and significance of common and specific patches. Utilizing these learned patches, we achieve superior performances on expression recognition compared to the state-of-the-arts. PMID:25291808

  5. Facial expression recognition in rhesus monkeys, Macaca mulatta

    PubMed Central

    Parr, Lisa A.; Heintz, Matthew

    2010-01-01

    The ability to recognize and accurately interpret facial expressions is critically important for nonhuman primates that rely on these nonverbal signals for social communication. Despite this, little is known about how nonhuman primates, particularly monkeys, discriminate between facial expressions. In the present study, seven rhesus monkeys were required to discriminate four categories of conspecific facial expressions using a matching-to-sample task. In experiment 1, the matching pair showed identical photographs of facial expressions, paired with every other expression type as the nonmatch. The identity of the nonmatching stimulus monkey differed from the one in the sample. Subjects performed above chance on session 1, with no difference in performance across the four expression types. In experiment 2, the identity of all three monkeys differed in each trial, and a neutral portrait was also included as the nonmatching stimulus. Monkeys discriminated expressions across individual identity when the non-match was a neutral stimulus, but they had difficulty when the nonmatch was another expression type. We analysed the degree to which specific feature redundancy could account for these error patterns using a multidimensional scaling analysis which plotted the perceived dissimilarity between expression dyads along a two-dimensional axis. One axis appeared to represent mouth shape, stretched open versus funnelled, while the other appeared to represent a combination of lip retraction and mouth opening. These features alone, however, could not account for overall performance and suggest that monkeys do not rely solely on distinctive features to discriminate among different expressions. PMID:20228886

  6. Slowing down Presentation of Facial Movements and Vocal Sounds Enhances Facial Expression Recognition and Induces Facial-Vocal Imitation in Children with Autism

    ERIC Educational Resources Information Center

    Tardif, Carole; Laine, France; Rodriguez, Melissa; Gepner, Bruno

    2007-01-01

    This study examined the effects of slowing down presentation of facial expressions and their corresponding vocal sounds on facial expression recognition and facial and/or vocal imitation in children with autism. Twelve autistic children and twenty-four normal control children were presented with emotional and non-emotional facial expressions on…

  7. Automatic Facial Expression Recognition and Operator Functional State

    NASA Technical Reports Server (NTRS)

    Blanson, Nina

    2012-01-01

    The prevalence of human error in safety-critical occupations remains a major challenge to mission success despite increasing automation in control processes. Although various methods have been proposed to prevent incidences of human error, none of these have been developed to employ the detection and regulation of Operator Functional State (OFS), or the optimal condition of the operator while performing a task, in work environments due to drawbacks such as obtrusiveness and impracticality. A video-based system with the ability to infer an individual's emotional state from facial feature patterning mitigates some of the problems associated with other methods of detecting OFS, like obtrusiveness and impracticality in integration with the mission environment. This paper explores the utility of facial expression recognition as a technology for inferring OFS by first expounding on the intricacies of OFS and the scientific background behind emotion and its relationship with an individual's state. Then, descriptions of the feedback loop and the emotion protocols proposed for the facial recognition program are explained. A basic version of the facial expression recognition program uses Haar classifiers and OpenCV libraries to automatically locate key facial landmarks during a live video stream. Various methods of creating facial expression recognition software are reviewed to guide future extensions of the program. The paper concludes with an examination of the steps necessary in the research of emotion and recommendations for the creation of an automatic facial expression recognition program for use in real-time, safety-critical missions

  8. Automatic Facial Expression Recognition and Operator Functional State

    NASA Technical Reports Server (NTRS)

    Blanson, Nina

    2011-01-01

    The prevalence of human error in safety-critical occupations remains a major challenge to mission success despite increasing automation in control processes. Although various methods have been proposed to prevent incidences of human error, none of these have been developed to employ the detection and regulation of Operator Functional State (OFS), or the optimal condition of the operator while performing a task, in work environments due to drawbacks such as obtrusiveness and impracticality. A video-based system with the ability to infer an individual's emotional state from facial feature patterning mitigates some of the problems associated with other methods of detecting OFS, like obtrusiveness and impracticality in integration with the mission environment. This paper explores the utility of facial expression recognition as a technology for inferring OFS by first expounding on the intricacies of OFS and the scientific background behind emotion and its relationship with an individual's state. Then, descriptions of the feedback loop and the emotion protocols proposed for the facial recognition program are explained. A basic version of the facial expression recognition program uses Haar classifiers and OpenCV libraries to automatically locate key facial landmarks during a live video stream. Various methods of creating facial expression recognition software are reviewed to guide future extensions of the program. The paper concludes with an examination of the steps necessary in the research of emotion and recommendations for the creation of an automatic facial expression recognition program for use in real-time, safety-critical missions.

  9. Improved categorization of subtle facial expressions modulates Late Positive Potential.

    PubMed

    Pollux, P M J

    2016-05-13

    Biases in facial expression recognition can be reduced successfully using feedback-based training tasks. Here we investigate with event-related potentials (ERPs) at which stages of stimulus processing emotion-related modulations are influenced by training. Categorization of subtle facial expressions (morphed from neutral to happy, sad or surprise) was trained with correct-response feedback on each trial. ERPs were recorded before and after training while participants categorized facial expressions without response feedback. Behavioral data demonstrated large improvements in categorization of subtle facial expression which transferred to new face models not used during training. ERPs were modulated by training from 450 ms post-stimulus onward, characterized by a more gradual increase in P3b/Late Positive Potential (LPP) amplitude as expression intensity increased. This effect was indistinguishable for faces used for training and for new faces. It was proposed that training elicited a more fine-grained analysis of facial information for all subtle expressions, resulting in improved recognition and enhanced emotional motivational salience (reflected in P3b/LPP amplitude) of faces previously categorized as expressing no emotion. PMID:26912280

  10. Training facial expression production in children on the autism spectrum.

    PubMed

    Gordon, Iris; Pierce, Matthew D; Bartlett, Marian S; Tanaka, James W

    2014-10-01

    Children with autism spectrum disorder (ASD) show deficits in their ability to produce facial expressions. In this study, a group of children with ASD and IQ-matched, typically developing (TD) children were trained to produce "happy" and "angry" expressions with the FaceMaze computer game. FaceMaze uses an automated computer recognition system that analyzes the child's facial expression in real time. Before and after playing the Angry and Happy versions of FaceMaze, children posed "happy" and "angry" expressions. Naïve raters judged the post-FaceMaze "happy" and "angry" expressions of the ASD group as higher in quality than their pre-FaceMaze productions. Moreover, the post-game expressions of the ASD group were rated as equal in quality as the expressions of the TD group. PMID:24777287

  11. Impaired Overt Facial Mimicry in Response to Dynamic Facial Expressions in High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Yoshimura, Sayaka; Sato, Wataru; Uono, Shota; Toichi, Motomi

    2015-01-01

    Previous electromyographic studies have reported that individuals with autism spectrum disorders (ASD) exhibited atypical patterns of facial muscle activity in response to facial expression stimuli. However, whether such activity is expressed in visible facial mimicry remains unknown. To investigate this issue, we videotaped facial responses in…

  12. Reconstructing dynamic mental models of facial expressions in prosopagnosia reveals distinct representations for identity and expression.

    PubMed

    Richoz, Anne-Raphaëlle; Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G; Caldara, Roberto

    2015-04-01

    The human face transmits a wealth of signals that readily provide crucial information for social interactions, such as facial identity and emotional expression. Yet, a fundamental question remains unresolved: does the face information for identity and emotional expression categorization tap into common or distinct representational systems? To address this question we tested PS, a pure case of acquired prosopagnosia with bilateral occipitotemporal lesions anatomically sparing the regions that are assumed to contribute to facial expression (de)coding (i.e., the amygdala, the insula and the posterior superior temporal sulcus--pSTS). We previously demonstrated that PS does not use information from the eye region to identify faces, but relies on the suboptimal mouth region. PS's abnormal information use for identity, coupled with her neural dissociation, provides a unique opportunity to probe the existence of a dichotomy in the face representational system. To reconstruct the mental models of the six basic facial expressions of emotion in PS and age-matched healthy observers, we used a novel reverse correlation technique tracking information use on dynamic faces. PS was comparable to controls, using all facial features to (de)code facial expressions with the exception of fear. PS's normal (de)coding of dynamic facial expressions suggests that the face system relies either on distinct representational systems for identity and expression, or dissociable cortical pathways to access them. Interestingly, PS showed a selective impairment for categorizing many static facial expressions, which could be accounted for by her lesion in the right inferior occipital gyrus. PS's advantage for dynamic facial expressions might instead relate to a functionally distinct and sufficient cortical pathway directly connecting the early visual cortex to the spared pSTS. Altogether, our data provide critical insights on the healthy and impaired face systems, question evidence of deficits

  13. Human and computer recognition of facial expressions of emotion.

    PubMed

    Susskind, J M; Littlewort, G; Bartlett, M S; Movellan, J; Anderson, A K

    2007-01-01

    Neuropsychological and neuroimaging evidence suggests that the human brain contains facial expression recognition detectors specialized for specific discrete emotions. However, some human behavioral data suggest that humans recognize expressions as similar and not discrete entities. This latter observation has been taken to indicate that internal representations of facial expressions may be best characterized as varying along continuous underlying dimensions. To examine the potential compatibility of these two views, the present study compared human and support vector machine (SVM) facial expression recognition performance. Separate SVMs were trained to develop fully automatic optimal recognition of one of six basic emotional expressions in real-time with no explicit training on expression similarity. Performance revealed high recognition accuracy for expression prototypes. Without explicit training of similarity detection, magnitude of activation across each emotion-specific SVM captured human judgments of expression similarity. This evidence suggests that combinations of expert classifiers from separate internal neural representations result in similarity judgments between expressions, supporting the appearance of a continuous underlying dimensionality. Further, these data suggest similarity in expression meaning is supported by superficial similarities in expression appearance. PMID:16765997

  14. Morphing between expressions dissociates continuous from categorical representations of facial expression in the human brain

    PubMed Central

    Harris, Richard J.; Young, Andrew W.; Andrews, Timothy J.

    2012-01-01

    Whether the brain represents facial expressions as perceptual continua or as emotion categories remains controversial. Here, we measured the neural response to morphed images to directly address how facial expressions of emotion are represented in the brain. We found that face-selective regions in the posterior superior temporal sulcus and the amygdala responded selectively to changes in facial expression, independent of changes in identity. We then asked whether the responses in these regions reflected categorical or continuous neural representations of facial expression. Participants viewed images from continua generated by morphing between faces posing different expressions such that the expression could be the same, could involve a physical change but convey the same emotion, or could differ by the same physical amount but be perceived as two different emotions. We found that the posterior superior temporal sulcus was equally sensitive to all changes in facial expression, consistent with a continuous representation. In contrast, the amygdala was only sensitive to changes in expression that altered the perceived emotion, demonstrating a more categorical representation. These results offer a resolution to the controversy about how facial expression is processed in the brain by showing that both continuous and categorical representations underlie our ability to extract this important social cue. PMID:23213218

  15. Detecting deception in facial expressions of pain: accuracy and training.

    PubMed

    Hill, Marilyn L; Craig, Kenneth D

    2004-01-01

    Clinicians tend to assign greater weight to nonverbal expression than to patient self-report when judging the location and severity of pain. However, patients can be successful at dissimulating facial expressions of pain, as posed expressions resemble genuine expressions in the frequency and intensity of pain-related facial actions. The present research examined individual differences in the ability to discriminate genuine and deceptive facial pain displays and whether different models of training in cues to deception would improve detection skills. Judges (60 male, 60 female) were randomly assigned to 1 of 4 experimental groups: 1) control; 2) corrective feedback; 3) deception training; and 4) deception training plus feedback. Judges were shown 4 videotaped facial expressions for each chronic pain patient: neutral expressions, genuine pain instigated by physiotherapy range of motion assessment, masked pain, and faked pain. For each condition, the participants rated pain intensity and unpleasantness, decided which category each of the 4 video clips represented, and described cues they used to arrive at decisions. There were significant individual differences in accuracy, with females more accurate than males, but accuracy was unrelated to past pain experience, empathy, or the number or type of facial cues used. Immediate corrective feedback led to significant improvements in participants' detection accuracy, whereas there was no support for the use of an information-based training program. PMID:15502685

  16. Training Facial Expression Production in Children on the Autism Spectrum

    ERIC Educational Resources Information Center

    Gordon, Iris; Pierce, Matthew D.; Bartlett, Marian S.; Tanaka, James W.

    2014-01-01

    Children with autism spectrum disorder (ASD) show deficits in their ability to produce facial expressions. In this study, a group of children with ASD and IQ-matched, typically developing (TD) children were trained to produce "happy" and "angry" expressions with the FaceMaze computer game. FaceMaze uses an automated computer…

  17. Compatibility between tones, head movements, and facial expressions.

    PubMed

    Horstmann, Gernot; Ansorge, Ulrich

    2011-08-01

    The study tests the hypothesis of an embodied associative triangle among relative tone pitch (i.e., high or low tones), vertical movement, and facial emotion. In particular, it is tested whether relative pitch automatically activates facial expressions of happiness and anger as well as vertical head movements. Results show robust congruency effects: happiness expressions and upward head tilts are imitated faster when paired with high rather than low tones, while anger expressions and downward head tilts are imitated faster when paired with low rather than high tones. The results add to the growing evidence favoring an embodiment account that emphasizes multimodal representations as the basis of cognition, emotion, and action. PMID:21604874

  18. Fast and Accurate Digital Morphometry of Facial Expressions.

    PubMed

    Grewe, Carl Martin; Schreiber, Lisa; Zachow, Stefan

    2015-10-01

    Facial surgery deals with a part of the human body that is of particular importance in everyday social interactions. The perception of a person's natural, emotional, and social appearance is significantly influenced by one's expression. This is why facial dynamics has been increasingly studied by both artists and scholars since the mid-Renaissance. Currently, facial dynamics and their importance in the perception of a patient's identity play a fundamental role in planning facial surgery. Assistance is needed for patient information and communication, and documentation and evaluation of the treatment as well as during the surgical procedure. Here, the quantitative assessment of morphological features has been facilitated by the emergence of diverse digital imaging modalities in the last decades. Unfortunately, the manual data preparation usually needed for further quantitative analysis of the digitized head models (surface registration, landmark annotation) is time-consuming, and thus inhibits its use for treatment planning and communication. In this article, we refer to historical studies on facial dynamics, briefly present related work from the field of facial surgery, and draw implications for further developments in this context. A prototypical stereophotogrammetric system for high-quality assessment of patient-specific 3D dynamic morphology is described. An individual statistical model of several facial expressions is computed, and possibilities to address a broad range of clinical questions in facial surgery are demonstrated. PMID:26579859

  19. The face is not an empty canvas: how facial expressions interact with facial appearance

    PubMed Central

    Hess, Ursula; Adams, Reginald B.; Kleck, Robert E.

    2009-01-01

    Faces are not simply blank canvases upon which facial expressions write their emotional messages. In fact, facial appearance and facial movement are both important social signalling systems in their own right. We here provide multiple lines of evidence for the notion that the social signals derived from facial appearance on the one hand and facial movement on the other interact in a complex manner, sometimes reinforcing and sometimes contradicting one another. Faces provide information on who a person is. Sex, age, ethnicity, personality and other characteristics that can define a person and the social group the person belongs to can all be derived from the face alone. The present article argues that faces interact with the perception of emotion expressions because this information informs a decoder's expectations regarding an expresser's probable emotional reactions. Facial appearance also interacts more directly with the interpretation of facial movement because some of the features that are used to derive personality or sex information are also features that closely resemble certain emotional expressions, thereby enhancing or diluting the perceived strength of particular expressions. PMID:19884144

  20. Emotional facial expressions reduce neural adaptation to face identity.

    PubMed

    Gerlicher, Anna M V; van Loon, Anouk M; Scholte, H Steven; Lamme, Victor A F; van der Leij, Andries R

    2014-05-01

    In human social interactions, facial emotional expressions are a crucial source of information. Repeatedly presented information typically leads to an adaptation of neural responses. However, processing seems sustained with emotional facial expressions. Therefore, we tested whether sustained processing of emotional expressions, especially threat-related expressions, would attenuate neural adaptation. Neutral and emotional expressions (happy, mixed and fearful) of same and different identity were presented at 3 Hz. We used electroencephalography to record the evoked steady-state visual potentials (ssVEP) and tested to what extent the ssVEP amplitude adapts to the same when compared with different face identities. We found adaptation to the identity of a neutral face. However, for emotional faces, adaptation was reduced, decreasing linearly with negative valence, with the least adaptation to fearful expressions. This short and straightforward method may prove to be a valuable new tool in the study of emotional processing. PMID:23512931

  1. Expression intensity, gender and facial emotion recognition: Women recognize only subtle facial emotions better than men.

    PubMed

    Hoffmann, Holger; Kessler, Henrik; Eppel, Tobias; Rukavina, Stefanie; Traue, Harald C

    2010-11-01

    Two experiments were conducted in order to investigate the effect of expression intensity on gender differences in the recognition of facial emotions. The first experiment compared recognition accuracy between female and male participants when emotional faces were shown with full-blown (100% emotional content) or subtle expressiveness (50%). In a second experiment more finely grained analyses were applied in order to measure recognition accuracy as a function of expression intensity (40%-100%). The results show that although women were more accurate than men in recognizing subtle facial displays of emotion, there was no difference between male and female participants when recognizing highly expressive stimuli. PMID:20728864

  2. Extreme Facial Expressions Classification Based on Reality Parameters

    NASA Astrophysics Data System (ADS)

    Rahim, Mohd Shafry Mohd; Rad, Abdolvahab Ehsani; Rehman, Amjad; Altameem, Ayman

    2014-09-01

    Extreme expressions are really type of emotional expressions that are basically stimulated through the strong emotion. An example of those extreme expression is satisfied through tears. So to be able to provide these types of features; additional elements like fluid mechanism (particle system) plus some of physics techniques like (SPH) are introduced. The fusion of facile animation with SPH exhibits promising results. Accordingly, proposed fluid technique using facial animation is the real tenor for this research to get the complex expression, like laugh, smile, cry (tears emergence) or the sadness until cry strongly, as an extreme expression classification that's happens on the human face in some cases.

  3. Comparison of emotion recognition from facial expression and music.

    PubMed

    Gaspar, Tina; Labor, Marina; Jurić, Iva; Dumancić, Dijana; Ilakovac, Vesna; Heffer, Marija

    2011-01-01

    The recognition of basic emotions in everyday communication involves interpretation of different visual and auditory clues. The ability to recognize emotions is not clearly determined as their presentation is usually very short (micro expressions), whereas the recognition itself does not have to be a conscious process. We assumed that the recognition from facial expressions is selected over the recognition of emotions communicated through music. In order to compare the success rate in recognizing emotions presented as facial expressions or in classical music works we conducted a survey which included 90 elementary school and 87 high school students from Osijek (Croatia). The participants had to match 8 photographs of different emotions expressed on the face and 8 pieces of classical music works with 8 offered emotions. The recognition of emotions expressed through classical music pieces was significantly less successful than the recognition of emotional facial expressions. The high school students were significantly better at recognizing facial emotions than the elementary school students, whereas girls were better than boys. The success rate in recognizing emotions from music pieces was associated with higher grades in mathematics. Basic emotions are far better recognized if presented on human faces than in music, possibly because the understanding of facial emotions is one of the oldest communication skills in human society. Female advantage in emotion recognition was selected due to the necessity of their communication with the newborns during early development. The proficiency in recognizing emotional content of music and mathematical skills probably share some general cognitive skills like attention, memory and motivation. Music pieces were differently processed in brain than facial expressions and consequently, probably differently evaluated as relevant emotional clues. PMID:21648329

  4. Development of a System for Automatic Facial Expression Analysis

    NASA Astrophysics Data System (ADS)

    Diago, Luis A.; Kitaoka, Tetsuko; Hagiwara, Ichiro

    Automatic recognition of facial expressions can be an important component of natural human-machine interactions. While a lot of samples are desirable for estimating more accurately the feelings of a person (e.g. likeness) about a machine interface, in real world situation, only a small number of samples must be obtained because the high cost in collecting emotions from observed person. This paper proposes a system that solves this problem conforming to individual differences. A new method is developed for facial expression classification based on the combination of Holographic Neural Networks (HNN) and Type-2 Fuzzy Logic. For the recognition of emotions induced by facial expressions, compared with former HNN and Support Vector Machines (SVM) classifiers, proposed method achieved the best generalization performance using less learning time than SVM classifiers.

  5. Affective Simon effects using facial expressions as affective stimuli.

    PubMed

    De Houwer, J; Hermans, D; Eelen, P

    1998-01-01

    Two experiments are reported in which facial expressions were presented and participants were asked to respond with the word POSITIVE or NEGATIVE on the basis of a relevant feature of the facial stimuli while ignoring the valence of the expression. Results showed that reaction times were influenced by the match between the valence of the facial expression and the valence of the correct response when the identity of the presented person had to be determined in order to select the correct response, but not when the gender of the presented person was relevant. The present experiments illustrate the flexibility of the affective Simon paradigm and provide a further demonstration of the generalizability of the affective Simon effect. PMID:9677856

  6. Language and affective facial expression in children with perinatal stroke

    PubMed Central

    Lai, Philip T.; Reilly, Judy S.

    2015-01-01

    Children with perinatal stroke (PS) provide a unique opportunity to understand developing brain-behavior relations. Previous research has noted distinctive differences in behavioral sequelae between children with PS and adults with acquired stroke: children fare better, presumably due to the plasticity of the developing brain for adaptive reorganization. Whereas we are beginning to understand language development, we know little about another communicative domain, emotional expression. The current study investigates the use and integration of language and facial expression during an interview. As anticipated, the language performance of the five and six year old PS group is comparable to their typically developing (TD) peers, however, their affective profiles are distinctive: those with right hemisphere injury are less expressive with respect to affective language and affective facial expression than either those with left hemisphere injury or TD group. The two distinctive profiles for language and emotional expression in these children suggest gradients of neuroplasticity in the developing brain. PMID:26117314

  7. Processing emotional facial expressions: the role of anxiety and awareness.

    PubMed

    Fox, Elaine

    2002-03-01

    In this paper, the role of self-reported anxiety and degree of conscious awareness as determinants of the selective processing of affective facial expressions is investigated. In two experiments, an attentional bias toward fearful facial expressions was observed, although this bias was apparent only for those reporting high levels of trait anxiety and only when the emotional face was presented in the left visual field. This pattern was especially strong when the participants were unaware of the presence of the facial stimuli. In Experiment 3, a patient with right-hemisphere brain damage and visual extinction was presented with photographs of faces and fruits on unilateral and bilateral trials. On bilateral trials, it was found that faces produced less extinction than did fruits. Moreover, faces portraying a fearful or a happy expression tended to produce less extinction than did neutral expressions. This suggests that emotional facial expressions may be less dependent on attention to achieve awareness. The implications of these results for understanding the relations between attention, emotion, and anxiety are discussed. PMID:12452584

  8. Interference between conscious and unconscious facial expression information.

    PubMed

    Ye, Xing; He, Sheng; Hu, Ying; Yu, Yong Qiang; Wang, Kai

    2014-01-01

    There is ample evidence to show that many types of visual information, including emotional information, could be processed in the absence of visual awareness. For example, it has been shown that masked subliminal facial expressions can induce priming and adaptation effects. However, stimulus made invisible in different ways could be processed to different extent and have differential effects. In this study, we adopted a flanker type behavioral method to investigate whether a flanker rendered invisible through Continuous Flash Suppression (CFS) could induce a congruency effect on the discrimination of a visible target. Specifically, during the experiment, participants judged the expression (either happy or fearful) of a visible face in the presence of a nearby invisible face (with happy or fearful expression). Results show that participants were slower and less accurate in discriminating the expression of the visible face when the expression of the invisible flanker face was incongruent. Thus, facial expression information rendered invisible with CFS and presented a different spatial location could enhance or interfere with consciously processed facial expression information. PMID:25162153

  9. The Enfacement Illusion Is Not Affected by Negative Facial Expressions

    PubMed Central

    Beck, Brianna; Cardini, Flavia; Làdavas, Elisabetta; Bertini, Caterina

    2015-01-01

    Enfacement is an illusion wherein synchronous visual and tactile inputs update the mental representation of one’s own face to assimilate another person’s face. Emotional facial expressions, serving as communicative signals, may influence enfacement by increasing the observer’s motivation to understand the mental state of the expresser. Fearful expressions, in particular, might increase enfacement because they are valuable for adaptive behavior and more strongly represented in somatosensory cortex than other emotions. In the present study, a face was seen being touched at the same time as the participant’s own face. This face was either neutral, fearful, or angry. Anger was chosen as an emotional control condition for fear because it is similarly negative but induces less somatosensory resonance, and requires additional knowledge (i.e., contextual information and social contingencies) to effectively guide behavior. We hypothesized that seeing a fearful face (but not an angry one) would increase enfacement because of greater somatosensory resonance. Surprisingly, neither fearful nor angry expressions modulated the degree of enfacement relative to neutral expressions. Synchronous interpersonal visuo-tactile stimulation led to assimilation of the other’s face, but this assimilation was not modulated by facial expression processing. This finding suggests that dynamic, multisensory processes of self-face identification operate independently of facial expression processing. PMID:26291532

  10. Facial expression recognition based on improved DAGSVM

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Cui, Ye; Zhang, Yi

    2014-11-01

    For the cumulative error problem because of randomization sequence of traditional DAGSVM(Directed Acyclic Graph Support Vector Machine) classification, this paper presents an improved DAGSVM expression recognition method. The method uses the distance of class and the standard deviation as the measure of the classer, which minimize the error rate of the upper structure of the classification. At the same time, this paper uses the method which combines discrete cosine transform (Discrete Cosine Transform, DCT) with Local Binary Pattern(Local Binary Pattern - LBP) ,to extract expression feature and be the input to improve the DAGSVM classifier for recognition. Experimental results show that compared with other multi-class support vector machine method, improved DAGSVM classifier can achieve higher recognition rate. And when it's used at the platform of the intelligent wheelchair, experiments show that the method has a better robustness.

  11. Impaired overt facial mimicry in response to dynamic facial expressions in high-functioning autism spectrum disorders.

    PubMed

    Yoshimura, Sayaka; Sato, Wataru; Uono, Shota; Toichi, Motomi

    2015-05-01

    Previous electromyographic studies have reported that individuals with autism spectrum disorders (ASD) exhibited atypical patterns of facial muscle activity in response to facial expression stimuli. However, whether such activity is expressed in visible facial mimicry remains unknown. To investigate this issue, we videotaped facial responses in high-functioning individuals with ASD and controls to dynamic and static facial expressions of anger and happiness. Visual coding of facial muscle activity and the subjective impression ratings showed reduced congruent responses to dynamic expressions in the ASD group. Additionally, this decline was related to social dysfunction. These results suggest that impairment in overt facial mimicry in response to others' dynamic facial expressions may underlie difficulties in reciprocal social interaction among individuals with ASD. PMID:25374131

  12. Drug effects on responses to emotional facial expressions: recent findings.

    PubMed

    Miller, Melissa A; Bershad, Anya K; de Wit, Harriet

    2015-09-01

    Many psychoactive drugs increase social behavior and enhance social interactions, which may, in turn, increase their attractiveness to users. Although the psychological mechanisms by which drugs affect social behavior are not fully understood, there is some evidence that drugs alter the perception of emotions in others. Drugs can affect the ability to detect, attend to, and respond to emotional facial expressions, which in turn may influence their use in social settings. Either increased reactivity to positive expressions or decreased response to negative expressions may facilitate social interaction. This article reviews evidence that psychoactive drugs alter the processing of emotional facial expressions using subjective, behavioral, and physiological measures. The findings lay the groundwork for better understanding how drugs alter social processing and social behavior more generally. PMID:26226144

  13. Drug effects on responses to emotional facial expressions: recent findings

    PubMed Central

    Miller, Melissa A.; Bershad, Anya K.; de Wit, Harriet

    2016-01-01

    Many psychoactive drugs increase social behavior and enhance social interactions, which may, in turn, increase their attractiveness to users. Although the psychological mechanisms by which drugs affect social behavior are not fully understood, there is some evidence that drugs alter the perception of emotions in others. Drugs can affect the ability to detect, attend to, and respond to emotional facial expressions, which in turn may influence their use in social settings. Either increased reactivity to positive expressions or decreased response to negative expressions may facilitate social interaction. This article reviews evidence that psychoactive drugs alter the processing of emotional facial expressions using subjective, behavioral, and physiological measures. The findings lay the groundwork for better understanding how drugs alter social processing and social behavior more generally. PMID:26226144

  14. Fashioning the Face: Sensorimotor Simulation Contributes to Facial Expression Recognition.

    PubMed

    Wood, Adrienne; Rychlowska, Magdalena; Korb, Sebastian; Niedenthal, Paula

    2016-03-01

    When we observe a facial expression of emotion, we often mimic it. This automatic mimicry reflects underlying sensorimotor simulation that supports accurate emotion recognition. Why this is so is becoming more obvious: emotions are patterns of expressive, behavioral, physiological, and subjective feeling responses. Activation of one component can therefore automatically activate other components. When people simulate a perceived facial expression, they partially activate the corresponding emotional state in themselves, which provides a basis for inferring the underlying emotion of the expresser. We integrate recent evidence in favor of a role for sensorimotor simulation in emotion recognition. We then connect this account to a domain-general understanding of how sensory information from multiple modalities is integrated to generate perceptual predictions in the brain. PMID:26876363

  15. Impaired holistic coding of facial expression and facial identity in congenital prosopagnosia

    PubMed Central

    Palermo, Romina; Willis, Megan L.; Rivolta, Davide; McKone, Elinor; Wilson, C. Ellie; Calder, Andrew J.

    2011-01-01

    We test 12 individuals with congenital prosopagnosia (CP), who replicate a common pattern of showing severe difficulty in recognising facial identity in conjunction with normal recognition of facial expressions (both basic and ‘social’). Strength of holistic processing was examined using standard expression composite and identity composite tasks. Compared to age- and sex-matched controls, group analyses demonstrated that CPs showed weaker holistic processing, for both expression and identity information. Implications are (a) normal expression recognition in CP can derive from compensatory strategies (e.g., over-reliance on non-holistic cues to expression); (b) the split between processing of expression and identity information may take place after a common stage of holistic processing; and (c) contrary to a recent claim, holistic processing of identity is functionally involved in face identification ability. PMID:21333662

  16. Face Processing in Children with Autism Spectrum Disorder: Independent or Interactive Processing of Facial Identity and Facial Expression?

    ERIC Educational Resources Information Center

    Krebs, Julia F.; Biswas, Ajanta; Pascalis, Olivier; Kamp-Becker, Inge; Remschmidt, Helmuth; Schwarzer, Gudrun

    2011-01-01

    The current study investigated if deficits in processing emotional expression affect facial identity processing and vice versa in children with autism spectrum disorder. Children with autism and IQ and age matched typically developing children classified faces either by emotional expression, thereby ignoring facial identity or by facial identity…

  17. Categorical Representation of Facial Expressions in the Infant Brain

    ERIC Educational Resources Information Center

    Leppanen, Jukka M.; Richmond, Jenny; Vogel-Farley, Vanessa K.; Moulson, Margaret C.; Nelson, Charles A.

    2009-01-01

    Categorical perception, demonstrated as reduced discrimination of within-category relative to between-category differences in stimuli, has been found in a variety of perceptual domains in adults. To examine the development of categorical perception in the domain of facial expression processing, we used behavioral and event-related potential (ERP)…

  18. Perceived Bias in the Facial Expressions of Television News Broadcasters.

    ERIC Educational Resources Information Center

    Friedman, Howard S.; And Others

    1980-01-01

    Studied the nuances of perceived media bias by examining the television reporting of the 1976 Presidential election campaign by comparing the adjudged positivity of the facial expressions of network anchorpersons as they named or referred to either of the two candidates. (JMF)

  19. Teachers' Perception Regarding Facial Expressions as an Effective Teaching Tool

    ERIC Educational Resources Information Center

    Butt, Muhammad Naeem; Iqbal, Mohammad

    2011-01-01

    The major objective of the study was to explore teachers' perceptions about the importance of facial expression in the teaching-learning process. All the teachers of government secondary schools constituted the population of the study. A sample of 40 teachers, both male and female, in rural and urban areas of district Peshawar, were selected…

  20. Specificity of Facial Expression Labeling Deficits in Childhood Psychopathology

    ERIC Educational Resources Information Center

    Guyer, Amanda E.; McClure, Erin B.; Adler, Abby D.; Brotman, Melissa A.; Rich, Brendan A.; Kimes, Alane S.; Pine, Daniel S.; Ernst, Monique; Leibenluft, Ellen

    2007-01-01

    Background: We examined whether face-emotion labeling deficits are illness-specific or an epiphenomenon of generalized impairment in pediatric psychiatric disorders involving mood and behavioral dysregulation. Method: Two hundred fifty-two youths (7-18 years old) completed child and adult facial expression recognition subtests from the Diagnostic…

  1. Categorical Perception of Emotional Facial Expressions in Preschoolers

    ERIC Educational Resources Information Center

    Cheal, Jenna L.; Rutherford, M. D.

    2011-01-01

    Adults perceive emotional facial expressions categorically. In this study, we explored categorical perception in 3.5-year-olds by creating a morphed continuum of emotional faces and tested preschoolers' discrimination and identification of them. In the discrimination task, participants indicated whether two examples from the continuum "felt the…

  2. Generating Facial Expressions Using an Anatomically Accurate Biomechanical Model.

    PubMed

    Wu, Tim; Hung, Alice; Mithraratne, Kumar

    2014-11-01

    This paper presents a computational framework for modelling the biomechanics of human facial expressions. A detailed high-order (Cubic-Hermite) finite element model of the human head was constructed using anatomical data segmented from magnetic resonance images. The model includes a superficial soft-tissue continuum consisting of skin, the subcutaneous layer and the superficial Musculo-Aponeurotic system. Embedded within this continuum mesh, are 20 pairs of facial muscles which drive facial expressions. These muscles were treated as transversely-isotropic and their anatomical geometries and fibre orientations were accurately depicted. In order to capture the relative composition of muscles and fat, material heterogeneity was also introduced into the model. Complex contact interactions between the lips, eyelids, and between superficial soft tissue continuum and deep rigid skeletal bones were also computed. In addition, this paper investigates the impact of incorporating material heterogeneity and contact interactions, which are often neglected in similar studies. Four facial expressions were simulated using the developed model and the results were compared with surface data obtained from a 3D structured-light scanner. Predicted expressions showed good agreement with the experimental data. PMID:26355331

  3. Facial Expressions in Context: Contributions to Infant Emotion Theory.

    ERIC Educational Resources Information Center

    Camras, Linda A.

    To make the point that infant emotions are more dynamic than suggested by Differential Emotions Theory, which maintains that infants show the same prototypical facial expressions for emotions as adults do, this paper explores two questions: (1) when infants experience an emotion, do they always show the corresponding prototypical facial…

  4. Further Evidence on Preschoolers' Interpretation of Facial Expressions.

    ERIC Educational Resources Information Center

    Bullock, Merry; Russell, James A.

    1985-01-01

    Assessed through two studies the organization and basis for preschool children's (n=240) and adults' (n=60) categorization of emotions. In one, children and adults chose facial expressions that exemplify emotion categories such as fear, anger, and happiness. In another they grouped emotions differing in arousal level or pleasure-displeasure…

  5. Errors in identifying and expressing emotion in facial expressions, voices, and postures unique to social anxiety.

    PubMed

    Walker, Amy S; Nowicki, Stephen; Jones, Jeffrey; Heimann, Lisa

    2011-01-01

    The purpose of the present study was to see if 7-10-year-old socially anxious children (n = 26) made systematic errors in identifying and sending emotions in facial expressions, paralanguage, and postures as compared with the more random errors of children who were inattentive-hyperactive (n = 21). It was found that socially anxious children made more errors in identifying anger and fear in children's facial expressions and anger in adults' postures and in expressing anger in their own facial expressions than did their inattentive-hyperactive peers. Results suggest that there may be systematic difficulties specifically in visual nonverbal emotion communication that contribute to the personal and social difficulties socially anxious children experience. PMID:21902007

  6. Gaze Dynamics in the Recognition of Facial Expressions of Emotion.

    PubMed

    Barabanschikov, Vladimir A

    2015-01-01

    We studied preferably fixated parts and features of human face in the process of recognition of facial expressions of emotion. Photographs of facial expressions were used. Participants were to categorize these as basic emotions; during this process, eye movements were registered. It was found that variation in the intensity of an expression is mirrored in accuracy of emotion recognition; it was also reflected by several indices of oculomotor function: duration of inspection of certain areas of the face, its upper and bottom or right parts, right and left sides; location, number and duration of fixations, viewing trajectory. In particular, for low-intensity expressions, right side of the face was found to be attended predominantly (right-side dominance); the right-side dominance effect, was, however, absent for expressions of high intensity. For both low- and high-intensity expressions, upper face part was predominantly fixated, though with greater fixation of high-intensity expressions. The majority of trials (70%), in line with findings in previous studies, revealed a V-shaped pattern of inspection trajectory. No relationship, between accuracy of recognition of emotional expressions, was found, though, with either location and duration of fixations or pattern of gaze directedness in the face. PMID:26562915

  7. Production and discrimination of facial expressions by preschool children.

    PubMed

    Field, T M; Walden, T A

    1982-10-01

    Production and discrimination of the 8 basic facial expressions were investigated among 34 3-5-year-old preschool children. The children's productions were elicited and videotaped under 4 different prompt conditions (imitation of photographs of children's facial expressions, imitation of those in front of a mirror, imitation of those when given labels for the expressions, and when given only labels). Adults' "guesses" of the children's productions as well as the children's guesses of their own expressions on videotape were more accurate for the happy than afraid or angry expressions and for those expressions elicited during the imitation conditions. Greater accuracy of guessing by the adult than the child suggests that the children's productions were superior to their discriminations, although these skills appeared to be related. Children's production skills were also related to sociometric ratings by their peers and expressivity ratings by their teachers. These were not related to the child's age and only weakly related to the child's expressivity during classroom free-play observations. PMID:7140433

  8. Covert processing of facial expressions by people with Williams syndrome.

    PubMed

    Levy, Yonata; Pluber, Hadas; Bentin, Shlomo

    2011-01-01

    Although individuals with Williams Syndrome (WS) are empathic and sociable and perform relatively well on face recognition tasks, they perform poorly on tasks of facial expression recognition. The current study sought to investigate this seeming inconsistency. Participants were tested on a Garner-type matching paradigm in which identities and expressions were manipulated simultaneously as the relevant or irrelevant dimensions. Performance of people with WS on the expression-matching task was poor and relied primarily on facilitation afforded by congruent identities. Performance on the identity matching task came close to the level of performance of matched controls and was significantly facilitated by congruent expressions. We discuss potential accounts for the discrepant processing of expressions in the task-relevant (overt) and task-irrelevant (covert) conditions, expanding on the inherently semantic-conceptual nature of overt expression matching and its dependence on general cognitive level. PMID:19853248

  9. Do Dynamic Compared to Static Facial Expressions of Happiness and Anger Reveal Enhanced Facial Mimicry?

    PubMed Central

    Rymarczyk, Krystyna; Żurawski, Łukasz; Jankowiak-Siuda, Kamila; Szatkowska, Iwona

    2016-01-01

    Facial mimicry is the spontaneous response to others’ facial expressions by mirroring or matching the interaction partner. Recent evidence suggested that mimicry may not be only an automatic reaction but could be dependent on many factors, including social context, type of task in which the participant is engaged, or stimulus properties (dynamic vs static presentation). In the present study, we investigated the impact of dynamic facial expression and sex differences on facial mimicry and judgment of emotional intensity. Electromyography recordings were recorded from the corrugator supercilii, zygomaticus major, and orbicularis oculi muscles during passive observation of static and dynamic images of happiness and anger. The ratings of the emotional intensity of facial expressions were also analysed. As predicted, dynamic expressions were rated as more intense than static ones. Compared to static images, dynamic displays of happiness also evoked stronger activity in the zygomaticus major and orbicularis oculi, suggesting that subjects experienced positive emotion. No muscles showed mimicry activity in response to angry faces. Moreover, we found that women exhibited greater zygomaticus major muscle activity in response to dynamic happiness stimuli than static stimuli. Our data support the hypothesis that people mimic positive emotions and confirm the importance of dynamic stimuli in some emotional processing. PMID:27390867

  10. Do Dynamic Compared to Static Facial Expressions of Happiness and Anger Reveal Enhanced Facial Mimicry?

    PubMed

    Rymarczyk, Krystyna; Żurawski, Łukasz; Jankowiak-Siuda, Kamila; Szatkowska, Iwona

    2016-01-01

    Facial mimicry is the spontaneous response to others' facial expressions by mirroring or matching the interaction partner. Recent evidence suggested that mimicry may not be only an automatic reaction but could be dependent on many factors, including social context, type of task in which the participant is engaged, or stimulus properties (dynamic vs static presentation). In the present study, we investigated the impact of dynamic facial expression and sex differences on facial mimicry and judgment of emotional intensity. Electromyography recordings were recorded from the corrugator supercilii, zygomaticus major, and orbicularis oculi muscles during passive observation of static and dynamic images of happiness and anger. The ratings of the emotional intensity of facial expressions were also analysed. As predicted, dynamic expressions were rated as more intense than static ones. Compared to static images, dynamic displays of happiness also evoked stronger activity in the zygomaticus major and orbicularis oculi, suggesting that subjects experienced positive emotion. No muscles showed mimicry activity in response to angry faces. Moreover, we found that women exhibited greater zygomaticus major muscle activity in response to dynamic happiness stimuli than static stimuli. Our data support the hypothesis that people mimic positive emotions and confirm the importance of dynamic stimuli in some emotional processing. PMID:27390867

  11. Differences in facial expressions of four universal emotions.

    PubMed

    Kohler, Christian G; Turner, Travis; Stolar, Neal M; Bilker, Warren B; Brensinger, Colleen M; Gur, Raquel E; Gur, Ruben C

    2004-10-30

    The facial action coding system (FACS) was used to examine recognition rates in 105 healthy young men and women who viewed 128 facial expressions of posed and evoked happy, sad, angry and fearful emotions in color photographs balanced for gender and ethnicity of poser. Categorical analyses determined the specificity of individual action units for each emotion. Relationships between recognition rates for different emotions and action units were evaluated using a logistic regression model. Each emotion could be identified by a group of action units, characteristic to the emotion and distinct from other emotions. Characteristic happy expressions comprised raised inner eyebrows, tightened lower eyelid, raised cheeks, upper lip raised and lip corners turned upward. Recognition of happy faces was associated with cheek raise, lid tightening and outer brow raise. Characteristic sad expressions comprised furrowed eyebrow, opened mouth with upper lip being raised, lip corners stretched and turned down, and chin pulled up. Only brow lower and chin raise were associated with sad recognition. Characteristic anger expressions comprised lowered eyebrows, eyes wide open with tightened lower lid, lips exposing teeth and stretched lip corners. Recognition of angry faces was associated with lowered eyebrows, upper lid raise and lower lip depression. Characteristic fear expressions comprised eyes wide open, furrowed and raised eyebrows and stretched mouth. Recognition of fearful faces was most highly associated with upper lip raise and nostril dilation, although both occurred infrequently, and with inner brow raise and widened eyes. Comparisons are made with previous studies that used different facial stimuli. PMID:15541780

  12. Recognition of facial expressions in obsessive-compulsive disorder.

    PubMed

    Corcoran, Kathleen M; Woody, Sheila R; Tolin, David F

    2008-01-01

    Sprengelmeyer et al. [Sprengelmeyer, R., Young, A. W., Pundt, I., Sprengelmeyer, A., Calder, A. J., Berrios, G., et al. (1997). Disgust implicated in obsessive-compulsive disorder. Proceedings of the Royal Society of London, 264, 1767-1773] found that patients with OCD showed severely impaired recognition of facial expressions of disgust. This result has potential to provide a unique window into the psychopathology of OCD, but several published attempts to replicate this finding have failed. The current study compared OCD patients to normal controls and panic disorder patients on ability to recognize facial expressions of negative emotions. Overall, the OCD patients were impaired in their ability to recognize disgust expressions, but only 33% of patients showed this deficit. These deficits were related to OCD symptom severity and general functioning, factors that may account for the inconsistent findings observed in different laboratories. PMID:17320346

  13. Forming impressions: effects of facial expression and gender stereotypes.

    PubMed

    Hack, Tay

    2014-04-01

    The present study of 138 participants explored how facial expressions and gender stereotypes influence impressions. It was predicted that images of smiling women would be evaluated more favorably on traits reflecting warmth, and that images of non-smiling men would be evaluated more favorably on traits reflecting competence. As predicted, smiling female faces were rated as more warm; however, contrary to prediction, perceived competence of male faces was not affected by facial expression. Participants' female stereotype endorsement was a significant predictor for evaluations of female faces; those who ascribed more strongly to traditional female stereotypes reported the most positive impressions of female faces displaying a smiling expression. However, a similar effect was not found for images of men; endorsement of traditional male stereotypes did not predict participants' impressions of male faces. PMID:24897907

  14. Facial Expressions and the Evolution of the Speech Rhythm

    PubMed Central

    Ghazanfar, Asif A.; Takahashi, Daniel Y.

    2015-01-01

    In primates, different vocalizations are produced, at least in part, by making different facial expressions. Not surprisingly, humans, apes, and monkeys all recognize the correspondence between vocalizations and the facial postures associated with them. However, one major dissimilarity between monkey vocalizations and human speech is that, in the latter, the acoustic output and associated movements of the mouth are both rhythmic (in the 3- to 8-Hz range) and tightly correlated, whereas monkey vocalizations have a similar acoustic rhythmicity but lack the concommitant rhythmic facial motion. This raises the question of how we evolved from a presumptive ancestral acoustic-only vocal rhythm to the one that is audiovisual with improved perceptual sensitivity. According to one hypothesis, this bisensory speech rhythm evolved through the rhythmic facial expressions of ancestral primates. If this hypothesis has any validity, we expect that the extant nonhuman primates produce at least some facial expressions with a speech-like rhythm in the 3- to 8-Hz frequency range. Lip smacking, an affiliative signal observed in many genera of primates, satisfies this criterion. We review a series of studies using developmental, x-ray cineradiographic, EMG, and perceptual approaches with macaque monkeys producing lip smacks to further investigate this hypothesis. We then explore its putative neural basis and remark on important differences between lip smacking and speech production. Overall, the data support the hypothesis that lip smacking may have been an ancestral expression that was linked to vocal output to produce the original rhythmic audiovisual speech-like utterances in the human lineage. PMID:24456390

  15. Warsaw set of emotional facial expression pictures: a validation study of facial display photographs

    PubMed Central

    Olszanowski, Michal; Pochwatko, Grzegorz; Kuklinski, Krzysztof; Scibor-Rylski, Michal; Lewinski, Peter; Ohme, Rafal K.

    2015-01-01

    Emotional facial expressions play a critical role in theories of emotion and figure prominently in research on almost every aspect of emotion. This article provides a background for a new database of basic emotional expressions. The goal in creating this set was to provide high quality photographs of genuine facial expressions. Thus, after proper training, participants were inclined to express “felt” emotions. The novel approach taken in this study was also used to establish whether a given expression was perceived as intended by untrained judges. The judgment task for perceivers was designed to be sensitive to subtle changes in meaning caused by the way an emotional display was evoked and expressed. Consequently, this allowed us to measure the purity and intensity of emotional displays, which are parameters that validation methods used by other researchers do not capture. The final set is comprised of those pictures that received the highest recognition marks (e.g., accuracy with intended display) from independent judges, totaling 210 high quality photographs of 30 individuals. Descriptions of the accuracy, intensity, and purity of displayed emotion as well as FACS AU's codes are provided for each picture. Given the unique methodology applied to gathering and validating this set of pictures, it may be a useful tool for research using face stimuli. The Warsaw Set of Emotional Facial Expression Pictures (WSEFEP) is freely accessible to the scientific community for non-commercial use by request at http://www.emotional-face.org. PMID:25601846

  16. Facial Expression Recognition Deficits and Faulty Learning: Implications for Theoretical Models and Clinical Applications

    ERIC Educational Resources Information Center

    Sheaffer, Beverly L.; Golden, Jeannie A.; Averett, Paige

    2009-01-01

    The ability to recognize facial expressions of emotion is integral in social interaction. Although the importance of facial expression recognition is reflected in increased research interest as well as in popular culture, clinicians may know little about this topic. The purpose of this article is to discuss facial expression recognition literature…

  17. Using Video Modeling to Teach Children with PDD-NOS to Respond to Facial Expressions

    ERIC Educational Resources Information Center

    Axe, Judah B.; Evans, Christine J.

    2012-01-01

    Children with autism spectrum disorders often exhibit delays in responding to facial expressions, and few studies have examined teaching responding to subtle facial expressions to this population. We used video modeling to train 3 participants with PDD-NOS (age 5) to respond to eight facial expressions: approval, bored, calming, disapproval,…

  18. Americans and Palestinians judge spontaneous facial expressions of emotion.

    PubMed

    Kayyal, Mary H; Russell, James A

    2013-10-01

    The claim that certain emotions are universally recognized from facial expressions is based primarily on the study of expressions that were posed. The current study was of spontaneous facial expressions shown by aborigines in Papua New Guinea (Ekman, 1980); 17 faces claimed to convey one (or, in the case of blends, two) basic emotions and five faces claimed to show other universal feelings. For each face, participants rated the degree to which each of the 12 predicted emotions or feelings was conveyed. The modal choice for English-speaking Americans (n = 60), English-speaking Palestinians (n = 60), and Arabic-speaking Palestinians (n = 44) was the predicted label for only 4, 5, and 4, respectively, of the 17 faces for basic emotions, and for only 2, 2, and 2, respectively, of the 5 faces for other feelings. Observers endorsed the predicted emotion or feeling moderately often (65%, 55%, and 44%), but also denied it moderately often (35%, 45%, and 56%). They also endorsed more than one (or, for blends, two) label(s) in each face-on average, 2.3, 2.3, and 1.5 of basic emotions and 2.6, 2.2, and 1.5 of other feelings. There were both similarities and differences across culture and language, but the emotional meaning of a facial expression is not well captured by the predicted label(s) or, indeed, by any single label. PMID:23795587

  19. Neural processing of dynamic emotional facial expressions in psychopaths.

    PubMed

    Decety, Jean; Skelly, Laurie; Yoder, Keith J; Kiehl, Kent A

    2014-02-01

    Facial expressions play a critical role in social interactions by eliciting rapid responses in the observer. Failure to perceive and experience a normal range and depth of emotion seriously impact interpersonal communication and relationships. As has been demonstrated across a number of domains, abnormal emotion processing in individuals with psychopathy plays a key role in their lack of empathy. However, the neuroimaging literature is unclear as to whether deficits are specific to particular emotions such as fear and perhaps sadness. Moreover, findings are inconsistent across studies. In the current experiment, 80 incarcerated adult males scoring high, medium, and low on the Hare Psychopathy Checklist-Revised (PCL-R) underwent functional magnetic resonance imaging (fMRI) scanning while viewing dynamic facial expressions of fear, sadness, happiness, and pain. Participants who scored high on the PCL-R showed a reduction in neuro-hemodynamic response to all four categories of facial expressions in the face processing network (inferior occipital gyrus, fusiform gyrus, and superior temporal sulcus (STS)) as well as the extended network (inferior frontal gyrus and orbitofrontal cortex (OFC)), which supports a pervasive deficit across emotion domains. Unexpectedly, the response in dorsal insula to fear, sadness, and pain was greater in psychopaths than non-psychopaths. Importantly, the orbitofrontal cortex and ventromedial prefrontal cortex (vmPFC), regions critically implicated in affective and motivated behaviors, were significantly less active in individuals with psychopathy during the perception of all four emotional expressions. PMID:24359488

  20. Facial Expressions of Emotion: Are Angry Faces Detected More Efficiently?

    PubMed Central

    Fox, Elaine; Lester, Victoria; Russo, Riccardo; Bowles, R.J.; Pichler, Alessio; Dutton, Kevin

    2007-01-01

    The rapid detection of facial expressions of anger or threat has obvious adaptive value. In this study, we examined the efficiency of facial processing by means of a visual search task. Participants searched displays of schematic faces and were required to determine whether the faces displayed were all the same or whether one was different. Four main results were found: (1) When displays contained the same faces, people were slower in detecting the absence of a discrepant face when the faces displayed angry (or sad/angry) rather than happy expressions. (2) When displays contained a discrepant face people were faster in detecting this when the discrepant face displayed an angry rather than a happy expression. (3) Neither of these patterns for same and different displays was apparent when face displays were inverted, or when just the mouth was presented in isolation. (4) The search slopes for angry targets were significantly lower than for happy targets. These results suggest that detection of angry facial expressions is fast and efficient, although does not “pop-out” in the traditional sense. PMID:17401453

  1. Younger and Older Users’ Recognition of Virtual Agent Facial Expressions

    PubMed Central

    Beer, Jenay M.; Smarr, Cory-Ann; Fisk, Arthur D.; Rogers, Wendy A.

    2015-01-01

    As technology advances, robots and virtual agents will be introduced into the home and healthcare settings to assist individuals, both young and old, with everyday living tasks. Understanding how users recognize an agent’s social cues is therefore imperative, especially in social interactions. Facial expression, in particular, is one of the most common non-verbal cues used to display and communicate emotion in on-screen agents (Cassell, Sullivan, Prevost, & Churchill, 2000). Age is important to consider because age-related differences in emotion recognition of human facial expression have been supported (Ruffman et al., 2008), with older adults showing a deficit for recognition of negative facial expressions. Previous work has shown that younger adults can effectively recognize facial emotions displayed by agents (Bartneck & Reichenbach, 2005; Courgeon et al. 2009; 2011; Breazeal, 2003); however, little research has compared in-depth younger and older adults’ ability to label a virtual agent’s facial emotions, an import consideration because social agents will be required to interact with users of varying ages. If such age-related differences exist for recognition of virtual agent facial expressions, we aim to understand if those age-related differences are influenced by the intensity of the emotion, dynamic formation of emotion (i.e., a neutral expression developing into an expression of emotion through motion), or the type of virtual character differing by human-likeness. Study 1 investigated the relationship between age-related differences, the implication of dynamic formation of emotion, and the role of emotion intensity in emotion recognition of the facial expressions of a virtual agent (iCat). Study 2 examined age-related differences in recognition expressed by three types of virtual characters differing by human-likeness (non-humanoid iCat, synthetic human, and human). Study 2 also investigated the role of configural and featural processing as a

  2. The look of fear and anger: facial maturity modulates recognition of fearful and angry expressions.

    PubMed

    Sacco, Donald F; Hugenberg, Kurt

    2009-02-01

    The current series of studies provide converging evidence that facial expressions of fear and anger may have co-evolved to mimic mature and babyish faces in order to enhance their communicative signal. In Studies 1 and 2, fearful and angry facial expressions were manipulated to have enhanced babyish features (larger eyes) or enhanced mature features (smaller eyes) and in the context of a speeded categorization task in Study 1 and a visual noise paradigm in Study 2, results indicated that larger eyes facilitated the recognition of fearful facial expressions, while smaller eyes facilitated the recognition of angry facial expressions. Study 3 manipulated facial roundness, a stable structure that does not vary systematically with expressions, and found that congruency between maturity and expression (narrow face-anger; round face-fear) facilitated expression recognition accuracy. Results are discussed as representing a broad co-evolutionary relationship between facial maturity and fearful and angry facial expressions. PMID:19186915

  3. Moving to continuous facial expression space using the MPEG-4 facial definition parameter (FDP) set

    NASA Astrophysics Data System (ADS)

    Karpouzis, Kostas; Tsapatsoulis, Nicolas; Kollias, Stefanos D.

    2000-06-01

    Research in facial expression has concluded that at least six emotions, conveyed by human faces, are universally associated with distinct expressions. Sadness, anger, joy, fear, disgust and surprise are categories of expressions that are recognizable across cultures. In this work we form a relation between the description of the universal expressions and the MPEG-4 Facial Definition Parameter Set (FDP). We also investigate the relation between the movement of basic FDPs and the parameters that describe emotion-related words according to some classical psychological studies. In particular Whissel suggested that emotions are points in a space, which seem to occupy two dimensions: activation and evaluation. We show that some of the MPEG-4 Facial Animation Parameters (FAPs), approximated by the motion of the corresponding FDPs, can be combined by means of a fuzzy rule system to estimate the activation parameter. In this way variations of the six archetypal emotions can be achieved. Moreover, Plutchik concluded that emotion terms are unevenly distributed through the space defined by dimensions like Whissel's; instead they tend to form an approximately circular pattern, called 'emotion wheel,' modeled using an angular measure. The 'emotion wheel' can be defined as a reference for creating intermediate expressions from the universal ones, by interpolating the movement of dominant FDP points between neighboring basic expressions. By exploiting the relation between the movement of the basic FDP point and the activation and angular parameters we can model more emotions than the primary ones and achieve efficient recognition in video sequences.

  4. Three-year-olds' rapid facial electromyographic responses to emotional facial expressions and body postures.

    PubMed

    Geangu, Elena; Quadrelli, Ermanno; Conte, Stefania; Croci, Emanuela; Turati, Chiara

    2016-04-01

    Rapid facial reactions (RFRs) to observed emotional expressions are proposed to be involved in a wide array of socioemotional skills, from empathy to social communication. Two of the most persuasive theoretical accounts propose RFRs to rely either on motor resonance mechanisms or on more complex mechanisms involving affective processes. Previous studies demonstrated that presentation of facial and bodily expressions can generate rapid changes in adult and school-age children's muscle activity. However, to date there is little to no evidence to suggest the existence of emotional RFRs from infancy to preschool age. To investigate whether RFRs are driven by motor mimicry or could also be a result of emotional appraisal processes, we recorded facial electromyographic (EMG) activation from the zygomaticus major and frontalis medialis muscles to presentation of static facial and bodily expressions of emotions (i.e., happiness, anger, fear, and neutral) in 3-year-old children. Results showed no specific EMG activation in response to bodily emotion expressions. However, observing others' happy faces led to increased activation of the zygomaticus major and decreased activation of the frontalis medialis, whereas observing others' angry faces elicited the opposite pattern of activation. This study suggests that RFRs are the result of complex mechanisms in which both affective processes and motor resonance may play an important role. PMID:26687335

  5. Facial expressions of emotion are not culturally universal

    PubMed Central

    Jack, Rachael E.; Garrod, Oliver G. B.; Yu, Hui; Caldara, Roberto; Schyns, Philippe G.

    2012-01-01

    Since Darwin’s seminal works, the universality of facial expressions of emotion has remained one of the longest standing debates in the biological and social sciences. Briefly stated, the universality hypothesis claims that all humans communicate six basic internal emotional states (happy, surprise, fear, disgust, anger, and sad) using the same facial movements by virtue of their biological and evolutionary origins [Susskind JM, et al. (2008) Nat Neurosci 11:843–850]. Here, we refute this assumed universality. Using a unique computer graphics platform that combines generative grammars [Chomsky N (1965) MIT Press, Cambridge, MA] with visual perception, we accessed the mind’s eye of 30 Western and Eastern culture individuals and reconstructed their mental representations of the six basic facial expressions of emotion. Cross-cultural comparisons of the mental representations challenge universality on two separate counts. First, whereas Westerners represent each of the six basic emotions with a distinct set of facial movements common to the group, Easterners do not. Second, Easterners represent emotional intensity with distinctive dynamic eye activity. By refuting the long-standing universality hypothesis, our data highlight the powerful influence of culture on shaping basic behaviors once considered biologically hardwired. Consequently, our data open a unique nature–nurture debate across broad fields from evolutionary psychology and social neuroscience to social networking via digital avatars. PMID:22509011

  6. Facial expressions of emotion are not culturally universal.

    PubMed

    Jack, Rachael E; Garrod, Oliver G B; Yu, Hui; Caldara, Roberto; Schyns, Philippe G

    2012-05-01

    Since Darwin's seminal works, the universality of facial expressions of emotion has remained one of the longest standing debates in the biological and social sciences. Briefly stated, the universality hypothesis claims that all humans communicate six basic internal emotional states (happy, surprise, fear, disgust, anger, and sad) using the same facial movements by virtue of their biological and evolutionary origins [Susskind JM, et al. (2008) Nat Neurosci 11:843-850]. Here, we refute this assumed universality. Using a unique computer graphics platform that combines generative grammars [Chomsky N (1965) MIT Press, Cambridge, MA] with visual perception, we accessed the mind's eye of 30 Western and Eastern culture individuals and reconstructed their mental representations of the six basic facial expressions of emotion. Cross-cultural comparisons of the mental representations challenge universality on two separate counts. First, whereas Westerners represent each of the six basic emotions with a distinct set of facial movements common to the group, Easterners do not. Second, Easterners represent emotional intensity with distinctive dynamic eye activity. By refuting the long-standing universality hypothesis, our data highlight the powerful influence of culture on shaping basic behaviors once considered biologically hardwired. Consequently, our data open a unique nature-nurture debate across broad fields from evolutionary psychology and social neuroscience to social networking via digital avatars. PMID:22509011

  7. Facial expression recognition in Alzheimer's disease: a longitudinal study.

    PubMed

    Torres, Bianca; Santos, Raquel Luiza; Sousa, Maria Fernanda Barroso de; Simões Neto, José Pedro; Nogueira, Marcela Moreira Lima; Belfort, Tatiana T; Dias, Rachel; Dourado, Marcia Cristina Nascimento

    2015-05-01

    Facial recognition is one of the most important aspects of social cognition. In this study, we investigate the patterns of change and the factors involved in the ability to recognize emotion in mild Alzheimer's disease (AD). Through a longitudinal design, we assessed 30 people with AD. We used an experimental task that includes matching expressions with picture stimuli, labelling emotions and emotionally recognizing a stimulus situation. We observed a significant difference in the situational recognition task (p ≤ 0.05) between baseline and the second evaluation. The linear regression showed that cognition is a predictor of emotion recognition impairment (p ≤ 0.05). The ability to perceive emotions from facial expressions was impaired, particularly when the emotions presented were relatively subtle. Cognition is recruited to comprehend emotional situations in cases of mild dementia. PMID:26017202

  8. Modulation of incentivized dishonesty by disgust facial expressions.

    PubMed

    Lim, Julian; Ho, Paul M; Mullette-Gillman, O'Dhaniel A

    2015-01-01

    Disgust modulates moral decisions involving harming others. We recently specified that this effect is bi-directionally modulated by individual sensitivity to disgust. Here, we show that this effect generalizes to the moral domain of honesty and extends to outcomes with real-world impact. We employed a dice-rolling task in which participants were incentivized to dishonestly report outcomes to increase their potential final monetary payoff. Disgust or control facial expressions were presented subliminally on each trial. Our results reveal that the disgust facial expressions altered honest reporting as a bi-directional function moderated by individual sensitivity. Combining these data with those from prior experiments revealed that the effect of disgust presentation on both harm judgments and honesty could be accounted for by the same bidirectional function, with no significant effect of domain. This clearly demonstrates that disgust facial expressions produce the same modulation of moral judgments across different moral foundations (harm and honesty). Our results suggest strong overlap in the cognitive/neural processes of moral judgments across moral foundations, and provide a framework for further studies to specify the integration of emotional information in moral decision making. PMID:26257599

  9. Modulation of incentivized dishonesty by disgust facial expressions

    PubMed Central

    Lim, Julian; Ho, Paul M.; Mullette-Gillman, O'Dhaniel A.

    2015-01-01

    Disgust modulates moral decisions involving harming others. We recently specified that this effect is bi-directionally modulated by individual sensitivity to disgust. Here, we show that this effect generalizes to the moral domain of honesty and extends to outcomes with real-world impact. We employed a dice-rolling task in which participants were incentivized to dishonestly report outcomes to increase their potential final monetary payoff. Disgust or control facial expressions were presented subliminally on each trial. Our results reveal that the disgust facial expressions altered honest reporting as a bi-directional function moderated by individual sensitivity. Combining these data with those from prior experiments revealed that the effect of disgust presentation on both harm judgments and honesty could be accounted for by the same bidirectional function, with no significant effect of domain. This clearly demonstrates that disgust facial expressions produce the same modulation of moral judgments across different moral foundations (harm and honesty). Our results suggest strong overlap in the cognitive/neural processes of moral judgments across moral foundations, and provide a framework for further studies to specify the integration of emotional information in moral decision making. PMID:26257599

  10. The effect of sad facial expressions on weight judgment

    PubMed Central

    Weston, Trent D.; Hass, Norah C.; Lim, Seung-Lark

    2015-01-01

    Although the body weight evaluation (e.g., normal or overweight) of others relies on perceptual impressions, it also can be influenced by other psychosocial factors. In this study, we explored the effect of task-irrelevant emotional facial expressions on judgments of body weight and the relationship between emotion-induced weight judgment bias and other psychosocial variables including attitudes toward obese persons. Forty-four participants were asked to quickly make binary body weight decisions for 960 randomized sad and neutral faces of varying weight levels presented on a computer screen. The results showed that sad facial expressions systematically decreased the decision threshold of overweight judgments for male faces. This perceptual decision bias by emotional expressions was positively correlated with the belief that being overweight is not under the control of obese persons. Our results provide experimental evidence that task-irrelevant emotional expressions can systematically change the decision threshold for weight judgments, demonstrating that sad expressions can make faces appear more overweight than they would otherwise be judged. PMID:25914669

  11. Facial expression training optimises viewing strategy in children and adults.

    PubMed

    Pollux, Petra M J; Hall, Sophie; Guo, Kun

    2014-01-01

    This study investigated whether training-related improvements in facial expression categorization are facilitated by spontaneous changes in gaze behaviour in adults and nine-year old children. Four sessions of a self-paced, free-viewing training task required participants to categorize happy, sad and fear expressions with varying intensities. No instructions about eye movements were given. Eye-movements were recorded in the first and fourth training session. New faces were introduced in session four to establish transfer-effects of learning. Adults focused most on the eyes in all sessions and increased expression categorization accuracy after training coincided with a strengthening of this eye-bias in gaze allocation. In children, training-related behavioural improvements coincided with an overall shift in gaze-focus towards the eyes (resulting in more adult-like gaze-distributions) and towards the mouth for happy faces in the second fixation. Gaze-distributions were not influenced by the expression intensity or by the introduction of new faces. It was proposed that training enhanced the use of a uniform, predominantly eyes-biased, gaze strategy in children in order to optimise extraction of relevant cues for discrimination between subtle facial expressions. PMID:25144680

  12. Rapid Facial Reactions to Emotional Facial Expressions in Typically Developing Children and Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Beall, Paula M.; Moody, Eric J.; McIntosh, Daniel N.; Hepburn, Susan L.; Reed, Catherine L.

    2008-01-01

    Typical adults mimic facial expressions within 1000ms, but adults with autism spectrum disorder (ASD) do not. These rapid facial reactions (RFRs) are associated with the development of social-emotional abilities. Such interpersonal matching may be caused by motor mirroring or emotional responses. Using facial electromyography (EMG), this study…

  13. Lateralization for dynamic facial expressions in human superior temporal sulcus.

    PubMed

    De Winter, François-Laurent; Zhu, Qi; Van den Stock, Jan; Nelissen, Koen; Peeters, Ronald; de Gelder, Beatrice; Vanduffel, Wim; Vandenbulcke, Mathieu

    2015-02-01

    Most face processing studies in humans show stronger activation in the right compared to the left hemisphere. Evidence is largely based on studies with static stimuli focusing on the fusiform face area (FFA). Hence, the pattern of lateralization for dynamic faces is less clear. Furthermore, it is unclear whether this property is common to human and non-human primates due to predisposing processing strategies in the right hemisphere or that alternatively left sided specialization for language in humans could be the driving force behind this phenomenon. We aimed to address both issues by studying lateralization for dynamic facial expressions in monkeys and humans. Therefore, we conducted an event-related fMRI experiment in three macaques and twenty right handed humans. We presented human and monkey dynamic facial expressions (chewing and fear) as well as scrambled versions to both species. We studied lateralization in independently defined face-responsive and face-selective regions by calculating a weighted lateralization index (LIwm) using a bootstrapping method. In order to examine if lateralization in humans is related to language, we performed a separate fMRI experiment in ten human volunteers including a 'speech' expression (one syllable non-word) and its scrambled version. Both within face-responsive and selective regions, we found consistent lateralization for dynamic faces (chewing and fear) versus scrambled versions in the right human posterior superior temporal sulcus (pSTS), but not in FFA nor in ventral temporal cortex. Conversely, in monkeys no consistent pattern of lateralization for dynamic facial expressions was observed. Finally, LIwms based on the contrast between different types of dynamic facial expressions (relative to scrambled versions) revealed left-sided lateralization in human pSTS for speech-related expressions compared to chewing and emotional expressions. To conclude, we found consistent laterality effects in human posterior STS but not

  14. Fear Modulates Visual Awareness Similarly for Facial and Bodily Expressions

    PubMed Central

    Stienen, Bernard M. C.; de Gelder, Beatrice

    2011-01-01

    Background: Social interaction depends on a multitude of signals carrying information about the emotional state of others. But the relative importance of facial and bodily signals is still poorly understood. Past research has focused on the perception of facial expressions while perception of whole body signals has only been studied recently. In order to better understand the relative contribution of affective signals from the face only or from the whole body we performed two experiments using binocular rivalry. This method seems to be perfectly suitable to contrast two classes of stimuli to test our processing sensitivity to either stimulus and to address the question how emotion modulates this sensitivity. Method: In the first experiment we directly contrasted fearful, angry, and neutral bodies and faces. We always presented bodies in one eye and faces in the other simultaneously for 60 s and asked participants to report what they perceived. In the second experiment we focused specifically on the role of fearful expressions of faces and bodies. Results: Taken together the two experiments show that there is no clear bias toward either the face or body when the expression of the body and face are neutral or angry. However, the perceptual dominance in favor of either the face of the body is a function of the stimulus class expressing fear. PMID:22125517

  15. Dynamic properties influence the perception of facial expressions.

    PubMed

    Kamachi, Miyuki; Bruce, Vicki; Mukaida, Shigeru; Gyoba, Jiro; Yoshikawa, Sakiko; Akamatsu, Shigeru

    2013-01-01

    Two experiments were conducted to investigate the role played by dynamic information in identifying facial expressions of emotion. Dynamic expression sequences were created by generating and displaying morph sequences which changed the face from neutral to a peak expression in different numbers of intervening intermediate stages, to create fast (6 frames), medium (26 frames), and slow (101 frames) sequences. In experiment 1, participants were asked to describe what the person shown in each sequence was feeling. Sadness was more accurately identified when slow sequences were shown. Happiness, and to some extent surprise, was better from faster sequences, while anger was most accurately detected from the sequences of medium pace. In experiment 2 we used an intensity-rating task and static images as well as dynamic ones to examine whether effects were due to total time of the displays or to the speed of sequence. Accuracies of expression judgments were derived from the rated intensities and the results were similar to those of experiment 1 for angry and sad expressions (surprised and happy were close to ceiling). Moreover, the effect of display time was found only for dynamic expressions and not for static ones, suggesting that it was speed, not time, which was responsible for these effects. These results suggest that representations of basic expressions of emotion encode information about dynamic as well as static properties. PMID:24601038

  16. Emotional Representation in Facial Expression and Script: A Comparison between Normal and Autistic Children

    ERIC Educational Resources Information Center

    Balconi, Michela; Carrera, Alba

    2007-01-01

    The paper explored conceptual and lexical skills with regard to emotional correlates of facial stimuli and scripts. In two different experimental phases normal and autistic children observed six facial expressions of emotions (happiness, anger, fear, sadness, surprise, and disgust) and six emotional scripts (contextualized facial expressions). In…

  17. Facial morphology and children's categorization of facial expressions of emotions: a comparison between Asian and Caucasian faces.

    PubMed

    Gosselin, P; Larocque, C

    2000-09-01

    The effects of Asian and Caucasian facial morphology were examined by having Canadian children categorize pictures of facial expressions of basic emotions. The pictures were selected from the Japanese and Caucasian Facial Expressions of Emotion set developed by D. Matsumoto and P. Ekman (1989). Sixty children between the ages of 5 and 10 years were presented with short stories and an array of facial expressions, and were asked to point to the expression that best depicted the specific emotion experienced by the characters. The results indicated that expressions of fear and surprise were better categorized from Asian faces, whereas expressions of disgust were better categorized from Caucasian faces. These differences originated in some specific confusions between expressions. PMID:10971913

  18. Body Actions Change the Appearance of Facial Expressions

    PubMed Central

    Fantoni, Carlo; Gerbino, Walter

    2014-01-01

    Perception, cognition, and emotion do not operate along segregated pathways; rather, their adaptive interaction is supported by various sources of evidence. For instance, the aesthetic appraisal of powerful mood inducers like music can bias the facial expression of emotions towards mood congruency. In four experiments we showed similar mood-congruency effects elicited by the comfort/discomfort of body actions. Using a novel Motor Action Mood Induction Procedure, we let participants perform comfortable/uncomfortable visually-guided reaches and tested them in a facial emotion identification task. Through the alleged mediation of motor action induced mood, action comfort enhanced the quality of the participant’s global experience (a neutral face appeared happy and a slightly angry face neutral), while action discomfort made a neutral face appear angry and a slightly happy face neutral. Furthermore, uncomfortable (but not comfortable) reaching improved the sensitivity for the identification of emotional faces and reduced the identification time of facial expressions, as a possible effect of hyper-arousal from an unpleasant bodily experience. PMID:25251882

  19. Discriminative shared Gaussian processes for multiview and view-invariant facial expression recognition.

    PubMed

    Eleftheriadis, Stefanos; Rudovic, Ognjen; Pantic, Maja

    2015-01-01

    Images of facial expressions are often captured from various views as a result of either head movements or variable camera position. Existing methods for multiview and/or view-invariant facial expression recognition typically perform classification of the observed expression using either classifiers learned separately for each view or a single classifier learned for all views. However, these approaches ignore the fact that different views of a facial expression are just different manifestations of the same facial expression. By accounting for this redundancy, we can design more effective classifiers for the target task. To this end, we propose a discriminative shared Gaussian process latent variable model (DS-GPLVM) for multiview and view-invariant classification of facial expressions from multiple views. In this model, we first learn a discriminative manifold shared by multiple views of a facial expression. Subsequently, we perform facial expression classification in the expression manifold. Finally, classification of an observed facial expression is carried out either in the view-invariant manner (using only a single view of the expression) or in the multiview manner (using multiple views of the expression). The proposed model can also be used to perform fusion of different facial features in a principled manner. We validate the proposed DS-GPLVM on both posed and spontaneously displayed facial expressions from three publicly available datasets (MultiPIE, labeled face parts in the wild, and static facial expressions in the wild). We show that this model outperforms the state-of-the-art methods for multiview and view-invariant facial expression classification, and several state-of-the-art methods for multiview learning and feature fusion. PMID:25438312

  20. Face recognition using facial expression: a novel approach

    NASA Astrophysics Data System (ADS)

    Singh, Deepak Kumar; Gupta, Priya; Tiwary, U. S.

    2008-04-01

    Facial expressions are undoubtedly the most effective nonverbal communication. The face has always been the equation of a person's identity. The face draws the demarcation line between identity and extinction. Each line on the face adds an attribute to the identity. These lines become prominent when we experience an emotion and these lines do not change completely with age. In this paper we have proposed a new technique for face recognition which focuses on the facial expressions of the subject to identify his face. This is a grey area on which not much light has been thrown earlier. According to earlier researches it is difficult to alter the natural expression. So our technique will be beneficial for identifying occluded or intentionally disguised faces. The test results of the experiments conducted prove that this technique will give a new direction in the field of face recognition. This technique will provide a strong base to the area of face recognition and will be used as the core method for critical defense security related issues.

  1. Can Neurotypical Individuals Read Autistic Facial Expressions? Atypical Production of Emotional Facial Expressions in Autism Spectrum Disorders.

    PubMed

    Brewer, Rebecca; Biotti, Federica; Catmur, Caroline; Press, Clare; Happé, Francesca; Cook, Richard; Bird, Geoffrey

    2016-02-01

    The difficulties encountered by individuals with autism spectrum disorder (ASD) when interacting with neurotypical (NT, i.e. nonautistic) individuals are usually attributed to failure to recognize the emotions and mental states of their NT interaction partner. It is also possible, however, that at least some of the difficulty is due to a failure of NT individuals to read the mental and emotional states of ASD interaction partners. Previous research has frequently observed deficits of typical facial emotion recognition in individuals with ASD, suggesting atypical representations of emotional expressions. Relatively little research, however, has investigated the ability of individuals with ASD to produce recognizable emotional expressions, and thus, whether NT individuals can recognize autistic emotional expressions. The few studies which have investigated this have used only NT observers, making it impossible to determine whether atypical representations are shared among individuals with ASD, or idiosyncratic. This study investigated NT and ASD participants' ability to recognize emotional expressions produced by NT and ASD posers. Three posing conditions were included, to determine whether potential group differences are due to atypical cognitive representations of emotion, impaired understanding of the communicative value of expressions, or poor proprioceptive feedback. Results indicated that ASD expressions were recognized less well than NT expressions, and that this is likely due to a genuine deficit in the representation of typical emotional expressions in this population. Further, ASD expressions were equally poorly recognized by NT individuals and those with ASD, implicating idiosyncratic, rather than common, atypical representations of emotional expressions in ASD. Autism Res 2016, 9: 262-271. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26053037

  2. Can Neurotypical Individuals Read Autistic Facial Expressions? Atypical Production of Emotional Facial Expressions in Autism Spectrum Disorders

    PubMed Central

    Biotti, Federica; Catmur, Caroline; Press, Clare; Happé, Francesca; Cook, Richard; Bird, Geoffrey

    2015-01-01

    The difficulties encountered by individuals with autism spectrum disorder (ASD) when interacting with neurotypical (NT, i.e. nonautistic) individuals are usually attributed to failure to recognize the emotions and mental states of their NT interaction partner. It is also possible, however, that at least some of the difficulty is due to a failure of NT individuals to read the mental and emotional states of ASD interaction partners. Previous research has frequently observed deficits of typical facial emotion recognition in individuals with ASD, suggesting atypical representations of emotional expressions. Relatively little research, however, has investigated the ability of individuals with ASD to produce recognizable emotional expressions, and thus, whether NT individuals can recognize autistic emotional expressions. The few studies which have investigated this have used only NT observers, making it impossible to determine whether atypical representations are shared among individuals with ASD, or idiosyncratic. This study investigated NT and ASD participants’ ability to recognize emotional expressions produced by NT and ASD posers. Three posing conditions were included, to determine whether potential group differences are due to atypical cognitive representations of emotion, impaired understanding of the communicative value of expressions, or poor proprioceptive feedback. Results indicated that ASD expressions were recognized less well than NT expressions, and that this is likely due to a genuine deficit in the representation of typical emotional expressions in this population. Further, ASD expressions were equally poorly recognized by NT individuals and those with ASD, implicating idiosyncratic, rather than common, atypical representations of emotional expressions in ASD. Autism Res 2016, 9: 262–271. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26053037

  3. Face in profile view reduces perceived facial expression intensity: an eye-tracking study.

    PubMed

    Guo, Kun; Shaw, Heather

    2015-02-01

    Recent studies measuring the facial expressions of emotion have focused primarily on the perception of frontal face images. As we frequently encounter expressive faces from different viewing angles, having a mechanism which allows invariant expression perception would be advantageous to our social interactions. Although a couple of studies have indicated comparable expression categorization accuracy across viewpoints, it is unknown how perceived expression intensity and associated gaze behaviour change across viewing angles. Differences could arise because diagnostic cues from local facial features for decoding expressions could vary with viewpoints. Here we manipulated orientation of faces (frontal, mid-profile, and profile view) displaying six common facial expressions of emotion, and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. In comparison with frontal faces, profile faces slightly reduced identification rates for disgust and sad expressions, but significantly decreased perceived intensity for all tested expressions. Although quantitatively viewpoint had expression-specific influence on the proportion of fixations directed at local facial features, the qualitative gaze distribution within facial features (e.g., the eyes tended to attract the highest proportion of fixations, followed by the nose and then the mouth region) was independent of viewpoint and expression type. Our results suggest that the viewpoint-invariant facial expression processing is categorical perception, which could be linked to a viewpoint-invariant holistic gaze strategy for extracting expressive facial cues. PMID:25531122

  4. Accurate landmarking of three-dimensional facial data in the presence of facial expressions and occlusions using a three-dimensional statistical facial feature model.

    PubMed

    Zhao, Xi; Dellandréa, Emmanuel; Chen, Liming; Kakadiaris, Ioannis A

    2011-10-01

    Three-dimensional face landmarking aims at automatically localizing facial landmarks and has a wide range of applications (e.g., face recognition, face tracking, and facial expression analysis). Existing methods assume neutral facial expressions and unoccluded faces. In this paper, we propose a general learning-based framework for reliable landmark localization on 3-D facial data under challenging conditions (i.e., facial expressions and occlusions). Our approach relies on a statistical model, called 3-D statistical facial feature model, which learns both the global variations in configurational relationships between landmarks and the local variations of texture and geometry around each landmark. Based on this model, we further propose an occlusion classifier and a fitting algorithm. Results from experiments on three publicly available 3-D face databases (FRGC, BU-3-DFE, and Bosphorus) demonstrate the effectiveness of our approach, in terms of landmarking accuracy and robustness, in the presence of expressions and occlusions. PMID:21622076

  5. Speed and accuracy of facial expression classification in avoidant personality disorder: a preliminary study.

    PubMed

    Rosenthal, M Zachary; Kim, Kwanguk; Herr, Nathaniel R; Smoski, Moria J; Cheavens, Jennifer S; Lynch, Thomas R; Kosson, David S

    2011-10-01

    The aim of this preliminary study was to examine whether individuals with avoidant personality disorder (APD) could be characterized by deficits in the classification of dynamically presented facial emotional expressions. Using a community sample of adults with APD (n = 17) and non-APD controls (n = 16), speed and accuracy of facial emotional expression recognition was investigated in a task that morphs facial expressions from neutral to prototypical expressions (Multi-Morph Facial Affect Recognition Task; Blair, Colledge, Murray, & Mitchell, 2001). Results indicated that individuals with APD were significantly more likely than controls to make errors when classifying fully expressed fear. However, no differences were found between groups in the speed to correctly classify facial emotional expressions. The findings are some of the first to investigate facial emotional processing in a sample of individuals with APD and point to an underlying deficit in processing social cues that may be involved in the maintenance of APD. PMID:22448805

  6. Deficits in the Mimicry of Facial Expressions in Parkinson's Disease

    PubMed Central

    Livingstone, Steven R.; Vezer, Esztella; McGarry, Lucy M.; Lang, Anthony E.; Russo, Frank A.

    2016-01-01

    Background: Humans spontaneously mimic the facial expressions of others, facilitating social interaction. This mimicking behavior may be impaired in individuals with Parkinson's disease, for whom the loss of facial movements is a clinical feature. Objective: To assess the presence of facial mimicry in patients with Parkinson's disease. Method: Twenty-seven non-depressed patients with idiopathic Parkinson's disease and 28 age-matched controls had their facial muscles recorded with electromyography while they observed presentations of calm, happy, sad, angry, and fearful emotions. Results: Patients exhibited reduced amplitude and delayed onset in the zygomaticus major muscle region (smiling response) following happy presentations (patients M = 0.02, 95% confidence interval [CI] −0.15 to 0.18, controls M = 0.26, CI 0.14 to 0.37, ANOVA, effect size [ES] = 0.18, p < 0.001). Although patients exhibited activation of the corrugator supercilii and medial frontalis (frowning response) following sad and fearful presentations, the frontalis response to sad presentations was attenuated relative to controls (patients M = 0.05, CI −0.08 to 0.18, controls M = 0.21, CI 0.09 to 0.34, ANOVA, ES = 0.07, p = 0.017). The amplitude of patients' zygomaticus activity in response to positive emotions was found to be negatively correlated with response times for ratings of emotional identification, suggesting a motor-behavioral link (r = –0.45, p = 0.02, two-tailed). Conclusions: Patients showed decreased mimicry overall, mimicking other peoples' frowns to some extent, but presenting with profoundly weakened and delayed smiles. These findings open a new avenue of inquiry into the “masked face” syndrome of PD. PMID:27375505

  7. Social phobics do not misinterpret facial expression of emotion.

    PubMed

    Philippot, Pierre; Douilliez, Céline

    2005-05-01

    Attentional biases in the processing of threatening facial expressions in social anxiety are well documented. It is generally assumed that these attentional biases originate in an evaluative bias: socially threatening information would be evaluated more negatively by socially anxious individuals. However, three studies have failed to evidence a negative evaluative bias in the processing of emotional facial expression (EFE) in socially anxious individuals. These studies however suffer from several methodological limitations that the present study has attempted to overcome. Twenty-one out-patients diagnosed with generalized social phobia have been compared to 20 out-patients diagnosed with another anxiety disorder and with 39 normal controls matched for gender, age and level of education. They had to decode on seven emotion intensity scales a set of 40 EFE whose intensity and emotional nature were manipulated. Although sufficient statistical power was ensured, no differences among groups could be found in terms of decoding accuracy, attributed emotion intensity, or reported difficulty of the task. Based on these findings as well as on other evidences, we propose that, if they exist, evaluative biases in social anxiety should be implicit and automatic and that they might be determined by the relevance of the stimulus to the person's concern rather than by the stimulus valence. The implications of these findings for the interpersonal processes involved in social phobia are discussed. PMID:15865918

  8. Shared Gaussian Process Latent Variable Models for Handling Ambiguous Facial Expressions

    NASA Astrophysics Data System (ADS)

    Ek, Carl Henrik; Jaeckel, Peter; Campbell, Neill; Lawrence, Neil D.; Melhuish, Chris

    2009-03-01

    Despite the fact, that, in reality facial expressions occur as a result of muscle actions, facial expression models assume an inverse functional relationship, which makes muscles action be the result of facial expressions. Clearly, facial expression should be expressed as a function of muscle action, the other way around as previously suggested. Furthermore, a human facial expression space and the robots actuator space have common features. However, there are also features that the one or the other does not have. This suggests modelling shared and non-shared feature variance separately. To this end we propose Shared Gaussian Process Latent Variable Models (Shared GP-LVM) for models of facial expressions, which assume shared and private features between an input and output space. In this work, we are focusing on the detection of ambiguities within data sets of facial behaviour. We suggest ways of modelling and mapping of facial motion from a representation of human facial expressions to a robot's actuator space. We aim to compensate for ambiguities caused by interference of global with local head motion and the constrained nature of Active Appearance Models, used for tracking.

  9. Misinterpretation of Facial Expressions of Emotion in Verbal Adults with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Eack, Shaun M.; Mazefsky, Carla A.; Minshew, Nancy J.

    2015-01-01

    Facial emotion perception is significantly affected in autism spectrum disorder, yet little is known about how individuals with autism spectrum disorder misinterpret facial expressions that result in their difficulty in accurately recognizing emotion in faces. This study examined facial emotion perception in 45 verbal adults with autism spectrum…

  10. A spatiotemporal feature-based approach for facial expression recognition from depth video

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Zia

    2015-07-01

    In this paper, a novel spatiotemporal feature-based method is proposed to recognize facial expressions from depth video. Independent Component Analysis (ICA) spatial features of the depth faces of facial expressions are first augmented with the optical flow motion features. Then, the augmented features are enhanced by Fisher Linear Discriminant Analysis (FLDA) to make them robust. The features are then combined with on Hidden Markov Models (HMMs) to model different facial expressions that are later used to recognize appropriate expression from a test expression depth video. The experimental results show superior performance of the proposed approach over the conventional methods.

  11. The Mysterious Noh Mask: Contribution of Multiple Facial Parts to the Recognition of Emotional Expressions

    PubMed Central

    Miyata, Hiromitsu; Nishimura, Ritsuko; Okanoya, Kazuo; Kawai, Nobuyuki

    2012-01-01

    Background A Noh mask worn by expert actors when performing on a Japanese traditional Noh drama is suggested to convey countless different facial expressions according to different angles of head/body orientation. The present study addressed the question of how different facial parts of a Noh mask, including the eyebrows, the eyes, and the mouth, may contribute to different emotional expressions. Both experimental situations of active creation and passive recognition of emotional facial expressions were introduced. Methodology/Principal Findings In Experiment 1, participants either created happy or sad facial expressions, or imitated a face that looked up or down, by actively changing each facial part of a Noh mask image presented on a computer screen. For an upward tilted mask, the eyebrows and the mouth shared common features with sad expressions, whereas the eyes with happy expressions. This contingency tended to be reversed for a downward tilted mask. Experiment 2 further examined which facial parts of a Noh mask are crucial in determining emotional expressions. Participants were exposed to the synthesized Noh mask images with different facial parts expressing different emotions. Results clearly revealed that participants primarily used the shape of the mouth in judging emotions. The facial images having the mouth of an upward/downward tilted Noh mask strongly tended to be evaluated as sad/happy, respectively. Conclusions/Significance The results suggest that Noh masks express chimeric emotional patterns, with different facial parts conveying different emotions This appears consistent with the principles of Noh which highly appreciate subtle and composite emotional expressions, as well as with the mysterious facial expressions observed in Western art. It was further demonstrated that the mouth serves as a diagnostic feature in characterizing the emotional expressions. This indicates the superiority of biologically-driven factors over the traditionally

  12. Facial expressions in common marmosets (Callithrix jacchus) and their use by conspecifics.

    PubMed

    Kemp, Caralyn; Kaplan, Gisela

    2013-09-01

    Facial expressions have been studied mainly in chimpanzees and have been shown to be important social signals. In platyrrhine and strepsirrhine primates, it has been doubted that facial expressions are differentiated enough, or the species socially capable enough, for facial expressions to be part of their communication system. However, in a series of experiments presenting olfactory, auditory and visual stimuli, we found that common marmosets (Callithrix jacchus) displayed an unexpected variety of facial expressions. Especially, olfactory and auditory stimuli elicited obvious facial displays (such as disgust), some of which are reported here for the first time. We asked whether specific facial responses to food and predator-related stimuli might act as social signals to conspecifics. We recorded two contrasting facial expressions (fear and pleasure) as separate sets of video clips and then presented these to cage mates of those marmosets shown in the images, while tempting the subject with food. Results show that the expression of a fearful face on screen significantly reduced time spent near the food bowl compared to the duration when a face showing pleasure was screened. This responsiveness to a cage mate's facial expressions suggests that the evolution of facial signals may have occurred much earlier in primate evolution than had been thought. PMID:23412667

  13. Facial expression analysis for estimating patient's emotional states in RPMS.

    PubMed

    Hosseini, H Gholam; Krechowec, Z

    2004-01-01

    Currently, a range of remote patient monitoring systems (RPMS) are being developed to care for patients at home rather than in the costly hospital environment. These systems allow remote monitoring by health professionals with minimum medical intervention to take place. However, they are still not as effective as one-on-one human interaction. The face and its features can convey patient cognitive and emotional states faster than electrical signals and facial expression can be considered as one of the most powerful features of RPMS. We present image pre-processing and enhancement techniques for face recognition applications. In particular, the project is aimed to improve the performance of RPMS, taking into account the cognitive and emotional state of patients by developing a more human like RPMS. The techniques use the value of grey scale of the images and extract efficient facial features. The extracted information is fed into input layer of an artificial neural network for face identification. On the other hand, the colour images are used by the recognition algorithm to eliminate nonskin coloured background and reduce further processing time. A data base of real images is used for testing the algorithms. PMID:17271985

  14. Facial expression of positive emotions in individuals with eating disorders.

    PubMed

    Dapelo, Marcela M; Hart, Sharon; Hale, Christiane; Morris, Robin; Lynch, Thomas R; Tchanturia, Kate

    2015-11-30

    A large body of research has associated Eating Disorders with difficulties in socio-emotional functioning and it has been argued that they may serve to maintain the illness. This study aimed to explore facial expressions of positive emotions in individuals with Anorexia Nervosa (AN) and Bulimia Nervosa (BN) compared to healthy controls (HC), through an examination of the Duchenne smile (DS), which has been associated with feelings of enjoyment, amusement and happiness (Ekman et al., 1990). Sixty participants (AN=20; BN=20; HC=20) were videotaped while watching a humorous film clip. The duration and intensity of DS were subsequently analyzed using the facial action coding system (FACS) (Ekman and Friesen, 2003). Participants with AN displayed DS for shorter durations than BN and HC participants, and their DS had lower intensity. In the clinical groups, lower duration and intensity of DS were associated with lower BMI, and use of psychotropic medication. The study is the first to explore DS in people with eating disorders, providing further evidence of difficulties in the socio-emotional domain in people with AN. PMID:26323166

  15. Psychopathic traits affect the visual exploration of facial expressions.

    PubMed

    Boll, Sabrina; Gamer, Matthias

    2016-05-01

    Deficits in emotional reactivity and recognition have been reported in psychopathy. Impaired attention to the eyes along with amygdala malfunctions may underlie these problems. Here, we investigated how different facets of psychopathy modulate the visual exploration of facial expressions by assessing personality traits in a sample of healthy young adults using an eye-tracking based face perception task. Fearless Dominance (the interpersonal-emotional facet of psychopathy) and Coldheartedness scores predicted reduced face exploration consistent with findings on lowered emotional reactivity in psychopathy. Moreover, participants high on the social deviance facet of psychopathy ('Self-Centered Impulsivity') showed a reduced bias to shift attention towards the eyes. Our data suggest that facets of psychopathy modulate face processing in healthy individuals and reveal possible attentional mechanisms which might be responsible for the severe impairments of social perception and behavior observed in psychopathy. PMID:27016126

  16. Paedomorphic facial expressions give dogs a selective advantage.

    PubMed

    Waller, Bridget M; Peirce, Kate; Caeiro, Cátia C; Scheider, Linda; Burrows, Anne M; McCune, Sandra; Kaminski, Juliane

    2013-01-01

    How wolves were first domesticated is unknown. One hypothesis suggests that wolves underwent a process of self-domestication by tolerating human presence and taking advantage of scavenging possibilities. The puppy-like physical and behavioural traits seen in dogs are thought to have evolved later, as a byproduct of selection against aggression. Using speed of selection from rehoming shelters as a proxy for artificial selection, we tested whether paedomorphic features give dogs a selective advantage in their current environment. Dogs who exhibited facial expressions that enhance their neonatal appearance were preferentially selected by humans. Thus, early domestication of wolves may have occurred not only as wolf populations became tamer, but also as they exploited human preferences for paedomorphic characteristics. These findings, therefore, add to our understanding of early dog domestication as a complex co-evolutionary process. PMID:24386109

  17. Paedomorphic Facial Expressions Give Dogs a Selective Advantage

    PubMed Central

    Waller, Bridget M.; Peirce, Kate; Caeiro, Cátia C.; Scheider, Linda; Burrows, Anne M.; McCune, Sandra; Kaminski, Juliane

    2013-01-01

    How wolves were first domesticated is unknown. One hypothesis suggests that wolves underwent a process of self-domestication by tolerating human presence and taking advantage of scavenging possibilities. The puppy-like physical and behavioural traits seen in dogs are thought to have evolved later, as a byproduct of selection against aggression. Using speed of selection from rehoming shelters as a proxy for artificial selection, we tested whether paedomorphic features give dogs a selective advantage in their current environment. Dogs who exhibited facial expressions that enhance their neonatal appearance were preferentially selected by humans. Thus, early domestication of wolves may have occurred not only as wolf populations became tamer, but also as they exploited human preferences for paedomorphic characteristics. These findings, therefore, add to our understanding of early dog domestication as a complex co-evolutionary process. PMID:24386109

  18. Recognition of Facial Expressions and Prosodic Cues with Graded Emotional Intensities in Adults with Asperger Syndrome

    ERIC Educational Resources Information Center

    Doi, Hirokazu; Fujisawa, Takashi X.; Kanai, Chieko; Ohta, Haruhisa; Yokoi, Hideki; Iwanami, Akira; Kato, Nobumasa; Shinohara, Kazuyuki

    2013-01-01

    This study investigated the ability of adults with Asperger syndrome to recognize emotional categories of facial expressions and emotional prosodies with graded emotional intensities. The individuals with Asperger syndrome showed poorer recognition performance for angry and sad expressions from both facial and vocal information. The group…

  19. Evaluating Posed and Evoked Facial Expressions of Emotion from Adults with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Faso, Daniel J.; Sasson, Noah J.; Pinkham, Amy E.

    2015-01-01

    Though many studies have examined facial affect perception by individuals with autism spectrum disorder (ASD), little research has investigated how facial expressivity in ASD is perceived by others. Here, naïve female observers (n = 38) judged the intensity, naturalness and emotional category of expressions produced by adults with ASD (n = 6) and…

  20. Compound facial expressions of emotion: from basic research to clinical applications

    PubMed Central

    Du, Shichuan; Martinez, Aleix M.

    2015-01-01

    Emotions are sometimes revealed through facial expressions. When these natural facial articulations involve the contraction of the same muscle groups in people of distinct cultural upbringings, this is taken as evidence of a biological origin of these emotions. While past research had identified facial expressions associated with a single internally felt category (eg, the facial expression of happiness when we feel joyful), we have recently studied facial expressions observed when people experience compound emotions (eg, the facial expression of happy surprise when we feel joyful in a surprised way, as, for example, at a surprise birthday party). Our research has identified 17 compound expressions consistently produced across cultures, suggesting that the number of facial expressions of emotion of biological origin is much larger than previously believed. The present paper provides an overview of these findings and shows evidence supporting the view that spontaneous expressions are produced using the same facial articulations previously identified in laboratory experiments. We also discuss the implications of our results in the study of psychopathologies, and consider several open research questions. PMID:26869845

  1. Effectiveness of Teaching Naming Facial Expression to Children with Autism via Video Modeling

    ERIC Educational Resources Information Center

    Akmanoglu, Nurgul

    2015-01-01

    This study aims to examine the effectiveness of teaching naming emotional facial expression via video modeling to children with autism. Teaching the naming of emotions (happy, sad, scared, disgusted, surprised, feeling physical pain, and bored) was made by creating situations that lead to the emergence of facial expressions to children…

  2. Preschooler's Faces in Spontaneous Emotional Contexts--How Well Do They Match Adult Facial Expression Prototypes?

    ERIC Educational Resources Information Center

    Gaspar, Augusta; Esteves, Francisco G.

    2012-01-01

    Prototypical facial expressions of emotion, also known as universal facial expressions, are the underpinnings of most research concerning recognition of emotions in both adults and children. Data on natural occurrences of these prototypes in natural emotional contexts are rare and difficult to obtain in adults. By recording naturalistic…

  3. The Relationship between Processing Facial Identity and Emotional Expression in 8-Month-Old Infants

    ERIC Educational Resources Information Center

    Schwarzer, Gudrun; Jovanovic, Bianca

    2010-01-01

    In Experiment 1, it was investigated whether infants process facial identity and emotional expression independently or in conjunction with one another. Eight-month-old infants were habituated to two upright or two inverted faces varying in facial identity and emotional expression. Infants were tested with a habituation face, a switch face, and a…

  4. Do Dynamic Facial Expressions Convey Emotions to Children Better than Do Static Ones?

    ERIC Educational Resources Information Center

    Widen, Sherri C.; Russell, James A.

    2015-01-01

    Past research has shown that children recognize emotions from facial expressions poorly and improve only gradually with age, but the stimuli in such studies have been static faces. Because dynamic faces include more information, it may well be that children more readily recognize emotions from dynamic facial expressions. The current study of…

  5. Does Gaze Direction Modulate Facial Expression Processing in Children with Autism Spectrum Disorder?

    ERIC Educational Resources Information Center

    Akechi, Hironori; Senju, Atsushi; Kikuchi, Yukiko; Tojo, Yoshikuni; Osanai, Hiroo; Hasegawa, Toshikazu

    2009-01-01

    Two experiments investigated whether children with autism spectrum disorder (ASD) integrate relevant communicative signals, such as gaze direction, when decoding a facial expression. In Experiment 1, typically developing children (9-14 years old; n = 14) were faster at detecting a facial expression accompanying a gaze direction with a congruent…

  6. Mu desynchronization during observation and execution of facial expressions in 30-month-old children.

    PubMed

    Rayson, Holly; Bonaiuto, James John; Ferrari, Pier Francesco; Murray, Lynne

    2016-06-01

    Simulation theories propose that observing another's facial expression activates sensorimotor representations involved in the execution of that expression, facilitating recognition processes. The mirror neuron system (MNS) is a potential mechanism underlying simulation of facial expressions, with like neural processes activated both during observation and performance. Research with monkeys and adult humans supports this proposal, but so far there have been no investigations of facial MNS activity early in human development. The current study used electroencephalography (EEG) to explore mu rhythm desynchronization, an index of MNS activity, in 30-month-old children as they observed videos of dynamic emotional and non-emotional facial expressions, as well as scrambled versions of the same videos. We found significant mu desynchronization in central regions during observation and execution of both emotional and non-emotional facial expressions, which was right-lateralized for emotional and bilateral for non-emotional expressions during observation. These findings support previous research suggesting movement simulation during observation of facial expressions, and are the first to provide evidence for sensorimotor activation during observation of facial expressions, consistent with a functioning facial MNS at an early stage of human development. PMID:27261926

  7. Brief Report: Representational Momentum for Dynamic Facial Expressions in Pervasive Developmental Disorder

    ERIC Educational Resources Information Center

    Uono, Shota; Sato, Wataru; Toichi, Motomi

    2010-01-01

    Individuals with pervasive developmental disorder (PDD) have difficulty with social communication via emotional facial expressions, but behavioral studies involving static images have reported inconsistent findings about emotion recognition. We investigated whether dynamic presentation of facial expression would enhance subjective perception of…

  8. Selective attention and facial expression recognition in patients with Parkinson's disease.

    PubMed

    Alonso-Recio, Laura; Serrano, Juan M; Martín, Pilar

    2014-06-01

    Parkinson's disease (PD) has been associated with facial expression recognition difficulties. However, this impairment could be secondary to the one produced in other cognitive processes involved in recognition, such as selective attention. This study investigates the influence of two selective attention components (inhibition and visual search) on facial expression recognition in PD. We compared facial expression and non-emotional stimuli recognition abilities of 51 patients and 51 healthy controls, by means of an adapted Stroop task, and by "The Face in the Crowd" paradigm, which assess Inhibition and Visual Search abilities, respectively. Patients scored worse than controls in both tasks with facial expressions, but not with the other nonemotional stimuli, indicating specific emotional recognition impairment, not dependent on selective attention abilities. This should be taken into account in patients' neuropsychological assessment given the relevance of emotional facial expression for social communication in everyday settings. PMID:24760956

  9. The amygdalo-motor pathways and the control of facial expressions

    PubMed Central

    Gothard, Katalin M.

    2013-01-01

    Facial expressions reflect decisions about the perceived meaning of social stimuli and the expected socio-emotional outcome of responding (or not) with a reciprocating expression. The decision to produce a facial expression emerges from the joint activity of a network of structures that include the amygdala and multiple, interconnected cortical and subcortical motor areas. Reciprocal transformations between these sensory and motor signals give rise to distinct brain states that promote, or impede the production of facial expressions. The muscles of the upper and lower face are controlled by anatomically distinct motor areas. Facial expressions engage to a different extent the lower and upper face and thus require distinct patterns of neural activity distributed across multiple facial motor areas in ventrolateral frontal cortex, the supplementary motor area, and two areas in the midcingulate cortex. The distributed nature of the decision manifests in the joint activation of multiple motor areas that initiate the production of facial expression. Concomitantly multiple areas, including the amygdala, monitor ongoing overt behaviors (the expression itself) and the covert, autonomic responses that accompany emotional expressions. As the production of facial expressions is brought into the framework of formal decision making, an important challenge will be to incorporate autonomic and visceral states into decisions that govern the receiving-emitting cycle of social signals. PMID:24678289

  10. Depressive and elative mood inductions as a function of exaggerated versus contradictory facial expressions.

    PubMed

    Riccelli, P T; Antila, C E; Dale, J A; Klions, H L

    1989-04-01

    Two studies concerned the relation between facial expression cognitive induction of mood and perception of mood in women undergraduates. In Exp. 1, 20 subjects were randomly assigned to a group who were instructed in exaggerated facial expressions (Demand Group) and 20 subjects were randomly assigned to a group who were not instructed (Nondemand Group). All subjects completed a modified Velten (1968) elation- and depression-induction sequence. Ratings of depression on the Multiple Affect Adjective Checklist increased during the depression condition and decreased during the elation condition. Subjects made more facial expressions in the Demand Group than the Nondemand Group from electromyogram measures of the zygomatic and corrugator muscles and from corresponding action unit measures from visual scoring using the Facial Action Scoring System. Subjects who were instructed in the Demand Group rated their depression as more severe during the depression slides than the other group. No such effect was noted during the elation condition. In Exp. 2, 16 women were randomly assigned to a group who were instructed in facial expressions contradictory to those expected on the depression and elation tasks (Contradictory Expression Group). Another 16 women were randomly assigned to a group who were given no instructions about facial expressions (Nondemand Group). All subjects completed the depression- and elation-induction sequence mentioned in Exp. 1. No differences were reported between groups on the ratings of depression (MAACL) for the depression-induction or for the elation-induction but both groups rated depression higher after the depression condition and lower after the elation condition. Electromyographic and facial action scores verified that subjects in the Contradictory Expression Group were making the requested contradictory facial expressions during the mood-induction sequences. It was concluded that the primary influence on emotion came from the cognitive mood

  11. Standardized mood induction with happy and sad facial expressions.

    PubMed

    Schneider, F; Gur, R C; Gur, R E; Muenz, L R

    1994-01-01

    The feasibility of applying ecologically valid and socially relevant emotional stimuli in a standardized fashion to obtain reliable mood changes in healthy subjects was examined. The stimuli consisted of happy and sad facial expressions varying in intensity. Two mood-induction procedures (happy and sad, each consisting of 40 slides) were administered to 24 young healthy subjects, who were instructed to look at each slide (self-paced) and try to feel the happy or sad mood expressed by the person in the picture. On an emotional self-rating scale, subjects rated themselves as relatively happier during the happy mood-induction condition and as relatively sadder during the sad mood-induction condition. Conversely, they reported that they were less happy during the sad mood-induction condition and less sad during the happy mood-induction condition. The effects were generalized to positive and negative affect as measured by the Positive and Negative Affect Scale. The intraindividual variability in the effect was very small. In a retest study after 1 month, the mood-induction effects showed good stability over time. The results encourage the use of this mood-induction procedure as a neurobehavioral probe in physiologic neuroimaging studies for investigating the neural substrates of emotional experience. PMID:8197269

  12. FaceWarehouse: a 3D facial expression database for visual computing.

    PubMed

    Cao, Chen; Weng, Yanlin; Zhou, Shun; Tong, Yiying; Zhou, Kun

    2014-03-01

    We present FaceWarehouse, a database of 3D facial expressions for visual computing applications. We use Kinect, an off-the-shelf RGBD camera, to capture 150 individuals aged 7-80 from various ethnic backgrounds. For each person, we captured the RGBD data of her different expressions, including the neutral expression and 19 other expressions such as mouth-opening, smile, kiss, etc. For every RGBD raw data record, a set of facial feature points on the color image such as eye corners, mouth contour, and the nose tip are automatically localized, and manually adjusted if better accuracy is required. We then deform a template facial mesh to fit the depth data as closely as possible while matching the feature points on the color image to their corresponding points on the mesh. Starting from these fitted face meshes, we construct a set of individual-specific expression blendshapes for each person. These meshes with consistent topology are assembled as a rank-3 tensor to build a bilinear face model with two attributes: identity and expression. Compared with previous 3D facial databases, for every person in our database, there is a much richer matching collection of expressions, enabling depiction of most human facial actions. We demonstrate the potential of FaceWarehouse for visual computing with four applications: facial image manipulation, face component transfer, real-time performance-based facial image animation, and facial animation retargeting from video to image. PMID:24434222

  13. FaceWarehouse: A 3D Facial Expression Database for Visual Computing.

    PubMed

    Cao, Chen; Weng, Yanlin; Zhou, Shun; Tong, Yiying; Zhou, Kun

    2013-10-25

    We present FaceWarehouse, a database of 3D facial expressions for visual computing applications. We use Microsoft's Kinect system to capture 150 individuals from various ethnic backgrounds. For each person, we captured the RGBD data of her different expressions, including the neutral expression and 19 other expressions. For every raw data record, a set of facial feature points on the color image such as eye corners and mouth contour are automatically localized, and manually adjusted if better accuracy is required. We then deform a template facial mesh to fit the depth data as closely as possible while matching the feature points on the color image to their corresponding points on the mesh. Starting from these fitted face meshes, we construct a set of individual-specific expression blendshapes for each person. These meshes with consistent topology are assembled as a rank-three tensor to build a bilinear face model with two attributes, identity and expression. Compared with previous 3D facial databases, for every person in our database, there is a much richer matching collection of expressions, enabling depiction of most human facial actions. We demonstrate the potential of FaceWarehouse with four applications: facial image manipulation, face component transfer, real-time performance-based facial image animation, and facial animation retargeting from video to image. PMID:24166613

  14. Capturing Physiology of Emotion along Facial Muscles: A Method of Distinguishing Feigned from Involuntary Expressions

    NASA Astrophysics Data System (ADS)

    Khan, Masood Mehmood; Ward, Robert D.; Ingleby, Michael

    The ability to distinguish feigned from involuntary expressions of emotions could help in the investigation and treatment of neuropsychiatric and affective disorders and in the detection of malingering. This work investigates differences in emotion-specific patterns of thermal variations along the major facial muscles. Using experimental data extracted from 156 images, we attempted to classify patterns of emotion-specific thermal variations into neutral, and voluntary and involuntary expressions of positive and negative emotive states. Initial results suggest (i) each facial muscle exhibits a unique thermal response to various emotive states; (ii) the pattern of thermal variances along the facial muscles may assist in classifying voluntary and involuntary facial expressions; and (iii) facial skin temperature measurements along the major facial muscles may be used in automated emotion assessment.

  15. Gaze Behavior of Children with ASD toward Pictures of Facial Expressions

    PubMed Central

    Matsuda, Soichiro; Minagawa, Yasuyo; Yamamoto, Junichi

    2015-01-01

    Atypical gaze behavior in response to a face has been well documented in individuals with autism spectrum disorders (ASDs). Children with ASD appear to differ from typically developing (TD) children in gaze behavior for spoken and dynamic face stimuli but not for nonspeaking, static face stimuli. Furthermore, children with ASD and TD children show a difference in their gaze behavior for certain expressions. However, few studies have examined the relationship between autism severity and gaze behavior toward certain facial expressions. The present study replicated and extended previous studies by examining gaze behavior towards pictures of facial expressions. We presented ASD and TD children with pictures of surprised, happy, neutral, angry, and sad facial expressions. Autism severity was assessed using the Childhood Autism Rating Scale (CARS). The results showed that there was no group difference in gaze behavior when looking at pictures of facial expressions. Conversely, the children with ASD who had more severe autistic symptomatology had a tendency to gaze at angry facial expressions for a shorter duration in comparison to other facial expressions. These findings suggest that autism severity should be considered when examining atypical responses to certain facial expressions. PMID:26090223

  16. Can We Distinguish Emotions from Faces? Investigation of Implicit and Explicit Processes of Peak Facial Expressions

    PubMed Central

    Xiao, Ruiqi; Li, Xianchun; Li, Lin; Wang, Yanmei

    2016-01-01

    Most previous studies on facial expression recognition have focused on the moderate emotions; to date, few studies have been conducted to investigate the explicit and implicit processes of peak emotions. In the current study, we used transiently peak intense expression images of athletes at the winning or losing point in competition as materials, and investigated the diagnosability of peak facial expressions at both implicit and explicit levels. In Experiment 1, participants were instructed to evaluate isolated faces, isolated bodies, and the face-body compounds, and eye-tracking movement was recorded. The results revealed that the isolated body and face-body congruent images were better recognized than isolated face and face-body incongruent images, indicating that the emotional information conveyed by facial cues was ambiguous, and the body cues influenced facial emotion recognition. Furthermore, eye movement records showed that the participants displayed distinct gaze patterns for the congruent and incongruent compounds. In Experiment 2A, the subliminal affective priming task was used, with faces as primes and bodies as targets, to investigate the unconscious emotion perception of peak facial expressions. The results showed that winning face prime facilitated reaction to winning body target, whereas losing face prime inhibited reaction to winning body target, suggesting that peak facial expressions could be perceived at the implicit level. In general, the results indicate that peak facial expressions cannot be consciously recognized but can be perceived at the unconscious level. In Experiment 2B, revised subliminal affective priming task and a strict awareness test were used to examine the validity of unconscious perception of peak facial expressions found in Experiment 2A. Results of Experiment 2B showed that reaction time to both winning body targets and losing body targets was influenced by the invisibly peak facial expression primes, which indicated the

  17. Can Healthy Fetuses Show Facial Expressions of “Pain” or “Distress”?

    PubMed Central

    Reissland, Nadja; Francis, Brian; Mason, James

    2013-01-01

    Background With advances of research on fetal behavioural development, the question of whether we can identify fetal facial expressions and determine their developmental progression, takes on greater importance. In this study we investigate longitudinally the increasing complexity of combinations of facial movements from 24 to 36 weeks gestation in a sample of healthy fetuses using frame-by-frame coding of 4-D ultrasound scans. The primary aim was to examine whether these complex facial movements coalesce into a recognisable facial expression of pain/distress. Methodology/Findings Fifteen fetuses (8 girls, 7 boys) were observed four times in the second and third trimester of pregnancy. Fetuses showed significant progress towards more complex facial expressions as gestational age increased. Statistical analysis of the facial movements making up a specific facial configuration namely “pain/distress” also demonstrates that this facial expression becomes significantly more complete as the fetus matures. Conclusions/Significance The study shows that one can determine the normal progression of fetal facial movements. Furthermore, our results suggest that healthy fetuses progress towards an increasingly complete pain/distress expression as they mature. We argue that this is an adaptive process which is beneficial to the fetus postnatally and has the potential to identify normal versus abnormal developmental pathways. PMID:23755245

  18. Pose-variant facial expression recognition using an embedded image system

    NASA Astrophysics Data System (ADS)

    Song, Kai-Tai; Han, Meng-Ju; Chang, Shuo-Hung

    2008-12-01

    In recent years, one of the most attractive research areas in human-robot interaction is automated facial expression recognition. Through recognizing the facial expression, a pet robot can interact with human in a more natural manner. In this study, we focus on the facial pose-variant problem. A novel method is proposed in this paper to recognize pose-variant facial expressions. After locating the face position in an image frame, the active appearance model (AAM) is applied to track facial features. Fourteen feature points are extracted to represent the variation of facial expressions. The distance between feature points are defined as the feature values. These feature values are sent to a support vector machine (SVM) for facial expression determination. The pose-variant facial expression is classified into happiness, neutral, sadness, surprise or anger. Furthermore, in order to evaluate the performance for practical applications, this study also built a low resolution database (160x120 pixels) using a CMOS image sensor. Experimental results show that the recognition rate is 84% with the self-built database.

  19. The Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults

    PubMed Central

    LoBue, Vanessa; Thrasher, Cat

    2014-01-01

    Emotional development is one of the largest and most productive areas of psychological research. For decades, researchers have been fascinated by how humans respond to, detect, and interpret emotional facial expressions. Much of the research in this area has relied on controlled stimulus sets of adults posing various facial expressions. Here we introduce a new stimulus set of emotional facial expressions into the domain of research on emotional development—The Child Affective Facial Expression set (CAFE). The CAFE set features photographs of a racially and ethnically diverse group of 2- to 8-year-old children posing for six emotional facial expressions—angry, fearful, sad, happy, surprised, and disgusted—and a neutral face. In the current work, we describe the set and report validity and reliability data on the set from 100 untrained adult participants. PMID:25610415

  20. Dissociable roles of internal feelings and face recognition ability in facial expression decoding.

    PubMed

    Zhang, Lin; Song, Yiying; Liu, Ling; Liu, Jia

    2016-05-15

    The problem of emotion recognition has been tackled by researchers in both affective computing and cognitive neuroscience. While affective computing relies on analyzing visual features from facial expressions, it has been proposed that humans recognize emotions by internally simulating the emotional states conveyed by others' expressions, in addition to perceptual analysis of facial features. Here we investigated whether and how our internal feelings contributed to the ability to decode facial expressions. In two independent large samples of participants, we observed that individuals who generally experienced richer internal feelings exhibited a higher ability to decode facial expressions, and the contribution of internal feelings was independent of face recognition ability. Further, using voxel-based morphometry, we found that the gray matter volume (GMV) of bilateral superior temporal sulcus (STS) and the right inferior parietal lobule was associated with facial expression decoding through the mediating effect of internal feelings, while the GMV of bilateral STS, precuneus, and the right central opercular cortex contributed to facial expression decoding through the mediating effect of face recognition ability. In addition, the clusters in bilateral STS involved in the two components were neighboring yet separate. Our results may provide clues about the mechanism by which internal feelings, in addition to face recognition ability, serve as an important instrument for humans in facial expression decoding. PMID:26908317

  1. Cognitive tasks during expectation affect the congruency ERP effects to facial expressions

    PubMed Central

    Lin, Huiyan; Schulz, Claudia; Straube, Thomas

    2015-01-01

    Expectancy congruency has been shown to modulate event-related potentials (ERPs) to emotional stimuli, such as facial expressions. However, it is unknown whether the congruency ERP effects to facial expressions can be modulated by cognitive manipulations during stimulus expectation. To this end, electroencephalography (EEG) was recorded while participants viewed (neutral and fearful) facial expressions. Each trial started with a cue, predicting a facial expression, followed by an expectancy interval without any cues and subsequently the face. In half of the trials, participants had to solve a cognitive task in which different letters were presented for target letter detection during the expectancy interval. Furthermore, facial expressions were congruent with the cues in 75% of all trials. ERP results revealed that for fearful faces, the cognitive task during expectation altered the congruency effect in N170 amplitude; congruent compared to incongruent fearful faces evoked larger N170 in the non-task condition but the congruency effect was not evident in the task condition. Regardless of facial expression, the congruency effect was generally altered by the cognitive task during expectation in P3 amplitude; the amplitudes were larger for incongruent compared to congruent faces in the non-task condition but the congruency effect was not shown in the task condition. The findings indicate that cognitive tasks during expectation reduce the processing of expectation and subsequently, alter congruency ERP effects to facial expressions. PMID:26578938

  2. Facial feedback affects valence judgments of dynamic and static emotional expressions.

    PubMed

    Hyniewska, Sylwia; Sato, Wataru

    2015-01-01

    The ability to judge others' emotions is required for the establishment and maintenance of smooth interactions in a community. Several lines of evidence suggest that the attribution of meaning to a face is influenced by the facial actions produced by an observer during the observation of a face. However, empirical studies testing causal relationships between observers' facial actions and emotion judgments have reported mixed findings. This issue was investigated by measuring emotion judgments in terms of valence and arousal dimensions while comparing dynamic vs. static presentations of facial expressions. We presented pictures and videos of facial expressions of anger and happiness. Participants (N = 36) were asked to differentiate between the gender of faces by activating the corrugator supercilii muscle (brow lowering) and zygomaticus major muscle (cheek raising). They were also asked to evaluate the internal states of the stimuli using the affect grid while maintaining the facial action until they finished responding. The cheek raising condition increased the attributed valence scores compared with the brow-lowering condition. This effect of facial actions was observed for static as well as for dynamic facial expressions. These data suggest that facial feedback mechanisms contribute to the judgment of the valence of emotional facial expressions. PMID:25852608

  3. Effects of cultural characteristics on building an emotion classifier through facial expression analysis

    NASA Astrophysics Data System (ADS)

    da Silva, Flávio Altinier Maximiano; Pedrini, Helio

    2015-03-01

    Facial expressions are an important demonstration of humanity's humors and emotions. Algorithms capable of recognizing facial expressions and associating them with emotions were developed and employed to compare the expressions that different cultural groups use to show their emotions. Static pictures of predominantly occidental and oriental subjects from public datasets were used to train machine learning algorithms, whereas local binary patterns, histogram of oriented gradients (HOGs), and Gabor filters were employed to describe the facial expressions for six different basic emotions. The most consistent combination, formed by the association of HOG filter and support vector machines, was then used to classify the other cultural group: there was a strong drop in accuracy, meaning that the subtle differences of facial expressions of each culture affected the classifier performance. Finally, a classifier was trained with images from both occidental and oriental subjects and its accuracy was higher on multicultural data, evidencing the need of a multicultural training set to build an efficient classifier.

  4. A Modified Sparse Representation Method for Facial Expression Recognition

    PubMed Central

    Wang, Wei; Xu, LiHong

    2016-01-01

    In this paper, we carry on research on a facial expression recognition method, which is based on modified sparse representation recognition (MSRR) method. On the first stage, we use Haar-like+LPP to extract feature and reduce dimension. On the second stage, we adopt LC-K-SVD (Label Consistent K-SVD) method to train the dictionary, instead of adopting directly the dictionary from samples, and add block dictionary training into the training process. On the third stage, stOMP (stagewise orthogonal matching pursuit) method is used to speed up the convergence of OMP (orthogonal matching pursuit). Besides, a dynamic regularization factor is added to iteration process to suppress noises and enhance accuracy. We verify the proposed method from the aspect of training samples, dimension, feature extraction and dimension reduction methods and noises in self-built database and Japan's JAFFE and CMU's CK database. Further, we compare this sparse method with classic SVM and RVM and analyze the recognition effect and time efficiency. The result of simulation experiment has shown that the coefficient of MSRR method contains classifying information, which is capable of improving the computing speed and achieving a satisfying recognition result. PMID:26880878

  5. A Modified Sparse Representation Method for Facial Expression Recognition.

    PubMed

    Wang, Wei; Xu, LiHong

    2016-01-01

    In this paper, we carry on research on a facial expression recognition method, which is based on modified sparse representation recognition (MSRR) method. On the first stage, we use Haar-like+LPP to extract feature and reduce dimension. On the second stage, we adopt LC-K-SVD (Label Consistent K-SVD) method to train the dictionary, instead of adopting directly the dictionary from samples, and add block dictionary training into the training process. On the third stage, stOMP (stagewise orthogonal matching pursuit) method is used to speed up the convergence of OMP (orthogonal matching pursuit). Besides, a dynamic regularization factor is added to iteration process to suppress noises and enhance accuracy. We verify the proposed method from the aspect of training samples, dimension, feature extraction and dimension reduction methods and noises in self-built database and Japan's JAFFE and CMU's CK database. Further, we compare this sparse method with classic SVM and RVM and analyze the recognition effect and time efficiency. The result of simulation experiment has shown that the coefficient of MSRR method contains classifying information, which is capable of improving the computing speed and achieving a satisfying recognition result. PMID:26880878

  6. Neural mechanism of unconscious perception of surprised facial expression.

    PubMed

    Duan, Xujun; Dai, Qian; Gong, Qiyong; Chen, Huafu

    2010-08-01

    Previous functional neuroimaging studies have uncovered partly separable neural substrates for perceiving different facial expressions presented below the level of conscious awareness. However, as one of the six basic emotions, the neural mechanism of unconsciously perceiving surprised faces has not yet been investigated. Using a backward masking procedure, we studied the neural activities in response to surprised faces presented below the threshold of conscious visual perception by means of functional magnetic resonance imaging (fMRI). Eighteen healthy adults were scanned while viewing surprised faces, which presented for 33 ms and immediately "masked" by a neutral face for 467 ms. As a control, they viewed masked happy or neutral faces as well. In comparison to both control conditions, masked surprised faces yielded significantly greater activation in the parahippocampal gyrus and fusiform gyrus, which associated previously with novelty detection. In the present study, automatic activation of these areas to masked surprised faces was investigated as a function of individual differences in the ability of identifying and differentiating one's emotions, as assessed by the 20-item Toronto Alexithymia Scale (TAS-20). The correlation results showed that, the subscale, Difficulty Identifying Feelings, was negatively correlated with the neural response of these areas to masked surprised faces, which suggest that decreased activation magnitude in specific brain regions may reflect increased difficulties in recognizing one's emotions in everyday life. Additionally, we confirmed activation of the right amygdala and right thalamus to the masked surprised faces, which was previously proved to be involved in the unconscious emotional perception system. PMID:20398771

  7. Realistic Facial Expression of Virtual Human Based on Color, Sweat, and Tears Effects

    PubMed Central

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics. PMID:25136663

  8. Realistic facial expression of virtual human based on color, sweat, and tears effects.

    PubMed

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics. PMID:25136663

  9. Automated decoding of facial expressions reveals marked differences in children when telling antisocial versus prosocial lies.

    PubMed

    Zanette, Sarah; Gao, Xiaoqing; Brunet, Megan; Bartlett, Marian Stewart; Lee, Kang

    2016-10-01

    The current study used computer vision technology to examine the nonverbal facial expressions of children (6-11years old) telling antisocial and prosocial lies. Children in the antisocial lying group completed a temptation resistance paradigm where they were asked not to peek at a gift being wrapped for them. All children peeked at the gift and subsequently lied about their behavior. Children in the prosocial lying group were given an undesirable gift and asked if they liked it. All children lied about liking the gift. Nonverbal behavior was analyzed using the Computer Expression Recognition Toolbox (CERT), which employs the Facial Action Coding System (FACS), to automatically code children's facial expressions while lying. Using CERT, children's facial expressions during antisocial and prosocial lying were accurately and reliably differentiated significantly above chance-level accuracy. The basic expressions of emotion that distinguished antisocial lies from prosocial lies were joy and contempt. Children expressed joy more in prosocial lying than in antisocial lying. Girls showed more joy and less contempt compared with boys when they told prosocial lies. Boys showed more contempt when they told prosocial lies than when they told antisocial lies. The key action units (AUs) that differentiate children's antisocial and prosocial lies are blink/eye closure, lip pucker, and lip raise on the right side. Together, these findings indicate that children's facial expressions differ while telling antisocial versus prosocial lies. The reliability of CERT in detecting such differences in facial expression suggests the viability of using computer vision technology in deception research. PMID:27318957

  10. Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition.

    PubMed

    Willis, Megan L; Murphy, Jillian M; Ridley, Nicole J; Vercammen, Ans

    2015-12-01

    The orbitofrontal cortex (OFC) has been implicated in the capacity to accurately recognise facial expressions. The aim of the current study was to determine if anodal transcranial direct current stimulation (tDCS) targeting the right OFC in healthy adults would enhance facial expression recognition, compared with a sham condition. Across two counterbalanced sessions of tDCS (i.e. anodal and sham), 20 undergraduate participants (18 female) completed a facial expression labelling task comprising angry, disgusted, fearful, happy, sad and neutral expressions, and a control (social judgement) task comprising the same expressions. Responses on the labelling task were scored for accuracy, median reaction time and overall efficiency (i.e. combined accuracy and reaction time). Anodal tDCS targeting the right OFC enhanced facial expression recognition, reflected in greater efficiency and speed of recognition across emotions, relative to the sham condition. In contrast, there was no effect of tDCS to responses on the control task. This is the first study to demonstrate that anodal tDCS targeting the right OFC boosts facial expression recognition. This finding provides a solid foundation for future research to examine the efficacy of this technique as a means to treat facial expression recognition deficits, particularly in individuals with OFC damage or dysfunction. PMID:25971602

  11. Multi-layer sparse representation for weighted LBP-patches based facial expression recognition.

    PubMed

    Jia, Qi; Gao, Xinkai; Guo, He; Luo, Zhongxuan; Wang, Yi

    2015-01-01

    In this paper, a novel facial expression recognition method based on sparse representation is proposed. Most contemporary facial expression recognition systems suffer from limited ability to handle image nuisances such as low resolution and noise. Especially for low intensity expression, most of the existing training methods have quite low recognition rates. Motivated by sparse representation, the problem can be solved by finding sparse coefficients of the test image by the whole training set. Deriving an effective facial representation from original face images is a vital step for successful facial expression recognition. We evaluate facial representation based on weighted local binary patterns, and Fisher separation criterion is used to calculate the weighs of patches. A multi-layer sparse representation framework is proposed for multi-intensity facial expression recognition, especially for low-intensity expressions and noisy expressions in reality, which is a critical problem but seldom addressed in the existing works. To this end, several experiments based on low-resolution and multi-intensity expressions are carried out. Promising results on publicly available databases demonstrate the potential of the proposed approach. PMID:25808772

  12. Cultural similarities and differences in perceiving and recognizing facial expressions of basic emotions.

    PubMed

    Yan, Xiaoqian; Andrews, Timothy J; Young, Andrew W

    2016-03-01

    The ability to recognize facial expressions of basic emotions is often considered a universal human ability. However, recent studies have suggested that this commonality has been overestimated and that people from different cultures use different facial signals to represent expressions (Jack, Blais, Scheepers, Schyns, & Caldara, 2009; Jack, Caldara, & Schyns, 2012). We investigated this possibility by examining similarities and differences in the perception and categorization of facial expressions between Chinese and white British participants using whole-face and partial-face images. Our results showed no cultural difference in the patterns of perceptual similarity of expressions from whole-face images. When categorizing the same expressions, however, both British and Chinese participants were slightly more accurate with whole-face images of their own ethnic group. To further investigate potential strategy differences, we repeated the perceptual similarity and categorization tasks with presentation of only the upper or lower half of each face. Again, the perceptual similarity of facial expressions was similar between Chinese and British participants for both the upper and lower face regions. However, participants were slightly better at categorizing facial expressions of their own ethnic group for the lower face regions, indicating that the way in which culture shapes the categorization of facial expressions is largely driven by differences in information decoding from this part of the face. PMID:26480247

  13. Does Facial Expressivity Count? How Typically Developing Children Respond Initially to Children with Autism

    ERIC Educational Resources Information Center

    Stagg, Steven D.; Slavny, Rachel; Hand, Charlotte; Cardoso, Alice; Smith, Pamela

    2014-01-01

    Research investigating expressivity in children with autism spectrum disorder has reported flat affect or bizarre facial expressivity within this population; however, the impact expressivity may have on first impression formation has received little research input. We examined how videos of children with autism spectrum disorder were rated for…

  14. Influence of Intensity on Children's Sensitivity to Happy, Sad, and Fearful Facial Expressions

    ERIC Educational Resources Information Center

    Gao, Xiaoqing; Maurer, Daphne

    2009-01-01

    Most previous studies investigating children's ability to recognize facial expressions used only intense exemplars. Here we compared the sensitivity of 5-, 7-, and 10-year-olds with that of adults (n = 24 per age group) for less intense expressions of happiness, sadness, and fear. The developmental patterns differed across expressions. For…

  15. Revisiting the Relationship between the Processing of Gaze Direction and the Processing of Facial Expression

    ERIC Educational Resources Information Center

    Ganel, Tzvi

    2011-01-01

    There is mixed evidence on the nature of the relationship between the perception of gaze direction and the perception of facial expressions. Major support for shared processing of gaze and expression comes from behavioral studies that showed that observers cannot process expression or gaze and ignore irrelevant variations in the other dimension.…

  16. Judgment of facial expressions of emotion as a function of exposure time.

    PubMed

    Kirouac, G; Doré, F Y

    1984-08-01

    The purpose of this experiment was to study the accuracy of judgment of facial expressions of emotions that were displayed for very brief exposure times. Twenty university students were shown facial stimuli that were presented for durations ranging from 10 to 50 msec. The data showed that accuracy of judgment reached a fairly high level even at very brief exposure times and that human observers are especially competent to process very rapid changes in facial appearance. PMID:6493929

  17. Face-selective regions differ in their ability to classify facial expressions.

    PubMed

    Zhang, Hui; Japee, Shruti; Nolan, Rachel; Chu, Carlton; Liu, Ning; Ungerleider, Leslie G

    2016-04-15

    Recognition of facial expressions is crucial for effective social interactions. Yet, the extent to which the various face-selective regions in the human brain classify different facial expressions remains unclear. We used functional magnetic resonance imaging (fMRI) and support vector machine pattern classification analysis to determine how well face-selective brain regions are able to decode different categories of facial expression. Subjects participated in a slow event-related fMRI experiment in which they were shown 32 face pictures, portraying four different expressions: neutral, fearful, angry, and happy and belonging to eight different identities. Our results showed that only the amygdala and the posterior superior temporal sulcus (STS) were able to accurately discriminate between these expressions, albeit in different ways: the amygdala discriminated fearful faces from non-fearful faces, whereas STS discriminated neutral from emotional (fearful, angry and happy) faces. In contrast to these findings on the classification of emotional expression, only the fusiform face area (FFA) and anterior inferior temporal cortex (aIT) could discriminate among the various facial identities. Further, the amygdala and STS were better than FFA and aIT at classifying expression, while FFA and aIT were better than the amygdala and STS at classifying identity. Taken together, our findings indicate that the decoding of facial emotion and facial identity occurs in different neural substrates: the amygdala and STS for the former and FFA and aIT for the latter. PMID:26826513

  18. Recognition of facial expressions and prosodic cues with graded emotional intensities in adults with Asperger syndrome.

    PubMed

    Doi, Hirokazu; Fujisawa, Takashi X; Kanai, Chieko; Ohta, Haruhisa; Yokoi, Hideki; Iwanami, Akira; Kato, Nobumasa; Shinohara, Kazuyuki

    2013-09-01

    This study investigated the ability of adults with Asperger syndrome to recognize emotional categories of facial expressions and emotional prosodies with graded emotional intensities. The individuals with Asperger syndrome showed poorer recognition performance for angry and sad expressions from both facial and vocal information. The group difference in facial expression recognition was prominent for stimuli with low or intermediate emotional intensities. In contrast to this, the individuals with Asperger syndrome exhibited lower recognition accuracy than typically-developed controls mainly for emotional prosody with high emotional intensity. In facial expression recognition, Asperger and control groups showed an inversion effect for all categories. The magnitude of this effect was less in the Asperger group for angry and sad expressions, presumably attributable to reduced recruitment of the configural mode of face processing. The individuals with Asperger syndrome outperformed the control participants in recognizing inverted sad expressions, indicating enhanced processing of local facial information representing sad emotion. These results suggest that the adults with Asperger syndrome rely on modality-specific strategies in emotion recognition from facial expression and prosodic information. PMID:23371506

  19. Recognition of Facially Expressed Emotions and Visual Search Strategies in Adults with Asperger Syndrome

    ERIC Educational Resources Information Center

    Falkmer, Marita; Bjallmark, Anna; Larsson, Matilda; Falkmer, Torbjorn

    2011-01-01

    Can the disadvantages persons with Asperger syndrome frequently experience with reading facially expressed emotions be attributed to a different visual perception, affecting their scanning patterns? Visual search strategies, particularly regarding the importance of information from the eye area, and the ability to recognise facially expressed…

  20. 3D Face Model Dataset: Automatic Detection of Facial Expressions and Emotions for Educational Environments

    ERIC Educational Resources Information Center

    Chickerur, Satyadhyan; Joshi, Kartik

    2015-01-01

    Emotion detection using facial images is a technique that researchers have been using for the last two decades to try to analyze a person's emotional state given his/her image. Detection of various kinds of emotion using facial expressions of students in educational environment is useful in providing insight into the effectiveness of tutoring…

  1. Rules versus Prototype Matching: Strategies of Perception of Emotional Facial Expressions in the Autism Spectrum

    ERIC Educational Resources Information Center

    Rutherford, M. D.; McIntosh, Daniel N.

    2007-01-01

    When perceiving emotional facial expressions, people with autistic spectrum disorders (ASD) appear to focus on individual facial features rather than configurations. This paper tests whether individuals with ASD use these features in a rule-based strategy of emotional perception, rather than a typical, template-based strategy by considering…

  2. Recognition of facial expressions of emotion in adults with Down syndrome.

    PubMed

    Virji-Babul, Naznin; Watt, Kimberley; Nathoo, Farouk; Johnson, Peter

    2012-08-01

    Research on facial expressions in individuals with Down syndrome (DS) has been conducted using photographs. Our goal was to examine the effect of motion on perception of emotional expressions. Adults with DS, adults with typical development matched for chronological age (CA), and children with typical development matched for developmental age (DA) viewed photographs and video clips of facial expressions of: happy, sad, mad, and scared. The odds of accurate identification of facial expressions were 2.7 times greater for video clips compared with photographs. The odds of accurate identification of expressions of mad and scared were greater for video clips compared with photographs. The odds of accurate identification of expressions of mad and sad were greater for adults but did not differ between adults with DS and children. Adults with DS demonstrated the lowest accuracy for recognition of scared. These results support the importance of motion cues in evaluating the social skills of individuals with DS. PMID:22304421

  3. Dysfunctional facial emotional expression and comprehension in a patient with corticobasal degeneration.

    PubMed

    Kluger, Benzi M; Heilman, Kenneth M

    2007-06-01

    Patients with corticobasal degeneration (CBD) frequently develop orofacial apraxia but little is known about CBD's influence on emotional facial processing. We describe a patient who developed a facial apraxia including an impaired ability to voluntarily generate facial expressions with relative sparing of spontaneous emotional faces. Her ability to interpret the facial expressions of others was also severely impaired. Despite these deficits, the patient had normal affect and normal speech, including expressive and receptive emotional prosody. As patients with corticobasal degeneration are known to manifest both orofacial apraxia and visuospatial dysfunction this patient's expressive and receptive deficits may be independent manifestations of the same underlying disease process. Alternatively, these functions may share a common neuroanatomic substrate that degenerates with CBD. PMID:17786775

  4. Dogs Evaluate Threatening Facial Expressions by Their Biological Validity--Evidence from Gazing Patterns.

    PubMed

    Somppi, Sanni; Törnqvist, Heini; Kujala, Miiamaaria V; Hänninen, Laura; Krause, Christina M; Vainio, Outi

    2016-01-01

    Appropriate response to companions' emotional signals is important for all social creatures. The emotional expressions of humans and non-human animals have analogies in their form and function, suggesting shared evolutionary roots, but very little is known about how animals other than primates view and process facial expressions. In primates, threat-related facial expressions evoke exceptional viewing patterns compared with neutral or positive stimuli. Here, we explore if domestic dogs (Canis familiaris) have such an attentional bias toward threatening social stimuli and whether observed emotional expressions affect dogs' gaze fixation distribution among the facial features (eyes, midface and mouth). We recorded the voluntary eye gaze of 31 domestic dogs during viewing of facial photographs of humans and dogs with three emotional expressions (threatening, pleasant and neutral). We found that dogs' gaze fixations spread systematically among facial features. The distribution of fixations was altered by the seen expression, but eyes were the most probable targets of the first fixations and gathered longer looking durations than mouth regardless of the viewed expression. The examination of the inner facial features as a whole revealed more pronounced scanning differences among expressions. This suggests that dogs do not base their perception of facial expressions on the viewing of single structures, but the interpretation of the composition formed by eyes, midface and mouth. Dogs evaluated social threat rapidly and this evaluation led to attentional bias, which was dependent on the depicted species: threatening conspecifics' faces evoked heightened attention but threatening human faces instead an avoidance response. We propose that threatening signals carrying differential biological validity are processed via distinctive neurocognitive pathways. Both of these mechanisms may have an adaptive significance for domestic dogs. The findings provide a novel perspective on

  5. Dogs Evaluate Threatening Facial Expressions by Their Biological Validity – Evidence from Gazing Patterns

    PubMed Central

    Somppi, Sanni; Törnqvist, Heini; Kujala, Miiamaaria V.; Hänninen, Laura; Krause, Christina M.; Vainio, Outi

    2016-01-01

    Appropriate response to companions’ emotional signals is important for all social creatures. The emotional expressions of humans and non-human animals have analogies in their form and function, suggesting shared evolutionary roots, but very little is known about how animals other than primates view and process facial expressions. In primates, threat-related facial expressions evoke exceptional viewing patterns compared with neutral or positive stimuli. Here, we explore if domestic dogs (Canis familiaris) have such an attentional bias toward threatening social stimuli and whether observed emotional expressions affect dogs’ gaze fixation distribution among the facial features (eyes, midface and mouth). We recorded the voluntary eye gaze of 31 domestic dogs during viewing of facial photographs of humans and dogs with three emotional expressions (threatening, pleasant and neutral). We found that dogs’ gaze fixations spread systematically among facial features. The distribution of fixations was altered by the seen expression, but eyes were the most probable targets of the first fixations and gathered longer looking durations than mouth regardless of the viewed expression. The examination of the inner facial features as a whole revealed more pronounced scanning differences among expressions. This suggests that dogs do not base their perception of facial expressions on the viewing of single structures, but the interpretation of the composition formed by eyes, midface and mouth. Dogs evaluated social threat rapidly and this evaluation led to attentional bias, which was dependent on the depicted species: threatening conspecifics’ faces evoked heightened attention but threatening human faces instead an avoidance response. We propose that threatening signals carrying differential biological validity are processed via distinctive neurocognitive pathways. Both of these mechanisms may have an adaptive significance for domestic dogs. The findings provide a novel

  6. Impact of Childhood Maltreatment on the Recognition of Facial Expressions of Emotions

    PubMed Central

    Ardizzi, Martina; Martini, Francesca; Umiltà, Maria Alessandra; Evangelista, Valentina; Ravera, Roberto; Gallese, Vittorio

    2015-01-01

    The development of the explicit recognition of facial expressions of emotions can be affected by childhood maltreatment experiences. A previous study demonstrated the existence of an explicit recognition bias for angry facial expressions among a population of adolescent Sierra Leonean street-boys exposed to high levels of maltreatment. In the present study, the recognition bias for angry facial expressions was investigated in a younger population of street-children and age-matched controls. Participants performed a forced-choice facial expressions recognition task. Recognition bias was measured as participants’ tendency to over-attribute anger label to other negative facial expressions. Participants’ heart rate was assessed and related to their behavioral performance, as index of their stress-related physiological responses. Results demonstrated the presence of a recognition bias for angry facial expressions among street-children, also pinpointing a similar, although significantly less pronounced, tendency among controls. Participants’ performance was controlled for age, cognitive and educational levels and for naming skills. None of these variables influenced the recognition bias for angry facial expressions. Differently, a significant effect of heart rate on participants’ tendency to use anger label was evidenced. Taken together, these results suggest that childhood exposure to maltreatment experiences amplifies children’s “pre-existing bias” for anger labeling in forced-choice emotion recognition task. Moreover, they strengthen the thesis according to which the recognition bias for angry facial expressions is a manifestation of a functional adaptive mechanism that tunes victim’s perceptive and attentive focus on salient environmental social stimuli. PMID:26509890

  7. Interpreting text messages with graphic facial expression by deaf and hearing people

    PubMed Central

    Saegusa, Chihiro; Namatame, Miki; Watanabe, Katsumi

    2015-01-01

    In interpreting verbal messages, humans use not only verbal information but also non-verbal signals such as facial expression. For example, when a person says “yes” with a troubled face, what he or she really means appears ambiguous. In the present study, we examined how deaf and hearing people differ in perceiving real meanings in texts accompanied by representations of facial expression. Deaf and hearing participants were asked to imagine that the face presented on the computer monitor was asked a question from another person (e.g., do you like her?). They observed either a realistic or a schematic face with a different magnitude of positive or negative expression on a computer monitor. A balloon that contained either a positive or negative text response to the question appeared at the same time as the face. Then, participants rated how much the individual on the monitor really meant it (i.e., perceived earnestness), using a 7-point scale. Results showed that the facial expression significantly modulated the perceived earnestness. The influence of positive expression on negative text responses was relatively weaker than that of negative expression on positive responses (i.e., “no” tended to mean “no” irrespective of facial expression) for both participant groups. However, this asymmetrical effect was stronger in the hearing group. These results suggest that the contribution of facial expression in perceiving real meanings from text messages is qualitatively similar but quantitatively different between deaf and hearing people. PMID:25883582

  8. Recognizing dynamic facial expressions of emotion: Specificity and intensity effects in event-related brain potentials.

    PubMed

    Recio, Guillermo; Schacht, Annekathrin; Sommer, Werner

    2014-02-01

    Emotional facial expressions usually arise dynamically from a neutral expression. Yet, most previous research focused on static images. The present study investigated basic aspects of processing dynamic facial expressions. In two experiments, we presented short videos of facial expressions of six basic emotions and non-emotional facial movements emerging at variable and fixed rise times, attaining different intensity levels. In event-related brain potentials (ERP), effects of emotion but also for non-emotional movements appeared as early posterior negativity (EPN) between 200 and 350ms, suggesting an overall facilitation of early visual encoding for all facial movements. These EPN effects were emotion-unspecific. In contrast, relative to happiness and neutral expressions, negative emotional expressions elicited larger late positive ERP components (LPCs), indicating a more elaborate processing. Both EPN and LPC amplitudes increased with expression intensity. Effects of emotion and intensity were additive, indicating that intensity (understood as the degree of motion) increases the impact of emotional expressions but not its quality. These processes can be driven by all basic emotions, and there is little emotion-specificity even when statistical power is considerable (N (Experiment 2)=102). PMID:24361701

  9. Interpreting text messages with graphic facial expression by deaf and hearing people.

    PubMed

    Saegusa, Chihiro; Namatame, Miki; Watanabe, Katsumi

    2015-01-01

    In interpreting verbal messages, humans use not only verbal information but also non-verbal signals such as facial expression. For example, when a person says "yes" with a troubled face, what he or she really means appears ambiguous. In the present study, we examined how deaf and hearing people differ in perceiving real meanings in texts accompanied by representations of facial expression. Deaf and hearing participants were asked to imagine that the face presented on the computer monitor was asked a question from another person (e.g., do you like her?). They observed either a realistic or a schematic face with a different magnitude of positive or negative expression on a computer monitor. A balloon that contained either a positive or negative text response to the question appeared at the same time as the face. Then, participants rated how much the individual on the monitor really meant it (i.e., perceived earnestness), using a 7-point scale. Results showed that the facial expression significantly modulated the perceived earnestness. The influence of positive expression on negative text responses was relatively weaker than that of negative expression on positive responses (i.e., "no" tended to mean "no" irrespective of facial expression) for both participant groups. However, this asymmetrical effect was stronger in the hearing group. These results suggest that the contribution of facial expression in perceiving real meanings from text messages is qualitatively similar but quantitatively different between deaf and hearing people. PMID:25883582

  10. Facial Expression as an Indicator of Pain in Critically Ill Intubated Adults During Endotracheal Suctioning

    PubMed Central

    Rahu, Mamoona Arif; Grap, Mary Jo; Cohn, Jeffrey F.; Munro, Cindy L.; Lyon, Debra E.; Sessler, Curtis N.

    2013-01-01

    Background Facial expression is often used to evaluate pain in noncommunicative critically ill patients. Objectives To describe facial behavior during endotracheal suctioning, determine facial behaviors that characterize the pain response, and describe the effect of patient factors on facial behavior during pain response. Methods Fifty noncommunicative patients receiving mechanical ventilation were video recorded during 2 phases (rest and endotracheal suctioning). Pain ratings were gathered by using the Behavioral Pain Scale. Facial behaviors were coded by using the Facial Action Coding System for 30 seconds for each phase. Results Fourteen facial actions were associated more with endotracheal suctioning than with rest (z = 5.78; P < .001). The sum of intensity of the 14 actions correlated with total mean scores on the Behavioral Pain Scale (ρ = 0.71; P < .001) and with the facial expression component of the scale (ρ = 0.67; P < .001) during suctioning. In stepwise multivariate analysis, 5 pain-relevant facial behaviors (brow raiser, brow lower, nose wrinkling, head turned right, and head turned up) accounted for 71% of the variance (adjusted R2 = 0.682; P < .001) in pain response. The sum of intensity of the 5 actions correlated with total mean scores on the behavioral scale (ρ = 0.72; P < .001) and with the facial expression component of that scale (ρ = 0.61; P < .001) during suctioning. Patient factors had no association with pain intensity scores. Conclusions Upper facial expressions are most frequently activated during pain response in noncommunicative critically ill patients and might be a valid alternative to self-report ratings. PMID:23996421

  11. Perceptual and affective mechanisms in facial expression recognition: An integrative review.

    PubMed

    Calvo, Manuel G; Nummenmaa, Lauri

    2016-09-01

    Facial expressions of emotion involve a physical component of morphological changes in a face and an affective component conveying information about the expresser's internal feelings. It remains unresolved how much recognition and discrimination of expressions rely on the perception of morphological patterns or the processing of affective content. This review of research on the role of visual and emotional factors in expression recognition reached three major conclusions. First, behavioral, neurophysiological, and computational measures indicate that basic expressions are reliably recognized and discriminated from one another, albeit the effect may be inflated by the use of prototypical expression stimuli and forced-choice responses. Second, affective content along the dimensions of valence and arousal is extracted early from facial expressions, although this coarse affective representation contributes minimally to categorical recognition of specific expressions. Third, the physical configuration and visual saliency of facial features contribute significantly to expression recognition, with "emotionless" computational models being able to reproduce some of the basic phenomena demonstrated in human observers. We conclude that facial expression recognition, as it has been investigated in conventional laboratory tasks, depends to a greater extent on perceptual than affective information and mechanisms. PMID:26212348

  12. Functional integration of the posterior superior temporal sulcus correlates with facial expression recognition.

    PubMed

    Wang, Xu; Song, Yiying; Zhen, Zonglei; Liu, Jia

    2016-05-01

    Face perception is essential for daily and social activities. Neuroimaging studies have revealed a distributed face network (FN) consisting of multiple regions that exhibit preferential responses to invariant or changeable facial information. However, our understanding about how these regions work collaboratively to facilitate facial information processing is limited. Here, we focused on changeable facial information processing, and investigated how the functional integration of the FN is related to the performance of facial expression recognition. To do so, we first defined the FN as voxels that responded more strongly to faces than objects, and then used a voxel-based global brain connectivity method based on resting-state fMRI to characterize the within-network connectivity (WNC) of each voxel in the FN. By relating the WNC and performance in the "Reading the Mind in the Eyes" Test across participants, we found that individuals with stronger WNC in the right posterior superior temporal sulcus (rpSTS) were better at recognizing facial expressions. Further, the resting-state functional connectivity (FC) between the rpSTS and right occipital face area (rOFA), early visual cortex (EVC), and bilateral STS were positively correlated with the ability of facial expression recognition, and the FCs of EVC-pSTS and OFA-pSTS contributed independently to facial expression recognition. In short, our study highlights the behavioral significance of intrinsic functional integration of the FN in facial expression processing, and provides evidence for the hub-like role of the rpSTS for facial expression recognition. Hum Brain Mapp 37:1930-1940, 2016. © 2016 Wiley Periodicals, Inc. PMID:26915331

  13. Electromyographic Responses to Emotional Facial Expressions in 6-7 Year Olds with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Deschamps, P. K. H.; Coppes, L.; Kenemans, J. L.; Schutter, D. J. L. G.; Matthys, W.

    2015-01-01

    This study aimed to examine facial mimicry in 6-7 year old children with autism spectrum disorder (ASD) and to explore whether facial mimicry was related to the severity of impairment in social responsiveness. Facial electromyographic activity in response to angry, fearful, sad and happy facial expressions was recorded in twenty 6-7 year old…

  14. Facial expression recognition based on fused Feature of PCA and LDP

    NASA Astrophysics Data System (ADS)

    Yi, Zhang; Mao, Hou-lin; Luo, Yuan

    2014-11-01

    Facial expression recognition is an important part of the study in man-machine interaction. Principal component analysis (PCA) is an extraction method based on statistical features which were extracted from the global grayscale features of the whole image .But the grayscale global features are environmentally sensitive. In order to recognize facial expression accurately, a fused method of principal component analysis and local direction pattern (LDP) is introduced in this paper. First, PCA extracts the global features of the whole grayscale image; LDP extracts the local grayscale texture features of the mouth and eyes region, which contribute most to facial expression recognition, to complement the global grayscale features of PCA. Then we adopt Support Vector Machine (SVM) classifier for expression classification. Experimental results demonstrate that this method can classify different expressions more effectively and get higher recognition rate compared with the traditional method.

  15. Effects of exposure to facial expression variation in face learning and recognition.

    PubMed

    Liu, Chang Hong; Chen, Wenfeng; Ward, James

    2015-11-01

    Facial expression is a major source of image variation in face images. Linking numerous expressions to the same face can be a huge challenge for face learning and recognition. It remains largely unknown what level of exposure to this image variation is critical for expression-invariant face recognition. We examined this issue in a recognition memory task, where the number of facial expressions of each face being exposed during a training session was manipulated. Faces were either trained with multiple expressions or a single expression, and they were later tested in either the same or different expressions. We found that recognition performance after learning three emotional expressions had no improvement over learning a single emotional expression (Experiments 1 and 2). However, learning three emotional expressions improved recognition compared to learning a single neutral expression (Experiment 3). These findings reveal both the limitation and the benefit of multiple exposures to variations of emotional expression in achieving expression-invariant face recognition. The transfer of expression training to a new type of expression is likely to depend on a relatively extensive level of training and a certain degree of variation across the types of expressions. PMID:25398479

  16. Support vector machine-based facial-expression recognition method combining shape and appearance

    NASA Astrophysics Data System (ADS)

    Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun

    2010-11-01

    Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.

  17. An optimized ERP brain-computer interface based on facial expression changes

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Daly, Ian; Zhang, Yu; Wang, Xingyu; Cichocki, Andrzej

    2014-06-01

    Objective. Interferences from spatially adjacent non-target stimuli are known to evoke event-related potentials (ERPs) during non-target flashes and, therefore, lead to false positives. This phenomenon was commonly seen in visual attention-based brain-computer interfaces (BCIs) using conspicuous stimuli and is known to adversely affect the performance of BCI systems. Although users try to focus on the target stimulus, they cannot help but be affected by conspicuous changes of the stimuli (such as flashes or presenting images) which were adjacent to the target stimulus. Furthermore, subjects have reported that conspicuous stimuli made them tired and annoyed. In view of this, the aim of this study was to reduce adjacent interference, annoyance and fatigue using a new stimulus presentation pattern based upon facial expression changes. Our goal was not to design a new pattern which could evoke larger ERPs than the face pattern, but to design a new pattern which could reduce adjacent interference, annoyance and fatigue, and evoke ERPs as good as those observed during the face pattern. Approach. Positive facial expressions could be changed to negative facial expressions by minor changes to the original facial image. Although the changes are minor, the contrast is big enough to evoke strong ERPs. In this paper, a facial expression change pattern between positive and negative facial expressions was used to attempt to minimize interference effects. This was compared against two different conditions, a shuffled pattern containing the same shapes and colours as the facial expression change pattern, but without the semantic content associated with a change in expression, and a face versus no face pattern. Comparisons were made in terms of classification accuracy and information transfer rate as well as user supplied subjective measures. Main results. The results showed that interferences from adjacent stimuli, annoyance and the fatigue experienced by the subjects could be

  18. Features classification using support vector machine for a facial expression recognition system

    NASA Astrophysics Data System (ADS)

    Patil, Rajesh A.; Sahula, Vineet; Mandal, Atanendu S.

    2012-10-01

    A methodology for automatic facial expression recognition in image sequences is proposed, which makes use of the Candide wire frame model and an active appearance algorithm for tracking, and support vector machine (SVM) for classification. A face is detected automatically from the given image sequence and by adapting the Candide wire frame model properly on the first frame of face image sequence, facial features in the subsequent frames are tracked using an active appearance algorithm. The algorithm adapts the Candide wire frame model to the face in each of the frames and then automatically tracks the grid in consecutive video frames over time. We require that first frame of the image sequence corresponds to the neutral facial expression, while the last frame of the image sequence corresponds to greatest intensity of facial expression. The geometrical displacement of Candide wire frame nodes, defined as the difference of the node coordinates between the first and the greatest facial expression intensity frame, is used as an input to the SVM, which classify the facial expression into one of the classes viz happy, surprise, sadness, anger, disgust, and fear.

  19. Inversion effects reveal dissociations in facial expression of emotion, gender, and object processing

    PubMed Central

    Pallett, Pamela M.; Meng, Ming

    2015-01-01

    To distinguish between high-level visual processing mechanisms, the degree to which holistic processing is involved in facial identity, facial expression, and object perception is often examined through measuring inversion effects. However, participants may be biased by different experimental paradigms to use more or less holistic processing. Here we take a novel psychophysical approach to directly compare human face and object processing in the same experiment, with face processing broken into two categories: variant properties and invariant properties as they were tested using facial expressions of emotion and gender, respectively. Specifically, participants completed two different perceptual discrimination tasks. One involved making judgments of stimulus similarity and the other tested the ability to detect differences between stimuli. Each task was completed for both upright and inverted stimuli. Results show significant inversion effects for the detection of differences in facial expressions of emotion and gender, but not for objects. More interestingly, participants exhibited a selective inversion deficit when making similarity judgments between different facial expressions of emotion, but not for gender or objects. These results suggest a three-way dissociation between facial expression of emotion, gender, and object processing. PMID:26283983

  20. Social Risk and Depression: Evidence from Manual and Automatic Facial Expression Analysis

    PubMed Central

    Girard, Jeffrey M.; Cohn, Jeffrey F.; Mahoor, Mohammad H.; Mavadati, Seyedmohammad; Rosenwald, Dean P.

    2014-01-01

    Investigated the relationship between change over time in severity of depression symptoms and facial expression. Depressed participants were followed over the course of treatment and video recorded during a series of clinical interviews. Facial expressions were analyzed from the video using both manual and automatic systems. Automatic and manual coding were highly consistent for FACS action units, and showed similar effects for change over time in depression severity. For both systems, when symptom severity was high, participants made more facial expressions associated with contempt, smiled less, and those smiles that occurred were more likely to be accompanied by facial actions associated with contempt. These results are consistent with the “social risk hypothesis” of depression. According to this hypothesis, when symptoms are severe, depressed participants withdraw from other people in order to protect themselves from anticipated rejection, scorn, and social exclusion. As their symptoms fade, participants send more signals indicating a willingness to affiliate. The finding that automatic facial expression analysis was both consistent with manual coding and produced the same pattern of depression effects suggests that automatic facial expression analysis may be ready for use in behavioral and clinical science. PMID:24598859

  1. Facial expression to emotional stimuli in non-psychotic disorders: A systematic review and meta-analysis.

    PubMed

    Davies, H; Wolz, I; Leppanen, J; Fernandez-Aranda, F; Schmidt, U; Tchanturia, K

    2016-05-01

    Facial expression of emotion is crucial to social interaction and emotion regulation; therefore, altered facial expressivity can be a contributing factor in social isolation, difficulties with emotion regulation and a target for therapy. This article provides a systematic review and meta-analysis of the literature on automatic emotional facial expression in people with non-psychotic disorders compared to healthy comparison groups. Studies in the review used an emotionally salient visual induction method, and reported on automatic facial expression in response to congruent stimuli. A total of 39 studies show alterations in emotional facial expression across all included disorders, except anxiety disorders. In depression, decreases in facial expression are mainly evident for positive affect. In eating disorders, a meta-analysis showed decreased facial expressivity in response to positive and negative stimuli. Studies in autism partially support generally decreased facial expressivity in this group. The data included in this review point towards decreased facial emotional expressivity in individuals with different non-psychotic disorders. This is the first review to synthesise facial expression studies across clinical disorders. PMID:26915928

  2. Development and Standardization of Extended ChaeLee Korean Facial Expressions of Emotions

    PubMed Central

    Lee, Kyoung-Uk; Kim, JiEun; Yeon, Bora; Kim, Seung-Hwan

    2013-01-01

    Objective In recent years there has been an enormous increase of neuroscience research using the facial expressions of emotion. This has led to a need for ethnically specific facial expressions data, due to differences of facial emotion processing among different ethnicities. Methods Fifty professional actors were asked to pose with each of the following facial expressions in turn: happiness, sadness, fear, anger, disgust, surprise, and neutral. A total of 283 facial pictures of 40 actors were selected to be included in the validation study. Facial expression emotion identification was performed in a validation study by 104 healthy raters who provided emotion labeling, valence ratings, and arousal ratings. Results A total of 259 images of 37 actors were selected for inclusion in the Extended ChaeLee Korean Facial Expressions of Emotions tool, based on the analysis of results. In these images, the actors' mean age was 38±11.1 years (range 26-60 years), with 16 (43.2%) males and 21 (56.8%) females. The consistency varied by emotion type, showing the highest for happiness (95.5%) and the lowest for fear (49.0%). The mean scores for the valence ratings ranged from 4.0 (happiness) to 1.9 (sadness, anger, and disgust). The mean scores for the arousal ratings ranged from 3.7 (anger and fear) to 2.5 (neutral). Conclusion We obtained facial expressions from individuals of Korean ethnicity and performed a study to validate them. Our results provide a tool for the affective neurosciences which could be used for the investigation of mechanisms of emotion processing in healthy individuals as well as in patients with various psychiatric disorders. PMID:23798964

  3. Social Alienation in Schizophrenia Patients: Association with Insula Responsiveness to Facial Expressions of Disgust

    PubMed Central

    Lindner, Christian; Dannlowski, Udo; Walhöfer, Kirsten; Rödiger, Maike; Maisch, Birgit; Bauer, Jochen; Ohrmann, Patricia; Lencer, Rebekka; Zwitserlood, Pienie; Kersting, Anette; Heindel, Walter; Arolt, Volker

    2014-01-01

    Introduction Among the functional neuroimaging studies on emotional face processing in schizophrenia, few have used paradigms with facial expressions of disgust. In this study, we investigated whether schizophrenia patients show less insula activation to macro-expressions (overt, clearly visible expressions) and micro-expressions (covert, very brief expressions) of disgust than healthy controls. Furthermore, departing from the assumption that disgust faces signal social rejection, we examined whether perceptual sensitivity to disgust is related to social alienation in patients and controls. We hypothesized that high insula responsiveness to facial disgust predicts social alienation. Methods We used functional magnetic resonance imaging to measure insula activation in 36 schizophrenia patients and 40 healthy controls. During scanning, subjects passively viewed covert and overt presentations of disgust and neutral faces. To measure social alienation, a social loneliness scale and an agreeableness scale were administered. Results Schizophrenia patients exhibited reduced insula activation in response to covert facial expressions of disgust. With respect to macro-expressions of disgust, no between-group differences emerged. In patients, insula responsiveness to covert faces of disgust was positively correlated with social loneliness. Furthermore, patients' insula responsiveness to covert and overt faces of disgust was negatively correlated with agreeableness. In controls, insula responsiveness to covert expressions of disgust correlated negatively with agreeableness. Discussion Schizophrenia patients show reduced insula responsiveness to micro-expressions but not macro-expressions of disgust compared to healthy controls. In patients, low agreeableness was associated with stronger insula response to micro- and macro-expressions of disgust. Patients with a strong tendency to feel uncomfortable with social interactions appear to be characterized by a high sensitivity for

  4. Discrimination and Imitation of Facial Expressions by Neonates.

    ERIC Educational Resources Information Center

    Field, Tiffany

    Findings of a series of studies on individual differences and maturational changes in expressivity at the neonatal stage and during early infancy are reported. Research results indicate that newborns are able to discriminate and imitate the basic emotional expressions: happy, sad, and surprised. Results show widened infant lips when the happy…

  5. Perceptual, Categorical, and Affective Processing of Ambiguous Smiling Facial Expressions

    ERIC Educational Resources Information Center

    Calvo, Manuel G.; Fernandez-Martin, Andres; Nummenmaa, Lauri

    2012-01-01

    Why is a face with a smile but non-happy eyes likely to be interpreted as happy? We used blended expressions in which a smiling mouth was incongruent with the eyes (e.g., angry eyes), as well as genuine expressions with congruent eyes and mouth (e.g., both happy or angry). Tasks involved detection of a smiling mouth (perceptual), categorization of…

  6. Young Infants Match Facial and Vocal Emotional Expressions of Other Infants

    PubMed Central

    Vaillant-Molina, Mariana; Bahrick, Lorraine E.; Flom, Ross

    2013-01-01

    Research has demonstrated that infants recognize emotional expressions of adults in the first half-year of life. We extended this research to a new domain, infant perception of the expressions of other infants. In an intermodal matching procedure, 3.5- and 5-month-old infants heard a series of infant vocal expressions (positive and negative affect) along with side-by-side dynamic videos in which one infant conveyed positive facial affect and another infant conveyed negative facial affect. Results demonstrated that 5-month-olds matched the vocal expressions with the affectively congruent facial expressions, whereas 3.5-month-olds showed no evidence of matching. These findings indicate that by 5 months of age, infants detect, discriminate, and match the facial and vocal affective displays of other infants. Further, because the facial and vocal expressions were portrayed by different infants and shared no face-voice synchrony, temporal or intensity patterning, matching was likely based on detection of a more general affective valence common to the face and voice. PMID:24302853

  7. The Role of Facial Expressions in Attention-Orienting in Adults and Infants

    ERIC Educational Resources Information Center

    Rigato, Silvia; Menon, Enrica; Di Gangi, Valentina; George, Nathalie; Farroni, Teresa

    2013-01-01

    Faces convey many signals (i.e., gaze or expressions) essential for interpersonal interaction. We have previously shown that facial expressions of emotion and gaze direction are processed and integrated in specific combinations early in life. These findings open a number of developmental questions and specifically in this paper we address whether…

  8. Strategies for Perceiving Facial Expressions in Adults with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Walsh, Jennifer A.; Vida, Mark D.; Rutherford, M. D.

    2014-01-01

    Rutherford and McIntosh (J Autism Dev Disord 37:187-196, 2007) demonstrated that individuals with autism spectrum disorder (ASD) are more tolerant than controls of exaggerated schematic facial expressions, suggesting that they may use an alternative strategy when processing emotional expressions. The current study was designed to test this finding…

  9. Production of Emotional Facial Expressions in European American, Japanese, and Chinese Infants.

    ERIC Educational Resources Information Center

    Camras, Linda A.; And Others

    1998-01-01

    European American, Japanese, and Chinese 11-month-olds participated in emotion-inducing laboratory procedures. Facial responses were scored with BabyFACS, an anatomically based coding system. Overall, Chinese infants were less expressive than European American and Japanese infants, suggesting that differences in expressivity between European…

  10. Recognition of Facial Expressions of Emotion in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Virji-Babul, Naznin; Watt, Kimberley; Nathoo, Farouk; Johnson, Peter

    2012-01-01

    Research on facial expressions in individuals with Down syndrome (DS) has been conducted using photographs. Our goal was to examine the effect of motion on perception of emotional expressions. Adults with DS, adults with typical development matched for chronological age (CA), and children with typical development matched for developmental age (DA)…